

LEARN PYTHON
THE HARD WAY

Fifth Edition

http://informit.com/hardway
http://informit.com/socialconnect

D I

D

E

Hoboken, New Jersey

Cover image: ioat/Shutterstock
Author photo courtesy of Zed A. Shaw
Pages 6, 7: Screenshots from Jupyter
Pages 84, 86: Screenshots from Python Software Foundation

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023950645

Copyright © 2024 Zed A. Shaw

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

ISBN-13: 978-0-13-827057-5
ISBN-10: 0-13-827057-0

$PrintCode

http://www.pearson.com/permissions
mailto:intlcs@pearson.com
mailto:governmentsales@pearsoned.com
mailto:corpsales@pearsoned.com
http://www.informit.com/aw

v

Contents

Preface . xix

Improvements in the Fifth Edition . xix

Acknowledgments . xx

MODULE 1 Getting Started in Python 1

Exercise 0 Gearing Up . 2

General Instructions . 2

Minimalist Start . 3

Complete Instructions . 3

Testing Your Setup . 3

Learning the Command Line . 4

Next Steps . 5

Exercise 1 A Good First Program . 6

What You Should See . 7

Study Drills . 8

Common Student Questions . 9

The Blue Plus . 9

Exercise 2 Comments and Pound Characters 10

What You Should See . 10

Study Drills . 10

Common Student Questions . 11

Exercise 3 Numbers and Math . 12

What You Should See . 13

Study Drills . 13

Common Student Questions . 13

Exercise 4 Variables and Names . 16

What You Should See . 17

Study Drills . 17

Common Student Questions . 17

Exercise 5 More Variables and Printing 20

What You Should See . 20

vi CONTENTS

Study Drills . 21

Common Student Questions . 21

Exercise 6 Strings and Text . 22

What You Should See . 23

Study Drills . 23

Break It . 23

Common Student Questions . 24

Exercise 7 Combining Strings . 26

What You Should See . 26

Study Drills . 26

Break It . 27

Common Student Questions . 27

Exercise 8 Formatting Strings Manually 28

What You Should See . 28

Study Drills . 29

Common Student Questions . 29

Exercise 9 Multi-Line Strings . 30

What You Should See . 30

Study Drills . 31

Common Student Questions . 31

Exercise 10 Escape Codes in Strings 32

What You Should See . 33

Escape Sequences . 33

Study Drills . 34

Common Student Questions . 34

Exercise 11 Asking People Questions 36

What You Should See . 36

Study Drills . 37

Common Student Questions . 37

Exercise 12 An Easier Way to Prompt 38

What You Should See . 38

Study Drills . 38

Common Student Questions . 39

CONTENTS vii

Exercise 13 Parameters, Unpacking, Variables 40

If You Get Lost . 41

Code Description . 41

Hold Up! Features Have Another Name 42

What You Should See . 42

Study Drills . 43

Common Student Questions . 43

Exercise 14 Prompting and Passing . 46

What You Should See . 47

Study Drills . 47

Common Student Questions . 47

Exercise 15 Reading Files . 50

What You Should See . 51

Study Drills . 51

Common Student Questions . 52

Exercise 16 Reading and Writing Files 54

What You Should See . 55

Study Drills . 55

Common Student Questions . 56

Exercise 17 More Files . 58

What You Should See . 59

Study Drills . 59

Common Student Questions . 59

MODULE 2 The Basics of Programming 61

Exercise 18 Names, Variables, Code, Functions 62

Exercise Code . 63

What You Should See . 65

Study Drills . 65

Common Student Questions . 66

Exercise 19 Functions and Variables . 68

What You Should See . 69

Study Drills . 70

Common Student Questions . 70

viii CONTENTS

Exercise 20 Functions and Files . 72

What You Should See . 73

Study Drills . 73

Common Student Questions . 74

Exercise 21 Functions Can Return Something 76

What You Should See . 77

Study Drills . 77

Common Student Questions . 78

Exercise 22 Strings, Bytes, and Character Encodings 80

Initial Research . 80

Switches, Conventions, and Encodings 82

Dissecting the Output . 84

Dissecting the Code . 84

Encodings Deep Dive . 86

Breaking It . 87

Exercise 23 Introductory Lists . 88

Accessing Elements of a List . 88

Practicing Lists . 89

The Code . 89

The Challenge . 90

Fruit Challenge . 90

Cars Challenge . 90

Languages Challenge . 91

Final Challenge . 91

Exercise 24 Introductory Dictionaries . 92

Key/Value Structures . 92

Combining Lists with Data Objects . 93

The Code . 94

What You Should See . 95

The Challenge . 95

Fruit Challenge . 95

Cars Challenge . 95

Languages Challenge . 96

Final Challenge . 96

CONTENTS ix

Exercise 25 Dictionaries and Functions 98

Step 1: Function Names Are Variables 98

Step 2: Dictionaries with Variables . 98

Step 3: Dictionaries with Functions . 99

Step 4: Deciphering the Last Line . 99

Study Drill . 100

Exercise 26 Dictionaries and Modules 102

Step 1: Review of import . 102

Step 2: Find the __dict__ . 102

Step 3: Change the __dict__ . 103

Study Drill: Find the “Dunders” . 104

Exercise 27 The Five Simple Rules to the Game of Code 106

Rule 1: Everything Is a Sequence of Instructions 106

How can I get this output? . 107

Where are these bytes stored? . 108

Rule 2: Jumps Make the Sequence Non-Linear 108

Why is this backward? . 109

Can a JUMP go forward? . 109

Rule 3: Tests Control Jumps . 110

What do you mean “pop”? . 111

Wait, aren’t tests like COMPARE_OP used in loops too? 111

Rule 4: Storage Controls Tests . 111

Rule 5: Input/Output Controls Storage 112

Putting It All Together . 113

The List of Byte Codes . 113

dis() Is a Side Quest . 114

Exercise 28 Memorizing Logic . 116

The Truth Terms . 116

The Truth Tables . 117

Common Student Questions . 119

Exercise 29 Boolean Practice . 120

What You Should See . 122

Study Drills . 122

Common Student Questions . 122

x CONTENTS

Exercise 30 What If . 124

What You Should See . 124

dis() It . 125

Study Drill . 125

Common Student Questions . 125

Exercise 31 Else and If . 126

What You Should See . 127

dis() It . 127

Study Drills . 128

Common Student Questions . 128

Exercise 32 Making Decisions . 130

What You Should See . 131

dis() It . 131

Study Drills . 132

Common Student Questions . 132

Exercise 33 Loops and Lists . 134

What You Should See . 135

dis() It . 136

Study Drills . 137

Common Student Questions . 137

Exercise 34 While Loops . 138

What You Should See . 139

dis() It . 139

Study Drills . 140

Common Student Questions . 140

Exercise 35 Branches and Functions . 142

What You Should See . 143

Study Drills . 144

Common Student Questions . 144

Exercise 36 Designing and Debugging 146

From Idea to Working Code . 146

Is This a Professional Process? . 147

About the “X/Y” Non-Problem . 148

Rules for If-Statements . 149

Rules for Loops . 149

CONTENTS xi

Tips for Debugging . 149

Homework . 150

Exercise 37 Symbol Review . 152

Keywords . 152

Data Types . 153

String Escape Sequences . 154

Old-Style String Formats . 154

Operators . 155

Reading Code . 156

Study Drills . 157

Common Student Questions . 157

MODULE 3 Applying What You Know159

Exercise 38 Beyond Jupyter for Windows 160

Why Learn PowerShell? . 161

What Is PowerShell? . 161

PowerShell versus Cmder . 163

Starting Jupyter . 163

Getting Help . 164

Where Are You with start? . 164

Going from Graphics to PowerShell 165

Where Are You with pwd? . 165

What’s in Here? . 166

Files, Folders, Directories, and Paths 167

Moving Around . 167

Relative Paths . 168

Creating and Destroying . 169

Flags and Arguments . 169

Copy and Move . 169

Environment Variables . 170

Running Code . 170

Common Key Sequences . 171

Useful Developer Commands . 171

Crash Landing . 171

Exercise 39 Beyond Jupyter for macOS/Linux 172

macOS Troubles . 173

xii CONTENTS

Why Learn Bash or ZSH? . 173

What Is Bash? . 173

Starting Jupyter . 175

Getting Help . 175

Where Are You with open? . 175

Going from Graphics to Bash . 176

Where Are You with pwd? . 177

What’s in Here? . 177

Files, Folders, Directories, and Paths 178

Moving Around . 179

Relative Paths . 179

Creating and Destroying . 180

Hidden Files . 180

Flags and Arguments . 181

Copy and Move . 181

Environment Variables . 182

Running Code . 182

Common Key Sequences . 183

Useful Developer Commands . 183

Crash Landing . 184

Exercise 40 Advanced Developer Tools 186

Managing conda Environments . 186

Adding conda-forge . 187

Using pip . 188

Using a .condarc . 188

General Editing Tips . 189

Going Further . 189

Exercise 41 A Project Skeleton . 190

Activate an Environment . 190

Just Use cookiecutter . 190

Building Your Project . 191

Installing Your Project . 191

Testing the Install . 192

Remove test-project . 192

Common Errors . 193

Study Drills . 193

CONTENTS xiii

Exercise 42 Doing Things to Lists . 194

What You Should See . 195

What Lists Can Do . 196

When to Use Lists . 197

Study Drills . 197

Common Student Questions . 198

Exercise 43 Doing Things to Dictionaries 200

A Dictionary Example . 201

What You Should See . 203

What Dictionaries Can Do . 203

Study Drills . 204

Common Student Questions . 204

Exercise 44 From Dictionaries to Objects 206

Step 1: Passing a Dict to a Function 206

What You Should See . 207

Step 2: talk inside the Dict . 207

Step 3: Closures . 208

What You Should See . 209

Step 4: A Person Constructor . 209

Study Drills . 211

Exercise 45 Basic Object-Oriented Programming 212

Python’s People . 212

Using dir() and __dict__ . 213

About the Dot (.) . 214

Terminology . 215

A Word on self . 216

Study Drills . 217

Common Student Questions . 217

Exercise 46 Inheritance and Advanced OOP 218

How This Looks in Code . 219

About class Name(object) . 221

Study Drills . 221

Common Student Questions . 222

Exercise 47 Basic Object-Oriented Analysis and Design 224

The Analysis of a Simple Game Engine 225

Write or Draw About the Problem 225

xiv CONTENTS

Extract Key Concepts and Research Them 226

Create a Class Hierarchy and Object Map for the Concepts 226

Code the Classes and a Test to Run Them 227

Repeat and Refine . 229

Top Down versus Bottom Up . 229

The Code for “Gothons from Planet Percal #25” 230

What You Should See . 236

Study Drills . 237

Common Student Questions . 237

Exercise 48 Inheritance versus Composition 238

What Is Inheritance? . 238

Implicit Inheritance . 239

Override Explicitly . 240

Alter Before or After . 240

All Three Combined . 242

The Reason for super() . 243

Using super() with __init__() 243

Composition . 243

When to Use Inheritance or Composition 245

Study Drill . 245

Common Student Questions . 246

Exercise 49 You Make a Game . 248

Evaluating Your Game . 248

Function Style . 249

Class Style . 249

Code Style . 250

Good Comments . 250

Evaluate Your Game . 250

Exercise 50 Automated Testing . 252

What Is the Purpose of Testing? . 252

How to Test Efficiently . 252

Install PyTest . 253

Simple PyTest Demo . 254

Running pytest . 255

Exceptions and try/except . 255

Getting Coverage Reports . 256

CONTENTS xv

Study Drills . 256

Common Student Questions . 257

MODULE 4 Python and Data Science259

Exercise 51 What Is Data Munging? . 260

Why Data Munging? . 261

The Problem . 261

The Setup . 262

How to Code . 262

Process Example . 263

Solution Strategies . 265

Awesome ETL Tools . 266

Study Drills . 266

Exercise 52 Scraping Data from the Web 268

Introducing with . 268

The Problem . 269

The Setup . 269

The Clue . 270

Awesome Scraping Tools . 270

Study Drills . 271

Exercise 53 Getting Data from APIs . 272

Introducing JSON . 272

The Problem . 273

The Setup . 274

The Clue . 274

Awesome API Tools . 275

Study Drills . 275

Exercise 54 Data Conversion with pandas 276

Introducing Pandoc . 276

The Problem . 276

The Setup . 277

The Clue . 277

Study Drills . 278

Exercise 55 How to Read Documentation (Featuring pandas) 280

Why Programmer Documentation Sucks 280

How to Actively Read Programmer Docs 281

xvi CONTENTS

Step #1: Find the Docs . 281

Step #1 with pandas . 281

Step #2: Determine Your Strategy . 282

Step #2 with pandas . 282

Step #3: Code First, Docs Second . 283

Step #3 with pandas . 283

Step #4: Break or Change the Code 283

Step #5: Take Notes . 284

Step #6: Use It on Your Own . 284

Step #6 with pandas . 284

Step #7: Write About What You Learned 284

Step #7 with pandas . 285

Step #8: What’s the Gestalt? . 285

Step #8 with pandas . 286

Reading My pandas Curriculum . 286

Exercise 56 Using Only pandas . 288

Make a Project . 288

The Problem . 288

The Setup . 289

Study Drill . 289

Exercise 57 The SQL Crash Course . 290

What Is SQL? . 290

The Setup . 291

Fixing and Loading . 292

Back Up Your Database . 292

Create, Read, Update, Delete . 293

SELECT . 293

Date and Time . 294

INSERT . 295

UPDATE . 296

DELETE and Transactions . 297

Math, Aggregates, and GROUP BY 298

Python Access . 299

Exercise 58 SQL Normalization . 300

What Is Normalization? . 300

First Normal Form . 301

CONTENTS xvii

Implementing 1NF . 302

Creating Tables in SQL . 303

Second Normal Form (2NF) . 303

Implementing 2NF . 304

Using Python . 306

Querying 2NF Data . 306

Querying with Joins . 308

Study Drills . 308

Exercise 59 SQL Relationships . 310

One-to-Many (1:M) . 310

One-to-Many in Python . 310

One-to-Many Problem . 311

Many-to-Many (M:M) . 311

Many-to-Many Problem . 312

One-to-One (1:1) . 312

Attributed Relations . 313

Querying M:M Tables . 313

Your Last Study Drill . 314

Exercise 60 Advice from an Even Older Programmer 316

Index . 318

This page intentionally left blank

xix

Preface

T his simple book is meant to get you started in programming. The title says it’s the hard way to
learn to write code, but it’s actually not. It’s only the “hard” way because it uses a technique called

instruction. Instruction is where I tell you to do a sequence of controlled exercises designed to build a
skill through repetition. This technique works very well with beginners who know nothing and need to
acquire basic skills before they can understand more complex topics. It’s used in everything from martial
arts to music to even basic math and reading skills.

This book instructs you in Python by slowly building and establishing skills through techniques such as
practice and memorization, then applying them to increasingly difficult problems. By the end of the book
you will have the tools needed to begin learning more complex programming topics. I like to tell people
that my book gives you your “programming black belt.” What this means is that you know the basics well
enough to now start learning programming.

If you work hard, take your time, and build these skills, you will learn to code.

Improvements in the Fifth Edition
This latest edition of Learn Python the Hard Way features many innovations from over a decade of
teaching absolute beginners (aka pre-beginners) how to code. The following improvements are just a
few that should help almost anyone learn to code:

1. A focus on getting started quickly using Jupyter notebooks and Anaconda, rather than the
traditional Python tools from the previous books.

2. Though starting with Jupyter and Anaconda, students later “graduate” to a more traditional
environment found in professional Python development.

3. Less repetition of the same concepts but more combination and interaction with previous con-
cepts to reinforce learning.

4. A whole new Exercise 24 that teaches the basic concepts of a Turing machine by teaching
students how to use dis() to inspect Python’s byte codes. I’ve found this solves a major
problemwhere students feel they don’t “really know howPython works” by giving them a looking
glass into how Python actually works.

5. A completely rewritten Object-Oriented Programming section that teaches Python’s objects
and classes by having students create their own toy OOP system.

6. A whole new set of nine modules that teach the “Data part of Data Science,” from covering
introductory topics of processing CSV files to interacting with SQL databases.

xx LEARN PYTHON THE HARD WAY

7. New typographic conventions that make clear exactly what kind of code is being discussed. For
example, I’ll say, “look at the talk() function,” when I want you to review the function named
“talk” in the code. Traditionally, programming textbooks would leave off the () characters since
it’s seen as redundant because they also used the word “function.” I’ve found adding the ()
helps students find the functions in their code and eliminates any confusion about what talk!
refers to.

8. Lots of brand new subtle humor and programmer “dad jokes” to make the topic unserious and
a bit more fun.

I hope you enjoy my latest work, and if you ever find any mistakes or have any questions you can email
me at help@learncodethehardway.com. You can also find quick fixes, updated install instructions, and
additional advice at https://learncodethehardway.com/setup/python/. I recommend visiting this link first
if you have any weird errors while installing software as there may be updates that are not in your printed
copy.

Register your copy of Learn Python the Hard Way, Fifth Edition, on the InformIT site for convenient
access to updates and corrections as they become available. To start the registration process, go
to informit.com/register and log in or create an account. Enter the product ISBN (9780138270575)
and click Submit. If you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

Acknowledgments
I’d like to thank Nick Cohron for reviewing the book and finding all the errors for me. I’d also like to thank
my editor Debra Williams Cauley for putting up with my constant lateness and the late-night insomniac
phone calls, as well as Julie Nahil and the whole crew at Pearson for their hard work producing the book.

I’d also like to give a special thanks to all the past students who supported my work over the years. My
courses would not be as polished if it weren’t for your feedback, criticism, and praise. I truly do thank you
for helping me create something precious over the years, and I wish you all great success.

mailto:help@learncodethehardway.com

MODULE 1

Getting Started
in Python

2

EXERCISE 0

Gearing Up

T his exercise has no code. It is simply the exercise you complete to get your computer to run Python.
You should follow these instructions as exactly as possible. If you have problems following the written

instructions, then visit https://learncodethehardway.com/setup/python/ for possible corrections, updated
instructions, and additional help.

General Instructions
Your general task is to get a “programming environment” with tools you can use to write code. Nearly
every programmer has their own specialized environment, but at first you’ll want something simple that
can get you through this course. After the course you’ll know enough about programming to then waste
the rest of your life trying every tool you can imagine. It’s a lot of fun.

What you’ll need is the following:

• Jupyter, which will be used in the first part of the book to get you started easily. Jupyter is a
programming and data analysis environment that uses many languages, but we’ll use Python.

• Python. The version of Python you install mostly doesn’t matter so long as it’s newer than
version 3.10. Versions of Python (and other software) use numbers to indicate their age, and
the position of the numbers determines howmuch changed between versions. The general rule
is the first number means “major change,” the second number means “compatible changes,”
and a third number means only bug or security fixes. That means if you have version 3.8 and
version 3.10, then they should be compatible. If you have versions 3.10.1 and 3.10.2, then
there are only minor fixes.

• A basic programmer’s editor. Programmers use very complicated text editors, but you should
start with something simple that still works as a programmer’s editor.

• A Terminal emulator. This is a text-based command interface to your computer. If you’ve ever
seen a movie with hacking and programming in it, you’ve seen people furiously typing green
text into a black screen so they can take down an entire alien race with their “unix exe 32
pipe attack.” At first you won’t need this, but later you’ll “graduate” to using the Terminal as it’s
incredibly powerful and not too hard to learn.

You should have most of the other things you’ll need on your computer already, so let’s install each of
these requirements for your operating system (OS).

https://learncodethehardway.com/setup/python/
https://jupyter.org/

EXERCISE 0: GEARING UP 3

Minimalist Start
The instructions in this exercise are designed to install most of the things you need for the rest of the
course, but if you want to get going quickly with the least amount of work, then install:

1. Anaconda to get your Python

2. Jupyter to write and run some code

a. On Windows the best way to run Jupyter is to hit the Windows key (Start menu) and type
jupyter-lab. This will start it in a way that makes sense.

b. On Linux it should be the same command in your Terminal.

c. On macOS you can either type that command in the Terminal or start the app like normal.

This will give you enough to get started, but eventually you’ll hit exercises that need the Terminal and
Python from the “command line.” Come back to this exercise when you reach that point in the course.

Complete Instructions
Eventually you’ll need to install more software to complete the course. The problem with installation
instructions in books is they become outdated quickly. To solve this problem, I have a web page you
need to visit with all of the instructions for your OS with videos showing you the installations. These
instructions are updated whenever things change, and the web page includes any errata needed for
your book.

To view these instructions, visit the following link:

• https://learncodethehardway.com/setup/python/

If you’re not able to visit this link for some reason, then here’s what you’ll have to install:

1. Anaconda to get your Python

2. Jupyter to write and run some code

3. Geany for editing text later

4. On Windows use the full install of Cmder as your shell

5. On macOS you have Terminal, and Linux has whatever you want

Testing Your Setup
Once you have everything installed, go through these steps to confirm that everything is working:

1. Start your Terminal and type this command exactly, spaces and all: mkdir lpthw

2. Once that works, you have a directory lpthw where you can place your work.

https://www.anaconda.com/
https://jupyter.org/
https://learncodethehardway.com/setup/python/
https://www.anaconda.com/
https://jupyter.org/
https://geany.org
https://cmder.app

4 LEARN PYTHON THE HARD WAY

3. Go into that directory with the command cd lpthw. This command “moves” your Terminal
into that directory so your work is saved there.

4. A “directory” is also called a “folder” on Windows and macOS. You can make the connection
between the “directory” in your Terminal and the “folder” you normally see by typing start. on
Windows or open. on macOS. This opens the current directory into a graphical folder window
you’re used to normally seeing. If you’re ever lost, type that.

5. The start command (open on macOS) works like double-clicking that thing with your mouse.
If you are in the Terminal andwant to “open” something, just use this command. Let’s say there’s
a text file named test.txt and you want to open it in your editor. Type start test.txt on
Windows or open test.txt on macOS.

6. Now that you can open your Terminal and open things while in your Terminal, you’ll want to start
your editor. This is Geany if you’ve been following instructions. Start it and create a file named
test.txt and then save it in the lpthw directory you made. If you can’t find it, remember you
can open it from the Terminal with start (open on macOS) and then use that folder window
to find it.

7. Once you’ve saved the file in the lpthw directory, you should be able to type ls test.txt
in your Terminal to see that it’s there. If you get an error, then either you’re not in the lpthw
directory and need to type cd ~/lpthw or you saved it in the wrong place. Try again until you
can do this.

8. Finally, in the Terminal, type jupyter-lab to start Jupyter and make sure it works. It should
open your web browser, and then you’ll see the Jupyter app inside your browser. It’s kind of like
a little website on your personal computer.

Think of these tasks as a kind of puzzle to solve. If you get stuck, then visit https://learncodethehardway
.com/setup/python/ for possible updates and video install guides.

Learning the Command Line
You don’t need to do this right now, but if you’re struggling with the previous tasks, you might need to
go through the Command Line Crash Course (https://learncodethehardway.com/command-line-crash-
course/) to learn the basics of the Terminal (also called the “command line”). You won’t need these skills
for a while, but the command line is a very good introduction to controlling your computer with words. It
will also help you with many other tasks in programming later, so learning it now can only help.

https://learncodethehardway.com/setup/python/
https://learncodethehardway.com/setup/python/
https://learncodethehardway.com/command-line-crash-course/
https://learncodethehardway.com/command-line-crash-course/

EXERCISE 0: GEARING UP 5

Next Steps
Once you have everything working, you can continue with the rest of the course. If you ever run into
trouble, you can email me at help@learncodethehardway.com, and I’ll help you. When you email me for
help, take the time to describe your problem in as much detail as possible, and include screenshots.

mailto:help@learncodethehardway.com

EXE I E

d

NIN If you skipped Exercise 0, then you are not doing this book right. Are you trying
to use IDLE or an IDE I said not to use one in Exercise 0, so you should not use one.
If you skipped Exercise 0, please go back to it and read it.

You should have spent a good amount of time in Exercise 0 learning how to install Jupyter, run Jupyter,
run the Terminal, and work with both of them. If you haven’t done that, then do not proceed. You will not
have a good time. This is the only time I’ll start an exercise with a warning that you should not skip or
get ahead of yourself.

Type the following text into a Jupyter cell:

Listing 1.1: ex1.py

1 print("Hello World!")
2 print("Hello Again")
3 print("I like typing this.")
4 print("This is fun.")
5 print('Yay! Printing.')
6 print("I'd much rather you 'not'.")
7 print('I "said" do not touch this.')

Your Jupyter cell should look something like this:

EXER I E A OOD IR T PRO RA

Don’t worry if your Jupyter window doesn’t look exactly the same it should be close though. You may
have a slightly different window header, maybe slightly different colors, and the left side of your Jupyter
window won’t be the same, but will instead show the directory you used for saving your files. All of those
differences are fine.

When you create this cell, keep in mind these points:

1. I did not type the line numbers on the left. Those are printed in the book so I can talk about
specific lines by saying, “See line 5 ” You do not type line numbers into Python scripts.

2. I have the print at the beginning of the line, and it looks exactly the same as what I have
in the cell. Exactly means exactly, not kind of sort of the same. Every single character has to
match for it to work. Color doesn’t matter, only the characters you type.

Once it is e act the same, you can hit SHIFT-ENTER to run the code. If you did it right, then you
should see the same output as I in the at ou S ou d See section of this exercise. If not, you have
done something wrong. No, the computer is not wrong.

The Jupyter output will look like this after you hold SHIFT and hit ENTER (which I’ll write as SHIFT-ENTER):

8 LEARN PYTHON THE HARD WAY

You may see different window appearance and layout, but the important part is that you type the com-
mand and see the output is the same as mine.

If you have an error, it will look like this:

1 Cell In[1], line 3
2 print("I like typing this.
3 ^
4 SyntaxError: unterminated string literal (detected at line 1)

It’s important that you can read these error messages because you will be making many of these mis-
takes. Even I make many of these mistakes. Let’s look at this line by line.

1. We ran our command in the Jupyter cell with SHIFT-ENTER.

2. Python tells us that the cell has an error on line 3.

3. It prints this line of code for us to see it.

4. Then it puts a ^ (caret) character to point at where the problem is. Notice the missing " (double-
quote) character at the end though?

5. Finally, it prints out a “SyntaxError” and tells us something about what might be the error.
Usually these errors are very cryptic, but if you copy that text into a search engine, you will find
someone else who’s had that error, and you can probably figure out how to fix it.

Study Drills
The Study Drills contain things you should try to do. If you can’t, skip it and come back later.

For this exercise, try these things:

1. Make your script print another line.

2. Make your script print only one of the lines.

3. Put a # (octothorpe) character at the beginning of a line. What did it do? Try to find out what
this character does.

From now on, I won’t explain how each exercise works unless an exercise is different.

INFO An “octothorpe” is also called a “pound,” “hash,” “mesh,” or any number of names.
Pick the one that makes you chill out.

EXERCISE 1: A GOOD FIRST PROGRAM 9

Common Student Questions
These are actual questions that real students have asked when doing this exercise:

Can I use IDLE? No, for now just use Jupyter and later we’ll use a regular text editor for extra
superpowers.

Editing the code in Jupyter is annoying. Can I use a text editor? Totally, you can also create a Python
file in Jupyter and get a “good enough” editor. In the left panel where you see all your files, click
the blue + (plus) button on the top left. That will bring you to the first screen you saw when you
started Jupyter. Down at the bottom under $_ Other you’ll see a button for Python File
with the Python logo. Click that and you’ll get an editor to work on your file.

My code doesn’t run; I just get the prompt back with no output. You most likely took the code in my
cell literally and thought that print("Hello World!") meant to type only "Hello
World!" into the cell, without the print. Your cell has to be exactly like mine.

The Blue Plus
If you ever want to create a file with Jupyter and use its editor you can use the “blue plus” as shown in
this image which I’ve placed a giant red circle around:

If you don’t see this then you most likely started Jupyter wrong by accidentally starting the Jupyter
Notebook in your start menu instead of typing jupyter−lab.

10

EXERCISE 2

Comments and Pound Characters

C omments are very important in your programs. They are used to tell you what something does in
English, and they are used to disable parts of your program if you need to remove them temporarily.

Here’s how you use comments in Python:

Listing 2.1: ex2.py

1 # A comment, this is so you can read your program later.
2 # Anything after the # is ignored by python.
3
4 print("I could have code like this.") # and the comment after is ignored
5
6 # You can also use a comment to "disable" or comment out code:
7 # print("This won't run.")
8
9 print("This will run.")

From now on, I’m going to write code like this. It is important for you to understand that everything does
not have to be literal. If my Jupyter looks a little different from yours or if I’m using a text editor, the results
will be the same. Focus more on the textual output and less on the visual display such as fonts and
colors.

What You Should See
1 I could have code like this.
2 This will run.

Again, I’m not going to show you screenshots of all the Terminals possible. You should understand that
the preceding is not a literal translation of what your output should look like visually, but the text is what
you focus on.

Study Drills
1. Find out if you were right about what the # character does and make sure you know what it’s

called (octothorpe or pound character).

2. Take your code and review each line going backward. Start at the last line, and check each
word in reverse against what you should have typed.

3. Did you find more mistakes? Fix them.

EXERCISE 2: COMMENTS AND POUND CHARACTERS 11

4. Read what you typed out loud, including saying each character by its name. Did you find more
mistakes? Fix them.

Common Student Questions
Are you sure # is called the pound character? I call it the octothorpe because that is the only name

that no one country uses and that works in every country. Every country thinks its name for this
one character is both the most important way to do it and the only way it’s done. To me this is
simply arrogance and, really, y’all should just chill out and focus on more important things like
learning to code.

Why does the # in print("Hi # there.") not get ignored? The # in that code is inside a string,
so it will be put into the string until the ending " character is hit. Pound characters in strings
are just considered characters, not comments.

How do I comment out multiple lines? Put a # in front of each one.

I can’t figure out how to type a # character on my country’s keyboard. How do I do that? Some coun-
tries use the alt key and combinations of other keys to print characters foreign to their
language. You’ll have to search online to see how to type it.

Why do I have to read code backward? It’s a trick to make your brain not attach meaning to each
part of the code, and doing that makes you process each piece exactly. This catches errors
and is a handy error-checking technique.

12

EXERCISE 3

Numbers and Math

E very programming language has some kind of way of doing numbers and math. Do not worry:
programmers frequently lie about being math geniuses when they really aren’t. If they were math

geniuses, they would be doing math, not writing buggy web frameworks so they can drive race cars.

This exercise has lots of math symbols. Let’s name them right away so you know what they are called.
As you type this one in, say the name. When saying them feels boring, you can stop saying them. Here
are the names:

• + plus

• — minus

• / slash

• * asterisk

• % percent

• < less-than

• > greater-than

• <= less-than-equal

• >= greater-than-equal

Notice how the operations are missing? After you type in the code for this exercise, go back and figure
out what each of these does and complete the table. For example, + does addition.

Listing 3.1: ex3.py

1 print("I will now count my chickens:")
2
3 print("Hens", 25 + 30 / 6)
4 print("Roosters", 100 — 25 * 3 % 4)
5
6 print("Now I will count the eggs:")
7
8 print(3 + 2 + 1 — 5 + 4 % 2 — 1 / 4 + 6)
9
10 print("Is it true that 3 + 2 < 5 — 7?")
11
12 print(3 + 2 < 5 — 7)
13
14 print("What is 3 + 2?", 3 + 2)
15 print("What is 5 - 7?", 5 — 7)

EXERCISE 3: NUMBERS AND MATH 13

16
17 print("Oh, that's why it's False.")
18
19 print("How about some more.")
20
21 print("Is it greater?", 5 > —2)
22 print("Is it greater or equal?", 5 >= —2)
23 print("Is it less or equal?", 5 <= —2)

Make sure you type this exactly before you run it. Compare each line of your file to my file.

What You Should See
1 I will now count my chickens:
2 Hens 30.0
3 Roosters 97
4 Now I will count the eggs:
5 6.75
6 Is it true that 3 + 2 < 5 — 7?
7 False
8 What is 3 + 2? 5
9 What is 5 — 7? -2
10 Oh, that's why it's False.
11 How about some more.
12 Is it greater? True
13 Is it greater or equal? True
14 Is it less or equal? False

Study Drills
1. Above each line, use the # to write a comment to yourself explaining what the line does.

2. You can type most math directly into a Jupyter cell and get results. Try using it to do some basic
calculations like 1+2 and hit SHIFT-ENTER.

3. Find something you need to calculate and write a new .py file that does it.

4. Rewrite this exercise to use floating point numbers so it’s more accurate. 20.0 is floating point.

Common Student Questions
Why is the % character a “modulus” and not a “percent”? Mostly that’s just how the designers chose

to use that symbol. In normal writing you are correct to read it as a “percent.” In programming
this calculation is typically done with simple division and the / operator. The % modulus is a
different operation that just happens to use the % symbol.

14 LEARN PYTHON THE HARD WAY

How does % work? Another way to say it is, “X divided by Y with J remaining.” For example, “100
divided by 16 with 4 remaining.” The result of % is the J part, or the remaining part.

What is the order of operations? In the United States, we use an acronym called PEMDAS which
stands for Parentheses Exponents Multiplication Division Addition Subtraction. That’s the order
Python follows as well. The mistake people make with PEMDAS is to think this is a strict order,
as in “Do P, then E, then M, then D, then A, then S.” The actual order is you do the multiplication
and division (M&D) in one step, from left to right, and then you do the addition and subtraction
in one step from left to right. So, you could rewrite PEMDAS as PE(M&D)(A&S).

This page intentionally left blank

16

EXERCISE 4

Variables and Names

N ow you can print things with print, and you can do math. The next step is to learn about variables.
In programming, a variable is nothing more than a name for something, similar to how my name

“Zed” is a name for “the human who wrote this book.” Programmers use these variable names to make
their code read more like English and because they have lousy memories. If they didn’t use good names
for things in their software, they’d get lost when they tried to read their code again.

If you get stuck with this exercise, remember the tricks you have been taught so far for finding differences
and focusing on details:

1. Write a comment above each line explaining to yourself what it does in English

2. Read your Python code backward

3. Read your Python code out loud, saying even the characters

Listing 4.1: ex4.py

1 cars = 100
2 space_in_a_car = 4.0
3 drivers = 30
4 passengers = 90
5 cars_not_driven = cars — drivers
6 cars_driven = drivers
7 carpool_capacity = cars_driven * space_in_a_car
8 average_passengers_per_car = passengers / cars_driven
9
10
11 print("There are", cars, "cars available.")
12 print("There are only", drivers, "drivers available.")
13 print("There will be", cars_not_driven, "empty cars today.")
14 print("We can transport", carpool_capacity, "people today.")
15 print("We have", passengers, "to carpool today.")
16 print("We need to put about", average_passengers_per_car,
17 "in each car.")

INFO The _ in space_in_a_car is called an underscore character. Find out how to type it
if you do not already know. We use this character a lot to put an imaginary space between
words in variable names.

EXERCISE 4: VARIABLES AND NAMES 17

What You Should See
1 There are 100 cars available.
2 There are only 30 drivers available.
3 There will be 70 empty cars today.
4 We can transport 120.0 people today.
5 We have 90 to carpool today.
6 We need to put about 3.0 in each car.

Study Drills
When I wrote this program the first time, I had a mistake, and Python told me about it like this:

1 Traceback (most recent call last):
2 Cell In[1], line 8, in <module>
3 average_passengers_per_car = car_pool_capacity / passenger
4 NameError: name 'car_pool_capacity' is not defined

Explain this error in your own words. Make sure you use line numbers and explain why.

Here are more drills:

1. I used 4.0 for space_in_a_car, but is that necessary? What happens if it’s just 4?

2. Remember that 4.0 is a floating point number. It’s just a number with a decimal point,
and you need 4.0 instead of just 4 so that it is floating point.

3. Write comments above each of the variable assignments.

4. Make sure you know what = is called (equals) and that its purpose is to give data (numbers,
strings, etc.) names (cars_driven, passengers).

5. Remember that _ is an underscore character.

Common Student Questions
What is the difference between = (single-equal) and == (double-equal)? The = (single-equal) assigns

the value on the right to a variable on the left. The == (double-equal) tests whether two things
have the same value. You’ll learn about this later.

Can we write x=100 instead of x = 100? You can, but it’s bad form. You should add space
around operators like this so that it’s easier to read.

18 LEARN PYTHON THE HARD WAY

What do you mean by “read the file (code) backward”? Very simple. Imagine you have a file with 16
lines of code in it. Start at line 16, and compare it to my code at line 16. Then do it again for
15, and so on until you’ve read all of the code backward.

Why did you use 4.0 for space_in_a_car? It is mostly so you can then find out what a floating
point number is and ask this question. See the Study Drills section.

This page intentionally left blank

20

EXERCISE 5

More Variables and Printing

N ow we’ll do even more typing of variables and printing them out. This time we’ll use something
called a “format string.” Every time you put " (double-quotes) around a piece of text you have been

making a string. A string is how you make something that your program might give to a human. You print
strings, save strings to files, send strings to web servers, and many other things.

Strings are really handy, so in this exercise you will learn how to make strings that have variables em-
bedded in them. You embed variables inside a string by using a special {} sequence and then put the
variable you want inside the {} characters. You also must start the string with the letter f for “format,”
as in f"Hello {somevar}". This little f before the " (double-quote) and the {} characters tell Python
3, “Hey, this string needs to be formatted. Put these variables in there.”

As usual, just type this in even if you do not understand it, and make it exactly the same.

Listing 5.1: ex5.py

1 my_name = 'Zed A. Shaw'
2 my_age = 35 # not a lie
3 my_height = 74 # inches
4 my_weight = 180 # lbs
5 my_eyes = 'Blue'
6 my_teeth = 'White'
7 my_hair = 'Brown'
8
9 print(f"Let's talk about {my_name}.")
10 print(f"He's {my_height} inches tall.")
11 print(f"He's {my_weight} pounds heavy.")
12 print("Actually that's not too heavy.")
13 print(f"He's got {my_eyes} eyes and {my_hair} hair.")
14 print(f"His teeth are usually {my_teeth} depending on the coffee.")
15
16 # this line is tricky; try to get it exactly right
17 total = my_age + my_height + my_weight
18 print(f"If I add {my_age}, {my_height}, and {my_weight} I get {total}.")

What You Should See
1 Let's talk about Zed A. Shaw.
2 He's 74 inches tall.
3 He's 180 pounds heavy.
4 Actually that's not too heavy.
5 He's got Blue eyes and Brown hair.

EXERCISE 5: MORE VARIABLES AND PRINTING 21

6 His teeth are usually White depending on the coffee.
7 If I add 35, 74, and 180 I get 289.

Study Drills
1. Change all the variables so there is no my_ in front of each one. Make sure you change the

name everywhere, not just where you used = to set them.

2. Try to write some variables that convert the inches and pounds to centimeters and kilograms.
Do not just type in the measurements. Work out the math in Python.

Common Student Questions
Can I make a variable like this: 1 = 'Zed Shaw'? No, 1 is not a valid variable name. They need

to start with a character, so a1 would work, but 1 will not.

How can I round a floating point number? You can use the round() function like this:
round(1.7333).

Why does this not make sense to me? Try making the numbers in this script your measurements.
It’s weird, but talking about yourself will make it seem more real. Also, you’re just starting out,
so it won’t make too much sense. Keep going and more exercises will explain it more.

22

EXERCISE 6

Strings and Text

W hile you have been writing strings, you still do not know what they do. In this exercise we create
a bunch of variables with complex strings so you can see what they are for. First an explanation

of strings.

A string is usually a bit of text you want to display to someone or “export” out of the program you are
writing. Python knows you want something to be a string when you put either " (double-quotes) or '
(single-quotes) around the text. You saw this many times with your use of print when you put the text
you want to go inside the string inside " or ' after the print to print the string.

Strings can contain any number of variables that are in your Python script. Remember that a vari-
able is any line of code where you set a name = (equal) to a value. In the code for this exercise,
types_of_people = 10 creates a variable named types_of_people and sets it = (equal) to 10.
You can put that in any string with {types_of_people}. You also see that I have to use a special type
of string to “format”; it’s called an “f-string” and looks like this:

1 f"some stuff here {avariable}"
2 f"some other stuff {anothervar}"

Python also has another kind of formatting using the .format() syntax, which you see on line 17. You’ll
see me use that sometimes when I want to apply a format to an already created string, such as in a loop.
We’ll cover that more later.

We will now type in a whole bunch of strings, variables, and formats, and print them. You will also
practice using short abbreviated variable names. Programmers love saving time at your expense by
using annoyingly short and cryptic variable names, so let’s get you started reading and writing them
early on.

Listing 6.1: ex6.py

1 types_of_people = 10
2 x = f"There are {types_of_people} types of people."
3
4 binary = "binary"
5 do_not = "don't"
6 y = f"Those who know {binary} and those who {do_not}."
7
8 print(x)
9 print(y)

EXERCISE 6: STRINGS AND TEXT 23

10
11 print(f"I said: {x}")
12 print(f"I also said: '{y}'")
13
14 hilarious = False
15 joke_evaluation = "Isn't that joke so funny?! {}"
16
17 print(joke_evaluation.format(hilarious))
18
19 w = "This is the left side of..."
20 e = "a string with a right side."
21
22 print(w + e)

What You Should See
1 There are 10 types of people.
2 Those who know binary and those who don't.
3 I said: There are 10 types of people.
4 I also said: 'Those who know binary and those who don't.'
5 Isn't that joke so funny?! False
6 This is the left side of...a string with a right side.

Study Drills
1. Go through this program and write a comment above each line explaining it.

2. Find all the places where a string is put inside a string.

3. Are you sure there are only four places? How do you know? Maybe I like lying.

4. Explain why adding the two strings w and e with + makes a longer string.

Break It
You are now at a point where you can try to break your code to see what happens. Think of this as a
game to devise the most clever way to break the code. You can also find the simplest way to break it.
Once you break the code, you then need to fix it. If you have a friend, then the two of you can try to
break each other’s code and fix it. Give your friend your code in a file named ex6.py so they can break
something. Then you try to find their error and fix it. Have fun with this, and remember that if you wrote
this code once, you can do it again. If you take your damage too far, you can always type it in again for
extra practice.

24 LEARN PYTHON THE HARD WAY

Common Student Questions
Why do you put ' (single-quotes) around some strings and not others? Mostly it’s because of style,

but I’ll use a single-quote inside a string that has double-quotes. Look at lines 6 and 15 to
see how I’m doing that.

If you thought the joke was funny, could you write hilarious = True? Yes, and you’ll learn more
about these boolean values later.

This page intentionally left blank

26

EXERCISE 7

Combining Strings

N ow we are going to do a bunch of exercises where you just type code in and make it run. I won’t
be explaining this exercise because it is more of the same. The purpose is to build up your chops.

See you in a few exercises, and do not skip! Do not paste!

Listing 7.1: ex7.py

1 print("Mary had a little lamb.")
2 print("Its fleece was white as {}.".format('snow'))
3 print("And everywhere that Mary went.")
4 print("." * 10) # what'd that do?
5
6 end1 = "C"
7 end2 = "h"
8 end3 = "e"
9 end4 = "e"
10 end5 = "s"
11 end6 = "e"
12 end7 = "B"
13 end8 = "u"
14 end9 = "r"
15 end10 = "g"
16 end11 = "e"
17 end12 = "r"
18
19 # watch end = ' ' at the end. try removing it to see what happens
20 print(end1 + end2 + end3 + end4 + end5 + end6, end=' ')
21 print(end7 + end8 + end9 + end10 + end11 + end12)

What You Should See
1 Mary had a little lamb.
2 Its fleece was white as snow.
3 And everywhere that Mary went.
4
5 Cheese Burger

Study Drills
For these next few exercises, you will have the exact same Study Drills.

1. Go back through and write a comment on what each line does.

EXERCISE 7: COMBINING STRINGS 27

2. Read each one backward or out loud to find your errors.

3. From now on, when you make mistakes, write down on a piece of paper what kind of mistake
you made.

4. When you go to the next exercise, look at the mistakes you have made and try not to make
them in this new one.

5. Remember that everyone makes mistakes. Programmers are like magicians who fool everyone
into thinking they are perfect and never wrong, but it’s all an act. They make mistakes all the
time.

Break It
Did you have fun breaking the code in Exercise 6? From now on you’re going to break all the code you
write or a friend’s code. I won’t have a Break It section explicitly in every exercise, but your goal is
to find as many different ways to break your code until you get tired or exhaust all possibilities. In some
exercises, I might point out a specific common way people break that exercise’s code, but otherwise
consider this a standing order to always break it.

Common Student Questions
Why are you using the variable named ‘snow’? That’s actually not a variable: it is just a string with

the word snow in it. A variable wouldn’t have the single-quotes around it.

Is it normal to write an English comment for every line of code like you say to do in Study Drill 1? No,
you write comments only to explain difficult to understand code or why you did something.
Why is usually much more important, and then you try to write the code so that it explains how
something is being done on its own. However, sometimes you have to write such nasty code
to solve a problem that it does need a comment on every line. In this case, it’s strictly for you
to practice translating code to English.

Can I use single-quotes or double-quotes to make a string or do they do different things? In Python, ei-
ther way to make a string is acceptable, although typically you’ll use single-quotes for any short
strings like 'a' or 'snow'.

28

EXERCISE 8

Formatting Strings Manually

W e will now see how to do a more complicated formatting of a string. This code looks complex, but if
you do your comments above each line and break each thing down to its parts, you’ll understand it.

Listing 8.1: ex8.py

1 formatter = "{} {} {} {}"
2
3 print(formatter.format(1, 2, 3, 4))
4 print(formatter.format("one", "two", "three", "four"))
5 print(formatter.format(True, False, False, True))
6 print(formatter.format(formatter, formatter, formatter, formatter))
7 print(formatter.format(
8 "Try your",
9 "Own text here",
10 "Maybe a poem",
11 "Or a song about fear"
12))

What You Should See
1 1 2 3 4
2 one two three four
3 True False False True
4 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}
5 Try your Own text here Maybe a poem Or a song about fear

In this exercise, I’m using something called a “function” to turn the formatter variable into other strings.
When you see me write formatter.format(...), I’m telling Python to do the following:

1. Take the formatter string defined on line 1.

2. Call its format() function, which is similar to telling it to do a command line command named
format

3. Pass to format four arguments, which match up with the four {} in the formatter variable.
This is like passing arguments to the command line command format

4. The result of calling format on formatter is a new string that has the {} replaced with the
four variables. This is what print is now printing out.

EXERCISE 8: FORMATTING STRINGS MANUALLY 29

That’s a lot for the eighth exercise, so what I want you to do is consider this a brainteaser. It’s alright if
you don’t really understand what’s going on because the rest of the book will slowly make this clear. At
this point, try to study this and see what’s going on, and then move on to the next exercise.

Study Drills
Repeat the Study Drills from Exercise 7.

Common Student Questions
Why do I have to put quotes around “one” but not around True or False? Python recognizes True

and False as keywords representing the concept of true and false. If you put quotes around
them, then they are turned into strings and won’t work. You’ll learn more about how these work
later.

Can I use IDLE to run this? No, you should use Jupyter or the command line if you know how. It
is essential to learning programming and is a good place to start if you want to learn about
programming. Jupyter is a far superior tool than IDLE.

30

EXERCISE 9

Multi-Line Strings

B y now you should realize the pattern for this book is to use more than one exercise to teach you
something new. I start with code that you might not understand, and then more exercises explain

the concept. If you don’t understand something now, you will later as you complete more exercises. Write
down what you don’t understand, and keep going.

Listing 9.1: ex9.py

1 # Here's some new strange stuff, remember type it exactly.
2
3 days = "Mon Tue Wed Thu Fri Sat Sun"
4 months = "Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug"
5
6 print("Here are the days: ", days)
7 print("Here are the months: ", months)
8
9 print("""
10 There's something going on here.
11 With the three double-quotes.
12 We'll be able to type as much as we like.
13 Even 4 lines if we want, or 5, or 6.
14 """)

What You Should See
1 Here are the days: Mon Tue Wed Thu Fri Sat Sun
2 Here are the months: Jan
3 Feb
4 Mar
5 Apr
6 May
7 Jun
8 Jul
9 Aug

10
11 There's something going on here.
12 With the three double-quotes.
13 We'll be able to type as much as we like.
14 Even 4 lines if we want, or 5, or 6.

EXERCISE 9: MULTI-LINE STRINGS 31

Study Drills
Repeat the Study Drills from Exercise 7.

Common Student Questions
Why do I get an error when I put spaces between the three double-quotes? You have to type them like

""" and not " " ", meaning with no spaces between each one.

What if I wanted to start the months on a new line? You simply start the string with \n like this:
"\nJan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug".

Is it bad that my errors are always spelling mistakes? Most programming errors in the beginning
(and even later) are simple spelling mistakes, typos, or getting simple things out of order.

32

EXERCISE 10

Escape Codes in Strings

I n Exercise 9, I threw you some new stuff just to keep you on your toes. I showed you two ways to
make a string that goes across multiple lines. In the first way, I put the characters \n (backslash n)

between the names of the months. These two characters put a new line character into the string
at that point.

This \ (backslash) character encodes difficult-to-type characters into a string. There are various “escape
sequences” available for different characters you might want to use. We’ll try a few of these sequences
so you can see what I mean.

An important escape sequence is to escape a single-quote ' or double-quote ". Imagine you have
a string that uses double-quotes and you want to put a double-quote inside the string. If you write "I
"understand" joe." then Python will get confused because it will think the " around "understand"
actually ends the string. You need a way to tell Python that the " inside the string isn’t a real double-quote.

To solve this problem you escape double-quotes and single-quotes so Python knows to include them in
the string. Here’s an example:

1 "I am 6'2\" tall." # escape double-quote inside string
2 'I am 6\'2" tall.' # escape single-quote inside string

The second way to solve this problem is to use triple-quotes, which is just """ and works like a string,
but you also can put as many lines of text as you want until you type """ again. We’ll also play with
these.

Listing 10.1: ex10.py

1 tabby_cat = "\tI'm tabbed in."
2 persian_cat = "I'm split\non a line."
3 backslash_cat = "I'm \\ a \\ cat."
4
5 fat_cat = """
6 I'll do a list:
7 \t* Cat food
8 \t* Fishies
9 \t* Catnip\n\t* Grass
10 """
11
12 print(tabby_cat)
13 print(persian_cat)
14 print(backslash_cat)
15 print(fat_cat)

EXERCISE 10: ESCAPE CODES IN STRINGS 33

What You Should See
Look for the tab characters that you made. In this exercise, the spacing is important to get right.

1 I'm tabbed in.
2 I'm split
3 on a line.
4 I'm \ a \ cat.
5
6 I'll do a list:
7 * Cat food
8 * Fishies
9 * Catnip
10 * Grass

Escape Sequences
This is all of the escape sequences Python supports. You may not use many of these, but memorize
their format and what they do anyway. Try them out in some strings to see if you can make them work.

Escape What it does.

\\ Backslash (\)

\' Single-quote (’)

\" Double-quote (”)

\a ASCII bell (BEL)

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\N{name} Character named name in the Unicode database (Unicode only)

\r Carriage return (CR)

\t Horizontal tab (TAB)

\uxxxx Character with 16-bit hex value xxxx

\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx

\v ASCII vertical tab (VT)

\000 Character with octal value 000

\xhh Character with hex value hh

34 LEARN PYTHON THE HARD WAY

Study Drills
1. Memorize all the escape sequences by putting them on flash cards.

2. Use ''' (triple-single-quote) instead. Can you see why you might use that instead of """?

3. Combine escape sequences and format strings to create a more complex format.

Common Student Questions
I still haven’t completely figured out the last exercise. Should I continue? Yes, keep going. Instead of

stopping, take notes listing things you don’t understand for each exercise. Periodically, go
through your notes and see if you can figure these things out after you’ve completed more
exercises. Sometimes, though, you may need to go back a few exercises and do them again.

What makes // special compared to the other ones? It’s simply the way you would write out one
backslash (\) character. Think about why you would need this.

When I write // or /n it doesn’t work. That’s because you are using a forward-slash / and not a
backslash \. They are different characters that do very different things.

I don’t get Study Drill 3. What do you mean by “combine” escape sequences and formats? One con-
cept I need you to understand is that each of these exercises can be combined to solve
problems. Take what you know about format strings and write some new code that uses
format strings and the escape sequences from this exercise.

What’s better, ''' or """? It’s entirely based on style. Go with the ''' (triple-single-quote) style
for now, but be ready to use either depending on what feels best or what everyone else is
doing.

This page intentionally left blank

36

EXERCISE 11

Asking People Questions

N ow it is time to pick up the pace. You are doing a lot of printing to get you familiar with typing simple
things, but those simple things are fairly boring. What we want to do now is get data into your

programs. This is a little tricky because you have to learn to do two things that may not make sense right
away, but trust me and do it anyway. It will make sense in a few exercises.

Most of what software does is the following:

1. Take some kind of input from a person

2. Change it

3. Print out something to show how it changed

So far you have been printing strings, but you haven’t been able to get any input from a person. You may
not even know what “input” means, but type this code in anyway and make it exactly the same. In the
next exercise we’ll do more to explain input.

Listing 11.1: ex11.py

1 print("How old are you?", end=' ')
2 age = input()
3 print("How tall are you?", end=' ')
4 height = input()
5 print("How much do you weigh?", end=' ')
6 weight = input()
7
8 print(f"So, you're {age} old, {height} tall and {weight} heavy.")

INFO We put an end=' ' at the end of each print line. This tells print to not end the line
with a newline character and go to the next line.

What You Should See
1 How old are you? 38
2 How tall are you? 6'2"
3 How much do you weigh? 180lbs
4 So, you're 38 old, 6'2" tall and 180lbs heavy.

EXERCISE 11: ASKING PEOPLE QUESTIONS 37

Study Drills
1. Go online and find out what Python’s input does.

2. Can you find other ways to use it? Try some of the samples you find.

3. Write another “form” like this to ask some other questions.

Common Student Questions
How do I get a number from someone so I can do math? That’s a little advanced, but try x =

int(input()), which gets the number as a string from input() and then converts it to
an integer using int().

I put my height into raw input using input("6'2") but it doesn’t work. You don’t put your height in
there; you type it directly into your Terminal. First thing is, go back and make the code exactly
like mine. Next, run the script, and when it pauses, type your height in at your keyboard. That’s
all there is to it.

38

EXERCISE 12

An Easier Way to Prompt

W hen you typed input(), you were typing the (and) characters, which are parenthesis char-
acters. For input you can also put in a prompt to show to a person so they know what to type.

Put a string that you want for the prompt inside the () so that it looks like this:

1 y = input("Name? ")

This prompts the user with “Name?” and puts the result into the variable y. This is how you ask someone
a question and get the answer.

This means we can completely rewrite our previous exercise using just input to do all the prompting.

Listing 12.1: ex12.py

1 age = input("How old are you? ")
2 height = input("How tall are you? ")
3 weight = input("How much do you weigh? ")
4
5 print(f"So, you're {age} old, {height} tall and {weight} heavy.")

What You Should See
1 How old are you? 38
2 How tall are you? 6'2"
3 How much do you weigh? 180lbs
4 So, you're 38 old, 6'2" tall and 180lbs heavy.

Study Drills
1. In your Jupyter cell, right-click on any print and select Show Contextual Help. This will

give you quick documentation for print.

2. If you do this and the panel says “Click on a function to see documentation.” then you need to
run the code with SHIFT-ENTER and then click on the print() function again.

3. Next, go to Google and search for python print site:python.org to get official docu-
mentation for the Python print() function.

https://google.com
http://python.org

EXERCISE 12: AN EASIER WAY TO PROMPT 39

Common Student Questions
Why does the Contextual Help disappear? I’m not sure, but I suspect it can’t figure out what function

you want documentation for while you’re editing the code. Run the code and then suddenly it’ll
work. You can also click on any other functions in any other cell you work on.

Where does this documentation come from? These are documentation comments added to the
code itself, which is why it might be different from the online documentation. Get in the habit
of studying both when you can.

40

EXERCISE 13

Parameters, Unpacking, Variables

W e’re now going to take a quick detour into the world of the Terminal (aka PowerShell) version of
Python. If you did Exercise 0, “Getting Started,” correctly, you should have learned how to start

your Terminal. If not, then simply find the program named PowerShell on Windows or Terminal on
macOS. Later in this course you’ll learn how to use the Terminal more extensively, but in this exercise
we’ll just do a tiny test.

First, I want you to create a file named ex13.py using Jupyter’s new Python file:

1. On the left there’s a list of the files in your directory

2. Above that list is a blue [+] button

3. Click that button, and scroll to the very bottom where there should be a button for Python
File with the Python “blue and yellow snakes” logo

4. Click that button to open a new panel you can type code into

5. Right away, use your mouse to select File > Save Python File or hold CTRL and hit s
(normally shown as Ctrl-S but you don’t use shift to get that S)

6. This will open a modal prompt that says “Rename File.” Type “ex13” and it should keep the
.py, but be sure that this input says ex13.py

7. Hit the blue [Rename] button to save the file in that directory

Once that file is saved, you can then type this code into the file:

Listing 13.1: ex13.py

1 from sys import argv
2 # read the WYSS section for how to run this
3 script, first, second, third = argv
4
5 print("The script is called:", script)
6 print("Your first variable is:", first)
7 print("Your second variable is:", second)
8 print("Your third variable is:", third)

I recommend you type only one or two lines of code and then do the following:

1. Save your file again. CTRL-s is the easiest way, but use the menu if you can’t remember it.
This time it shouldn’t ask you to “rename” the file but instead should just save it.

2. Your file is now saved to your projects directory. If you remember from Exercise 0, “Getting
Started,” you created a directory in ~/Projects/lpythw, and when you run jupyter-lab,
you first cd ~/Projects/lpythw

EXERCISE 13: PARAMETERS, UNPACKING, VARIABLES 41

3. Now start a new Terminal (aka PowerShell onWindows) and cd ~/Projects/lpythw/ again
to get a terminal there.

4. Finally, type python ex13.py first 2nd 3rd. (Type this without the terminal period.)
When you do, you should see absolutely nothing! Yes, this is very important. You only typed
one or two lines, so there are no print lines in your code. That means it does not print any-
thing, but that’s good. If you get errors, then stop and figure out what you’re doing wrong. Did
you type that line wrong? Did you run python ex13.py? That is also wrong. You have to run
python ex13.py first 2nd 3rd. (Again, type without the terminal period.)

If You Get Lost

If you’re confused about where you are, use the open command on macOS and the start command
on Windows. If you type this:

1 open .

on amacOS computer, it will open a window with the contents of where your Terminal is currently located.
The same happens when you type:

1 start .

on Windows inside PowerShell. Doing this will help you connect your idea of “files are in folders in a
window” to “files are in directories in the Terminal (PowerShell).”

If this is the first time you’re seeing this advice, then go back to Exercise 0, “Getting Started,” and review
it as it seems you missed this important concept.

Code Description
On line 1, we have what’s called an “import.” This is how you add features to your script from the Python
feature set. Rather than give you all the features at once, Python asks you to say what you plan to use.
This keeps your programs small, but it also acts as documentation for other programmers who read your
code later.

The argv is the “argument variable,” a very standard name in programming that you will find used in
many other languages. This variable holds the arguments you pass to your Python script when you run
it. In the exercises you will get to play with this more and see what happens.

Line 3 “unpacks” argv so that, rather than holding all the arguments, it gets assigned to four variables you
can work with: script, first, second, and third. This may look strange, but “unpack” is probably
the best word to describe what it does. It just says, “Take whatever is in argv, unpack it, and assign it
to all of these variables on the left in order.”

After that we just print them out like normal.

42 LEARN PYTHON THE HARD WAY

Hold Up! Features Have Another Name
I call them “features” here (these little things you import to make your Python program do more), but
nobody else calls them features. I just used that name because I needed to trick you into learning what
they are without jargon. Before you can continue, you need to learn their real name: modules.

From now on we will be calling these “features” that we import modules. I’ll say things like, “You want
to import the sys module.” They are also called “libraries” by other programmers, but let’s just stick with
modules.

What You Should See

WARNING! Pay attention! You have been running Python scripts without command line
arguments. If you type only python3 ex13.py, you are doing it wrong! Pay close attention
to how I run it. This applies any time you see argv being used.

When you are done typing in all of the code, it should finally run like this (and you must pass three
command line arguments):

1 $ python ex13.py first 2nd 3rd
2 The script is called: ex13.py
3 Your first variable is: first
4 Your second variable is: 2nd
5 Your third variable is: 3rd

This is what you should see when you do a few different runs with different arguments:

1 $ python ex13.py stuff things that
2 The script is called: ex13.py
3 Your first variable is: stuff
4 Your second variable is: things
5 Your third variable is: that

Here’s one more example showing it can be anything:

1 $ python ex13.py apple orange grapefruit
2 The script is called: ex13.py
3 Your first variable is: apple
4 Your second variable is: orange
5 Your third variable is: grapefruit

You can actually replace first, second, and third with any three things you want.

If you do not run it correctly, then you will get an error like this:

EXERCISE 13: PARAMETERS, UNPACKING, VARIABLES 43

Command failed: python ex13.py first 2nd Traceback (most recent call last):
File "/Users/zedshaw/Projects/learncodethehardway.com/private/db/mod
ules/learn-python-the-hard-way-5e-section-1/code/ex13.py", line 3, in
script, first, second, third = argv ValueError: not enough values to unpack
(expected 4, got 3)

This happens when you do not put enough arguments on the command when you run it (in this case,
just first 2nd). Notice that when I run it, I give it first 2nd, which caused it to give an error about
“need more than 3 values to unpack” telling you that you didn’t give it enough parameters.

Study Drills
1. Try giving fewer than three arguments to your script. See that error you get? See if you can

explain it.

2. Write a script that has fewer arguments and one that has more. Make sure you give the un-
packed variables good names.

3. Combine input with argv to make a script that gets more input from a user. Don’t overthink
it. Just use argv to get something, and use input to get something else from the user.

4. Remember that modules give you features. Modules. Modules. Remember this because we’ll
need it later.

Common Student Questions
When I run it, I get ValueError:need more than 1 valuetounpack. Remember that an

important skill is paying attention to details. If you look at the What You Should See section,
you see that I run the script with parameters on the command line. You should replicate how
I ran it exactly. There’s also a giant warning right there explaining the mistake you just made,
so again, please pay attention.

What’s the difference between argv and input()? The difference has to do with where the user
is required to give input. If they give your script inputs on the command line, then you use argv.
If you want them to input using the keyboard while the script is running, then use input().

Are the command line arguments strings? Yes, they come in as strings, even if you typed numbers
on the command line. Use int() to convert them just like with int(input()).

How do you use the command line? If you want to learn it now rather than waiting, you can jump to
Module 3, Exercise 38 for Windows and Exercise 39 for macOS and Linux.

http://File"/Users/zedshaw/Projects/learncodethehardway.com/private/db/mod

44 LEARN PYTHON THE HARD WAY

I can’t combine argv with input(). Don’t overthink it. Just slap two lines at the end of this script
that uses input() to get something and then print it. From that, start playing with more ways
to use both in the same script.

Why can’t I do this input('? ') = x? Because that’s backward to how it should work. Do it the
way I do it and it’ll work.

Why do you want me to type one line at a time? The biggest mistake beginners make—and profes-
sionals too—is they type a massive block of code, run it once, and then cry because of all
the errors they have to fix. Errors in programming languages are awful and frequently point
at the wrong locations in your source. If you’re typing only a few lines at a time, you will run
your code more often, and when you get an error, you know it’s probably a problem with the
line(s) you just typed. When you type 100 lines of code, you’ll spend the next 5 days trying to
find all the errors and just give up. Save yourself the trouble and just type a little at a time. It’s
what I—and most capable programmers—do in real life.

This page intentionally left blank

46

EXERCISE 14

Prompting and Passing

L et’s do an exercise that uses argv and input together to ask the user something specific. You will
need this for the next exercise where you learn to read and write files. In this exercise, we’ll use

input slightly differently by having it print a simple > prompt.

Listing 14.1: ex14.py

1 from sys import argv
2
3 script, user_name = argv
4 prompt = '> '
5
6 print(f"Hi {user_name}, I'm the {script} script.")
7 print("I'd like to ask you a few questions.")
8 print(f"Do you like me {user_name}?")
9 likes = input(prompt)
10
11 print(f"Where do you live {user_name}?")
12 lives = input(prompt)
13
14 print("What kind of computer do you have?")
15 computer = input(prompt)
16
17 print(f"""
18 Alright, so you said {likes} about liking me.
19 You live in {lives}. Not sure where that is.
20 And you have a {computer} computer. Nice.
21 """)

We make a variable prompt that is set to the prompt we want, and we give that to input instead of
typing it over and over. Now if we want to make the prompt something else, we just change it in this one
spot and rerun the script. Very handy.

WARNING! Remember that you have to do the same thing you did in Exercise 13 and use
the Terminal to make this work. It’s important to know how to run code from the Terminal
since that’s a very common way to run Python code.

EXERCISE 14: PROMPTING AND PASSING 47

What You Should See
When you run this, remember that you have to give the script your name for the argv arguments.

1 $ python ex14.py zed
2 Hi zed, I'm the ex14.py script.
3 I'd like to ask you a few questions.
4 Do you like me zed?
5 > Yes
6 Where do you live zed?
7 > San Francisco
8 What kind of computer do you have?
9 > Tandy 1000
10
11 Alright, so you said Yes about liking me.
12 You live in San Francisco. Not sure where that is.
13 And you have a Tandy 1000 computer. Nice.

Study Drills
1. Find out what the games Zork and Adventure were. Try to find a copy and play them.

2. Change the prompt variable to something else entirely.

3. Add another argument and use it in your script, the same way you did in the previous exercise
with first, second = ARGV.

4. Make sure you understand how I combined a """ style multi-line string with the {} format
activator as the last print.

5. Try to find a way to run this in Jupyter. You will probably have to replace the code that uses
argv with something else, like some variables.

Common Student Questions
I get SyntaxError: invalid syntax when I run this script. Again, you have to run it right on

the command line, not inside Python. If you type python3 and then try to type python3
ex14.py Zed, it will fail because you are running Python inside Python. Close your window
and then just type python3 ex14.py Zed.

I don’t understand what you mean by changing the prompt. See the variable prompt = '> '.
Change that to have a different value. You know this; it’s just a string and you’ve done 13
exercises making them, so take the time to figure it out.

I get the error ValueError:needmore than 1 value to unpack. Remember when I said
you need to look at the What You Should See (WYSS) section and replicate what I did? You

48 LEARN PYTHON THE HARD WAY

need to do the same thing here and focus on how I type the command in and why I have a
command line argument.

How can I run this from IDLE? Don’t use IDLE. It’s garbage.

Can I use double-quotes for the prompt variable? You totally can. Go ahead and try that.

You have a Tandy computer? I did when I was little.

I get NameError: name 'prompt' is not defined when I run it. You either spelled the
name of the prompt variable wrong or forgot that line. Go back and compare each line of
code to mine, from at the bottom of the script to the top. Any time you see this error, it means
you spelled something wrong or forgot to create the variable.

http://HowcanIrunthisfromIDLE?Don$$$�tuseIDLE.It�sgarbage

This page intentionally left blank

50

EXERCISE 15

Reading Files

Y ou know how to get input from a user with input or argv. Now you will learn about reading from
a file. You may have to play with this exercise the most to understand what’s going on, so do the

exercise carefully and remember your checks. Working with files is an easy way to erase your work if
you are not careful.

This exercise involves writing two files. One is the usual ex15.py file that you will run, but the other
is named ex15_sample.txt. This second file isn’t a script but a plain-text file we’ll be reading in our
script. Here are the contents of that file:

1 This is stuff I typed into a file.
2 It is really cool stuff.
3 Lots and lots of fun to have in here.

What we want to do is “open” that file in our script and print it out. However, we do not want to just “hard-
code” the name ex15_sample.txt into our script. “Hard-coding” means putting some bit of information
that should come from the user as a string directly in our source code. That’s bad because we want it to
load other files later. The solution is to use argv or input to ask the user what file to open instead of
“hard-coding” the file’s name.

Listing 15.1: ex15.py

1 from sys import argv
2
3 script, filename = argv
4
5 txt = open(filename)
6
7 print(f"Here's your file {filename}:")
8 print(txt.read())
9
10 print("Type the filename again:")
11 file_again = input("> ")
12
13 txt_again = open(file_again)
14
15 print(txt_again.read())

A few fancy things are going on in this file, so let’s break it down really quickly.

Lines 1–3 uses argv to get a filename. Next we have line 5, where we use a new command: open. Right
now, run pydoc open and read the instructions. Notice how, like your own scripts and input, it takes
a parameter and returns a value you can set to your own variable. You just opened a file.

EXERCISE 15: READING FILES 51

Line 7 prints a little message, but on line 8 we have something very new and exciting. We call a function
on txt named read. What you get back from open is a file, and it also has commands you can give it.
You give a file a command by using the . (dot or period), the name of the command, and parameters, just
like with open and input. The difference is that txt.read() says, “Hey txt! Do your read command
with no parameters!”

The remainder of the file is more of the same, but we’ll leave the analysis to you in the Study Drills
section.

What You Should See

WARNING! Pay attention! I said pay attention! You have been running scripts with just the
name of the script, but now that you are using argv you have to add arguments. Look
at the very first line of the following example, and you will see I do python ex15.py
ex15_sample.txt to run it. See the extra argument ex15_sample.txt after the
ex15.py script name. If you do not type that, you will get an error, so pay attention!

I made a file called ex15_sample.txt and ran my script.

1 Here's your file ex15_sample.txt:
2 This is stuff I typed into a file.
3 It is really cool stuff.
4 Lots and lots of fun to have in here.
5
6
7 Type the filename again:
8 > ex15_sample.txt
9 This is stuff I typed into a file.
10 It is really cool stuff.
11 Lots and lots of fun to have in here.

Study Drills
This is a big jump, so be sure you do these Study Drills as best you can before moving on.

1. Above each line, write out in English what that line does.

2. If you are not sure, ask someone for help or search online. Many times searching for “python3
THING” will find answers to what that THING does in Python. Try searching for “python3 open.”

3. I used the word “commands” here, but commands are also called “functions” and “methods.”
You will learn about functions and methods later in the book.

52 LEARN PYTHON THE HARD WAY

4. Get rid of the lines 10–15 where you use input and run the script again.

5. Use only input and try the script that way. Why is one way of getting the filename better than
another?

6. Start python3 to start the python3 shell, and use open from the prompt just like in this
program. Notice how you can open files and run read on them from within python3?

7. Have your script also call close() on the txt and txt_again variables. It’s important to
close files when you are done with them.

Common Student Questions
Does txt = open(filename) return the contents of the file? No, it doesn’t. It actually makes

something called a “file object.” You can think of a file like an old tape drive that you saw
on mainframe computers in the 1950s or even like a DVD player from today. You can move
around inside them and then “read” them, but the DVD player is not the DVD the same way the
file object is not the file’s contents.

I can’t type code into Terminal/PowerShell like you say in Study Drill 7. First thing, from the com-
mand line just type python3 and press Enter. Now you are in python3 as we’ve done a
few other times. Then you can type in code and Python will run it in little pieces. Play with that.
To get out of it type quit() and hit Enter.

Why is there no error when we open the file twice? Python will not restrict you from opening a file
more than once, and sometimes this is necessary.

What does from sys import argv mean? For now just understand that sys is a package, and
this phrase just says to get the argv feature from that package. You’ll learn more about this
later.

I put the name of the file in as script,ex15_sample.txt=argv, but it doesn’t work. No, that’s
not how you do it. Make the code exactly like mine, and then run it from the command line the
exact same way I do. You don’t put the names of files in; you let Python put the name in.

This page intentionally left blank

54

EXERCISE 16

Reading and Writing Files

I f you did the Study Drills from the previous exercise, you should have seen all sorts of commands
(methods/functions) you can give to files. Here’s the list of commands I want you to remember:

• close—Closes the file. Like File->Save in a text editor or word processor.

• read—Reads the contents of the file. You can assign the result to a variable.

• readline—Reads just one line of a text file.

• truncate—Empties the file. Watch out if you care about the file.

• write('stuff')—Writes “stuff” to the file.

• seek(0)—Move the read/write location to the beginning of the file.

One way to remember what each of these does is to think of a vinyl record, cassette tape, VHS tape,
DVD, or CD player. In the early days of computers data was stored on each of these kinds of media, so
many of the file operations still resemble a storage system that is linear. Tape and DVD drives need to
“seek” a specific spot, and then you can read or write at that spot. Today, we have operating systems
and storage media that blur the lines between random access memory and disk drives, but we still use
the older idea of a linear tape with a read/write head that must be moved.

For now, these are the important commands you need to know. Some of them take parameters, but we
do not really care about that. You only need to remember that write takes a parameter of a string you
want to write to the file.

Let’s use some of this to make a simple little text editor:

Listing 16.1: ex16.py

1 filename = "test.txt"
2
3 print(f"We're going to erase {filename}.")
4 print("If you don't want that, hit CTRL-C (^C).")
5 print("If you do want that, hit RETURN.")
6
7 input("?")
8
9 print("Opening the file...")
10 target = open(filename, 'w')
11
12 print("Truncating the file. Goodbye!")
13 target.truncate()
14

EXERCISE 16: READING AND WRITING FILES 55

15 print("Now I'm going to ask you for three lines.")
16
17 line1 = input("line 1: ")
18 line2 = input("line 2: ")
19 line3 = input("line 3: ")
20
21 print("I'm going to write these to the file.")
22
23 target.write(line1)
24 target.write("\n")
25 target.write(line2)
26 target.write("\n")
27 target.write(line3)
28 target.write("\n")
29
30 print("And finally, we close it.")
31 target.close()

That’s a large file, probably the largest you have typed in. So go slow, do your checks, run it frequently,
and take it slowly. One trick is to get bits of it running at a time. Get lines 1–2 running, then two more,
then a few more, until it’s all done and running.

What You Should See
There are actually two things you will see. First the output of your new script:

1 We're going to erase test.txt.
2 If you don't want that, hit CTRL-C (^C).
3 If you do want that, hit RETURN.
4 ?
5 Opening the file...
6 Truncating the file. Goodbye!
7 Now I'm going to ask you for three lines.
8 line 1: Mary had a little lamb
9 line 2: Its fleece was white as snow
10 line 3: It was also tasty
11 I'm going to write these to the file.
12 And finally, we close it.

Now, open up the file you made (in my case test.txt) using the left panel of Jupyter and check it out.
Neat, right?

Study Drills
1. If you do not understand this, go back through and use the comment trick to get it squared

away in your mind. One simple English comment above each line will help you understand or
at least let you know what you need to research more.

56 LEARN PYTHON THE HARD WAY

2. Write a .py script similar to the last Exercise 14 that uses read (Exercise 15) and argv
(Exercise 13) to read the file you just created. Be sure you run this in Terminal/PowerShell
instead of Jupyter.

3. There’s too much repetition in this file. Use strings, formats, and escapes to print out line1,
line2, and line3 with just one target.write() command instead of six.

4. Find out why we had to pass a 'w' as an extra parameter to open. Hint: open tries to be safe
by making you explicitly say you want to write a file.

5. If you open the file with 'w' mode, then do you really need the target.truncate()? Read
the documentation for Python’s open() function and see if that’s true.

Common Student Questions
Is the truncate() necessary with the 'w' parameter? See Study Drill 5.

What does 'w' mean? It’s really just a string with a character in it for the kind of mode for the file.
If you use 'w', then you’re saying “open this file in ‘write’ mode,” which is the reason for the
'w' character. There’s also 'r' for “read,” 'a' for append, and modifiers on these.

What modifiers to the file modes can I use? The most important one to know for now is the + modi-
fier, so you can do 'w+', 'r+', and 'a+'. This will open the file in both read and write mode
and, depending on the character use, position the file in different ways.

Does just doing open(filename) open it in 'r' (read) mode? Yes, that’s the default for the
open() function.

This page intentionally left blank

58

EXERCISE 17

More Files

N ow let’s do a few more things with files. We’ll write a Python script to copy one file to another. It’ll
be very short but will give you ideas about other things you can do with files.

Listing 17.1: ex17.py

1 from sys import argv
2 from os.path import exists
3
4 from_file = "test.txt"
5 to_file = "new_test.txt"
6
7 print(f"Copying from {from_file} to {to_file}")
8
9 # we could do these two on one line, how?
10 in_file = open(from_file)
11 indata = in_file.read()
12
13 print(f"The input file is {len(indata)} bytes long")
14
15 print(f"Does the output file exist? {exists(to_file)}")
16 print("Ready, hit RETURN to continue, CTRL-C to abort.")
17 input()
18
19 out_file = open(to_file, 'w')
20 out_file.write(indata)
21
22 print("Alright, all done.")
23
24 out_file.close()
25 in_file.close()

You should immediately notice that we import another handy command named exists. This returns
True if a file exists, based on its name in a string as an argument. It returns False if not. We’ll be using
this function in the second half of this book to do lots of things, but right now you should see how you
can import it.

Using import is a way to get a ton of free code other better (well, usually) programmers have written
so you do not have to write it.

EXERCISE 17: MORE FILES 59

What You Should See
Just like your other scripts, run this one with two arguments: the file to copy from and the file to copy it
to. I’m going to use a simple test file named test.txt:

1 Copying from test.txt to new_test.txt
2 The input file is 70 bytes long
3 Does the output file exist? True
4 Ready, hit RETURN to continue, CTRL-C to abort.
5
6 Alright, all done.

It should work with any file. Try a bunch more and see what happens. Just be careful you do not blast
an important file.

Study Drills
1. This script is really annoying. There’s no need to ask you before doing the copy, and it prints

too much out to the screen. Try to make the script friendlier to use by removing features.

2. See how short you can make the script. I could make this one line long.

3. Find out why you had to write out_file.close() in the code.

4. Go read up on Python’s import statement, and start python3 to try it out. Try importing some
things and see if you can get it right. It’s alright if you do not.

5. Try converting this code to an ex17.py script you can run from Terminal/PowerShell again.
If you’re getting tired of Jupyter’s text editor, then check out one of the editors mentioned in
Exercise 0, “Getting Started.” You can also try any of the editors mentioned in Exercise 0 or
found on the Complete Setup Page (https://learncodethehardway.com/setup/python/).

Common Student Questions
Why is the 'w' in quotes? That’s a string. You’ve been using strings for a while now. Make sure

you know what a string is.

No way you can make this one line! That ; depends ; on ; how ; you ; define ; one ; line ; of ; code.

Is it normal to feel like this exercise was really hard? Yes, it is totally normal. Programming may not
“click” for you until maybe even Exercise 36, or it might not until you finish the book and then
make something with Python. Everyone is different, so just keep going and keep reviewing
exercises that you had trouble with until it clicks. Be patient.

https://learncodethehardway.com/setup/python/

60 LEARN PYTHON THE HARD WAY

What does the len() function do? It gets the length of the string that you pass to it and then returns
that as a number. Play with it.

When I try to make this script shorter, I get an error when I close the files at the end. You probably did
something like this, indata = open(from_file).read(), which means you don’t need to
then do in_file.close() when you reach the end of the script. It should already be closed
by Python once that one line runs.

I get a Syntax:EOL while scanning string literal error. You forgot to end a string
properly with a quote. Go look at that line again.

MODULE 2

The Basics
of Programming

62

EXERCISE 18

Names, Variables, Code, Functions

B ig title, right? I am about to introduce you to the function! Dum dum dah! Every programmer will go
on and on about functions and all the different ideas about how they work and what they do, but I

will give you the simplest explanation you can use right now.

Functions do three things:

1. They name pieces of code the way variables name strings and numbers

2. They take arguments the way Python scripts take argv in Exercise 13

3. Using 1 and 2, they let you make your own “mini-scripts” or “tiny commands”

You can create an empty function by using the word def in Python like this:

Listing 18.1: ex18_demo.py

1 def do_nothing():
2 pass

This creates the function, but the pass keyword tells Python this function is empty. To make the function
do something, you add the code for the function under the def line, but indent it four spaces:

Listing 18.2: ex18_demo.py

1 def do_something():
2 print("I did something!")

This effectively assigns the code print("I did something!") to the name do_something so you
can then use it again later in your code, similar to other variables. Using a function you’ve defined is how
you “run” it, or “call” it:

Listing 18.3: ex18_demo.py

1 def do_something():
2 print("I did something!")
3
4 # now we can call it by its name
5 do_something()

EXERCISE 18: NAMES, VARIABLES, CODE, FUNCTIONS 63

When the do_something() at the bottom runs, Python does the following:

1. Finds the do_something() function in Python’s memory

2. Sees you’re calling it with ()

3. Jumps to where the def do_something() line is

4. Runs the lines of code under the def, which in this case is one line: print("I did
Ç something!")

5. When the code under the def is finished, Python exits the function and jumps back to where
you called it

6. Then it continues, which in this case is the end of the code

For this exercise you need only one more concept, which is “arguments” to functions:

Listing 18.4: ex18_demo.py

1 def do_more_things(a, b):
2 print("A IS", a, "B IS", b)
3
4 do_more_things("hello", 1)

In this case, I have two arguments (also called “parameters”) to the do_more_things() function: a
and b. When I call this function using do_more_things("hello", 1), Python temporarily assigns
a="hello" and b=1 and then calls the function. That means, inside the function a and b will have those
values, and they’ll disappear when the function exits. It’s kind of like doing this:

Listing 18.5: ex18_demo.py

1 def do_more_things(a, b):
2 a = "hello"
3 b = 1
4 print("A IS", a, "B IS", b)

Keep in mind this is not entirely accurate, since if you called do_more_things with different arguments,
the a and b would be different. It’s only an example of this one time you call it with do_more_things
("hello", 1).

Exercise Code
Take some time right now to play around in Jupyter by making your own functions and calling them before
attempting this code. Be sure you understand how your code jumps to functions and then jumps back.
Then I’m going to have you make four different functions, and I’ll then show you how each one is related:

64 LEARN PYTHON THE HARD WAY

Listing 18.6: ex18.py

1 # this one is like your scripts with argv
2 def print_two(*args):
3 arg1, arg2 = args
4 print(f"arg1: {arg1}, arg2: {arg2}")
5
6 # ok, that *args is actually pointless, we can just do this
7 def print_two_again(arg1, arg2):
8 print(f"arg1: {arg1}, arg2: {arg2}")
9
10 # this just takes one argument
11 def print_one(arg1):
12 print(f"arg1: {arg1}")
13
14 # this one takes no arguments
15 def print_none():
16 print("I got nothin'.")
17
18
19 print_two("Zed","Shaw")
20 print_two_again("Zed","Shaw")
21 print_one("First!")
22 print_none()

Let’s break down the first function, print_two, which is the most similar to what you already know from
making scripts:

1. First we tell Python we want to make a function using def for “define.”

2. On the same line as def we give the function a name. In this case, we just called it “print_two”,
but it could also be “peanuts”. It doesn’t matter, except that your function should have a short
name that says what it does.

3. Then we tell it we want *args (asterisk args), which is a lot like your argv parameter but for
functions. This has to go inside () parentheses to work.

4. Then we end this line with a : (colon) and start indenting.

5. After the colon all the lines that are indented four spaces will become attached to this name,
print_two. Our first indented line is one that unpacks the arguments, the same as with your
scripts.

6. To demonstrate how it works we print these arguments out, just like we would in a script.

The problem with print_two is that it’s not the easiest way to make a function. In Python, we can
skip the whole unpacking arguments and just use the names we want right inside (). That’s what
print_two_again does.

After that you have an example of how you make a function that takes one argument in print_one.

EXERCISE 18: NAMES, VARIABLES, CODE, FUNCTIONS 65

Finally you have a function that has no arguments in print_none.

WARNING! This is very important. Do not get discouraged right now if this doesn’t quite
make sense. We’re going to do a few exercises linking functions to your scripts and show
you how to make more. For now, just keep thinking “mini-script” when I say “function” and
keep playing with them.

What You Should See
If you run ex18.py, you should see:

1 arg1: Zed, arg2: Shaw
2 arg1: Zed, arg2: Shaw
3 arg1: First!
4 I got nothin'.

Right away you can see how a function works. Notice that you used your functions the way you use
things like exists, open, and other “commands.” In fact, I’ve been tricking you because in Python
those “commands” are just functions. This means you can make your own commands and use them in
your scripts too.

Study Drills
Create a function checklist for later exercises. Write these checks on an index card and keep it by you
while you complete the rest of these exercises or until you feel you do not need the index card anymore:

1. Did you start your function definition with def?

2. Does your function name have only characters and _ (underscore) characters?

3. Did you put ((an open parenthesis) right after the function name?

4. Did you put your arguments after ((the open parenthesis) separated by commas?

5. Did you make each argument unique (meaning no duplicated names)?

6. Did you put): (a close parenthesis and a colon) after the arguments?

7. Did you indent all lines of code you want in the function four spaces? No more, no less

8. Did you “end” your function by going back to writing with no indent (“dedenting” we call it)?

When you run (“use” or “call”) a function, check these things:

1. Did you call/use/run this function by typing its name?

66 LEARN PYTHON THE HARD WAY

2. Did you put the (character after the name to run it?

3. Did you put the values you want into the parentheses separated by commas?

4. Did you end the function call with a) character?

Use these two checklists on the remaining lessons until you do not need them anymore.

Finally, repeat this a few times to yourself:

1 "To 'run,' 'call,' or 'use' a function all mean the same thing."

Common Student Questions
What’s allowed for a function name? The same as variable names. Anything that doesn’t start with

a number and is letters, numbers, and underscores will work.

What does the * in *args do? That tells Python to take all the arguments to the function and then
put them in args as a list. It’s like argv that you’ve been using but for functions. It’s not normally
used too often unless specifically needed.

This feels really boring and monotonous. That’s good. It means you’re starting to get better at typing
in the code and understanding what it does. To make it less boring, take everything I tell you
to type in, and then break it on purpose.

This page intentionally left blank

68

EXERCISE 19

Functions and Variables

Y ou’re now going to combine functions with what you know of variables from previous exercises. As
you know, a variable gives a piece of data a name so you can use it in your program. If you have

this code:

1 x = 10

then you created a piece of data named x that is equal to the number 10.

You also know that you can define (create) functions with parameters like this:

1 def print_one(arg1):
2 print(f"arg1: {arg1}")

The parameter arg1 is a variable similar to the x before, except it’s created for you when you call the
function like this:

1 print_one("First!")

In Exercise 18, you learned how Python runs functions when you call them, but what happens if you did
this:

1 y = "First!"
2 print_one(y)

Instead of calling print_one directly with "First!" you’re assigning "First!" to y and then passing
y to print_one. Does this work? Here’s a small sample code you can use to test this out in Jupyter:

1 def print_one(arg1):
2 print(f"arg1: {arg1}")
3
4 y = "First!"
5 print_one(y)

This shows how you can combine the concept of variables y = "First!" with calling functions that
use the variables. Study this and try your own variations before working on this longer exercise, but first
a bit of advice:

1. This one is long, so if you find it difficult to manage in Jupyter, then try typing it into an ex19.py
file to run in Terminal.

2. As usual, you should type only a few lines at a time, but you’ll have problems if you type only
the first line of a function. You can solve this by using the pass keyword like this:

EXERCISE 19: FUNCTIONS AND VARIABLES 69

def some_func(some_arg): pass. The pass word is how you make an empty function
without causing an error.

3. If you want to see what each function is doing, you can use “debug printing” like this: print
(">>>> I'm here", something). That will print out amessage to help you “trace” through
the code and see what something is in each function.

Listing 19.1: ex19.py

1 def cheese_and_crackers(cheese_count, boxes_of_crackers):
2 print(f"You have {cheese_count} cheeses!")
3 print(f"You have {boxes_of_crackers} boxes of crackers!")
4 print("Man that's enough for a party!")
5 print("Get a blanket.\n")
6
7
8 print("We can just give the function numbers directly:")
9 cheese_and_crackers(20, 30)

10
11
12 print("OR, we can use variables from our script:")
13 amount_of_cheese = 10
14 amount_of_crackers = 50
15
16 cheese_and_crackers(amount_of_cheese, amount_of_crackers)
17
18
19 print("We can even do math inside too:")
20 cheese_and_crackers(10 + 20, 5 + 6)
21
22
23 print("And we can combine the two, variables and math:")
24 cheese_and_crackers(amount_of_cheese + 100, amount_of_crackers + 1000)

What You Should See
1 We can just give the function numbers directly:
2 You have 20 cheeses!
3 You have 30 boxes of crackers!
4 Man that's enough for a party!
5 Get a blanket.
6
7 OR, we can use variables from our script:
8 You have 10 cheeses!
9 You have 50 boxes of crackers!
10 Man that's enough for a party!
11 Get a blanket.
12

70 LEARN PYTHON THE HARD WAY

13 We can even do math inside too:
14 You have 30 cheeses!
15 You have 11 boxes of crackers!
16 Man that's enough for a party!
17 Get a blanket.
18
19 And we can combine the two, variables and math:
20 You have 110 cheeses!
21 You have 1050 boxes of crackers!
22 Man that's enough for a party!
23 Get a blanket.

Study Drills
1. Did you remember to type only a few lines at a time? Did you use pass to make an empty

function before filling it? If not, delete your code and do it again.

2. Change the name of cheese_and_crackers to have a spelling mistake and view the error
message. Now fix it.

3. Delete one of the + symbols in the math to see what error you get.

4. Make changes to the math and then try to predict what output you’ll get.

5. Change the variables and try to guess the output with those changes.

Common Student Questions
This exercise has no questions yet, but you can ask me at help@learncodethehardway.org to get help.
Maybe your question will show up here.

This page intentionally left blank

72

EXERCISE 20

Functions and Files

R emember your checklist for functions, and then do this exercise paying close attention to how
functions and files can work together to make useful stuff. You should also continue to type only a

few lines before running your code. If you catch yourself typing too many lines, then delete them and do
it again. Doing this uses python to train your understanding of Python.

Here’s the code for this exercise. Once again, it’s long, so if you find Jupyter is difficult to use, then write
a ex20.py file and run it that way.

Listing 20.1: ex20.py

1 from sys import argv
2
3 input_file = "ex20_test.txt"
4
5 def print_all(f):
6 print(f.read())
7
8 def rewind(f):
9 f.seek(0)
10
11 def print_a_line(line_count, f):
12 print(line_count, f.readline())
13
14 current_file = open(input_file)
15
16 print("First let's print the whole file:\n")
17
18 print_all(current_file)
19
20 print("Now let's rewind, kind of like a tape.")
21
22 rewind(current_file)
23
24 print("Let's print three lines:")
25
26 current_line = 1
27 print_a_line(current_line, current_file)
28
29 current_line = current_line + 1
30 print_a_line(current_line, current_file)
31
32 current_line = current_line + 1
33 print_a_line(current_line, current_file)

EXERCISE 20: FUNCTIONS AND FILES 73

Pay close attention to how we pass in the current line number each time we run print_a_line.
There’s nothing new in this exercise. It has functions, and you know those. It has files and you know
those too. Just take your time with it and you’ll get it.

You’ll also need a file named ex20_test.txt with the following contents:

1 This is line 1
2 This is line 2
3 This is line 3

You can use Jupyter to create this file so that it’s in the same directory where you’re working and then
your Python code should load it.

What You Should See
1 First let's print the whole file:
2
3 This is line 1
4 This is line 2
5 This is line 3
6
7 Now let's rewind, kind of like a tape.
8 Let's print three lines:
9 1 This is line 1
10
11 2 This is line 2
12
13 3 This is line 3

Study Drills
1. Write English comments for each line to understand what that line does.

2. Each time print_a_line is run, you are passing in a variable current_line. Write out
what current_line is equal to on each function call, and trace how it becomes line_count
in print_a_line.

3. Find each place a function is used, and check its def to make sure that you are giving it the
right arguments.

4. Research online what the seek() function for file does. Try pydoc file, and see if you
can figure it out from there. Then try pydoc file.seek to see what seek does.

5. Research the shorthand notation +=, and rewrite the script to use += instead.

6. Can you convert this to a Terminal (command line) script that uses argv like in Exercise 14?

74 LEARN PYTHON THE HARD WAY

Common Student Questions
What is f in the print_all and other functions? The f is a variable just like you had in other func-

tions in Exercise 18, except this time it’s a file. A file in Python is kind of like an old tape drive
on a mainframe or maybe a DVD player. It has a “read head,” and you can “seek” this read
head around the file to a position and then work with it there. Each time you do f.seek(0)
you’re moving to the start of the file. Each time you do f.readline() you’re reading a line
from the file and moving the read head to the right after the \n that ends that line. This will be
explained more as you go on.

Why does seek(0) not set the current_line to 0? First, the seek() function is dealing in
bytes, not lines. The code seek(0) moves the file to the 0 byte (first byte) in the file. Sec-
ond, current_line is just a variable and has no real connection to the file at all. We are
manually incrementing it.

What is +=? You know how in English I can rewrite “it is” as “it’s”? Or I can rewrite “you are” as
“you’re”? In English this is called a “contraction,” and this is kind of like a contraction for the
two operations = and +. That means x = x + y is the same as x += y.

How does readline() know where each line is? Inside readline() is code that scans each
byte of the file until it finds a \n character and then stops reading the file to return what it
found so far. The file f is responsible for maintaining the current position in the file after each
readline() call so that it will keep reading each line.

Why are there empty lines between the lines in the file? The readline() function returns the \n
that’s in the file at the end of that line. Add an end = "" at the end of your print() function
calls to avoid adding double \n to every line.

This page intentionally left blank

76

EXERCISE 21

Functions Can Return Something

Y ou have been using the = character to name variables and set them to numbers or strings. We’re
now going to blow your mind again by showing you how to use = and a new Python word return

to set variables to be a value from a function. There will be one thing to pay close attention to, but first
type this in:

Listing 21.1: ex21.py

1 def add(a, b):
2 print(f"ADDING {a} + {b}")
3 return a + b
4
5 def subtract(a, b):
6 print(f"SUBTRACTING {a} — {b}")
7 return a - b
8
9 def multiply(a, b):
10 print(f"MULTIPLYING {a} * {b}")
11 return a * b
12
13 def divide(a, b):
14 print(f"DIVIDING {a} / {b}")
15 return a / b
16
17
18 print("Let's do some math with just functions!")
19
20 age = add(30, 5)
21 height = subtract(78, 4)
22 weight = multiply(90, 2)
23 iq = divide(100, 2)
24
25 print(f"Age: {age}, Height: {height}, Weight: {weight}, IQ: {iq}")
26
27
28 # A puzzle for the extra credit, type it in anyway.
29 print("Here is a puzzle.")
30
31 what = add(age, subtract(height, multiply(weight, divide(iq, 2))))
32
33 print("That becomes: ", what, "Can you do it by hand?")

EXERCISE 21: FUNCTIONS CAN RETURN SOMETHING 77

We are now doing our own math functions for add, subtract, multiply, and divide. The important
thing to notice is the last line where we say return a + b (in add). What this does is the following:

1. Our function is called with two arguments: a and b

2. We print out what our function is doing, in this case “ADDING.”

3. Then we tell Python to do something kind of backward: we return the addition of a + b. You
might say this as, “I add a and b and then return them.”

4. Python adds the two numbers. Then when the function ends, any line that runs it will be able
to assign this a + b result to a variable.

As with many other things in this book, you should take this really slowly, break it down, and try to trace
what’s going on. To help there is extra credit to solve a puzzle and learn something cool.

What You Should See
1 Let's do some math with just functions!
2 ADDING 30 + 5
3 SUBTRACTING 78 — 4
4 MULTIPLYING 90 * 2
5 DIVIDING 100 / 2
6 Age: 35, Height: 74, Weight: 180, IQ: 50.0
7 Here is a puzzle.
8 DIVIDING 50.0 / 2
9 MULTIPLYING 180 * 25.0
10 SUBTRACTING 74 — 4500.0
11 ADDING 35 + —4426.0
12 That becomes: —4391.0 Can you do it by hand?

Study Drills
1. If you aren’t really sure what return does, try writing a few of your own functions and have

them return some values. You can return anything that you can put to the right of an =.

2. At the end of the script is a puzzle. I’m taking the return value of one function and using it as
the argument of another function. I’m doing this in a chain so that I’m kind of creating a formula
using the functions. It looks really weird, but if you run the script, you can see the results. What
you should do is try to figure out the normal formula that would re-create this same set of
operations.

3. Once you have the formula worked out for the puzzle, get in there and see what happens when
you modify the parts of the functions. Try to change it on purpose to make another value.

4. Do the inverse. Write a simple formula and use the functions in the same way to calculate it.

78 LEARN PYTHON THE HARD WAY

This exercise might really wreck your brain, but take it slow and and treat it like a little game. Figuring
out puzzles like this is what makes programming fun, so I’ll be giving you more little problems like this
as we go.

Common Student Questions
Why does Python print the formula or the functions “backward”? It’s not really backward, it’s “inside

out.” You’ll see how it works when you start breaking down the function into separate formulas
and functions. Try to understand what I mean by “inside out” rather than “backward.”

How can I use input() to enter my own values? Remember int(input())? The problem with
that is then you can’t enter floating point, so also try using float(input()) instead.

What do you mean by “write out a formula”? Try 24 + 34 / 100 — 1023 as a start. Convert
that to use the functions. Now come up with your own similar math equation, and use vari-
ables so it’s more like a formula.

This page intentionally left blank

80

EXERCISE 22

Strings, Bytes, and Character Encodings

T o do this exercise you’ll need to download a text file that I’ve written named languages.txt. This
file was created with a list of human languages to demonstrate a few interesting concepts:

• How modern computers store human languages for display and processing and how Python
3 calls these strings

• How you must “encode” and “decode” Python’s strings into a type called bytes

• How to handle errors in your string and byte handling

• How to read code and find out what it means even if you’ve never seen it before

You can get this file by doing a right click with your mouse and selecting “Download” to download the
file reliably. Use the link https://learnpythonthehardway.org/python3/languages.txt to download the file.

In addition, you’ll get a brief glimpse of the Python 3 if-statement and lists for processing a list of
things. You don’t have to master this code or understand these concepts right away. You’ll get plenty of
practice in later exercises. For now your job is to get a taste of the future and learn the four topics in the
preceding list.

WARNING! This exercise is hard! There’s a lot of information in it that you need to un-
derstand, and it’s information that goes deep into computers. This exercise is complex
because Python’s strings are complex and difficult to use. I recommend you take this exer-
cise painfully slow. Write down every word you don’t understand, and look it up or research
it. Take a paragraph at a time if you must. You can continue with other exercises while you
study this one, so don’t get stuck here. Just chip away at it for as long as it takes.

Initial Research
You will create a file named ex22.py and run it in the shell for this exercise. Be sure you know how to
do that, and if not, revisit Exercise 0 where you learned how to run Python code from the Terminal.

I’m going to teach you how to research a piece of code to expose its secrets. You’ll need the languages.
Ç txt file for this code to work, so make sure you download it first. The languages.txt file simply
contains a list of human language names that are encoded in UTF-8.

https://learnpythonthehardway.org/python3/languages.txt
https://learnpythonthehardway.org/python3/languages.txt
https://learnpythonthehardway.org/python3/languages.txt

EXERCISE 22: STRINGS, BYTES, AND CHARACTER ENCODINGS 81

Listing 22.1: ex22.py

1 import sys
2 script, input_encoding, error = sys.argv
3
4
5 def main(language_file, encoding, errors):
6 line = language_file.readline()
7
8 if line:
9 print_line(line, encoding, errors)

10 return main(language_file, encoding, errors)
11
12
13 def print_line(line, encoding, errors):
14 next_lang = line.strip()
15 raw_bytes = next_lang.encode(encoding, errors=errors)
16 cooked_string = raw_bytes.decode(encoding, errors=errors)
17
18 print(raw_bytes, "<===>", cooked_string)
19
20
21 languages = open("languages.txt", encoding="utf-8")
22
23 main(languages, input_encoding, error)

Try to study this code by writing down each thing you don’t recognize, and then search for it with the
usual python THING site:python.org. For example, if you don’t know what encode() does, then
search for python encode site:python.org. Once you’ve read the documentation for everything
you don’t know, continue with this exercise.

Once you have that you’ll want to run this Python script in your shell to play with it. Here are some
example commands I used to test it:

1 python ex22.py "utf-8" "strict"
2 python ex22.py "utf-8" "ignore"
3 python ex22.py "utf-8" "replace"

See the documentation for the str.encode() function for more options.

WARNING! You’ll notice I’m using images here to show you what you should see. After
extensive testing it turns out that so many people have their computers configured to not
display utf-8 that I had to use images so you’ll know what to expect. Even my own typeset-
ting system (LaTeX) couldn’t handle these encodings, forcing me to use images instead. If
you don’t see this, then your Terminal is most likely not able to display utf-8, and you should
try to fix that.

https://docs.python.org/3/library/stdtypes.html#str.encode
http://python.org
http://python.org

82 LEARN PYTHON THE HARD WAY

These examples use the utf-8, utf-16, and big5 encodings to demonstrate the conversion and the
types of errors you can get. Each of these names are called a “codec” in Python 3, but you use the
parameter “encoding”. At the end of this exercise, there’s a list of the available encodings if you want
to try more. I’ll cover what all of this output means shortly. You’re only trying to get an idea of how this
works so we can talk about it.

After you’ve run it a few times, go through your list of symbols and make a guess as to what they do.
When you’ve written down your guesses, try looking the symbols up online to see if you can confirm your
hypothesis. Don’t worry if you have no idea how to search for them. Just give it a try.

Switches, Conventions, and Encodings
Before I can get into what this code means, you need to learn some basics about how data is stored in a
computer. Modern computers are incredibly complex, but at their core they are like a huge array of light
switches. Computers use electricity to flip switches on or off. These switches can represent 1 for on, and
0 for off. In the old days there were all kinds of weird computers that did more than just 1 or 0, but these
days it’s just 1s and 0s. One represents energy, electricity, on, power, substance. Zero represents off,
done, gone, power down, the lack of energy. We call these 1s and 0s “bits.”

Now, a computer that lets you work only with 1 and 0 would be both horribly inefficient and incredi-
bly annoying. Computers take these 1s and 0s and use them to encode larger numbers. At the small
end a computer will use 8 of these 1s and 0s to encode 256 numbers (0–255). What does “encode”
mean though? It’s nothing more than an agreed upon standard for how a sequence of bits should rep-
resent a number. It’s a convention humans picked or stumbled on that says that 00000000 would be 0,
11111111 would be 255, and 00001111 would be 15. There were even huge wars in the early history
of computers on nothing more than the order of these bits because they were simply conventions we all
had to agree on.

Today we call a “byte” a sequence of 8 bits (1s and 0s). In the old days everyone had their own convention
for a byte, so you’ll still run into people who think that this term should be flexible and handle sequences
of 9 bits, 7 bits, 6 bits, but now we just say it’s 8 bits. That’s our convention, and that convention defines
our encoding for a byte. There are further conventions for encoding large numbers using 16, 32, 64, and
even more bits if you get into really big math. There are entire standards groups who do nothing but
argue about these conventions and then implement them as encodings that eventually turn switches on
and off.

Once you have bytes, you can start to store and display text by deciding on another convention for how
a number maps to a letter. In the early days of computing there were many conventions that mapped 8
or 7 bits (or less or more) onto lists of characters kept inside a computer. The most popular convention
ended up being American Standard Code for Information Interchange, or ASCII. This standard maps a
number to a letter. The number 90 is Z, which in bits is 1011010, which gets mapped to the ASCII table
inside the computer.

EXERCISE 22: STRINGS, BYTES, AND CHARACTER ENCODINGS 83

You can try this out in Python right now:

1 >>> 0b1011010
2 90
3 >>> ord('Z')
4 90
5 >>> chr(90)
6 'Z'
7 >>>

First, I write the number 90 in binary, then I get the number based on the letter Z, then I convert the
number to the letter Z. Don’t worry about needing to remember this though. I think I’ve had to do it twice
the entire time I’ve used Python.

Once we have the ASCII convention for encoding a character using 8 bits (a byte), we can then “string”
them together to make a word. If I want to write my name “Zed A. Shaw,” I just use a sequence of
bytes that is [90, 101, 100, 32, 65, 46, 32, 83, 104, 97, 119]. Most of the early text in
computers was nothing more than sequences of bytes, stored in memory, that a computer used to display
text to a person. Again, this is just a sequence of conventions that turned switches on and off.

The problem with ASCII is that it only encodes English and maybe a few other similar languages. Re-
member that a byte can hold 256 numbers (0–255, or 00000000–11111111). Turns out, there are many
more characters than 256 used throughout the world’s languages. Different countries created their own
encoding conventions for their languages, and that mostly worked, but many encodings could handle
only one language. That meant if you want to put the title of an American English book in the middle of
a Thai sentence, you were kind of in trouble. You’d need one encoding for Thai and another for English.

To solve this problem a group of people created Unicode. It sounds like “encode,” and it is meant to be a
“universal encoding” of all human languages. The solution Unicode provides is like the ASCII table, but
it’s huge by comparison. You can use 32 bits to encode a Unicode character, and that is more characters
than we could possibly find. A 32-bit number means we can store 4,294,967,295 characters (2^32),
which is enough space for every possible human language and probably a lot of alien ones too. Right
now we use the extra space for important things like poop and smile emojis.

We now have a convention for encoding any character we want, but 32 bits is 4 bytes (32/8 == 4), which
means there is so much wasted space in most text we want to encode. We can also use 16 bits (2 bytes),
but still there’s going to be wasted space in most text. The solution is to use a clever convention to encode
most common characters using 8 bits and then “escape” into larger numbers when we need to encode
more characters. That means we have one more convention that is nothing more than a compression
encoding, making it possible for most common characters to use 8 bits and then escape out into 16 or
32 bits as needed.

The convention for encoding text in Python is called “utf-8”, which means “Unicode Transformation For-
mat 8 Bits.” It is a convention for encoding Unicode characters into sequences of bytes (which are
sequences of bits (which turn sequences of switches on and off)). You can also use other conventions
(encodings), but utf-8 is the current standard.

84 LEARN PYTHON THE HARD WAY

Dissecting the Output
We can now look at the output of the previous commands. Let’s take just that first command and the first
few lines of output:

The ex22.py script is taking bytes written inside the b'' (byte string) and converting them to the UTF-
8 (or other) encoding you specified. On the left are the numbers for each byte of the utf-8 (shown in
hexadecimal), and the right has the character output as actual utf-8. The way to think of this is on the left
side of <===> are the Python numerical bytes, or the “raw” bytes Python uses to store the string. You
specify this with b'' to tell Python this is “bytes”. These raw bytes are then displayed “cooked” on the
right so you can see the real characters in your Terminal.

Dissecting the Code
We have an understanding of strings and byte sequences. In Python, a string is a UTF-8 encoded
sequence of characters for displaying or working with text. The bytes are then the “raw” sequence of
bytes that Python uses to store this UTF-8 string and start with a b' to tell Python you are working
with raw bytes. This is all based on conventions for how Python wants to work with text. Here’s a Python
session showing me encoding strings and decoding bytes:

EXERCISE 22: STRINGS, BYTES, AND CHARACTER ENCODINGS 85

All you need to remember is if you have raw bytes, then you must use .decode() to get the string.
Raw bytes have no convention to them. They are just sequences of bytes with no meaning other than
numbers, so you must tell Python to “decode this into a utf string.” If you have a string and want to send
it, store it, share it, or do some other operation, then usually it’ll work, but sometimes Python will throw up
an error saying it doesn’t know how to “encode” it. Again, Python knows its internal convention, but it has
no idea what convention you need. In that case, you must use .encode() to get the bytes you need.

The way to remember this (even though I look it up almost every time) is to remember the mnemonic
“DBES,” which stands for “Decode Bytes Encode Strings.” I say “dee bess” in my head when I have to
convert bytes and strings. When you have bytes and need a string, “Decode Bytes.” When you have
a string and need bytes, “Encode Strings.”

With that in mind, let’s break down the code in ex22.py line by line:

1-2 I start with your usual command line argument handling that you already know.

5 I start the main meat of this code in a function conveniently called main. This will be called at
the end of this script to get things going.

6 The first thing this function does is read one line from the languages file it is given. You have
done this before, so there’s nothing new here. Just readline as before when dealing with
text files.

8 Now I use something new. You will learn about this in the second half of the book, so consider
this a teaser of interesting things to come. This is an if-statement, and it lets you make
decisions in your Python code. You can “test” the truth of a variable and, based on that truth,
run a piece of code or not run it. In this case, I’m testing whether line has something in it.
The readline() function will return an empty string when it reaches the end of the file and
if line simply tests for this empty string. As long as readline gives us something, this will
be true, and the code under (indented in, lines 9–10) will run. When this is false, Python will
skip lines 9–10.

9 I then call a separate function to do the actual printing of this line. This simplifies my code and
makes it easier for me to understand it. If I want to learn what this function does, I can jump
to it and study. Once I know what print_line does, I can attach my memory to the name
print_line and forget about the details.

10 I have written a tiny yet powerful piece of magic here. I am calling main again inside main.
Actually, it’s not magic since nothing really is magical in programming. All the information you
need is there. This looks like I am calling the function inside itself, which seems like it should be
illegal to do. Ask yourself, why should that be illegal? There’s no technical reason why I can’t
call any function I want right there, even this main() function. If a function is simply a jump to
the top where I’ve named it main, then calling this function at the end of itself would … jump
back to the top and run it again. That would make it loop. Now look back at line 8, and you’ll

86 LEARN PYTHON THE HARD WAY

see the if-statement keeps this function from looping forever. Carefully study this because
it is a significant concept, but don’t worry if you can’t grasp it right away.

13 I now start the definition for the print_line() function, which does the actual encoding of
each line from the languages.txt file.

14 This is a simple stripping of the trailing \n on the line string.

15 Now I finally take the language I’ve received from the languages.txt file and “encode” it
into the raw bytes. Remember the “DBES” mnemonic. “Decode Bytes, Encode Strings.” The
next_lang variable is a string, so to get the raw bytes I must call .encode() on it to “Encode
Strings.” I pass to encode() the encoding I want and how to handle errors.

16 I then do the extra step of showing the inverse of line 15 by creating a cooked_string variable
from the raw_bytes. Remember, “DBES” says I “Decode Bytes,” and raw_bytes is bytes,
so I call .decode() on it to get a Python string. This string should be the same as the
next_lang variable.

18 Then I simply print them both out to show you what they look like.

21 I’m done defining functions, so now I want to open the languages.txt file.

23 The end of the script simply runs the main() function with all the correct parameters to get
everything going and kick-start the loop. Remember that this then jumps to where the main()
function is defined on line 5, and on line 10 main is called again, causing this to keep looping.
The if line: on line 8 will prevent our loop from going forever.

Encodings Deep Dive
We can now use our little script to explore other encodings. Here’s me playing with different encodings
and seeing how to break them:

First, I’m doing a simple UTF-16 encoding so you can see how it changes compared to UTF-8. You can
also use “utf-32” to see how that’s even bigger and get an idea of the space saved with UTF-8. After

EXERCISE 22: STRINGS, BYTES, AND CHARACTER ENCODINGS 87

that I try Big5, and you’ll see that Python does not like that at all. It throws up an error that “big5” can’t
encode some of the characters at position 0 (which is super helpful). One solution is to tell Python to
“replace” any bad characters for the Big5 encoding. Try that and you’ll see it puts a ? character wherever
it finds a character that doesn’t match the Big5 encoding system.

Breaking It
Rough ideas include the following:

1. Find strings of text encoded in other encodings and place them in the ex22.py file to see how
it breaks.

2. Find out what happens when you give an encoding that doesn’t exist.

3. Extra challenging: Rewrite this using the b'' bytes instead of the UTF-8 strings, effectively
reversing the script.

4. If you can do that, then you can also break these bytes by removing some to see what happens.
How much do you need to remove to cause Python to break? How much can you remove to
damage the string output but pass Python’s decoding system?

5. Use what you learned from #4 to see if you can mangle the files. What errors do you get? How
much damage can you cause and get the file past Python’s decoding system?

88

EXERCISE 23

Introductory Lists

M ost programming languages have some way to store data inside the computer. Some languages
only have raw memory locations, but programmers easily make mistakes when that’s the case. In

modern languages you’re provided with some core ways to store data called “data structures.” A data
structure takes pieces of data (integers, strings, and even other data structures) and organizes them in
some useful way. In this exercise we’ll learn about the sequence style of data structures called a "list"
or "Array" depending on the language.

Python’s simplest sequence data structure is the list, which is an ordered list of things. You can access
the elements of a list randomly, in order, extend it, shrink it, and do most anything else you could do
to a sequence of things in real life.

You make a list like this:

1 fruit = ["apples", "oranges", "grapes"];

That’s all. Just put [(left-square-bracket) and] (right-square-bracket) around the list of things and
separate them with commas. You can also put anything you want into a list, even other lists:

1 inventory = [["Buick", 10], ["Corvette", 1], ["Toyota", 4]];

In this code I have a list, and that list has three lists inside it. Each of those lists then has a
name of a car type and the count of inventory. Study this and make sure you can take it apart when you
read it. Storing lists inside lists inside other data structures is very common.

Accessing Elements of a List
What if you want the first element of the inventory list? How about the number of Buick cars you
have on inventory? You do this:

1 # get the buick record
2 buicks = inventory[0]
3 buick_count = buicks[1]
4 # or in one move
5 count_of_buicks = inventory[0][1]

In the first two lines of code (after the comment), I do a two-step process. I use the inventory[0] code
to get the first element. If you’re not familiar with programming languages, most start at 0, not 1, as that
makes math work better in most situations. The use of [] right after a variable name tells Python that
this is a “container thing” and says we want to “index into this thing with this value,” in this case 0. In the
next line, I take the buicks[1] element and get the count 10 from it.

EXERCISE 23: INTRODUCTORY LISTS 89

You don’t have to do that though as you can chain the uses of [] in a sequence so that you dive deeper
into a list as you go. In the last line of code, I do that with inventory[0][1], which says “get the 0
element and then get the 1 element of that.”

Here’s where you’re going tomake amistake. The second [1] does notmean to get the entire ["Buick",
Ç 10]. It’s not linear, it’s “recursive,” meaning it dives into the structure. You are getting 10 in ["Buick",
Ç 10]. It is more accurately just a combination of the first two lines of code.

Practicing Lists
Lists are simple enough, but you need practice accessing different parts of very complicated lists. It’s
important that you can correctly understand how an index into a nested list will work. The best way
to do that is to drill using such a list in Jupyter.

How this works is I have a series of lists in the following code. You are to type this code in like normal,
and then you have to use Python to access the elements so you get the same answers as I do.

The Code
To complete this challenge you need this code:

Listing 23.1: ex23.py

1 fruit = [
2 ['Apples', 12, 'AAA'], ['Oranges', 1, 'B'],
3 ['Pears', 2, 'A'], ['Grapes', 14, 'UR']]
4
5 cars = [
6 ['Cadillac', ['Black', 'Big', 34500]],
7 ['Corvette', ['Red', 'Little', 1000000]],
8 ['Ford', ['Blue', 'Medium', 1234]],
9 ['BMW', ['White', 'Baby', 7890]]

10]
11
12 languages = [
13 ['Python', ['Slow', ['Terrible', 'Mush']]],
14 ['JavaSCript', ['Moderate', ['Alright', 'Bizarre']]],
15 ['Perl6', ['Moderate', ['Fun', 'Weird']]],
16 ['C', ['Fast', ['Annoying', 'Dangerous']]],
17 ['Forth', ['Fast', ['Fun', 'Difficult']]],
18]

90 LEARN PYTHON THE HARD WAY

It’s fine to copy-paste this code since the point of this exercise is learning how to access data, but if you
want extra practice typing Python, then enter it in manually.

The Challenge
I will give you a list name and a piece of data in the list. Your job is to figure out what indexes you
need to get that information. For example, if I tell you fruit 'AAA', then your answer is fruit[0][2].
You should attempt to do this in your head by looking at the code and then test your guess in the Jupyter.

Fruit Challenge

You need to get all of these elements out of the fruit variable:

• 12

• ‘AAA’

• 2

• ‘Oranges’

• ‘Grapes’

• 14

• ‘Apples’

Cars Challenge

You need to get all of these elements out of the cars variable:

• ‘Big’

• ‘Red’

• 1234

• ‘White’

• 7890

• ‘Black’

• 34500

• ‘Blue’

EXERCISE 23: INTRODUCTORY LISTS 91

Languages Challenge

You need to get all of these elements out of the languages variable:

• ‘Slow’

• ‘Alright’

• ‘Dangerous’

• ‘Fast’

• ‘Difficult’

• ‘Fun’

• ‘Annoying’

• ‘Weird’

• ‘Moderate’

Final Challenge
You now have to figure out what this code spells out:

1 cars[1][1][1]
2 cars[1][1][0]
3 cars[1][0]
4 cars[3][1][1]
5 fruit[3][2]
6 languages[0][1][1][1]
7 fruit[2][1]
8 languages[3][1][0]

Don’t attempt to run this in Jupyter first. Instead, try to work out manually what each line will spell out,
and then test it in Jupyter.

92

EXERCISE 24

Introductory Dictionaries

I n this exercise, we’ll use the same data from the previous exercise on lists and use it to learn about
Dictionaries or dicts.

Key/Value Structures
You use key=value data all the time without realizing it. When you read an email, you might have:

1 From: j.smith@example.com
2 To: zed.shaw@example.com
3 Subject: I HAVE AN AMAZING INVESTMENT FOR YOU!!!

On the left are the keys (From, To, Subject), which are mapped to the contents on the right of the :.
Programmers say the key is “mapped” to the value, but they could also say “set to” as in, “I set From to
j.smith@example.com.” In Python, I might write this same email using a data object like this:

1 email = {
2 "From": "j.smith@example.com",
3 "To": "zed.shaw@example.com",
4 "Subject": "I HAVE AN AMAZING INVESTMENT FOR YOU!!!"
5 };

You create a data object by:

1. Opening it with a { (curly-brace)

2. Writing the key, which is a string here, but can be numbers, or almost anything

3. Writing a : (colon)

4. Writing the value, which can be anything that’s valid in Python

Once you do that, you can access this Python email like this:

1 email["From"]
2 'j.smith@example.com'
3
4 email["To"]
5 'zed.shaw@example.com'
6
7 email["Subject"]
8 'I HAVE AN AMAZING INVESTMENT FOR YOU!!!'

EXERCISE 24: INTRODUCTORY DICTIONARIES 93

The only difference from list indexes is that you use a string ('From') instead of an integer. However,
you could use an integer as a key if you want (more on that soon).

Combining Lists with Data Objects
A common theme in programming is combining components for surprising results. Sometimes the sur-
prise is a crash or a bug. Other times the surprise is a novel new way to accomplish some task. Either
way, what happens when you make novel combinations isn’t really a surprise or a secret. To you it may
be surprising, but there is usually an explanation somewhere in the language specification (even if that
reason is absolutely stupid). There is no magic in your computer, just complexity you don’t understand.

A good example of combining Python components is putting data Objects inside lists. You can do this:

1 messages = [
2 {"to": 'Sun', "from": 'Moon', "message": 'Hi!'},
3 {"to": 'Moon', "from": 'Sun', "message": 'What do you want Sun?'},
4 {"to": 'Sun', "from": 'Moon', "message": "I'm awake!"},
5 {"to": 'Moon', "from": 'Sun', "message": 'I can see that Sun.'}
6];

Once I do that I can now use list syntax to access the data objects like this:

1 messages[0]['to']
2 'Sun'
3
4 messages[0]['from']
5 'Moon'
6 messages[0]['message']
7 'Hi!'
8
9 messages[1]['to']
10 'Moon'
11
12 messages[1]['from']
13 'Sun'
14
15 messages[1]['message']
16 'What do you want Sun?'

94 LEARN PYTHON THE HARD WAY

Notice how I can also use the [] (index) syntax on the data object right after doing messages[0]?
Again, you can try combining features to see if they work, and if they do, go find out why because there’s
always a reason (even if it’s stupid).

The Code
You are now going to repeat the exercise you did with lists and write out three data objects I’ve crafted.
Then you’ll type them into Python and attempt to access the data I give you. Remember to try to do this
in your head and then check your work with Python. You should also practice doing this to list and
dict structures until you’re confident you can access the contents. You’ll realize that the data is the
same, it’s simply been restructured.

Listing 24.1: ex24.py

1 fruit = [
2 {'kind': 'Apples', 'count': 12, 'rating': 'AAA'},
3 {'kind': 'Oranges', 'count': 1, 'rating': 'B'},
4 {'kind': 'Pears', 'count': 2, 'rating': 'A'},
5 {'kind': 'Grapes', 'count': 14, 'rating': 'UR'}
6];
7
8 cars = [
9 {'type': 'Cadillac', 'color': 'Black',

10 'size': 'Big', 'miles': 34500},
11 {'type': 'Corvette', 'color': 'Red',
12 'size': 'Little', 'miles': 1000000},
13 {'type': 'Ford', 'color': 'Blue',
14 'size': 'Medium', 'miles': 1234},
15 {'type': 'BMW', 'color': 'White',
16 'size': 'Baby', 'miles': 7890}
17];
18
19 languages = [
20 {'name': 'Python', 'speed': 'Slow',
21 'opinion': ['Terrible', 'Mush']},
22 {'name': 'JavaScript', 'speed': 'Moderate',
23 'opinion': ['Alright', 'Bizarre']},
24 {'name': 'Perl6', 'speed': 'Moderate',
25 'opinion': ['Fun', 'Weird']},
26 {'name': 'C', 'speed': 'Fast',
27 'opinion': ['Annoying', 'Dangerous']},
28 {'name': 'Forth', 'speed': 'Fast',
29 'opinion': ['Fun', 'Difficult']},
30];

EXERCISE 24: INTRODUCTORY DICTIONARIES 95

What You Should See
Keep in mind that you’re doing some complicated data access moves here, so take it slow. You have
to go through the data variable you assign the module to, and then access lists, followed by data
objects, and in some cases another list.

The Challenge
I will give you the exact same set of data elements for you to get. Your job is to figure out what in-
dexing you need to get that information. For example, if I tell you fruit 'AAA', then your answer is
fruit[0]['rating']. You should attempt to do this in your head by looking at the code and then test
your guess in the python shell.

Fruit Challenge

You need to get all of these elements out of the fruit variable:

• 12

• ‘AAA’

• 2

• ‘Oranges’

• ‘Grapes’

• 14

• ‘Apples’

Cars Challenge

You need to get all of these elements out of the cars variable:

• ‘Big’

• ‘Red’

• 1234

• ‘White’

• 7890

• ‘Black’

• 34500

• ‘Blue’

96 LEARN PYTHON THE HARD WAY

Languages Challenge

You need to get all of these elements out of the languages variable:

• ‘Slow’

• ‘Alright’

• ‘Dangerous’

• ‘Fast’

• ‘Difficult’

• ‘Fun’

• ‘Annoying’

• ‘Weird’

• ‘Moderate’

Final Challenge
Your final challenge is to write out the Python code that writes out the same song lyric from Exercise 23.
Again, take it slow and try to do it in your head before seeing whether you get it right. If you get it wrong,
take the time to understand why you got it wrong. For comparison, I wrote out the lyrics in my head in
one shot and didn’t get it wrong. I am also way more experienced than you are, so you will probably
make some mistakes and that is alright.

You didn’t know those were song lyrics? It’s a Prince song called “Little Red Corvette.” You are now
ordered to listen to 10 Prince songs before you continue with this book or we cannot be friends anymore.
Anymore!

This page intentionally left blank

98

EXERCISE 25

Dictionaries and Functions

I n this exercise, we’re going to do something fun by combining functions with dicts. The purpose of
this exercise is to confirm that you can combine different things in Python. Combination is a key aspect

of programming, and you’ll find that many “complex” concepts are nothing more than a combination of
simpler concepts.

Step 1: Function Names Are Variables
To prepare we first have to confirm that a function’s name is just like other variables. Take a look at this
code:

1 def print_number(x):
2 print("NUMBER IS", x)
3
4 rename_print = print_number
5 rename_print(100)
6 print_number(100)

If you run this code, you’ll see that rename_print does the exact same thing as print_number, and
that’s because they are the same. The name of a function is the same as a variable, and you can reassign
the name to another variable. It’s the same as doing this:

1 x = 10
2 y = x

Play around with this until you get the idea. Make your own functions and then assign them to new names
until you get that idea.

Step 2: Dictionaries with Variables
It might be obvious, but just in case you haven’t made the connection, you can put a variable into a dict:

1 color = "Red"
2
3 corvette = {
4 "color": color
5 }
6
7 print("LITTLE", corvette["color"], "CORVETTE")

EXERCISE 25: DICTIONARIES AND FUNCTIONS 99

This next piece of the puzzle makes sense, since you can put values into a dict like numbers and
strings. You can also assign those same values to variables, so it makes sense you can combine both
and put a variable into a dict.

Step 3: Dictionaries with Functions
You should be seeing where this is going, but now we can combine these concepts to put a function in
a dict:

1 def run():
2 print("VROOM")
3
4 corvette = {
5 "color": "Red",
6 "run": run
7 }
8
9 print("My", corvette["color"], "can go")
10 corvette["run"]()

I’ve taken the color variable from before and simply put it right in the dict for the corvette. Then I
made a function run and put that into the corvette as well. The tricky part is that last line corvette
["run"](), but see if you can figure it out based on what you know. Take some time to write out a
description of what this line is doing before continuing on.

Step 4: Deciphering the Last Line
The trick to deciphering that last line corvette["run"]() is to separate out each piece of it. What
confuses people about lines like this is they see one single thing, “run the corvette.” The truth is this line
is composed of many things working together in combination. If we break this apart, we could have this
code:

1 # get the run fuction out of the corvette dict
2 myrun = corvette["run"]
3 # run it
4 myrun()

Even those two lines isn’t the entire story, but that shows you this is at least two operations on one line:
get the function with ["run"] and then run the function with (). To break this down further we can
write:

1. corvette tells Python to load the dict

2. [tells Python to start an index into corvette

3. "run" tells Python to use "run" as the key to search the dict

100 LEARN PYTHON THE HARD WAY

4.] tells Python you are done and it should complete the index

5. Python then returns the contents of corvette that match the key "run", which is the previous
run() function

6. Python now has the run() function, so () tells Python to call it like you would any other
function

Take some time to understand how this is working, and write your own functions on the corvette to
make it do more things.

Study Drill
You now have a nice piece of code that’s controlling a car. In this Study Drill you’re going to create a new
function that creates any car. Your creator function should meet these requirements:

1. It should take parameters to set things like the color, speed, or anything else your cars can do.

2. It should create a dict that has the correct settings and already contains all the functions
you’ve created.

3. It should return this dict so people can assign the results to anything they want and use later.

4. It should be written so that someone can create any number of different cars and each one
they make is independent.

5. Your code should test #4 by changing settings in a few different cars and then confirming they
didn’t change in other cars.

This challenge is different because I’ll show you the answer to the challenge in a later exercise. If you
struggle with this challenge, then shelve it for a bit and move on. You’ll see this again shortly.

This page intentionally left blank

102

EXERCISE 26

Dictionaries and Modules

I n this exercise, you’re going to explore how the dict works with modules. You’ve been using modules
any time you use import to add “features” to your own Python source. You did this the most in

Exercise 17, so it might be good to go review that exercise before you begin this one.

Step 1: Review of import
The first step is review how import works and develop that knowledge further. Take some time to enter
this code into a Python file named ex26.py. You can do this in Jupyter by creating a file (left side, blue
[+] button) with that name:

Listing 26.1: ex26.py

1 name = "Zed"
2 height = 74

Once you’ve created this file you can import it with this:

Listing 26.2: ex26_code.py

1 import ex26

This will bring the contents of ex26.py into your Jupyter lab so you can access them like this:

Listing 26.3: ex26_code.py

1 print("name", ex26.name)
2 print("height", ex26.height)

Take some time to play with this as much as possible. Try adding new variables and doing the import
again to see how that works.

Step 2: Find the __dict__
Once you understand that the import is the contents of ex26.py to your lab, you can start investigating
the __dict__ variable like this:

EXERCISE 26: DICTIONARIES AND MODULES 103

Listing 26.4: ex26_code.py

1 from pprint import pprint
2
3 pprint(ex26. dict)

The pprint() function is a “pretty printer” that will print the __dict__ in a better format.

With pprint you suddenly see that ex26 has a “hidden” variable called __dict__, which is literally a
dict that contains everything in the module. You’ll find this __dict__ and many other secret variables
all over Python. The contents of __dict__ contain quite a few things that aren’t your code, but that’s
simply things Python needs to work with the module.

These variables are so hidden that even top professionals forget they exist. Many of these programmers
believe that a module is totally different from a dict when internally a module uses a __dict__, which
means it is the same as a dict. The only difference is Python has some syntax that lets you access a
module using the . operator instead of the dict syntax, but you can still access the contents as a dict:

Listing 26.5: ex26_code.py

1 print("height is", ex26.height)
2 print("height is also", ex26. dict ['height'])

You’ll get the same output for both syntaxes, but the . module syntax is definitely easier.

Step 3: Change the __dict__
If a module is really a dict inside, then that means changing the contents of __dict__ should also
change the variables in the module. Let’s try it:

Listing 26.6: ex26_code.py

1 print(f"I am currently {ex26.height} inches tall.")
2
3 ex26. dict ['height'] = 1000
4 print(f"I am now {ex26.height} inches tall.")
5
6 ex26.height = 12
7 print(f"Oops, now I'm {ex26. dict ['height']} inches tall.")

As you can see, the variable ex26.height changes when you change ex26.__dict__['height'],
which proves that the module is really the __dict__.

This means that the . operator is being translated into a __dict__[] access operation. I want you to
remember this for later, because many times when beginning programmers see ex26.height, they

104 LEARN PYTHON THE HARD WAY

think this is a single unit of code. It is actually three or four separate operations:

1. Find ex26

2. Find the ex26.__dict__

3. Index into __dict__ with "height"

4. Return that value

Once you make this connection you’ll start to understand how the . works.

Study Drill: Find the “Dunders”
The __dict__ variables are typically called “double underscore” variables, but programmers are a lazy
bunch so we just call them “dunder variables.” For this final step in learning about dunder variables,
you’ll visit the Python documentation for the data model, which describes how many of these dunders
are used.

This is a large document, and its writing style is very dry, so the best way to study it is search for __
(double underscore) and then find a way to access this variable based on its description. For example,
you can try to access the __doc__ on almost anything:

Listing 26.7: ex26_code.py

1 from pprint import pprint
2 print(pprint. doc)

That will give you a little bit of documentation attached to the pprint() function. You can access the
same information using the help() function:

Listing 26.8: ex26_code.py

1 help(pprint)

Try these experiments with all of the other dunders you can find. You most likely won’t ever use them
directly, but it’s good to know how Python’s internals work.

This page intentionally left blank

106

EXERCISE 27

The Five Simple Rules to theGameof Code

INFO This exercise is intended to be studied periodically while you study the next exercises.
You’re expected to take this very slowly and to mix it with other explanations until you finally
get it. If you get lost in this exercise, take a break and do the next ones. Then if you get
confused in a later exercise, come back and study the details I describe here. Keep doing
this until it “clicks.” Remember, you can’t fail, so just keep trying until you get it.

If you play a game like Go or Chess, you know the rules are fairly simple, yet the games they enable are
extremely complex. Really good games have this unique quality of simple rules with complex interactions.
Programming is also a game with a few simple rules that create complex interactions, and in this exercise
we’re going to learn what those rules are.

Before we do that, I need to stress that youmost likely won’t use these rules directly when you code. There
are languages that do utilize these rules directly, and your CPU uses them too, but in daily programming
you’ll rarely use them. If that’s the case, then why learn the rules?

Because these rules are everywhere, and understanding them will help you understand the code you
write. It’ll help you debug the code when it goes wrong. If you ever want to know how the code works,
you’ll be able to “disassemble” it down to its basic rules and really see how it works. These rules are a
cheat code. Pun totally intended.

I’m also going to warn you that you are not expected to totally understand this right away. Think of
this exercise as setting you up for the rest of the exercises in this module. You’re expected to study this
exercise deeply, and when you get stuck, move on to the next exercises as a break. You want to bounce
between this one and the next ones until the concepts “click” and they start to make sense. You should
also study these rules as deeply as you can, but don’t get stuck here. Struggle for a few days, move on,
come back, and keep trying. As long as you keep trying, you can’t actually “fail.”

Rule 1: Everything Is a Sequence of Instructions
All programs are a sequence of instructions that tell a computer to do something. You’ve seen Python
doing this already when you type code like this:

1 x = 10
2 y = 20
3 z = x + y

EXERCISE 27: THE FIVE SIMPLE RULES TO THE GAME OF CODE 107

This code starts at line 1, goes to line 2, and so on until the end. That’s a sequence of instructions, but
inside Python these three lines are converted into another sequence of instructions that look like this:

1 LOAD_CONST 0 (10) # load the number 10
2 STORE_NAME 0 (x) # store that in x
3
4 LOAD_CONST 1 (20) # load the number 20
5 STORE_NAME 1 (y) # store that in y
6
7 LOAD_NAME 0 (x) # loads x (which is 10)
8 LOAD_NAME 1 (y) # loads y (which is 20)
9 BINARY_ADD # adds those
10 STORE_NAME 2 (z) # store the result in z

That looks totally different from the Python version, but I bet you could probably figure out what this
sequence of instructions is doing. I’ve added comments to explain each instruction, and you should be
able to connect it back to the previous Python code.

I’m not joking. Take some time right now to connect each line of the Python code to the lines of this “byte
code.” Using the comments I provided I’m positive you can figure it out, and doing so might turn on a
light in your head about the Python code.

It’s not necessary to memorize this or even understand each of these instructions. What you should real-
ize is your Python code is being translated into a sequence of simpler instructions that tell the computer
to do something. This sequence of instructions is called “byte code” because it’s usually stored in a file
as a sequence of numbers a computer understands. The output you see is usually called an “assembly
language” because it’s a human “readable” (barely) version of those bytes.

These simpler instructions are processed starting at the top, do one small thing at a time, and go to the
end when the program exits. That’s just like your Python code but with a simpler syntax of INSTRUCTION
OPTIONS. Another way to look at this is each part of x = 10 might become its own instructions in this
“byte code.”

That’s the first rule of The Game of Code: Everything you write eventually becomes a sequence of bytes
fed to a computer as instructions for what the computer should do.

How can I get this output?

To get this output yourself, you use a module called dis, which stands for “disassemble.” This kind of
code is traditionally called “byte code” or “assembly language,” so dis means to “disassemble.” To use
dis you can import it and use the dis() function like this:

1 # import the dis function
2 from dis import dis
3
4 # pass code to dis() as a string

https://docs.python.org/3/library/dis.html

108 LEARN PYTHON THE HARD WAY

5 dis('''
6 x = 10
7 y = 20
8 z = x + y
9 ''')

In this Python code I’m doing the following:

1. I import the dis() function from the dis module

2. I run the dis() function, but I give it a multi-line string using '''

3. I then write the Python code I want to disassemble into this multi-line string

4. Finally, I end the multi-line string and the dis() function with ''')

When you run this in Jupyter, you’ll see it dump the byte code like I have, but maybe with some extras
we’ll cover in a minute.

Where are these bytes stored?

When you run Python (version 3), these bytes are stored in a directory named __pycache__. If you put
this code into a ex27.py file and then run it with python ex27.py, you should see this directory.

Looking in this directory you should see a bunch of files ending in .pyc with names similar to the code
that generated them. These .pyc files contain your compiled Python code as bytes.

When you run dis(), you’re printing a human-readable version of the numbers in the .pyc file.

Rule 2: Jumps Make the Sequence Non-Linear
A sequence of simple instructions like LOAD_CONST 10 is not very useful. Yay! You can load the number
10! Amazing! Where code starts to become useful is when you add the concept of the “jump” to make
this sequence non-linear. Let’s look at a new piece of Python code:

1 while True:
2 x = 10

To understand this code we have to foreshadow a later exercise where you learn about the while-
loop. The code while True: simply says “Keep running the code under me x = 10 while True is
True.” Since True will always be True, this will loop forever. If you run this in Jupyter, it will never end.

What happens when you dis() this code? You see the new instruction JUMP_ABSOLUTE:

1 dis("while True: x = 10")
2
3 0 LOAD_CONST 1 (10)

EXERCISE 27: THE FIVE SIMPLE RULES TO THE GAME OF CODE 109

4 2 STORE_NAME 0 (x)
5 4 JUMP_ABSOLUTE 0 (to 0)

You saw the first two instructions when we covered the x = 10 code, but now at the end we have
JUMP_ABSOLUTE 0. Notice there’s numbers 0, 2, and 4 to the left of these instructions? In the previous
code, I cut them out so you wouldn’t be distracted, but here they’re important because they represent
locations in the sequence where each instruction lives. All JUMP_ABSOLUTE 0 does is tell Python to
“jump to the instruction at position 0”, which is LOAD_CONST 1 (10).

With this simple instruction we now have turned boring straight line code into a more complex loop
that’s not straight anymore. Later, we’ll see how jumps combine with tests to allow even more complex
movements through the sequence of bytes.

Why is this backward?

You may have noticed that the Python code reads as “while True is True set x equal to 10” but the dis()
output reads more like “set x equal to 10, jump to do it again.” That’s because of Rule #1, which says we
have to produce a sequence of bytes only. There are no nested structures, or any syntax more complex
than INSTRUCTION OPTIONS, allowed.

To follow this rule Python has to figure out how to translate its code into a sequence of bytes that produces
the desired output. That means moving the actual repetition part to the end of the sequence so it will
be in a sequence. You’ll find this “backward” nature comes up often when looking at byte codes and
assembly language.

Can a JUMP go forward?

Yes, technically a JUMP instruction is simply telling the computer to process a different instruction in the
sequence. It can be the next one, a previous one, or one in the future. The way this works is the computer
keeps track of the “index” of the current instruction, and it simply increments that index.

When you JUMP, you’re telling the computer to change this index to a new location in the code. In the
code for our while loop (below) the JUMP_ABSOLUTE is at index 4 (see the 4 to the left). After it runs,
the index changes to 0 where the LOAD_CONST is located, so the computer runs that instruction again.
This loops forever.

1 0 LOAD_CONST 1 (10)
2 2 STORE_NAME 0 (x)
3 4 JUMP_ABSOLUTE 0 (to 0)

110 LEARN PYTHON THE HARD WAY

Rule 3: Tests Control Jumps
A JUMP is useful for looping, but what about making decisions? A common thing in programming is to
ask questions like:

“If x is greater than 0 then set y to 10.”

If we write this out in simple Python code, it might look like this:

1 if x > 0:
2 y = 10

Once again, this is foreshadowing something you’ll learn later, but this is simple enough to figure out:

1. Python will test if x is greater than > 0.

2. If it is, then Python will run the line y = 10

3. You see how that line is indented under the if x > 0:? That is called a “block” and Python
uses indentation to say “this indented code is part of the code above it.”

4. If x is NOT greater than 0, then Python will JUMP over the y = 10 line to skip it.

To do this with our Python byte code we need a new instruction that implements the testing part. We
have the JUMP. We have variables. We just need a way to compare two things and then a JUMP based
on that comparison.

Let’s take that code and dis() it to see how Python does this:

1 dis('''
2 x = 1
3 if x > 0:
4 y = 10
5 ''')
6
7 0 LOAD_CONST 0 (1) # load 1
8 2 STORE_NAME 0 (x) # x = 1
9

10 4 LOAD_NAME 0 (x) # load x
11 6 LOAD_CONST 1 (0) # load 0
12 8 COMPARE_OP 4 (>) # compare x > 0
13 10 POP_JUMP_IF_FALSE 10 (to 20) # jump if false
14
15 12 LOAD_CONST 2 (10) # not false, load 10
16 14 STORE_NAME 1 (y) # y = 10
17 16 LOAD_CONST 3 (None) # done, load None
18 18 RETURN_VALUE # exit
19
20 # jump here if false
21 20 LOAD_CONST 3 (None) # load none
22 22 RETURN_VALUE # exit

EXERCISE 27: THE FIVE SIMPLE RULES TO THE GAME OF CODE 111

The key part of this code is the COMPARE_OP and POP_JUMP_IF_FALSE:

1 4 LOAD_NAME 0 (x) # load x
2 6 LOAD_CONST 1 (0) # load 0
3 8 COMPARE_OP 4 (>) # compare x > 0
4 10 POP_JUMP_IF_FALSE 10 (to 20) # jump if false

Here’s what this code does:

1. Use LOAD_NAME to load the x variable.

2. Use LOAD_CONST to load the 0 constant.

3. Use COMPARE_OP, which does the > comparison and leaves a True or False result for later.

4. Finally, POP_JUMP_IF_FALSEmakes the if x > 0 work. It “pops” the True or False value
to get it, and if it reads False, it will JUMP to instruction 20.

5. Doing that will jump over the code that set y if the comparison is False, but if the comparison
is True, then Python just runs the next instruction, which starts the y = 10 sequence.

Take some time walking through this to try to understand it. If you have a printer, try printing it out and
set x to different values manually, and then trace through how the code works. What happens when you
set x = —1?

What do you mean “pop”?

In the previous code, I’m skipping over exactly how Python “pops” the value to read it, but it’s storing it in
something called a “stack.” For now just think of it as a temporary storage place that you “push” values
into and then “pop” them off. You really don’t need to go much deeper than that at this stage in your
learning. Just understand the effect is to get the result of the last instruction.

Wait, aren’t tests like COMPARE_OP used in loops too?

Yes, and you could probably figure out how that works right now based on what you know. Try to write a
while-loop and see if you can get it to work with what you know now. Don’t worry if you can’t though
as we’ll be covering this in later exercises.

Rule 4: Storage Controls Tests
You need some way to keep track of changing data while the code operates, and this is done with
“storage.” Usually this storage is in the computer’s memory and you create names for the data you’re
storing in memory. You’ve been doing this when you write code like this:

1 x = 10

112 LEARN PYTHON THE HARD WAY

2 y = 20
3 z = x + y

In each of the previous lines we’re making a new piece of data and storing it in memory. We’re also
giving these pieces of memory the names x, y, and z. We can then use these names to “recall” those
values from memory, which is what we do in z = x + y. We’re just recalling the value of x and y from
memory to add them together.

That’s the majority of the story, but the important part of this little rule is that you almost always use
memory to control tests.

Sure, you can write code like this:

1 if 1 < 2:
2 print("but...why?")

That’s pointless though since it’s just running the second line after a pointless test. 1 is always less than
2, so it’s useless.

Where tests like COMPARE_OP shine is when you use variables to make the tests dynamic based on
calculations. That’s why I consider this a “rule of The Game of Code” because code without variables
isn’t really playing the game.

Take the time to go back through the previous examples and identify the places where LOAD instructions
are used to load values, and STORE instructions are used to store values into memory.

Rule 5: Input/Output Controls Storage
The final rule of The Game of Code is how your code interacts with the outside world. Having variables
is great, but a program that has only data you’ve typed into the source file isn’t very useful. What you
need is input and output.

Input is how you get data into your code from things like files, the keyboard, or the network. You’ve already
used open() and input() to do that in the last module. You accessed input every time you opened a
file, read the contents, and did something with them. You also used input when you used … input()
to ask the user a question.

Output is how you save or transmit the results of your program. Output can be to the screen with
print(), to a file with file.write(), or even over a network.

Let’s run dis() on a simple use of input('Yes? ') to see what it does:

1 from dis import dis
2 dis("input('Yes? ')")
3

EXERCISE 27: THE FIVE SIMPLE RULES TO THE GAME OF CODE 113

4 0 LOAD_NAME 0 (input)
5 2 LOAD_CONST 0 ('Yes? ')
6 4 CALL_FUNCTION 1
7 6 RETURN_VALUE

You can see there’s now a new instruction CALL_FUNCTION that implements the function calls you
learned about in Exercise 18. When Python sees CALL_FUNCTION, it finds the function that’s been
loaded with LOAD_NAME and then jumps to it to run that function’s code. There’s a lot more behind how
functions work, but you can think of CALL_FUNCTION as similar to JUMP_ABSOLUTE but to a named
place in the instructions.

Putting It All Together
Taking the five rules, we have the following Game of Code:

1. You read data as input to your program (Rule #5)

2. You store this data in storage (variables) (Rule #4)

3. You use these variables to perform tests… (Rule #3)

4. … so you can JUMP around… (Rule #2)

5. … the sequence of instructions… (Rule #1)

6. … transforming the data into new variables (Rule #4)…

7. … which you then write to output for storage or display (Rule #5)

While this seems simple, these little rules create very complicated software. Video games are a great
example of very complicated software that does this. A video game reads your controller or keyboard
as input, updates variables that control the models in the scene, and uses advanced instructions that
render the scene to your screen as output.

Take the time now to go back through exercises you’ve completed and see if you understand them better.
Does using dis() on code you didn’t understand help, or is it more confusing? If it helps, then try it on
everything to get new insights. If it doesn’t help, then just remember it for later. This will be especially
interesting when you do it to Exercise 26.

The List of Byte Codes

As you continue with the exercises, I’ll have you run dis() on some code to analyze what it’s doing.
You’ll need the full list of Python byte codes to study, which can be found at the end of the dis()
documentation.

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/library/dis.html#python-bytecode-instructions

114 LEARN PYTHON THE HARD WAY

dis() Is a Side Quest

Later exercises will have short sections that ask you to run dis() on the code to study the byte codes.
These sections are “side quests” in your education. That means they are not essential for understanding
Python, but if you complete them, it may help you later. If they’re too hard, then skip them and continue
on with the rest of the course.

The most important thing about dis() is that it gives you direct access to what Python thinks your code
does. That can help you if you’re confused about how your code works or if you’re just curious about
what Python is actually doing.

This page intentionally left blank

116

EXERCISE 28

Memorizing Logic

T oday is the day you start learning about logic. Up to this point you have done everything you possibly
can reading and writing files, to the Terminal, and have learned quite a lot of the math capabilities

of Python.

From now on, you will be learning logic. You won’t learn complex theories that academics love to study
but just the simple basic logic that makes real programs work and that real programmers need every day.

Learning logic has to come after you do some memorization. I want you to do this exercise for an entire
week. Do not falter. Even if you are bored out of your mind, keep doing it. This exercise has a set of logic
tables you must memorize to make it easier for you to do the later exercises.

I’m warning you this won’t be fun at first. It will be downright boring and tedious, but this teaches you
a very important skill you will need as a programmer. You will need to be able to memorize important
concepts in your life. Most of these concepts will be exciting once you get them. You will struggle with
them, like wrestling a squid, and then one day you will understand it. All that work memorizing the basics
pays off big later.

Here’s a tip on how to memorize something without going insane: Do a tiny bit at a time throughout the
day and mark down what you need to work on most. Do not try to sit down for two hours straight and
memorize these tables. This won’t work. Your brain will retain only whatever you studied in the first 15 or
30 minutes anyway. Instead, create a bunch of index cards with each column on the left (True or False)
on the front, and the column on the right on the back. You should then take them out, see the “True or
False” and immediately say “True!” Keep practicing until you can do this.

Once you can do that, start writing out your own truth tables each night into a notebook. Do not just
copy them. Try to do them from memory. When you get stuck, glance quickly at the ones I have here to
refresh your memory. Doing this will train your brain to remember the whole table.

Do not spend more than one week on this, because you will be applying it as you go.

The Truth Terms
In Python, we have the following terms (characters and phrases) for determining if something is “True”
or “False.” Logic on a computer is all about seeing if some combination of these characters and some
variables is True at that point in the program.

• and

• or

• not

EXERCISE 28: MEMORIZING LOGIC 117

• != (not equal)

• == (equal)

• >= (greater-than-equal)

• <= (less-than-equal)

• True

• False

You actually have run into these characters before but maybe not the terms. The terms (and, or, not)
actually work the way you expect them to, just like in English.

The Truth Tables
We will now use these characters to make the truth tables you need to memorize. First is the table for
not X:

NOT True?

not False True

not True False

This is the table for X or Y:

OR True?

True or False True

True or True True

False or True True

False or False False

Now the table for X and Y:

AND True?

True and False False

True and True True

False and True False

False and False False

118 LEARN PYTHON THE HARD WAY

Then we have the table for not combined with or as not (X or Y):

NOT OR True?

not (True or False) False

not (True or True) False

not (False or True) False

not (False or False) True

You should compare these tables to the or and and tables to see if you notice a pattern. Here’s the
table for not (X and Y). If you can figure out the pattern, you might not need to memorize them.

NOT AND True?

not (True and False) True

not (True and True) False

not (False and True) True

not (False and False) True

Now we get into equalities, which is testing if one thing is equal to another in various ways. First is
X != Y:

NOT AND True?

1 != 0 True

1 != 1 False

0 != 1 True

0 != 0 False

Finally we have X == Y:

NOT AND True?

1 == 0 False

1 == 1 True

0 == 1 False

0 == 0 True

Now use these tables to write up your own cards and spend the week memorizing them. Remember
though, there is no failing in this book, just trying as hard as you can each day, and then a little bit more.

EXERCISE 28: MEMORIZING LOGIC 119

Common Student Questions
Can’t I just learn the concepts behind Boolean algebra and not memorize this? Sure, you can do that,

but then you’ll have to constantly go through the rules for Boolean algebra while you code.
If you memorize these first, not only does it build your memorization skills, but it also makes
these operations natural. After that, the concept of Boolean algebra is easy. But do whatever
works for you.

120

EXERCISE 29

Boolean Practice

T he logic combinations you learned from the previous exercise are called “Boolean” logic expres-
sions. Boolean logic is used everywhere in programming. It is a fundamental part of computation,

and knowing these logic expressions very well is akin to knowing your scales in music.

In this exercise, you will take the logic exercises you memorized and start trying them out in Python. Take
each of these logic problems and write what you think the answer will be. In each case, it will be either
True or False. Once you have the answers written down, you will start Python in your Terminal and type
each logic problem in to confirm your answers.

1. True and True

2. False and True

3. 1 == 1 and 2 == 1

4. "test" == "test"

5. 1 == 1 or 2 != 1

6. True and 1 == 1

7. False and 0 != 0

8. True or 1 == 1

9. "test" == "testing"

10. 1 != 0 and 2 == 1

11. "test" != "testing"

12. "test" == 1

13. not (True and False)

14. not (1 == 1 and 0 != 1)

15. not (10 == 1 or 1000 == 1000)

16. not (1 != 10 or 3 == 4)

17. not ("testing" == "testing" and "Zed" == "Cool Guy")

18. 1 == 1 and (not ("testing" == 1 or 1 == 0))

19. "chunky" == "bacon" and (not (3 == 4 or 3 == 3))

20. 3 != 3 and (not ("testing" == "testing" or "Python" == "Fun"))

I will also give you a trick to help you figure out the more complicated ones toward the end.

EXERCISE 29: BOOLEAN PRACTICE 121

Whenever you see these Boolean logic statements, you can solve them easily by this simple process:

1. Find an equality test (== or !=) and replace it with its truth

2. Find each and/or inside parentheses and solve those first

3. Find each not and invert it

4. Find any remaining and/or and solve it

5. When you are done, you should have True or False

I will demonstrate with a variation on #20:

1 3 != 4 and not ("testing" != "test" or "Python" == "Python")

Here’s me going through each of the steps and showing you the translation until I’ve boiled it down to a
single result:

1. Solve each equality test:

• 3 != 4 is True, so replace that with True to get True and not ("testing" != "test"
or "Python" == "Python")

• "testing" != "test" is True, so replace that with True to get True and not (True
or "Python" == "Python")

• "Python" == "Python" is True, so replace that with True, and we have True and
not (True or True)

2. Find each and/or in parentheses ():

• (True or True) is True, so replace that to get True and not (True)

3. Find each not and invert it:

• not (True) is False, so replace that, and we have True and False

4. Find any remaining and/or and solve them:

• True and False is False, and you’re done

With that we’re done and know the result is False.

WARNING! The more complicated ones may seem very hard at first. You should be able
to take a good first stab at solving them, but do not get discouraged. I’m just getting you
primed for more of these “logic gymnastics” so that later cool stuff is much easier. Just stick
with it, and keep track of what you get wrong, but do not worry that it’s not getting in your
head quite yet. It’ll come.

122 LEARN PYTHON THE HARD WAY

What You Should See
After you have tried to guess at these, this is what your Jupyter cells might look like:

1 >>> True and True
2 True
3 >>> 1 == 1 and 2 == 2
4 True

Study Drills
1. There are a lot of operators in Python similar to != and ==. Try to find as many “equality

operators” as you can. They should be like < or <=.

2. Write out the names of each of these equality operators. For example, I call != “not equal.”

3. Play with Python by typing out new Boolean operators, and before you press Enter, try to shout
out what it is. Do not think about it. Shout the first thing that comes to mind. Write it down, then
press Enter, and keep track of how many you get right and wrong.

4. Throw away the piece of paper from Study Drill 3, so you do not accidentally try to use it later.

Common Student Questions
Why does "test" and "test" return "test" or 1 and 1 return 1 instead of True? Python

and many languages like to return one of the operands to their Boolean expressions rather
than just True or False. This means that if you did False and 1 you get the first operand
(False), but if you do True and 1, you get the second (1). Play with this a bit.

Is there any difference between != and <>? Python has deprecated <> in favor of !=, so use !=.
Other than that there should be no difference.

Isn’t there a shortcut? Yes. Any and expression that has a False is immediately False, so you
can stop there. Any or expression that has a True is immediately True, so you can stop there.
But make sure that you can process the whole expression because later it becomes helpful.

This page intentionally left blank

124

EXERCISE 30

What If

H ere is the next script of Python you will enter, which introduces you to the if-statement. Type
this in, make it run exactly right, and then we’ll see if your practice has paid off.

Listing 30.1: ex30.py

1 people = 20
2 cats = 30
3 dogs = 15
4
5
6 if people < cats:
7 print("Too many cats! The world is doomed!")
8
9 if people > cats:
10 print("Not many cats! The world is saved!")
11
12 if people < dogs:
13 print("The world is drooled on!")
14
15 if people > dogs:
16 print("The world is dry!")
17
18
19 dogs += 5
20
21 if people >= dogs:
22 print("People are greater than or equal to dogs.")
23
24 if people <= dogs:
25 print("People are less than or equal to dogs.")
26
27
28 if people == dogs:
29 print("People are dogs.")

What You Should See
1 Too many cats! The world is doomed!
2 The world is dry!
3 People are greater than or equal to dogs.
4 People are less than or equal to dogs.
5 People are dogs.

EXERCISE 30: WHAT IF 125

dis() It
For the next few exercises I want you to run dis() on some of the code you’re studying to get more
insight into how it works:

1 from dis import dis
2
3 dis('''
4 if people < cats:
5 print("Too many cats! The world is doomed!")
6 ''')

This is not something you’d do normally when programming. I only want you to do it here to give you
one more possible way to understand what’s going on. If dis() doesn’t really help you understand the
code more, then feel free to do it and forget it.

To study this, simply put the Python code next to this dis() output and try to identify the lines of Python
code that match the byte codes.

Study Drill
In this Study Drill, try to guess what you think the if-statement is and what it does. Try to answer
these questions in your own words before moving on to the next exercise:

1. What do you think the if does to the code under it?

2. Why does the code under the if need to be indented four spaces?

3. What happens if it isn’t indented?

4. Can you put other Boolean expressions from Exercise 28 in the if-statement? Try it

5. What happens if you change the initial values for people, cats, and dogs?

Common Student Questions
What does += mean? The code x += 1 is the same as doing x = x + 1 but involves less typing.

You can call this the “increment by” operator. The same goes for —= and many other expres-
sions you’ll learn later.

126

EXERCISE 31

Else and If

I n the previous exercise, you worked out some if-statements and then tried to guess what they areand how they work. Before you learn more, I’ll explain what everything is by answering the questions
you had from Study Drills. You did the Study Drills, right?

1. What do you think the if does to the code under it? An if-statement creates what is called
a “branch” in the code. It’s kind of like those choose-your-own-adventure books where you are
asked to turn to one page if you make one choice and another if you go a different direction.
The if-statement tells your script, “If this Boolean expression is True, then run the code
under it; otherwise skip it.”

2. Why does the code under the if need to be indented four spaces? A colon at the end of a line
is how you tell Python you are going to create a new “block” of code, and then indenting four
spaces tells Python what lines of code are in that block. This is exactly the same thing you did
when you made functions in the first half of the book.

3. What happens if it isn’t indented? If it isn’t indented, you will most likely create a Python error.
Python expects you to indent something after you end a line with a : (colon).

4. Can you put other Boolean expressions from Exercise 28 in the if-statement? Try it. Yes
you can, and they can be as complex as you like, although really complex things generally are
bad style.

5. What happens if you change the initial values for people, cats, and dogs? Because you are
comparing numbers, if you change the numbers, different if-statements will evaluate to
True, and the blocks of code under them will run. Go back and put different numbers in and
see if you can figure out in your head which blocks of code will run.

Compare my answers to your answers, and make sure you really understand the concept of a “block” of
code. This is important for when you do the next exercise where youwrite all the parts of if-statements
that you can use.

Type this one in and make it work too.

Listing 31.1: ex31.py

1 people = 30
2 cars = 40
3 trucks = 15
4
5
6 if cars > people:

EXERCISE 31: ELSE AND IF 127

7 print("We should take the cars.")
8 elif cars < people:
9 print("We should not take the cars.")

10 else:
11 print("We can't decide.")
12
13 if trucks > cars:
14 print("That's too many trucks.")
15 elif trucks < cars:
16 print("Maybe we could take the trucks.")
17 else:
18 print("We still can't decide.")
19
20 if people > trucks:
21 print("Alright, let's just take the trucks.")
22 else:
23 print("Fine, let's stay home then.")

What You Should See
1 We should take the cars.
2 Maybe we could take the trucks.
3 Alright, let's just take the trucks.

dis() It
We’re now getting to a point where dis() is a bit too complicated to study. Let’s just pick one of the
code blocks to study:

1 from dis import dis
2
3 dis('''
4 if cars > people:
5 print("We should take the cars.")
6 elif cars < people:
7 print("We should not take the cars.")
8 else:
9 print("We can't decide.")
10 ''')

I think the best way to study this is to put the Python code next to the dis() output and try to match the
lines of Python to their byte codes. If you can do that, then you’re going to be far ahead of many Python
programmers who don’t even know that Python has dis().

If you can’t figure it out, don’t worry. It’s all about pushing your knowledge as far as possible to find new
ways to understand Python.

128 LEARN PYTHON THE HARD WAY

Study Drills
1. Try to guess what elif and else are doing.

2. Change the numbers of cars, people, and trucks, and then trace through each if-statement
to see what will be printed.

3. Try some more complex Boolean expressions like cars > people or trucks < cars.

4. Above each line write an English description of what the line does.

Common Student Questions
What happens if multiple elif blocks are True? Python starts at the top and runs the first block

that is True, so it will run only the first one.

This page intentionally left blank

130

EXERCISE 32

Making Decisions

I n the first half of this book, you mostly just printed out things called “functions,” but everything was
basically in a straight line. Your scripts ran starting at the top and went to the bottom where they ended.

If you made a function, you could run that function later, but it still didn’t have the kind of branching you
need to really make decisions. Now that you have if, else, and elif you can start to make scripts
that decide things.

In the last script, you wrote out a simple set of tests asking some questions. In this script you will ask the
user questions and make decisions based on their answers. Write this script, and then play with it quite
a lot to figure it out.

Listing 32.1: ex32.py

1 print("""You enter a dark room with two doors.
2 Do you go through door #1 or door #2?""")
3
4 door = input("> ")
5
6 if door == "1":
7 print("There's a giant bear here eating a cheese cake.")
8 print("What do you do?")
9 print("1. Take the cake.")
10 print("2. Scream at the bear.")
11
12 bear = input("> ")
13
14 if bear == "1":
15 print("The bear eats your face off. Good job!")
16 elif bear == "2":
17 print("The bear eats your legs off. Good job!")
18 else:
19 print(f"Well, doing {bear} is probably better.")
20 print("Bear runs away.")
21
22 elif door == "2":
23 print("You stare into the endless abyss at Cthulhu's retina.")
24 print("1. Blueberries.")
25 print("2. Yellow jacket clothespins.")
26 print("3. Understanding revolvers yelling melodies.")
27
28 insanity = input("> ")
29
30 if insanity == "1" or insanity == "2":
31 print("Your body survives powered by a mind of jello.")

EXERCISE 32: MAKING DECISIONS 131

32 print("Good job!")
33 else:
34 print("The insanity rots your eyes into a pool of muck.")
35 print("Good job!")
36
37 else:
38 print("You stumble around and fall on a knife and die. Good job!")

A key point here is that you are now putting the if-statements inside if-statements as code that
can run. This is very powerful and can be used to create “nested” decisions, where one branch leads to
another and another.

Make sure you understand this concept of if-statements inside if-statements. In fact, do the Study
Drills to really nail it.

What You Should See
Here is me playing this little adventure game. I do not do so well.

1 You enter a dark room with two doors.
2 Do you go through door #1 or door #2?
3 > 1
4 There's a giant bear here eating a cheese cake.
5 What do you do?
6 1. Take the cake.
7 2. Scream at the bear.
8 > 2
9 The bear eats your legs off. Good job!

dis() It
There is no dis() It section this time because this code is far too complicated to understand, but if
you’re feeling lucky, then try this:

1 from dis import dis
2
3 dis('''
4 if door == "1":
5 print("1")
6 bear = input("> ")
7 if bear == "1":
8 print("bear 1")
9 elif bear == "2":
10 print("bear 2")
11 else:
12 print("bear 3")
13 ''')

132 LEARN PYTHON THE HARD WAY

This will produce so much code to analyze, but do the best you can. It does get boring after a while, but
it also helps you understand how Python works. Once again, if this is confusing, skip it and try it later.

Study Drills
1. Make new parts of the game and change what decisions people can make. Expand the game

out as much as you can before it gets ridiculous.

2. Write a completely new game. Maybe you don’t like this one, so make your own. This is your
computer; do what you want.

Common Student Questions
Can you replace elif with a sequence of if-else combinations? You can in some situations, but

it depends on how each if/else is written. It also means that Python will check every
if-else combination, rather than just the first false ones like it would with if-elif-else.
Try to make some of these to figure out the differences.

How do I tell whether a number is between a range of numbers? You have two options: Use 0 < x
< 10 or 1 <= x < 10—which is classic notation—or use x in range(1, 10).

What if I wanted more options in the if-elif-else blocks? Add more elif blocks for each pos-
sible choice.

This page intentionally left blank

134

EXERCISE 33

Loops and Lists

Y ou should now be able to do some programs that are much more interesting. If you have been
keeping up, you should realize that now you can combine all the other things you have learned with

if-statements and Boolean expressions to make your programs do smart things.

However, programs also need to do repetitive things very quickly. We are going to use a for-loop in
this exercise to build and print various lists. When you do the exercise, you will start to figure out what
they are. I won’t tell you right now. You have to figure it out.

Before you can use a for-loop, you need a way to store the results of loops somewhere. The best
way to do this is with lists. Lists are exactly what their name says: a container of things that are
organized in order from first to last. It’s not complicated; you just have to learn a new syntax. First, here’s
how you make lists:

1 hairs = ['brown', 'blond', 'red']
2 eyes = ['brown', 'blue', 'green']
3 weights = [1, 2, 3, 4]

You start the list with the [(left bracket), which “opens” the list. Then you put each item you want
in the list separated by commas, similar to function arguments. Lastly, end the list with a] (right bracket)
to indicate that it’s over. Python then takes this list and all its contents and assigns them to the variable.

WARNING! This is where things get tricky for people who can’t code. Your brain has
been taught that the world is flat. Remember in the previous exercise where you put
if-statements inside if-statements? That probably made your brain hurt because
most people do not ponder how to “nest” things inside things. In programming nested
structures are all over the place. You will find functions that call other functions that have
if-statements that have lists with lists inside lists. If you see a structure like this that
you can’t figure out, take out a pencil and paper and break it down manually bit by bit until
you understand it.

We now will build some lists using some for-loops and print them out:

Listing 33.1: ex33.py

1 the_count = [1, 2, 3, 4, 5]
2 fruits = ['apples', 'oranges', 'pears', 'apricots']
3 change = [1, 'pennies', 2, 'dimes', 3, 'quarters']
4

EXERCISE 33: LOOPS AND LISTS 135

5 # this first kind of for-loop goes through a list
6 for number in the_count:
7 print(f"This is count {number}")
8
9 # same as above

10 for fruit in fruits:
11 print(f"A fruit of type: {fruit}")
12
13 # also we can go through mixed lists too
14 for i in change:
15 print(f"I got {i}")
16
17 # we can also build lists, first start with an empty one
18 elements = []
19
20 # then use the range function to do 0 to 5 counts
21 for i in range(0, 6):
22 print(f"Adding {i} to the list.")
23 # append is a function that lists understand
24 elements.append(i)
25
26 # now we can print them out too
27 for i in elements:
28 print(f"Element was: {i}")

What You Should See
1 This is count 1
2 This is count 2
3 This is count 3
4 This is count 4
5 This is count 5
6 A fruit of type: apples
7 A fruit of type: oranges
8 A fruit of type: pears
9 A fruit of type: apricots
10 I got 1
11 I got pennies
12 I got 2
13 I got dimes
14 I got 3
15 I got quarters
16 Adding 0 to the list.
17 Adding 1 to the list.
18 Adding 2 to the list.
19 Adding 3 to the list.
20 Adding 4 to the list.
21 Adding 5 to the list.
22 Element was: 0

136 LEARN PYTHON THE HARD WAY

23 Element was: 1
24 Element was: 2
25 Element was: 3
26 Element was: 4
27 Element was: 5

dis() It
This time let’s keep it simple and just see how Python does the for-loop:

1 from dis import dis
2
3 dis('''
4 for number in the_count:
5 print(number)
6 ''')

This time I’m going to reproduce the output here so we can analyze it:

1 0 LOAD_NAME 0 (the_count) # get the count list
2 2 GET_ITER # start iteration
3 4 FOR_ITER 6 (to 18) # for-loop jump to 18
4 6 STORE_NAME 1 (number) # create number variable
5
6 8 LOAD_NAME 2 (print) # load print()
7 10 LOAD_NAME 1 (number) # load number
8 12 CALL_FUNCTION 1 # call print()
9 14 POP_TOP # clean stack

10 16 JUMP_ABSOLUTE 2 (to 4) # jump back to FOR_ITER at 4
11
12 18 LOAD_CONST 0 (None) # jump here when FOR_ITER done
13 20 RETURN_VALUE

Here we see a new thing in the FOR_ITER operation. This operation makes the for-loop work by
doing these steps:

1. Call the_count.__next__()

2. If this says there are no more elements in the_count, jump to 18

3. If there are still elements, then continue on

4. The STORE_NAME then assigns the result of the_count.__next__() to the name number

That’s all a for-loop actually does. It’s mostly a single byte code FOR_ITER combined with a few
others to iterate through a list.

EXERCISE 33: LOOPS AND LISTS 137

Study Drills
1. Take a look at how you used range(). Look up the range() function to understand it.

2. Could you have avoided that for-loop entirely on line 22 and just assigned range(0,6)
directly to elements?

3. Find the Python documentation on lists and read about them. What other operations can you
do to lists besides append?

Common Student Questions
How do you make a two-dimensional (2D) list? That’s a list in a list like this: [[1,2,3],[4,5,6]]

Aren’t lists and arrays the same thing? Depends on the language and the implementation. In clas-
sic terms, a list is very different from an array because of how they’re implemented. In Ruby
though they call these “arrays.” In Python they call them “lists.” Just call these “lists” for now
since that’s what Python calls them.

Why is a for-loop able to use a variable that isn’t defined yet? The variable is defined by the
for-loop when it starts, initializing it to the current element of the loop iteration each
time through.

Why does for i in range(1, 3): only loop two times instead of three times? The range()
function only does numbers from the first to the last, not including the last. So it stops at two,
not three in the preceding. This turns out to be the most common way to do this kind of loop.

What does elements.append() do? It simply appends to the end of the list. Open up the Python
shell and try a few examples with a list you make. Any time you run into things like this, always
try to play with them interactively in the Python shell.

138

EXERCISE 34

While Loops

N ow to totally blow your mind with a new loop, the while-loop. A while-loop will keep executing
the code block under it as long as a Boolean expression is True.

Wait, you have been keeping up with the terminology, right? That if we write a line and end it with a :
(colon), then that tells Python to start a new block of code? Then we indent, and that’s the new code.
This is all about structuring your programs so that Python knows what you mean. If you do not get that
idea, then go back and do some more work with if-statements, functions, and the for-loop until you
get it.

Later on, we’ll have some exercises that will train your brain to read these structures, similar to how we
burned Boolean expressions into your brain.

Back to while-loops. What they do is simply do a test like an if-statement, but instead of running
the code block once, they jump back to the “top” where the while is, and repeat. A while-loop runs
until the expression is False.

Here’s the problem with while-loops: Sometimes they do not stop. This is great if your intention is to
just keep looping until the end of the universe. Otherwise you almost always want your loops to end
eventually.

To avoid these problems, there are some rules to follow:

1. Make sure that you use while-loops sparingly. Usually a for-loop is better.

2. Review your while-statements and make sure that the Boolean test will become False at
some point.

3. When in doubt, print out your test variable at the top and bottom of the while-loop to see what
it’s doing.

In this exercise, you will learn the while-loop while doing these three checks:

Listing 34.1: ex34.py

1 i = 0
2 numbers = []
3
4 while i < 6:
5 print(f"At the top i is {i}")
6 numbers.append(i)
7
8 i = i + 1

EXERCISE 34: WHILE LOOPS 139

9 print("Numbers now: ", numbers)
10 print(f"At the bottom i is {i}")
11
12
13 print("The numbers: ")
14
15 for num in numbers:
16 print(num)

What You Should See
1 At the top i is 0
2 Numbers now: [0]
3 At the bottom i is 1
4 At the top i is 1
5 Numbers now: [0, 1]
6 At the bottom i is 2
7 At the top i is 2
8 Numbers now: [0, 1, 2]
9 At the bottom i is 3
10 At the top i is 3
11 Numbers now: [0, 1, 2, 3]
12 At the bottom i is 4
13 At the top i is 4
14 Numbers now: [0, 1, 2, 3, 4]
15 At the bottom i is 5
16 At the top i is 5
17 Numbers now: [0, 1, 2, 3, 4, 5]
18 At the bottom i is 6
19 The numbers:
20 0
21 1
22 2
23 3
24 4
25 5

dis() It
For our final “side quest” in The Game of Code you’ll use dis() to analyze how a while-loop works:

1 from dis import dis
2
3 dis('''
4 i = 0
5 while i < 6:
6 i = i + 1
7 ''')

140 LEARN PYTHON THE HARD WAY

You’ve already seenmost of these byte codes, so it’s up to you to figure out how this dis() output relates
to the Python. Remember you can look up all of the byte codes at the end of the dis() documentation.
Good luck!

Study Drills
1. Convert this while-loop to a function that you can call, and replace 6 in the test (i < 6)

with a variable.

2. Use this function to rewrite the script to try different numbers.

3. Add another variable to the function arguments that you can pass in that lets you change the
+ 1 on line 8 so you can change how much it increments by.

4. Rewrite the script again to use this function to see what effect that has.

5. Write it to use for-loops and range. Do you need the incrementor in the middle anymore?
What happens if you do not get rid of it?

If at any time that you are doing this it goes crazy (it probably will), just hold down CTRL and press c
(CTRL-c) and the program will abort.

Common Student Questions
What’s the difference between a for-loop and a while-loop? A for-loop can only iterate (loop)

“over” collections of things. A while-loop can do any kind of iteration (looping) you want.
However, while-loops are harder to get right, and you normally can get many things done
with for-loops.

Loops are hard. How do I figure them out? The main reason people don’t understand loops is be-
cause they can’t follow the “jumping” that the code does. When a loop runs, it goes through its
block of code, and at the end it jumps back to the top. To visualize this, put print statements
all over the loop printing out where in the loop Python is running and what the variables are
set to at those points. Write print lines before the loop, at the top of the loop, in the middle,
and at the bottom. Study the output and try to understand the jumping that’s going on.

https://docs.python.org/3/library/dis.html#python-bytecode-instructions

This page intentionally left blank

142

EXERCISE 35

Branches and Functions

Y ou have learned if-statements, functions, and lists. Now it’s time to bend your mind. Type this
in, and see if you can figure out what it’s doing:

Listing 35.1: ex35.py

1 from sys import exit
2
3 def gold_room():
4 print("This room is full of gold. How much do you take?")
5
6 choice = input("> ")
7 if "0" in choice or "1" in choice:
8 how_much = int(choice)
9 else:
10 dead("Man, learn to type a number.")
11
12 if how_much < 50:
13 print("Nice, you're not greedy, you win!")
14 exit(0)
15 else:
16 dead("You greedy bastard!")
17
18
19 def bear_room():
20 print("There is a bear here.")
21 print("The bear has a bunch of honey.")
22 print("The fat bear is in front of another door.")
23 print("How are you going to move the bear?")
24 bear_moved = False
25
26 while True:
27 choice = input("> ")
28
29 if choice == "take honey":
30 dead("The bear looks at you then slaps your face off.")
31 elif choice == "taunt bear" and not bear_moved:
32 print("The bear has moved from the door.")
33 print("You can go through it now.")
34 bear_moved = True
35 elif choice == "taunt bear" and bear_moved:
36 dead("The bear gets pissed off and chews your leg off.")
37 elif choice == "open door" and bear_moved:
38 gold_room()
39 else:

EXERCISE 35: BRANCHES AND FUNCTIONS 143

40 print("I got no idea what that means.")
41
42
43 def cthulhu_room():
44 print("Here you see the great evil Cthulhu.")
45 print("He, it, whatever stares at you and you go insane.")
46 print("Do you flee for your life or eat your head?")
47
48 choice = input("> ")
49
50 if "flee" in choice:
51 start()
52 elif "head" in choice:
53 dead("Well that was tasty!")
54 else:
55 cthulhu_room()
56
57
58 def dead(why):
59 print(why, "Good job!")
60 exit(0)
61
62 def start():
63 print("You are in a dark room.")
64 print("There is a door to your right and left.")
65 print("Which one do you take?")
66
67 choice = input("> ")
68
69 if choice == "left":
70 bear_room()
71 elif choice == "right":
72 cthulhu_room()
73 else:
74 dead("You stumble around the room until you starve.")
75
76
77 start()

What You Should See
Here’s me playing the game:

1 You are in a dark room.
2 There is a door to your right and left.
3 Which one do you take?
4 > left
5 There is a bear here.
6 The bear has a bunch of honey.

144 LEARN PYTHON THE HARD WAY

7 The fat bear is in front of another door.
8 How are you going to move the bear?
9 > taunt bear

10 The bear has moved from the door.
11 You can go through it now.
12 > open door
13 This room is full of gold. How much do you take?
14 > 1000
15 You greedy bastard! Good job!

Study Drills
1. Draw a map of the game and how you flow through it.

2. Fix all of your mistakes, including spelling mistakes.

3. Write comments for the functions you do not understand.

4. Add more to the game. What can you do to both simplify and expand it?

5. The gold_room has a weird way of getting you to type a number. What are all the bugs in this
way of doing it? Can you make it better than what I’ve written? Look at how int() works for
clues.

Common Student Questions
Help! How does this program work!? When you get stuck understanding a piece of code, simply

write an English comment above every line explaining what that line does. Keep your comments
short and similar to the code. Then either diagram how the code works or write a paragraph
describing it. If you do that, you’ll get it.

Why did you write while True? That makes an infinite loop.

What does exit(0) do? On many operating systems a program can abort with exit(0), and
the number passed in will indicate an error or not. If you do exit(1), then it will be an error,
but exit(0) will be a good exit. The reason it’s backward from normal Boolean logic (with
0==False) is that you can use different numbers to indicate different error results. You can do
exit(100) for a different error result than exit(2) or exit(1).

Why is input() sometimes written as input('> ')? The parameter to input is a string that it
should print as a prompt before getting the user’s input.

This page intentionally left blank

146

EXERCISE 36

Designing and Debugging

N ow that you know if-statements, I’m going to give you some rules for for-loops and while-loops
that will keep you out of trouble. I’m also going to give you some tips on debugging so that you

can figure out problems with your program. Finally, you will design a little game similar to the previous
exercise but with a slight twist.

From Idea to Working Code
There is a simple process anyone can follow to turn your idea into code. This isn’t the only process, but
it is one that works well for many people. Use this until you develop your own personal process.

1. Get your idea out of your head in any form you understand. Are you a writer? Then write an
essay about your idea. Are you an artist or designer? Then draw the user interface. Do you
like charts and graphs? Check out the Sequence Diagram, which is one of the most useful
diagrams in programming.

2. Create a file for your code. Yes, believe it or not this is an important step that most people
stumble over. If you can’t come up with a name, just pick a random one for now.

3. Write a description of your idea as comments, in plain English language (or whatever language
is easiest for you).

4. Start at the top, and convert the first comment into “pseudo-code,” which is kind of Python but
you don’t care about syntax.

5. Convert that “pseudo-code” into real Python code, and keep running your file until this code
does what your comment says.

6. Repeat this until you’ve converted all of the comments into Python.

7. Step back, review your code, and then delete it. You don’t have to do this all the time, but if you
get in the habit of throwing away your first version, you’ll receive two benefits:

a. Your second version is almost always better than the first.

b. You confirm to yourself that it wasn’t just dumb luck. You actually can code. This helps with
impostor syndrome and confidence.

Let’s do an example with a simple problem of “create a simple Fahrenheit to Celsius converter.” Step 1,
I would write out what I know about the conversion:

C equals (F - 32) / 1.8. I should ask the user for the F and then print out the C.

https://en.wikipedia.org/wiki/Sequence_diagram

EXERCISE 36: DESIGNING AND DEBUGGING 147

A very basic math formula is an easy way to understand the problem. Step 2, I write comments describing
what my code should do:

1 # ask the user for the F
2 # convert it to a float()
3 # C = (F — 32) / 1.8
4 # print C to the user

Once I have that, I “fill in the blanks” with pseudo-code. I’ll do just the first line so you can finish this:

1 # ask the user for the F
2 F = input(?)
3
4 # convert it to a float()
5 # C = (F — 32) / 1.8
6 # print C to the user

Notice I’m being sloppy and not getting the syntax right, which is the point of pseudo-code. Once I have
that, convert it to correct Python:

1 # ask the user for the F
2 F = input("C? ")
3
4 # convert it to a float()
5 # C = (F — 32) / 1.8
6 # print C to the user

Run it! You should be running your code constantly. If you type more than a few lines, just delete them
and start over. It’s so much easier.

Now that those lines work, I move on to the next comment and repeat the process until I have converted
all of the comments into Python. When my script is finally working, I delete it and rewrite it using what I
know. Maybe this time I just write the Python directly, or I just repeat the process again. Doing this will
confirm to myself that I can actually do it. It was not just dumb luck.

Is This a Professional Process?

You may think that this process is not practical or unprofessional. I think when you’re starting out, you
need different tools than someone who’s been coding for a really long time. I can sit down with an idea
and just code, but I’ve been coding professionally for longer than you may have been alive. Yet, in my
head this is essentially the process I follow. I’m just doing it inside my head rapidly, while you have to
practice it externally until you internalize it.

I do use this process when I am stuck, or if I’m learning a new language. If I don’t know a language
but know what I want to do, then I can usually write comments and slowly convert them to code, which

148 LEARN PYTHON THE HARD WAY

also teaches me that language. The only difference between me and you is that I do it faster because of
years of training.

About the “X/Y” Non-Problem

Some professionals claim that this process gives students a strange disease called the “X/Y problem.”
They describe the X/Y problem as “Someone wants to do X, but only knows how to do Y, so they ask for
help on how to do Y.” The problem with the X/Y problem is it’s critical of people who are simply learning
how to code and presents no solution. To the “X/Y hater” the solution seems to be “know the answer
already,” since if they knew how to do X, they wouldn’t bother with Y. The hypocrisy of this belief is that
all of the people who hate these kinds of questions also went through a period of doing exactly this and
asking these same exact kinds of “X/Y” questions.

The other problem is, they’re blaming you for their terrible documentation. The classic example is from
the original description of the X/Y problem:

1 <n00b> How can I echo the last three characters in a filename?
2
3 <feline> If they're in a variable: echo ${foo: -3}
4 <feline> Why 3 characters? What do you REALLY want?
5 <feline> Do you want the extension?
6
7 <n00b> Yes.
8
9 <feline> Then ASK FOR WHAT YOU WANT!

10 <feline> There's no guarantee that every filename will
11 have a three-letter extension,
12 <feline> so blindly grabbing three characters does not
13 solve the problem.
14 <feline> echo ${foo##*.}

First off, this feline person is literally yelling at someone for asking a question in an IRC channel
devoted to answering questions. “ASK FOR WHAT YOU WANT!” The second problem is, their solution
is something I—a multi-decade veteran bash and Linux professional—has to look up every single time.
It is one of the worst documented, least usable features in bash. How is a beginner expected to know
ahead of time that they should use some complicated “dollar brace name pound pound asterisk dot
brace” operation? This person most likely would not have asked this question had there been simple
documentation available online that explained how to do this. Even better would be if bash actually just
had a basic feature for this incredibly common operation every human needs out of a shell.

When it comes to the “X/Y problem,” it is really just an excuse to yell at beginners for being beginners.
Every single person who claims to hate this either doesn’t actually write code or has definitely done
exactly this while they were learning to code. That’s how you learn to code. You come up with problems
and stumble through them learning how to implement solutions. So if you run into someone who acts
like <feline>, just ignore them. They’re just using you as an excuse to be angry at someone and feel
superior.

EXERCISE 36: DESIGNING AND DEBUGGING 149

Additionally, you’ll notice that in the previous interaction not a single person asked to see code. If <n00b>
had just shown their code, then <feline> could have recommended better ways to do that. Problem
solved. I mean, assuming <feline> is actually able to code and is not just hanging out in IRC waiting
to pounce on unsuspecting beginners asking questions.

Rules for If-Statements
1. Every if-statement must have an else

2. If this else should never run because it doesn’t make sense, then you must use a die()
function in the else that prints out an error message and dies, just like we did in the previous
exercise. This will find many errors.

3. The exception to rules #1 and #2 is in any for-loop or similar loop that is scanning for items
in lists, or in list comprehensions. Add the else anyway, and if it doesn’t make sense there
then remove it.

4. Try not to nest if-statements more than two deep and always try to do them one deep.

5. Treat if-statements like paragraphs, where each if-elif-else grouping is like a set of
sentences. Put blank lines before and after.

6. Your Boolean tests should be simple. If they are complex, move their calculations to variables
earlier in your function and use a good name for the variable.

If you follow these simple rules, you will start writing better code than most programmers. Go back to
the previous exercise and see if I followed all of these rules. If not, fix my mistakes.

WARNING! Never be a slave to the rules in real life. For training purposes, you need to
follow these rules to make your mind strong, but in real life sometimes these rules are just
stupid. If you think a rule is stupid, try not using it.

Rules for Loops
1. Use a while-loop only to loop forever, and that means probably never. This applies only to

Python; other languages are different.

2. Use a for-loop for all other kinds of looping, especially if there is a fixed or limited number of
things to loop over.

Tips for Debugging
1. Do not use a “debugger.” A debugger is like doing a full-body scan on a sick person. You do

not get any specific useful information, and you find a whole lot of information that doesn’t help
and is just confusing.

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

150 LEARN PYTHON THE HARD WAY

2. The best way to debug a program is to use print to print out the values of variables at points
in the program to see where they go wrong.

3. Make sure parts of your programs work as you work on them. Do not write massive files of
code before you try to run them. Code a little, run a little, fix a little.

Homework
Now write a game similar to the one that I created in the previous exercise. It can be any kind of game
you want in the same flavor. Spend a week on it making it as interesting as possible. For Study Drills,
use lists, functions, and modules (remember those from Exercise 13?) as much as possible, and find as
many new pieces of Python as you can to make the game work.

Before you start coding you must draw a map for your game. Create the rooms, monsters, and traps that
the player must go through on paper before you code.

Once you have your map, try to code it up. If you find problems with the map, then adjust it and make
the code match.

The best way to work on a piece of software is in small chunks like this:

1. On a sheet of paper or an index card, write a list of tasks you need to complete to finish the
software. This is your to-do list

2. Pick the easiest thing you can do from your list

3. Write out English comments in your source file as a guide for how you would accomplish this
task in your code

4. Write some of the code under the English comments

5. Quickly run your script so you can see if that code worked

6. Keep working in a cycle of writing some code, running it to test it, and fixing it until it works

7. Cross this task off your list, and then pick your next easiest task and repeat

This process will help you work on software in a methodical and consistent manner. As you work, update
your list by removing tasks you don’t really need and adding ones you do.

This page intentionally left blank

152

EXERCISE 37

Symbol Review

I t’s time to review the symbols and Python words you know and to try to pick up a few more for the
next few lessons. I have written out all the Python symbols and keywords that are important to know.

In this lesson, take each keyword and first try to write out what it does from memory. Next, search online
for it and see what it really does. This may be difficult because some of these are difficult to search for,
but try anyway.

If you get one of these wrong from memory, make an index card with the correct definition and try to
“correct” your memory.

Finally, use each of these in a small Python program, or as many as you can get done. The goal is to find
out what the symbol does, make sure you got it right, correct it if you did not, and then use it to lock it in.

Keywords

Keyword Description Example

and Logical and True and False == False

as Part of the with-as statement with X as Y: pass

assert Assert (ensure) that something is true assert False, "Error!"

break Stop this loop right now while True: break

class Define a class class Person(object)

continue Don’t process more of the loop; do it
again

while True: continue

def Define a function def X(): pass

del Delete from dictionary del X[Y]

elif Else if condition if: X; elif: Y; else: J

else Else condition if: X; elif: Y; else: J

except If an exception happens, do this except ValueError as e:
print(e)

exec Run a string as Python exec 'print("hello")'

finally Exceptions or not, finally do this no mat-
ter what

finally: pass

for Loop over a collection of things for X in Y: pass

from Used with import to bring in specific
parts of a module

from x import Y

EXERCISE 37: SYMBOL REVIEW 153

Keyword Description Example

global Declare that you want a global variable global X

if If condition if: X; elif: Y; else: J

import Import a module into this one to use import os

in Part of for-loops. Also a test of X in Y for X in Y: pass also 1 in [1]
== True

is Like == to test equality 1 is 1 == True

lambda Create a short anonymous function s = lambda y: y ** y; s(3)

not Logical not not True == False

or Logical or True or False == True

pass This block is empty def empty(): pass

print Print this string print('this string')

raise Raise an exception when things go
wrong

raise ValueError("No")

return Exit the function with a return value def X(): return Y

try Try this block, and if exception, go to
except

try: pass

while While loop while X: pass

with With an expression as a variable do with X as Y: pass

yield Pause here and return to caller def X(): yield Y; X().next()

Data Types
For data types, write out what makes up each one. For example, with strings, write out how you create
a string. For numbers, write out a few numbers.

Type Description Example

True True boolean value True or False == True

False False boolean value False and True == False

None Represents “nothing” or “no value” x = None

bytes Stores bytes, maybe of text, PNG, file, etc. x = b"hello"

strings Stores textual information x = "hello"

numbers Stores integers i = 100

floats Stores decimals i = 10.389

lists Stores a list of things j = [1,2,3,4]

dicts Stores a key=value mapping of things e = {'x': 1, 'y': 2}

154 LEARN PYTHON THE HARD WAY

String Escape Sequences
For string escape sequences, use them in strings to make sure they do what you think they do.

Escape Description

\\ Backslash

\' Single-quote

\" Double-quote

\a Bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage

\t Tab

\v Vertical tab

Old-Style String Formats
It’s the same thing for string formats: use them in some strings to know what they do.

Escape Description Example

%d Decimal integers (not floating point) "%d" % 45 == '45'

%i Same as %d "%i" % 45 == '45'

%o Octal number "%o" % 1000 == '1750'

%u Unsigned decimal "%u" % -1000 == '-1000'

%x Hexadecimal lowercase "%x" % 1000 == '3e8'

%X Hexadecimal uppercase "%X" % 1000 == '3E8'

%e Exponential notation, lowercase ‘e’ "%e" % 1000 == '1.000000e+03'

%E Exponential notation, uppercase ‘E’ "%E" % 1000 == '1.000000E+03'

%f Floating point real number "%f" % 10.34 == '10.340000'

%F Same as %f "%F" % 10.34 == '10.340000'

%g Either%f or%e, whichever is shorter "%g" % 10.34 == '10.34'

%G Same as %g but uppercase "%G" % 10.34 == '10.34'

%c Character format "%c" % 34 == '"'

EXERCISE 37: SYMBOL REVIEW 155

Escape Description Example

%r Repr format (debugging format) "%r" % int == "<type 'int'>"

%s String format "%s there" % 'hi' == 'hi there'

%% A percent sign "%g%%" % 10.34 == '10.34%'

Older Python 2 code uses these formatting characters to do what f-strings do. Try them out as an alter-
native.

Operators
Some of these may be unfamiliar to you, but look them up anyway. Find out what they do, and if you still
can’t figure it out, save it for later.

Operator Description Example

+ Addition 2 + 4 == 6

— Subtraction 2 — 4 == —2

* Multiplication 2 * 4 == 8

** Power of 2 ** 4 == 16

/ Division 2 / 4 == 0.5

// Floor division 2 // 4 == 0

% String interpolate or modulus 2 % 4 == 2

< Less than 4 < 4 == False

> Greater than 4 > 4 == False

<= Less than equal 4 <= 4 == True

>= Greater than equal 4 >= 4 == True

== Equal 4 == 5 == False

!= Not equal 4 != 5 == True

() Parenthesis len('hi') == 2

[] List brackets [1,3,4]

{ } Dict curly braces {'x': 5, 'y': 10}

@ At (decorators) @classmethod

, Comma range(0, 10)

: Colon def X():

. Dot self.x = 10

= Assign equal x = 10

156 LEARN PYTHON THE HARD WAY

Operator Description Example

; semi-colon print("hi"); print("there")

+= Add and assign x = 1; x += 2

—= Subtract and assign x = 1; x —= 2

*= Multiply and assign x = 1; x *= 2

/= Divide and assign x = 1; x /= 2

//= Floor divide and assign x = 1; x //= 2

%= Modulus assign x = 1; x %= 2

**= Power assign x = 1; x **= 2

Spend about a week on this, but if you finish faster, that’s great. The point is to try to get coverage on
all these symbols and make sure they are locked in your head. What’s also important is to find out what
you do not know so you can fix it later.

Reading Code
Now find some Python code to read. You should be reading any Python code you can and trying to
steal ideas that you find. You actually should have enough knowledge to be able to read but maybe not
understand what the code does. What this lesson teaches is how to apply things you have learned to
understand other people’s code.

First, print out the code you want to understand. Yes, print it out, because your eyes and brain are more
used to reading paper than computer screens. Make sure you print a few pages at a time.

Second, go through your printout and take notes on the following:

1. Functions and what they do.

2. Where each variable is first given a value.

3. Any variables with the same names in different parts of the program. These may be trouble
later.

4. Any if-statements without else clauses. Are they right?

5. Any while-loops that might not end.

6. Any parts of code that you can’t understand for whatever reason.

Third, once you have all of this marked up, try to explain it to yourself by writing comments as you go.
Explain the functions, how they are used, what variables are involved and anything you can to figure this
code out.

Lastly, on all of the difficult parts, trace the values of each variable line by line, function by function. In
fact, do another printout, and write in the margin the value of each variable that you need to “trace.”

EXERCISE 37: SYMBOL REVIEW 157

Once you have a good idea of what the code does, go back to the computer and read it again to see if
you find new things. Keep finding more code and doing this until you do not need the printouts anymore.

Study Drills
1. Find out what a “flow chart” is and draw a few.

2. If you find errors in code you are reading, try to fix them, and send the author your changes.

3. Another technique for when you are not using paper is to put # comments with your notes in
the code. Sometimes, these could become the actual comments to help the next person.

Common Student Questions
How would I search for these things online? Simply put “python3” before anything you want to find.

For example, to find yield search for python3 yield.

This page intentionally left blank

MODULE 3

Applying What
You Know

160

EXERCISE 38

Beyond Jupyter for Windows

J upyter is a great environment for interactive analysis. You can load your data, mess with it, refine it,
generate graphs, add documentation, and even edit files. For most daily work an analyst does, that

might be enough, but Jupyter has a few limitations:

1. It’s difficult to share your analysis with other people in a way they can reuse. Sure, you can give
them a notebook to look at or publish online in various ways, but there’s no ability to import a
Jupyter notebook the way you can easily import a Python module.

2. Jupyter notebooks tend to promote “copy-pasta code,” which means you’ll more often copy-
paste the common code you need in every notebook or just keep a stock template notebook
around with your usual setup. That works for a while, but eventually it degrades, especially if
you find a bug and now have to go through every notebook fixing the bug in all your copy-paste
code. It’s far more efficient to take your common “boilerplate” code and place it in a module
you import. This also makes something you can share with other people who might need to
work with the same systems as you.

3. You can’t run automated tests on a Jupyter notebook. Automated tests are an amazing re-
source for ensuring your code keeps working as you make changes and for helping other
people who use your code confirm it’s working. The primary area you’ll find this useful is when
you do data munging. Data tends to be gross and change often, so tests confirm your code
keeps working when you have to update various data models.

4. Ninety-eight percent of other programmers do not use Jupyter. If you’re working on any analysis
that you plan on giving to a programmer, you’ll need to “formalize” it into a Python project they
can grab and use. If you can create a basic project, place in their favorite version control system,
and write some documentation, then they can usually improve it for you. If you just throw them a
Untitled.ipynb before going on vacation for a month, you will be hated with all the passion
of a thousand dying suns. Or just ignored. It depends on where you work.

5. Another benefit of turning your Untitled.ipynb into a formal Python project is perspective.
Many times something you thought was very good changes when you translate it to another
language, platform, or medium. You might think your analysis is amazing and then you convert
it to a Python module only to find that it’s total junk or could be far more efficient. This is similar
to how painters look at paintings upside down to find errors or musicians listen to their songs
in cars. A change of perspective will almost always show ways you can improve the work.

6. Themost important reason to learn how to code Pythonwithout Jupyter is independence. I don’t
indoctrinate people in my educational style because I feel it’s wrong to create students who
depend on specific products, companies, languages, or communities. I want you to be able to

EXERCISE 38: BEYOND JUPYTER FOR WINDOWS 161

migrate from one technology to another as the fashion of programming changes, because this
really is a fashion industry. One day, Python and Jupyter are the best things ever, and the next
day everyone is on some new hot technology an “influencer” raved about in a YouTube video.
If you want a long career in this industry, you do not want to be dependent on anything, and
the first step to this independence is learning how to use your computer like a programmer.

Does this mean you should not use Jupyter? No, Jupyter is awesome for doing your analysis and figuring
out what to write. I want you to be able to use both Jupyter and other systems depending on what you
need to do, and to accomplish this goal I will teach you the basics of the command line.

Why Learn PowerShell?
Did you know that Microsoft demoted the person who created PowerShell? From about 1990 to 2010
Microsoft was very against anything that didn’t have a GUI. They spent a lot of money shaming and fear
mongering anything that looked like text to control a computer in a weird attempt to get people to not use
Linux. So when PowerShell came out, the people running Microsoft took it as an attempt at sabotage
and demoted the poor fellow. This is one of the reasons so many people tend to avoid PowerShell even
if it might be the right tool for the job.

Graphical systems are great for graphical things, but they tend to fall over when you have to do anything
that requires a lot of repetition or pattern matching. Open an Explorer window now and try to list all of
the files that start with ex but end with a number and .py. Doing this with PowerShell is trivial:

1 ls ex*[0—9].py

That seems complicated, but at the end of this exercise you’ll understand it and be able to use PowerShell
to control your computer. Should you use only PowerShell? No, of course not. Use the best tool for the
job, and PowerShell is the best for many programming tasks.

What Is PowerShell?
Just in case you’re not familiar with PowerShell, it’s a mini programming language that allows you to
control your computer with commands. These commands have a common form of:

1 command -option1 -option2 arg1,arg2

Command is usually something you need the computer to do:

• ls list files

• cp copy files

• rm remove files

162 LEARN PYTHON THE HARD WAY

In PowerShell you also have verbose versions of many commands:

• ls is also Get-ChildItem

• cp is also Copy-Item

• rm is also Remove-Item

Each of these commands takes options that start with a - (dash) character. For example, ls has the
option -Recurse like this:

1 ls -Recurse
2 # or the verbose version
3 Get-ChildItem -Recurse

Finally, you can add arguments to a command, which is usually some resource to run the command
against:

1 ls -Recurse ~/Desktop

If this spews a bunch of text to the screen, you can hold ctrl and hit c to abort it. You might have to hit
it many times to make it abort. One caveat of PowerShell’s arguments is it expects multiple items to be
separated by a comma:

1 ls -Recurse ~/Desktop,"~/Photos/My Family Pics"

You’ll learn this command more in this exercise, but let’s break down this line so you understand it:

1. ls is the command we want. You can also use Get-Item

2. -Recurse means “recursively descend into all directories (folders).”

3. ~ (tilde) means “my home directory,” which is the top folder that holds your user’s files. Mine is
C:\Users\Zed

4. You’ll see me type / (slash) instead of \ (back-slash) because the / on my keyboard is easier
to reach, and I’m an old Unix hacker, so my hands refuse to type the \ character. Luckily,
PowerShell allows you to use either and will translate them, so use the one that’s easiest
to type.

5. Desktop is the first directory (folder) I want to list.

6. , (comma) separates the first directory to list from the second one.

7. "~/Photos/My Family Pics" is just like the first directory ~/Desktop, but I have to put
quotes around it because it has a space in the name My Family Pics. You have to do this
because PowerShell would think My, Family, and Pics are all arguments to ls

Finally, any time you want to know about a command—or to learn more about PowerShell–you can
consult the official Microsoft documentation at:
https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/00-introduction

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/00-introduction

EXERCISE 38: BEYOND JUPYTER FOR WINDOWS 163

Microsoft’s documentation is top notch, and you could probably spend a week reading this introduction
to learn nearly everything you need to learn about PowerShell. You can also get immediate help with the
help command:

1 help ls
2
3 # it's also called
4 Get-Help ls

Keep in mind that ls is a handy alias for Get-ChildItem, so the help command lists documentation
for Get-ChildItem.

PowerShell versus Cmder

In this lesson I’m going to cover the basic commands of PowerShell. Cmder is an improved “console em-
ulator” for PowerShell. I recommend you install the full download of Cmder and use PowerShell through
that rather than running the original PowerShell. Cmder comes with more developer-friendly settings and
lets you use tabs, which are important when doing development.

INFO As of 2022 there is a small bug in Cmder that will make it run cmd.exe instead of
PowerShell. Before you do anything, hit your Windows key, and type PowerShell. You’ll see
PowerShell show in a list of available commands, and you should click on it to run it.

WARNING! Do not, and I repeat NOT run the command named PowerShell ISE. This com-
mand is broken and will be missing all of your settings for some strange reason. Only run
the PowerShell command. After you run this command once, your Cmder will use it.

If you can’t run Cmder for some reason, then regular PowerShell still works for the entire course. Cmder
doesn’t actually replace PowerShell. All Cmder does is host PowerShell and display it for you in a nicer
package. Everything else should work just fine.

Starting Jupyter

Since you’re already using Jupyter, it helps to know how to start it while you’re in PowerShell. The easiest
way is with the jupyter-lab command:

1 jupyter-lab

https://cmder.net/

164 LEARN PYTHON THE HARD WAY

In Cmder I like to hit ctrl-t to create a new “tab” and then on the far right check the box for “To bottom”
so I can have the lab running on top and the code I’m typing on the bottom. You might just want a full
new tab, so don’t check that box.

You can run a specific notebook by adding it to the command:

1 jupyter-lab Untitled.ipynb

See the following instructions on using start to help you find your files with your mouse.

Getting Help

If you want to know the options to a command, you can easily search online for the documentation from
Microsoft, but if you want to read the local documentation, then run this command:

1 Get-Help -Name Command

Replace “Command” with the command you are interested in, and it will print out the documentation.
For example, if I want to get the help for the ls command, I do this:

1 Get-Help -Name ls

You don’t have to use CamelCase and can simply type get-help -name ls.

When you run this command, it will show you the documentation for Get-ChildItem. In PowerShell
the ls command is aliased to this core command, but otherwise the documentation should be correct.

Where Are You with start?

You’ve spent most of your time using the Explorer window to navigate your computer. If you don’t know
what “Explorer” is, it’s just the GUI window that opens when you click on a folder. In fact, you’ll usually call
something a “folder,” and in the Terminal you’ll call it a “directory” when they’re exactly the same thing.
I’ve spent most of my computer life using the some kind of Terminal and shell to navigate computers, so
I’m familiar with “seeing” the computer via the text outputs. You can use the command start to connect
your view of the computer through graphics to my view of the computer through text like this:

1 start .

The . means “this current directory (folder),” and start opens this current directory in Explorer. The
start command actually works like double-clicking on a file, so you can open any file with it to see it.
Let’s say you’re in a folder with a PDF you want to open:

1 start taxes.pdf

EXERCISE 38: BEYOND JUPYTER FOR WINDOWS 165

That’s just like double-clicking on taxes.pdf. You can also open any other directories:

1 start ~/Desktop/Games

That is just like double-clicking on the Games folder on your Desktop. I recommend you use start
very frequently while you’re learning PowerShell so you start to learn where you are using what you
already know about the computer. Soon you won’t need it unless you actually want to use your mouse
on something and need to open the folder.

Going from Graphics to PowerShell

The start command is very useful, but you’ll also need a way to go from a directory (folder) you have
open in Explorer to a command in PowerShell. You can take any file that is open in your Explorer and
drag it to your PowerShell window to “insert” that file’s path into your PowerShell command. Test this by
first opening your Desktop:

1 start ~/Desktop

Now start a new ls command, but do not hit ENTER:

1 ls # stop here

Pick a random file in your Desktop window, grab it with your mouse, and drag it into the PowerShell
window, and the full path should get inserted into your command. Here’s what happens if I drag my
Games folder to the window:

1 ls C:\Users\Zed\Desktop\Games

This is the other part of connecting your Explorer/Folder view of the computer to PowerShell’s text view
of the computer. This works on any file, so if you’re ever lost trying to find where a file is, do this:

1. Open the file in Explorer

2. Grab the file you can’t find with your mouse

3. Drag it to any PowerShell window

4. Now you have the full path to the file

Where Are You with pwd?

In Windows your home directory is located in C:\Users\username where username is whatever
you use to log in. Mine is named C:\Users\lcthw because I use the login “lcthw” on my Windows
computer.

166 LEARN PYTHON THE HARD WAY

When you start PowerShell, you start off in this directory. Try this command to see where that is:

1 pwd

This prints out your working directory (pwd means “print working directory”), which is where your Power
Shell is located on your disk drive. You should then look to the left and see that PowerShell is printing
out the same information for your command prompt. Here’s mine:

1 Path
2 ————
3 C:\Users\lcthw\Projects\lpythw

The difference is pwd prints out the entire path to your current location, so in my case this is C:\Users
Ç \lcthw\Projects\lpythw. On the prompt, though, it prints only the name of the current directory,
which is lpythw.

What’s in Here?

When you save a file you’re working on, it is written to the disk in your home directory. The problem
is it’s saved “somewhere” in your home directory and you have to go find it. To do that you need two
commands: one to list a directory and one to change to a directory (which you learn later).

Each directory has a listing of its contents, which you can see with the ls command:

1 ls
2 ls Desktop
3 ls ~

In the previous examples I first list the contents of the current directory. The “current directory” is also the
“working directory” from the pwd (“print working directory”) command. It’s simply wherever your Power-
Shell says you are in the prompt or when you run pwd. Next, I list the contents of the Desktop directory,
which should be files and “folders” sitting on your Desktop.

Finally, I use a special character ~ (tilde) to list the contents of my home directory. In PowerShell the ~
character is short for “my home directory.” Look at this example to see how that works:

1 C:\Users\lcthw
2 > pwd
3
4 Path
5 ————
6 /Users/lcthw
7
8
9 C:\Users\lcthw

10 > ls /Users/lctw

EXERCISE 38: BEYOND JUPYTER FOR WINDOWS 167

11 # ... lots of output
12
13 C:\Users\lcthw
14 > ls ~
15 # ... the same output

You can see here that the pwd command says I’m in /Users/zed on my Windows computer, and if I
use ls /Users/zed or ls ~, then I get the same output.

In PowerShell the # (octothorpe) character is used to make a comment or a block of text that PowerShell
ignores. You can write a comment there like I did here. In this case I’m cutting all of the output, but I’m
using a comment to tell you that it was a lot of output and then the same output. Because that line starts
with #, it will be ignored by PowerShell.

Files, Folders, Directories, and Paths

Before I cover how to move around your directories, I need to explain three interconnected concepts.
Files contain your data, and they will have names like mydiary.txt or ex1.py.

Those files are located inside directories, which you’ve seen such as /Users/zed. Directories can go
“deeper,” meaning I can put directories inside directories inside directories with files inside those. I could
have a directory called /Users/zed/Projects/lpythw, and if I put my ex1.py file in there, it would
live at /Users/zed/Projects/lpythw/ex1.py.

That last part is called the “path,” and you can think of it like a path through a maze that leads to a
special room. You can also combine the concept of ~ (tilde) to replace /Users/zed, and then the path
becomes ~/Projects/lpythw/ex1.py.

If you have directories, files, and paths when you use PowerShell, then how do they map to “folders”
when you’re looking through Explorer?

There is no difference between “folder” and “directory.” They are the same thing, so if you traverse a series
of mouse clicks in Explorer to access “folders,” then you can use that path of clicks to list the contents
of that as a “directory.” They are literally the same thing, and it’s important for you to get this idea.

One way to learn that they are connected is to use your Explorer to create folders, place small files in
them, and then use PowerShell to find these files and open them. Think of it like a treasure hunt in your
Terminal. Before you can do that, you’ll need the cd command for “changing directories.”

Moving Around

You know how to list a directory from where you are in PowerShell:

1 ls ~/Projects/lpythw/

168 LEARN PYTHON THE HARD WAY

You can also change to that directory with the cd command:

1 cd ~/Projects/lpythw/
2 pwd

This exact command won’t work for you since you never created the directory “Projects” and lpythw,
but take the time now to make those in your Finder window (Create Folder is what you want) and then
use cd like I demonstrate.

The idea with PowerShell and cd is you are moving around in the directories as if they’re small rooms
with connecting corridors. If you’ve ever played a video game, then you know what this is like. Your
cd Projects/lpythw command is like moving your character into the room named Projects and
then walking into the next room, lpythw.

Take the time right now to continue using ls, pwd, and cd to explore your computer. Make directories
(folders) in your Finder window and then attempt to access them from inside PowerShell until your brain
makes the connection. This might take a while since you’re trying to map the graphical interface you’ve
used for years to textual elements that are new.

Relative Paths

Imagine you did this:

1 cd ~/Projects/lpythw

Now you’re stuck in this lpythw directory, so how you “go back”? You need the relative path operator:

1 cd ..

The .. (dot dot) says “the directory above my current directory,” so in this case since Projects is
“above” lpythw, it makes .. mean Projects. These two commands are the same then:

1 cd ..
2 cd ~/Projects

If Projects contained two directories named lpythw and mycode, you could do this:

1 cd ~/Projects/lpythw
2 # oops I meant mycode
3 cd ../mycode

If you’re still thinking of cd like moving between rooms in a building, then .. is how you go back the way
you came.

EXERCISE 38: BEYOND JUPYTER FOR WINDOWS 169

Creating and Destroying

You don’t have to use any graphical interfaces to create directories. You can use commands, and for
decades this was how you interacted with files. The commands for manipulating directories and files are:

• mkdir—Creates a new directory

• rmdir—Removes a directory, but only if it’s empty

• rm—Removes (almost) anything

• new-item—Makes a new empty file or directory

I’m purposefully not fully explaining these commands because I want you to figure them out and learn
them on your own. Figuring out these commands helps you own your own education and makes it stick.
Use what you know so far to learn the commands, such as using get-help -name rm to read the
manual.

Flags and Arguments

Commands have a structure that goes something (but not exactly) like this:

1 command flags arguments

The command is the word you type, like ls, cd, or cp. The “flags” are things you write to configure how
the command should run, and they start with - in PowerShell.

INFO Commands like python come from Unix, so they will use options flags that start with
– as well. For example, python –help.

Then you have the “arguments,” which are space-delimited (or comma-delimited) pieces of information
you give to the command. With cp this is two arguments that give the source and destination of the files:

1 cp ex1.txt ex1.py

In this example the file ex1.txt is the first argument, and ex1.py is the second argument, so this
would copy the first argument to the second argument.

Copy and Move

You can also copy a file and move a file, or directory. Continue with your self-education and attempt to
learn about and use these new commands:

170 LEARN PYTHON THE HARD WAY

• cp—Copies files

• mv—Moves files

Remember that you can use get-help cp and get-help mv to study the commands. These com-
mands are also the first ones to take multiple arguments, which you just learned about.

Environment Variables

The commands so far are clearly configured using the — (dash) options, but many of them are also
configured using a slightly hidden thing called “environment variables,” or “env vars” for short. These are
settings that live in your shell and are not visible immediately but work to configure persistent options for
all commands. To see your environment, type this:

1 get-childitem env:

You can also specify a single variable to view:

1 $env:path

That should print your PATH variable, which specifies the directories that PowerShell will search for
programs you run, like python.exe.

Running Code

Finally! The entire point of this whole lesson! How do you run code? Imagine you have a Python file
named ex1.py and you want to run it to see its output (and see if it works):

1 python ex1.py

As you can see, python is the Python “runner,” and it simply loads the ex1.py file and runs it. Python
also takes many options, so try this:

1 python --help

The other command you’ll use often is the conda command, which installs Python libraries for your
project:

1 conda install pytest

If you create a directory named testproject, cd into it, and run this command, you’ll install the pytest
testing framework. We’ll use this command more later, but for now that’s mostly what you need to know.

http://docs.pytest.org
http://docs.pytest.org

EXERCISE 38: BEYOND JUPYTER FOR WINDOWS 171

Common Key Sequences

There are three key sequences you’ll need to know when you work with your software:

• ctrl-c—Aborts a program

• ctrl-z—Closes your input, usually exiting a program

• ctrl-d—In some Unix software ported to Windows, you have to use ctrl-d instead of ctrl-z

These aren’t totally reliable ways to abort a program, since it’s possible for programmers to catch them
and prevent you from exiting. They should work most of the time, though.

Useful Developer Commands

Curl is useful when you’re working on a website and you need to make sure you’re getting the real output.
You run it like this:

1 curl http://127.0.0.1:5000

We’ll get into what all of that means later, but just remember curl is your tool for looking at the full text
of a website.

Crash Landing
This is definitely not enough to be a master of the PowerShell, but it should be enough to understand
what I’m doing in the rest of the course and to have enough to follow along. I highly recommend you
constantly use start to figure out where you are and read the Microsoft Introductory Course to learn
more than this.

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/00-introduction
http://127.0.0.1:5000

172

EXERCISE 39

Beyond Jupyter for macOS/Linux

J upyter is a great environment for interactive analysis. You can load your data, mess with it, refine it,
generate graphs, add documentation, and even edit files. For most daily work an analyst does, that

might be enough, but Jupyter has a few limitations:

1. It’s difficult to share your analysis with other people in a way they can reuse. Sure, you can give
them a notebook to look at or publish online in various ways, but there’s no ability to import a
Jupyter notebook the way you can easily import a Python module.

2. Jupyter notebooks tend to promote “copy-pasta code,” which means you’ll more often copy-
paste the common code you need in every notebook or just keep a stock template notebook
around with your usual setup. That works for a while, but eventually it degrades, especially if
you find a bug and now have to go through every notebook fixing the bug in all your copy-paste
code. It’s far more efficient to take your common “boilerplate” code and place it in a module
you import. This also makes something you can share with other people who might need to
work with the same systems as you.

3. You can’t run automated tests on a Jupyter notebook. Automated tests are an amazing re-
source for ensuring your code keeps working as you make changes and for helping other
people who use your code confirm it’s working. The primary area you’ll find this useful is when
you do data munging. Data tends to be gross and change often, so tests confirm your code
keeps working when you have to update various data models.

4. Ninety-eight percent of other programmers do not use Jupyter. If you’re working on any analysis
that you plan on giving to a programmer, you’ll need to “formalize” it into a Python project they
can grab and use. If you can create a basic project, place in their favorite version control system,
and write some documentation, then they can usually improve it for you. If you just throw them a
Untitled.ipynb before going on vacation for a month, you will be hated with all the passion
of a thousand dying suns. Or just ignored. It depends on where you work.

5. Another benefit of turning your Untitled.ipynb into a formal Python project is perspective.
Many times something you thought was very good changes when you translate it to another
language, platform, or medium. You might think your analysis is amazing and then you convert
it to a Python module only to find that it’s total junk or could be far more efficient. This is similar
to how painters look at paintings upside down to find errors or musicians listen to their songs
in cars. A change of perspective will almost always show ways you can improve the work.

6. The most important reason to learn how to code Python without Jupyter is independence. I
don’t indoctrinate people in my educational style because I feel it’s wrong to create students
who depend on specific products, companies, languages, or communities. I want you to be able

EXERCISE 39: BEYOND JUPYTER FOR MACOS/LINUX 173

to migrate from one technology to another as the fashion of programming changes, because
this really is a fashion industry. One day, Python and Jupyter are the best things ever, and the
next day everyone is on some new hot technology an “influencer” raved about in a YouTube
video. If you want a long career in this industry, you do not want to be dependent on anything,
and the first step to this independence is learning how to use your computer like a programmer.

Does this mean you should not use Jupyter? No, Jupyter is awesome for doing your analysis and figuring
out what to write. I want you to be able to use both Jupyter and other systems depending on what you
need to do, and to accomplish this goal I will teach you the basics of the command line.

macOS Troubles

If you are using macOS, you may be forced to use a different shell called zsh. You should be able to use
all of these commands with zsh, but if you want to use Bash, then you can force macOS to use Bash.
Type this command in Terminal:

1 chsh -s /bin/bash

Then log out of your computer completely and log back in. If it worked, then you should be able to type:

1 echo $SHELL

That command should print out “/bin/bash” and you’re done.

Why Learn Bash or ZSH?
Graphical systems are great for graphical things, but they tend to fall over when you have to do anything
that requires a lot of repetition or pattern matching. Open an Finder window now and try to list all of the
files that start with ex but end with a number and .py. Doing this with Bash is trivial:

1 ls ex*[0-9].py

That seems complicated, but at the end of this exercise you’ll understand it and be able to use Bash to
control your computer. Should use only Bash? No, of course not. Use the best tool for the job, and Bash
is the best tool for many programming tasks.

What Is Bash?
Just in case you’re not familiar with Bash, it’s a mini programming language that allows you to control
your computer with commands. These commands have a common form of:

1 command -o1 --option-number2 arg1 arg2

174 LEARN PYTHON THE HARD WAY

The -o1 is a “short option,” which is usually a single character, but if those are hard to remember, most
commands have a --two-word version you can use instead. A command is usually something you
need the computer to do:

• ls – Lists files

• cp – Copies files

• rm – Removes files

Each of these commands takes options that start with a - (dash) character for single-letter options, and
-- for one- or two-word options. For example, ls has the option -R like this:

1 ls -R

Finally, you can add arguments to a command, which is usually some resource to run the command
against:

1 ls -R ~/Desktop

If this spews a bunch of text to the screen, you can hold ctrl and hit c to abort it. You might have to
hit it many times to make it abort. One caveat of Bash’s arguments is it expects multiple items to be
separated by a space, and you may have to put quotes around anything with a space in the name:

1 ls -R ~/Desktop "~/Photos/My Family Pics"

You’ll learn this command more in this exercise, but let’s break down this line so you understand it:

1. ls is the command we want.

2. -R means “recursively descend into all directories (folders).”

3. ~ (tilde) means “my home directory,” which is the top folder that holds your user’s files. Mine is
/Users/Zed

4. / separates directories (folders) in a path. A path is simply the chain of folders you click on to
go from your home to some deeper folder you want to access.

5. Desktop is the first directory (folder) I want to list.

6. (space) separates the first directory to list from the second one.

7. "~/Photos/My Family Pics" is just like the first directory ~/Desktop, but I have to put
quotes around it because it has a space in the name My Family Pics. You have to do this
because Bash would think My, Family, and Pics are all arguments to ls

Now we can get into the commands you’ll typically use the most. I think these commands make up 95%
of my daily usage.

EXERCISE 39: BEYOND JUPYTER FOR MACOS/LINUX 175

Starting Jupyter

Since you’re already using Jupyter, it helps to know how to start it while you’re in Bash. The easiest way
is with the jupyter-lab command:

1 jupyter-lab

You can run a specific notebook by adding it to the command:

1 jupyter-lab Untitled.ipynb

See the following instructions on using open to help you find your files with your mouse.

Getting Help

Usually you can get help for a command by adding either -h or --help to the command like this:

1 man -h

This tends to fail with some commands, so the other way to get help is to use the man command to print
out the “manual” for the command:

1 man ls

This will print out the entire documentation for the ls command. I usually try -h first, and if that doesn’t
work, then I use man.

Where Are You with open?

You’ve spent most of your time using the Finder window to navigate your computer. If you don’t know
what “Finder” is, it’s just the GUI window that opens when you click on a folder. In fact, you’ll usually call
something a “folder” and in the Terminal you’ll call it a “directory” when they’re exactly the same thing.
I’ve spent most of my computer life using some kind of Terminal and shell to navigate computers, so I’m
familiar with “seeing” the computer via the text outputs. You can use the command open to connect your
view of the computer through graphics to my view of the computer through text like this:

1 open .

176 LEARN PYTHON THE HARD WAY

The . means “this current directory (folder),” and open opens this current directory in Finder. The open
command actually works like double-clicking on a file, so you can open any file with it to see it. Let’s say
you’re in a folder with a PDF you want to open:

1 open taxes.pdf

That’s just like double-clicking on taxes.pdf. You can also open directories that aren’t just .:

1 open ~/Desktop/Games

That is just like double-clicking on the Games folder on your Desktop. I recommend you use open very
frequently while you’re learning Bash so you start to learn where you are using what you already know
about the computer. Soon you won’t need it unless you actually want to use your mouse on something
and need to open the folder.

Going from Graphics to Bash

The open command is very useful, but you’ll also need a way to go from a directory (folder) you have
open in Finder to a command in Bash. You can take any file that is open in your Finder and drag it to
your Bash window to “insert” that file’s path into your bash command. Test this by first opening your
Desktop:

1 open ~/Desktop

Now start a new ls command but do not hit ENTER:

1 ls # stop here

Pick a random file in your Desktop window, grab it with your mouse, and drag it into the Bash window,
and the full path should get inserted into your command. Here’s what happens if I drag my Games folder
to the window:

1 ls /Users/Zed/Desktop/Games

This is the other part of connecting your Finder/Folder view of the computer to Bash’s text view of the
computer. This works on any file, so if you’re ever lost trying to find where a file is, do this:

1. Open the file in Finder

2. Grab the file you can’t find with your mouse

3. Drag it to any Bash window

Now you have the full path to the file.

EXERCISE 39: BEYOND JUPYTER FOR MACOS/LINUX 177

Where Are You with pwd?

On macOS your real home directory is /Users/username where “username” is whatever you use to
log in. Mine is therefore named /Users/zed, but on Linux they use /home/username instead. On
Linux my home directory is /home/zed.

When you start a terminal, you start off in this home directory. Try this command to see where that is:

1 pwd

This prints out your working directory (pwd means “print working directory”) and says you are in the disk
drive. You should then look to the left and see that Bash is printing out the same information for your
command prompt. Here’s mine:

1 Zeds-iMac-Pro:lpythw zed$ pwd
2 /Users/zed/Projects/lpythw

The difference is pwd prints out the entire path to your current location, so in my case this is /Users/zed
Ç /Projects/lpythw. On the prompt, though, it prints only the name of the current directory, which is
lpythw. Bash also prints out other useful information such as my computer name (Zeds-iMac-Pro)
and my current username (zed).

What’s in Here?

When you save a file you’re working on, it is written to the disk in your home directory. The problem
is it’s saved “somewhere” in your home directory and you have to go find it. To do that, you need two
commands: one to list a directory and one to change to a directory (which you learn later).

Each directory has a listing of its contents, which you can see with the ls command:

1 ls
2 ls Desktop
3 ls ~

In the previous examples I first list the contents of the current directory. The “current directory” is also
the “working directory” from the pwd (“print working directory”) command. It’s simply wherever your Bash
shell says you are in the prompt or when you run pwd. Next, I list the contents of the Desktop directory,
which should be files and “folders” sitting on your Desktop.

Finally, I use a special character ~ (tilde) to list the contents of my home directory. On Unix systems
(Linux and macOS) the ~ character is short for “my home directory.” Look at this example to see how
that works:

1 Zeds-iMac-Pro:~ zed$ pwd
2 /Users/zed

178 LEARN PYTHON THE HARD WAY

3 Zeds-iMac-Pro:~ zed$ ls /Users/zed
4 # ... lots of output
5 Zeds-iMac-Pro:~ zed$ ls ~
6 # ... the same output

You can see here that the pwd command says I’m in /Users/zed on my macOS computer, and if I use
ls /Users/zed or ls ~, then I get the same output.

In Bash the # (octothorpe) character is used to make a comment or a block of text that Bash ignores.
You can write a comment there like I did here. In this case I’m cutting all of the output, but I’m using a
comment to tell you that it was a lot of output and then the same output. Because that line starts with #,
it will be ignored by Bash.

Files, Folders, Directories, and Paths

Before I cover how to move around your directories, I need to explain three interconnected concepts.
Files are what holds your data, and they will have names like mydiary.txt or ex1.py.

Those files are located inside directories that you’ve seen such as /Users/zed. Directories can go
“deeper,” meaning I can put directories inside directories inside directories with files inside those. I could
have a directory called /Users/zed/Projects/lpythw, and if I put my ex1.py file in there, it would
live at /Users/zed/Projects/lpythw/ex1.py.

That last part is called the “path,” and you can think of it like a path through a maze that leads to a
special room. You can also combine the concept of ~ (tilde) to replace /Users/zed, and then the path
becomes ~/Projects/lpythw/ex1.py.

If you have directories, files, and paths when you use Bash, then how does that map to “folders” when
you’re looking through a graphical file browser? I say “graphical file browser” because Bash works on
macOS and Linux, and how you view files graphically is different on both of them. On macOS this is the
“Finder window” you get when you click on a folder on your computer.

There is no difference between “folder” and “directory.” They are the same thing, so if you traverse a
series of mouse clicks in Finder to access “folders,” then you can use that path of clicks to list the
contents of that as a “directory.” They are literally the same thing, and it’s important for you to get this
idea.

One way to learn that they are connected is to use your Finder to create folders, place small files in them,
and then use Bash to find these files and open them. Think of it like a treasure hunt in your Terminal.
Before you can do that, you’ll need the cd command for “changing directories.”

EXERCISE 39: BEYOND JUPYTER FOR MACOS/LINUX 179

Moving Around

You know how to list a directory from where you are in Bash:

1 ls ~/Projects/lpythw/

You can also change to that directory with the cd command:

1 cd ~/Projects/lpythw/
2 pwd

This won’t magically work for you since you never created the directory “Projects” and “lpythw”, but take
the time now to make those in your Finder window (Create Folder is what you want) and then use cd
like I demonstrate.

The idea with Bash and cd is you are moving around in the directories as if they’re small rooms with
connecting corridors. If you’ve ever played a video game, then you know what this is like. Your cd
Projects/lpythw command is like moving your character into the room named Projects and then
walking into the next room, lpythw.

Take the time right now to continue using ls, pwd, and cd to explore your computer. Make directories
(folders) in your Finder window and then attempt to access them from inside Bash until your brain makes
the connection. This might take a while since you’re trying to map the graphical interface you’ve used
for years to textual elements that are new.

Relative Paths

Imagine you did this:

1 cd ~/Projects/lpythw

Now you’re stuck in this lpythw directory, so how you “go back”? You need the relative path operator:

1 cd ..

The .. (dot dot) says “the directory above my current directory,” so in this case since Projects is
“above” lpythw, it makes .. mean Projects. These two commands are the same then:

1 cd ..
2 cd ~/Projects

If Projects contained two directories named lpythw and mycode, you could do this:

1 cd ~/Projects/lpythw
2 # oops I meant mycode
3 cd ../mycode

180 LEARN PYTHON THE HARD WAY

If you’re still thinking of cd like moving between rooms in a building, then .. is how you go back the way
you came.

Creating and Destroying

You don’t have to use any graphical interfaces to create directories. You can use commands, and for
decades this was how you interacted with files. The commands for manipulating directories and files are:

• mkdir—Creates a new directory

• rmdir—Removes a directory, but only if it’s empty

• rm—Removes anything. Use rm -rf to remove a directory no matter what

• touch—Makes a new empty file

I’m purposefully not fully explaining these commands because I want you to figure them out and learn
them on your own. Figuring out these commands helps you own your own education and makes it stick.
Use what you know so far to learn the commands, such as using man rm to read the manual.

Hidden Files

On Unix systems like macOS and Linux there’s a slight “gotcha” when it comes to files. Imagine you
attempt to delete a diretory:

1 Zeds-iMac-Pro:~ zed$ rmdir Projects
2 rmdir: Projects: Directory not empty

You get this error that Projects is not empty, and that’s because the lpythw directory is in there, so
you try this:

1 Zeds-iMac-Pro:~ zed$ rmdir Projects/lpythw
2 rmdir: Projects/lpythw: Directory not empty

What? You totally emptied that directory out, so how is “not empty”? Try this:

1 cd Projects/lpythw
2 ls -la

Now you see this weird new file, the dreaded .DS_Store. This would be only on the macOS system,
because any Unix system considers a file starting with . (dot) to be a special file it won’t show you
normally. To see it, you have to use the ls -la command to list all of the files, even hidden ones.

EXERCISE 39: BEYOND JUPYTER FOR MACOS/LINUX 181

Flags and Arguments

Commands have a structure that goes something (but not exactly) like this:

1 command flags arguments

The command is the word you type, like ls, cd, or cp. The “flags” are things you write to configure how
the command should run, and they start with - or --. This is what you did with ls -la. You added
the flags -l and -a to the ls command to tell it to “list all” files. You don’t have to give each flag as an
individual - when they are single letters. You can combine them as I did with -la.

The other kind of flag is the --blah style and is usually used only as an alternative that’s more readable
compared to the single-letter versions. Sometimes these flags are also written as --var=value style.

Then you have the “arguments,” which are space-delimited pieces of information you give to the com-
mand. With cp this is two arguments that give the source and destination of the files:

1 cp ex1.txt ex1.py

In this example the file ex1.txt is the first argument, and ex1.py is the second argument, so this
would copy the first argument to the second argument.

Finally, you can combine these, so if I want to copy an entire directory and its contents, I do:

1 cp -r lpythw backup

The -r option means “recursive,” which is a fancy computer science way of saying “go down into the
directory.” Doing this will make a whole copy of lpythw to backup.

Copy and Move

You can also copy a file and move a file, or directory. Continue with your self-education and attempt to
learn about and use these new commands:

• cp—Copies files

• mv—Moves files

Remember that you can use man cp and man mv to study the commands. These commands are also
the first ones to take multiple arguments, which you just learned about.

182 LEARN PYTHON THE HARD WAY

Environment Variables

The commands so far are clearly configured using the - (dash) and -- (dash dash) style options, but
many of them are also configured using a slightly hidden thing called “environment variables,” or “env
vars” for short. These are settings that live in your Shell and are not visible immediately but work to
configure persistent options for all commands. To see your environment, type this:

1 env

There’s also a handy command called grep, which takes the output of one command and filters it to
show only what you want, so try this:

1 env | grep PATH

Now you should see only the PATH variable’s settings. What’s that | (pipe) character doing? It’s called
a “pipe,” and you can think of it like a…pipe. Seriously, it’s a pipe taking the output of one command and
sending it to the input of another. They’re very handy, and you’ll see me use them a lot in the course, but
they’re also very simple. Output goes to input. That’s it. Like a pipe.

Running Code

Finally! The entire point of this whole lesson! How do you run code? Imagine you have a Python file
named ex1.py and you want to run it to see its output (and see if it works):

1 python ex1.py

As you can see, python is the Python “runner,” and it simply loads the ex1.py file and runs it. Python
also takes many options, so try this:

1 python --help

The other command you’ll use often is the conda command, which installs Python libraries for your
project:

1 conda install pytest

If you create a directory named testproject, cd into it, and run this command, you’ll install the pytest
web framework. We’ll use this command more later, but for now that’s mostly what you need to know.

http://docs.pytest.org
http://docs.pytest.org

EXERCISE 39: BEYOND JUPYTER FOR MACOS/LINUX 183

Common Key Sequences

There’s two key sequences you’ll need to know when you work with your software:

• ctrl-c—Aborts a program

• ctrl-d—Closes your input, usually exiting a program

These aren’t totally reliable ways to abort a program, since it’s possible for programmers to catch them
and prevent you from exiting. For example, here’s the GNU bc command being very helpful (not):

1 Zeds-iMac-Pro:~ zed$ bc
2 bc 1.06
3 Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
4 This is free software with ABSOLUTELY NO WARRANTY.
5 For details type `warranty'.
6 2 + 5
7 7
8
9 (interrupt) use quit to exit.
10 quit

So helpful. Thank you for telling me that I can’t use ctrl-c but have to use “quit” to quit. I’m sure someone
spent many hours doing the work to catch the ctrl-c key sequence just to tell me to then type quit instead
of just…quitting for me.

Despite this, usually these two key sequences will get you out of a program or print a message telling
you how to do that.

Useful Developer Commands

There are three commands that come up as useful developer commands:

• curl—If you give this a URL from a browser, it will usually display the raw text. You might want
to do curl -L URL to tell curl to follow redirects.

• ps—Lists all of the running processes on your computer.

• kill—Lets you kill a process. Use this if it’s running and you can stop it: kill -KILL PID

Curl is useful when you’re working on a website and you need to make sure you’re getting the real output.
You run it like this:

1 curl http://127.0.0.1:5000

We’ll get into what all of that means later, but just remember Curl is your tool for looking at the full text
of a website.

http://127.0.0.1:5000

184 LEARN PYTHON THE HARD WAY

The ps command lists the processes that are currently running. A process is simply one of the programs
you’ve ran, and this situation comes up usually when you have multiple Terminal windows or multiple
tabs open. You might have a command that you can kill with ctrl-c so you can use ps to find it, and
kill to kill it. First do this:

1 Zeds-iMac-Pro:~ zedshaw$ ps
2 PID TTY TIME CMD
3 677 ttys000 0:00.03 /Applications/iTerm.app/Contents/MacOS/iTerm2
4 679 ttys000 0:00.05 -bash
5 1684 ttys001 0:00.03 /Applications/iTerm.app/Contents/MacOS/iTerm2
6 1686 ttys001 0:00.01 -bash

That will list all of the processes running at the moment, and you can see my output shows a couple
of Terminals open. The PID is the “process ID,” and that number lets you kill the process from another
window. Just grab the PID, go to a new window, and type:

1 kill -KILL 679

You can also use kill -TERM PID to be a little nicer about it. Usually I try TERM, and if that doesn’t
work, I do KILL.

Crash Landing
This is definitely not enough to be a master of the bash, but it should be enough to understand what I’m
doing in the rest of the course and to have enough to follow along.

This page intentionally left blank

186

EXERCISE 40

Advanced Developer Tools

T his exercise is all about avoiding “footguns.” A “footgun” is a gun specifically designed to shoot
yourself right in the foot. It points straight down all the time and has no safety latch, so every time

you try to aim a footgun, you just blast your toe off. Software is full of these footguns because of limitations
in the software, bad configuration designs, or other oversights of usability.

INFO If you have problems with these instructions and you’re reading them in a printed
version of the course, then please visit https://learncodethehardway.com/setup/python/ for
the latest fixes and install instructions.

Managing conda Environments
Python has a useful feature called “environments,” where you can install software specific to a project in a
safe place. You “activate” your environment for a project, do your work, and deactivate when you’re done.
This feature is necessary because you can have conflicting requirements between different projects
making it difficult to work on different projects on the same machine.

You create and activate a new environment named “lpythw” with conda:

1 conda create --name lpythw
2 conda activate lpythw

Once you do this, you should see your Shell prompt change to mention lpythw, so you know you’re
in that environment. After this you can install all the software you need, and when you’re done, you
deactivate it:

1 conda deactivate

You should use a new environment for all of your projects and don’t install software in the base environ-
ment. This makes it easier to recover from bad installs.

Finally, you can list environments with conda info --envs:

1 $ conda info --envs
2 # conda environments:
3 #
4 base /Users/Zed/anaconda3
5 lpythw * /Users/Zed/anaconda3/envs/lpythw

You can list the packages in an environment with conda list.

https://learncodethehardway.com/setup/python/

EXERCISE 40: ADVANCED DEVELOPER TOOLS 187

Adding conda-forge
The official Anaconda repository has a lot of software, but sometimes you need more. To get more
software use the very nice conda-forge project. This is a community-led stream of additional packages
to augment the base conda packages. To set up conda-forge do this:

1 # confirm version >= 4.9
2 conda --version
3
4 # get to base env
5 conda deactivate

This sets up your environment to be the latest and work reliably. Next, you’ll want to install a faster
“solver,” which is the part of conda that determines what to install:

1 # speed up anaconda significantly
2 conda install -n base conda-libmamba-solver
3 conda config --set solver libmamba

The libmamba solver should install, but if you get errors with libarchive.19, then you can’t use
mamba without deleting your Anaconda install and starting over fresh. Either way, you can now do your
update:

1 # this can take a while
2 conda update -n base conda

You can then add the conda-forge channel to gain access to extra software; however, I’ll have you
install it using the “safe” way, which gives it less priority than the official software from Anaconda:

1 # add the conda-forge channel
2 conda config --append channels conda-forge
3 # make conda-forge versions priority
4 conda config --set channel_priority strict

I’ve tried to use it a different way, and placing conda-forge ahead of the default channel causes
significant install problems with version numbers.

Finally, let’s make an environment you can use from now on to do your work:

1 # create your environment
2 conda create -n lpythw
3 conda activate lpythw

Once you do this, you’ll have access to almost everything you need, but you might need to use another
command called pip. I recommend reading the Tips and Tricks for additional information, especially if
you use an Apple CPU Mac and need to install software.

https://conda-forge.org
https://conda-forge.org/docs/user/tipsandtricks.html#tips-tricks

188 LEARN PYTHON THE HARD WAY

Using pip
The pip command is the most common method for installing software in a generic Python project.
The pip command installs software from a different source than the conda command, so if you run
pip inside an Anaconda environment, you can get version conflicts. If conda has software that needs a
project version 1.2 but pip installs version 2.6, then you’ll have weird software bugs and crashes. This is
especially true if the module you install uses a compiled binary component.

With conda-forge enabled you will most likely have everything you’d need from pip, but if there is a
module you need that is not available in conda-forge, then there are two ways you can use pip if you’re
desperate. First, you can make a new environment that has only pip installs:

1 conda create --name newenv-pip
2 conda activate newenv-pip
3 pip install package
4 # use only pip after this

I tag these environments with -pip at the end of their names so I know they use only pip. If you
absolutely have to use a mix of conda and pip projects, then you’ll need to create a new environment,
but use conda before you use pip:

1 conda create --name new-condapip
2 conda activate new-condapip
3 conda install x-package
4 conda install y-package
5 pip install z-package

This works because conda knows about pip, so you can do first installs using conda, and then pip
will work. If you do it the other way, pip doesn’t know about conda, so it’ll mess up the conda installs.
You should also notice I tack on -condapip so I know what kind of environment this is.

Using a .condarc
There should be a file named .condarc in your home directory that currently has these contents:

1 channels:
2 - conda-forge
3 - defaults
4 channel_priority: strict

This file holds configuration values for conda, which you probably don’t need to change, but if you ever
do, you can find the documentation for it at the official documentation.

https://conda.io/docs/config.html

EXERCISE 40: ADVANCED DEVELOPER TOOLS 189

General Editing Tips
This advice applies to most editors, not just Geany:

1. Don’t use tab characters unless the actual language demands it. Some programmers think
that tabs aremore usable, but they easily get mangled by various editors because of differences
in configurations. Emacs is notorious for “compressing” tab characters to be three or five
spaces and then having to add extra spaces when it saves a file. This changes the indentation
in bad ways and gets sent to other programmers who have different configurations causing all
hell to break loose, especially in Python. Other editors do this, and since nobody can absolutely
guarantee that a tab will always be an even number of spaces and never “compressed,” it’s
best to avoid them.

2. You might want to turn on “visible spaces” in your editor when working with Python. In Geany
this is set with View->Show White Space and will show each tab and space character with
small gray symbols. Most editors have a similar setting, so research it. In other languages this
isn’t as useful but doesn’t hurt.

3. Save constantly in most editors. You can usually hit ctrl-s repeatedly while you work to make
sure it’s saved. I use an editor named Vim, which mostly does this for me, but I do save quite
often still.

4. Geany is pretty great, but you should try as many editors as you can. You never know when
you’ll stumble on an editor that just sings to you in your dreams. Eventually you’ll land on one
that works for you, and you can fine-tune it to your exact work style.

5. Start changing your configuration in the editor you use to solve problems you might have. Every
editor lets you change fonts, colors, background, and orientation of windows, and many have
plugins. Geany has a nice list of plugins for many things you may want, so try them. You can
even write plugins in Python using Geanypy, so if there’s something very specific, this might be
a fun project for you. Visual Studio Code also has a massive number of plugins that are easy
to install.

6. If you’re working on a platform that has a specific IDE, then don’t fight it, and just use that
company’s IDE. If I’m writing software for an Android phone, then I’m using Android Studio. If
I’m writing software for an iPhone, then–you guessed it–I’m using Xcode. I do prefer the power
and freedom of using Vim, but fanaticism just gets in the way of reaching my goals.

Going Further
The overall advice I can give you about working as a programmer is to assume you own your experience
with your computer. If you’re using an editor and hate the font, change it. Need “dark mode” but it’s not
supported? Find a way to change it or use a different editor. Don’t just accept things the way they are, and
learn to change your computer to help you be more productive, comfortable, or happy while you work.

https://plugins.geany.org/
https://plugins.geany.org/geanypy.html

190

EXERCISE 41

A Project Skeleton

T his exercise is completely optional but useful if you want to create your own package to use in
other projects. I will show you how to create a project for your code, install it locally in your conda

environment, and use it. I won’t cover how to publish it to PyPI or Anaconda’s channels, but there’s
plenty of documentation online if you get to that point.

As you go through this documentation, you’ll run into dead ends where the install doesn’t work. Any time
you run into errors, I recommend you delete your test_project and try it again. Usually it’s because
you missed a step, and attempting the install again will probably get it right. This works for almost any
software you need to install.

Activate an Environment
Whatever you do, do not test this while in the base environment. Switch to the lpythw environment or
any one that you have already:

1 conda activate lpythw

This will ensure that if you break the environment with your install, you can remove it and recover.

Just Use cookiecutter
Audrey and Danny Roy Greenfeld are two friends of mine who created the cookiecutter project.
This project generates other files and projects in consistent ways so you don’t have to remember every
little thing about specific file formats or directory structures. We’ll use it here to create a basic conda
project using the cookiecutter-conda-python module:

1 conda install cookiecutter

Once cookiecutter is installed, you can create a quick test_project to play with:

1 cookiecutter https://github.com/conda/cookiecutter-conda-python.git
2 full_name [Full Name]: Zed Shaw
3 email [Email Address]: help@learncodethehardway.com
4 github_username [Destination github org or username]: lcthw
5 repo_name [repository-name]: test_project
6 package_name [test_project]: test_project
7 project_short_description [Short description]: A test project.
8 noarch_python [y]: y
9 include_cli [y]: y

https://github.com/cookiecutter/cookiecutter
https://github.com/conda/cookiecutter-conda-python.git
https://github.com/conda/cookiecutter-conda-python.git
mailto:help@learncodethehardway.com

EXERCISE 41: A PROJECT SKELETON 191

10 Select open_source_license:
11 1 - MIT
12 2 - BSD
13 3 - ISC
14 4 - Apache
15 5 - GNUv3
16 6 - Proprietary
17 Choose from 1, 2, 3, 4, 5, 6 [1]: 1

I chose theMIT license just for a test, but if you chose 6 - Proprietary, then it doesn’t make a LICENSE
file for you, and that causes later steps to fail. If you did this, then just make an empty LICENSE file in
the test_project directory.

Now that you’ve created the directory, you can start to work on it:

1 cd test_project
2 # make the LICENSE if you picked 6 above
3 ls

You should spend some time now to explore the contents of this directory and then create a file to play
with later in test_project/testing.py:

1 def hello():
2 print("Hello!")

Building Your Project
You now need to tell conda to build the project with conda build conda.recipe. The conda.recipe
directory contains all the build information, mostly in the conda.recipe/meta.yaml file. If you run into
problems, check in that file, especially if you didn’t make a LICENSE file.

1 conda build conda.recipe
2 # tons of output
3 # look for this line
4 TEST END: /Users/USER/anaconda3/conda-bld/noarch/test-project-0+unknown-py_0

Ç .tar.bz2

If you have errors, see the Common Errors section to see if it’s a common error.

Installing Your Project
When you run the build, it puts the resulting test-project-0+unknown-py_0.tar.bz2 in an …
interesting location on your computer. In the install instructions I had you look for the TEST END line:

1 TEST END: /Users/USER/anaconda3/conda-bld/noarch/test-project-0+unknown-py_0
Ç .tar.bz2

2

192 LEARN PYTHON THE HARD WAY

3 # on windows it's
4 TEST END: C:\Users\lcthw\anaconda3\conda-bld\noarch\test-project-0+unknown-

Ç py_0.tar.bz2

That’s where your package is, so now you can install it with conda install:

1 conda install /Users/USER/anaconda3/conda-bld/noarch/test-project-0+unknown-
Ç py_0.tar.bz2

2 Downloading and Extracting Packages
3 Downloading and Extracting Packages
4 Preparing transaction: done
5 Verifying transaction: done
6 Executing transaction: done

Once it’s installed, you should see it in the list of packages:

1 $ conda list test-project
2 # packages in environment at /Users/USER/anaconda3/envs/lpythw:
3 #
4 # Name Version Build Channel
5 test-project 0+unknown py_0 local

Notice that it renamed the project test-project, but if you name your project with a - like this, it will
have an error. See the Common Errors section for more information on that.

Testing the Install
The final step in learning how to install this is to test that it’s actually installed by importing it in an
ex41.py file. Be sure to make this file in a directory outside of the test_project directory.

Listing 41.1: ex41.py

1 from test_project import testing
2
3 testing.hello()

If your install works, then this code should run successfully. If not, then time to debug why the hello()
function is missing.

Remove test-project
If you’re done testing the installation, then you should remove test-project just in case:

1 conda remove test-project

With that you’re ready to make your own projects to install or share.

EXERCISE 41: A PROJECT SKELETON 193

Common Errors
The errors that conda build produces are horrendous. I suggest if you get errors, just delete the
project and try again. To find these errors, you have to scroll back very far and look for the red error
text. It’s tough, but here are my best clues:

• error: metadata-generation-failed—If you see the error error in test-project setup
Ç command: Problems to parse EntryPoint(name='test-project', value='test
Ç -project.cli:cli', group='console_scripts'), then it’s because you named
your project with a - as in test-project instead of test_project

• ValueError: License file given in about/license_file—Once again, scroll up
and you’ll see this line mentioning the about/license_file, and it means you’re missing
the LICENSE file

Study Drills
1. Repeat this process, but use some Python code you’ve been working on lately. You should

package it, install it, and use it in another project where you need it.

2. Try using your project in jupyter-lab to see if it works. You might have to activate your
lpythw environment to make this work.

3. Read the documentation for conda build and the similar documentation for packaging projects
for PyPI.

4. Research what it takes to publish your projects to Anaconda and PyPI. I think #3 and #4 can
be tackled later when you actually want to do this.

5. Read more about the cookiecutter project and what you can do with it. It will be useful to
you later.

194

EXERCISE 42

Doing Things to Lists

Y ou have learned about lists. When you learned about while-loops, you “appended” numbers to
the end of a list and printed them out. There were also Study Drills where you were supposed to

find all the other things you can do to lists in the Python documentation. That was a while back, so review
those topics if you do not know what I’m talking about.

Found it? Remember it? Good. When you did this, you had a list, and you “called” the function append()
on it. However, you may not really understand what’s going on, so let’s see what we can do to lists.

When you write mystuff.append('hello'), you are actually setting off a chain of events inside
Python to cause something to happen to the mystuff list. Here’s how it works:

1. Python sees youmentioned mystuff and looks up that variable. It might have to look backward
to see if you created it with =, if it is a function argument, or if it’s a global variable. Either way
it has to find mystuff first.

2. Once it finds mystuff, it reads the . (period) operator and starts to look at variables that are
part of mystuff. Since mystuff is a list, it knows that mystuff has a bunch of functions
associated that apply to lists.

3. It then hits append and compares the name to all the names that mystuff says it owns. If
append is in there (it is), then Python grabs that to use.

4. Next, Python sees the ((parenthesis) and realizes, “Oh hey, this should be a function.” At this
point it calls (runs, executes) the function just like normally, but instead it calls the function with
an extra argument.

5. That extra argument is … mystuff! I know, weird, right? But that’s how Python works, so it’s
best to just remember it and assume that’s the result. What happens, at the end of all this, is
a function call that looks like append(mystuff, 'hello') instead of what you read, which
is mystuff.append('hello')

For the most part you do not have to know that this is going on, but it helps when you get error messages
from Python like this:

1 $ python3
2 >>> class Thing(object):
3 ... def test(message):
4 ... print(message)
5 ...
6 >>> a = Thing()
7 >>> a.test("hello")
8 Traceback (most recent call last):

EXERCISE 42: DOING THINGS TO LISTS 195

9 File "<stdin>", line 1, in <module>
10 TypeError: test() takes exactly 1 argument (2 given)
11 >>>

What was all that? Well, this is me typing into the Python shell and showing you some magic. You haven’t
seen class yet, but we’ll get into that later. For now, you see how Python said test() takes exactly
1 argument (2 given). If you see this, it means that Python changed a.test("hello") to test
(a, "hello") and that somewhere someone messed up and didn’t add the argument for a.

This might be a lot to take in, but we’re going to spend a few exercises getting this concept firm in your
brain. To kick things off, here’s an exercise that mixes strings and lists for all kinds of fun:

Listing 42.1: ex42.py

1 ten_things = "Apples Oranges Crows Telephone Light Sugar"
2
3 print("Wait there are not 10 things in that list. Let's fix that.")
4
5 stuff = ten_things.split(' ')
6 more_stuff = ["Day", "Night", "Song", "Frisbee",
7 "Corn", "Banana", "Girl", "Boy"]
8
9 while len(stuff) != 10:

10 next_one = more_stuff.pop()
11 print("Adding: ", next_one)
12 stuff.append(next_one)
13 print(f"There are {len(stuff)} items now.")
14
15 print("There we go: ", stuff)
16
17 print("Let's do some things with stuff.")
18
19 print(stuff[1])
20 print(stuff[-1]) # whoa! fancy
21 print(stuff.pop())
22 print(' '.join(stuff)) # what? cool!
23 print('#'.join(stuff[3:5])) # super stellar!

What You Should See
1 Wait there are not 10 things in that list. Let's fix that.
2 Adding: Boy
3 There are 7 items now.
4 Adding: Girl
5 There are 8 items now.
6 Adding: Banana
7 There are 9 items now.
8 Adding: Corn

196 LEARN PYTHON THE HARD WAY

9 There are 10 items now.
10 There we go: ['Apples', 'Oranges', 'Crows', 'Telephone', 'Light', 'Sugar',

Ç 'Boy', 'Girl', 'Banana', 'Corn']
11 Let's do some things with stuff.
12 Oranges
13 Corn
14 Corn
15 Apples Oranges Crows Telephone Light Sugar Boy Girl Banana
16 Telephone#Light

What Lists Can Do
Let’s say you want to create a computer game based on Go Fish. If you don’t know what Go Fish is,
take the time now to go read up on it on the internet. To do this you would need to have some way of
taking the concept of a “deck of cards” and put it into your Python program. You then have to write Python
code that knows how to work this imaginary version of a deck of cards so that a person playing your
game thinks that it’s real, even if it isn’t. What you need is a “deck of cards” structure, and programmers
call this kind of thing a “data structure.”

What’s a data structure? If you think about it, a “data structure” is just a formal way to structure (organize)
some data (facts). It really is that simple. Even though some data structures can get insanely complex,
all they are is just a way to store facts inside a program so you can access them in different ways. They
structure data.

I’ll be getting into this more in the next exercise, but lists are one of the most common data structures
programmers use. They are simply ordered lists of facts you want to store and access randomly or
linearly by an index. What?! Remember what I said, though: just because a programmer said “a list is
a list” doesn’t mean that it’s any more complex than what a list already is in the real world. Let’s look at
the deck of cards as an example of a list:

1. You have a bunch of cards with values

2. Those cards are in a stack, list, or list from the top card to the bottom card

3. You can take cards off the top, the bottom, and the middle at random

4. If you want to find a specific card, you have to grab the deck and go through it one at a time

Let’s look at what I said:

• “An ordered list”—Yes, a deck of cards is in order with a first and a last

• “of things you want to store”—Yes, cards are things I want to store

• “and access randomly”—Yes, I can grab a card from anywhere in the deck

• “or linearly”—Yes, if I want to find a specific card, I can start at the beginning and go in order

• “by an index”—Almost, since with a deck of cards if I told you to get the card at index 19, you’d

EXERCISE 42: DOING THINGS TO LISTS 197

have to count until you found that one. In our Python lists, the computer can just jump right to
any index you give it

That is all a list does, and this should give you away to figure out concepts in programming. Every concept
in programming usually has some relationship to the real world. At least the useful ones do. If you can
figure out what the analog in the real world is, then you can use that to figure out what the data structure
should be able to do.

When to Use Lists
You use a list whenever you have something that matches the list data structure’s useful features:

1. If you need to maintain order. Remember, this is listed order, not sorted order. Lists do not sort
for you.

2. If you need to access the contents randomly by a number. Remember, this is using cardinal
numbers starting at 0.

3. If you need to go through the contents linearly (first to last). Remember, that’s what for-loops
are for.

Then that’s when you use a list.

Study Drills
1. Take each function that is called, and go through the steps for function calls to translate them

to what Python does. For example, more_stuff.pop() is pop(more_stuff).

2. Translate these two ways to view the function calls in English. For example, more_stuff.
Ç pop() reads as “Call pop on more_stuff.” Meanwhile, pop(more_stuff) means “Call
pop with argument more_stuff.” Understand how they are really the same thing.

3. Go read about “object-oriented programming” online. Confused? I was too. Do not worry.
You will learn enough to be dangerous, and you can slowly learn more later.

4. Read up on what a “class” is in Python. Do not read about how other languages use the word
“class.” That will only mess you up.

5. Do not worry if you do not have any idea what I’m talking about. Programmers like to feel smart,
so they invented object-oriented programming, named it OOP, and then used it way too much.
If you think that’s hard, you should try to use “functional programming.”

6. Find 10 examples of things in the real world that would fit in a list. Try writing some scripts to
work with them.

198 LEARN PYTHON THE HARD WAY

Common Student Questions
Didn’t you say to not use while-loops? Yes, so just remember sometimes you can break the

rules if you have a good reason. Only idiots are slaves to rules all the time.

Why does join(' ', stuff) not work? The way the documentation for join is written doesn’t
make sense. It does not work like that and is instead a method you call on the inserted string
to put between the list to be joined. Rewrite it like ' '.join(stuff).

Why did you use a while-loop? Try rewriting it with a for-loop and see if that’s easier.

What does stuff[3:5] do? That extracts a “slice” from the stuff list that is from element 3
to element 4, meaning it does not include this element 5. It’s similar to how range(3,5)
would work.

This page intentionally left blank

200

EXERCISE 43

Doing Things to Dictionaries

Y ou are now going to learn about the dictionary data structure in Python. A dictionary (or “dict”) is
a way to store data just like a list, but instead of using only numbers to get the data, you can use

almost anything. This lets you treat a dict like it’s a database for storing and organizing data.

Let’s compare what dicts can do to what lists can do. You see, a list lets you do this:

Listing 43.1: ex43_pycon_out.py

1 >>> things = ['a', 'b', 'c', 'd']
2 >>> print(things[1])
3 b
4 >>> things[1] = 'z'
5 >>> print(things[1])
6 z
7 >>> things
8 ['a', 'z', 'c', 'd']

You can use numbers to “index” into a list, meaning you can use numbers to find out what’s in lists. You
should know this about lists by now, but make sure you understand that you can only use numbers to
get items out of a list.

What a dict does is let you use anything, not just numbers. Yes, a dict associates one thing to another,
no matter what it is. Take a look:

Listing 43.2: ex43_pycon_out.py

1 >>> stuff = {'name': 'Zed', 'age': 39, 'height': 6 * 12 + 2}
2 >>> print(stuff['name'])
3 Zed
4 >>> print(stuff['age'])
5 39
6 >>> print(stuff['height'])
7 74
8 >>> stuff['city'] = "SF"
9 >>> print(stuff['city'])
10 SF

You will see that instead of just numbers we’re using strings to say what we want from the stuff dictio-
nary. We can also put new things into the dictionary with strings. It doesn’t have to be strings, though.
We can also do this:

EXERCISE 43: DOING THINGS TO DICTIONARIES 201

Listing 43.3: ex43_pycon_out.py

1 >>> stuff[1] = "Wow"
2 >>> stuff[2] = "Neato"
3 >>> print(stuff[1])
4 Wow
5 >>> print(stuff[2])
6 Neato

In this code I used numbers, and then you can see there are numbers and strings as keys in the dict
when I print it. I could use anything. Well, almost anything, but just pretend you can use anything for now.

Of course, a dictionary that you can only put things in is pretty stupid, so here’s how you delete things,
with the pop() function:

Listing 43.4: ex43_pycon_out.py

1 >>> stuff.pop('city')
2 'SF'
3 >>> stuff.pop(1)
4 'Wow'
5 >>> stuff.pop(2)
6 'Neato'
7 >>> stuff
8 {'name': 'Zed', 'age': 39, 'height': 74}
9 >>>

A Dictionary Example
We’ll now do an exercise that you must study very carefully. I want you to type this code in and try to
understand what’s going on. Take note of when you put things in a dict, get them from a hash, and
all the operations you use. Notice how this example is mapping states to their abbreviations and then
the abbreviations to cities in the states. Remember, “mapping” or “associating” is the key concept in a
dictionary.

Listing 43.5: ex43.py

1 # create a mapping of state to abbreviation
2 states = {
3 'Oregon': 'OR',
4 'Florida': 'FL',
5 'California': 'CA',
6 'New York': 'NY',
7 'Michigan': 'MI'
8 }
9

202 LEARN PYTHON THE HARD WAY

10 # create a basic set of states and some cities in them
11 cities = {
12 'CA': 'San Francisco',
13 'MI': 'Detroit',
14 'FL': 'Jacksonville'
15 }
16
17 # add some more cities
18 cities['NY'] = 'New York'
19 cities['OR'] = 'Portland'
20
21 # print out some cities
22 print('-' * 10)
23 print("NY State has: ", cities['NY'])
24 print("OR State has: ", cities['OR'])
25
26 # print some states
27 print('-' * 10)
28 print("Michigan's abbreviation is: ", states['Michigan'])
29 print("Florida's abbreviation is: ", states['Florida'])
30
31 # do it by using the state then cities dict
32 print('-' * 10)
33 print("Michigan has: ", cities[states['Michigan']])
34 print("Florida has: ", cities[states['Florida']])
35
36 # print every state abbreviation
37 print('-' * 10)
38 for state, abbrev in list(states.items()):
39 print(f"{state} is abbreviated {abbrev}")
40
41 # print every city in state
42 print('-' * 10)
43 for abbrev, city in list(cities.items()):
44 print(f"{abbrev} has the city {city}")
45
46 # now do both at the same time
47 print('-' * 10)
48 for state, abbrev in list(states.items()):
49 print(f"{state} state is abbreviated {abbrev}")
50 print(f"and has city {cities[abbrev]}")
51
52 print('-' * 10)
53 # safely get a abbreviation by state that might not be there
54 state = states.get('Texas')
55
56 if not state:
57 print("Sorry, no Texas.")
58
59
60

EXERCISE 43: DOING THINGS TO DICTIONARIES 203

61 # get a city with a default value
62 city = cities.get('TX', 'Does Not Exist')
63 print(f"The city for the state 'TX' is: {city}")

What You Should See
1 ----------
2 NY State has: New York
3 OR State has: Portland
4 ----------
5 Michigan's abbreviation is: MI
6 Florida's abbreviation is: FL
7 ----------
8 Michigan has: Detroit
9 Florida has: Jacksonville
10 ----------
11 Oregon is abbreviated OR
12 Florida is abbreviated FL
13 California is abbreviated CA
14 New York is abbreviated NY
15 Michigan is abbreviated MI
16 ----------
17 CA has the city San Francisco
18 MI has the city Detroit
19 FL has the city Jacksonville
20 NY has the city New York
21 OR has the city Portland
22 ----------
23 Oregon state is abbreviated OR
24 and has city Portland
25 Florida state is abbreviated FL
26 and has city Jacksonville
27 California state is abbreviated CA
28 and has city San Francisco
29 New York state is abbreviated NY
30 and has city New York
31 Michigan state is abbreviated MI
32 and has city Detroit
33 ----------
34 Sorry, no Texas.
35 The city for the state 'TX' is: Does Not Exist

What Dictionaries Can Do
Dictionaries are another example of a data structure, and, like lists, they are one of the most commonly
used data structures in programming. A dictionary is used to “map” or “associate” things you want to
store to keys you use to get them. Again, programmers don’t use a term like “dictionary” for something
that doesn’t work like an actual dictionary full of words, so let’s use that as our real-world example.

204 LEARN PYTHON THE HARD WAY

Let’s say you want to find out what the word “Honorificabilitudinitatibus” means. Today you would simply
copy-paste that word into a search engine and then find out the answer, and we could say a search
engine is like a really huge super-complex version of theOxford English Dictionary (OED). Before search
engines, what you would do is this:

1. Go to your library and get “the dictionary.” Let’s say it’s the OED.

2. You know “honorificabilitudinitatibus” starts with the letter “H,” so you look on the side of the
book for the little tab that has “H” on it.

3. Then you skim the pages until you are close to where “hon” started.

4. Then you skim a few more pages until you find “honorificabilitudinitatibus” or hit the beginning
of the “hp” words and realize this word isn’t in the OED.

5. Once you find the entry, you read the definition to figure out what it means.

This process is nearly exactly the way a dict works, and you are basically “mapping” the word “honori-
ficabilitudinitatibus” to its definition. A dict in Python is just like a dictionary in the real world such as
the OED.

Study Drills
1. Do this same kind of mapping with cities and states/regions in your country or some other

country.

2. Find the Python documentation for dictionaries and try to do even more things to them.

3. Find out what you can’t do with dictionaries. A big one is that they do not have order, so try
playing with that.

Common Student Questions
What is the difference between a list and a dictionary? A list is for an ordered list of items. A dictio-

nary (or dict) is for matching some items (called “keys”) to other items (called “values”).

What would I use a dictionary for? Use one when you have to take one value and “look up” another
value. In fact, you could call dictionaries “lookup tables.”

What would I use a list for? Use a list for any sequence of things that need to be in order and you
only need to look them up by a numeric index.

What if I need a dictionary, but I need it to be in order? Take a look at the collections.
Ç OrderedDict data structure in Python. Python 3.7 and beyond now guarantees
dictionaries are ordered.

This page intentionally left blank

206

EXERCISE 44

From Dictionaries to Objects

Y ou should review the following exercises before doing this one:

• Exercise 24, Introductory Dictionaries, to refresh your understanding of Dictionaries

• Exercise 25, Dictionaries and Functions, for how you can put functions in dictionaries and call
them

• Exercise 26,Dictionaries andModules, for howmodules are just dictionaries behind the scenes
and how changing the underlying __dict__ changes the module

In this exercise you’ll learn about Object-Oriented Programming by creating your own little object system
using the previous information.

Step 1: Passing a Dict to a Function
Imagine you want to record information about people and then have them say things. Maybe this is a
little video game with little people growing food in a small town. You want to know their name, age, and
hair color. You also need a way to make them talk. Using what you know, you may invent this code:

Listing 44.1: ex44_1.py

1 becky = {
2 "name": "Becky",
3 "age": 34,
4 "eyes": "green"
5 }
6
7 def talk(who, words):
8 print(f"I am {who['name']} and {words}")
9
10 talk(becky, "I am talking here!")

Let’s break this down to confirm you understand the code:

1. I create a becky variable that has all the information about Becky

2. I then have a function named talk that accepts this becky variable and prints out a little
dialogue from that character

3. Then I call this function, passing in the becky variable and something for Becky to say

What’s interesting is you can use this function on anything that has the same “signature” as the becky
variable. If you created 1,000 characters with this same dict, the talk() function would still work.

EXERCISE 44: FROM DICTIONARIES TO OBJECTS 207

What You Should See

When you run the code for Step 1, you should see this output:

1 I am Becky and I am talking here!

This doesn’t change in the later versions of this code.

Step 2: talk inside the Dict
The first problem with this design is any part of your code that wants to make these characters talk has
to know about the talk() function. That’s not too large a problem, but maybe you want each character
to have special talk() functions that do something different.

One way to fix this is to “attach” the talk() function to the dict itself like this:

Listing 44.2: ex44_2.py

1 def talk(who, words):
2 print(f"I am {who['name']} and {words}")
3
4 becky = {
5 "name": "Becky",
6 "age": 34,
7 "eyes": "green",
8 "talk": talk # see this?
9 }

10
11 becky['talk'](becky, "I am talking here!")

The differences between this version and the first one are:

1. I move the talk() function to the top so we can reference it later.

2. I then put the function in the becky dictionary with "talk": talk. Remember, a function is
just like any other variable, which means you can pass it to other functions and place it in a
list or dict

3. Then the last line calls the talk() function in one move.

That last line might cause you problems, so let’s break just that line down:

1. becky['talk']: Python gets the contents of the becky dictionary assigned the 'talk'
key. It’s exactly like if you did print(becky['age']) to get the age key of becky. Don’t get
confused by the characters after this.

208 LEARN PYTHON THE HARD WAY

2. (becky, "I am talking here!"): You know that Python sees () after a variable as a
function call, and you just got the contents of becky['talk'], so this calls those contents
as a function. It then passes the variable becky to it and the string "I am talking here!"

You can take the next step to study this code by breaking it apart into two lines of code like this:

1 becky_talk = becky['talk']
2 becky_talk(becky, "I am talking here!")

What confuses people is they see all those characters in the original “one-liner” and their brain treats it
like one big word. The way you analyze these is to break them apart into separate lines using variables.

Step 3: Closures
The next thing to learn is the concept of a “closure.” A closure is any function that’s created inside another
function but accesses data in its parent. Let’s look at this code to see a closure in action:

Listing 44.3: ex44_3.py

1 # this function makes functions
2 def constructor(color, size):
3 print(">>> constructor color:", color, "size:", size)
4
5 # watch the indent!
6 def repeater():
7 # notice this function is using color, size
8 print("### repeater color:", color, "size:", size)
9
10 print("<<< exit constructor");
11 return repeater
12
13 # what's returned are repeater functions
14 blue_xl = constructor("blue", "xl")
15 green_sm = constructor("green", "sm")
16
17 # see how these repeaters "know" the parameters?
18 for i in range(0,4):
19 blue_xl()
20 green_sm()

Breaking down this code, we have the following:

1. I start a function named def constructor(color, size), which will create functions forme.

2. I start off with a simple print() to trace this function.

3. Then I define the repeater() function, but notice it gets indented under constructor.
This places that function inside constructor so that it’s only usable in that block.

EXERCISE 44: FROM DICTIONARIES TO OBJECTS 209

4. Under def repeater(), I do a print(), but carefully look at what this print() line is
using. It’s using the variables color and size from the def constructor(color, size),
but those are function parameters. That means they’re temporary, and when constructor
exits, they “die,” right? Nope.

5. Then I print another tracing line saying the constructor is exiting.

6. I return repeater() so the caller can have it, but remember color and size should be
dead, right? Isn’t this an error?

7. After I’ve defined constructor, I use it to craft two repeater() functions named blue_xl
and green_sm

8. I then have a for-loop that uses those two functions to repeatedly print the correct size
and color I gave to constructor

9. This means that functions created inside other functions keep access to the variables they use.

The key here is how def repeater() is indented under the def constructor but tries to use color
and size. Python detects this and creates a closure, which is a function that keeps references to any
variables it used. These references are retained even when the parent function has long exited.

What You Should See

When you run this closure code, you should see the following output:

1 >>> constructor color: blue size: xl
2 <<< exit constructor
3 >>> constructor color: green size: sm
4 <<< exit constructor
5 ### repeater color: blue size: xl
6 ### repeater color: green size: sm
7 ### repeater color: blue size: xl
8 ### repeater color: green size: sm
9 ### repeater color: blue size: xl
10 ### repeater color: green size: sm
11 ### repeater color: blue size: xl
12 ### repeater color: green size: sm

If you get something different, review your constructor() tomake sure you’ve indented things correctly.

Step 4: A Person Constructor
What happens when you want to create 100 people? In the Step 2 code you’d have to manually create
every dict and put the talk() function in it, which is ridiculous. We have computers for repetitive boring
work, so let’s use what we know so far to create a new constructor() for our people.

We’ll use everything you know so far to create a function that “constructs” people:

210 LEARN PYTHON THE HARD WAY

Listing 44.4: ex44_4.py

1 def Person_new(name, age, eyes):
2 person = {
3 "name": name,
4 "age": age,
5 "eyes": eyes,
6 }
7
8 def talk(words):
9 print(f"I am {person['name']} and {words}")
10
11 person['talk'] = talk
12
13 return person
14
15 becky = Person_new("Becky", 39, "green")
16
17 becky['talk']("I am talking here!")

This code is using the following concepts:

1. Person_new() is a constructor, which means it creates a new person dict and attaches the
talk() function to it.

2. The talk() function is a closure, which means it has access to the person that is created at
the top of the Person_new() function.

3. It adds this talk() function to the person just like you did in Step 2, but since this is a closure
from Step 3, we don’t have to manually give it the person

4. It returns this new person with its closure-based talk(), and then we can use it just like
before, but it’s a bit cleaner.

If we compare the Step 2 final line with this line, we have the following:

1 # from step 2, see the two becky uses?
2 becky['talk'](becky, "I am talking here!")
3
4 # from step 4, now only one becky
5 becky['talk']("I am talking here!")

With the Person_new() constructor, we can remove this extra becky variable, which makes it far more
reliable to use. This also means we could potentially give different kinds of people different talk()
functions if we wanted.

EXERCISE 44: FROM DICTIONARIES TO OBJECTS 211

Study Drills
1. Use Person_new() to create a few more people.

2. Add a new function hit(), which makes one person hit another person.

3. Give people hit points in their dict and have hit() randomly reduce each person’s hit points.
You’ll need random() for this.

4. Add a job attribute to person and give different jobs different hit points, damage, and dialogue.
For example, a “boxer” would have more HP and damage than a person with the job “baby.”
Python has way better tools for this same problem, but for this code it is a fun challenge.

5. Finally, have your code run a little fight club using loops to make different people battle.

https://docs.python.org/3/library/random.html

212

EXERCISE 45

Basic Object-Oriented Programming

I n Exercise 44 you learned how to use a function to create special dict containers with functions at-
tached to them. In this exercise you’ll learn the “right” way to do the same thing using Python’s class

keyword and the object-oriented programming (OOP) features.

OOP is very complicated to understand and explain, so we’ll focus on code to start and slowly build up
your understanding of the concept. The most important thing for you to remember when studying this
is that OOP is weird. Humans don’t think about the world like this, and most of the theory behind OOP
has been debunked by modern psychology and neurology. This means you need to keep grinding OOP
code until you get it. It just takes time and exposure, so don’t give up.

Python’s People
We’ll start by reviewing this code that implements the same output, but using Python’s official OOP
system. Get this code to work and then place it side by side with the ex44.py file to compare.

Listing 45.1: ex45.py

1 class Person(object):
2
3 # this is double underscores around init
4 def init (self, name, age, eyes):
5 self.name = name
6 self.age = age
7 self.eyes = eyes
8
9 def talk(self, words):
10 print(f"I am {self.name} and {words}")
11
12 becky = Person("Becky", 39, "green")
13 becky.talk("I am talking here!")

This will produce the same output, but it’s implemented very differently. Let’s break down this code and
compare it to the code you already wrote in ex44.py.

1. I use the class keyword to define a Person class. A class defines what data and functions
your Person will have when you create it.

2. I then have a def __init__() function, which is similar to the Person_new() function
from the DIY version. Its job is to configure any Person you create with the data it needs.

EXERCISE 45: BASIC OBJECT-ORIENTED PROGRAMMING 213

NOTE: The __init__() has two underscores and is typically called a “double underscore”
or “dunder” function.

3. The __init__() takes the same parameters of name, age, and eyes, but also an additional
parameter named self, which is the person from the ex44.py code.

4. Inside the __init__() I assign each of name, age, and eyes to the self with self.name =
name. This is like doing self['name'] = name, and behind the scenes Python actually does
this.

5. Then I have a def talk() function, which takes parameters self and words. Remember,
self is like the person from ex44.py, but Python handles binding this for you where in
ex44.py you had to manually bind it to your talk() function.

6. After this definition we create an object using the Person constructor. We name this object
becky so the class Person is turned into a “constructor function” like the Person_new
in ex44.py. Python is doing a lot more than the DIY Person_new(), but they’re similar in
purpose and usage.

7. I finally call becky.talk("I am talking here!") to make Becky talk, and that code is
nearly the same as becky['talk']("I am talking here!") in the ex44.py code.

If you’re comparing ex44.py and ex45.py, you should be able to see how they’re similar. The DIY
version in ex44.py is definitely inferior to the official Python OOP version in ex45.py, but it’s intended
to be a “bridge” from what you know about functions and dictionaries to how classes and objects work
in Python.

The class version in ex45.py also has a far more solid foundation and supports many additional
features, so after this, never do OOP the way I did in ex44.py. It was only for training.

Using dir() and __dict__
Many Python developers think that Python’s objects are completely different from the dict, but we can
actually find the dict that’s inside objects and classes. Add these lines right after you create the becky
object:

1 # this is the becky line
2 becky = Person("Becky", 39, "green")
3 # add this line
4 print(becky. dict)

Run the ex45.py file again, and you should see this:

1 {'name': 'Becky', 'age': 39, 'eyes': 'green'}
2 I am Becky and I am talking here!

214 LEARN PYTHON THE HARD WAY

Do you remember when you accessed the __dict__ in a module? Python’s objects also have a
__dict__ that contains all of the attributes you set in the __init__. Here’s some other things to try:

1 # the class that becky comes from
2 print(becky. class)
3
4 # the contents of that class
5 print(becky. class . dict)
6
7 # a list of strings for everything
8 print(dir(becky))
9

10 # these two do the same thing
11 print(becky.talk)
12 print(getattr(becky, 'talk'))
13
14 # this is the class's version of talk
15 print(becky. class . dict ['talk'])

The last two lines are interesting because they output different things:

1 <bound method Person.talk of
2 < main .Person object at 0x7fc338253cd0>>
3 <function Person.talk at 0x7fc3280b9750>

The difference is the bound method means it’s like the closure you made in ex44.py, so it’s been
bound to the object and has access to a self parameter by default. The second one is the base function
in the class that hasn’t been bound. See the Study Drills section for an experiment with this.

About the Dot (.)
In ex44.py you had to manually access functions using the dict syntax like this:

1 becky = Person_new("Becky", 39, "green")
2 becky['talk']("I am talking here!")

In ex45.py you used the . (dot) operator instead:

1 becky = Person("Becky", 39, "green")
2 becky.talk("I am talking here!")

You’ve used this . (dot) syntax in the past many times without really understanding it. Let’s fix that
understanding now that you can define classes and use them to create objects.

A primary cause of confusion in people new to OOP is lines of code like becky.talk("I am talking
Ç here!") because they see this as a single operation, when it is actually multiple operations done
for you. If we break down only this line, we get the following:

EXERCISE 45: BASIC OBJECT-ORIENTED PROGRAMMING 215

1. The becky is your class Person object you want to access.

2. . tells Python you want to access–or get–something in this object. It’s similar to the ['key']
syntax with dict variables.

3. talk becomes the key you want to get out of the becky object.

4. Python then looks inside your becky object to see if you have an attribute you’ve set named
talk. Remember from the dir(becky) test previously it is in there, so the function is returned.

5. Python then finds the talk() function inside dir(becky) and returns that for you to call.

With that we now know that the . (dot) operator stops at this point, and the remaining part of becky.
Ç talk("I am talking here!") is only a call of that function. That means it’s actually two lines of
code like this:

1 talk = becky.talk
2 talk("I am talking here!")

Any time you’re confused about a single line of code, convert it to two (or more) lines like this.

Terminology
There are a few terms used by OOP people that you should know:

• class—This is the definition used to construct objects. Think of it like a blueprint. This is
class Person in our code.

• object—Each time you use a class, it creates an object. This is the becky variable.

• instance—This is another name for an object, as in “this is an instance of a Person.”

• instantiate—This is a way to say “create an object” or “create an instance.”

• attribute—This is any data that is part of the objects as defined by the class you used to
create it. This is self.name or self.age in our code.

• method—It’s just a function that’s been attached to a class. Don’t get confused when people
claim a method is radically different from a function. If someone claims this, ask them if they
think a salmon is totally different from a fish.

• inheritance—This is a complicated topic we’ll cover later, but you can have a class that
gets additional features from another class. It’s similar to how you inherited certain features
from your parents.

• members—The members of a class are just the attributes and methods defined in the class.

• polymorphism—This is a protocol for what happens when classes of different inheritance
are used. This is a complex topic, and honestly it’s a lot more trouble than it’s worth.

216 LEARN PYTHON THE HARD WAY

A Word on self
You may have wondered where this self variable comes from or why you need it. Imagine you have
this code:

1 # make some objects
2 frank = Person("Frank", 100, "green")
3 mary = Person("Mary", 20, "brown")

If you look inside the __init__ of Person, you’ll see the lines that use self to set each person’s
name, age, and eyes:

1 def init (self, name, age, eyes):
2 self.name = name
3 self.age = age
4 self.eyes = eyes

When Python calls this __init__() function, it needs some temporary variable for you to work on. In
the make some objects code, the frank = happens after the call to Person(). Remember, Python
executes the right-hand side and then assigns the result to the left-hand side.

That means, at the time __init__() is called, there is no frank. To solve this problem, Python makes
a temporary variable, passes it as self to your __init__() so you can set it up, and then returns that
so it can be assigned to frank or mary above.

It makes sense that you need a temporary variable for __init__(), but what about talk(self,
word) and its self? Even though frank or mary exists, how would your talk() function know about
them? They’re outside of this function, and you define talk() separately from these other variables. To
solve this problem, when you use a . operator, Python “remembers” that talk() is attached to frank
or mary and passes that in as the self parameter. That way, you don’t have to know about anything but
self for your Person to work.

The only problem with this design is you’ll run into errors like this:

1 Traceback (most recent call last):
2 File "ex45.py", line 13, in <module>
3 becky.talk("I am talking here!")
4 TypeError: Person.talk() takes 1 positional argument but 2 were given

This error is really confusing, but it’s basically saying you forgot self when you defined def talk() in
the Person class.

EXERCISE 45: BASIC OBJECT-ORIENTED PROGRAMMING 217

Study Drills
1. Python 3 allows you to write classes as class Person or using class Person(object).

Research why they have this second form and whether you really need to use it in Python 3.

2. Use your Person class to make 1,000 people in a loop and store them in a list.

3. Repeat the same Study Drills from Exercise 44 where you made people who can fight each
other. That means adding hit points, a way to have one person attack another, and a job that
gives people different combat abilities.

4. Compare this solution to the one you made in Exercise 44. Which one do you prefer? Even if
you prefer the previous, please don’t write more code like that. It’s only a training exercise.

5. Remember how you could get the talk() function from becky.__class__.__dict__ but
it was different from becky.talk? Try calling it and see what error you get. Can you fix the
error?

Common Student Questions
Why should I use Object-Oriented Programming? Because the language you’re using features OOP

as the primary way to structure code. If it’s a language like Python, Java, C++, Ruby, or C#,
then OOP is going to be easier. Other languages rely more on functions and modules as the
primary way you structure your code, so OOP will be painful to use.

218

EXERCISE 46

Inheritance and Advanced OOP

A n important concept that you have to understand is the difference between a class and an object.
The problem is, there is no real “difference” between a class and an object. They are actually the

same thing at different points in time. I will demonstrate by a Zen koan:

1 What is the difference between a fish and a salmon?

Did that question sort of confuse you? Really sit down and think about it for a minute. I mean, a fish and
a salmon are different, but, wait, they are the same thing, right? A salmon is a kind of fish, so I mean it’s
not different. But at the same time, a salmon is a particular type of fish, so it’s actually different from all
other fish. That’s what makes it a salmon and not a halibut. So a salmon and a fish are the same but
different. Weird.

This question is confusing becausemost people do not think about real things this way, but they intuitively
understand them. You do not need to think about the difference between a fish and a salmon because
you know how they are related. You know a salmon is a kind of fish and that there are other kinds of fish
without having to understand that.

Let’s take it one step further. Let’s say you have a bucket full of three salmon and because you are a
nice person, you have decided to name them Frank, Joe, and Mary. Now, think about this question:

1 What is the difference between Mary and a salmon?

Again, this is a weird question, but it’s a bit easier than the fish versus salmon question. You know that
Mary is a salmon, so she’s not really different. She’s just a specific “instance” of a salmon. Joe and Frank
are also instances of salmon. What do I mean when I say “instance”? I mean they were created from
some other salmon and now represent a real thing that has salmon-like attributes.

Now for the mind-bending idea: Fish is a class, Salmon is a class, and Mary is an object. Think about
that for a second. Let’s break it down slowly and see if you get it.

A fish is a class, meaning it’s not a real thing, but rather a word we attach to instances of things with
similar attributes. Got fins? Got gills? Lives in water? Alright it’s probably a fish.

Someone with a Ph.D. then comes along and says, “No, my young friend, this fish is actually Salmo
salar, affectionately known as a salmon.” This professor has just clarified the fish further and made a
new class called Salmon that has more specific attributes. Longer nose, reddish flesh, big, lives in the
ocean or fresh water, tasty? Probably a salmon.

EXERCISE 46: INHERITANCE AND ADVANCED OOP 219

Finally, a cook comes along and tells the Ph.D., “No, you see this salmon right here, I’ll call her Mary,
and I’m going to make a tasty fillet out of her with a nice sauce.” Now you have this instance of a salmon
(which also is an instance of a fish) named Mary turned into something real that is filling your belly. It
has become an object.

There you have it: Mary (the object) is a kind of salmon (a class) that is a kind of fish (the parent class)—
object is an instance of a subclass of a class.

How This Looks in Code
This is a weird concept, but to be very honest you have to worry about it only when you make new
classes and when you use a class. I will show you two tricks to help you figure out whether something
is a class or an object.

First, you need to learn two catch phrases: “is-a” and “has-a.” You use the phrase is-a when you talk
about objects and classes being related to each other by a class relationship. You use has-a when you
talk about objects and classes that are related only because they reference each other.

Now, go through this piece of code and replace each ##?? comment with a comment that says whether
the next line represents an is-a or a has-a relationship and what that relationship is. In the beginning of
the code, I’ve laid out a few examples, so you just have to write the remaining ones.

Remember, is-a is the relationship between fish and salmon, while has-a is the relationship between
salmon and gills.

Listing 46.1: ex46.py

1 ## Animal is-a object (yes, sort of confusing) look at the extra credit
2 class Animal(object):
3 pass
4
5 ## ??
6 class Dog(Animal):
7
8 def init (self, name):
9 ## ??

10 self.name = name
11
12 ## ??
13 class Cat(Animal):
14
15 def init (self, name):
16 ## ??
17 self.name = name
18
19 ## ??

220 LEARN PYTHON THE HARD WAY

20 class Person(object):
21
22 def init (self, name):
23 ## ??
24 self.name = name
25
26 ## Person has-a pet of some kind
27 self.pet = None
28
29 ## ??
30 class Employee(Person):
31
32 def init (self, name, salary):
33 ## ?? hmm what is this strange magic?
34 super(Employee, self). init (name)
35 ## ??
36 self.salary = salary
37
38 ## ??
39 class Fish(object):
40 pass
41
42 ## ??
43 class Salmon(Fish):
44 pass
45
46 ## ??
47 class Halibut(Fish):
48 pass
49
50
51 ## rover is-a Dog
52 rover = Dog("Rover")
53
54 ## ??
55 satan = Cat("Satan")
56
57 ## ??
58 mary = Person("Mary")
59
60 ## ??
61 mary.pet = satan
62
63 ## ??
64 frank = Employee("Frank", 120000)
65
66 ## ??
67 frank.pet = rover
68
69 ## ??
70 flipper = Fish()

EXERCISE 46: INHERITANCE AND ADVANCED OOP 221

71 ## ??
72 crouse = Salmon()
73
74 ## ??
75 harry = Halibut()

About class Name(object)
In Python 3 you do not need to add the (object) after the name of the class, but the Python commu-
nity believes in “explicit is better than implicit,” so I and other Python experts have decided to include
it. You may run into code that does not have (object) after simple classes, and those classes are
perfectly fine and will work with classes you create that do have (object). At this point it is simply
extra documentation and has no impact on how your classes work.

In Python 2 there was a difference between the two types of classes, but now you don’t have to worry
about it. The only tricky part to use (object) involves the mental gymnastics of saying “class Name
is a class of type object.” That may sound confusing to you now, since it’s a class that’s a name object
that’s a class, but don’t feel bad about that. Just think of class Name(object) as saying “this is a
basic simple class” and you’ll be fine.

Finally, in the future, the styles and tastes of Python programmers may change, and this explicit use of
(object) might be seen as a sign that you are a bad programmer. If that happens, simply stop using
it, or tell them, “Python Zen says explicit is better than implicit.”

Study Drills
1. Research why Python added this strange object class and what that means.

2. Is it possible to use a class like it’s an object?

3. Fill out the animals, fish, and people in this exercise with functions that make them do things.
See what happens when functions are in a “base class” like Animal versus in, say, Dog.

4. Find other people’s code and work out all the is-a and has-a relationships.

5. Make some new relationships that are lists and dictionaries so you can also have “has-many”
relationships.

6. Do you think there’s such thing as an “is-many” relationship? Read about “multiple inheritance,”
and then avoid it if you can.

222 LEARN PYTHON THE HARD WAY

Common Student Questions
What are these ## ?? comments for? Those are “fill-in-the-blank” comments that you are supposed

to fill in with the right “is-a,” “has-a” concepts. Read this exercise again and look at the other
comments to see what I mean.

What is the point of self.pet = None? That makes sure that the self.pet attribute of that
class is set to a default of None.

What does super(Employee, self).__init__(name) do? That’s how you can run the
__init__ method of a parent class reliably. Search for “python3 super” and read the vari-
ous advice on it being evil and good for you.

This page intentionally left blank

224

EXERCISE 47

Basic Object-Oriented Analysis

and Design

I ’m going to describe a process to use when you want to build something using Python, specifically
with object-oriented programming (OOP). What I mean by a “process” is that I’ll give you a set of

steps that you do in order but that you aren’t meant to be a slave to or that will totally always work for
every problem. They are just a good starting point for many programming problems and shouldn’t be
considered the only way to solve these types of problems. This process is just one way to do it that you
can follow.

The process is as follows:

1. Write or draw about the problem

2. Extract key concepts from Step #1 and research them

3. Create a class hierarchy and object map for the concepts

4. Code the classes and a test to run them

5. Repeat and refine

The way to look at this process is that it is “top down,” meaning it starts from the very abstract loose idea
and then slowly refines it until the idea is solid and something you can code.

I start by just writing about the problem and trying to think up anything I can about it. Maybe I’ll even
draw a diagram or two, maybe a map of some kind, or even write myself a series of emails describing
the problem. This gives me a way to express the key concepts in the problem and also explore what I
might already know about it.

Then I go through these notes, drawings, and descriptions, and I pull out the key concepts. There’s a
simple trick to doing this: Simply make a list of all the nouns and verbs in your writing and drawings, then
write out how they’re related. This gives me a good list of names for classes, objects, and functions in
the next step. I take this list of concepts and then research any that I don’t understand so I can refine
them further if needed.

Once I have my list of concepts, I create a simple outline/tree of the concepts and how they are related
as classes. You can usually take your list of nouns and start asking “Is this one like other concept nouns?
That means they have a common parent class, so what is it called?” Keep doing this until you have a
class hierarchy that’s just a simple tree list or a diagram. Then take the verbs you have and see if those
are function names for each class and put them in your tree.

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 225

With this class hierarchy figured out, I sit down and write some basic skeleton code that has just the
classes, their functions, and nothing more. I then write a test that runs this code and makes sure the
classes I’ve made make sense and work right. Sometimes I may write the test first, though, and other
times I might write a little test, a little code, a little test, etc., until I have the whole thing built.

Finally, I keep cycling over this process, repeating it and refining as I go and making it as clear as I can
before doing more implementation. If I get stuck at any particular part because of a concept or problem
I haven’t anticipated, then I sit down and start the process over on just that part to figure it out more
before continuing.

I will now go through this process while coming up with a game engine and a game for this exercise.

The Analysis of a Simple Game Engine
The game I want to make is called “Gothons from Planet Percal #25,” and it will be a small space
adventure game. With nothing more than that concept in my mind, I can explore the idea and figure out
how to make the game come to life.

Write or Draw About the Problem

I’m going to write a little paragraph for the game:

“Aliens have invaded a space ship, and our hero has to go through a maze of rooms defeating them so
he can escape into an escape pod to the planet below. The game will be more like a Zork or Adventure
type of game with text outputs and funny ways to die. The game will involve an engine that runs a map
full of rooms or scenes. Each room will print its own description when the player enters it and then tell
the engine what room to run next out of the map.”

At this point I have a good idea for the game and how it would run, so now I want to describe each scene:

• Death—This is when the player dies and should be something funny.

• Central Corridor—This is the starting point and has a Gothon already standing there that the
players have to defeat with a joke before continuing.

• Laser Weapon Armory—This is where the hero gets a neutron bomb to blow up the ship before
getting to the escape pod. It has a keypad the hero has to guess the number for.

• The Bridge—This is another battle scene with a Gothon where the hero places the bomb.

• Escape Pod—This is where the hero escapes but only after guessing the right escape pod.

At this point I might draw a map of these and maybe write more descriptions of each room—whatever
comes to mind as I explore the problem.

226 LEARN PYTHON THE HARD WAY

Extract Key Concepts and Research Them

I now have enough information to extract some of the nouns and analyze their class hierarchy. First I
make a list of all the nouns:

• Alien

• Player

• Ship

• Maze

• Room

• Scene

• Gothon

• Escape Pod

• Planet

• Map

• Engine

• Death

• Central Corridor

• Laser Weapon Armory

• The Bridge

I would also possibly go through all the verbs and see if they are anything that might be good function
names, but I’ll skip that for now.

At this point you might also research each of these concepts and anything you don’t know right now.
For example, I might play a few of these types of games and make sure I know how they work. I might
research how ships are designed or how bombs work. Maybe I’ll research some technical issue like how
to store the game’s state in a database. After I’ve done this research, I might start over at step #1 based
on new information I have and rewrite my description and extract new concepts.

Create a Class Hierarchy and Object Map for the Concepts

Once I have that, I turn it into a class hierarchy by asking “What is similar to other things?” I also ask,
“What is basically just another word for another thing?”

Right away I see that “Room” and “Scene” are basically the same thing depending on how I want to
do things. I’m going to pick “Scene” for this game. Then I see that all the specific rooms like “Central
Corridor” are basically just “Scenes.” I see also that “Death” is basically a “Scene,” which confirms my
choice of “Scene” over “Room” since you can have a death scene, but a death room is kind of odd.

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 227

“Maze” and “Map” are basically the same, so I’m going to go with “Map” since I used it more often. I
don’t want to do a battle system, so I’m going to ignore “Alien” and “Player” and save that for later. The
“Planet” could also just be another scene instead of something specific.

After all of that thought process, I start to make a class hierarchy that looks like this in my text editor:

1 * Map
2 * Engine
3 * Scene
4 * Death
5 * Central Corridor
6 * Laser Weapon Armory
7 * The Bridge
8 * Escape Pod

I would then go through and figure out what actions are needed on each thing based on verbs in the
description. For example, I know from the description I’m going to need a way to “run” the engine, “get
the next scene” from the map, get the “opening scene,” and “enter” a scene. I’ll add those like this:

1 * Map
2 - next_scene
3 - opening_scene
4 * Engine
5 - play
6 * Scene
7 - enter
8 * Death
9 * Central Corridor
10 * Laser Weapon Armory
11 * The Bridge
12 * Escape Pod

Notice how I just put -enter under Scene since I know that all the scenes under it will inherit it and
have to override it later.

Code the Classes and a Test to Run Them

Once I have this tree of classes and some of the functions, I open up a source file in my editor and try to
write the code for it. Usually I’ll just copy-paste the tree into the source file and then edit it into classes.
Here’s a small example of how this might look at first, with a simple little test at the end of the file:

Listing 47.1: ex47_classes.py

1 class Scene(object):
2
3 def enter(self):
4 pass
5
6

228 LEARN PYTHON THE HARD WAY

7 class Engine(object):
8
9 def init (self, scene_map):
10 pass
11
12 def play(self):
13 pass
14
15 class Death(Scene):
16
17 def enter(self):
18 pass
19
20 class CentralCorridor(Scene):
21
22 def enter(self):
23 pass
24
25 class LaserWeaponArmory(Scene):
26
27 def enter(self):
28 pass
29
30 class TheBridge(Scene):
31
32 def enter(self):
33 pass
34
35 class EscapePod(Scene):
36
37 def enter(self):
38 pass
39
40
41 class Map(object):
42
43 def init (self, start_scene):
44 pass
45
46 def next_scene(self, scene_name):
47 pass
48
49 def opening_scene(self):
50 pass
51
52
53 a_map = Map('central_corridor')
54 a_game = Engine(a_map)
55 a_game.play()

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 229

In this file you can see that I simply replicated the hierarchy I wanted and then added a little bit of code
at the end to run it and see if it all works in this basic structure. In the later sections of this exercise, you’ll
fill in the rest of this code and make it work to match the description of the game.

Repeat and Refine

The last step in my little process isn’t so much a step as it is a while-loop. You don’t ever do this
as a one-pass operation. Instead, you go back over the whole process again and refine it based on
information you’ve learned from later steps. Sometimes I’ll get to step #3 and realize that I need to work
on 1 and 2 more, so I’ll stop and go back and work on those. Sometimes I’ll get a flash of inspiration and
jump to the end to code up the solution in my head while I have it there, but then I’ll go back and do the
previous steps to make sure I cover all the possibilities I have.

The other idea in this process is that it’s not just something you do at one single level but something that
you can do at every level when you run into a particular problem. Let’s say I don’t know how to write the
Engine.play method yet. I can stop and do this whole process on just that one function to figure out
how to write it.

Top Down versus Bottom Up
The process is typically labeled “top down” since it starts at the most abstract concepts (the top) and
works its way down to actual implementation. I want you to use this process I just described when
analyzing problems in the book from now on, but you should know that there’s another way to solve
problems in programming that starts with code and goes “up” to the abstract concepts. This other way
is labeled “bottom up.” Here are the general steps you follow to do this:

1. Take a small piece of the problem; hack on some code and get it to run barely

2. Refine the code into something more formal with classes and automated tests

3. Extract the key concepts you’re using and try to find research for them

4. Write a description of what’s really going on

5. Go back and refine the code, possibly throwing it out and starting over

6. Repeat, moving on to some other piece of the problem

I find this process is better once you’remore solid at programming and are naturally thinking in code about
problems. This process is very good when you know small pieces of the overall puzzle but maybe don’t
have enough information yet about the overall concept. Breaking it down in little pieces and exploring
with code then helps you slowly grind away at the problem until you’ve solved it. However, remember that
your solution will probably be meandering and weird, so that’s why my version of this process involves
going back and finding research and then cleaning things up based on what you’ve learned.

230 LEARN PYTHON THE HARD WAY

The Code for “Gothons from Planet Percal #25”
Stop! I’m going to show you my final solution to the preceding problem, but I don’t want you to just jump
in and type this up. I want you to take the rough skeleton code I did and try to make it work based on the
description. Once you have your solution, then you can come back and see how I did it.

I’m going to break this final file ex47.py down into sections and explain each one rather than dump all
the code at once.

Listing 47.2: ex47.py

1 from sys import exit
2 from random import randint
3 from ex47_dialogue import DIALOGUE

This is just our basic imports for the game. The only new thing is the import of the DIALOGUE data from
the ex47_dialogue.py module. This module contains all of the dialogue text for the game so you
don’t have to type in all the text. You can download the file from the learncodethehardway.com Python
resources and save it to your computer. If you can’t access the internet, then here’s the entire file:

Listing 47.3: ex47_dialogue.py

1 DIALOGUE = {
2 "CentralCorridor_enter": """
3 The Gothons of Planet Percal #25 have invaded your ship and
4 destroyed your entire crew. You are the last surviving
5 member and your last mission is to get the neutron destruct
6 bomb from the Weapons Armory, put it in the bridge, and blow
7 the ship up after getting into an escape pod.
8
9 You're running down the central corridor to the Weapons
10 Armory when a Gothon jumps out, red scaly skin, dark grimy
11 teeth, and evil clown costume flowing around his hate filled
12 body. He's blocking the door to the Armory and about to
13 pull a weapon to blast you.
14 """,
15 "CentralCorridor_shoot": """
16 Quick on the draw you yank out your blaster and fire it at
17 the Gothon. His clown costume is flowing and moving around
18 his body, which throws off your aim. Your laser hits his
19 costume but misses him entirely. This completely ruins his
20 brand new costume his mother bought him, which makes him fly
21 into an insane rage and blast you repeatedly in the face
22 until you are dead. Then he eats you.
23 """,
24 "CentralCorridor_dodge": """
25 Like a world class boxer you dodge, weave, slip and slide
26 right as the Gothon's blaster cranks a laser past your head.

https://learncodethehardway.com/setup/python/
https://learncodethehardway.com/setup/python/

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 231

27 In the middle of your artful dodge your foot slips and you
28 bang your head on the metal wall and pass out. You wake up
29 shortly after only to die as the Gothon stomps on your head
30 and eats you.
31 """,
32 "CentralCorridor_joke": """
33 Lucky for you they made you learn Gothon insults in the
34 academy. You tell the one Gothon joke you know: Lbhe zbgure
35 vf fb sng, jura fur fvgf nebhaq gur ubhfr, fur fvgf nebhaq
36 gur ubhfr. The Gothon stops, tries not to laugh, then busts
37 out laughing and can't move. While he's laughing you run up
38 and shoot him square in the head putting him down, then jump
39 through the Weapon Armory door.
40 """,
41 "LaserWeaponArmory_enter": """
42 You do a dive roll into the Weapon Armory, crouch and scan
43 the room for more Gothons that might be hiding. It's dead
44 quiet, too quiet. You stand up and run to the far side of
45 the room and find the neutron bomb in its container.
46 There's a keypad lock on the box and you need the code to
47 get the bomb out. If you get the code wrong 10 times then
48 the lock closes forever and you can't get the bomb. The
49 code is 3 digits.
50 """,
51 "LaserWeaponArmory_guess": """
52 The container clicks open and the seal breaks, letting gas
53 out. You grab the neutron bomb and run as fast as you can
54 to the bridge where you must place it in the right spot.
55 """,
56 "LaserWeaponArmory_fail": """
57 The lock buzzes one last time and then you hear a sickening
58 melting sound as the mechanism is fused together. You
59 decide to sit there, and finally the Gothons blow up the
60 ship from their ship and you die.
61 """,
62 "TheBridge_enter": """
63 You burst onto the Bridge with the netron destruct bomb
64 under your arm and surprise 5 Gothons who are trying to take
65 control of the ship. Each of them has an even uglier clown
66 costume than the last. They haven't pulled their weapons
67 out yet, as they see the active bomb under your arm and
68 don't want to set it off.
69 """,
70 "TheBridge_throw_bomb": """
71 In a panic you throw the bomb at the group of Gothons and
72 make a leap for the door. Right as you drop it a Gothon
73 shoots you right in the back killing you. As you die you
74 see another Gothon frantically try to disarm the bomb. You
75 die knowing they will probably blow up when it goes off.
76 """,
77

232 LEARN PYTHON THE HARD WAY

78 "TheBridge_place_bomb": """
79 You point your blaster at the bomb under your arm and the
80 Gothons put their hands up and start to sweat. You inch
81 backward to the door, open it, and then carefully place the
82 bomb on the floor, pointing your blaster at it. You then
83 jump back through the door, punch the close button and blast
84 the lock so the Gothons can't get out. Now that the bomb is
85 placed you run to the escape pod to get off this tin can.
86 """,
87 "EscapePod_enter":"""
88 You rush through the ship desperately trying to make it to
89 the escape pod before the whole ship explodes. It seems
90 like hardly any Gothons are on the ship, so your run is
91 clear of interference. You get to the chamber with the
92 escape pods, and now need to pick one to take. Some of them
93 could be damaged but you don't have time to look. There's 5
94 pods, which one do you take?
95 """,
96 "EscapePod_death":"""
97 You jump into pod {guess} and hit the eject button. The pod
98 escapes out into the void of space, then implodes as the
99 hull ruptures, crushing your body into jam jelly.

100 """,
101 "EscapePod_escape":"""
102 You jump into pod {guess} and hit the eject button. The pod
103 easily slides out into space heading to the planet below.
104 As it flies to the planet, you look back and see your ship
105 implode then explode like a bright star, taking out the
106 Gothon ship at the same time. You won!
107 """,
108 }

I suggest you only create this file’s structure with small notes for the actual dialogue until you can down-
load the file.

Listing 47.4: ex47.py

1 class Scene(object):
2
3 def enter(self):
4 print("This scene is not yet configured.")
5 print("Subclass it and implement enter().")
6 exit(1)

As you saw in the skeleton code, I have a base class for Scene that will have the common things that
all scenes do. In this simple program they don’t do much, so this is more a demonstration of what you
would do to make a base class.

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 233

Listing 47.5: ex47.py

1 class Engine(object):
2
3 def init (self, scene_map):
4 self.scene_map = scene_map
5
6 def play(self):
7 current_scene = self.scene_map.opening_scene()
8 last_scene = self.scene_map.next_scene('finished')
9

10 while current_scene != last_scene:
11 next_scene_name = current_scene.enter()
12 current_scene = self.scene_map.next_scene(next_scene_name)
13
14 # be sure to print out the last scene
15 current_scene.enter()

I also have my Engine class, and you can see how I’m already using the methods for Map.opening_
Ç scene and Map.next_scene. Because I’ve done a bit of planning, I can just assume I’ll write those
methods and then use them before I’ve written the Map class.

Listing 47.6: ex47.py

1 class Death(Scene):
2
3 quips = [
4 "You died. You kinda suck at this.",
5 "Your Mom would be proud...if she were smarter.",
6 "Such a luser.",
7 "I have a small puppy that's better at this.",
8 "You're worse than your Dad's jokes."
9

10]
11
12 def enter(self):
13 print(Death.quips[randint(0, len(self.quips)-1)])
14 exit(1)

My first scene is the odd scene named Death, which shows you the simplest kind of scene you can
write.

Listing 47.7: ex47.py

1 class CentralCorridor(Scene):
2
3 def enter(self):
4 print(DIALOGUE["CentralCorridor_enter"])
5

234 LEARN PYTHON THE HARD WAY

6 action = input("> ")
7
8 if action == "shoot!":
9 print(DIALOGUE["CentralCorridor_shoot"])
10 return 'death'
11
12 elif action == "dodge!":
13 print(DIALOGUE["CentralCorridor_dodge"])
14 return 'death'
15
16 elif action == "tell a joke":
17 print(DIALOGUE["CentralCorridor_joke"])
18 return 'laser_weapon_armory'
19
20 else:
21 print("DOES NOT COMPUTE!")
22 return 'central_corridor'

After that I’ve created the CentralCorridor, which is the start of the game. I’m doing the scenes for
the game before the Map because I need to reference them later.

Listing 47.8: ex47.py

1 class LaserWeaponArmory(Scene):
2
3 def enter(self):
4 print(DIALOGUE["LaserWeaponArmory_enter"])
5
6 code = f"{randint(1,9)}{randint(1,9)}{randint(1,9)}"
7 guess = input("[keypad]> ")
8 guesses = 0
9
10 while guess != code and guesses < 10:
11 print("BZZZZEDDD!")
12 guesses += 1
13 guess = input("[keypad]> ")
14
15 if guess == code:
16 print(DIALOGUE["LaserWeaponArmory_guess"])
17 return 'the_bridge'
18 else:
19 print(DIALOGUE["LaserWeaponArmory_fail"])
20 return 'death'
21
22
23
24 class TheBridge(Scene):
25
26 def enter(self):

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 235

27 print(DIALOGUE["TheBridge_enter"])
28
29 action = input("> ")
30
31 if action == "throw the bomb":
32 print(DIALOGUE["TheBridge_throw_bomb"])
33 return 'death'
34
35 elif action == "slowly place the bomb":
36 print(DIALOGUE["TheBridge_place_bomb"])
37
38 return 'escape_pod'
39 else:
40 print("DOES NOT COMPUTE!")
41 return "the_bridge"
42
43
44 class EscapePod(Scene):
45
46 def enter(self):
47 print(DIALOGUE["EscapePod_enter"])
48
49 good_pod = randint(1,5)
50 guess = input("[pod #]> ")
51
52
53 if int(guess) != good_pod:
54 print(DIALOGUE["EscapePod_death"]
55 .format(guess=guess))
56 return 'death'
57 else:
58 print(DIALOGUE["EscapePod_escape"]
59 .format(guess=guess))
60
61 return 'finished'
62
63 class Finished(Scene):
64
65 def enter(self):
66 print("You won! Good job.")
67 return 'finished'

This is the rest of the game’s scenes, and since I know I need them and have thought about how they’ll
flow together, I’m able to code them up directly.

Incidentally, I wouldn’t just type all this code in. Remember, I said to try to build this incrementally, one
little bit at a time. I’m just showing you the final result.

236 LEARN PYTHON THE HARD WAY

Listing 47.9: ex47.py

1 class Map(object):
2
3 scenes = {
4 'central_corridor': CentralCorridor(),
5 'laser_weapon_armory': LaserWeaponArmory(),
6 'the_bridge': TheBridge(),
7 'escape_pod': EscapePod(),
8 'death': Death(),
9 'finished': Finished(),
10 }
11
12 def init (self, start_scene):
13 self.start_scene = start_scene
14
15 def next_scene(self, scene_name):
16 val = Map.scenes.get(scene_name)
17 return val
18
19 def opening_scene(self):
20 return self.next_scene(self.start_scene)

After that I have my Map class, and you can see it is storing each scene by name in a dictionary, and
then I refer to that dict with Map.scenes. This is also why the map comes after the scenes because the
dictionary has to refer to the scenes, so they have to exist.

Listing 47.10: ex47.py

1 a_map = Map('central_corridor')
2 a_game = Engine(a_map)
3 a_game.play()

Finally, I’ve got my code that runs the game by making a Map and then handing that map to an Engine
before calling play to make the game work.

What You Should See
Make sure you understand the game and that you tried to solve it yourself first. One thing to do if you’re
stumped is cheat a little by reading my code and then continue trying to solve it yourself.

The length of this script is quite large, so rather than include it here, I’ll assume you know how to run it.

EXERCISE 47: BASIC OBJECT-ORIENTED ANALYSIS AND DESIGN 237

Study Drills
1. Change it! Maybe you hate this game. It could be too violent, or maybe you aren’t into sci-fi.

Get the game working and then change it to what you like. This is your computer; you make it
do what you want.

2. I have a bug in this code. Why is the door lock guessing 11 times?

3. Explain how returning the next room works.

4. Add cheat codes to the game so you can get past the more difficult rooms. I can do this with
two words on one line.

5. Go back to my description and analysis and then try to build a small combat system for the
hero and the various Gothons he encounters.

6. This is actually a small version of something called a “finite state machine.” Read about them.
They might not make sense, but try anyway.

Common Student Questions
Where can I find stories for my own games? You can make them up, just like you would tell a story

to a friend. Or you can take simple scenes from a book or movie you like.

238

EXERCISE 48

Inheritance versus Composition

I n the fairy tales about heroes defeating evil villains there’s always a dark forest of some kind. It couldbe a cave, a forest, another planet, or just some place that everyone knows the hero shouldn’t go. Of
course, shortly after the villain is introduced you find out, yes, the hero has to go to that stupid forest to
kill the bad guy. It seems the hero just keeps getting into situations that require him to risk his life in this
evil forest.

You rarely read fairy tales about the heroes who are smart enough to just avoid the whole situation
entirely. You never hear a hero say, “Wait a minute, if I leave to make my fortunes on the high seas,
leaving Buttercup behind, I could die, and then she’d have tomarry some ugly prince namedHumperdink.
Humperdink! I think I’ll stay here and start a Farm Boy for Rent business.” If he did that, there’d be no fire
swamp, dying, reanimation, sword fights, giants, or any kind of story really. Because of this, the forest in
these stories seems to exist like a black hole that drags the hero in no matter what they do.

In object-oriented programming, inheritance is the evil forest. Experienced programmers know to avoid
this evil because they know that deep inside the Dark Forest Inheritance is the Evil Queen Multiple
Inheritance. She likes to eat software and programmers with her massive complexity teeth, chewing on
the flesh of the fallen. But the forest is so powerful and so tempting that nearly every programmer has
to go into it and try to make it out alive with the Evil Queen’s head before they can call themselves real
programmers. You just can’t resist the Inheritance Forest’s pull, so you go in. After the adventure, you
learn to just stay out of that stupid forest and bring an army if you are ever forced to go in again.

This is basically a funny way to say that I’m going to teach you something you should use carefully called
“inheritance.” Programmers who are currently in the forest battling the Queen will probably tell you that
you have to go in. They say this because they need your help since what they’ve created is probably too
much for them to handle. But you should always remember this:

Most of the uses of inheritance can be simplified or replaced with composition, and multiple
inheritance should be avoided at all costs.

What Is Inheritance?
Inheritance is used to indicate that one class will get most or all of its features from a parent class. This
happens implicitly whenever you write class Foo(Bar), which says “Make a class Foo that inherits
from Bar.” When you do this, the language makes any action that you do on instances of Foo also work
as if they were done to an instance of Bar. Doing this lets you put common functionality in the Bar class
and then specialize that functionality in the Foo class as needed.

EXERCISE 48: INHERITANCE VERSUS COMPOSITION 239

When you are doing this kind of specialization, there are three ways that the parent and child classes
can interact:

1. Actions on the child imply an action on the parent

2. Actions on the child override the action on the parent

3. Actions on the child alter the action on the parent

I will now demonstrate each of these in order and show you code for them.

Implicit Inheritance

First I will show you the implicit actions that happen when you define a function in the parent but not in
the child:

Listing 48.1: ex48a.py

1 class Parent(object):
2
3 def implicit(self):
4 print("PARENT implicit()")
5
6 class Child(Parent):
7 pass
8
9 dad = Parent()

10 son = Child()
11
12 dad.implicit()
13 son.implicit()

The use of pass under the class Child: is how you tell Python that you want an empty block. This
creates a class named Child but says that there’s nothing new to define in it. Instead, it will inherit all
of its behavior from Parent. When you run this code, you get the following:

1 PARENT implicit()
2 PARENT implicit()

Notice how even though I’m calling son.implicit() on line 13 and even though Child does not have
an implicit() function defined, it still works, and it calls the one defined in Parent. This shows you
that if you put functions in a base class (i.e., Parent), then all subclasses (i.e., Child) will automatically
get those features. This is very handy for repetitive code you need in many classes.

240 LEARN PYTHON THE HARD WAY

Override Explicitly

The problem with having functions called implicitly is sometimes you want the child to behave differently.
In this case you want to override the function in the child, effectively replacing the functionality. To do this
just define a function with the same name in Child. Here’s an example:

Listing 48.2: ex48b.py

1 class Parent(object):
2
3 def override(self):
4 print("PARENT override()")
5
6 class Child(Parent):
7
8 def override(self):
9 print("CHILD override()")
10
11 dad = Parent()
12 son = Child()
13
14 dad.override()
15 son.override()

In this example I have a function named override in both classes, so let’s see what happens when
you run it:

1 PARENT override()
2 CHILD override()

As you can see, when line 14 runs, it runs the Parent.override() function because that variable
(dad) is a Parent. But when line 15 runs, it prints out the Child.override messages because son
is an instance of Child and Child overrides that function by defining its own version.

Take a break right now and try playing with these two concepts before continuing.

Alter Before or After

The third way to use inheritance is a special case of overriding where you want to alter the behavior
before or after the Parent class’s version runs. You first override the function just like in the previous
example, but then you use a Python built-in function named super to get the Parent version to call.
Here’s the example of doing that so you can make sense of this description:

EXERCISE 48: INHERITANCE VERSUS COMPOSITION 241

Listing 48.3: ex48c.py

1 class Parent(object):
2
3 def altered(self):
4 print("PARENT altered()")
5
6 class Child(Parent):
7
8 def altered(self):
9 print("CHILD, BEFORE PARENT altered()")

10 super(Child, self).altered()
11 print("CHILD, AFTER PARENT altered()")
12
13 dad = Parent()
14 son = Child()
15
16 dad.altered()
17 son.altered()

The important lines here are 9–11, where in the Child I do the following when son.altered() is
called:

1. Because I’ve overridden Parent.altered, the Child.altered() version runs, and line 9
executes like you’d expect.

2. In this case I want to do a before and after, so after line 9 I want to use super to get the
Parent.altered() version.

3. On line 10 I call super(Child, self).altered(), which is aware of inheritance and will
get the Parent class for you. You should be able to read this as “call super with arguments
Child and self and then call the function altered on whatever it returns.”

4. At this point, the Parent.altered() version of the function runs, and that prints out the
Parent message.

5. Finally, this returns from Parent.altered(), and the Child.altered() function contin-
ues to print out the after message.

If you run this, you should see this:

1 PARENT altered()
2 CHILD, BEFORE PARENT altered()
3 PARENT altered()
4 CHILD, AFTER PARENT altered()

242 LEARN PYTHON THE HARD WAY

All Three Combined

To demonstrate all of these, I have a final version that shows each kind of interaction from inheritance in
one file:

Listing 48.4: ex48d.py

1 class Parent(object):
2
3 def override(self):
4 print("PARENT override()")
5
6 def implicit(self):
7 print("PARENT implicit()")
8
9 def altered(self):
10 print("PARENT altered()")
11
12 class Child(Parent):
13
14 def override(self):
15 print("CHILD override()")
16
17 def altered(self):
18 print("CHILD, BEFORE PARENT altered()")
19 super(Child, self).altered()
20 print("CHILD, AFTER PARENT altered()")
21
22 dad = Parent()
23 son = Child()
24
25 dad.implicit()
26 son.implicit()
27
28 dad.override()
29 son.override()
30
31 dad.altered()
32 son.altered()

Go through each line of this code, and write a comment explaining what that line does and whether it’s
an override or not. Then run it and confirm you get what you expected:

1 PARENT implicit()
2 PARENT implicit()
3 PARENT override()
4 CHILD override()
5 PARENT altered()
6 CHILD, BEFORE PARENT altered()

EXERCISE 48: INHERITANCE VERSUS COMPOSITION 243

7 PARENT altered()
8 CHILD, AFTER PARENT altered()

The Reason for super()
This should seem like common sense, but then we get into trouble with a thing called “multiple inheri-
tance.” Multiple inheritance is when you define a class that inherits from one or more classes, like this:

1 class SuperFun(Child, BadStuff):
2 pass

This is like saying “Make a class named SuperFun that inherits from the classes Child and BadStuff
at the same time.”

In this case, whenever you have implicit actions on any SuperFun instance, Python has to look up
the possible function in the class hierarchy for both Child and BadStuff, but it needs to do this in a
consistent order. To do this, Python uses “method resolution order” (MRO) and an algorithm called C3
to get it straight.

Because the MRO is complex and a well-defined algorithm is used, Python can’t leave it to you to get
the MRO right. Instead, Python gives you the super() function, which handles all of this for you in the
places that you need the altering type of actions as I did in Child.altered(). With super() you don’t
have to worry about getting this right, and Python will find the right function for you.

Using super() with __init__()

The most common use of super() is actually in __init__() functions in base classes. This is usually
the only place where you need to do some things in a child and then complete the initialization in the
parent. Here’s a quick example of doing that in the Child:

1 class Child(Parent):
2
3 def init (self, stuff):
4 self.stuff = stuff
5 super(Child, self). init ()

This is pretty much the same as the Child.altered() example, except I’m setting some variables in
the __init__() before having the Parent initialize with its Parent.__init__().

Composition
Inheritance is useful, but another way to do the same thing is just to use other classes and modules,
rather than rely on implicit inheritance. If you look at the three ways to exploit inheritance, two of the

244 LEARN PYTHON THE HARD WAY

three involve writing new code to replace or alter functionality. This can easily be replicated by just calling
functions in a module. Here’s an example of doing this:

Listing 48.5: ex48e.py

1 class Other(object):
2
3 def override(self):
4 print("OTHER override()")
5
6 def implicit(self):
7 print("OTHER implicit()")
8
9 def altered(self):
10 print("OTHER altered()")
11
12 class Child(object):
13
14 def init (self):
15 self.other = Other()
16
17 def implicit(self):
18 self.other.implicit()
19
20 def override(self):
21 print("CHILD override()")
22
23 def altered(self):
24 print("CHILD, BEFORE OTHER altered()")
25 self.other.altered()
26 print("CHILD, AFTER OTHER altered()")
27
28 son = Child()
29
30 son.implicit()
31 son.override()
32 son.altered()

In this code I’m not using the name Parent, since there is not a parent-child is-a relationship. This is a
has-a relationship, where Child has-a Other that it uses to get its work done. When I run this, I get the
following output:

1 OTHER implicit()
2 CHILD override()
3 CHILD, BEFORE OTHER altered()
4 OTHER altered()
5 CHILD, AFTER OTHER altered()

EXERCISE 48: INHERITANCE VERSUS COMPOSITION 245

You can see that most of the code in Child and Other is the same to accomplish the same thing. The
only difference is that I had to define a Child.implicit() function to do that one action. I could then
ask myself if I need this Other to be a class, and could I just make it into a module named other.py?

When to Use Inheritance or Composition
The question of “inheritance versus composition” comes down to an attempt to solve the problem of
reusable code. You don’t want to have duplicated code all over your software, since that’s not clean and
efficient. Inheritance solves this problem by creating a mechanism for you to have implied features in
base classes. Composition solves this by giving you modules and the capability to call functions in other
classes.

If both solutions solve the problem of reuse, then which one is appropriate in which situations? The
answer is incredibly subjective, but I’ll give you my three guidelines for when to do which:

1. Avoid multiple inheritance at all costs, as it’s too complex to be reliable. If you’re stuck with
it, then be prepared to know the class hierarchy and spend time finding where everything is
coming from.

2. Use composition to package code intomodules that are used inmany different unrelated places
and situations.

3. Use inheritance only when there are clearly related reusable pieces of code that fit under a
single common concept or if you have to because of something you’re using.

Do not be a slave to these rules. The thing to remember about object-oriented programming is that it
is entirely a social convention programmers have created to package and share code. Because it’s a
social convention but one that’s codified in Python, you may be forced to avoid these rules because of
the people you work with. In that case, find out how they use things and then just adapt to the situation.

Study Drill
There is only one Study Drill for this exercise because it is a big exercise. Read http://www.python.org
/dev/peps/pep-0008/ and start trying to use it in your code. You’ll notice that some of it is different from
what you’ve been learning in this book, but now you should be able to understand their recommendations
and use them in your own code. The rest of the code in this book may or may not follow these guidelines
depending on whether it makes the code more confusing. I suggest you also do this, as comprehension
is more important than impressing everyone with your knowledge of esoteric style rules.

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/andstarttryingtouseitinyourcode.You�llnoticethatsomeofitisdifferentfrom
http://www.python.org/dev/peps/pep-0008/andstarttryingtouseitinyourcode.You�llnoticethatsomeofitisdifferentfrom

246 LEARN PYTHON THE HARD WAY

Common Student Questions
How do I get better at solving problems that I haven’t seen before? The only way to get better at solv-

ing problems is to solve as many problems as you can by yourself. Typically people hit a difficult
problem and then rush out to find an answer. This is fine when you have to get things done, but
if you have the time to solve it yourself, then take that time. Stop and bang your head against
the problem for as long as possible, trying every possible thing until you solve it or give up. Af-
ter that the answers you find will be more satisfying, and you’ll eventually get better at solving
problems.

Aren’t objects just copies of classes? In some languages (like JavaScript) that is true. These are
called “prototype languages,” and there are not many differences between objects and classes
other than usage. In Python, however, classes act as templates that “mint” new objects, similar
to how coins were minted using a die (template).

This page intentionally left blank

248

EXERCISE 49

You Make a Game

Y ou need to start learning to feed yourself. I hope as you have worked through this book, you have
learned that all the information you need is on the internet. You just have to go search for it. The

only things you have been missing are the right words and what to look for when you search. Now you
should have a sense of it, so it’s about time you struggled through a big project and tried to get it working.

Here are your requirements:

1. Make a different game from the one I made.

2. Use more than one file, and use import to use them. Make sure you know what that is.

3. Use one class per room and give the classes names that fit their purpose (like GoldRoom,
KoiPondRoom).

4. Your runner will need to know about these rooms, so make a class that runs them and knows
about them. There are plenty of ways to do this, but consider having each room return what
room is next or setting a variable of what room is next.

Other than that, I leave it to you. Spend a whole week on this and make it the best game you can. Use
classes, functions, dicts, lists, and anything you can to make it nice. The purpose of this lesson is to
teach you how to structure classes that need other classes inside other files.

Remember, I’m not telling you exactly how to do this because you have to do this yourself. Go figure
it out. Programming is problem solving, and that means trying things, experimenting, failing, scrapping
your work, and trying again. When you get stuck, ask for help and show people your code. If they are
mean to you, ignore them, and focus on the people who are not mean and offer to help. Keep working it
and cleaning it until it’s good, and then show it some more.

Good luck, and see you in a week with your game.

Evaluating Your Game
In this exercise you will evaluate the game you just made. Maybe you got partway through it and you got
stuck. Maybe you got it working but just barely. Either way, we’re going to go through a bunch of things
you should know now and make sure you covered them in your game. We’re going to study properly
formatting a class, common conventions in using classes, and a lot of “textbook” knowledge.

Why would I have you try to do it yourself and then show you how to do it right? From now on in the
book, I’m going to try to make you self-sufficient. I’ve been holding your hand mostly this whole time, and
I can’t do that for much longer. I’m now instead going to give you things to do, have you do them on your
own, and then give you ways to improve what you did.

EXERCISE 49: YOU MAKE A GAME 249

You will struggle at first and probably be very frustrated, but stick with it, and eventually you will build
a mind for solving problems. You will start to find creative solutions to problems rather than just copy
solutions out of textbooks.

Function Style
All the other rules I’ve taught you about how to make a nice function apply here, but add these things:

• For various reasons, programmers call functions that are part of classes “methods.” It’s mostly
marketing, but just be warned that every time you say “function” they’ll annoyingly correct you
and say “method.” If they get too annoying, just ask them to demonstrate the mathematical
basis that determines how a “method” is different from a “function” and they’ll shut up.

• When you work with classes, much of your time is spent talking about making the class “do
things.” Instead of naming your functions after what the functions do, name them as if they’re
commands you’re giving to the class. Same as pop is saying “Hey list, pop this off.” It isn’t
called remove_from_end_of_list because even though that’s what it does, that’s not a
command to a list.

• Keep your functions small and simple. For some reason when people start learning about
classes, they forget this.

Class Style
• Your class should use “camel case” like SuperGoldFactory rather than super_gold_
Ç factory

• Try not to do too much in your __init__() functions. It makes them harder to use.

• Your other functions should use “underscore format,” so write my_awesome_hair and not
myawesomehair or MyAwesomeHair

• Be consistent in how you organize your function arguments. If your class has to deal with users,
dogs, and cats, keep that order throughout unless it really doesn’t make sense. If you have one
function that takes (dog, cat, user) and the other takes (user, cat, dog), it’ll be hard
to use.

• Try not to use variables that come from the module or globals. They should be fairly self-
contained.

• A foolish consistency is the hobgoblin of little minds. Consistency is good, but foolishly following
some idiotic mantra because everyone else does is bad style. Think for yourself.

• Always, always have class Name(object) format or else you will be in big trouble.

250 LEARN PYTHON THE HARD WAY

Code Style
• Give your code vertical space so people can read it. You will find some very bad programmers

who are able to write reasonable code but who do not add any spaces. This is bad style in
any language because the human eye and brain use space and vertical alignment to scan
and separate visual elements. Not having space is the same as giving your code an awesome
camouflage paint job.

• If you can’t read it out loud, it’s probably hard to read. If you are having a problem making
something easy to use, try reading it out loud. Not only does this force you to slow down and
really read it, but it also helps you find difficult passages and things to change for readability.

• Try to do what other people are doing in Python until you find your own style.

• Once you find your own style, do not be a jerk about it. Working with other people’s code is
part of being a programmer, and other people have really bad taste. Trust me, you will probably
have really bad taste too and not even realize it.

• If you find someone who writes code in a style you like, try writing something that mimics that
style.

Good Comments
• Programmers will tell you that your code should be readable enough that you do not need

comments. They’ll then tell you in their most official sounding voice, “Ergo one should never
write comments or documentation. QED.” Those programmers are either consultants who get
paid more if other people can’t use their code or incompetents who tend to never work with
other people. Ignore them and write comments.

• When you write comments, describe why you are doing what you are doing. The code already
says how, but why you did things the way you did is more important.

• When you write doc comments for your functions, make the comments documentation for
someone who will have to use your code. You do not have to go crazy, but a nice little sentence
about what someone can do with that function helps a lot.

• While comments are good, too many are bad, and you have to maintain them. Keep your
comments relatively short and to the point, and if you change a function, review the comment
to make sure it’s still correct.

Evaluate Your Game
I want you to now pretend you are me. Adopt a very stern look, print out your code, and take a red pen
and mark every mistake you find, including anything from this exercise and from other guidelines you’ve

EXERCISE 49: YOU MAKE A GAME 251

read so far. Once you are done marking your code up, I want you to fix everything you came up with.
Then repeat this a couple of times, looking for anything that could be better. Use all the tricks I’ve given
you to break your code down into the smallest, tiniest little analysis you can.

The purpose of this exercise is to train your attention to detail on classes. Once you are done with this
bit of code, find someone else’s code and do the same thing. Go through a printed copy of some part of
it and point out all the mistakes and style errors you find. Then fix it and see if your fixes can be done
without breaking that program.

I want you to do nothing but evaluate and fix code for the week—your own code and other people’s. It’ll
be pretty hard work, but when you are done, your brain will be wired tight like a boxer’s hands.

252

EXERCISE 50

Automated Testing

T his final exercise of Module 3 will teach you how to create automated tests. An automated test is
code that runs other code and confirms it’s still working. As a programmer, your primary way to

improve your work comes from automating things you do manually, and testing is one of the easiest
things you can automate. Once you have a nice automated test suite, you can run it every time you
make a change to test that everything is still working.

What Is the Purpose of Testing?
There’s a lot of people who advocate for various reasons and styles of testing, but in my experience
there’s really only one big benefit of automated tests:

A complete automated test suite confirms that new code doesn’t break old code.

When you change code, there’s a probability your new code might break something else you wrote. This
becomes more true as the size of your software and the team writing it increases. Once you have more
than two people, you’ll run into situations where one person changes something that breaks another
person’s code. If you have a handful of modules connected to each other, a change in one can cause
others to break.

This leads to an important consequence of having tests:

You can completely rewrite old code because your tests help ensure everything keeps working.

You do get a few additional benefits from automating your testing:

1. It’s automated, so you don’t waste time typing the same thing over and over.

2. It’ll be consistent so you won’t forget one of your tests.

3. An automated test can help find bugs or bad designs in APIs you use, but this is less common
if you’re testing efficiently.

4. It can give you a new perspective on your code, which might help you simplify it. If your test is
heinous, then maybe it’s time to rewrite the code.

How to Test Efficiently
What’s the most efficient way to write tests then? I’ve found this process to provide the most value for
the least effort:

EXERCISE 50: AUTOMATED TESTING 253

1. Write tests that pretend to be the user, whether that user is someone accessing your website
or a programmer using your API. Your tests should pretend to be an actual person doing good
and bad things.

2. Cause as many errors as possible and confirm they are actually reported. For example, on a
registration form give bad email addresses, usernames, and passwords and then check for the
errors. If your tests runs later and you have no errors, then you broke something for sure.

3. Use a coverage reporting tool to confirm that your tests are at a minimum hitting most of the
code, including error handlers.

4. Any code you can’t hit should be analyzed and either removed as useless or get separate tests
if it’s actually not useless. If you can’t hit the code from the UI, then why is it in there? Just in
case? “Just in case code” is a security time bomb, so just remove it. You can always bring it
back later. If it’s code that’s run in a background job or simply not used by the user, then write
a special test just for that code.

5. Finally, if your code uses any other services run by other people, then write tests that confirm
those services keep working. You won’t believe how often companies and people change their
services without telling you. A test that checks their service can save you significant down-
time in the future. The only problem with these tests is you typically can’t run them in a usual
developer workflow. It’s better to run this separately in a monitoring tool or some other infre-
quent checking service. If your tests run service checks, you may take the service down–or
worse–incur massive costs as you rack up thousands of requests a day on accident.

If you’re working by yourself, you can get away with just steps #1–3, but as your code grows, you’ll need
to start doing the rest of these. These also aren’t an exhaustive list of things you need to do when testing
software. That’s an entire book on its own.

Install PyTest
In Python the best testing system is PyTest, and it’s easy to install using conda:

1 conda activate lpythw # don't forget this
2 conda install pytest

You’ll also want to install a “coverage” tool, which will tell you if your tests are reaching the code you
want:

1 # don't forget to activate
2 conda install pytest-cov

I’ll show you how to use the coverage tool after you learn how to write a simple test.

https://docs.pytest.org/en/7.4.x/

254 LEARN PYTHON THE HARD WAY

Simple PyTest Demo
For this simple test you’ll need two files, one with some code and an ex50_test.py file to test it. I’ll
implement a simple combat system using a Person class you’ve seen before:

Listing 50.1: ex50.py

1 class Person:
2 def init (self, name, hp, damage):
3 self.name = name
4 self.hp = hp
5 self.damage = damage
6
7 def hit(self, who):
8 self.hp -= who.damage
9
10 def alive(self):
11 return self.hp > 0

The test imports this Person from module ex50 and then confirms that a boxer can hit a zombie
named Zed:

Listing 50.2: ex50_test.py

1 from ex50 import Person
2
3 def test_combat():
4 boxer = Person("Boxer", 100, 10)
5 zombie = Person("Zed", 1000, 1000)
6
7 # these asserts are bad, fix them
8 assert boxer.hp == 100, "Boxer has wrong hp."
9 assert zombie.hp == 1000, "Zombe has wrong hp."
10
11 boxer.hit(zombie)
12 assert zombie.alive(), "Zombie should be alive."
13
14 zombie.hit(boxer)
15 assert not boxer.alive(), "Boxer should be dead."

The assert keyword is standard Python and is used to check for a truth condition, aborting if this
condition is false. PyTest uses assert to test that the Person works as you want, so you don’t have
to remember many testing functions. The format of an assert is:

1 assert TEST, "MESSAGE"

When the TEST is false, Python will print MESSAGE and raise an exception. The message can also be
an f-string to give more information.

EXERCISE 50: AUTOMATED TESTING 255

Running pytest
If you try to run this ex50_test.py file normally, it will produce no output. You need to run it with the
pytest command like this:

1 pytest ex50_test.py

This works, but pytest is smart enough to find your tests for you, so you can also just run pytest on
its own, and it will find and run any file that starts with test_ or ends with _test.py. Try this to see
you get the same output.

Exceptions and try/except
An exception is a way for code to report an error to other code. An exception is “thrown” where there’s
an error and then “caught” by other code that handles the error. The following code examples “throw”
and “catch” two different types of errors.

Listing 50.3: ex50_except.py

1 try:
2 count = int("hello")
3 except ValueError:
4 print("Bad number given.")
5
6 try:
7 assert 1 == 2, "One does not equal 2"
8 except Exception as what:
9 print("assert throws", type(what))

If you run this simple code, it’ll attempt to convert "hello" with int() but fail. Normally this prints out
an error message and Python exits, but you can “wrap” it with try and except to “catch” the error and
do something different.

The second part shows you what assert throws, which will print out <class 'AssertionError'>.
Here’s the full run of this code:

1 Bad number given.
2 assert throws <class 'AssertionError'>

Exceptions are used all over Python, but you don’t run into them often until you get further in your
programming studies. Most likely right after this course you’ll have to deal with them, and then they’re
not that difficult. Just read the official Python documentation, and you’ll know everything you need when
the time comes.

https://docs.python.org/3/tutorial/errors.html

256 LEARN PYTHON THE HARD WAY

Getting Coverage Reports
You’ll definitely want to verify your testing with coverage reports from pytest-cov. To get a basic report,
you add the --cov=DIR where DIR is the directory of code to analyze. This is not the test directory but
the directory where the code lives. Your setup is very simple, so use . for the directory:

1 pytest --cov=.

This will print out your test results, but also a table of all the files in the directory and how much code
was “covered” with the test. Here’s a small sample from my directory:

1 Name Stmts Miss Cover
2 ---
3 ex39.py 29 29 0%
4 ex40.py 10 10 0%
5 .. many files cut..
6 ex50.py 9 0 100%
7 ex50_except.py 8 8 0%
8 ex50_test.py 10 0 100%
9 ---

10 TOTAL 668 584 13%

I’ve cut many files out from my output, but you can see how it says some files have 0% coverage and
other 100%. You can get an HTML report by passing --cov-report html:

1 pytest --cov-report html:coverage --cov=.

This will save an HTML coverage report in the directory coverage, which you can view with:

1 # PowerShell uses start
2 start coverage/index.html
3
4 # macOS uses open
5 open coverage/index.html

That should open the report in your browser, and if you click on a file, it will show you exactly what lines
have been run. The lines that are not tested yet are highlighted in red.

Study Drills
This example test is only educational, but it could be vastly improved to make it easier to use later:

1. Make this test fail in various ways so you know what a failure looks like. Try breaking both
the ex50_test.py and ex50.py files. Maybe do bad math in ex50.py so the self.hp is
wrong; then in the ex50_test.py try giving bad data to an assert.

https://pytest-cov.readthedocs.io

EXERCISE 50: AUTOMATED TESTING 257

2. The assert messages tell you nothing about why they’re wrong. "Boxer has wrong hp."
should tell you what the hp should be with and why it should be that. Use an f"" string to give
more information.

3. The test is checking values inside the object with code self.hp, but that’s usually a recipe
for tests that are difficult to maintain. It’d be better if you didn’t use that and instead used only
external functions to confirm everything is working.

4. Another very useful thing is to add an __invariant__() function to the Person class. This
comes from a style of programming called Design by Contract created by Bertrand Meyer
where you add instrumentation to your code that confirms things are working as expected.
The __invariant__() function’s job is to check the Person object’s internal state and make
sure that there are no “bad” conditions. For example, it would confirm that self.damage is
never 0 and that the person is alive() when self.hp > 0. Write an __invariant__()
function that your test can call that uses assert to validate the Person object’s internal state
for the test.

5. The other side of the test is that the Person class doesn’t provide any error checking. What
happens if you give someone -100 damage? Are they a healer now? Add some assert
checks to your __init__() and other functions to protect against bad input and then use
what you know of try/except to confirm these checks work.

Common Student Questions
Do I have to write my tests first? Some test fanatics like to enforce a particular way to test your code

they call “test first.” Their claim is that the only one true way of testing your software is to write
zero code before you’ve written test code. The problem is nobody who claims to do “test first”
testing actually does this. What they really do is write a “spike” first, which is a quick hack to
explore the problem. Then they write a test based on the spike and finally write the code based
on both the test and spike. This means they don’t follow their own edicts, and this is generally
true about anyone who is absolute in their advice.

When should I write tests? I’m a big advocate of starting with what you know first. Do you know
how to write the code but not really what results you should get? Start with the code then. Do
you know how you want to interact with the code, but not really how it works yet? Start with the
test. Starting with what you know gets you started, and getting started is usually the hardest
thing for most people.

How can I make my code 100% correct? You can’t. No software will ever be 100% correct, and any-
one claiming their method, programming language, or system produces “correct” or “perfect”
software is selling you a fantasy. The only thing you can do is reduce the probability of a defect,
and tests help with that.

258 LEARN PYTHON THE HARD WAY

Do I have to reach 100% code coverage? No, that’s not totally necessary, but if you can, then it’ll
help with reducing the probability of defects. Your main goal with coverage is to confirm that
you’re efficiently checking all the branches of your code. What you want to avoid is testing
1 line of code 200 times but ignoring 30 lines of error handling. Coverage will help you find
these situations and make them more efficient, but it’s not a measure of overall testing quality.
It’s only a measure of testing efficiency and a baseline quality goal.

Other people say start with the smallest unit first and never test the UI. Yes, some people say this,
and usually those people are consultants who get paid by the hour. Try their advice, but use
measurements to confirm their claims. Write some tests using both styles, use coverage to see
how often you’re testing code and what you’re testing, and track how much time it takes you
to reach your goal. When you’re done, you’ll have formed your own opinion on what’s best for
you using measurements.

MODULE 4

Python and Data
Science

260

EXERCISE 51

What Is Data Munging?

A t this point in the course you know Python. You may not feel confident in Python, and you don’t know
all of Python, but neither do most of the people using Python. There are supposed professionals

who actually don’t know you can use dis() to study the Python bytecode. These “professionals” also
have no idea that Python even has bytecode. Given that you know how to analyze the bytes Python uses
to process your code I’d say you could be more knowledgeable than many Python programmers working
today.

Does that mean you’re good at Python? No, not at all. Memorizing arbitrary facts about programming
languages does notmake you capable with that language. To become a capable programmer, you have to
combine your understanding of how Python works with actually using it to build software. Programming is
a creative practice similar to music, writing, and painting. You can memorize every note on the fretboard,
but if you can’t actually play those notes, you don’t know how to play guitar. You can memorize every
rule of English grammar, but if you can’t actually write a compelling story or essay, then you can’t write.
You can memorize every quality of every pigment, but if you can’t use those pigments to paint a portrait,
then you can’t paint.

The goal of the final module is to take you from “I know about Python” to “I can create software with
Python.” I’m going to teach you how to convert the ideas in your head into working software, but I must
warn you, this process is very frustrating. Many beginners find it difficult to even express their ideas well,
let alone well enough to create software. The way you become better at expressing your ideas in code
is through experience. You simply have to do it over and over again until it’s easy to do. That’s why it’s
so frustrating to learn because it feels like you’re making no progress until finally you do.

To accomplish this goal, I’m going to present three things to you in the next six exercises:

1. An abstract or poorly defined challenge to solve. Don’t take these challenges as attempts to
trick you like a bad job interview. I’ll tell you any secrets I think you need. Take the challenges
as being “loose” so you have freedom to find your own solution. Since I don’t give you an exact
problem, I don’t expect any specific solution.

2. A new advanced Python concept to incorporate into your solution. I suggest creating a first
version of your solution any way you can and then doing a new version that uses the new
Python concept.

3. More technologies to explore that might make the problem easier, or are related to the topic.
Being able to explore new technologies is important as a programmer, but it’s also half the fun
sometimes.

In this first exercise, I’m going to also describe a process for taking your ideas and turning them into
code. It’s important you read this process carefully and use it until you feel confident in your own skills.

EXERCISE 51: WHAT IS DATA MUNGING? 261

After you’re comfortable with the process, you can modify it to suit how you work or experiment with new
ways to turn your ideas into code.

Why Data Munging?
In this exercise I’ll introduce you to one of my favorite topics called “data munging.” Data munging is the
practice of using code to clean up terrible data for use by other parts of your code. It comes up in every
type of programming you’ll ever do, not just data science. It’s also a nearly perfect topic for beginning
programmers for many reasons:

1. It’s something nearly everyone can understand

2. You usually have a lot of time to work on it and can repeatedly interact with the problem until
you solve it

3. It’s easy to automate and test

4. The code is almost always terrible, mostly because the inputs are so gnarly

5. It’s still an important part of many data science projects since without data you can’t do the
science

INFO When you’re doing data munging, you’re actually doing something called Extract,
Transform, and Load, or ETL. This exercise is about the Extract stage where you find var-
ious media to extract data from. Usually you’ll receive the data in a nice format, like JSON
or CSV files. In the worst–and sometimes the most lucrative–cases the media is not in any
format you can use, and you have to manually extract what you need.

The Problem
I’m your manager, and I had an idea last night while I drovemy Tesla home. I walked into your team’s office
and mumbled, “US beer consumption as a service for mobile.” I walked out, and your team immediately
had a meeting to implement this brilliant idea. When they finished, the senior developer tasked you with
finding out how much beer is manufactured in the United States every month, but you’re only able to
get the PDF data from the Alcohol, Tobacco, and Firearms Department (ATF). The ATF has the data
in Excel (.xls) format, but the senior developer tells you to use PDF because “we paid for a license to
Adobe Acrobat in 2010.”

The beer statistics are from the TTB division of the ATF on ttb.gov, but use my copy of their 2022 data
at https://learncodethehardway.com/setup/python/ttb/ instead.

https://ttb.gov
https://learncodethehardway.com/setup/python/ttb/

262 LEARN PYTHON THE HARD WAY

Your job is to download that PDF and extract the following data:

• Reporting Period

• Report Date

• Production for Current Month, Prior Year, Cumulative to Date

• Stocks on Hand End of Month for Current Month, Prior Year Current Month

• The difference between Production and Stock on Hand End-of-Month to determine the actual
sales that month

To get you started on the project, you’ll use the pdftotext project, but you’re free to use any project
that can extract text from PDF files.

The Setup
To install pdftotext, use conda:

1 conda activate lpythw
2 conda install pdftotext

How to Code
It seems weird to explain how to code at the end of the course, but this is where I find students have the
most problem getting the code to work. There’s a specific process you can follow that will take you from
start to working software. It won’t be great software, which is why you should also rewrite your solution
once you get it working. If you can do it again, you’ll be confident that it was your actual skills and not
“dumb luck.”

The most viable beginner process is this:

1. Create a file or project right away. Believe it or not, lots of students will sit there staring at the
screen with no files open. Simply making a file or an empty project can be enough to get you
going.

2. Type a description of the problem into the file either directly from the original or in your own
words. You may need to work on this step more in ways you’re familiar with before you write
it into your file. Are you good at drawing? Try doing a diagram of the problem. Can you write?
Try writing yourself an email describing the problem. Then write what you’ve described into the
file so you can convert it to code.

3. Convert this description into a series of comments that describe each step of the solution. To
do this, break up the description from #2 into separate lines for each step, and then add any
additional steps that you feel are not mentioned.

https://pypi.org/project/pdftotext/

EXERCISE 51: WHAT IS DATA MUNGING? 263

4. Pick one of the steps you can do and under the comment write out “pseudo-code” that might
solve that step (also called “p-code”). Pseudo-code is fake code that looks like “rough” Python.
It’s a rough sketch of the Python you need to write that doesn’t worry about syntax or correct-
ness.

5. Once you have a line or two of p-code, convert it to Python code that does what you need. At
this point you should be running the Python you write repeatedly. Don’t go more than a few
lines before you run it. If you write many lines and have many errors, then delete those lines
and do it again.

6. Then go to the next step comment to solve, write more p-code, convert it to Python, run it
repeatedly, and continue until you have some kind of solution.

7. Frequently when doing this you will have to go back to previous lines and fix them as you learn
more information. Don’t feel like this is a “mistake,” because programming requires constant
revision as you gather more information.

When you’re done, take a look at your code and start cleaning it up. Most programmers don’t take this
extra step and their code suffers for it. If you spend some time cleaning out dead code, fixing comments,
removing useless comments, and simplifying what you can, then you’ll be ahead of many programmers.

Finally, when you get a solution, take a long break and then do it again from scratch. You don’t have to
delete your code, but at least move it out of the way and try to not look at it while you make the new
one. If you keep repeating your solutions, you’ll get to a point where you can code most solutions directly
without many of these steps. I still use this process when I’m lost, but I have used it so many times that
I don’t need it all the time.

If doing it again is boring, then give yourself a small challenge. Maybe try a new piece of technology or
a different but similar starting problem. Or, don’t do it again and come back to it when you feel like it.

Process Example
I’ll now give you a tiny example of the previous process. Create a file named ex51.py and put this in
right away:

1 Your job is to download that PDF and extract the following data:
2
3 * Reporting Period

For the demo I’m doing only the first task. You do the rest.

Next I convert this to comments, but I’m going to change “download” to just “open” since I’ll manually
download the file:

1 # open the PDF
2 # extract the Reporting Period

264 LEARN PYTHON THE HARD WAY

Once I have those, I expand on them until it seems like I have a plan:

1 # import modules I need
2 # open the pdf
3 # convert it to text
4 # find Reporting Period
5 # print it

I now have a solid set of steps, so I can put some p-code under each one. I’ll place p-code under all of
them because this is a textual book. If I did each one, the book would be 900 pages long. You should do
one at a time and get each one working before doing the next one.

1 # import modules I need
2 import pdftotext
3 import sys for argv
4
5 # open the pdf
6 infile = open sys argv[1]
7
8 # convert it to text
9 pdf = pdftotext infile

10
11 lines = split pdf
12
13 # find Reporting Period
14 for line in lines
15 if line starts with "Reporting Period"
16 # print it
17 print line

You’ll notice the p-code is very similar to the Python, and eventually you’ll just write the Python. Once I
have the p-code, I convert it to Python and have this final result:

Listing 51.1: ex51.py

1 # import modules I need
2 import pdftotext
3 import sys
4
5 # open the pdf
6 infile = open(sys.argv[1], "rb")
7
8 # convert it to text
9 pdf = pdftotext.PDF(infile)
10
11 lines = "".join(pdf).split("\n")
12
13 # find Reporting Period
14 for line in lines:

EXERCISE 51: WHAT IS DATA MUNGING? 265

15 if line.startswith("Reporting Period"):
16 # print it
17 print(line)
18 else:
19 print(line)

At this point though, the code is incomplete because it prints only that line, and you need the next line.
This is on purpose, so you’ll have to solve it yourself. I suggest taking the time to get this code working
and then try to actually solve the given problem and get the Reporting Period from the input. It should
be the next line.

Solution Strategies
The simplest thing to do is figure out when you receive numbers in the output and simply extract the right
ones. This is a good first step to get something working, but counting lines is not very robust. It might
work on one PDF and then next month it fails because one line moved.

The next thing you can try is using these two regular expressions:

1 numbers = re.compile(r"^[,\d\s]+$")
2 ignore = re.compile(r"^\s*$")

You can determine if a line has numbers or should be skipped with the .match() function like this:

1 numbers.match(line)
2 ignore.match(line)

A “regular expression” is a way to match patterns on the input, and regular expressions are insanely
useful to learn at some point. For this exercise, you can just use the ones I gave you and read the official
Python regex docs for more information.

With these regex matching lines, you have a way to filter out anything but numbers. If you can get a list
of numbers, then simple indexing to the number you want will work better.

The next way to solve this is to detect every line by its pattern and fill in a large dict or class with all
the data. As you find lines, you take out data that’s in the line, ignore lines that have no data, and then
confirm you’re getting the right ones as expected. This version uses parsing to confirm that you’re still
getting the same format, so if you get a new PDF that has lines out of order, you detect it.

There are lots of other ways to solve this, but try these to see how you do it. I believe you could spend
quite a while on this exercise, possibly a week or two. Data munging has quite a lot of depth to it for such
a simple problem, and there’s a lot of technology you can play with. Take your time and enjoy it.

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

266 LEARN PYTHON THE HARD WAY

Awesome ETL Tools
You’ve completed a small project to get a test of ETL. You should now spend some time researching
and playing with more tools.

• https://github.com/spotify/luigi

• https://petl.readthedocs.io

• https://airflow.apache.org

• https://www.bonobo-project.org

• https://pypi.org/project/pdftotext/

• https://docs.python.org/3/library/re.html

All of these are projects for different aspects of the Extract, Transform, and Load process. Some like
Luigi manage the entire process with various GUIs and tools to visualize what’s happening.

I suggest you attempt to install and play with as many of these as you can if you’re interested in this part
of data science. There’s always a need for people who like wrangling bad data, and it’s not a difficult
topic to learn. That’s why I like it as a great beginner topic of study.

Study Drills
1. Run this on all of the PDFs for 2023 and produce a report on the reports.

2. If your parser isn’t able to handle all the reports in 2023, then consider improving it so that it’s
more robust.

3. One thing all data munging tools needs is a “exception log.” An exception log reports what parts
of what inputs have badly formed data while possibly saving the actual data for later inspection.
You need this because you don’t want one bad PDF destroying the entire ETL process, but you
do need to go back and fix the problem to rerun it. Make an exception logging system for your
tool.

4. Look at the dbmmodule in Python to store the data to disk. For this application the dbmmodule
isn’t great, but it is useful for basic storage. The last three exercises will cover SQL and SQLite3,
which is far better.

https://github.com/spotify/luigi
https://docs.python.org/3/library/dbm.html
https://docs.python.org/3/library/sqlite3.html
https://github.com/spotify/luigi
https://petl.readthedocs.io
https://airflow.apache.org
https://www.bonobo-project.org
https://pypi.org/project/pdftotext/�
https://docs.python.org/3/library/re.html

This page intentionally left blank

268

EXERCISE 52

Scraping Data from the Web

T he two most popular uses of Python are data science and web scraping because web scraping
typically feeds data to your data science pipeline. If you have an application that needs beer sales,

then scraping it off the ATF TTB website is probably your only solution. If you need to train a GPT model
on text, then scraping it off various forum websites is a good option. The web has so much data available;
it’s just in unfriendly visual formats.

Web scraping is also a great beginner topic for many of the same reasons as data munging:

1. It’s something everyone understands because they use browsers all day long. Most people
have some concept of what a web page is.

2. Web scraping doesn’t require a ton of theory or computer science knowledge. You just need a
way to get a web page and parse raw HTML for what you want.

3. It’s easy to manually download a page you want to study and then work on it for as long as you
want.

4. Just like data munging, the code is almost never “elegant.” You’re free to create the worst hacks
possible to get it working and then refine later.

5. It’s also a very important part of many data science projects. Data science needs data. The
web has a ton of data.

6. Web scraping also leads you to automated testing of web applications, so you can do double
education by learning to test.

Introducing with
I want to include at least one advanced concept in each of these projects. In this project I want you to use
the with keyword. The with keyword creates a block that ensures its resource is cleaned up when the
block exits. It’s used with files mostly but works with anything that needs to be open and closed reliably.
Here’s a simple example:

1 with open("test.txt") as f:
2 print(f.read())

This will print() the contents of the file test.txt, but when the with block exits, it will automatically
call f.close() to clean it up. This means if test.txt isn’t there, you won’t have a dangling open file.
In the starter code I show you how to use this to create a “cache” of the page you’re working on to save
time.

EXERCISE 52: SCRAPING DATA FROM THE WEB 269

The Problem
The senior developer on the team rolls their chair to your desk, wipes Cheetos dust off their fingers, and
slicks back their purple hair before asking, “So how’s it going?” You explain that you manually download
the PDFs, and the senior developer looks at you puzzled. “Man…ually? What’s that? Like, you use your
hands to download files off a website? Gross.” They then slowly scoot their chair away from youmumbling
“gross” every few pushes of their legs before reaching their desk, saying “eww,” and turning to their own
computer.

I guess you need to automatically download the PDF files? The senior developer is right. Downloading
these PDF files manually is annoying and error prone. It’s much better to write a Python script that
downloads the files and extracts the data for you. Web pages may contain data, but they’re designed
for people to read, not computers. To solve this problem, you’ll use a project to “scrape” the data off the
web page and download the PDF files you need.

Your tasks are the following:

1. Write a python script that can download the PDFs for each month/year from the ttb.gov website.

2. Be nice to this website and limit your script to only five PDFs until it’s working.

3. Use the disk to cache the pages and PDFs so you aren’t hammering the website. This also
helps you work quicker since you aren’t waiting for the internet.

4. Once you’re able to reliably get all the PDFs, you should integrate your statistics extraction
from the previous exercise to produce full statistics.

5. It might be time to officially create a project and write automated tests for your code. The next
exercise will require you to rewrite some of this, so having tests will make this quicker and
easier.

Once again, this topic is very deep, and you could spend a good month exploring everything about web
scraping. Take your time with this, and learn as much as possible.

The Setup
You should already have the BeautifulSoup project installed, but confirm that first:

1 $ conda list beautiful
2 # packages in environment at ~/anaconda3:
3 #
4 # Name Version Build Channel
5 beautifulsoup4 4.12.2 py311hecd8cb5_0

You should also have the lxml project, but install the html5lib project as an alternative:

1 conda install html5lib

https://www.ttb.gov/statistics/ttb-beer-2023-statistics
https://pypi.org/project/beautifulsoup4/

270 LEARN PYTHON THE HARD WAY

That will set you up for the rest of the exercise, but remember you can use anything that gets the job
done. I give you suggestions so you can start quickly, but if you know of better tools, feel free to use them.

The Clue
To accomplish this problem, you’ll need some basics:

1. How to download a URL

2. Saving it to disk so you don’t have to rely on the network while you work

3. Loading it with BeautifulSoup

4. How to use with

Here’s a small piece of starter code to get you going:

Listing 52.1: ex52.py

1 from bs4 import BeautifulSoup
2 from urllib import request
3 import os
4
5 if not os.path.exists("ttb_stats.json"):
6 with open("ttb_page.html", "wb") as f:
7 resp = request.urlopen("https://learncodethehardway.com/setup/
8 Ç python/ttb/")
9 body = resp.read()
10 f.write(body)
11 else:
12 with open("ttb_page.html") as f:
13 body = f.read()
14
15 # change this to lxml intead of html5lib if you can't use it
16 soup = BeautifulSoup(body, "html5lib")
17 print(soup.title)

I recommend that you read this code, take some notes, and then attempt to rebuild it from scratch so
you can own this solution. My clues are mostly to get you going since that’s usually the hardest part for
beginners, but eventually you’ll need to get started on your own. Might as well practice that now, even if
you have a bit of help.

Awesome Scraping Tools
As with the data munging exercise, you can investigate many tools for web scraping:

• Requests is an easier to use HTTP client than urllib

• Playwright actually runs Chrome or Firefox to simulate an entire browser. If you need more
complex web scraping, then this is where to go, but it is harder to use.

https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/requests/
https://playwright.dev
https://learncodethehardway.com/setup/8

EXERCISE 52: SCRAPING DATA FROM THE WEB 271

• Scrapy is a more extensive web scraping library that is maintained by Zyte, which also offers
a scraping hosting system.

• commoncrawl.org is a free open repository of web crawl data. No point in crawling when they’ve
done it for you.

Study Drills
1. Your caching system should look at the headers from request.urlopen() to determine

when the website changed. You’ll need to keep track of when these files changed, and if the
website updates, you’ll update your cache. Keep in mind you’ll need to to do this for each file,
not if one site changes. Also look into the E-Tag header as another indicator of change.

2. You can make an OPTIONS request to get the date of the files before downloading them. Figure
out how to do that with urllib.

https://scrapy.org
https://www.zyte.com/scrapy-cloud/
https://commoncrawl.org
https://docs.python.org/3/library/urllib.html

272

EXERCISE 53

Getting Data from APIs

I n this exercise you’ll access the application programmer interface (API) I use for my learncodethe-
hardway.com website. In web development, an API is usually a combination of the following:

1. A web server that you can access with the HTTP protocol. You used HTTP when you used
urllib to get the beer production PDFs from the ttb.gov website. HTTP is also what your
browser uses to display the web application to you.

2. This web server responds in some data format that’s easily parsed. This is what differentiates
a PDF from an API. Sure, you’re getting data on beer production from ttb.gov, but you have
to parse that data out of a PDF. An API gives you the data ready to go in a format that loads
directly into your application with no manual parsing.

3. A higher level API will provide features to discover how the API works automatically. This is a
more advanced feature of APIs, but many of them will have an initial URL that describes the
API, and then each piece of data will describe what’s allowed and link to related elements.
There is no official standard on how this is done, but if it’s available, it’s nice to have.

I use an API in my web application that conforms to #1 and #2, but only partially to #3 since I don’t
actually care if other people can dynamically figure out how to use my API. List item #3 is a common
practice since private APIs are made for a specific application written by the API owners, while public
APIs are intended for anyone to use and discover. I chose my private API because many times those
are the most useful because other people are too lazy to reverse engineer them.

INFO Please do not download the raw video or HTML files for the course since that will
most definitely crush my little web server. This also violates the TOS.

Introducing JSON
The primary format you’ll encounter in APIs is JavaScript Object Notation (JSON). JSON is a standard
data format for transmitting data with a simple strict format that people can still read. The syntax comes
from JavaScript, but it’s generic and looks similar to Python’s dict syntax as well. You should read the
JSON specification at json.org to get an idea of it. Here’s an example JSON snippet from my API:

1 {
2 "id": 3,
3 "created_at": 2023-08-25 06:36:35,
4 "updated_at": 2023-09-17 01:07:41,

https://learncodethehardway.com
https://learncodethehardway.com
https://docs.python.org/3/library/urllib.html
https://ttb.gov
https://ttb.gov
https://www.json.org/json-en.html

EXERCISE 53: GETTING DATA FROM APIs 273

5 "title": "Learn Python the Hard Way, 5th Edition (2023)",
6 "description": "The 5th Edition of Learn Python the Hard Way released in

Ç 2023.",
7 "price": 20,
8 "currency": "USD",
9 "currency_symbol": "$",
10 "active": 1,
11 "slug": "learn-python-the-hard-way-5e-2023",
12 "category": "Python",
13 "created_by": "Zed A. Shaw"
14 }

As you can see, this could easily be Python data, and it would work in many other languages. This syntax
for key=value storage is very old, and many languages adopt it, which is why JSON is so easy for other
languages to use.

The Problem
The CEO of the company told my boss—who told me—that the CEO thinks I’m not working hard enough.
She read in CIO Magazine that watch time is the most important metric on YouTube—and since
learncodethehardway.com has videos, that means it’s exactly like YouTube. The CEO thinks I should
measure the total watch time to prove I’m working hard. I immediately run into your team’s office—wiping
my nose repeatedly for some reason—and yell, “Quick! Watch time! Videos! Stat! Stop everything!” Then
I run out, jump in my Tesla, and go golfing with the CEO to make sure she knows I still exist.

The team stops everything and has another meeting, and the senior developer tells you that they’ll work
on the problem, but also the CEO wants you to work on the problem to “send out as many feelers as
possible on this synergy.” Not sure what that means but looks like you’re duplicating the work of the
senior developer? Who cares—it’s not your money; it’s the investors’ money!

My website learncodethehardway.com has a simple API for the courses I sell. Each course has modules,
modules have lessons, and lessons have media. I’m fairly lazy, though, so I want you to calculate how
much watch time all of my videos have. Your script should have the following features:

1. You’ll have to discover the data and its rules on your own. The senior developer is too busy.
The Clue provides a small starter that will let you get JSON output to analyze and discover
each piece of data.

2. The script should output watch time (aka minutes of video available) per course, module, and
lesson as individual CSV files.

3. I don’t make enough money to have you thrashing my website with your buggy API downloader.
You’ll need to cache your results when you get them working. One key to getting this right is
that all data has some kind of updated_at field that’s updated when it changes.

https://docs.python.org/3/library/csv.html

274 LEARN PYTHON THE HARD WAY

Each API will tell you how to access it, so it’s simply a matter of sorting out what you’re getting back and
how to analyze it. This exercise is intentionally vague so you have to figure it out. Figuring things out with
limited information is a huge part of creating your own software.

The Setup
For this exercise you’ll be using the requests project to access the API of learncodethehardway.com.
You install it like normal:

1 conda activate lpythw
2 conda install requests

Requests is nice for accessing APIs, but be careful if you have to download anything large as it might
have issues with buffering the entire download into memory at once.

The Clue
The learncodethehardway.com API is fairly simple and supports four URLs you can access:

• /api/course—The main URL to get a list of available courses

• /api/module—How to get information for a module

• /api/lesson—Information on individual lessons

• /api/lesson_media—Details on every media that lessons access, which is extracted with
ffmpeg

When you access these APIs, they’ll tell you their rules for accessing them. You can use this starter code
to get going:

Listing 53.1: ex53.py

1 import requests
2 from pprint import pprint
3 import sys
4 import csv
5
6 api_url = "http://learncodethehardway.com/api/course"
7
8 # list all courses
9 r = requests.get(api_url)
10 data = r.json()
11 pprint(data)

https://requests.readthedocs.io/en/latest/user/quickstart/#make-a-request
http://learncodethehardway.com

EXERCISE 53: GETTING DATA FROM APIs 275

12
13 # get one course, full=true includes all modules
14 r = requests.get(api_url, params={
15 "course_id": 1, "full": "true" })
16
17 data = r.json()
18 pprint(data)
19
20 # remember with? use it with csv

Awesome API Tools
• FastAPI—A really great way to quickly generate one of these APIs

• AlpineJS—If you use FastAPI to make a JSON API and you make HTML pages, then Alpine
is an easy way to access the JSON API and, oh, look at that, you have a web framework

• jq—An incredibly useful tool for querying and viewing JSON data

• curl—Useful to get data off websites from the command line. Try curl SOMESITE | jq to
get easy pretty printing of JSON data

Study Drills
1. What other information about the media in the courses can you discover? What information is

automatically dumped out of ffmpeg?

2. Find other APIs and try to work with them too.

https://fastapi.tiangolo.com
https://alpinejs.dev
https://jqlang.github.io/jq/
https://curl.se/
https://ffmpeg.org/

276

EXERCISE 54

Data Conversion with pandas

W e’ll now explore pandas, which is the main way data scientists work with data. It’s also a useful
project outside of data science, so it’s worth using no matter what your future holds. The main

things pandas provides are data conversion and a DataFrame structure, which is used bymany statis-
tics and mathematics applications. We’ll explore the concept of a DataFrame in the later exercises.

In this exercise, you’ll use pandas to take the CSV file you created to output various formats for your
bosses. You’ll also use a tool called Pandoc to generate this report. You don’t have to use Pandoc, but
it is an insanely useful tool for doing reports in various formats.

Introducing Pandoc
Pandoc’s job is to take one text format and convert it to another format. It can take Markdown files and
convert them to HTML, PDF, ePub, and many other formats. This means you can write reports in nice,
easy to write Markdown and then convert them to any format that’s required for the job. Need to submit
a LaTeX file to a journal? Pandoc. Need to submit HTML to the web server team? Pandoc.

The Problem
I don’t like your CSV files from the previous exercises. They’re so unprofessional. I’m a lazy manager
who doesn’t have time to find a way to view them on my phone. I have Jira tickets to create with only
titles! My boss is too busy playing golf with the CEO. What do you think we are? Workers? Pfft. That’s
your job.

You need to convert these CSV files you have to a few formats for me, my boss, and the CEO:

1. I want an Excel .xls file I can load into Microsoft Excel (aka Boomer pandas).

2. My boss wants an HTML file with the table in it that I can email and pretend I made it.

3. The CEO just wants a PDF with big numbers on it summarizing the total watch time available.
Don’t pester her with details! She has investors to defraud!

The best way to approach this problem is:

1. Use csv to open your CSV file from the previous exercise. Yes, you could just generate the
document directly, but let’s pretend that a senior developer is throwing these CSV files over the
wall at you, so you’re stuck with them.

2. You then use pandas to convert the loaded data directly to an .xlsx file.

https://pandas.pydata.org
https://pandoc.org/
https://pandoc.org/
https://commonmark.org
https://docs.python.org/3/library/csv.html

EXERCISE 54: DATA CONVERSION WITH PANDAS 277

3. Once you have the pandas conversion working, you’ll need to get it into the .xlsx file format.

4. Use Pandoc to produce the reports to my boss and the CEO. Your script should output Mark-
down but use Pandoc to produce a PDF and HTML report.

5. When running Pandoc, you should use the subprocess module to run it efficiently and control
it with Python.

The Clue gives you almost 80% of this solution, but the real work will be the reporting requirements and
using the CSV files you’ve been given. Keep in mind that this is a completely fake problem for you, but
in real life you run into this kind of scenario constantly. You’ll rarely get very clean data directly from
another data source. Instead, you have PDF, .xls files, .csv files, raw JPEG image scans, or even
weirder formats you’ve never heard of before. Becoming good at handling bad data is a fantastic way to
get into data science. Data munging is something everyone needs, but many people don’t particularly
like to do it because it’s “beneath” them.

The Setup
To use the pandas Excel output, you’ll need to install openpyxl:

1 conda activate lpythw
2 conda install openpyxl

Once that’s installed, the code in The Clue should work.

The Clue
This code does more than the previous code, but I feel you’ll need more help to get the pandas part
working so you can work on the reporting and analysis part:

Listing 54.1: ex54.py

1 import csv
2 from pprint import pprint
3 import pandas as pd
4
5 records = []
6
7 with open("ex53.csv") as csvfile:
8 reader = csv.DictReader(csvfile)
9 for row in reader:

10 records.append(row)
11

https://pandoc.org/
https://commonmark.org/
https://commonmark.org/
https://docs.python.org/3/library/subprocess.html
https://openpyxl.readthedocs.io/en/stable/

278 LEARN PYTHON THE HARD WAY

12 # do you analysis here
13
14 df = pd.DataFrame(records)
15
16 pprint(df)
17
18 df.to_excel("ex54.xlsx")

You have a few ways to approach this:

1. Load the CSV and just use plain old Python to do the analysis. After you get an analysis
working, use DataFrame.to_excel() to output the results. This might be a good first step.

2. Skip ahead to Exercise 55 to learn more about pandas and use that to do the analysis. You’ll
eventually have to do this in a later exercise, so if you find this one is too easy, then start
learning pandas now.

Study Drills
1. Can you round-trip your results and produce a JSON API with FastAPI? This is an advanced

task, but if you can pull it off, you’re winning.

2. How many other formats can you output with pandas? Try to produce a few more files.

https://pandas.pydata.org/docs/user_guide/index.html

This page intentionally left blank

280

EXERCISE 55

How to Read Documentation

(Featuring pandas)

T his exercise is going to teach two very important skills. First, you’ll learn about pandas and its
DataFrame construct. This is the most common way to work with data in the Python data science

world. Second, you’re going to learn how to read typical programmer documentation. This is a far more
useful skill as it applies to every single programming topic you will ever encounter. In fact, you should
think of this exercise as using pandas to teach you how to read documentation.

INFO For this exercise you are free to switch back to Jupyter to make exploration and
documenting what you learn easier. If you then want to make a project using pandas, you
can take what you learn with Jupyter to create it.

Why Programmer Documentation Sucks
There’s a concept in painting called “the gestalt.” The gestalt of a painting is how all of the parts of a
painting fit together to create a single cohesive experience. Imagine I paint a portrait of you and create
the most perfect mouth, eyes, nose, ears, and hair you’ve ever seen. You see each part is perfect and
then you pull back, and when placed together…they’re all wrong. The eyes are too close together, the
nose is too dark compared to everything else, and the ears are different sizes. On their own, they’re
perfect, but when combined into a finished work of art, they’re awful because I didn’t also pay attention
to the gestalt of the painting.

For something to have high quality you have to pay attention to the qualities of each individual piece
and how those pieces fit together. Programmer documentation is frequently like this awful portrait with
perfect features that don’t fit together. Programmers will very clearly and accurately describe every single
function, the nuances of every option to those functions, and every class they made. Then completely
ignore any documentation that describes how those pieces fit together or how to use them to do anything.

This kind of documentation is everywhere. Look at Python’s original SQLite3 documentation and then
compare it to the latest version that finally has “how to use” placeholders. That’s a fairly important topic
you need for good security and it’s…just casually ignored for about a decade?

Learning from this documentation requires a particular style of reading that’s more active. That’s what
you will learn in this exercise.

https://pandas.pydata.org
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html#how-to-guides

EXERCISE 55: HOW TO READ DOCUMENTATION (FEATURING PANDAS) 281

How to Actively Read Programmer Docs
I won’t force you to suffer through really bad documentation. Instead, you’ll take a baby step and learn
how to read documentation using the pandas documentation. The pandas documentation is good. It at
least has a quick start guide to get you going, cookbooks, how-to guides, an API reference, and lots of
examples. Everything is clearly described, but when you read it, you’re still kind of lost because it’s a lot
of documentation spread all over with no clear guide.

This is where active reading comes into play, and it’s something I’ve had you do for this entire course
by making you type in code and change it. Reading programmer documentation actively means you
have to type in the code as you read, change the code to find more, and apply what you learn to your
own problems to learn how to use what you learn. Your goal with this process is to find the gestalt the
programmers ignored.

Step #1: Find the Docs
The very first thing you should do is find the docs. You might laugh, but sometimes that’s a difficult first
step. Important questions to ask:

1. Are you looking at the right version of the docs? This is a very common problem in Python and
JavaScript because sometimes the old documentation is more popular in Google than new
documentation.

2. Is this documentation a guide or an API description? You need at least a guide and API docu-
mentation. You actually need more than that, but if a project has only API documentation, then
you’re going to have to work much harder to learn it. A guide is where you want to start.

3. Is there a cookbook or how-to guide with lots of examples? You’ve found a unicorn in the world
of programming.

4. What are the most interesting topics to you? Do you have a specific pressing need? Is there a
document covering this topic?

Step #1 with pandas

Let’s go through the pandas documentation and answer each of these questions:

1. Yes, it looks like the documentation is the right version.

2. The /docs/ has both guides and API reference. You’ll need the guide to follow and the API
reference to look up specifics about things you use in your own projects later.

3. Yes, there’s both getting started tutorials, which show you how to do various things, and a
cookbook in the User guide with many quick examples.

https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/user_guide/10min.html
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html
https://pandas.pydata.org/docs/user_guide/cookbook.html
https://pandas.pydata.org/docs/user_guide/cookbook.html

282 LEARN PYTHON THE HARD WAY

4. What are the most interesting topics to you? In this exercise you’ll focus on DataFrame, so
any documents that cover that are useful. If you wanted to process many .csv files, then you’d
look for documents explaining loading and saving .csv files.

Step #2: Determine Your Strategy
What do you do if most of these have “No” answers? What if the project only has autogenerated API
docs and not a single document or example explaining how to use the API? First, do you have to use this
pile of garbage? Life’s too short to use software that not even the developers care about, so maybe just
don’t use it. If you really want to use it or have to use it, then you have two complementary strategies:

1. Find guides and example code other people wrote about the project

2. Choose your own small project that will use this project, and spend your time reading the API
docs to get your project working

If the project has everything you need, then you have a couple different strategies:

1. Start with any cookbooks and how-to documents with many examples

2. Start with the guides that walk through each topic the project thinks is important

3. Start with the API docs anyway and try to make your own software using the API

These options are not mutually exclusive. Start with one option, and if it’s not working, switch to another.
Keep doing this until you understand enough to use the project or study further.

Step #2 with pandas

In the pandas example, we have everything we need except an overall guide telling us where to go, so
that’s why you need a strategy. I have three complementary strategies in this situation:

• Start with the cookbooks and how-to documents and use them as a guide to dive deeper into
related documentation.

• Start with the deeper user guide and as you go through it read cookbooks and how-to docu-
ments to get practical examples.

• Try to make something using the API reference. Sometimes this is the best strategy if you are
hot to work on an idea, but don’t get discouraged if it’s too hard. If you get stuck, switch to the
other strategies.

https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html
https://pandas.pydata.org/docs/user_guide/index.html#user-guide

EXERCISE 55: HOW TO READ DOCUMENTATION (FEATURING PANDAS) 283

Step #3: Code First, Docs Second
This will seem counterintuitive, but when reading programmer documentation, you will have more suc-
cess if you start with the code and then read about it. This works because the code is something you
can experience and that experience gives you a better understanding of what’s being said in the docu-
mentation.

Step #3 with pandas

Let’s look at the 10-minute guide to pandas as an example. Right away there’s this code:

1 import numpy as np
2 import pandas as pd
3 s = pd.Series([1, 3, 5, np.nan, 6, 8])
4 # this prints it in Jupyter
5 s
6 dates = pd.date_range("20130101", periods=6)
7 # print it in Jupyter
8 dates

This code is spread across multiple short descriptions about the code, so you type each example in
first. Once it’s working, change it around and then read the descriptions. This will make the descriptions
easier to understand.

However, if you read the descriptions first, this is what you read:

1 Customarily, we import as follows.
2
3 Creating a Series by passing a list of values, letting
4 pandas create a default RangeIndex.
5
6 Creating a DataFrame by passing a NumPy array with a
7 datetime index using date_range() and labeled columns:

Those on their own or with a quick glance at the code make almost no sense. After you get the code
working, these sentences help fill in gaps in your understanding. They also link to more documentation
on what you just used.

Step #4: Break or Change the Code
After you get a piece of codeworking, take the time to break it so you can see how errors are handled. One
massive blocker for beginners is deciphering the convoluted error messages programming languages
produce. There’s almost a weird art to reading them and using Google to find the answer. One of the

https://pandas.pydata.org/docs/user_guide/10min.html

284 LEARN PYTHON THE HARD WAY

ways to learn the “language of terrible errors” is to expose yourself to as many errors as possible on
purpose so you can study them.

The second thing to do is ask if you can do something and then try to do it. You’ll ask, “How do I give a
series a different index?” Or, you might ask, “How can I pass a series to a DataFrame?” The kinds
of changes you want to focus on are combinations of things you just learned.

Step #5: Take Notes
A key aspect of learning to code (or anything) is explaining what you’ve learned back to yourself. The
best way to do this while you’re working is to have a notes.txt file in the directory where you’re putting
the code you write. In this notes.txt file, write down questions you have, things you discover, and
comments about what you’re learning.

Another important part of the notes.txt file is links. You should be recording links to what you read
or what you need to read as you work. This will help you later when you need to remember where you
read about something.

Step #6: Use It on Your Own
The entire purpose of this last module is to move you from someone who knows Python to someone
who can use Python to express their own ideas. After you feel you have enough understanding of the
project, you should try to make something of any size with it. This is when you will switch to relying more
on the API reference than the other documentation.

Step #6 with pandas

If you’re stuck and can’t think of anything to create, then take an example from the cookbook or how-to
documents documentation and modify it to do something new. Maybe you have it load the data from a
SQL database or change the data used.

Step #7: Write About What You Learned
When I think of painting, writing, and programming, I think of them as mediums for articulating my au-
tomatic thoughts, experiences, and feelings so I can consciously understand them. Painting helps me
understand what I see. Writing helps me understand what I know and feel. Programming helps me un-
derstand how to do something.

I spend all day using my eyes to see the world, but it’s only when I try to paint what I see that I start to
consciously understand what I’m seeing. Painting forces me to consciously understand the automatic
way my visual system processes the world.

https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/user_guide/cookbook.html
https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html
https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html

EXERCISE 55: HOW TO READ DOCUMENTATION (FEATURING PANDAS) 285

Programming forces me to structure my understanding of how something works into logical steps and
structures. After I turn a process or idea into code, I understand how it could actually work.

Writing helps me organize my almost random thoughts into a coherent conscious structure. The act
of organizing all of my thoughts into an essay that makes sense and flows naturally helps me further
understand my ideas.

More importantly, each of these mediums—painting, programming, and prose—force me to explore what
I don’t know. Externalizing my knowledge in these ways gives me a glimpse into my brain. I can look at
a painting and say, “Well, it looks like I have no idea what this flower actually looks like.” I can study code
and see, “I clearly have no idea how this algorithm is supposed to work.” I can read through an essay
and see, “I really don’t know how to explain what I’m feeling about this topic.”

This is why you should write about what you’ve learned. You don’t have to show it to anyone or be a good
writer. Your writing doesn’t have to be original. I’ll tell you, 99% of all writing is not original. The point is
not to impress other people with how clever a writer you are. The point is to explain to yourself what you
know so you can see if you actually learned something.

Step #7 with pandas

For Step #7 I want you to write at least 8–10 paragraphs teaching someone else what you’ve just learned
about DataFrames. How would you explain the DataFrame to someone who knows Python? What is
your best advice on how to use it? Are there any things to avoid when using it?

Another option is to write your own curriculum to learn the pandas DataFrame. If you were to write
a guide for someone else, what links should they read in order to best understand it? For each link,
describe what they learn at that stage and how it relates to the previous link they studied.

A final option is to use Jupyter to create a notebook that demonstrates and explains everything someone
else would need to learn. I suggest first writing a short version of the curriculum idea and then turning
that into a structured notebook that follows the curriculum.

Step #8: What’s the Gestalt?
The final step in this process is to ask yourself, “What’s the big picture for this project?” This is a more
abstract step and should fall out naturally from your writings and notes, but being able to summarize the
project will give you a mental framework to hold everything else you learn.

Your understanding of the project might be different from the authors, but your description of the project
is more for you than a general statement for everyone.

286 LEARN PYTHON THE HARD WAY

Step #8 with pandas

If I were to summarize the purpose of pandas, I might have several “gestalt statements”:

• “pandas’ purpose is to provide Pythonwith higher-level features commonly found in other statis-
tics and math languages like R, SAS, and Mathematica”

• “pandas gives an easier way to load, structure, and manipulate tabular data for analysis”

Am I right? What did you come up with? Does it help you understand pandas better?

Reading My pandas Curriculum
While it is useful for you to learn how to read documentation and devise your own curriculum, I also feel
you might need one provided by me. The problem is, projects frequently change, and I want this course to
last longer than the next version of pandas. To solve this problem, you’ll need to visit https://learncodethe
hardway.com/setup/python/ to get the latest updated curriculum.

https://learncodethe hardway.com/setup/python/
https://learncodethe hardway.com/setup/python/

This page intentionally left blank

288

EXERCISE 56

Using Only pandas

I n this exercise you’ll take the mess of random scripts you’ve made and create one clean tool that uses
only pandas for the entire process. You’ll do this for both the TTB beer statistics and the video watch

time for my website.

Make a Project
It’s time to get cleaned up and make a project for this exercise. You don’t need to install this project, but
it should have all the required project files, automated tests, a README.md, and the scripts necessary
to run your tools.

The Problem
You’ve been promoted! I got tired of the senior developer who was only able to produce CSV files, and
now you’re in charge of my beer and video watch time empire. I want you to create a single tool that does
everything you’ve learned from Exercise 51 to now. The solution I want should have all of the following
features:

1. pandas to the bone. You should use pandas for everything you can including converting data,
transforming it, and producing reports.

2. The TTB offers .xls files, so ditch the PDF parsing. What was I thinking?!

3. Your tool should handle command-line options that allow me to produce an HTML or PDF
report for either TTB beer statistics or my website’s watch time.

4. I want tests! Automated tests that hit at least 90% coverage or you’re fired! Turn in your badge!
Pack up your desk! You’re not getting your $0 per month paycheck!

5. Don’t crash my server! You should cache data from the TTB and my webserver so your tool
runs fast.

6. I need an option to tell it to force download everything in case your caching doesn’t work.

7. You’ll get a bonus if you use Git to maintain your code, make your reports pretty, and come
up with novel ways to show me the data.

Feel free to get creative with this project so long as you’re using pandas to produce these reports.

https://git-scm.com/

EXERCISE 56: USING ONLY PANDAS 289

The Setup
You should have everything you need to get this to work, but I highly suggest you create a new conda
environment for this project:

1 conda deactivate
2 conda create ex56

Obviously you don’t have to call it ex56. You could call it “beertime,” “lastpaycheck,” “señordev,” “señora-
boss,” or whatever you want. The point is to have fun and don’t take it too seriously…but also I’ll fire you
if you don’t get it right.

Study Drill
1. This might be a tough drill, but see if you can make a web user interface for this project instead

of a command-line tool. Don’t worry if this is beyond your grasp, but attempting something
beyond your skills is a great way to learn. I suggest checking out FastAPI and Alpine.js
for a possible solution to making a user interface and API for it.

https://fastapi.tiangolo.com/
https://alpinejs.dev/

290

EXERCISE 57

The SQL Crash Course

Y ou can’t do science without data, and the most widely used language for storing and managing
data is SQL. Many “no-SQL” databases have some language that looks quite a lot like SQL. That’s

because—for all its faults—SQL is a fairly well thought out language for specifying the storage, querying,
and transformation of data. Learning SQL basics can only help you in data science, but there’s another
important reason why I feel SQL is a great way to end the course:

I don’t want this course to only be about data science. I use data science and Python as a
theme to teach the basics of programming. They are simply tools that help me with my goal of
teaching you how to use a computer to express your thoughts and ideas.

SQL shows its face in every part of the technology industry and in many personal projects. Your phone
has a 100% chance of having numerous SQLite3 databases on it. Your computers all have SQLite3
databases on them. You find SQL in web applications, desktop applications, phone applications, and
even video games. If it’s not in an application you install, there’s most likely a SQL database somewhere
between you and some other computer on the internet. Even if something doesn’t use a SQL database,
it is most likely using something that is very similar to one.

That means learning SQL will not only benefit you as a data scientist, but it’ll also benefit nearly every
aspiring programmer no matter what journey they take in the medium.

What Is SQL?
SQL is a language that enables the management and querying of a group of tables in a database using
a mostly declarative structure. This is a large sentence to unpack, so let’s break it down in small pieces:

• “SQL” is usually pronounced “sequel” as in Batman Returns was a terrible sequel to the excel-
lent Batman with Michael Keaton.

• “is a language” means that there is a syntax similar in the same way Python or JavaScript have
defined syntax that you must learn.

• “that enables” means it will allow you to control the data structures utilized in your database
with that language.

• “the management” means you can use SQL to control not just what’s in a table but also what
defines a table and many aspects of how the database software operates.

• “and querying” means SQL also provides a way to extract data out of multiple tables to answer
questions you might have. SQL’s ability in this regard is so strong you can sometimes (many
times?) replace complicated Python data science code with a few SQL queries.

https://sqlite.org

EXERCISE 57: THE SQL CRASH COURSE 291

• “of a group of tables in a database” means you aren’t restricted to only one table at a time but
instead can run SQL across many tables in the database. This also implies a major advantage
of SQL over a system like pandas: relations. SQL isn’t concerned with only the contents of a
table but also how tables are related to each other.

• “using a mostly declarative structure” is tough to explain, but think of it as defining the results
you want rather than explaining exactly how to get them. Rather than saying “for every row of
the person table give me x,y,z,” you’d say “give me x,y,z of the person table,” and SQL figures
out how to make that happen. Python by comparison is considered “imperative,” which means
you actually specify exactly how to generate the results you want.

• “…mostly…” means that while SQL is declarative, it also has certain situations where the order
of statements matters. In a fully declarative language, the order of statements does not matter,
which is why SQL is only mostly declarative.

Our next goal is to learn the initial SQL language and use it on a simple but fun data set, the European
Central Bank’s historic Euro exchange rate data.

The Setup
To complete these next exercises, you’ll need to install sqlite3 program, but there’s a high probability
that it’s already installed on your computer. Open a Terminal window and type:

1 sqlite3 euro.sqlite3

This will start a prompt that’s inside sqlite3 and you can quit with:

1 .quit sqlite3

If that works, then you’re done setting up sqlite3. If you do need to download it, then find the appro-
priate link for your OS on sqlite3.org.

The next thing you need is the data from the European Central Bank’s historic Euro exchange rate data
set. You can download the latest at https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip.

INFO If this data is missing, you can refer to the https://learncodethehardway.com/setup
/python/ link to see if I have an updated source for the data or an alternative .csv to use.

Once you download this file, you can unzip and save the .csv file inside to your work directory for this
exercise.

https://www.ecb.europa.eu/
https://www.ecb.europa.eu/
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.ecb.europa.eu/
https://learncodethehardway.com/setup/python/
https://learncodethehardway.com/setup/python/
https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip

292 LEARN PYTHON THE HARD WAY

Fixing and Loading
Depending on when you get this data, you might find that it has an additional trailing comma. That means
it’s data munging time! You’ll need to write a small Python script that loads this .csv file, fixes the trailing
column, and then writes a corrected one. As I’ve said many times, data you get from other sources almost
always has some weird problems.

Hint: You can remove the last column using Python’s range syntax, row[0:-1].

I named my file fixed.csv. Once you’ve fixed the data to remove the trailing column, you can load it
into sqlite3 like this:

1 sqlite3 euro.sqlite3
2
3 sqlite> .import --csv "fixed.csv" euro
4 sqlite> select count(*) from euro;
5 6331
6 sqlite>

I’m showing you the sqlite3 shell, so you don’t type in the sqlite> as that’s the prompt. You might
also get a different number from 6331 depending on when you download the file.

You can then look at the rows available with the .schema command, which shows you how the table
euro is defined:

1 sqlite> .schema euro

I’ll cover more on SQL and schemas in the next exercise, but for now it’s simply the rows of a table and
the data types it contains.

Back Up Your Database

As you work, you’ll want to make backups of your euro.sqlite3 database. You’ll be making changes
to it, and you won’t want to go through reloading the entire database when you break it. To back up your
database, do this:

1 sqlite3 euro.sqlite3 ".backup euro_backup.sqlite3"

To recover the database, you copy the file back:

1 cp euro_backup.sqlite3 euro.sqlite3

There are many more sqlite3 dot commands, so use the .help command to find out more, and read
the SQLite3 CLI documentation.

https://sqlite.org/cli.html

EXERCISE 57: THE SQL CRASH COURSE 293

Create, Read, Update, Delete
In nearly every container you use in programming there are four essential operations:

1. Create things in the container, and create containers

2. Read the things in the container, and read meta information about the container

3. Update the things in the container, and update the meta information about the container

4. Delete things from the container, and delete parts of the container’s structure

If you look back at the Python io module, you can see files have all of these elements. You can open
them, create them, update them, read from them, write new things to them, and get information about
the file.

SQL and sqlite3 provide all of these capabilities to a database, its tables, and the contents of those
tables. A good way to map from directories and files to a SQL database is with this structure:

• database is like a directory. The sqlite3 command gives you the ability to create a database
(mkdir), create tables in the database (touch), and delete tables from the database (rm).

• table is like a file in a directory. SQL gives you commands similar to Geany or a text editor,
which makes more sense once you realize…

• row is like a line in a file. If Geany is like SQL, then the rows in a table are edited similar to a
text editor. You can add rows (lines), change the text in the row, delete the row, search for a
row, etc.

Finally we can map the words “create,” “read,” “update,” and “delete”–aka CRUD operations–to opera-
tions you would normally do to a file:

• CREATEmaps to commands such as mkdir, cp, and touch, adding a new line in a text editor

• READ maps to commands such as ls, cat, and grep, searching for lines in a text editor

• UPDATE maps to mv (you’re updating the name) and edits the contents of a line in a file

• DELETE maps to commands like rm and rmdir or deletes a line from a file

Once you understand this, you can start to map each of the main SQL commands to one part of the
CRUD operations. If the links I provide to the SQLite3 documentation are not very helpful, then refer to
Exercise 55 on reading documentation.

SELECT
The SELECT statement is the READ operation of SQL. Its purpose is to take a description of the kind
of data you want and then scan through the table (or multiple tables) to gather the data. The result of

https://docs.python.org/3/library/io.html
https://www.sqlite.org/lang_select.html

294 LEARN PYTHON THE HARD WAY

running SELECT is actually another temporary table. Let’s do a simple query of the ECB data to see how
it works:

1 SELECT date, USD
2 FROM euro
3 WHERE date(date) > date('2023-01-01');

This will get every rate for USD after '2023-01-01' and print a large table with the results. Let’s break
down every part of this so you understand what it’s doing:

1. SELECT starts the statement (also called a “command” sometimes).

2. date, USD are the columns you want from the euro table. If you are selecting from multiple
tables, you can use the table’s name like an object in Python: euro.date, euro.USD

3. FROM starts the list of tables you will be querying.

4. euro is the table you want date, USD to come from. You can specify multiple tables by sep-
arating them with a comma as in Python lists.

5. WHERE starts your selection criteria, which is a Boolean logic expression similar to Python’s
if-statement. This example has only one condition, but you can use AND or OR for more com-
plex selections.

6. date(date) > date('2023-01-01') is because SQLite3 uses various date() functions
to convert data to date objects for comparison.When you want to do date and time calculations,
this is how you do it. This says “every row where date is after 2023-01-01.”

7. Finally, end the statement with a ; (semi-colon). If you don’t, you can get into trouble because
SQLite3 is pretty bad at letting you abort commands you’ve messed up.

Study this and try many different conditions and results. Try to get different currencies and different time
ranges.

Date and Time
You can read more about the SQLite3 Project date functions, but the main thing to understand is SQLite3
really only stores text (or, it used to be that way) and doesn’t actually have a date type. Instead, you use
functions to convert the data to a date before doing comparisons or date/time math.

The most common operations are:

• date('2023-01-01')—turn this into a date.

• datetime('2023-01-01 12:00:00.000')—convert this date+time stamp.

• time('12:00:00.000')—convert only a time signature.

• date('now')—the current date, also works with all three above.

https://www.sqlite.org/lang_datefunc.html

EXERCISE 57: THE SQL CRASH COURSE 295

• date('now', '+1 day', ...)—you can add as many modifiers to the date to set something
specific. The ... I have here isn’t something you type; it’s just my indicator that you can add
more than one modifier.

An important thing to understand about date/time is programmers hate it, so it can cause problems.
Here’s what the SQLite3 Project documentation says as of 2023:

The computation of local time depends heavily on the whim of politicians and is thus difficult to
get correct for all locales. In this implementation, the standard C library function localtime_r()
is used to assist in the calculation of local time. The localtime_r() C function normally only
works for years between 1970 and 2037. For dates outside this range, SQLite attempts to map
the year into an equivalent year within this range, do the calculation, then map the year back.

For most people, the date/time functions in SQLite3 should work if the time on your computer also works,
but if you are using a different calendar, then you might need to confirm that SQLite3 actually gets the
dates right before you rely on them.

INSERT
The INSERT statement is the CREATE operation of SQL. Using INSERT, you can add new rows to a
table, similar to appending a new line to the end of a text document. Let’s add a few more values of USD:

1 INSERT INTO euro (date, USD)
2 VALUES (date('now'), 1.090);
3
4 INSERT INTO euro (date, USD)
5 VALUES (date('now', '+1 day'), 1.087);

Once again, let’s break these lines down so you can understand what they do:

1. INSERT INTO starts the insert statement.

2. euro is the table to append the new row.

3. (starts the list of columns you want to set. If you know the exact order of columns, you can
skip this, but I rarely know all the columns and have to spell them out.

4. date, USD are the two columns we will set. Any columns not listed will get default values or
null. You can also cause an error if a column is defined as not allowing null

5.) closes the list of columns.

6. VALUES starts the values section of the insertion.

7. (begins the list of data to insert. It will match the list of columns you give before VALUES in
the same order.

8. date('now') is how you set this to today’s date.

https://www.sqlite.org/lang_insert.html

296 LEARN PYTHON THE HARD WAY

9. 1.090 is a number for the USD column.

10.); finally ends the list of data, and the ; ends the statement.

The second line is almost the same except I use the SQLite3 date math to calculate one day ahead with
date('now', '+1 day'). You can place as many additional calculations as you want after the first
parameter.

You can use SELECT to see your data, but there’s a problem with this data. The currency names are all
referenced in the INSERT, so when you query this data, you get odd results:

1 SELECT * FROM euro WHERE date(date) > date('now', '-1 day');
2
3 2023-09-21|1.09||||||||||||||||||
4 2023-09-22|1.087||||||||||||||||||

The repeated | bars are empty columns since you inserted nothing for the remaining table columns
when you said (date, USD) in the INSERT. That means each country has null for that day.

In the next exercise, we’ll work on fixing this with “normalization,” which is the process of cleaning up
tables that don’t work well with SQL.

UPDATE
The UPDATE statement will change the data in multiple rows and uses the same WHERE syntax that
SELECT uses:

1 UPDATE euro
2 SET USD=100, date='2048-01-01'
3 WHERE
4 date(date) > date('2023-01-01')
5 AND USD=1.0808;

This is the first time I’m using an AND to do more complicated selection, but an UPDATE is similar to a
SELECT combined with an INSERT even though it’s not adding any new rows. Let’s take this one apart
so you can see what I mean:

1. UPDATE starts the update statement

2. euro is the table to change

3. SET is how you assign new values, which means the syntax is different from INSERT, which
used VALUES rather than column=value

4. WHERE then comes from SELECT and indicates what rows to change

5. date(date) > date('2023-01-01') says every row after 2023

https://www.sqlite.org/lang_update.html

EXERCISE 57: THE SQL CRASH COURSE 297

6. AND USD=1.0808 adds “and also has a USD rate of 1.0808”

7. ; ends the statement

Use what you know of SELECT and UPDATE to undo what you just did. You’ll need to first confirm
this actually worked with SELECT and then use UPDATE to correct the values. Use a backup of your
euro.sqlite3 to get possibly missing data you need for this restoration, but see how much you can
correct without the previous data.

DELETE and Transactions
Finally, the DELETE statement deletes rows from a table. If you want to delete the rows where we set
USD=100, we do this:

1 DELETE FROM euro WHERE USD=1.1215;

As with SELECT and UPDATE, the WHERE clause can take the usual Boolean forms of AND and OR. Let’s
break this one down quickly as well:

1. DELETE FROM starts the delete statement.

2. euro is the table to delete from. I highly recommend you delete from only one table at a time
and instead use transactions (see first paragraph, top of next page) when you need to delete
from multiple tables in one atomic move.

3. WHERE, just like with SELECT and UPDATE, determines what rows to delete. While you should
delete from only one table at a time, you can use multiple tables to determine what to delete.

4. USD=1.1215 applies only to rows where USD is 1.1215.

5. ; ends the statement.

There is one problem with this because what if you accidentally delete too much? You could also use
UPDATE wrong and update too much. It’d be nice if you could add a “safety valve” that prevents the
change from happening if it’s not right. That’s where transactions come in:

1 SELECT count(*) FROM euro;
2
3 BEGIN TRANSACTION;
4
5 DELETE FROM euro;
6
7 ROLLBACK TRANSACTION;
8
9 SELECT count(*) FROM euro;

If you run this, you’ll see the count doesn’t change. Make sure you have a backup, and then change
ROLLBACK TRANSACTION to COMMIT TRANSACTION to see it delete everything.

https://www.sqlite.org/lang_delete.html
https://www.sqlite.org/lang_transaction.html

298 LEARN PYTHON THE HARD WAY

Normally DELETE FROM euro would nuke your entire database with no warning. With BEGIN
Ç TRANSACTION you’re making a “save point” where the work you want to do is protected. You can
do as much SQL as you’d like, and if you want to abort, you do ROLLBACK TRANSACTION. If you want
to commit, you use COMMIT TRANSACTION, and it’ll work.

Transactions are very important when you have a sequence of changes that have to all work. Let’s say
you’re going to update 10 rows and then update another table, but this second update causes an error.
If you don’t have a TRANSACTION, then your first 10 updates actually work, but now your database is
broken because the second update set failed. With a TRANSACTION you can abort when the second
update set fails and nothing happens.

Math, Aggregates, and GROUP BY
SQLite3 Project features a wide range of built-in math functions you can use to perform calculations on
your data. There are also many aggregate functions that perform calculations based on groups of rows,
which you can construct with a GROUP BY clause.

First you can use GROUP BY to group rows by a column. Try this:

1 SELECT date, USD from euro GROUP BY date;

That would give you the USD for each date, but that’s not super useful. It’s better if you combine GROUP
Ç BY with one of the aggregate functions like this:

1 SELECT count(date),
2 date, avg(USD),
3 min(USD), max(USD)
4 FROM euro
5 GROUP BY
6 date(date, "start of month");

That’s a lot better as now we’re grouping the results by month and getting the avg(), min(), and max()
of USD that month. Take a look at the year 2000. That’s the dot-com bomb.

Let’s break this last SQL statement down before I give you a final challenge:

1. SELECT starts your select statement.

2. count(date) will count up the number of rows with date values in each GROUP BY group.
This means if any date is set to null, it will not be counted.

3. date, avg(USD) is still listing the columns, but it’s on a new line. The avg(USD) will give the
average rate of USD in that GROUP BY

4. min(USD), max(USD) then gives us the minimum and maximum. You can also add as after
any of these to give them a name for reference in your query. If you did min(USD) as min,
you could then use min in a WHERE clause. The column name would also change to min

https://www.sqlite.org/lang_mathfunc.html
https://www.sqlite.org/lang_aggfunc.html
https://en.wikipedia.org/wiki/Dot-com_bubble

EXERCISE 57: THE SQL CRASH COURSE 299

5. FROM euro gets this data from the euro table.

6. GROUP BY tells SQL you want to group the results by some criteria.

7. date(date, "start of month"); will take the date and do math that moves it to the “start
of month”, although it seems to be off a bit and goes one day too far. This effectively gives you
monthly grouping by converting all dates in a month to one day.

8. ; ends the statement.

To finish things off, I’m giving you the final task of using ORDER BY to sort the avg(USD) results from
lowest to highest. You’ll need to find the ORDER BY documentation, learn how to sort in different ordering,
and use the as keyword to rename the column.

Python Access
The Study Drill for this exercise is simple to describe but possibly difficult for you to do:

Use Python to repeat all of the SQL shown in this exercise.

To accomplish this goal you’ll need the code from the Python SQLite3 documentation, which describes in
great detail how to use the module. You also know how to study documentation like this after Exercise 55,
so leverage your skills when studying this library.

One thing you must do when solving this is use placeholder values in your SQL as described in How to
use placeholders to bind values in SQL queries. If the link doesn’t go directly to that section, then scroll
all the way down to the bottom or search for the word “placeholders.”

https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html#how-to-use-placeholders-to-bind-values-in-sql-queries
https://docs.python.org/3/library/sqlite3.html#how-to-use-placeholders-to-bind-values-in-sql-queries

300

EXERCISE 58

SQL Normalization

I n the previous exercise, we explored SQL basics using the European Central Bank’s historic Euro dataset. In this exercise I’m going to teach you about data modeling by reshaping this data into multiple
tables to “normalize” it.

What Is Normalization?
Normalization is about reducing redundancy in your data set. You see some form of redundancy, move
it into a separate table, and then link the two tables via an id column. It gets far more complex and
theoretical, but this is the general idea. Doing this has a few advantages:

1. It reduces the size of your data, and reduced size generally improves performance (but not
always).

2. It helps you understand the structure of the data possibly giving you better insights into better
analysis.

3. It makes many queries faster because you can narrow searches to specific data you want,
rather than always searching all of it (but not always).

4. It makes it easier to augment the data later since you can change the contents of a small
isolated table rather than trying to change a giant table.

5. It helps find errors in analysis since you’re forced to explain how two pieces of data should be
related. Does a user have one purchase or many purchases? Does that mean a purchase has
many users or only one user? Normalization highlights these kinds of mistakes and forces you
to formalize an answer.

6. It makes you look like a real professional because you know what the word “normalization”
means.

When you normalize a database, you follow a process that goes through different “levels” or “normal
forms” of quality:

1. First Normal Form (1NF) has the goal of making one row and one column for every type and
piece of data.

2. Second Normal Form (2NF) has the goal of moving redundant discrete data into separate
tables based on their relationship to keys in the table.

3. Third Normal Form (3NF) requires that every piece of information in a row is only about the
key of that row. This is where most people stop with normalization as further normalization can
make the data more complicated than it needs to be for your application.

https://www.ecb.europa.eu/

EXERCISE 58: SQL NORMALIZATION 301

Let’s take the ECB table and walk through normalizing it to second normal form (2NF). Going to third
normal form (3NF) is not too useful in this data set.

First Normal Form
I’m a practical person, so I believe that if the data you have serves your purpose, then just use it. The
ECB is perfectly fine if you want to know the price of the Euro versus other currencies. It’s also a better
data set if you want to make some graphs, do time-series calculations, and do other common financial
analyses.

What happens if you want to create a database that stores more than the ECB data? That’s where
normalization starts to become useful. If you look at the ECB data, you’ll see it has this design:

Date USD JPY BGN …

2023-09-19 1.0713 158.2 1.9558 …

Now imagine you need to start tracking which countries have discontinued their currency. It doesn’t
happen often, but it does happen. With this giant table you’d have to make a new Boolean column for
every currency.

Date USD USD_done JPY JPY_done BGN BGN_done

2023-09-19 1.0713 0 158.2 0 1.9558 0

This makes my programmer brain scream in agony. What happens if you then have to track that country’s
full name for the currency? Again, you have to make a new string column for every currency. That hurts
so much I won’t even show you this eldritch horror of a table.

This kind of data is called “denormalized” because there is a lot of redundancy, but it’s in the schema
of the table, not so much the data. This is important to understand because in the original .csv there
isn’t much redundancy in the data. Each currency gets a column of unique data for each date. The
redundancy is found in the structure of each column, which is why adding new information about each
currency causes so many problems.

This is also why I say you want to remove redundancy of discrete data. A discrete piece of data is
something where there is a limited number of items. There are only so many currency codes in this data,
but the currency fluctuation numbers can be in any numeric range. The numbers are not discrete, so
trying to reduce their redundancy will fail. The currency codes or if they are discontinued are discrete
pieces of data, so you can remove their redundancy.

302 LEARN PYTHON THE HARD WAY

What if you try to fix this by creating a single column currency?

Date currency rate

2023-09-19 USD 1.0713

2023-09-19 JPY 158.2

2023-09-19 BGN 1.9558

Now we’ve fixed the schema repetition, but that shows us the data repetition. If you did this to the whole
table, you’d get every currency repeated for every day. You could add the information I mention before
with columns discontinued, currency_name, but those columns would also have repeated data in
them for every date.

Despite this problem, this table is in first normal form (1NF) and is ready for the next stage. Another
problem you would have to fix is any columns that have multiple data elements in them. Imagine if the
data was like this:

Date currency rate

2023-09-19 USD [1.0713, 1.588]

2023-09-19 JPY [158.2, 257.8]

2023-09-19 BGN [1.9558, 2.34]

This is actually tough to do in SQL, but here I’ve turned rate into a column that’s containing two numbers.
This would also need to be converted by extracting every number and making a new row:

Date currency rate

2023-09-19 USD 1.0713

2023-09-19 USD 1.588

2023-09-19 JPY 158.2

2023-09-19 JPY 257.8

2023-09-19 BGN 1.9558

2023-09-19 BGN 2.34

Implementing 1NF

In most normalization situations, you have to figure out how to use SQL to change the data, but our
euro table in SQLite3 is too broken to use SQL. It might be possible, but it’s far easier to change your
Python ex57.py script so that it creates the table using Python SQLite3.

https://docs.python.org/3/library/sqlite3.html

EXERCISE 58: SQL NORMALIZATION 303

At this point in the exercise I want you to implement the 1NF table like this:

1. Change your ex57.py script so that it creates the table if it doesn’t exist

2. Load the data as you’ve done before, but instead of writing a new .csv, you should use
Python’s sqlite3 to write the data directly to the database

3. Your only goal at this stage is the 1NF table I describe earlier, but keep in mind that you’ll
change this script in the next section to create the 2NF version

4. The size of the data explodes once you do this, so consider stopping after a few hundred rows
from the .csv to save time

Creating Tables in SQL

To accomplish this goal, you’ll need to know how to create tables and drop them (delete). To create a
table, use this syntax:

1 CREATE TABLE IF NOT EXISTS rate
2 id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
3 date DATE, currency TEXT, rate FLOAT;

The IF NOT EXISTS is optional. You should read the CREATE TABLE documentation to learn the full
syntax, but this will create a table named rate that has the three fields you want: id, date, currency,
and rate. The complicated INTEGER PRIMARY KEY AUTOINCREMENT simply says create an id that is
a number that gets incremented automatically on every insert. Doing this means you do not include the
id column when doing insert and instead let the database pick the number for you.

You’ll also need to drop the table if it exists:

1 DROP TABLE IF EXISTS table_name;

The IF EXISTS is also optional in this. I recommend that you assume the database is fresh so you can
drop the table and re-create it again each time you run. Otherwise, you have to do complicated loading
logic that checks for existing data.

Second Normal Form (2NF)
You now have the data in this first normal form (1NF), and it repeats the currency names:

Date currency rate

2023-09-19 USD 1.0713

2023-09-19 JPY 158.2

https://www.sqlite.org/lang_createtable.html

304 LEARN PYTHON THE HARD WAY

Date currency rate

2023-09-19 BGN 1.9558

The next task is to create a new table that will hold information about currencies only and then link it
back to the rates table. Now we have two tables like this:

id date currency_id rate

1 2023-09-19 1 1.0713

2 2023-09-19 2 158.2

3 2023-09-19 3 1.9558

Notice here I’ve replaced the currency with a currency_id, which will reference the currency infor-
mation in this table:

id currency

1 USD

2 JPY

3 BGN

I’ve replaced the repetitive currency names with similarly repetitive numbers, but this is what you want.
Remember, you’re trying to remove discrete redundancy. The currency_id column could be any num-
bers, but the currency names are a fixed set. This will also allow you to then add more columns to the
new currency table, which isn’t easily done in the 1NF version of the table.

Implementing 2NF

There are two general paths you can take when implementing this schema:

1. Utilize SQL to “migrate” the database from one schema to another. In this path you write a
sequence of SQL statements that transform the schema and data to the 2NF set of tables.
This process is called a “migration,” and it’s essential in modern database development as it
allows you to upgrade a production database without taking it down for very long.

2. Simply rewrite your ex57.py script to use this schema directly. Since you’re loading this data
for the first time, you can simply make the data better right away. This is the ideal situation since
you can work on the data before it ever gets to production and avoid later painful migrations.

For this part of the exercise I’d like you to try both options. First, use SQL to change the data into the
new two-table configuration. Then you should rewrite your ex57.py script to do it directly. This will help
you understand how both options work and which one to use when you can use it.

EXERCISE 58: SQL NORMALIZATION 305

To get you started, here’s the SQL I used to do option 1:

Listing 58.1: euro_migrate.sql

1 DROP TABLE IF EXISTS currency;
2
3 CREATE TABLE currency (id INTEGER PRIMARY KEY
4 AUTOINCREMENT NOT NULL, currency TEXT);
5
6 ALTER TABLE rate ADD COLUMN currency_id INTEGER;
7
8 INSERT INTO currency (currency) SELECT currency FROM rate GROUP BY
9 currency;

10
11 UPDATE rate SET currency_id = currency.id FROM currency WHERE
12 rate.currency = currency.currency;
13
14 ALTER TABLE rate DROP COLUMN currency;

You could improve this with transactions, but it should work correctly as long as the data hasn’t changed
since I wrote it. If it did change, then fix my SQL. Let’s walk through this euro_migrate.sql file one
line at a time:

1. I first drop the currency table with a DROP command, but notice I add IF EXISTS. This makes
sure your SQL will still run if the database is empty.

2. I then create the currency table with CREATE, but this time I don’t have a IF NOT EXISTS.
That’s because the first line is dropping the table always.

3. I then alter the rate table with ALTER TABLE. ALTER TABLE is how you add or remove columns
from a table, but it does have limitations, so read the documentation to study it.

4. Once the schema is how I like it, I INSERT INTO the currency table using rate as the source
of the data. The SELECT currency FROM rate GROUP BY currency part can be run on its
own (do it) to see what it produces. This “subquery” will produce the data we want, and then
INSERT INTO will go through each result row and use that as an insert into currency

5. Once currency is updated, I can now migrate the original rate.currency to the new
currency.id with an UPDATE command. This works like the SELECT, but it sets the rate.
Ç currency_id equal to currency.id for each row where rate.currency = currency.
Ç currency

6. Now that rate.currency_id points at currency.id, I can use another ALTER TABLE to
drop the currency column from rate, and the conversion is complete.

https://www.sqlite.org/lang_altertable.html

306 LEARN PYTHON THE HARD WAY

Studying this one SQL file would be highly beneficial to you, so I recommend you open your euro.
Ç sqlite3 file with sqlite3 euro.sqlite3 and paste each line in one at a time. After you paste the
line in, investigate the database with these commands:

1 sqlite> .schema rate
2 sqlite> .schema currency
3 sqlite> select * from rate;
4 sqlite> select * from currency;

This is how you inspect what’s in the database, and it should help you to begin to understand what this
SQL is doing.

Using Python

Migrations are very useful, but in your case it’s far more beneficial to simply get the data right the first
time. Studying data you have extracted to determine the best structure can save you mountains of pain
later. To do this, you’ll need to change your ex57.py loader script to now do the following:

1. Create the new schema with the rate and currency tables ready to go.

2. Instead of csv.reader(), use csv.DictReader(). This works the same but returns a dict,
which has each column name in it as the keys. This is the secret to getting a list of all of the
countries on each row.

3. Extract the date from the other data in the row. Now you have the rate.date, rate.rate,
and currency.currency columns as keys and values in the dict

4. The keys of this dict are now your first insert into the currency table. You need to do this only
once, so your first row from csv.DictReader() can be used to load the currency table.

5. Once you have your currency table loaded, you can query it again to get the id=currency
text and place that in a new dict for reference while you build the rate table.

6. Finally, you process the rows inserting each rate and currency_id

What you may realize with this approach is that it ends up beingmore complicated than the SQL solution.
You might try a middle approach that loads the rate table like before but then uses the SQL from the
other solution to do the conversions.

Querying 2NF Data
We can now explore how you would query across these two tables using the advanced SELECT syntax.
If I want all rates after January 1, 2023 for the USD, I’d do this:

1 SELECT * FROM rate, currency WHERE
2 rate.currency_id=currency.id

EXERCISE 58: SQL NORMALIZATION 307

3 AND currency.currency='USD'
4 AND date(rate.date) > date('2023-01-01');

Let’s walk through this query one piece at a time:

1. I do the SELECT * FROM as you learned before to select every column. If you want to nar-
row this down, you can name each column you want such as rate.date, rate.rate,
Ç rate.currency_id, and currency.id

2. Next I list the two tables I want to query, rate, currency, but if you don’t connect these
tables, you’ll get weird results.

3. After the WHERE, I make this connection with rate.currency_id=currency.id. This tells
SQL to match each row of rate to each row of currency via the rate.currency_id and
currency.id columns.

4. AND currency.currency='USD' also (and) further narrows the results to only rows that
match rows in currency where currency.currency is 'USD'.

5. Then we get to how SQLite3 handles dates. To do date comparisons, you need to apply the
function date() or datetime() to both the column and the date you want to use. In this
case, I use date(rate.date) > date('2023-01-01') to say “turn rate.date into a
date and compare it to ‘2023-01-01,’ which I also want to be a date().” You can read the
SQLite3 Date and Time Functions documentation for the full list of possible functions.

If you do this correctly, then you should only get the rates for 2023 for the USD currency. What happens
if you forget the rate.currency_id=currency.id? Try it, but use count(*) to see the difference
in results:

1 sqlite> SELECT count(*) from rate, currency
2 WHERE currency.currency='USD' AND
3 date(rate.date) > date('2023-01-01');
4
5 7544
6
7 sqlite> SELECT count(*) from rate, currency WHERE
8 rate.currency_id=currency.id AND
9 currency.currency='USD' AND
10 date(rate.date) > date('2023-01-01');
11
12 184

The results without currency_id=currency.id are meaningless, and you can see you get far more
results when you get it wrong. This is because SQL is merging the two tables in a useless way that has
no connection between them. I actually can’t think of why you would want to do this. You can also see
that the rates don’t make any sense. One day the USD 1.07, and the next it’s 8.9?

https://www.sqlite.org/lang_datefunc.html

308 LEARN PYTHON THE HARD WAY

Querying with Joins
Many people who use SQL insist that you can’t use SQL without knowing everything about “joins.” A SQL
JOIN is a way to tell SQL how to search acrossmultiple tables by joining the results together. The problem
is most joins are more complicated versions of what you’d do with simple equality between tables, and
many times a JOIN will give you unexpected results if you’re not careful. This is especially true when
you get into the more obscure joins like LEFT OUTER JOIN.

Let’s look at that query again, but just use count(*) to see how many results are returned:

1 SELECT count(*) FROM rate, currency
2 WHERE rate.currency_id=currency.id
3 AND currency.currency='USD'
4 AND date(rate.date) > date('2023-01-01');

In my database I get 184 results. Now, let us do the same thing using JOIN:

1 SELECT count(*) FROM rate
2 JOIN currency ON rate.currency_id=currency.id
3 WHERE currency.currency='USD'
4 AND date(rate.date) > date('2023-01-01');

The result of this query is…184. It produces the exact same results, and the syntax is nearly identical.
You’re mostly moving one WHERE clause up to a JOIN currency ON clause, and for some reason that
now makes you a “database expert.”

There are other join options, but most of them produce results that are probably not what you want
unless you really know what you’re doing. These JOIN variants will return all of one or both tables, but
fill in any missing data with null. I honestly have never once in all 30+ years of using databases wanted
that. 99.99999% of the time I want data from some tables that’s constrained by the data in other tables.

So what should you use? Use whichever onemakes sense. I use the WHERE-only version because I know
it will return exactly what I tell it to with no weirdness between databases or needing a Venn diagram
showing me what gets returned. You might like JOIN because it looks “cleaner” or because you only
have to mention only one table after FROM. Whatever your reason, just get good with what you choose
and know about the other style.

Study Drills
Write more queries against the 2NF database that answer the following questions:

1. What’s the average rate of USD for 2022?

2. What’s the minimum rate of JPY for all years?

EXERCISE 58: SQL NORMALIZATION 309

3. Use what you know about UPDATE to make sure all rate.rate rows with rate == 'N/A'
are set to null instead.

4. Explain this SQL:

1 SELECT count(*) as total, currency.currency
2 FROM rate, currency
3 WHERE rate.currency_id = currency.id
4 AND rate.rate is null
5 GROUP BY currency.currency
6 ORDER BY total DESC;

Try to guess what it will do, and then study any keyword or syntax you don’t understand at the official
SQLite3 documentation. Once you feel you understand it, run it to see if your analysis is correct.

Finally, why do I use count(*) instead of count(rate.rate)? How would you rewrite this using
JOIN instead?

https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html

310

EXERCISE 59

SQL Relationships

O ur final exercise is going to cover the concept of relations in SQL. In technical terms every table
is a relation, but we’re going to be more specific and talk about tables that are connected to other

tables in various ways.

One-to-Many (1:M)
A “relation” in SQL is a method of using id columns in tables to associate one table to another through
a “one-to-many” or “many-to-many” relationship. In our ECB data we have a rate for each country and
a currency that rate applies to. We can say the following about this relationship between rate and
currency:

“A Rate has one Currency, and a Currency has many Rate.”

In our 2NF version of the ECB data, the first part is modeled by placing a currency_id in the rate
table so that each rate row has only one currency.id. This also implements the “Currency has many
Rates” side since any query for a currency.id in rate.currency_id would pull up all the daily rates
for that one currency.

One-to-Many in Python

I find it helps to understand these concepts if you see how they’re typically implemented in Python. If I
wanted to say “Rate has one Currency” in Python, I’d do this:

1 class Rate:
2 def init (self, date, rate, currency):
3 self.date = date
4 self.rate = rate
5 self.currency = currency

I simply create a single attribute and set it equal to the currency for this Rate. This connection is imple-
mented by the rate.currency_id in the rate table, and in Python it’s implemented using =.

On the other side of the equation we have “Currency has many Rates.” To implement that in Python I
do this:

1 class Currency:
2 def init (self, rates):

EXERCISE 59: SQL RELATIONSHIPS 311

3 # rates is a list but...wait
4 self.rates = rates

In this example, rates is a list of Rate objects and maps to the SQL rate table.

One-to-Many Problem

I now have a problem, though. A Rate needs to be attached to each Currency, but the Currency
needs a list of all the Rate objects. To understand what I mean, here is some broken code that attempts
to create a Currency and a few Rates:

1 jan_usd = [Rate('Jan', 1.2, usd), Rate('Jan', 1.3, usd)]
2 usd = Currency(jan_usd)

Do you see the problem? I can’t use the variable usd when creating the jan_usd list because it hasn’t
been created yet, and I can’t create usd until I have the list of jan_usd filled. There are a couple ways
to fix this, but let’s see if you can figure this out.

Your job then is to invent a Rate and Currency class that can be created to model this database
correctly. How will Currency get its list of rates? How will Rate get the Currency? Bonus points if you
can actually load these objects out of the database using only the SQLite3 module. It’s also acceptable
to create the variables differently.

Many-to-Many (M:M)
The other kind of relation is a “many-to-many” relation, which would be phrased like this:

“A Rate has many Currency, and a Currency has many Rate.

This is actually incorrect, but if we did want to model this, we’d need a third table typically named
rate_currency. This third table would have the id from rate.id and the id from currency.id
in it like this:

rate_id currency_id

1 1

2 2

3 3

https://docs.python.org/3/library/sqlite3.html

312 LEARN PYTHON THE HARD WAY

Your currency table would stay the same, but your rate table would then change like this:

id date rate

1 2023-09-19 1.0713

2 2023-09-19 158.2

3 2023-09-19 1.9558

You delete the currency_id and move that to rate_currency, and now you can have any rate, on
any day, be associated with any currency. You also need to give every row of rate its own id column.
This is also ridiculous and not something you’d actually do since now the complexity of this database
is far too high for almost no benefit. That doesn’t mean many-to-many relationships are wrong; they’re
actually amazing, and you should use them where you find them. It’s just that this one is really a bad
choice. I’m only doing it here as a demonstration.

INFO You may notice that I don’t use the English plural form when naming tables or talking
about the tables. That’s because English plural structure is all over the place, so using it re-
liably is inconsistent. The other reason is each table isn’t considered a container of “rates,”
but rather a structure that is a “rate.” You can think of the table as a class in Python, and
each row as an object in Python. You wouldn’t name your Person class “People” because
it’s not a container. Same goes with tables in a SQL database.

Many-to-Many Problem

I want to make sure you understand that doing this many-to-many transform on the ECB data is wrong,
and the best way to make you understand this is to have you do the transformation and then use it. Turn
your 2NF ECB database into a many-to-many monstrosity by writing a new migration and a new loader
script.

I suggest starting with whatever gives you the most confidence. Are you feeling confident with Python but
not SQL? Then create this many-to-many model in plain Python without the database. Are you feeling
pretty good about your understanding of SQL? Then start by trying to write a migration that creates the
many-to-many table. Or, maybe you like writing the loader? Then write a new version of the loader that
creates the many-to-many model.

One-to-One (1:1)
There’s one more type of relation called a “one-to-one” relation, but it doesn’t come up very often. A
one-to-one relation is typically written as:

One Rate has one Currency, and one Currency has one Rate.

EXERCISE 59: SQL RELATIONSHIPS 313

This is also not correct for the ECB data, but if youwere to create this, you’d simply put a rate.currency_id
and a currency.rate_id so the rows are solidly connected from both sides.

The question to ask is: Why not just extend one of the tables with the new information? If every row of
rate matches a single row of currency, then the two tables are essentially one table. You could just
put the data in currency right into rate and save a step.

The reason you sometimes need this is because you can’t change one of the tables. Maybe the rate
table is too large for the database but you need somemore information. Maybe the rate table is used by
an old service that can’t handle more columns in the table. You could even have an evil database admin
who won’t let you use ALTER TABLE on a production table. For whatever reason, one-to-one relations
are usually used to extend a table when you can’t using ALTER TABLE for some reason.

Attributed Relations
While one-to-many isn’t very useful, attributed relations are incredibly useful when you need them.
All an attributed relation does is add some additional information to the many-to-many table. In our
rate_currency table it could mean adding an updated_at column to keep track of when this rela-
tionship was last updated:

rate_id currency_id updated_at

1 1 Jan 1, 2023

2 2 Jan 10, 2023

3 3 Aug 3, 2023

In this example, it’s not very useful, but it is very useful when you have some piece of data that seems
to not belong to either side of a many-to-many relation. Use an attributed relation any time you wonder,
“Does the update time go on the rate or the currency?” It might be that what you want is to track the
update time of the connection, and that works best on the joining table.

Querying M:M Tables
There really isn’t anything different between a 1:M table query and an M:M query; you’re just adding one
more table that must be connected via id columns. Here’s how I’d do it with this exercise’s database:

1 SELECT count(*) FROM
2 rate, currency, rate_currency
3 WHERE rate.id=rate_currency.rate_id
4 AND currency.id=rate_currency.currency_id
5 AND currency.currency='USD'
6 AND date(rate.date) > date('2023-01-01');

314 LEARN PYTHON THE HARD WAY

I changed it from only rate.currency_id=currency.id to use the id columns in the new rate_currency
table. Simply set all three tables equal, and you’re ready to go.

How would you do this with JOIN?

1 SELECT count(*) FROM rate
2 JOIN currency
3 ON rate_currency.currency_id=currency.id
4 JOIN rate_currency
5 ON rate_currency.rate_id=rate.id
6 WHERE currency.currency='USD'
7 AND date(rate.date) > date('2023-01-01');

I honestly don’t think this is any better than the other form. It’s not worse, but I find the WHERE version to
be more direct and easy to understand. You use whichever one you like.

Your Last Study Drill
Welcome to almost the end of the course. I hope you gained both knowledge and confidence while you
studied with me. For your final Study Drill, I want you to go get the book SQL for Smarties by Joe Celko.
This book was last updated in 2014, but SQL hasn’t changed much since then, and Joe’s book is the
most comprehensive SQL book you can find. I believe that if you want to learn SQL, then completing
Joe’s book using SQLite3 will be all you need to fully understand it.

You may think I’ve taught you enough, and probably that will be true for a while, but you will run into
situations where better knowledge of SQL can solve big problems for you. Even if your goal going forward
isn’t data science, the prevalence of SQL makes learning it well a highly valuable investment.

This page intentionally left blank

316

EXERCISE 60

Advice from an Even Older Programmer

Imagine it’s 1820 and you want a nice portrait of your mother. You hear that paintings in pastel are all
the rage and can be done quickly while still looking beautiful, especially in the candlelight you use to

light your home at night. You contact an artist, and they come to your home, do some initial sketches
of your mother, and then schedule return visits to complete the painting. Since the artist uses pastel,
they can finish a very nice portrait in a record 6 hours of sitting, and make your mother look younger too.
It also costs you only a week’s salary, which is a bargain compared to an oil painting. Those are very
expensive and can take months.

Decades pass, and your children want to have a nice portrait of you. It’s 1840, and your children sign
you up to sit for a photograph! It’s so exciting because they look so real and they’re so easy. You go to
the photographer’s studio and sit in a chair wearing your finest clothes, and the photographer takes the
photo. The whole process takes maybe 30 minutes, with the photo taken in an instant. Within a few years
even more ways to take photos are invented, and within a few decades photography begins to completely
change the world, for better and worse. Eventually the pastel of your mother is long forgotten.

Today you (not the 1820s you) live in a world that photography made possible. You are looking at this
course either on a computer screen that is a direct descendant of the early cameras or on a book that
was printed using cameras. Your computer is also a direct descendant of photography, with the original
process to create a CPU utilizing a process similar to developing film. Not only that, but your computer
would not exist without the ability to utilize photography to exchange schematics, designs, documents,
and many other artifacts necessary to construct all the equipment to make it. You are also most likely
alive because of photography and painting, which helped pioneer modern chemistry manufacturing by
companies like Bayer. Without the industrialized chemistry perfected on pigments, you would not have
aspirin, antibiotics, X-rays, and photographs of DNA.

I firmly believe that photography created the modern world, and I believe that you are currently stand-
ing on the edge of a similar revolution in computing with the recent invention of Generative AI. It’s very
early, but technology such as large language models and Stable Diffusion are already useful technolo-
gies and only getting better. Eventually these technologies will feed into even better and more efficient
technologies, in much the same way photography created the silicon wafers that now power the sensors
in modern cameras. If these technologies continue to advance, then what happens to programmers?

Probably the same thing that happened to painters when photography sufficiently advanced. Before
photography, you had to hire an artist if you wanted a memory of your mother, and all of those artists
were out of work within one generation. Now it’s odd to find an artist who can accurately paint a portrait.
I believe programming will be very similar, where it will be odd to find a programmer who can actually
code something from scratch without help.

EXERCISE 60: ADVICE FROM AN EVEN OLDER PROGRAMMER 317

If that’s the case, then why bother learning to code? For the same reason I learned to paint a realistic
portrait:

There is more to programming than just getting paid to turn buttons cornflower blue for some
billionaire.

I learned to paint because I felt like I would enjoy it, and I do immensely. I can easily take a photo, but
painting gives me a unique experience that I can’t get from taking a photo. I learned to code because I
really enjoyed making a computer do things, and programming gives me an experience I can’t get if I let
a large language model do it for me. I code because I feel like I have to, not just because it pays the bills.

What does this mean for you as a new programmer? The story of photography and painting continues
in the 1900s when painters realized they didn’t have to do realistic paintings anymore. They could paint
whatever they wanted, so they made paintings that reflected who they were and what they saw. Painting
changed from a thing you did to pay the bills into a vehicle of human expression, which is what we
consider art today.

I believe this will happen to programming soon as well. You’ll see programmers being liberated from
having to do mundane boring tasks like “make this button 20% larger.” They’ll instead be able to use
computation to express their thoughts and feelings. Sure, people will still obviously do the boring work
when they need money (and there’s no shame in that). Many artists have painted a few cat portraits to
pay the rent. But the vast majority of programming will change into a new art form for expressing yourself
rather than just a boring job.

It’s not something that will happen soon, but I hope this book prepares you for the change. Learning about
data science is the first step to understanding how Generative AI models work. Understanding how this
technology works will give you some control over the future of programming. Learning to code now is
also the first step to creating the software you want to create. Maybe in the future everyone becomes
some kind of indie game developer? Who knows, but you now have an amazing future ahead of you if
you’re willing to be flexible and embrace the new things that come along.

Until then, I’ll be happy if you take what I taught you and get a job or create a small business. I don’t want
you to think I’m against programming as a job. After all, the artistic future of programming can’t happen
if you can’t feed yourself.

Index

Page numbers followed by an italic “t” indicate tables.

Symbols

!= not equal operator, 155t
"" double-quotes syntax, 20
""" triple-double-quotes syntax, 30, 31, 32
octothorpe character, 8, 10, 11, 13, 178
pound character. See # octothorpe character
% modulus or string-interpolate operator, 12, 155t
%= modulus assign operator, 156t
() parenthesis operator, 38, 155t
* multiplication operator, 12
*= multiply-and-assign operator, 156t
** power-of operator, 155t
**= power assign operator, 156t
+ addition operator, 12, 155t
+= add-and-assign/increment-by operator, 125,

156t
, comma operator, 155t
— subtraction operator, 12, 155t
—= subtract-and-assign operatory, 156t
. dot operator, 155t
/ division operator, 12, 155t
// floor division operator, 155t
/= divide-and-assign operator, 156t
//= floor divide-and-assign operator, 156t
: colon operator, 138, 155t
; semicolon operator, 156t
< less-than operator, 12, 155t
<= less-than-equal operator, 12, 155t
= equals operator, 17, 155t
== double-equals operator, 17, 155t
> greater-than operator, 12, 155t
> prompt, 46

>= greater-than-equal operator, 12, 155t
@ at decorator operator, 155t
[] list brackets operator, 155t
\n backslash n syntax, 30, 32
^ caret character, 8
_ underscore character, 16, 17, 65
__ double-underscore character, 104, 213
{} dict curly braces operator, 20, 155t
~ tilde character, 166, 177

A
Anaconda platform

conda programming environment, 186–188
course setup, xix, 3

APIs (application programmer interfaces)
data acquisition from, 272–274
tools for, 275

argv variable, 40, 43
Asking people questions. See input() function
Assembly language, 107
Attribute, in OOP, 215
Automated tests, 252

B
Bash shell

(octothorpe) character use in, 178
curl command, 183
environment variables, 182
file management, 176, 178–180, 181
flags and arguments formatting, 181
getting help in, 175
hidden files, 180
kill command, 183

318

INDEX

INDEX 319

open command, 175–176
ps command, 183–184
pwd (print working directory) command,

177
starting Jupyter in, 175

Blocks, of code, 110, 126
Boolean algebra, 119
Boolean logic expressions, 116–118, 120–122
Boolean values, 24
Breaking code, 23, 27, 283–284
Byte code disassembler, dis(), 107–109, 114,

136, 260
Byte code, 107, 113

C
Calculations, with variable names, 17
Calling a format function, 28
Camel case, 249
cd lpthw command, 4
Celko, Joe, 314
Class, in OOP

vs. object, 218–222
acting as templates, 246
defined, 215
hierarchy creation, 224, 226–227
naming with (object), 221
style conventions, 249

Closure function, 208–209
Cmder program

accessing PowerShell through, 163
starting Jupyter in, 164
using on Windows, 3

Code formatting, 250
Code-designing steps, 146–147
Code-writing steps, 150
Coding how-to, 262–263
Command Line Crash Course, 4, 43
Command line programming

vs. an IDE/IDLE, 29, 48
vs. Python environment, 47
in Bash shell, 173–184
calling and passing arguments, 28,

42–43

learning, 4
parameters, assigning, 40
in PowerShell, 161–171
value of learning, 4, 29

Comments
for disabling code, 10, 11
for explaining code, 10, 13, 16, 23, 27,

250
good, style for, 250
as a study skill, 157

Commoncrawl.org data repository, 271
COMPARE_OP test, 110–111
Composition, in OOP, 243–245
conda programming environment, 186–188
conda-forge, 187
Condarc file, 188
Constructor() function, 208–210
Contextual Help, 38, 39
cookiecutter project, 190–191
ctrl-c key sequence, 171, 183
ctrl-d key sequence, 171, 183
ctrl-s key sequence, 189
ctrl-z key sequence, 171
curl command

in Bash shell, 183
in PowerShell, 171

D
Data, getting. See input() function
Data analysis environment, 2
Data munging, 260–266
Data objects

combining lists with, 93–96
syntax for creating, 92–93

Data structure, defined, 196–197
Data types, list of, 153t
dbm module, 266
Debugging

tips for, 149–150
using disassembly, 106–113

DIALOGUE function, 230–232
__dict__ variable, 102–104, 213–214
Dictionaries (data structures)

associating information, 200–204

320 LEARN PYTHON THE HARD WAY

Dictionaries (data structures) (continued)
compared with lists, 204
as data objects, 92–96
example of, 201–203
and functions, 98–100
introduction to, 92–94
and modules, 102–104
and objects, 206–210
passing to a function, 206–210
as restructured lists, 94
used for data mapping, 200–204

dir() function, 214
Directories

in Bash shell, 178–180
folders, 167
in PowerShell, 167–169

Directories, of projects, 40
Directory, 7, 40, 41, 108
dis module, 107–109, 110–111
dis() function

byte codes, list of, 113
input('Yes?') analysis, 112–113
jump analysis, 110–111
for-loops analysis, 136
while-loops analysis, 139–140

Disassembly, of byte code, 107–113
Documentation, programming

accessing, 281–282
pitfalls of, 280
using, 282–284
writing about learning, 284–286

Dunder (double-underscore) variables,
104

E
elements.append() function, 137
elif (else if) statements, 127–128, 130–132,

142–144
else statements, 127–128, 130–132, 142–144
Embedded variables, 20
end=' ', 36
env vars (environment variables)

Bash settings, 182
PowerShell settings, 170

Environment variables
Bash settings for, 182
PowerShell settings for, 170

Environments, programming
activating, 190
conda environment, 186–188,

190–193
IDE (integrated development environment), 6,

189
Jupyter setup, 2–4
managing, in Python, 186–189

Equality operators, 121–122
Error messages, 8
Error-checking techniques

reading code aloud, 11
reading code backward, 10
reading error messages, 8
working with small code blocks, 44

Escape codes
list of, 33
for quotes inside strings, 32
in strings, 33

Escape sequences, 32, 34
ETL (extract, transform, and load)

extracting data from a PDF, 261–262,
263–265

tools for, 266
Exception logs, 264
Exceptions, 152t–153t, 254–255
exit(0) function, 142–144

F
f strings, 20
False keyword, 29
File creation, in Jupyter, 40
File handling, 40
Finite state machine, 237
Flags and arguments, formatting

in Bash shell, 181
in PowerShell, 169

Floating point numbers, 13, 17, 18, 21
Flow chart, 157
Folders. See Directories
for-loop, 134–137, 138, 140, 149

INDEX 321

format() function
for complex strings, 28
syntax for, 22

Future of programming, 316–317

G
Geany text editor, 3, 4, 189
Generative AI (artificial intelligence),

316–317
Go Fish card game, 196
Greenfeld, Audrey, 190
Greenfeld, Danny Roy, 190

H
Help, from author, 5

I
IDE (integrated development environment), 6
IDLE (Integrated Development and Learning

Environment), 6, 9, 29
if-statements

and Boolean expressions, 124–125
and code branching, 126–128
rules for, 149

Implicit inheritance
method resolution order (MRO), 243
overriding, 240–243

import function, 41, 102–103
Increment by operator, 125
Indentation, in syntax, 110, 126, 138, 156t
Infinite loop, 144
Inheritance, in OOP

vs. composition, 243–245
defined, 215
examples, 218–221
parent and child classes, 238–243, 244–245

__init__() function, 243, 249
input() function

data entry procedures, 37
to get data, 37

Installation, components of programming
environment, 3

Instance, in OOP, 215
Instantiate, in OOP, 215

int() function, 37, 142–144
Integers, numbers converted to, 37
is-a/has-a relationships, 219–221

J
JSON (JavaScript Object Notation), 272–273
Jumps, in sequences, 108–111
Jupyter

cell input and output, 6–10
limitations of, in macOS/Linux, 172–173
limitations of, in Windows, 160–161
as programming environment, 2, 29
Python File button, 40
running, 3
starting, 4
starting in Cmder, 164
starting in PowerShell, 163

Jupyter-lab, 3, 40
jupyter-lab command, 4

K
Keywords, list of, 152t–153t
kill command, 183

L
Large language models, 316
Learners vs. professional coders, 147–149
libmamba solver in conda, 187
Libraries (modules), 42
Linux OS

Jupyter limitations in, 172–173
navigation in, 3

Lists (data structure)
vs. arrays, 137
calling with append, 194–196
creating, with argv, 66
creating, with loops, 134–140
creating, with strings, 32–33
putting data objects inside, 93–95
syntax, 88–91, 153t
utility of, 196–197

Logic, in programming
and Boolean algebra, 119
truth tables, for memorization, 117–118

322 LEARN PYTHON THE HARD WAY

Logic, in programming (continued)
truth terms, 116–117

Looping
by JUMP, 108–110
and jumping, 140
with for-loops, 134–137
rules for, 149
with while-loops, 138–140

lpythw directory
environment of, 190, 193
installing PyTest in, 253
navigating in Bash to, 177–181
navigating in PowerShell to, 166–168
set up of, 3–4
setup, 40–41, 186–187

Ls command, in PowerShell, 164, 165, 166

M
MacOS

Finder window, 175
Jupyter limitations in, 172–173
navigation in, 3
terminal, 41

Math
calculations in Jupyter, 13
functions, 298–299
measurement conversions, 21
Python syntax for, 12, 14
symbols, 12
See Symbols for mathematical operators

Members, in OOP, 215
Memorization, of truth tables, 116–119
Method, in OOP, 215
Method resolution order (MRO), 243
Methods. See Functions
mkdir lpthw command, 3
Modules, 42, 43
Modulus (%) character, 13, 14

N
NameError, 17
Names and naming

and _ (underscore) character, 16
and = (equals) operator, 17

classes and functions, 249
variables, 22

Nested if-statements, 130–131, 134, 149
Normalization of data

1NF (first normal form), 301–303
2NF (second normal form), 303–306
defined, 300

O
Object, in OOP, 215
Object oriented programming (OOP)

base class, making, 232–233
bottom-up process, 230
composition, 243–245
distinguishing classes and objects, 218–222
game example, 225–228, 230–237
game-building example, 225–227
inheritance, 238–243
passing a dict to a function, 206–210
Python system for, 212–217
terminology, 215
top-down process, 224–225, 229

OOP. See Object oriented programming (OOP)
open command (macOS), 4, 175–176
Operating systems (OSs), 2, 4
Operations, mathematical, 12
Operators, list of, 155t

P
pandas library

DataFrame structure, 276, 285
documentation access and use, 280–286
project, 289
setup, 277

Pandoc, 276–277
Parameters, assigning, 43
Passing arguments, 28
p-code (pseudo-code), 263–264
pdftotext project, 262
PEMDAS order of operations, 12, 14
Person (character) construction

using class Person(object), 212–213
using person_new constructor, 209–210
as variable, 206

INDEX 323

pip command, 188
Playwright web scraping tool, 270
Polymorphism, in OOP, 215
pop function, 111, 201
PowerShell

(octothorpe) character use in, 167
accessing through Cmder, 163
command line programming language,

161–163
environment variables, 170
file management, 164–165, 167–170
flags and arguments formatting, 169
getting help in, 164
Microsoft Introductory Course, 171
pwd (print working directory) command,

165–166
running code, 170–171
start command, 164–165

print() function, 6, 10, 38
Programmers’ editors

basic, 2
editing tips, 189

Programming environments. See environments,
programming

Projects/lpythw, 40
Prompting, 38, 46, 48
Prototype languages, 246
ps command, 183–184
Pseudo-code (p-code), 263–264
pwd (print working directory) command

in Bash shell, 177–178
in PowerShell, 165–166

PyTest
coverage reports, 256
Demo, 254
exceptions, 255
installation, 253

Python, versions, 2
Python File button, in Jupyter, 40

R
range() function, 137
Reading code

aloud, 16, 27, 250

backward, 10, 11, 16, 18, 27
critically, 156

repeater() function, 208–209
request.urlopen(), 271
Requests web scraping tool, 270
round() function, 21
Rules for programming, five simple,

106–113

S
Scrapy web scraping tool, 271
self variable, 216
Sequence diagrams, 146
Sequence errors, 31
Shell (program), 3, 80, 81, 148
SHIFT-ENTER to run command, 8
Software, 2, 3, 16, 36, 150
Spelling mistakes, 31
SQL for Smarties (Celko), 314
SQL language

attributed relations, 313
backup and recovery, 292
commands, 293–299
data munging, 292
database structure of, 293
date/time functions, 294–295
DELETE and transaction statements,

297–298
directories and files, 293
INSERT statement, 295–296
many-to-many (M:M) data relationships,

311–312
math functions, 298–299
normalization. See Normalization of data
one-to-many (1:M) data relationships,

310–311
one-to-one (1:1) data relationships,

312–313
placeholder values, 299
querying, syntax for, 306–308, 313–314
scope of use, 290–291
SELECT statement, 293–294
tables, creation of, 303
UPDATE statement, 296–297

324 LEARN PYTHON THE HARD WAY

SQLite 3 program, 291
Stable diffusion, 316
start command (Windows OS), 4, 164–165
Storage, of data

dbm module, 266
and input/output functions, 112–113
and recall of values, 111–112

Strings
combining, 27
and command line arguments, 43
escape sequences, 32, 34, 154t
explanation of, 22
formatting of, 20, 22, 28, 29
inside a string, 23
list of formats, 154t–155t
multi-line, 30, 31
single-quotes or double-quotes to format, 22,

24, 27
used as prompts, 38
variables embedded in, 20

super() function, 240–243
Symbol review, 152t–155t
SyntaxError interpretation, 8

T
Tab characters, 189
Talk, programming

using .talk() function, 214–215,
216

using talk() function, 206–210
talk() function, 206–210
Templates, project

conda build, 191–193
cookiecutter install, 190–191

Terminal
file creation in, 40
testing, 3, 4

Terminal emulator, 2
Testing code

automated tests, 252
code coverage, 256, 258
PyTest, 253–257
test writing, 252–253, 257
during web scraping, 269

Text editor
configuring, 189
in Jupyter, 9

Text-based command interface, 2
Textual output vs. visual display, 10
The Game of Code rules, 106–113
traceback, 17
True keyword, 29
Truth tables, for memorization, 117–118
Truth terms, 116–117
Typing, relationship to output, 6, 8
Typing of variables and printing, 20
Typos, 31

U
Unpacking argv, 41

V
Variables

defined, 16
dunder (double-underscore), 104
embedded in strings, 20
names and naming of, 16, 17, 20–21, 22, 66,

88
using for dynamic testing, 112

Version, of Python, 2
Visible spaces, 189
Visual Studio Code, 189

W
Web scraping, 268–271
while True statement, 142–144
while-loop, 108, 111
while-loops, 138–140, 149
Windows operating system

Explorer window, 164
Jupyter limitations in, 160–161
navigation in, 3, 41

with keyword, 268

X
X/Y problem, 148–149

Z
Zsh shell. See Bash shell
Zyte web scraping tool, 271

This page intentionally left blank

V I D E O T R A I N I N G F O R T H E I T P R O F E S S I O N A L

book/eBook + video bundles, individual video lessons, Rough Cuts, Safari Books Online, non-discountable titles, titles on promotion with our retail partners, and any title featured

Learn more, browse our store, and watch free, sample lessons at

i n f o r m i t. co m / v i d e o

Save 50%* o� the list price of video courses with discount code VIDBOB

LEARN QUICKLY
Learn a new technology in just hours. Video training can teach more in

less time, and material is generally easier to absorb and remember.

WATCH AND LEARN

Instructors demonstrate concepts so you see technology in action.

TEST YOURSELF

CONVENIENT

Photo by Marvent/Shutterstock

http://informit.com/video

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Oracle Press • Peachpit Press • Pearson IT Certification • Que

Register Your Product at informit.com/register

* on your next purchase

• yllacitamotuA receive a coupon for 35% books,off

off

eBooks, and web editions and

65% video courses, valid for 30 days. Look for your code in your InformIT cart

or the Manage Codes section of your account page.

• Download available product updates.

• Access bonus material if available.**

• kcehC the box to hear from us and receive exclusive on new editions

and related products.

InformIT—The Trusted Technology Learning Source

InformIT is the online home of information technology brands at Pearson, the world’s

leading learning company. At informit.com, you can

• Shop our books, eBooks, and video training. Most eBooks are DRM-Free and include

PDF and EPUB files.

offers

offers

offers

• Take advantage of our special and promotions (informit.com/promotions).

• Sign up for special and content newsletter (informit.com/newsletters).

• Access thousands of free chapters and video lessons.

• Enjoy free ground shipping on U.S. orders.*

 on your account page under Registered Products.

Connect with InformIT—Visit informit.com/community

http://informit.com/register
http://informit.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Improvements in the Fifth Edition
	Acknowledgments

	MODULE 1 Getting Started in Python
	Exercise 0 Gearing Up
	General Instructions
	Minimalist Start
	Complete Instructions
	Testing Your Setup
	Learning the Command Line
	Next Steps

	Exercise 1 A Good First Program
	What You Should See
	Study Drills
	Common Student Questions
	The Blue Plus

	Exercise 2 Comments and Pound Characters
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 3 Numbers and Math
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 4 Variables and Names
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 5 More Variables and Printing
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 6 Strings and Text
	What You Should See
	Study Drills
	Break It
	Common Student Questions

	Exercise 7 Combining Strings
	What You Should See
	Study Drills
	Break It
	Common Student Questions

	Exercise 8 Formatting Strings Manually
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 9 Multi-Line Strings
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 10 Escape Codes in Strings
	What You Should See
	Escape Sequences
	Study Drills
	Common Student Questions

	Exercise 11 Asking People Questions
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 12 An Easier Way to Prompt
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 13 Parameters, Unpacking, Variables
	If You Get Lost
	Code Description
	Hold Up! Features Have Another Name
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 14 Prompting and Passing
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 15 Reading Files
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 16 Reading and Writing Files
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 17 More Files
	What You Should See
	Study Drills
	Common Student Questions

	MODULE 2 The Basics of Programming
	Exercise 18 Names, Variables, Code, Functions
	Exercise Code
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 19 Functions and Variables
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 20 Functions and Files
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 21 Functions Can Return Something
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 22 Strings, Bytes, and Character Encodings
	Initial Research
	Switches, Conventions, and Encodings
	Dissecting the Output
	Dissecting the Code
	Encodings Deep Dive
	Breaking It

	Exercise 23 Introductory Lists
	Accessing Elements of a List
	Practicing Lists
	The Code
	The Challenge
	Fruit Challenge
	Cars Challenge
	Languages Challenge

	Final Challenge

	Exercise 24 Introductory Dictionaries
	Key/Value Structures
	Combining Lists with Data Objects
	The Code
	What You Should See
	The Challenge
	Fruit Challenge
	Cars Challenge
	Languages Challenge

	Final Challenge

	Exercise 25 Dictionaries and Functions
	Step 1: Function Names Are Variables
	Step 2: Dictionaries with Variables
	Step 3: Dictionaries with Functions
	Step 4: Deciphering the Last Line
	Study Drill

	Exercise 26 Dictionaries and Modules
	Step 1: Review of import
	Step 2: Find the __dict__
	Step 3: Change the __dict__
	Study Drill: Find the “Dunders”

	Exercise 27 The Five Simple Rules to the Game of Code
	Rule 1: Everything Is a Sequence of Instructions
	How can I get this output?
	Where are these bytes stored?

	Rule 2: Jumps Make the Sequence Non-Linear
	Why is this backward?
	Can a JUMP go forward?

	Rule 3: Tests Control Jumps
	What do you mean “pop”?
	Wait, aren’t tests like COMPARE_OP used in loops too?

	Rule 4: Storage Controls Tests
	Rule 5: Input/Output Controls Storage
	Putting It All Together
	The List of Byte Codes
	dis() Is a Side Quest

	Exercise 28 Memorizing Logic
	The Truth Terms
	The Truth Tables
	Common Student Questions

	Exercise 29 Boolean Practice
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 30 What If
	What You Should See
	dis() It
	Study Drill
	Common Student Questions

	Exercise 31 Else and If
	What You Should See
	dis() It
	Study Drills
	Common Student Questions

	Exercise 32 Making Decisions
	What You Should See
	dis() It
	Study Drills
	Common Student Questions

	Exercise 33 Loops and Lists
	What You Should See
	dis() It
	Study Drills
	Common Student Questions

	Exercise 34 While Loops
	What You Should See
	dis() It
	Study Drills
	Common Student Questions

	Exercise 35 Branches and Functions
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 36 Designing and Debugging
	From Idea to Working Code
	Is This a Professional Process?
	About the “X/Y” Non-Problem

	Rules for If-Statements
	Rules for Loops
	Tips for Debugging
	Homework

	Exercise 37 Symbol Review
	Keywords
	Data Types
	String Escape Sequences
	Old-Style String Formats
	Operators
	Reading Code
	Study Drills
	Common Student Questions

	MODULE 3 Applying What You Know
	Exercise 38 Beyond Jupyter for Windows
	Why Learn PowerShell?
	What Is PowerShell?
	PowerShell versus Cmder
	Starting Jupyter
	Getting Help
	Where Are You with start?
	Going from Graphics to PowerShell
	Where Are You with pwd?
	What’s in Here?
	Files, Folders, Directories, and Paths
	Moving Around
	Relative Paths
	Creating and Destroying
	Flags and Arguments
	Copy and Move
	Environment Variables
	Running Code
	Common Key Sequences
	Useful Developer Commands

	Crash Landing

	Exercise 39 Beyond Jupyter for macOS/Linux
	macOS Troubles
	Why Learn Bash or ZSH?
	What Is Bash?
	Starting Jupyter
	Getting Help
	Where Are You with open?
	Going from Graphics to Bash
	Where Are You with pwd?
	What’s in Here?
	Files, Folders, Directories, and Paths
	Moving Around
	Relative Paths
	Creating and Destroying
	Hidden Files
	Flags and Arguments
	Copy and Move
	Environment Variables
	Running Code
	Common Key Sequences
	Useful Developer Commands

	Crash Landing

	Exercise 40 Advanced Developer Tools
	Managing conda Environments
	Adding conda-forge
	Using pip
	Using a .condarc
	General Editing Tips
	Going Further

	Exercise 41 A Project Skeleton
	Activate an Environment
	Just Use cookiecutter
	Building Your Project
	Installing Your Project
	Testing the Install
	Remove test-project
	Common Errors
	Study Drills

	Exercise 42 Doing Things to Lists
	What You Should See
	What Lists Can Do
	When to Use Lists
	Study Drills
	Common Student Questions

	Exercise 43 Doing Things to Dictionaries
	A Dictionary Example
	What You Should See
	What Dictionaries Can Do
	Study Drills
	Common Student Questions

	Exercise 44 From Dictionaries to Objects
	Step 1: Passing a Dict to a Function
	What You Should See

	Step 2: talk inside the Dict
	Step 3: Closures
	What You Should See

	Step 4: A Person Constructor
	Study Drills

	Exercise 45 Basic Object-Oriented Programming
	Python’s People
	Using dir() and __dict__
	About the Dot (.)
	Terminology
	A Word on self
	Study Drills
	Common Student Questions

	Exercise 46 Inheritance and Advanced OOP
	How This Looks in Code
	About class Name(object)
	Study Drills
	Common Student Questions

	Exercise 47 Basic Object-Oriented Analysis and Design
	The Analysis of a Simple Game Engine
	Write or Draw About the Problem
	Extract Key Concepts and Research Them
	Create a Class Hierarchy and Object Map for the Concepts
	Code the Classes and a Test to Run Them
	Repeat and Refine

	Top Down versus Bottom Up
	The Code for “Gothons from Planet Percal #25”
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 48 Inheritance versus Composition
	What Is Inheritance?
	Implicit Inheritance
	Override Explicitly
	Alter Before or After
	All Three Combined

	The Reason for super()
	Using super() with __init__()

	Composition
	When to Use Inheritance or Composition
	Study Drill
	Common Student Questions

	Exercise 49 You Make a Game
	Evaluating Your Game
	Function Style
	Class Style
	Code Style
	Good Comments
	Evaluate Your Game

	Exercise 50 Automated Testing
	What Is the Purpose of Testing?
	How to Test Efficiently
	Install PyTest
	Simple PyTest Demo
	Running pytest
	Exceptions and try/except
	Getting Coverage Reports
	Study Drills
	Common Student Questions

	MODULE 4 Python and Data Science
	Exercise 51 What Is Data Munging?
	Why Data Munging?
	The Problem
	The Setup
	How to Code
	Process Example
	Solution Strategies
	Awesome ETL Tools
	Study Drills

	Exercise 52 Scraping Data from the Web
	Introducing with
	The Problem
	The Setup
	The Clue
	Awesome Scraping Tools
	Study Drills

	Exercise 53 Getting Data from APIs
	Introducing JSON
	The Problem
	The Setup
	The Clue
	Awesome API Tools
	Study Drills

	Exercise 54 Data Conversion with pandas
	Introducing Pandoc
	The Problem
	The Setup
	The Clue
	Study Drills

	Exercise 55 How to Read Documentation (Featuring pandas)
	Why Programmer Documentation Sucks
	How to Actively Read Programmer Docs
	Step #1: Find the Docs
	Step #1 with pandas

	Step #2: Determine Your Strategy
	Step #2 with pandas

	Step #3: Code First, Docs Second
	Step #3 with pandas

	Step #4: Break or Change the Code
	Step #5: Take Notes
	Step #6: Use It on Your Own
	Step #6 with pandas

	Step #7: Write About What You Learned
	Step #7 with pandas

	Step #8: What’s the Gestalt?
	Step #8 with pandas

	Reading My pandas Curriculum

	Exercise 56 Using Only pandas
	Make a Project
	The Problem
	The Setup
	Study Drill

	Exercise 57 The SQL Crash Course
	What Is SQL?
	The Setup
	Fixing and Loading
	Back Up Your Database

	Create, Read, Update, Delete
	SELECT
	Date and Time
	INSERT
	UPDATE
	DELETE and Transactions
	Math, Aggregates, and GROUP BY
	Python Access

	Exercise 58 SQL Normalization
	What Is Normalization?
	First Normal Form
	Implementing 1NF
	Creating Tables in SQL

	Second Normal Form (2NF)
	Implementing 2NF
	Using Python

	Querying 2NF Data
	Querying with Joins
	Study Drills

	Exercise 59 SQL Relationships
	One-to-Many (1:M)
	One-to-Many in Python
	One-to-Many Problem

	Many-to-Many (M:M)
	Many-to-Many Problem

	One-to-One (1:1)
	Attributed Relations
	Querying M:M Tables
	Your Last Study Drill

	Exercise 60 Advice from an Even Older Programmer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

