

Hello Raspberry Pi!
Python programming for kids and other beginners

Ryan Heitz

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 761 Proofreader: Alyson Brener
Shelter Island, NY 11964 Technical proofreader: Romin Irani

Typesetter: Marija Tudor
Cover designer: Leslie Haimes

ISBN: 9781617292453

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

http://www.manning.com

To Juliana, Daniel, and John

Brief contents
PART 1 GETTING STARTED 1

1 Meet Raspberry Pi 3

2 Exploring Python 33

PART 2 PLAYING WITH PYTHON 65

3 Silly Sentence Generator 3000: creating interactive
programs 67

4 Norwegian Blue parrot game: adding logic to
programs 91

5 Raspi’s Cave Adventure 121

PART 3 PI AND PYTHON PROJECTS 149

6 Blinky Pi 151

7 Light Up Guessing Game 176

8 DJ Raspi 204
v

Contents
Preface xiii
Acknowledgments xv
About this book xvii

PART 1 GETTING STARTED 1

1 Meet Raspberry Pi 3
What is the Raspberry Pi? 4
Exploring your Raspberry Pi’s parts: hardware 4

Giving your Pi a cozy home: Pi cases 6 ❍ The brain of your Pi:
system on a chip 7 ❍ Connecting a keyboard and mouse: USB
ports 8 ❍ Storing memories: your Pi gets a memory card 10
Connecting a TV or monitor: HDMI port 13 ❍ Other ports and
connections 17 ❍ Powering your Pi: microUSB power port 17
It’s alive! Plugging in the Pi 18

Getting your Pi running: software 19
Installing the Raspbian operating system 19 ❍ Configuring the
operating system: making it yours 21 ❍ Saving your configura-
tion and rebooting 24

Getting around: learning Raspbian 26
Finding and opening applications on your Raspberry Pi 26
Your files and folders 26 ❍ Writing code 28

Fruit Picker Extra: shopping at the Pi Store 29
vii

viii Contents
Challenge 30
Scavenger hunt 31

Summary 31

2 Exploring Python 33
Playing with Python 33
Discovering Python’s mathematical operators 35

Adding and subtracting 35 ❍ Multiplying and dividing 37
Figuring out whole numbers and remainders 38
Exponents 38 ❍ Square roots 39 ❍ Challenge: stacking
Pis! 39

Storing information using variables 41
Creating variables and assigning values 42 ❍ Displaying
variable values 42 ❍ Storing strings in variables 45
Changing the value of variables 46

Displaying text on a screen 50
Using the print function 50 ❍ Troubleshooting 51

Creating programs 52
Writing Python programs with IDLE 53 ❍ Starting a new
program 54 ❍ Saving programs 56 ❍ Python interpreting
the program 57

Fruit Picker Extra: creating documents 57
Writing silly things and saving them 57

Challenges 60
The matrix 61 ❍ Building a brick wall 61
Pi electrons 62

Summary 62

PART 2 PLAYING WITH PYTHON 65

3 Silly Sentence Generator 3000: creating interactive
programs 67

Creating a welcome message 68
Starting a new program 69 ❍ Saving the program 71

Contents ix
Adding notes in your code 73
Using hashtags for comments 73

Getting and storing information 75
Joining strings 77

Using more than one input 79 ❍ Building the sentence 80
Troubleshooting 81

Completing the program: displaying the silly sentence 83
Fruit Picker Extra: Minecraft Pi 85

What's Minecraft? 85 ❍ Launching Minecraft Pi 86
Python programming interface to Minecraft Pi 88

Challenges 88
Knight’s Tale Creator 3000 88 ❍ Subliminal
messages 89

Summary 90

4 Norwegian Blue parrot game: adding logic to
programs 91

Displaying the game introduction 92
Creating the game welcome message and instructions 94

Collecting input from the player 101
Using if statements to respond to users in different
ways 105

Practicing if statements 108

Using while loops to repeat things 110
A closer look at while loops 112 ❍ Breaking out of a while
loop 113 ❍ Practicing while loops 114

Using Python code libraries to generate random numbers 115
Fruit Picker Extra: Scratch 118
Challenges 119
Summary 120

5 Raspi’s Cave Adventure 121
Project introduction: Raspi’s Cave Adventure 122

Left cave 124 ❍ Right cave 124

x Contents
Hey wait, you need a plan (flow diagrams) 124
Which way should Raspi go? (checking input) 126

Handling unexpected input 127 ❍ Turning flow diagrams into
code 131

Simplify! Making your own functions 133
Finishing the left cave 138 ❍ Exploring the right cave 139
Troubleshooting 141

Fruit Picker Extra: playing video 142
Live streaming: exploring from your Pi 143

Challenges 145
Introducing dramatic pauses 145 ❍ Random demise 146
Play again? 147 ❍ Scream! 147

Summary 147

PART 3 PI AND PYTHON PROJECTS 149

6 Blinky Pi 151
Setting up your Pi for physical computing 153

GPIO pins 153 ❍ Breaking out the GPIO pins to a
breadboard 155 ❍ Breadboard basics 158

Building the LED circuit 161
Step 1. Connect the jumper from GPIO pin 21 163
Step 2. Add the red LED 164 ❍ Step 3. Connect a
resistor 164

Software: blinkLED program 166
Running the program 168 ❍ blinkLED: how it works 169

Adding more LEDs 171
Building the circuit 171

Multiple LEDs: program it! 173
Challenges 174

Wave pattern 174 ❍ Simon Says 174 ❍ Random
blinking 174

Summary 175

Contents xi
7 Light Up Guessing Game 176
Guessing Game design 178
Hardware: building the circuit 179

Numbers, numbers, numbers! 179 ❍ Wiring an RGB
LED 180 ❍ Circuit sketch 180

Software: LEDGuessingGame program 188
Setting up the GPIO pins for the RGB LED 190 ❍ Main game
loop and logic 195 ❍ Guessing Game Loop and logic 197
Adding the Play Again Loop and logic 198 ❍ Playing the
game 200 ❍ Troubleshooting 200

Challenges 201
Game winner 201 ❍ Easter egg 201 ❍ Warmer and
colder 201 ❍ Darth Vader surprise 202

Summary 202

8 DJ Raspi 204
Project overview 205
Setting up your Pi to play sounds 207

OMXPlayer and MP3s 208 ❍ Troubleshooting 209

Hardware: building the circuit 210
Wiring a button 210 ❍ Circuit sketch 211 ❍ Adding the
second button 217

Software: the DJ Raspi program 218
Setting up the Pi: initializing the buttons 220 ❍ Getting a
list of sounds 221 ❍ Getting a value of an item stored in a
list 225 ❍ Getting the length of a list 226 ❍ Building a
list of sound files with the os library 227 ❍ Playing a sound
when a button is pressed 228 ❍ Functions! 231
Testing: your first gig as DJ Raspi 234

Troubleshooting 235
Challenges 236

Double button press surprise 236 ❍ Yoda Magic 8
Ball 236 ❍ Continuing to explore 237

Summary 237

xii Contents
Appendix A Raspberry Pi troubleshooting 239

Appendix B Raspberry Pi ports and legacy boards 245

Appendix C Solutions to chapter challenges 261

Appendix D Raspberry Pi projects 279

Index 285

Preface
In 2013, a parent and friend of mine asked if I would teach a Python
course to middle school students at a local school. My friend gently asked
if I could somehow use the Raspberry Pi computer in the course. I love
learning new things and I had been reading a lot about the Raspberry Pi.
So as you can imagine, I was tremendously excited at the opportunity of
using it and emphatically said "Yes!" That event began my journey of
developing a course for kids on programming in Python and using the
Raspberry Pi and later, this book.

Quickly, as I worked with the Raspberry Pi, I became a disciple of the
Raspberry Pi inventors: the best way for kids to learn programming is by
giving them an affordable, ready-to-program computer. It was the perfect
platform to learn how to program.

As a teacher of computer science, I grew to deeply appreciate Python. I
became convinced that it was not only a great programming language,
but its focus on readability and simplicity made it perfect for kids to learn
as their first programming language.

Fast forward in time—after teaching Python using the Raspberry Pi to
many classes of kids, I had developed a set of engaging and funny proj-
ects that the kids enjoyed. Just as important, the students learned! The
feedback from the kids and the parents was fantastic! Imagine kids rush-
ing to take part in a programming class. It was wonderful!

A few months after developing my course, Nicole Butterfield and Robin
de Jongh of Manning Publications contacted me about turning it into a
xiii

xiv Preface
book. I was thrilled at the prospect of bringing the activities and proj-
ects from the computer lab into the hands of kids everywhere. What is
more, this book would fill an important gap. What I had found when I
originally started teaching my course was that there were no books on
the Raspberry Pi and programming in Python that were designed for
kids. Since the main reason for inventing the Raspberry Pi was to get
more kids programming, I was enthusiastic to work on this project.

Nearly two years later, and several versions of the Raspberry Pi later,
I'm proud to present this book to the kids and other beginners who
want to learn to program. I hope you enjoy using this book and it starts
you on your own journey in computer science!

Acknowledgments
Thank you to my wife, Juliana, and our two children, Daniel and John,
for their endless support and patience through the long days, nights, and
weekends I needed to write this book.

I'd also like to thank Manning Publications for having the vision to pur-
sue this project. In particular, thanks to Robin de Jongh and Nicole But-
terfield who kicked off this project by finding and encouraging me; to
publisher Marjan Bace for his commitment to me and to this book; to
Ozren Harlovic for orchestrating the book review process; to Kevin Sulli-
van and Mary Piergies for overseeing production; to Chuck Larson for
the wonderful work on the graphics; to Tiffany Taylor for her outstand-
ing copyediting; to Alyson Brener for her thorough proofreading; to Can-
dace Gillhoolley and Ana Romac for promoting the book; to technical
development editors Donald Bailey, Joel Kotarski, Jeanne Boyarsky,
and John Hyaduck; and to Romin Irani, technical proofreader.

This book was significantly improved by my editor at Manning, Dan
Maharry, who helped to develop and edit the book from concept to fin-
ished product. I'd like to thank Dan for his excellent insights, support,
encouragement, and guidance throughout the process.

A big thank you to all the technical reviewers who read the manuscript at
various stages of its development and contributed invaluable feedback:
Adam Hinden, Antonio Mas Rodriguez, Betsy Hoofnagle, Catherine
Freytag, Dr. Christian Mennerich, Dan Kacenjar, David Kerns, Ema
Battista, Fanick Atchia, Grace Kacenjar, Henry Freytag, Jaqueline Cur-
rie, John Pentakalos, Keenan Hom, Kevin Adjaho Atchia, Matthew
xv

xvi Acknowledgments
Giblin, Nathan Sperry, Odysseas Pentakalos, Sam Kerns, Richard
Freytag, Savannah Wilson, and Scott M. King.

Thank you also to all the readers who bought and read the MEAP
(Manning Early Access Program) versions of the chapters and who
took the time to post comments in the Author Online forum. You
helped make this a better book!

The Raspberry Pi Foundation, original inventors, and community
deserve a special mention. Thank you for designing something that is
helping children to learn computer science. I'd also like to thank Guido
van Rossum, the inventor of Python; the Python Software Foundation;
and the Python user community, for creating and maintaining a simple
and useful programming language for everyone.

About this book
The Raspberry Pi is a small, low-cost computer invented in the U.K. by
the Raspberry Pi Foundation. It provides an easy-to-use tool for learning
to program in Python. The Raspberry Pi, with its companion memory
card, is preloaded with all the software you need to jump into program-
ming in Python. The Raspberry Pi is made for you to learn to code by
playing with it. It includes many input and output ports to give you flexi-
bility in how you connect it. Much like a desktop computer, you need to
connect a keyboard, mouse, monitor, and power cable to get started.

This book will teach you how to set up your Raspberry Pi, to write pro-
grams in Python, and to use your Raspberry Pi and Python to complete
some projects. We'll cover the basics of Python: displaying text, gathering
input, repeating commands, creating logic, as well as using the input and
output pins of your Raspberry Pi for projects.

This book does not cover advanced Python topics, nor act as a compre-
hensive reference for Python. Since it is a book for beginners, these topics
have been left out for clarity and brevity. If you'd like to learn more
Python, there are links to online resources throughout the book.

This book is for kids and other beginners who would like to learn to pro-
gram. It's also for kids who have a Raspberry Pi and want to learn what
they can do with it. We'll introduce you to your Raspberry Pi and teach
you Python in a natural, playful way, introducing topics and giving you
activities to do using your Raspberry Pi. You don't need to have any prior
programming experience. As long as you know how to use a mouse and
open up programs by clicking on icons or menu items, you'll do great.
xvii

xviii About this book
This book requires a Raspberry Pi, cables, and some other parts to
complete the projects and activities. These items are needed through-
out the book:

❂ Raspberry Pi 2 Model B
❂ 8 GB SD memory card, preloaded with the Raspberry Pi Founda-

tion’s NOOBS (New Out of the Box Software)
❂ USB power supply with micro USB cable (must deliver 1.2 A @ 5 V)
❂ USB keyboard
❂ USB mouse
❂ TV or monitor
❂ Cable to connect to TV or monitor (specific cables for your TV or
❂ monitor are discussed in chapter 1)

To complete the projects in part 3, you'll also need these parts:

❂ Solderless breadboard
❂ GPIO ribbon cable for the Raspberry Pi 2 Model B (40 pin)
❂ GPIO breakout board
❂ 1 dozen jumper wires, male-to-male
❂ 1 red LED (light-emitting diode)
❂ 1 green LED
❂ 1 blue LED
❂ 1 red, green, blue (RGB) LED
❂ 3 push buttons
❂ 3 resistors, 10K ohm
❂ 3 resistors, 180 ohm (or between 100 and 300 ohms)
❂ Headphones or powered computer speakers

You can typically find all these items in a Raspberry Pi starter kit or
available individually through online retailers and stores that sell the
Raspberry Pi, such as CanaKit, Sparkfun, or Adafruit.

Roadmap

This book is divided into three parts.

About this book xix
Part 1 introduces you to the Rasperry Pi, shows you how to set it up,
and provides an introduction to the Python programming language:

❂ Chapter 1 provides an overview of the Raspberry Pi and how to set
it up for the first time.

❂ Chapter 2 shows you how to write your first Python programs and
introduces you to doing math and displaying text with Python.

Part 2 shows you how to build different text-based games while learn-
ing how to gather input, display information, make decisions, and
repeat instructions in Python:

❂ Chapter 3 teaches you how to create your first interactive Python
game, the Silly Sentence Generator 3000, by asking users to type in
something and then displaying funny messages to the screen.

❂ Chapter 4 explores how to give your programs logic and use repeat-
ing loops as you create a Norwegian Blue Guessing Game.

❂ Chapter 5 demonstrates how to build a Cave Adventure Game, give
users multiple choices, check input from users, and create your own
Python functions.

Part 3 involves making your Raspberry Pi interact with the world
around it:

❂ Chapter 6 explains setting up your Pi with an electronics bread-
board, building a simple circuit, and controlling an LED (light)
using your Raspberry Pi and Python.

❂ Chapter 7 dives into creating an interactive guessing game that uses
lights to respond to a player’s input, letting them know with different
colors whether their answer is right or wrong.

❂ Chapter 8 teaches you how to listen to your Pi’s input pins by mak-
ing a project that combines light and sound to make your own DJ
Raspi sound mixer.

Code conventions and downloads

All source code in this book is in a fixed-width font like this, which
sets it apart from the surrounding text. In many listings, the code is
annotated to point out key concepts. I have tried to format the code so

xx About this book
that it fits within the available page space in the book by adding line
breaks and using indentation carefully.

The code accompanying this book is hosted at the GitHub repository:
https://github.com/rheitz/hello-raspberry-pi. It is also available for
download as a zip file from the publisher’s website at www.manning
.com/books/hello-raspberry-pi.

Author Online

Purchase of Hello Raspberry Pi! includes free access to a private web
forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the
author and other users. To access the forum and subscribe to it, point
your web browser to www.manning.com/books/hello-raspberry-pi.
This Author Online (AO) page provides information on how to get on
the forum once you’re registered, what kind of help is available, and
the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialog among individual readers and between readers and
the author can take place. It’s not a commitment to any specific amount
of participation on the part of the author, whose contribution to the AO
remains voluntary (and unpaid). We suggest you try asking the author
some challenging questions, lest his interest stray!

The AO forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Ryan Heitz is a teacher, programmer, maker, father, and big kid. He is
the cofounder of Ideaventions, a Science Center for kids, and Ideaven-
tions Academy for Mathematics and Science, a private school focused
on science and technology. He specializes in teaching kids how to
experience computer science in a fun and engaging way. As a program-
mer, Ryan has developed software for everything from NASA data
collection systems to web mapping applications.

https://github.com/rheitz/hello-raspberry-pi
www.manning.com/books/hello-raspberry-pi
www.manning.com/books/hello-raspberry-pi
www.manning.com/books/hello-raspberry-pi

Part 1

Getting started

et ready to explore Python using your Raspberry Pi! You’ll need a
Raspberry Pi and a few other parts and cables for part 1. Here’s your
shopping list:

❂ Raspberry Pi 2 Model B
❂ 8 GB SD memory card, preloaded with the Raspberry Pi Founda-

tion’s NOOBS (New Out Of the Box Software)
❂ USB power supply with micro USB cable (must deliver 1.2 A @ 5 V)
❂ USB keyboard
❂ USB mouse
❂ TV or monitor
❂ Cable to connect to TV or monitor (specific cables for your TV or

monitor are discussed in chapter 1)

Optional item:

❂ Raspberry Pi case

Part 1 will get you on your way to using your Raspberry Pi and launch
you into programming it with Python. In chapter 1, you’ll set up your
Raspberry Pi, learn how to start (or boot) it up, and then look around
inside the Pi’s desktop. Chapter 2 is where you’ll start exploring the
Python language. You’ll create your first programs and learn to give
instructions to your Raspberry Pi using Python.

G

2 CHAPTER Getting started
By the end of part 1, you’ll know how to get a Raspberry Pi up and
running. You’ll be able to write a Python program and interact with
your Pi to make it do things like figure out the cost of a cheeseburger
meal and display silly messages on the screen.

1
Meet Raspberry Pi

In this chapter, you’ll learn how to

• Set up your Raspberry Pi
• Install an operating system—Raspbian—on your Pi
• Find and open applications
• Write your first bit of code in Python

What kinds of things do you think you can do with a Raspberry Pi?

1 Play games.

2 Watch videos.

3 Create a video game.

4 Listen to music.

5 Make a sound mixer for a dance party.

6 Build a robot.

Believe it or not, these are all projects you can do yourself, and if you
learn to program in Python, the sky is the limit. You can achieve quite a
lot on your Pi, as long as you can write a program to do it. But before we
talk about that, let’s take a look at a Raspberry Pi and discover what
makes it tick.
3

4 CHAPTER 1 Meet Raspberry Pi
What is the Raspberry Pi?
The Raspberry Pi, sometimes referred to as the Pi, is a small, low-cost
computer invented in the U.K. by the Raspberry Pi Foundation. It pro-
vides an easy-to-use tool to help you learn to code in Python (the Pi
part of its name came from the focus on using it to code in Python).

About the size of a deck of cards, it isn’t as powerful as a laptop or
desktop computer; its computing power is more similar to that of a
smart phone. But what it lacks in processing power, it makes up for in
its many features:

❂ Its readiness for programming in Python
❂ The many ways you can use it
❂ Its small size and cost

The Pi, with its companion memory card, is preloaded with all the soft-
ware you need to jump into programming in Python. Type in com-
mands, and see what happens. Enter a program you find on the internet
or in a magazine, run it, and see how it works. The Pi is made for you to
learn to code by playing with it, using it, and interacting with it.

Once you learn to program in Python, you can use your Pi as a base for
all sorts of projects—with your imagination, the possibilities are end-
less! The Pi’s small size makes it easy to carry around and include in
projects. Hide it on a shelf or mount it on a wall with a camera to make
a security system; power it with a rechargeable battery pack if you need
it to be portable; or even attach it to a remote-controlled car or helicop-
ter. And if you happen to mess something up, it’s simple to recover. Even
if you manage to break the Pi, it’s pretty cheap to replace.

At its core, the Raspberry Pi is a circuit board that has all the compo-
nents found in many computers. The next section checks out the com-
ponents of the Pi and explores what they do. Let’s go!

Exploring your Raspberry Pi’s parts: hardware
Ever look closely at an insect under a magnifying glass, or take apart a
toy? Humans are naturally curious about what makes things work.
What are the different parts, and what do they do? What parts are

Exploring your Raspberry Pi’s parts: hardware 5
unique? Let’s treat the Raspberry Pi the same way, explore its parts,
and learn how to set it up.

Luckily, you don’t have to break it open to see its parts. You can see
the Raspberry Pi’s components displayed before you on the green cir-
cuit board in your hand (see figure 1.1). Let’s walk through the parts of
the Raspberry Pi and see what they do. We’ll be focusing on the Rasp-
berry Pi 2 Model B; if you have a Raspberry Pi 1 Model B+ or B, see
appendix B for more information.

General-purpose
input/output (GPIO) pins

USB
ports

Ethernet
port

Where you connect
things (with USB
connectors)

Where you connect
to the internet

Where you can hear
sounds or plug into
an old-style TV

Where you plug wires to make
cool projects with electronics

Where you store
the operating
system, apps,
and files

Where you give it
a high-def display

PROJECTS

Memory
card slot

MicroUSB
power port

3.5 mm
audio/video outHDMI port

Where you plug
in the power cord

“The brain of
the operation”

System on a chip

Figure 1.1 The Raspberry Pi provides an excellent platform for learning to program in
Python. It includes many input and output ports to give you flexibility in how you connect it.
As you would with a desktop computer, you need to connect a keyboard, mouse, monitor,
and power cable before you can start using your Pi.

6 CHAPTER 1 Meet Raspberry Pi
Giving your Pi a cozy home: Pi cases
We all like to be warm and cozy in our homes. A Raspberry Pi is no
different. Do the right thing and protect your Pi by putting it in a case
(see figure 1.2). If your Pi didn’t come with a case, you have a lot of
options. You can buy one or make your own. My favorite approach is
to make my own case from wood, cardboard, a plastic container, or
even LEGOs. The key is making sure your Pi is protected from acci-
dental drops and, ideally, spills. But before you close up your Pi in a
case, let’s take a closer look at some of its features.

Defining some tech terms
Input and output are terms used for communication to and from a computer.

USB refers to a common connector found on computers. It’s used to plug in a
keyboard, a mouse, flash drives, and many other computer peripherals.

HDMI is a standard way to connect devices to high-definition TVs or monitors.
We’ll talk about this more later, when we discuss connecting a TV or monitor to
your Raspberry Pi.

Ethernet is a technology used to connect computers together into a network.
This port provides a way to plug in and connect to the internet or your home
network if a wireless connection isn’t available.

Paper Plastic Aluminum

Figure 1.2 A case protects your Raspberry Pi from damage while making it easy to
access the ports. Some people use a case to give their Pi a unique personality. You
can purchase a case or, better yet, make your own. Plastic cases are the most com-
mon, but these pictures show examples of cases made from paper, plastic, and alu-
minum. You could even try using LEGOs to make one.

Exploring your Raspberry Pi’s parts: hardware 7
The brain of your Pi: system on a chip
Meet the brain of your Raspberry Pi. The system on a chip (SoC) is
the black square in the middle of the Pi circuit board in figure 1.3. This
incredible chip is a package of many parts: the central processing unit
(CPU), the graphics processing unit (GPU), the digital signal processor,
and the Pi’s working memory. The chip provides the computing power,
graphics power, and memory to run apps and play videos.

The Pi’s CPU handles running applications and executing instructions.
The same processor is also found in smart phones and e-readers. Think
of it as the part of your brain that allows you to follow instructions and
calculate the answer to math problems.

The GPU is like the visual part of your brain that allows you to visual-
ize a 3D object in your mind or track a ball thrown to you. It handles
the Pi’s multimedia tasks, like processing digital images, drawing
graphics, and playing videos. The GPU gives your Pi surprisingly good
high-definition video-playback capabilities. Both the central processor
and the graphics processor share the Pi’s working memory, or RAM,
which is part of the SoC.

System on a chip

Figure 1.3 The Raspberry Pi’s system on a chip (SoC) contains its computing and
graphics processing power and working memory. The Pi uses the ARM11 micropro-
cessor as its CPU and the VideoCore IV for its GPU. The ARM11 microprocessor is
found in handheld electronics such as smart phones and gaming systems. The SoC
in the Raspberry Pi 2 Model B comes with 1 GB of RAM.

8 CHAPTER 1 Meet Raspberry Pi
Connecting a keyboard and mouse: USB ports
Meet the USB ports on your Raspberry Pi. The two metal, rectangular
boxes each contain two USB ports, shown in figure 1.4. USB stands for
Universal Serial Bus.1 The Pi provides USB ports to allow you to con-
nect a keyboard, a mouse, flash drives, and other USB peripherals.

Working memory: RAM
Question: Can you remember the following grocery store list? Bananas, milk,
peanut butter, jam, bread. Read the list once more, and then look away from the
book and try to recite the list from memory.

To remember it, you need to hold the names of the items in your memory. You
only have to store them for a short time. Once you go to the store and buy the
items, you can forget them.

When a computer is working, it does much the same thing. It may have to re-
member and process millions of instructions and bits of information each sec-
ond, but it can often forget them once it’s done processing them. The computer
does this using working memory or random access memory (RAM). It’s packed
in the SoC, and it gives your Raspberry Pi the ability to process instructions
quickly by remembering pieces of information as it’s working and forgetting
them when they’re no longer needed—much like how the neurons in your brain
work together to remember a grocery list. Later, we’ll talk about storing infor-
mation for the long term and where that happens.

1 The U for Universal is because it provides computer makers and computer equipment makers with a stan-
dard way to connect things to computers. Things connected to a computer are often called peripherals.

USB
ports

Top view Side view

Figure 1.4 The Raspberry Pi 2 Model B has four USB ports. They’re on the board in two sets
of two, side by side. The USB ports are useful for connecting a keyboard and mouse to your Pi.
A USB hub can also be plugged in to allow for even more peripherals.

Exploring your Raspberry Pi’s parts: hardware 9
Get your keyboard and mouse. Let’s plug them into your Pi.

CONNECTING A KEYBOARD

You’ll need a keyboard that plugs into a USB port. Figure 1.5 shows an
example of a keyboard with a USB connector.2

To attach your keyboard to your Pi, plug the wire from your keyboard
into your Raspberry Pi’s USB port. There are four USB ports on your
Pi. It doesn’t matter which one you choose.

Why are they called ports?
Back in ancient times, when Romans walked around and spoke Latin to each oth-
er, the word for a gate or door was porta. Although computers don’t have doors
or gates, they have places where you plug things in, called ports.

Ports allow electrical signals to go in and out of your computer. Without ports,
you wouldn’t be able to view your computer’s screen, download web pages, or
move a mouse.

Let’s pretend you could shrink and that you had special glasses so you could see
these electrical signals. What would you see when I pressed the E key on the key-
board? You’d see an electrical signal flying from the keyboard through the key-
board’s wire, through the port on the computer, and into the computer. The port
acts like a gate, allowing signals to go into or out of your computer.

2 If you don’t have a keyboard with a USB connector, have no fear. You can find one for under $15
online or at your local computer or electronics store.

Figure 1.5 You need a USB keyboard to type and enter com-
mands on your Raspberry Pi. The keyboard plugs into one of
the four available USB ports on the Raspberry Pi 2 Model B.

10 CHAPTER 1 Meet Raspberry Pi
TIP If the keyboard’s USB connector doesn’t fit into the Raspberry
Pi’s USB connector, flip over the connector and try again. USB con-
nectors only fit in one way.

Fantastic! Your keyboard is connected to your Pi. It’s time to move on
to adding a mouse.

CONNECTING A MOUSE

For this step, you need a mouse that plugs into a USB port. The key-
board is using one of your Raspberry Pi’s four USB ports. Plug your
mouse into one of the other ports.

ANOTHER OPTION: WIRELESS KEYBOARD AND MOUSE COMBINATION

If you own a wireless keyboard and mouse combination, instead of
using wires, you can plug the USB dongle into one of the USB ports on
the Pi. This frees up one of your USB ports, which can be handy should
you decide to attach multiple USB devices such as a USB Wi-Fi
adapter or USB flash drives, or if you want fewer wires on your desk.

Excellent! Giving your Pi the ability to store and retrieve information
is your next task.

Storing memories: your Pi gets a memory card
We all like to remember things that are important to us. Birthdays,
vacations, and holidays are wonderful times, and we’ve invented ways
to help us recall them. You might use a scrapbook or a photo album to
store memories. Even after many years, you can open these books and
remember these past events.

In addition to working memory (RAM), computers also need a way to
remember things, even if they’re turned off for long periods of time.
The Raspberry Pi, like all computers, has this capability for memory
storage, letting it save and retrieve data, files, and applications. Much
like a photo album lets you recall holidays, the Pi’s memory storage
allows you to store important applications and information. You’ll use
this capability when you learn how to save sets of Python instructions
or programs.

Exploring your Raspberry Pi’s parts: hardware 11
SD MEMORY CARD

A Raspberry Pi is different from most computers because its memory
storage is contained on an SD memory card, whereas most laptops and
desktops use a hard drive. Files, applications, and even the Pi’s operat-
ing system are all stored on the SD memory card, whether it’s a Python
game you’re creating or a new music player app for your Pi. If you pur-
chase a Raspberry Pi kit, it will come with an SD card (see figure 1.6).3

3 See http://elinux.org/RPi_SD_cards for more information on compatible cards.

Top view of Raspberry Pi

Bottom view of Raspberry Pi

Top view of Raspberry Pi
with SD memory card inserted

Memory
card slot

8
GB

Figure 1.6 An SD memory card provides the storage memory used by the Raspberry Pi to
hold all the software and files, including the operating system. Raspberry Pi kits come with an
SD memory card preloaded with the software needed to start up your Pi. The two left images
show the location of the SD memory card slot on the underside of the Pi board. The right
image shows an SD memory card inserted into the SD card slot.

http://elinux.org/RPi_SD_cards

12 CHAPTER 1 Meet Raspberry Pi
You can add more storage to your Pi by attaching USB peripherals
such as a USB flash drive or a USB hard drive.

NOOBS

Your Raspberry Pi kit comes with an SD card preloaded with NOOBS.
Developed by the Raspberry Pi Foundation, New Out of the Box Soft-
ware (NOOBS) is a set of files that helps you set up your Pi for the first
time. If you lose yours or need a NOOBS SD memory card, you can
buy new ones online. Alternatively, if you have an SD card and want to
install NOOBS on it, go to the Raspberry Pi Foundation website
(www.raspberrypi.org/downloads) to learn how.

SD MEMORY CARD SLOT

Figure 1.6 shows the location of the SD memory card slot. This thin,
metal slot is on the underside of the Raspberry Pi. For your Pi to work
when you plug it in, it must have some initial knowledge to start up and
display something on the screen. In addition to this startup informa-
tion, it must also have a place to store any new information.

INSERTING THE SD CARD IN THE SLOT

Hold the card so that the end with the metal contacts is facing up and
toward the Pi. Insert the card along the underside of the board into the
slot. You’ll hear a small click as the card is pushed into the slot. The
card is held in place by a small spring mechanism. The card will only fit
in one way, so if it doesn’t fit, flip it over. If you need to remove the
card, push it in again (you’ll hear a click); then you can pull it out.

REPLACING A LOST OR BROKEN SD CARD

If you lose your SD card, you lose the information, applications, and
operating system that are stored on the card. It’s as if you lost your
hard drive on a home computer. You can easily replace the card, but

SD cards come in various sizes
SD cards come in three sizes: the full-size SD card (largest), the miniSD, and the
microSD (smallest). The Raspberry Pi 2 Model B uses a microSD card.

www.raspberrypi.org/downloads

Exploring your Raspberry Pi’s parts: hardware 13
you’ll be starting over fresh. Here are the two options for replacing the
card:

❂ Purchase an SD card at the store, and set it up anew. It’s recom-
mended that you get an SD memory card with at least 8 GB of stor-
age space. You can download and install the startup software from
the Raspberry Pi Foundation at www.raspberrypi.org/downloads.
See appendix A for instructions on how to make a new SD card for
your Raspberry Pi.

❂ Buy an SD memory card preinstalled with the Raspberry Pi startup
software. You can find cards for sale on the Raspberry Pi Founda-
tion website and at online retailers.

SD CARDS MAKE YOUR PI’S MEMORY PORTABLE

If your Raspberry Pi ever breaks, you can remove the SD memory card
and insert it into a new Pi. All your files and software will be there. It’s
like taking your photo album with you to a new house. The memories
are safe in the photo album, ready for you to enjoy.

TIP You can set up multiple SD cards for your Raspberry Pi and
switch them whenever you want to give your Pi a whole different per-
sonality. Maybe set up an SD card for the Pi as a media center, com-
plete with games, music, and videos. Set up another for your Pi robot
project. Each memory card can be set up uniquely, with different
operating systems, applications, and files. Swap out the SD card and
reboot your Pi, and you instantly have a Pi with different traits to meet
your needs.

Connecting a TV or monitor: HDMI port
The HDMI port, shown in figure 1.7, is for connecting your Raspberry
Pi to a TV or monitor. HDMI stands for high-definition multimedia
interface. The output provides a combined audio and video signal—
meaning both sound and picture come out of this port and go to your
TV or monitor. If you want a crisp, clear display and you already own a
high-definition TV or monitor, then you’ll want to connect your Rasp-
berry Pi to it using the HDMI output port. Because the HDMI output
contains audio and video signals, if your TV or monitor has built-in

www.raspberrypi.org/downloads

14 CHAPTER 1 Meet Raspberry Pi
speakers, the sound from your Raspberry Pi can be set to come out of
the speakers rather than through the 3.5 mm audio output.

Now that you know about the HDMI port, let’s see how you can con-
nect your Pi to a TV or monitor.

CONNECTING YOUR PI TO A TV OR MONITOR

Once you decide on the TV or monitor you plan to use, you’ll need to
look for the available video input ports on the TV or monitor (look on
the back or sides to find them). What kinds of ports do you see? Unfor-
tunately, manufacturers often provide a variety of different ports.
Think of it like a matching game. Your goal is to match the connectors
on your TV to the connectors on the Pi. If they don’t match, you’ll need
to use one of the adapters discussed in a minute. Either way, you’re
sure to get it solved.

IDENTIFYING PORTS AND MAKING THE CONNECTION

Take time to study the connections on your TV or monitor. Try to iden-
tify the video ports, comparing them to the pictures of connectors in
figure 1.8.

HDMI port

Top view Side view

Figure 1.7 The HDMI port on the Raspberry Pi provides a high-definition audio and
video signal that can be connected to a TV or monitor. Use an HDMI cable to connect
your Pi to your TV or monitor. Depending on the connectors available on the TV or
monitor, you may need an adapter.

Exploring your Raspberry Pi’s parts: hardware 15
This section provides instruc-
tions on how you can connect
your Pi to a TV or monitor with
either an HDMI or a DVI port.
If your TV or monitor has dif-
ferent video input ports, check
appendix B for tips on connect-
ing to them.

HDMI

The HDMI port is a metal,
mostly rectangular port that is
labeled HDMI. Connect an
HDMI cable from the screen’s
HDMI port to your Raspberry
Pi’s HDMI port (see figure 1.9). If you’ve connected your HDMI cable,
you can now skip ahead to the discussion of other ports on the Pi.

HDMI port DVI port

Figure 1.8 HDMI and DVI are common
types of video input ports found on mod-
ern TVs and monitors. It’s easiest to con-
nect a Raspberry Pi to a TV or monitor
with an HDMI port. HDMI provides a high-
definition picture and doesn’t require any
adapters or converters—only an HDMI
cable, which is included in many Pi kits.
The DVI port requires a special adapter to
connect with a Pi.

Raspberry PiTV or monitor

HDMI port HDMI cable

Figure 1.9 A Raspberry Pi can be connected to a TV or monitor using an HDMI
cable. Connect the cable from the Pi’s HDMI port to the TV’s or monitor’s HDMI input.
In addition to video, the HDMI cable also contains the Pi’s audio output, which can be
played through the TV’s or monitor’s speakers.

16 CHAPTER 1 Meet Raspberry Pi
DVI

DVI ports on TVs and monitors come in several different forms.
They’re all rectangular ports with three rows of eight square pinholes
and a horizontal hole or set of holes next to them. If you already have
an HDMI cable, the solution is to purchase an HDMI-to-DVI adapter.
You can find these online or in a computer store. Plug the adapter into
the computer screen’s DVI port, and then plug your HDMI cable into
the back of the adapter and the other end into the HDMI port on your
Raspberry Pi (see figure 1.10).

Another solution, rather than to use an adapter, is to purchase a DVI-
to-HDMI cable. These can be found online or at a computer store. Plug
the DVI connector on the cable into your computer screen, and plug
the HDMI connector into your Pi’s HDMI port.

Great! You’ve completed an important step by connecting your Pi to a
TV or monitor.

Raspberry PiTV or monitor

DVI (female)
port

HDMI cableHDMI (female)
to DVI (male)

adapter

+

Figure 1.10 The Raspberry Pi can be connected to a TV or monitor with a DVI port using
an HDMI-to-DVI adapter and an HDMI cable. One end of the HDMI cable plugs into the Pi’s
HDMI port. The other is connected to the adapter, and the adapter is connected to the TV
or monitor. Adapters are available through online retailers or local computer stores.

Exploring your Raspberry Pi’s parts: hardware 17
Other ports and connections
You’ll find other ports on your Raspberry Pi. We’ll cover those in later
chapters, or you can reference appendix B for more information on
specific ports and connections. Some of these include the following:

❂ GPIO pins—The two long rows of pins on the Raspberry Pi are used
to send and receive electrical signals. Part 3 of this book will cover
how to program those pins and build projects.

❂ Internet—You can connect your Raspberry Pi to the internet or
your home network by plugging in an Ethernet cable. But you may
find that the easiest way to get online is to use the USB Wi-Fi adapter
that is provided in many Raspberry Pi kits. Appendix B has informa-
tion on the Ethernet port and using USB Wi-Fi adapters.

❂ 3.5 mm audio/video out—The small round connector is for plugging
in headphones or powered speakers. Chapter 8 will show you how to
play sounds as you turn your Raspberry Pi into a music player.

Let’s see how you can get power to your Pi.

Powering your Pi: microUSB power port
Power for your Raspberry Pi is
supplied through the microUSB
power port located near a corner of
the board (see figure 1.11). This
port is where you connect a power
supply to your Pi; it’s the same as
the port found on many mobile
phones. Raspberry Pi kits come
with a microUSB power supply.

Figure 1.11 The Raspberry Pi requires a
microUSB power supply that provides at
least 1.2 A of electric current. If you plan
to use all the USB ports on your Pi, you

may want one that provides 2 A or more of electric current. The recommended voltage is 5
volts (V), but the Pi can operate at voltages ranging from 4.8 to 5.2 V. If you have a power sup-
ply you want to use with your Pi, check its output voltage and current, which are listed on the
charger in small print. In this example, the charger has an output of 5.1 V and 2.5 A of cur-
rent, making it a suitable power supply for a Pi. Using the incorrect voltage or insufficient cur-
rent can damage or destroy your Pi, so check carefully.

18 CHAPTER 1 Meet Raspberry Pi
NOTE Only certain mobile phone chargers can be used to power
your Raspberry Pi. The charger must produce sufficient electrical
current to power it. If you want to go this route, then you should read
the fine print on the charger. The charger must produce 1.2 amp (A)
or more for the Pi.

It’s alive! Plugging in the Pi
Before plugging your Raspberry Pi into the power supply, go through
this quick checklist:

1 Are you sure your keyboard, mouse, and monitor are connected to the
Pi?

2 Have you turned on your TV or monitor and set it to the correct
input source? For example, if you plugged your Raspberry Pi into
the TV’s HDMI port, make sure the TV is set to HDMI input.

3 Have you inserted your SD card with NOOBS into your Pi?

An example setup is shown in
figure 1.12.

Figure 1.12 Example setup of a
Raspberry Pi with peripherals con-
nected and SD card inserted. A key-
board and mouse are connected to
the Pi’s two available USB ports. A
microUSB power supply is plugged
into the Pi; the other end is lying on
the desk, ready to be plugged into
the wall. An HDMI cable is connected
from the Pi’s HDMI port to the back
of the monitor. The Ethernet port
has an Ethernet cable plugged into it
from a router (not shown).

TIP TVs and monitors often allow you to connect multiple video
sources. Maybe your TV has a Wii, a DVD player, and a digital video
recorder. These TVs and monitors have the option to select which
input is displayed to the screen. Use your TV’s or monitor’s input
selector to set the correct input.

Getting your Pi running: software 19
All right, if you have all three steps checked off, it’s time to power up
your Raspberry Pi. Plug your power supply into a wall outlet, and plug
the microUSB connector into your Pi. Your Pi’s lights will begin to
flash. Enjoy the beautiful glow from the lights—this is a sign that your
Raspberry Pi is starting up. It’s also referred to as booting; this is when
the computer detects the devices you have connected to it and starts up
the computer’s operating system (OS). Some believe the term boot
originated from kicking a horse to get it to start moving. You can imag-
ine that you’re giving your Pi a bit of a boot to get it started.

Getting your Pi running: software
You’ve got your Pi plugged in and ready to rock. It’s time to get it run-
ning and doing something useful—and for that, you need some software.

An OS is a common set of instructions, or software, that helps manage
the computer. Common OSs you’ve most likely encountered are Micro-
soft Windows, Apple’s OS X, and Linux. All of these OSs control the
connection of your keyboard, mouse, monitor, and other peripherals.
Most important, the OS serves as a foundation for you to put applica-
tions on your computer and use them.

The SD memory card that comes with your Pi kit already contains the
files for installing several different OSs on your Pi. We’ll step through
installing the Raspbian OS—the default for the Pi—and configuring it.

Installing the Raspbian operating system
The first time you boot a Raspberry Pi, you’ll need to install an OS on
it and then configure it to work nicely for you. Let’s walk through the
first task: installing an OS. You’ll configure it in the next section. Once
you plug in your Pi, you’ll see the NOOBS menu for selecting an OS, as
shown in figure 1.13.

The Raspberry Pi has a variety of OSs that can be installed on it. The
Raspberry Pi Foundation recommends the Raspbian OS, and it’s what
we’ll use for this book. Let’s go over how to install it on your Pi.

20 CHAPTER 1 Meet Raspberry Pi

What if you don’t see the NOOBS software screen?
If you don’t see the NOOBS software screen after your Pi boots up for the first
time, then there are a few things to check.

If you don’t see lights flashing on your Pi when you plug it in, make sure the
electrical outlet you’re using has power. Many a Pi owner has accidentally
plugged a Pi into a power strip and forgotten to switch on the power strip.
Sounds silly, but even the best programmers make mistakes.

If your Pi’s lights blink when you plug in the power supply but the screen of your
monitor doesn’t show anything, make sure the monitor is plugged into an elec-
trical outlet, the HDMI cable is connected from the monitor to the Pi, and you’ve
turned on the monitor.

Finally, if your Pi starts booting up and you see lots of messages displaying on a
black screen, but you never see the NOOBS selection menu, it’s likely that your
SD card has an error. See appendix A for ways to fix an SD card.

Sometimes you’ll run into issues with your Pi. If you do, use the troubleshooting
steps in appendix A, and search the Raspberry Pi Foundation websitea to find
solutions.

a The Raspberry Pi Foundation website is www.raspberrypi.org.

Figure 1.13 The NOOBS selection menu allows you to choose
the OS you want to install on your SD card and use with your Rasp-
berry Pi. This menu appears the first time you start up your Pi.

www.raspberrypi.org

Getting your Pi running: software 21
On the NOOBS selection menu (see figure 1.13), follow these steps:

1 Select Raspbian (make sure there is an X in the box next to Raspbian;
if not, click the box to select it).

2 Click the Install button at the top of the menu.

3 A message appears, warning you that the process will install the OS
and that all existing data on your SD card will be overwritten.4

Select Yes to continue with the installation.

4 Wait for the installation to complete. It will take 5 to 10 minutes, so
get a drink or grab a snack while you’re waiting.

5 When the installation is done, a box pops up, letting you know the
OS was installed successfully. Click OK, and your Raspberry Pi will
start loading Raspbian.

6 When it’s finished loading Raspbian, your Raspberry Pi reboots
itself. A black screen appears, followed by many, many, many mes-
sages. Don’t worry; the messages are the Pi performing its startup
tasks, such as detecting the keyboard, mouse, and TV or monitor.

Kudos to you! You’ve installed your Raspberry Pi’s OS, Raspbian.
Now you’ll want to configure how it works to suit you.

Configuring the operating system: making it yours
You’ve finished installing the Raspbian OS on your SD memory card
and gotten it running for the first time. The next thing you’ll see is the
Raspberry Pi configuration screen, shown in figure 1.14.

TIP You can’t use your mouse with this menu! Use the arrow keys
(up, down, left, and right) and Tab key to move around the menu
instead. Press Enter to select the highlighted menu item.

Let’s walk through some of the basic configuration settings you may
want to change.

4 When you’re warned that all data will be overwritten, this doesn’t include NOOBS, which is retained
on the SD card so that you can reinstall the OS if you ever need to.

22 CHAPTER 1 Meet Raspberry Pi
CHANGING THE KEYBOARD SETTINGS

The Raspberry Pi is made in the U.K., so it’s preset to a U.K. key-
board. If you live in other parts of the world, the keyboard may make
unexpected characters appear on the screen. For example, you might
type a # symbol (Shift-3), and your Pi displays the symbol for a British
pound. Weird, right?

You can use the configuration tool to change your Pi’s keyboard layout
by following these steps:

1 On the Raspberry Pi configuration menu, select option 4—Interna-
tionalisation Options—and press Enter.

2 Select Change Keyboard Layout, and press Enter.

3 Select your keyboard model—for example, Dell—and press Enter.

4 You see options for the keyboard layout’s country of origin. Select
the appropriate country, and press Enter.

5 A list of keyboard layouts appears. Select the one for your location,
and press Enter.

6 On the next series of screens, you can set shortcut keys. Set them to
match your personal preferences. If you aren’t sure, accept the
defaults (press Enter until you’re back to the configuration menu).

You can always return to the configuration tool if needed. You’ll learn
how in a later section when you’re introduced to the command-line
mode for Raspbian.

Figure 1.14 When your Pi boots up for the first time, you’ll see the Raspberry Pi
configuration menu. This menu makes it easier to set up your Pi by allowing you to
change settings such as the time zone and keyboard layout. The menu also has the
option to set your Pi to always boot to the Raspbian desktop environment.

Getting your Pi running: software 23
CHOOSING HOW YOUR RASPBERRY PI STARTS UP

Raspbian, like most OSs, allows you to use it in two different ways (see
figure 1.15):

❂ Command-line mode—You type in commands to the OS. This can
be tough for novices, because you need to know the commands and
type them in exactly. Because this mode is more difficult to use,
you’ll only use it in this book when you need to run commands that
require administrative or super-user permissions. For example,
you’ll need the command line when you make Python programs that
use the GPIO pins or you want to alter your Pi’s configuration.

❂ Graphical-user-interface (GUI) mode—Everything appears in win-
dows, icons, and menus that are point and click. Just like on Win-
dows and Mac computers, this will be your main way to interact
with your Pi and program in Python. It represents the most natural
way to access applications, files, and folders.

Raspbian command-line mode

Raspbian graphical-user-interface (GUI) mode

Figure 1.15 Example screen images
of a command-line mode (top) and a

GUI mode (bottom) for a Raspberry Pi
running the Raspbian OS. The

command-line mode is text-based:
you enter instructions at the prompt.
The GUI is pretty much the same as a

Windows or Mac interface, with
windows, icons, and menus that you
interact with using a mouse pointer.

24 CHAPTER 1 Meet Raspberry Pi
Question: Which option do you prefer?

❂ Your Raspberry Pi booting up to a screen with a blinking cursor,
waiting for you to type in commands

❂ Your Raspberry Pi booting up and showing you a desktop with
application icons arranged on the screen, waiting for you to point to
and click them with your mouse

If you chose the second option, you can set Raspbian to always boot to
the desktop with the following steps:

1 On the Raspberry Pi configuration menu, select option 3—Enable
Boot to Desktop/Scratch—and press Enter.

2 Select the second option—“Desktop Log in as user ‘pi’ at the graphi-
cal desktop”—and press Enter.

Fantastic! Next time your Raspberry Pi boots up, you’ll be taken to the
Raspbian desktop.

TIP If you decide you prefer to boot the Raspberry Pi to the com-
mand line, you can always launch the Raspbian desktop by entering
startx at the command line.

TIP Sometimes you may find yourself using the Raspbian GUI, but
you want to use the command line. There is an easy way to change.
You can open the command-line mode in a window by clicking the
Menu Button, then selecting the Accessories category and clicking
the Terminal5 icon.

MAKING OTHER CHANGES

The Raspberry Pi configuration menu includes other options such as
setting up a camera and over-clocking. These are available if you ever
want to use them. Check the Raspberry Pi forums for more informa-
tion on these options.

Saving your configuration and rebooting
If you’re happy with the changes made to your Raspberry Pi, follow these
steps to exit the Raspberry Pi configuration tool and reboot your Pi:

5 Terminal is short for LXTerminal or Linux terminal. Raspbian is a Linux-based OS, and terminal
refers to the command-line mode where you can enter commands.

Getting your Pi running: software 25
1 On the Raspberry Pi configuration menu, use the arrow keys to select
Finish, and press Enter.

2 You’re prompted with this message: “Do you want to reboot now?”
Select Yes, and press Enter.

Your Raspberry Pi will dis-
play lots of lines of text as it
boots up. (Yes, it does that
again! Don’t worry, it will
seem normal to you soon.)
This is your Pi’s startup
sequence when it connects
peripherals and starts up the
OS. Next, a white screen with
a Raspberry Pi will appear,
along with a set of icons—this
is your Raspbian desktop (see
figure 1.16). Congratula-
tions! Your Raspberry Pi is
ready to go.

A BIT OF PI IN YOUR FACE: TROUBLESHOOTING

If you don’t see the view shown in figure 1.16, don’t be discouraged.
It’s likely that you didn’t select the option to boot to desktop. If your
screen shows the command-line mode for Raspbian (figure 1.17), you
can log in and launch the Raspbian GUI.

Figure 1.16 A view of the Raspbian desktop after
your Raspberry Pi boots up. The desktop is similar to
the desktop in Microsoft Windows or Apple Mac OS X.
Don’t worry if your desktop is different from this one.
Depending on when you bought your Pi, you may
have received an SD card with an older or newer
version of Raspbian.

Figure 1.17 If you didn’t set up your Pi
to boot to the Raspbian desktop, the
command-line mode will be displayed when
your Raspberry Pi boots up. It will ask you
for your login name and password.

26 CHAPTER 1 Meet Raspberry Pi
At the command line, you’ll be prompted to enter your login and pass-
word. The default login is pi, and the password is raspberry. After
entering that information, launch the Raspbian Desktop from the com-
mand line using the following steps:

1 Type startx.

2 Press Enter.

Once you execute the command, the Pi will start up the Raspbian GUI
mode and display your Raspberry Pi’s desktop. If you happen to have a
different problem, head to appendix A for troubleshooting ideas.

Getting around: learning Raspbian
Take a cruise around your Raspberry Pi, and look at some of the appli-
cations that come already installed with the Raspbian OS.

Finding and opening applications on your Raspberry Pi
There are many applications on your Raspberry Pi. You can access
them by clicking the Menu button in the top-left corner of the desktop
(see figure 1.18). Enjoy exploring what comes installed on your Pi.

Your files and folders
Similar to Windows Explorer or Mac Finder, Raspbian has some built-
in tools to make it easier to navigate the folders and files on your

Figure 1.18 The Raspbian appli-
cation menu opens when you click
the Menu button in the top-left
corner of the desktop. You can
open an application by moving
your mouse over the categories
listed on the menu and then
clicking the application.

Getting around: learning Raspbian 27
Raspberry Pi. In Raspbian, the application for managing files is
called File Manager, and it’s accessed by clicking the folder icon
located in the top-left corner of the Raspbian desktop. Figure 1.19
shows the icon and the File Manager application. Just as in Windows
Explorer, you can

❂ Navigate into folders by double-clicking them.
❂ Drag files to move them to another folder.
❂ Copy and paste files using the right-click menu on files and folders.
❂ Rename files.
❂ Open files by double-clicking them.

The Pi was built for coding. Let’s see how you can write code on
your Pi.

Figure 1.19 File Manager in Raspbian allows you to manage files as you do in Win-
dows Explorer or Mac Finder. You access File Manager using the folder icon in the
upper-left corner of the desktop. This is a view of a Pi with a lot of files stored in the
/home/pi folder.

28 CHAPTER 1 Meet Raspberry Pi
Writing code
You’re going to learn to write code in the Python programming lan-
guage. Meet a new program, IDLE. IDLE is a tool that’ll help you write
programs in Python. IDLE stands for Integrated DeveLopment Envi-
ronment. The Python language was named after Monty Python, and
the IDLE acronym is a nod to Eric Idle, one of the founding Monty
Python members.

Follow these steps:

Click the Menu button on your desktop.

Select Programming > Python 3.

After a second or two, IDLE opens the Python Shell, as shown in fig-
ure 1.20.

NOTE Previous Raspberry Pi models have desktop icons for Python:
IDLE and IDLE 3. You’ll use Python 3 (or IDLE 3) for the exercises in
this book. On older Pi models, the IDLE 3 icon opens the Python Shell
for Python 3. You may have guessed that the IDLE (without the 3)
icon opens IDLE for Python 2.

NOTE To start the Python Shell from the Raspbian command line,
type python3 and press Enter. You’ll see a >>> prompt and may inter-
actively enter Python commands. When you’re finished using the
Python Shell, type exit() and press Enter to end your Python session.

Figure 1.20 IDLE is a development environment that makes it easier
to write Python programs. This is the IDLE Python Shell that you can
use to enter Python commands or instructions one at a time.

Fruit Picker Extra: shopping at the Pi Store 29
The Python Shell shown in figure 1.20 allows you to enter Python
commands and press Enter to execute them. The command prompt lets
you type in commands after the triple greater-than symbols (>>>).

Do the following:

1 Enter 3 + 4.

2 Press Enter.

The screen displays the answer: 7. Try some subtraction:

1 Enter 17 – 9.

2 Press Enter.

The screen displays the answer: 8. Now let’s make Python talk to you
by printing a message to the screen:

1 Enter print("I am alive!").

2 Press Enter.

Your screen should display “I am alive!”

Outstanding work! You wrote three lines of code. When you pressed
Enter after each one, the Raspberry Pi’s processor executed those com-
mands and did what you asked. That is powerful!

Fruit Picker Extra: shopping at the Pi Store
Your Raspberry Pi can do many things. We’ve included special sec-
tions throughout the book called Fruit Picker Extras to teach you some
different things your Pi can do. This Fruit Picker Extra is about shop-
ping at the Pi Store.

The Pi Store is an online app store that provides access to games, apps,
and resources for your Pi (see figure 1.21). You can browse the Pi
Store from any device, such as a mobile phone or laptop. To access it
from your Raspberry Pi, double-click the Pi Store icon on your desk-
top. If you want to download content to your Pi, you need to have your
Pi connected to the internet, and you’ll also need to create an IndieCity
account with an email address and password.

30 CHAPTER 1 Meet Raspberry Pi
Some apps are free; others require you to pay a fee. You’ll find great
resources, such as free issues of MagPi, the Raspberry Pi community
magazine, a digital magazine full of tips, projects, and programming
tutorials (look for these in the Pi Store’s Media category). Have fun
downloading free games and tutorials onto your Pi!

Each chapter will have challenges at the end for you to try. If you can’t
figure them out, check the back of the book (see appendix C) for hints
and answers.

Challenge

Figure 1.21 You can access the Pi Store from the icon on your Raspbian desktop.
The store allows you to browse and download apps and content including games,
tutorials, and digital magazines. You’ll find free and fee-based content, organized
into five categories: Games, Apps, Tutorials, Dev Tools, and Media.

Summary 31
Scavenger hunt
Time to explore your Raspberry Pi with a scavenger hunt. The goal is
to learn more about the Pi by looking around, opening applications,
and playing with them. Try to complete this list of scavenger-hunt
items:

1 Find a game where squirrels eat other squirrels. Can you achieve the
title of Omega Squirrel? Hint: Double-click the Python Games desk-
top icon to look for it.

2 Find a calculator application on your Raspberry Pi. Calculate the
answer to a math problem: 87x34. Hint: The calculator is found
under Menu > Accessories.

3 Without unplugging your Raspberry Pi, can you figure out how to
shut down or restart it?

4 Turn your desktop’s background black.

5 Bonus: Open Scratch, and try to make a cat dance.

Consider yourself an official Raspberry Pi explorer. If you want, take
some more time to click some icons and see what they do. You’ve
accomplished a lot!

The Raspberry Pi is like other computers in a lot of ways, but with sev-
eral important differences. The similarities with other computers
include these:

❂ A Pi requires a keyboard, mouse, and monitor, much like other desk-
top computers. The ports for plugging these in are part of the Pi.

❂ The Pi can be set up with a desktop OS, Raspbian. It’s similar to
Microsoft Windows or Apple OS X.

❂ Although its computing power is limited (similar to a smart phone),
the Pi can still allow you to do many things you do on a desktop or
laptop, such as browsing websites, playing games, and listening to
music.

Summary

32 CHAPTER 1 Meet Raspberry Pi
The Raspberry Pi has qualities and capabilities that make it special and
unique. These key differences from other computers include the fol-
lowing:

❂ The Pi’s cost and size are much smaller, making it a great candidate
for projects.

❂ The Pi was designed for programming in Python and comes pre-
loaded with the Python development environment so you can get
coding right away.

❂ The Pi uses an SD memory card to store all files and software,
including the OS.

❂ It has GPIO pins that can send and receive electrical signals. In part
3 of this book, you’ll learn how you can use these to create projects
that interact with the world around you.

2
Exploring Python

In this chapter, you’ll learn how to interact with your Raspberry Pi by
using Python to

• Do math calculations quickly and easily

• Store information using variables

• Get messages to display on the screen

• Create and run your first program in Python

An exciting part of programming is getting the computer to interact with
you. It’s the first step toward having the computer feel artificially
intelligent.

Playing with Python
One of the best ways to learn to program is by exploring and playing.
When you play, you try things and see what happens. You learn by exper-
iencing the act of programming and seeing results. In this approach,
you’ll try entering different commands and see what happens.

Open IDLE for Python 3 by clicking the Menu button and selecting Pro-
gramming > Python 3 on your Raspberry Pi’s desktop (see figure 2.1).
After you click it, you’ll need to wait a few seconds while IDLE opens.
33

34 CHAPTER 2 Exploring Python
NOTE There are both Python 3 and Python 2 icons under Menu >
Programming on your desktop. Make sure you click Python 3 and not
Python 2.

The Python 3 icon opens IDLE.1 You’ll see a prompt, ready for your
commands—this is the Python Shell (see figure 2.2). With the Python
Shell open, let’s see how you can start talking to your Raspberry Pi
using Python.

1 The specific version of Python preinstalled on your Raspberry Pi may vary depending on when you
purchased it. As of this writing, most Raspberry Pis come with Python version 3.2.3.

Figure 2.1 The Python 3 icon on your Raspberry Pi opens an interactive
programming shell for Python 3.x.

Shows the version
of Python (3.2.3)

Prompt for entering
Python commands

Figure 2.2 The Python 3 application under Menu > Programming on the Raspberry
Pi desktop opens IDLE to the Python Shell for Python 3.x.

Discovering Python’s mathematical operators 35
Discovering Python’s mathematical operators
One of the core capabilities of a programming language is its ability to
do math, or, in programmer-speak, to perform mathematical opera-
tions. Let’s try different mathematical operations to see what works
and what doesn’t.

Adding and subtracting
Suppose you go to your favor-
ite restaurant and order a
burger, fries, and an orange
soda. You want to know how
much you owe. The menu (see
figure 2.3) says the burger is
$5.49, fries are $1.99, and the
orange soda costs $1.49.

Use Python to figure out the total. In the IDLE Python Shell, enter

>>> 5.49 + 1.99 + 1.49

Press Enter to see Python calculate the result: 8.97, or $8.97 (see
figure 2.4).

Great news: you remember you have a coupon for $3.00 off, so let’s cal-
culate the total again. In the IDLE Python Shell, enter

>>> 8.97 – 3.00

Menu
Burger
Fries
Soda

$5.49
$1.99
$1.49

.............

.............

Figure 2.3 The menu at your favorite
burger restaurant

Figure 2.4 Use the + symbol to add numbers in Python.

36 CHAPTER 2 Exploring Python
The result is 5.970000000000001. Whoa! Why isn’t it exactly 5.97?
Well, it has to do with how computers store numbers as 1s and 0s. We
aren’t going to go over it here, but the footnote2 has a web link where
you can learn more. For now, the number is close enough for your cal-
culations.

As you can see, Python is pretty good at doing math and uses familiar
operators for addition and subtraction:

❂ The addition operator (+) calculates the sum of two numbers:

>>> 4 + 5

The result is 9.

❂ The subtraction operator (-) calculates the difference between two
numbers:

>>> 8 - 5

The result is 3.

2 Read more about decimal math (also called floating-point math) here: https://docs.python.org/3.4/
tutorial/floatingpoint.html.

Python style: spacing of operators and numbers
Try entering 24 plus 32 without any spaces between the plus sign (+) and the
numbers:

>>> 24+32

Then try it with lots of spaces:

>>> 24 + 32

Both result in the same answer: 56. When you’re doing math, the number of
spaces between the numbers and the operator doesn’t matter. Python ignores
the extra spaces and calculates the sum.

What’s the best way? Well, Pythonistas (the name given to those who program in
Python) believe that your code should be easy to read. The Python Style Guidea

recommends using spaces before and after a mathematical operator. You don’t
have to, but it’s easier to read!

a The Python Style Guide is referred to as PEP 8 and is found online here: www
.python.org/dev/peps/pep-0008.

www.python.org/dev/peps/pep-0008
www.python.org/dev/peps/pep-0008
https://docs.python.org/3.4/tutorial/floatingpoint.html
https://docs.python.org/3.4/tutorial/floatingpoint.html

Discovering Python’s mathematical operators 37
Let’s see what other math you can do in Python.

TIP When typing in large numbers, don’t enter commas to separate
groups of three digits. So 1,000 should be entered as 1000. Python
can’t interpret the comma separators in numbers, so you’ll get some
odd results if you add them. Python will interpret the commas as if
you’re typing in a list of numbers. For example, 12,231 is interpreted
to be a list of two numbers: 12 and 231. You’ll learn more about lists in
part 2 of this book.

Multiplying and dividing
After scarfing down your burger, you find yourself hungry for two
scoops of ice cream and a slice of raspberry pie for dessert. Ice cream is
$1.79 per scoop, and pie is $3.50 per slice, so what is your total?

Use Python to figure it out. Try Python’s multiplication operator (*):

>>> (2 * 1.79) + 3.50

You total bill is $7.08. You also see that you can use parentheses to
group things.

Three of your friends join you at the restaurant, and each orders dessert.
After more ice cream and pie, the total bill ends up being $33.36. They
all agree to split the bill evenly. Use Python’s division operator (/) to cal-
culate the price they each should pay:

>>> 33.36 / 3

The result is $11.12 each. That’s a lot of dessert!

With your belly full, you observe how you’ve seen Python perform
multiplication and division and how you can use parentheses for
grouping:

❂ The multiplication operator (*) gives you the product of two numbers:

>>> 7 * 3.14

The result is 21.98.

❂ The division operator (/) can divide two numbers:

>>> 40 / 8

38 CHAPTER 2 Exploring Python
The result is 5.

❂ Parentheses can be used to group numbers so they’re evaluated first:

>>> (3 + 7) * 10

Python answers 100.

What do you think this will result in?

>>> 3 + (7 * 10)

If you guessed 73, you’re right. If you change the location of the paren-
theses, you’ll get a different answer. We’ll talk about this more when
we examine the order of operations.

Figuring out whole numbers and remainders
Your friend mentions to you that there are 19,272 minutes of school
remaining this year. How can you figure out how many hours and min-
utes? First you divide 19,272 by 60, because there are 60 minutes in an
hour. You find that is 321 hours with a remainder of 12 minutes. In
Python, you have two operators to give you the whole number and the
remainder of a division sum:

❂ // (floor division) gives you the whole number:

>>> 19272 // 60

The result is 321.

❂ % (modulo) gives you the remainder:

>>> 19272 % 60

The result is 12.

You divided some large numbers, but let’s look at how Python can han-
dle even larger ones.

Exponents
An interesting fact you might’ve learned in Astronomy is that the
Earth’s distance to the Sun is approximately 1.496 × 108 km. Let’s use
Python to express this as a number. In Python you use the exponentia-
tion operator (**) as follows:

>>> 1.496 * 10**8

Discovering Python’s mathematical operators 39
Python answers 149600000.0 km.

Exponentiation lets you take two numbers (a, b) and raise one number
to the power of the other(ab). Python uses the exponentiation operator
(**) between the two numbers (a**b) to do this. For example, if you
wanted to raise 2 to the third power, you’d enter

>>> 2 ** 3

The result is 8 (2 * 2 * 2 = 8).

Try another:

>>> 122 ** 5

The result is 27,027,081,632 (122 * 122 * 122 * 122 * 122 =

27027081632).

NOTE On older versions of Python, you may see 122**5 show the
result 27027081632L. This is because previously Python added the
letter L to denote really long integers.

Exponentiation can be useful if you’re solving problems like these:

❂ Estimating astronomical distances
❂ Calculating bank account balances based on a given interest rate
❂ Predicting a population size for animal colonies based on a given

growth rate

Square roots
You can figure out square roots by using an exponent of 1/2, or 0.5.
This is the same as taking a square root:

>>> 14400**0.5

The result is 120.0.

Challenge: stacking Pis!
How many Raspberry Pis would need to be stacked end to end to
reach the Sun? You can measure your Pi, and you’ll find that a Rasp-
berry Pi measures 85.6 millimeters or 0.0856 meters. First, you need to
convert the Pi’s measurements to kilometers by dividing 0.0856 by

40 CHAPTER 2 Exploring Python
1,000; then you divide the distance from the Earth to the Sun by the
Pi’s length in kilometers (see figure 2.5). This should give you the dis-
tance to the Sun, expressed as a number of Pis.

Enter the equation into Python:

>>> 1.496 * 10**8 / (0.0856 / 1000)

Python answers 1747663551401.8694. That is more than 1.7 trillion
Raspberry Pis stacked end to end. It’s kind of fun to think about that
many Pis!

Types of numbers: integers and floats
So far, you’ve used both integers and decimal numbers in your calculations. In
Python, decimal numbers are also called floating-point numbers, or floats for
short. Here are some examples of floats:

1.2
0.00001
3.14159
1000000.01

Checking types
Try entering this:

>>> type(3.14)

How many Pis does it take to reach the Sun?

Raspberry Pi length

85.6 millimeters

1.496 x 108 kilometers

Definitely not to scale

Earth to Sun distance

x 108 kilometers

ce

Figure 2.5 The distance from the Earth to the Sun is approximately
149,600,000 km. The Raspberry Pi is 85.6 mm in length.

Storing information using variables 41
Menu
Cheese pizza
Orange soda
Chicken wings

$14.00
$1.50
$8.00

............

...............

So far, you’ve typed in numbers and performed calculations. But if you
want to change one number, you have to type all the information again.
You also have no way of saving information—you have to look up and
type the number each time. Good news! There is a better way.

Storing information using variables
There are times in programming when it’s easier to store information
than to type it in over and over again. Variables provide that special
capability. Variables give you a way to store information and retrieve it
anytime. Let’s look at an example.

Imagine that you own a pizza
restaurant, and your prices
are shown in figure 2.6.

Figure 2.6
The menu at your

pizza restaurant

The first customer, Daniel orders a meal of pizza and orange soda:

>>> 14 + 1.5

Daniel’s meal costs $15.50.

A second customer, Erin orders pizza, orange soda, and wings:

>>> 14 + 1.5 + 8

Erin’s meal costs $23.50.

Python will answer you: <class 'float'>. You’ve just used Python’s built-in tool
for checking the type of something. These built-in tools are called functions.
You’ll see more of these later. Let’s see what this does:

>>> type(10001)

Did you guess it? This returns <class 'int'>, where int stands for integer.

42 CHAPTER 2 Exploring Python
Each time you want to calculate a meal’s cost, you must remember or
look up the price of each item and type it in. Imagine if you had a menu
of 15 items and 100 customers. It would take forever to look up the
items and add their prices together! You’d also be prone to making
mistakes. Let’s have the computer do this work for you.

Creating variables and assigning values
This is a perfect place to use variables in a program. Variables store
information to make your life easier. (We’re programmers, and we like
to be lazy. At least we’re always trying to find a more efficient way to
do things.) Let’s do this again but create variables for each of the food
items. The first step is to define your first variable and set its value:

>>> cheese_pizza = 14

Let’s take a close look at how this code
works in figure 2.7.

Figure 2.7 A variable stores information
and can be created and assigned a value.

The equals sign is used as an operator
(also known as the assignment operator)

between the name of the variable on the left
and the value assigned to it on the right.

Next, let’s create the other two variables for orange soda and wings:

>>> orange_soda = 1.5
>>> wings = 8.00

Nothing is displayed on the screen after you enter each line, but
Python stores the variables and their values in the memory of your
Raspberry Pi.

Displaying variable values
How can you check what’s stored in a variable? Like the type function
earlier, you use another built-in function in Python called print, like
this:

>>> print(cheese_pizza)
 14

Name of
the variable

Value
assigned to
the variable

>>> cheese_pizza = 14

Python Shell
prompt

Equals sign is used
to assign a value
to a variable

Storing information using variables 43
Print doesn’t mean to print something with paper and ink. In Python,
printing means to display something on the screen.

NOTE When you’re working in the Shell, Python displays the result
of expressions. But if you assign a sum to a variable, the Shell doesn’t
show the value unless you use print.

Using print, you’ve seen that cheese_pizza has the value 14 stored in it.
You should feel confident that your variables are holding the informa-
tion you put in them.

Let’s see if you can use variables to figure out a meal cost (without hav-
ing to look up numbers):

>>> meal_cost = cheese_pizza + orange_soda

Print meal_cost to see its value:

>>> print(meal_cost)
15.5

Python displays 15.5. Now, let’s calculate the cost of the other meal:

>>> meal_cost = cheese_pizza + orange_soda + wings
>>> print(meal_cost)
23.5

Python answers 23.5. The more calculations you need to repeat, the
more you’ll appreciate how variables can save you time and effort.
Congratulations—you’re using variables to store information!

DEFINITION The process of putting a value into a variable is called
assignment.

Before you start creating a lot of variables, let’s learn the guidelines for
naming them.

NAMING VARIABLES

Everyone has had the problem of not being able to read someone else’s
handwriting. The writer might know what they wrote, but you’re
unable to decipher it. You want to avoid this same confusion with vari-
ables. In order to do that, there is a set of guidelines for creating clear

44 CHAPTER 2 Exploring Python
variable names—names that make sense to you and to someone else
reading your code:

❂ Don’t use any spaces. Instead, use an underscore (_).
❂ The Python Style Guide recommends using lowercase and under-

scores between words to make your code easy to read.
❂ Don’t start with a number.
❂ Don’t use any of Python’s reserved words for your variable name

(see the sidebar “Watch out for reserved words”).

Here are some examples of variable names:

>>> shoe_size = 10
>>> age = 16
>>> favorite_color = 'blue'
>>> first_name = "John"
>>> pizza_slices_eaten = 4

Do your best to use meaningful variable names.

ASSIGNING VALUES: THE LEFT SIDE AND RIGHT SIDE

When you’re creating a variable and assigning it a value, put the name
of your variable on the left side of an equals sign. Put the value you
want to set it to on the right side of the equals sign. Let’s create a vari-
able name and set it to “King Arthur”:

Watch out for reserved words
Certain words in Python are reserved because they’re part of the Python lan-
guage. You can’t use these words as names for variables:

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

Python 3.x reserved words are used by Python for special purposes and may not
be used for variable names.

Storing information using variables 45
>>> name = "King Arthur"

In this line, the left side creates a variable called name, and the set of
characters “King Arthur” is stored in it. Let’s learn more about storing
text in variables.

Storing strings in variables
Life isn’t only about numbers. You may want to create programs that
display absurd messages or tell a story on the screen. These messages
are a type of data called strings. A string is a group of characters.

STRINGS

Python gives you the ability to store a group of characters (or strings)
in variables. You’ve already used strings in the example with “King
Arthur”.

Here are some things you should know about strings:

❂ They always must start and end with quotation marks.
❂ You may use either single quotes (‘Hi’) or double quotes (“Hi”), but

you can’t mix them (“Hi’):

>>> message = "Greetings Earthlings"

Or, in single quotes:

>>> message = 'Greetings Earthlings'

❂ When a number is placed inside quotation marks, it’s a string.
❂ Strings can be short (zero or only a few characters) or many charac-

ters long.
❂ Strings can even be empty. These are called zero-length strings:

my_string = ""

EXAMPLES OF STRINGS

Some examples of strings will give you an idea of what’s possible:

"Y"
"No"
"Spam"
"Yeah, remarkable bird the Norwegian Blue"

46 CHAPTER 2 Exploring Python
"There he is!"
"No, no sir, it's not dead. It's resting."
"17"
"RUNAWAY, RUNAWAY, RUNAWAY!"
"Tuesday"

MEASURING THE LENGTH OF A STRING

You can use the len function to have Python tell you the length of a
string. We’ll talk more about string functions in chapter 3, but here is
an example of using len:

>>> your_nickname = "Pi Master"
>>> len(your_nickname)
9

Or try a longer one:

>>> quote = "To be, or not to be, that is the question."
>>> len(quote)
42

Even the spaces are counted when determining the length of a string.
This is a great point to talk about spaces.

SPACES COUNT

Although spaces may seem like nothing, they’re considered characters.
You can create strings that are a single space or set of spaces, such as

short_set_of_spaces = " "
long_set_of_spaces = " "

You now know about variables and about strings, a type of data that
can be stored in them. Let’s see how you can vary your variables.

Changing the value of variables
As you may have guessed already, the value stored in a variable can be
changed or updated. Try it. You’re making up a password for your
computer. Create a variable password, and set it to bunny:

>>> password = "bunny"

Now let’s change the password to dragon:

>>> password = "dragon"

Storing information using variables 47
What value do you think is stored in password: “bunny” or “dragon”?
Let’s check the value using the print function:

>>> print(password)
dragon

The value dragon is displayed. Notice how Python replaces the value
stored in the variable when you assign it a new value.

VISUALIZING VARIABLES AS BOXES

A way to visualize this is to imagine that creating a variable is like mak-
ing a box—a box for storing information. When you create the box,
you give it a name and store a value in it. Figure 2.8 is a graphical
depiction of creating a variable and reassigning a value to it.

Changing the value of a variable is easy to do in Python. Let’s look at
another example.

password

password

>>> password = "bunny"

>>> password = "dragon"

Creates a new variable (or memory storage box)
and names it password.
The string "bunny" is placed inside it.

A memory storage box named password already
exists. Python replaces the value in the box with
"dragon", and "bunny" is no longer stored.

When using print, the current
value stored in a variable is
displayed to the screen.

>>> print(password) >>> password = "bunny"
>>> password = "dragon"
>>> print(password)
dragon
>>>

Figure 2.8 When a variable is created, it’s stored in your Raspberry Pi’s
memory. You can change the value of a variable at any time. Using the
print function, you can display the variable’s value on the screen.

48 CHAPTER 2 Exploring Python
VARIABLE REASSIGNMENT

Let’s see how Python evaluates these statements:

>>> x = 10

This sets x equal to the value 10. Next, you do a calculation with x and
store the result of the calculation in x:

>>> x = x * 10 + 32

When Python evaluates this line, it first tackles the right side of the
equals sign:

1 Python evaluates the right side of the equation: x * 10 + 32.

2 Python retrieves the current value of x, 10, and calculates 10 * 10.

3 Python adds 32 to this amount. The right side of the equals sign is 132.

4 It does the left side of the equals sign last. The result, 132, is stored
into the variable on the left side of the equals sign: x.

You’ve seen how Python can store and retrieve information using vari-
ables. Variables save you time because they hold the value they’re
given, meaning you don’t have to remember values or look them up.
Variables can take the form of numbers or strings, and you can check
the value stored in a variable using the print function.

Excellent! You’ve seen how the order for variable assignment is impor-
tant. Check out how the order of math operations matters.

ORDER OF OPERATIONS

What do you think Python will return if you enter the following?

>>> (3 * 2) * 5**3 / 25 + 10

If you guessed 40, you’re correct. Python follows the order of opera-
tions that you learned in math class.

TIP You may recall BOMDAS or PEMDAS from school. This pattern
of letters is useful for remembering the order you should evaluate
operations in a math equation. Python follows this same order of oper-
ations: Brackets (or Parentheses), Orders (or Exponents), Multiplica-
tion and Division, and then Addition and Subtraction.

Storing information using variables 49
First it evaluates anything grouped in parentheses or brackets. 3 * 2 is
equal to 6. Let’s replace the 3 * 2 with 6 and go to the next step:

>>> 6 * 5**3 / 25 + 10

The exponents (or orders) are analyzed next. 5**3 is 125 (the same as
5 * 5 * 5):

>>> 6 * 125 / 25 + 10

Multiplication and division come next, and you work from the left to
the right. 6 * 125 is 750. 750 / 25 is 30:

>>> 30 + 10

The final step is addition and subtraction. 30 + 10 is 40. Graphically,
figure 2.9 shows the order in which the example equation is solved in
math and how Python does it.

Order of operations

1. Parentheses (or brackets) first

2. Exponents (or orders) second

4. Addition and subtraction last

3. Multiplication and division third
 (always work from left to right)

(3 * 2) * 5**3 / 25 + 10

6 * 5**3 / 25 + 10

30 + 10

40

6 * 125 / 25 + 10

750 / 25 + 10

Figure 2.9 Python follows the order of operations
used in mathematics. You may know it as BOMDAS or
PEMDAS: Brackets (or Parentheses), Orders (or Expo-
nents), Multiplication and Division, and finally Addition
and Subtraction.

50 CHAPTER 2 Exploring Python
You’re pretty good at doing math in Python. You’re ready to learn
more about using Python to communicate and display text on the
screen.

Displaying text on a screen
It’s fun to interact with technology and have it respond. This can take
the form of playful responses by a computer, making it feel more
human. Or computer responses can be more practical, displaying per-
sonal data on a website form. In either case, you want your computer
to communicate with you.

Displaying text on the screen, also referred to as printing in Python, is
a direct way for a computer to communicate with you. You can use
printing to have your Raspberry Pi do things like this:

❂ Show random, silly messages.
❂ Describe spooky scenes as part of an adventure game.
❂ Spit out the answers to complex math problems.

Printing to the screen is a key way to output all kinds of information.

Using the print function
Earlier in this chapter, you used the print function to display the value
of variables. Let’s go over more about using the print function. Try
printing the message “Hello World!” to the screen like this:

>>> print("Hello World!")
Hello World!

Take a closer look at how you can use
the print function in figure 2.10.
Python prints “Hello World!” to the
Python Shell.

Figure 2.10 The print function in Python
displays text on the screen. The string

inside the parentheses must be enclosed
in single or double quotation marks.

print
function

Strings must be
in single (') or
double (") quotes.

>>> print("Hello World!")

Python Shell
prompt

Opening
and closing
parentheses

Displaying text on a screen 51
REPEATING TEXT

Let’s try something a bit different. Type in

>>> message = "Hello, I am your Raspberry Pi!"
>>> print(message)

This prints the message on the screen once. You can use the multiplica-
tion operator with a string to print it many times:

>>> print(message * 100)

The message cascades across and down the screen 100 times (see
figure 2.11).

Have fun with this. Try some bigger numbers and different messages
to see what you get.

Troubleshooting
We’re all human, so things can go wrong when we’re pressing keys and
typing in code. A common error you might make when creating a vari-
able that is storing a string is forgetting to close your quotation marks:

>>> message = "Hello, I am your Raspberry Pi!

Figure 2.11 The Python print function can display text on the screen repeatedly if
you use it with a string and the multiplication operator (*).

52 CHAPTER 2 Exploring Python
Notice that the quotation mark after the exclamation point is missing.
It may sound goofy, but think of quotation marks as hugs. When you
hug someone, you wrap your arms around them. One quotation mark
must go on either side of a string to complete it. If you ran this code in
the Python Shell, you would receive an error, as shown in figure 2.12.

Python displays an error message (SyntaxError: EOL while scanning

string literal). You can fix it by typing the string again with both the
opening and closing quotation marks around it.

Creating programs
Imagine again that you own a pizza shop and you want to use Python
to calculate the cost of a meal, including tax. A customer orders a meal
of two slices of pizza and orange soda. Let’s start by creating two vari-
ables with the menu prices:

>>> pizza_slice = 3.5
>>> orange_soda = 1.50

Create two variables to keep track of the number of slices and number
of drinks:

>>> num_slices = 2
>>> num_drinks = 1

Next let’s calculate the cost of the meal without tax:

>>> meal_no_tax = (num_slices * pizza_slice) + (num_drinks *
orange_soda)

Figure 2.12 Remember to place quotation marks at the beginning and end of your
strings. If you forget to close your quotation mark, Python will display an error.

Creating programs 53
Define the tax rate of 5%, and figure out the tax:

>>> tax = 0.05
>>> meal_cost = meal_no_tax + (meal_no_tax * tax)
>>> print(meal_cost)
8.925

Now imagine if one or more of the numbers changed. Let’s say pizza
slices are now $4.75 and orange soda is $1.75. You’d have to enter all
the information again. That takes way too long.

A better way is to put the eight statements into a text file. Then you can
tell Python to read the file and execute the instructions.

DEFINITION A program is a set of instructions. Python programs can
be created in a text file. The programs can be run (or executed) over
and over again.

Now you can run the program again and again, making updates when-
ever needed. If the cost of menu items changes or a customer wants a
different number of slices, you can update the program and run it
again. That is a big time-saver!

A computer program is a set of instructions. So far, you’ve used the
Python Shell to type in commands one at a time. Programs allow you to
create, save, and run more complex sets of instructions. You can easily
edit your programs and run them again. Your programs might be as
short as a few lines, or thousands of lines long.

Writing Python programs with IDLE
To write a program, you need a way to input the instructions. IDLE
will be your program of choice for this. IDLE is an application that
makes it easier to develop programs.

A SPELL CHECKER FOR PYTHON

If you’ve ever used Microsoft Word or Gmail, you’re familiar with the
spell-checker feature. It’s saved thousands of homework assignments
from receiving low grades and stopped misspelled emails from being
sent. Each program highlights words you misspell, so you can easily
find them and make corrections.

54 CHAPTER 2 Exploring Python
When you write programs, you want something to help catch your mis-
takes. IDLE does that for you. IDLE automatically color-codes your
Python statements to let you know you’re using the correct spelling. By
using color-coding, IDLE can help alert you if you enter a command
incorrectly and highlight errors or bugs. In later chapters, I’ll introduce
you to some of the features of IDLE.

INTEGRATED DEVELOPMENT ENVIRONMENTS

Other programming languages have software applications similar to
IDLE that make the process of programming more enjoyable, help pre-
vent errors, and even suggest fixes. As a group, these software applica-
tions are called integrated development environments (IDEs). IDLE is
one of the most popular ones for Python.

USING TEXT EDITORS

In addition to IDLE, you can write and save Python programs in any
text editor you like. For example, you could use Leafpad or Nano,
which are other simple text editors that come with Raspbian. A word
of caution: they allow you to write, but they don’t help you avoid errors
or find mistakes in your code, making IDLE a better choice.

Starting a new program
Let’s create our first program. While using the IDLE Python Shell,
select File > New Window. You’ll see a blank new window appear, with
the title Untitled at the top (see figure 2.13). This is the IDLE text
editor.

TIP The keyboard shortcut to open a new IDLE text editor window is
Ctrl-N.

Let’s write a program in the IDLE text editor. Enter the following lines
of text:

message = "And now for something completely different."
print(message)

TIP The text editor automatically highlights keywords in the Python
language. In this example, you’ll notice print appears in purple text,
signifying it’s a Python keyword. Strings are color-coded green.

Creating programs 55
This is a classic line from Monty Python’s Flying Circus. The show begins
with this quote. Figure 2.14 shows the program in the IDLE text editor.

IDLE Python Shell

IDLE text editor

Figure 2.13 The top window is the IDLE Python Shell. The bottom
window is the IDLE text editor that can be used to create and edit
Python programs. You can open the IDLE text editor using Ctrl-N
or by selecting File > New Window from the IDLE Python Shell.

Figure 2.14 IDLE provides a text editor that helps you write Python pro-
grams. The editor highlights words to help you compose your programs
and identify errors. This program prints a message to the screen.

56 CHAPTER 2 Exploring Python
Now that you’ve written a
program, you’ll want to save
it so you can open it, run it,
and edit it later.

Saving programs
To save the program, choose
File > Save. A Save dialog
appears. Name the file First-
Program, and click Save
(see figure 2.15). By default,
the file will be saved to your
/home/pi folder. If you want,
you can create a folder for
your Python programs.

TIP The keyboard shortcut to save a program is Ctrl-S.

NOTE When you click Save, the program is saved to your /home/pi
folder with the extension .py. You can use File Manager to open your
/home/pi folder and see the file you’ve saved: FirstProgram.py.

While using the Python text editor, you can run the program by click-
ing Run > Run Module, or you can press F5. When you do this, the
IDLE Python Shell becomes the active window, and you’ll see the mes-
sage printed to the Shell (see figure 2.16).

Figure 2.15 Save programs in IDLE using
the File > Save menu selection or by pressing
Ctrl-S. The default save location is /home/pi.
When the file is saved, it has .py appended to
the end of its name, signifying that it’s a
Python program.

Figure 2.16 You can run programs from the IDLE text editor. Running
a program in IDLE displays the results of the program in the Python Shell.
This shows the output of your first program by displaying a message.

Fruit Picker Extra: creating documents 57
Python interpreting the program
When you run your program, Python opens the file and interprets each
line of text. The first line creates a variable message with the stored
value “And now for something completely different.” The second line of
your program calls Python’s print function and passes it the variable
message to output to the screen. Excellent—you’ll continue to build
more programs in the next part of the book.

Fruit Picker Extra: creating documents
This special section is about teaching you new and different things
your Pi can do. This extra is about creating documents.

Writing silly things and saving them
Let’s start by creating a simple text file and saving it. Using a Rasp-
berry Pi to do homework can be a lot of fun. Maybe you’ll write a doc-
ument describing your latest idea for a game or create a collection of
short stories. Rather than use your parent’s computer or a pen and
paper, use your Raspberry Pi.

Luckily, Raspbian comes with an application called Leafpad. It’s a
lightweight software program for creating documents with text.

CREATING A TEXT FILE IN LEAFPAD

Here are the simple steps for creating a document in Leafpad:

1 Click the Menu button in the upper-left corner of the desktop.

2 Hover over Accessories.

3 Find Text Editor, and click it. This opens Leafpad.

4 Type in the Leafpad window: I'm a lumberjack and I'm okay! (see fig-
ure 2.17).

Figure 2.17 Leafpad is
a text editor that comes
with Raspbian. You can
access Leafpad from the
Accessories menu.

58 CHAPTER 2 Exploring Python
Now that you’ve created your file, let’s save it (see figure 2.18):

1 Select File > Save, or use the keyboard shortcut Ctrl-S.

2 A window appears that you can use to save your file. You need to
pick the folder you want to save your file in. Click the folder labeled
pi. This is your personal folder where you can save your files.

3 In the Name box, enter lumberjack for the filename.

4 Click the Save button.

Congratulations! You saved the lumberjack file to your Raspberry Pi’s
memory card in the folder located here: \home\pi (this means the file is
saved in the home folder and in a subfolder called pi). The file contains

Enter the filename
lumberjack.

Select the
pi folder.

Click Save to save
the file to your
Raspberry Pi.

Figure 2.18 Saving a file in Leafpad lets you choose the folder to save to
and enter a filename. The Save window works similarly to how you might save
a file in Microsoft Word.

Fruit Picker Extra: creating documents 59
the sentence you typed: “I’m a lumberjack and I’m okay!”. Go ahead
and close Leafpad.

FINDING A SAVED FILE

You saved the file. Now let’s see if you can use File Manager to find it
and open it again:

1 Open File Manager.

2 Click the folder icon on the left, labeled pi.

Nano: a command-line text editor
Leafpad uses windows and is therefore only available from the Raspbian GUI. But
if you decide you prefer to use the Raspbian command line, there is a handy text
editor called nano that you can use. Type nano in the command line and press
Enter to open nano. Nano uses keyboard controls to open, save, and close files.
Here is an example of the nano text editor:

You must use the keyboard, not the mouse, to make selections and perform
actions in nano. For example, Ctrl-X exits nano. Once you get used to using the
command keys to get around, nano is useful if you decide you prefer using Rasp-
bian in command-line mode.

60 CHAPTER 2 Exploring Python
3 Look at the folders and files listed in the window. Notice at the top
that the pi folder is located at \home\pi. This means the pi folder is
located in the folder home on your Raspberry Pi’s SD card.

4 Find the lumberjack file in the list of files, and double-click it (see
figure 2.19).

Leafpad will open, and you’ll see the message you typed. Now let’s
close Leafpad and learn how to enter some code.

Have fun making documents and exploring other things your Pi can do!

Try these challenges, which will test your use of mathematical opera-
tors, printing, and variables.

Challenges

Displays the current
folder location.

Double-click the
file to open it.

Figure 2.19 Viewing the contents of folders using File Manager

Challenges 61
The matrix
Using the print function, create a cascading screen of 1s and 0s as seen
in popular computer graphics. Hint: remember how you used
print(message * 100) to display a message 100 times on the screen. Fig-
ure 2.20 shows an example of what this might look like.

The matrix challenge is about creating a full screen of digits. Experi-
ment with other numbers and characters.

Building a brick wall
For this challenge, create a variable named brick and store a string in it
that, when printed over and over again, will make your screen turn into
a brick wall (see figure 2.21).

Figure 2.20 Try using the print function and strings to make a
screen full of 1s and 0s.

Figure 2.21 This challenge uses the print function and a string named
brick to create a brick wall pattern on the screen.

62 CHAPTER 2 Exploring Python
Your goal is to figure out what string should be stored in the variable
named brick to make this display. Good luck! Bonus: can you make
your bricks look more like raspberries or have them contain the initials
RPi for Raspberry Pi?

Pi electrons
For this advanced challenge, let’s examine the electrical current flow-
ing into your Raspberry Pi from the power supply. Then, let’s see if you
can express that electrical current in terms of the equivalent number of
electrons flowing into your Pi per second.

TIP You may have learned that electrical current is a measure of
charge flowing past a point. One amp (or ampere) of current is equal
to one coulomb of charge flowing each second.

The amount of current your Pi uses depends on how many USB ports
you’re using, but let’s assume your Pi is using one amp. One amp is
equivalent to the flow of 1 coulomb of electrical charge flowing per sec-
ond. A single electron has the charge of 1.60 10-19 coulombs (or
0.000000000000000000160 coulombs). How many electrons per sec-
ond does it take to equal 1 amp flowing into your Raspberry Pi? Hint:
You can represent the charge of an electron as 1.60 * 10**-19.

For hints and solutions to the challenges, see appendix C.

Programming is about being able to interact and communicate with a
computer. Your Raspberry Pi comes with IDLE, a development envi-
ronment for programming in Python. Python provides two different
ways you can program:

❂ Interactively, by entering commands one at a time using the Python
Shell. The Shell is useful for quick calculations or testing a command.

❂ By creating programs, or sets of commands, saved in a file. Programs
allow you to write, edit, and run your code over and over again.

One of the first conversations you can have with your Raspberry Pi is
to use Python to talk math. Python provides a full set of mathematical

Summary

Summary 63
operators you can use. Mathematical operators are handy when you
need to perform calculations in your programs, such as keeping track
of a player’s position on the screen. Another way to interact is to use
Python’s built-in print function to display text to your Pi’s screen.
This lets you create programs that communicate between the com-
puter and you.

An important idea in programming is using variables to store informa-
tion—they save you time and can be used again and again. In Python,
variables can store different types of data, including integers, floats
(decimals), and strings. Using variables, you can store information and
retrieve it any time. This is a key advantage, because it means you don’t
have to remember values; Python does it for you. You can also change
a variable’s value, which is a useful feature when you want to run the
same instructions with different inputs.

64 CHAPTER 2 Exploring Python

Part 2

Playing with Python

inecraft, Pac-Man, and Super Mario Brothers are great games, and
they were all created by programmers like you. You’ll have to gain
more skills to make games like those, but you can create some basic
games pretty quickly. All these games have the game player interact
with the computer. The computer is programmed with logic : instruc-
tions that control how the game reacts to the player’s choices. The
game is constantly responding to input from the user, whether it is a
button press or a key press.

Games are a good way to learn programming because they combine
creativity, fun, and logical thinking into one project. Games are also
interactive, requiring the user to make choices and the computer to
respond to those choices. The goal is to make the game entertaining, so
you’ll use your creativity and imagination to add magic to your games.
You decide how you want to program your game and how it responds!

In part 2, you’ll build your own interactive games using Python and
your Raspberry Pi. You’ll start in chapter 3 by making a program that
creates ridiculous sentences. You’ll learn to use Python to ask users to
enter information, store the information in variables, and make your Pi
respond. Chapter 4 dives into how you can create a guessing game that
makes your Pi more intelligent: it will make simple decisions based on
the player’s choices. You’ll also see how to use Python to make your
Raspberry Pi repeat some instructions over and over again. In chapter

M

66 CHAPTER Playing with Python
5, you’ll don a helmet and headlamp and descend into an underground
cave. You’ll create a text-based game where the player can choose
where to go; based on their choices, they may find riches or face an
untimely demise.

3
Silly Sentence Generator
3000: creating interactive
programs

In this chapter, you’ll see how you can use Python to

• Create a welcome message for a game

• Add notes to your code

• Ask users to input (or type in) information and save it using variables

• Join strings

• Display information back to the user based on that information

Visit a website, start up a game system, or open a mobile application, and
it will probably ask you to enter a name and email address and create a
password. These are all computer programs, and once you’re logged in,
they may display special messages at the top of the screen saying things
like “Welcome, Aaron” (or whatever your name is). Some programs are
very sophisticated, remembering the games you’ve played, the badges
you’ve earned, the balance in your account, or the products you’ve
viewed.
67

68 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
iTunes, Netflix, Facebook, and Gmail are all sites that use computer
programs that ask you for information, save information, and interact
with you based on that information. In this chapter, you’ll see how to
do this with Python by creating a ridiculously fun word game called
Silly Sentence Generator 3000.

Creating a welcome message
In Silly Sentence Generator 3000, the game player (that’ll be you) is
asked to enter words such as nouns, verbs, adjectives, and so on. You’ll
store the words as variables and then use them to create ridiculous,
nonsensical sentences.1 Figure 3.1 shows an example of what the fin-
ished program looks like.

Think about the program like a machine that takes a set of inputs and
then creates an output. You’re going to put together the machine by
creating the instructions that drive it. Conceptually, this “machine”

1 This is similar to the game Mad Libs, if you’ve ever played it.

Figure 3.1 Silly Sentence Generator 3000 asks the user to enter their name and
some words, and then it creates a silly sentence from those words.

Creating a welcome message 69
player_name

fam
ous

_pe
rso

n

silly_sentence

? ??

verbadjective2

adjec
tive1

Input

Output

might look something like figure 3.2.
Change the words you put in, and
you’ll get a completely different

result. That’s part of what makes
games so much fun!

Let’s see how to create this game.
Once you create it, you can change it and

add to it however you like.

Starting a new program
If you open a game, one of the first things you see is a main menu or
title screen. Let’s use what you know about displaying text on the
screen to make your program display a title for your game. You start by
opening IDLE and creating a new program. Open IDLE for Python 3
by clicking the Menu button and selecting Programming > Python 3 on
your Raspberry Pi’s desktop (see figure 3.3).

Figure 3.2 An interactive game
lets you put in information, and
then it creates an output.

Figure 3.3 Select Menu-->Programming-->Python 3 to open the
Python Shell on your Raspberry Pi.

70 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
Give your Raspberry Pi a few seconds to open IDLE. After IDLE
opens, you’ll see the Python Shell (see figure 3.4).

Press Ctrl-N or choose File > New Window to open the IDLE text edi-
tor. You’ll see a blank window, ready for you to start typing in your
program (see figure 3.5).

Figure 3.4 The Python Shell

The new window is
labeled Untitled until
you have saved the file.

The Run menu appears
in the IDLE text editor.
Select Run>Run Program
to test your programs.

The corner displays the location of
the cursor. Ln: 1 is for line number one.
Col: 0 is for the position of the cursor.
Zero is the first position in the line.

Figure 3.5 The IDLE text editor is where you can type in your Python pro-
gram. You can also edit, save, and run programs using the menu options.

Creating a welcome message 71
Using the print function you learned about in chapter 2, let’s make a
title screen:

print("*" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Excellent. Feel free to elaborate on the welcome message and the art-
work with different characters. Before you go much further, you
should save the program.

Saving the program
Save the program by selecting
File > Save or pressing Ctrl-S.
This will open a window ask-
ing where you want to save
the program and what to
name it. Let’s name it Silly-
Sentence (see figure 3.6). By
default, IDLE saves your file
to your /home/pi folder. Let’s
use that folder.

Click Save, and the file will be
saved as SillySentence.py (the
.py file extension is automati-
cally appended by IDLE). After you save the file, the title at the top of
the text editor window will show the filename and file location, as you
can see in figure 3.7.

Figure 3.6 Save your file as SillySentence.
This stores the file on your Raspberry Pi in
your /home/pi folder so you can run the
program and make changes to it.

The window title
updates after you
save. The title
changes from
Untitled to
SillySentence.py.

Figure 3.7 The first three lines of your program use the print function to create a
welcome message for the Silly Sentence Generator 3000 program.

72 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
Guess the output. What do you think you’ll get when you run the
program?

Let’s try it. Click Run > Run Module (or press the keyboard shortcut
F5). Python will read each line of your program and execute the com-
mands. The commands print a line of * characters, the welcome mes-
sage, and another line of * characters to the screen (see figure 3.8).

Excellent! Now you have a proper welcome message for your game.
The next thing you need to do is gather some input from your game
player. Some games use button presses, but you’ll use the keyboard for
this game.

Running programs from the command line
Another way to run a program is from the Raspbian command line. You can
access the command line using the Terminal application found under
Menu-->Accessories. A window will open with this prompt:

pi@raspberrypi ~ $

Figure 3.8 Running the program SillySentence.py displays a welcome
message on the screen.

The terminal shows
a prompt, ready for
your commands.

Adding notes in your code 73
Adding notes in your code
Imagine a comic book without words. You’d have a hard time under-
standing what was happening from just the pictures. Maybe you could
figure it out if you studied the comic long enough, but words are
important for understanding a story. Lines of code can be like a comic
book without words: you know something is happening, but you might
not be able to tell what without guessing.

That’s why programmers invented the idea of adding comments. Com-
ments are notes in the code that explain what’s happening. They’re as
much for you as for other people who may read your code. You can use
comments to explain why you wrote the program and how parts of the
program work.

Using hashtags for comments
You add a comment by starting the line with a hashtag (#) and a space
and then typing in your comment text. Let’s add comments to the
beginning of Silly Sentence Generator 3000 to explain the program’s
title, its purpose, and who wrote it.

To run the Silly Sentence program at the command line, enter

pi@raspberrypi ~ $ python3 SillySentence.py

The next figure shows this command and the result. Notice that you get the
same output at the command line.

The command line is another option for running Python programs. In part 3 of
this book, you’ll see that some programs require you to run them from the com-
mand line because you must run them as the superuser on your Raspberry Pi.

74 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs

e
e
n.

D
a w

m

Listing 3.1 Adding notes to your program

Title: The Silly Sentence Generator 3000
Author: Ryan Heitz
This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message
print("*" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Comments are helpful to the humans reading the code. But Python
ignores comments when it runs your program. You can check this by
saving your program and running it again; you’ll see that you get the
same result as before.

Easter egg: the Zen of Python
Python has a hidden surprise regarding Python style. In computer programs,
these surprises are sometimes called Easter eggs. You can find the egg by typing
import this in the Python Shell and pressing Enter. A beautiful poem called
“The Zen of Python” will appear on your screen.

Lines beginning
with hashtags ar
comments and ar
ignored by Pytho

isplays
elcome
essage

Getting and storing information 75
Python’s creator, Guido van Rossum, said that code is read more often
than it’s written.2 Readability is an extremely important part of pro-
gramming and is a guiding principle in the style of Python programs.
Comments are an important way to keep your code easy to read and
understand.

Comments are your new friend, and they will make your code easy to
read. You’ll keep using them to add notes to your code as you collect
information from your game player (or user) and create a silly sentence.

Getting and storing information
To gather input from users, you can use the input function. Let’s add a
line of code in your program that will ask the user for their information
and store that information in a variable.

Listing 3.2 Gathering input from the player

Title: The Silly Sentence Generator 3000
Author: Ryan Heitz
This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message
print("*" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Get the user's name and say hi
player_name = input("Please enter your name: ")

The poem emphasizes the philosophy of Python. Some of it talks about advanced
topics, but many lines discuss a way of coding that is meant for anyone who uses
Python. The seventh line captures a great idea in Python: “Readability counts.”
It’s better to write programs using simple instructions that are easy to read than
to try to mash together steps in complicated, long lines of code. Try taking some
deep meditational Python breaths before getting back to your project.

2 Check out the resource PEP 8—the Style Guide for Python, written by Python’s creators: http://
legacy.python.org/dev/peps/pep-0008. A wonderful section called “A Foolish Consistency Is the Hob-
goblin of Little Minds” talks about the importance of readable code.

Gathers input
from the user

http://legacy.python.org/dev/peps/pep-0008
http://legacy.python.org/dev/peps/pep-0008

76 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
When you use the input function, it displays a prompt and awaits the
user’s reply. After the user enters something and presses Enter, the
information is stored in the variable on the left side of the equals sign.

In the IDLE editor, input shows up in purple highlighting, indicating
that it’s the name of a function in Python. Let’s look closely at the input
function to see how it works (see figure 3.9).

On the right side of the equals sign, the input function is called, and
you open a set of parentheses. You can give the input function a string
that acts as the prompt. This is the message that is displayed on the
screen and that says to the user, “Hey you, please type something in”—
only more nicely! Make sure your string starts and ends with quotation
marks ("").

Run the program by pressing F5 or selecting Run > Run Module. The
program displays the welcome message and then an input prompt with
a blinking cursor. Python is waiting for your input: it needs you to type
something in and press Enter.

On the left side of the equals sign is the name of a variable in which the
information will be stored. When you type something in and press
Enter, the value of what you typed is stored in the variable player_name
as a string.

PYTHON 2.X The input function was previously raw_input in
Python 2.X.

The variable to
store the input
information

Calls
the input
function

player_name = input("Please enter your name: ")

Equals sign is used
to assign the input
to the variable.

A string of text to
display as a prompt
on the screen

Figure 3.9 The input
function displays a prompt
to the user. The prompt
“Please enter your name: ”
tells the user what you
want them to type in or
enter. In this case, you’re
asking for their name.

Joining strings 77

J
str
Joining strings
As in other apps and websites, you want the user to feel welcome, so
let’s use their name and give them a proper greeting. A nice message to
display on the screen might be

"Hello, Ryan! Let's make a silly sentence!"

To create a personal feel, you’ll create just such a message that joins the
user’s name with some words welcoming them. You use the plus (+)
symbol to join strings:

message = "Hello, " + player_name + "! Let's make a silly sentence!"

If player_name equals “Melissa”, the message is equal to

"Hello, Melissa! Let's make a silly sentence!"

Add this to your program, and display the message to the screen using
print.

Listing 3.3 Using + to join strings

Title: The Silly Sentence Generator 3000
Author: Ryan Heitz
This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message
print("*" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Get the user's name and say hi
player_name = input("Please enter your name: ")
message = "Hello, " + player_name + "! Let's make a silly sentence!"
print(message)

The program has the user input their name, which is stored in the vari-
able player_name. On the next line, a message is made by joining strings.
The message is displayed on the screen to create a personalized start
for the game.

oins
ings

Displays the message

78 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
Let’s go further and add more inputs.

More tools for strings: string methods
To make life easier, Python includes some built-in tools for working with strings.
These tools are similar to the functions you saw earlier, but they’re called meth-
ods. Here is an example of a method that capitalizes the first letter of a string:

"jOHn".capitalize()

The capitalize method converts “jOHn” to “John”.

Python has a whole set of built-in methods. One method for strings is the lower
method, which converts a string to all lowercase:

"RABBIT".lower()

This makes “RABBIT” turn into “rabbit”.

Another method, upper, makes all the letters uppercase:

"king Arthur".upper()

The upper method is great for shouting things. It makes “king Arthur” into “KING
ARTHUR”.

These methods can save you timea and make it easier for you to get things done.

Methods vs. functions
Methods are a type of function, but they use dot notation. This means you put a
period (.) after the item and then the name of the method. If your item was “John
Cleese” and the method you wanted to use was lower, you’d write

"John Cleese".lower()

Parentheses go after the method name. You put in the parentheses any inputs
required by the method. You can check the Python documentation online to see
what is required.

Some methods don’t require any inputs, like the string methods capitalize,
upper, and lower. But some methods, like count, require inputs. Imagine that
you had a set of test answers with T for true and F for false, and you wanted to
count the number of true answers. You could use count:

>>> TestAnswers = "TTTFFFTTTFTFFFFTTTFFTT"
>>> TestAnswers.count("T")
12

There were 12 true answers on the test.

a You can learn more about the available string methods in the online Python docu-
mentation: http://mng.bz/9z49.

http://mng.bz/9z49

Joining strings 79
Using more than one input
You have a wonderful start to your game. Now you need to gather mul-
tiple inputs from the player. Let’s start by asking the player for a
noun—the name of a famous person:

famous_person = input("Enter the name of a famous person: ")

Next, you should get a few more words:

adjective1 = input("Enter an adjective: ")
adjective2 = input("Enter another adjective: ")
verb = input("Enter a verb ending in –ING: ")

With these multiple inputs, your code should now look like the follow-
ing listing.

Listing 3.4 Collecting multiple items from the player

Title: The Silly Sentence Generator 3000
Author: Ryan Heitz
This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message
print("*" * 48)
print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Get the user's name and say hi
player_name = input("Please enter your name: ")
message = "Hello, " + player_name + "! Let's make a silly sentence!"
print(message)

Gather words from the player for our sentences
famous_person = input("Enter the name of a famous person: ")
adjective1 = input("Enter an adjective: ")
adjective2 = input("Enter another adjective: ")
verb = input("Enter a verb ending in -ING: ")

You use the input function multiple times to collect a set of words from
the user. Each word is stored in a variable on the left side of the equals
sign. Try to use names for variables that make sense; it’ll be easier to
remember what you stored in them later.

Gather
words from
the player.

80 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
Building the sentence
Now let’s create the sentence for your Silly Sentence Generator 3000
by joining the words using +:

silly_sentence = ("The " + adjective1 + " " + player_name + " is " +

 verb + " the " + adjective2 + " " + famous_person)

Let’s take a closer look at this line of code in figure 3.10 to see what’s
happening.

On the right side of the equals sign, the parentheses enclose the strings
that are being joined to create a sentence. They’re joined (or concate-
nated) using the + operator. Because the line is so long, you can use a
set of parentheses to break it over two lines. Python recommends limit-
ing all lines to no longer than 79 characters so the code can be easily
read. Looking at the left side of the equals sign, you’ll see that the
resulting string is stored in a variable named silly_sentence.

What’s especially awesome is that this code will create a different sen-
tence each time a user enters different words. Because you used

Creates a
variable to store
the joined string

Strings such as "The" and "is"
are joined with variables that contain
strings like adjective1 and player_name.

silly_sentence = ("The " + adjective1 + "" + player_name + " is " +
 verb + " the " + adjective2 + "" + famous_person)

Opening paranthesis
starts the set of strings
to be joined

Plus signs join together
strings (must have +
between each one)

Closing parenthesis
ends the set of strings
being joined

Figure 3.10 silly-sentence is created by joining a set of strings. The strings are
a combination of strings you enter with quotation marks around them and strings
collected from the game player that are stored in variables. The parentheses are
needed because the code is too long to fit on a single line.

Joining strings 81
variables and the variables are storing the input from the user, it’s truly
a Silly Sentence Generator!

Troubleshooting
When typing code, it’s easy to make mistakes, called bugs. Boo to bugs.
To track them down and fix them, you debug your code. Yay for
debugging. You may forget to close a set of quotation marks, you may
leave out a parenthesis, or you may misspell a word. Let’s look at some
common errors you might make and how to fix them.

In the last section, you used the + to join strings and variables that were
storing strings. Look at this code, which has an error:

silly_sentence = ("The + adjective1 + " " + player_name + " is " +

 verb + " the " + adjective2 + " " + famous_person)

Do you see the problem? The first string ("The) is missing the closing
quotation mark ("The "). If you were to run this program, Python
would output an error (see figure 3.11). Add the closing quotation

Figure 3.11 If you forget to close a set of quotation marks around a string, you’ll
receive an error from Python when you try to run your program. Python will highlight
in red the line with the error. Check each of the strings to find and fix the error.

82 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
mark to the string that is missing it, and then save your program and
run it again.

Another common error you might make is to misspell the name of a
variable or use different capitalization. Here’s the same line of code,
but this time there is a misspelled variable and one variable with incor-
rect capitalization. Can you spot them?

silly_sentence = ("The " + adjectve1 + " " + player_name + " is " +
 verb + " the " + adjective2 + " " + Famous_person)

The first one is adjectve1, which should be adjective1 (the i is missing).
The second error is Famous_person, which should be famous_person (the F
should be lowercase). The error you’ll see if you run this program is
shown in figure 3.12.

Figure 3.12 A common mistake in programming is to misspell the name of a vari-
able or use incorrect capitalization. The error displayed says there is a problem on
line 25 of the program. The type of error is NameError: name 'adjectve1 ' is not
defined.

Completing the program: displaying the silly sentence 83
TIP The spelling and capitalization of a variable must always be the
same. If you call a variable my_number and then later type my_nomber or
My_number, Python will give you an error.

Correct the error by fixing the spelling of adjectve1 so it’s adjective1.
After fixing it, you’ll still receive an error, but this time because of the
capitalization of Famous_person (NameError: name 'Famous_person' is not
defined). Change the capitalization of Famous_person to famous_person.
Once you’ve made the corrections, save the program and run it again.

You’ve debugged your program. Superb job!

Completing the program: displaying the silly sentence
You’ve made your silly sentence, and you want Python to show it to the
player. Use the print statement to print it out, but like your welcome
message, let’s add some pizzazz to it!

print("*" * 48)

print(silly_sentence)

print("*" * 48)

Guess what it does? It prints a row of * characters (asterisks) across
the screen 48 times. Then it displays the sentence and prints another
row of * symbols 48 times. Try other characters or patterns of charac-
ters to see what looks good to you!

It looks pretty good, but you can do a bit better. Test your program by
running it, and you’ll notice the number of symbols doesn’t match the
length of the sentence. You’ve programmed it to display exactly 48
asterisks—no more, no less. Instead, let’s update those lines to repeat
the symbol to match the length of the silly sentence. You’ll use another
built-in Python function called len, which calculates the length of a
string and returns a number telling you the number of characters:

print("*" * len(silly_sentence))

print(silly_sentence)

print("*" * len(silly_sentence))

84 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
That’s better! Let’s look at the code all together (see figure 3.13).

You’ve completed your program. Let’s do some final testing to see
what it can do! See figure 3.14 for an example of the game’s output.

Fantastic! Feel free to update the code to add more adjectives, verbs,
or nouns. You’ve learned how to get input from a computer user and
interact with them by displaying a message to the screen.

Figure 3.13 Silly Sentence Generator 3000 is a fun program that shows how pro-
grams can collect information from users, interact with them, and provide a more
personal feel.

Fruit Picker Extra: Minecraft Pi 85
Fruit Picker Extra: Minecraft Pi
In this Fruit Picker Extra, you’ll explore another unique feature of the
Pi: it has its own version of Minecraft. Thanks to a collaboration
between Mojang, the makers of Minecraft, and the Raspberry Pi
Foundation, a free, slimmed-down version of Minecraft is available on
the Raspberry Pi. Since September 2014, this version, called Minecraft
Pi, is automatically installed with the Raspbian operating system.

What's Minecraft?
Minecraft is a game that takes place in a 3D virtual world made of
blocks. At the most basic level, you run around mining (digging blocks
by hitting them) and crafting things (combining items in the game to
make new items). You can also build things in this virtual world using
different types of blocks.

Figure 3.14 The Silly Sentence Generator 3000 makes some absurd sentences
based on words you enter.

86 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
Launching Minecraft Pi
Look for a Minecraft Pi icon under Menu > Games (see figure 3.15). If
you got your Pi before September 2014, see the chapter 6 sidebar
“Updating your Pi” to learn how to update Raspbian.

Click the Minecraft Pi icon to open the game. A Minecraft window will
open (see figure 3.16). It’s a little quirky—you’ll see a black window
behind the Minecraft window—but this is normal.

Click Start Game to begin to play. Next, click Create New to create a
new world. After it’s done loading, you’ll find yourself in a blocky

Figure 3.15 Minecraft Pi
is a slimmed-down, free
version of Minecraft that’s
based on Minecraft Pocket
Edition. It’s limited
compared to the full version
but still oodles of fun!

Figure 3.16 The Minecraft Pi main screen allows you to start a single-
player game or join a multiplayer game. The multiplayer option lets you
connect to someone else’s world, but you’ll need to be on the same network.

Fruit Picker Extra: Minecraft Pi 87
world (see figure 3.17). Each world is different, so you may see trees,
water, dirt, or any number of environments.

In Minecraft, you’re a player who can walk around using the following
controls:

❂ W—Move forward.
❂ A—Move left.
❂ S—Move backward.
❂ D—Move right.
❂ Spacebar—Jump.
❂ Mouse movement—Look around or turn.
❂ Escape—Exit the game.

In addition to the basics, here are some other moves you may need:

❂ Double spacebar—Fly up in the air (double-tap the space bar and
then hold it down to fly up). Press the left Shift key to move down. If
you’re flying, double-tap the spacebar to fall back to the ground.

❂ E—Show the game inventory of blocks and items you can use (it’s
limited compared to the full version of the game). Drag items you

Figure 3.17 Each Minecraft world is made of blocks but is different.
You might find yourself in a forest or in a desert. The bottom of the
screen shows you the items in your inventory. Use the mouse scroll wheel
to select different items, or press the numbers 1–9 on your keyboard.

88 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
want to the small squares at the bottom of the screen. Press Escape
to hide the inventory screen.

❂ Scroll wheel or the number 1–9 keys—Select something from one of
your player inventory spots at the bottom of the screen. The item
selected is in your hand for you to use.

Once you get the hang of moving around, use the mouse left click to
dig or break blocks. Use the mouse right click to place a block or use
the tool in your hand. When you’re ready to leave, press Escape to exit
the game.

TIP To exit Minecraft Pi, press Escape > Quit to Title, and then click
the X in the corner to close the window.

Python programming interface to Minecraft Pi
Minecraft Pi has a fun inventory of materials and tools—even a sword!
What’s even better is that there is a Python programming interface for
Minecraft Pi. Head over to the Raspberry Pi Foundation website to
learn more about how to use Python to interact with Minecraft Pi.

Explore the world, dig an underground base, or build a tree house.
What will you do?

Try these challenges to see if you can use the input function and strings
to create something fun and interactive.

Knight’s Tale Creator 3000
In this challenge, try to use what you’ve learned about input (gathering
text) and output (displaying text) to create a Knight’s Tale Generator.
Here is a story template for you to use:

There was a brave knight, [player_name], who was sent on a quest to
vanquish the [adjective] evildoer, [famous_person]. Riding on his/her
trusty [animal], the brave [player_name] traveled to the faraway land

Challenges

Challenges 89
of [vacation_place]. [player_name] battled valiantly against
[famous_person]’s army using his [sharp_thing] until he defeated
them. Emerging victorious, [player_name] exclaimed, “[exclama-
tion]!!!” I claim the land of [vacation_place] in the name of Python.

The words in brackets are meant to be variables that you’ll create in
your program; you’ll need to have the player input those words.
Remember to use + to join the strings to create a unique knight’s tale,
and then print the tale to the screen. Good luck!

Subliminal messages
A subliminal message is a hidden message that tries to get people to
think of something you want them to think about. Often used in TV
commercials, it’s a great technique to try with friends and parents to
get something you want.3 In this challenge, try to create a message that
is hidden in a large display of characters. The message should be

3 Use subliminal messaging at your own risk (send Ryan pizza!). If people know you’re trying to
manipulate their minds, they may retaliate with subliminal messaging of their own.

Figure 3.18 The subliminal-message challenge is about hiding a secret mes-
sage in a bunch of characters on the screen. Can you see the hidden message?

90 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs
constructed by asking for the person’s name, the name of something
they want, and a pattern of letters, numbers, and symbols. In your pro-
gram, you should create a message that says, “You really want to buy
[player_name] a [thing]”, and hide it within a pattern of characters.
Figure 3.18 shows an example.

In this example, the hidden message is, “You really want to buy Ryan a
burrito.” Be sneaky, and see if you can find a way to create and hide a
subliminal message!

In this chapter, you learned how to write interactive programs that get
information from a person and provide entertaining responses:

❂ Use the input function to collect text input from a person. Use it with
a variable and an equals sign to store the information that a person
types in. Here’s an example of asking the user to tell you their favor-
ite color and saving it to a variable called favorite_color:

favorite_color = input("What is your favorite color?")

❂ Add notes to your programs by starting a line with a hashtag (#) and
a space:

A comment tells you about the code
They help you read the code,
but they are ignored by Python

❂ Join strings using +.
❂ Use parentheses when you need to join strings that are longer than a

single line:

name = input("What is your name?")
favorite_color = input("What is your favorite color?")
message = ("Your name is: " + name + " and your "+
 "favorite color is: " + favorite_color)

The game you created uses the same ideas to collect information from
users and interact with them in the same way they see every day on
websites, mobile apps, and games.

Summary

4
Norwegian Blue parrot game:
adding logic to programs

In this chapter, you’ll learn how to create Python programs that

• Display an introduction
• Collect input from the user
• Use if statements to respond to users in different ways
• Use while loops to repeat things over and over
• Use Python code libraries to generate random numbers

Open a popular game, such as Minecraft, or think about a robot, like the
Mars rover. Both are computer programs. What do they have in com-
mon? They both have the ability to take input and do something with it.
What they do depends on the input they’re given. In a game, if you press
Forward and fall off a ledge, your character falls and dies. If it’s your only
life, then you’re taken to the Game Over screen. Similarly, the Mars rover
might be instructed to go to a certain location, but if it detects a large rock
in its way, it will stop or attempt to drive around the obstacle.

The logic of how games work or how the rover moves is programmed into
them. But how do you create that logic in your programs? You’ll learn
91

92 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
how by making a simple guessing game about a special parrot, the Nor-
wegian Blue.

Displaying the game introduction
The Norwegian Blue parrot is a fictitious parrot that is the subject of
one of the most famous comedy sketches from Monty Python.1 Your
game is about pretending you’re visiting a pet shop that has a Norwe-
gian Blue parrot for sale. The shop owner challenges you to guess the
age of the parrot (see figure 4.1). If you guess correctly, then you get to
take home the parrot for free.

Each time the game is played, the program selects a different random
number between 1 and 20 as the age of the parrot. The game player gets
five chances to guess the parrot’s age. If the player guesses correctly, the
game displays a funny message congratulating them on winning their
new parrot. If the player makes a wrong guess, then the program

1 If you haven’t seen it, check out this Wikipedia page, which has an audio recording of the comedy
sketch: http://en.wikipedia.org/wiki/Dead_Parrot_sketch.

CAN YOU GUESS MY AGE?
SQUAWK!

Figure 4.1 The Norwegian Blue parrot has beautiful
plumage and makes a great subject for a guessing game.

http://en.wikipedia.org/wiki/Dead_Parrot_sketch

Displaying the game introduction 93
displays a good-hearted insult, as if it were offended by the player’s
guess. If the player doesn’t guess within five tries, they lose, and the pet
shop owner lets them know the parrot’s true age (see figure 4.2).

Display the title and
the instructions.

Logic for game

Keep track of the number of
guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

If true, then tell them they win!
Then break out of loop.

Get a guess from a player.

Keep track of the number of
guesses, and add one.

Check if the guess is correct.

Check if that was the fifth
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Else

?

?

?

Figure 4.2 The game logic can be expressed in
words. The question marks symbolize when the
game needs logic to make a decision. This dia-
gram also shows what code needs to be repeated
because the player gets five guesses. Each deci-
sion has a simple True/False or Yes/No answer.

94 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
When this game is completed, you’ll be able to play it. The output will
look like figure 4.3. In the example, the player guessed four times
incorrectly; but on their fifth try, they guessed correctly. They won,
and the shop owner gave them the parrot.

Creating the game welcome message and instructions
Let’s start by opening IDLE for Python 3 and creating a new program.
Open IDLE by clicking the Python 3 icon under Menu > Programming
on your Raspberry Pi desktop (see figure 4.4).

Figure 4.3 The Norwegian Blue Guessing Game is about trying to guess the age of
a bird in a pet shop.

Displaying the game introduction 95
Give your Raspberry Pi a few seconds to open IDLE. You’ll see the
Python Shell. Press Ctrl-N or File > New Window to open the IDLE
text editor. You’ll see a blank window, ready for you to start typing in
the program.

Let’s type in a few comments at the top of the program in the text edi-
tor. Start each line with a hash tag (#) and a space.

Listing 4.1 Creating comments at the top of your new program

Title: The Norwegian Blue Parrot Guessing Game

Author: Ryan Heitz

The goal of the game is guess the age of a parrot.

The program generates a random age between 1 and 20.

The player gets 5 guesses to guess the age correctly.

If they're correct, they win the parrot!

Change the words to whatever you’d like. Comments are notes for you
and whoever you might share your program with, so make them read
the way you want. Remember to avoid going off the screen with your
comments—keep each line pretty short. No more than 79 characters per
line is good style; this ensures that your beautiful Python programs fit
in the window and don’t require the user to scroll or resize the window.

Figure 4.4 Click the Python 3 icon to open IDLE’s Python 3 Shell on your
Raspberry Pi.

96 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
TIP You can keep track of which line and column your cursor is on
by using the cursor-location information (see figure 4.5). It’s dis-
played in the bottom-right corner of the text editor. The letters Col
stand for column: this shows the number of characters your cursor is
from the left side of the screen. The left side is 0, the middle is 40, the
right side is 80, and so forth.

The program in the IDLE text editor now contains several lines of com-
ments. Before you go further, save your work: press Ctrl-S to save the
program. A window will pop up in which you can name and choose a
location in which to save the file. In the File Name text box, type in the
name of the file: name it NorwegianBlue. When you click the Save but-
ton, the file will be saved as NorwegianBlue.py (the .py extension is
automatically added by IDLE), and it will be stored on your Pi’s SD
memory card in the /home/pi folder.2 Once the program is saved, the
text editor displays the location of the file and the filename along the
top of the window (see figure 4.5).

2 You can create a new folder in which to store your Python program. You create a folder by opening
the Raspbian File Manager application and selecting File > Create New > Folder. Like your shoes,
you’ll want to remember where you stored your programs so you don’t have to spend a lot of time
looking for them.

Cursor location is shown in the
corner. The cursor is on line
6 and 42 spaces from the left.

Cursor location

Figure 4.5 Once you’ve saved the file, the top of the window displays the file-
name and the location where the file is stored on your Raspberry Pi (/home/pi/
NorwegianBlue.py). The cursor location is always shown at the bottom right of
the window.

Displaying the game introduction 97

Draws a
of aster

on the scr
Next you need to let the user know the name of your game and the
instructions for playing it. Use Python’s built-in print function to write
a few lines of code that display a title on the screen.

Listing 4.2 Making the title display on the screen

Display the title and instructions
print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME")
print("*" * 80)

After they see the title, your game players need to know what to do.
You should set the scene for the game and give them instructions. Let’s
create a variable called instructions and store in it the sentences
describing how to play the game. As in Silly Sentence Generator 3000
from chapter 3, this variable will contain a string of characters a few
sentences long.

Rather than enter a super-long string all on one line, you want to use a
neater way to keep the string on the screen and limit it to not more than
79 characters across (remember, good Python style is to keep text on
the screen). In Python, you can use string literals to do this.

DEFINITION String literals are strings that can hold multiple lines of
text and that appear exactly as you typed them in the text editor when
they’re displayed on the screen. String literals keep the spaces
between lines and characters. To make one, start and end a string with
triple double quotes (""") or triple single quotes (''').

Let’s add instructions to your program after the program’s comments.
You’ll use a string literal for the instructions and then print it to the dis-
play.

Listing 4.3 String literals that hold multiple lines of text

instructions = """
You walk into an old and smelly pet shop.
As the door closes behind you, you see
a beautiful blue parrot sitting very
still in a cage. The pet shop owner

Add a comment

 line
isks
een

Displays the title
of the game

Start a string literal
with """ or '''.

98 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
greets you and says,
"Today is your lucky day!
This is the rare Norwegian Blue parrot.
Guess his age and take him home for free!

You get five guesses."
"""
print(instructions)

String literals give you the ability to display a string exactly as you type
it in the text editor. Think of it as a “what you see is what you get" way
of creating strings.

Getting expressive with ASCII art
Before desktop operating systems (OSs) and games had high-end graphics, com-
puters had limited display capabilities. Computer users and programmers in-
vented a new type of art called ASCII art that uses text characters to make
images.

ASCII is a way of storing characters as binary numbers. For example, the letter A
is represented as 1000001. Later encodings had many more characters to sup-
port more languages, but the name ASCII art stuck. ASCII art uses the set of 95
ASCII characters (letters, numbers, and symbols) in cleverly designed patterns to
represent images.

Here is an example of ASCII art for your game title that is made by creating a
string literal and printing it to the screen. Craft your own ASCII art using a bit of
imagination and trial and error:

bird_art = """

You can use double
quotes in string literals.

End the string
literal with """ or '''. Displays the instructions

in the Python Shell window.

Displaying the game introduction 99
It’s always a good idea to test your programs often to catch any mis-
takes. Test your program now, and see what you get. The title and
instructions should display nicely on the screen.

A common mistake you might make when typing in this code would be
to forget some of the quotation marks at the beginning or end of the

###

 / 0 \ NORWEGIAN

 | >

 |UUU) | BLUE

 |UUU) |

 //UUU) | GUESSING

 //UUU) /

 //UU) / GAME

 //U) /

 // -|--|/

 ==// ==W==W====

 //

 /

###

"""

print(bird_art)

Sometimes it helps to blur your eyes a bit to see if the image looks like what you
want. Get creative, and think how you can use uppercase and lowercase letters
to create effects, like using a U to represent feathers on the parrot’s wing or W
for the parrot’s claws.

Try these ASCII art sites for fun:

❂ www.chris.com/ascii—A huge collection of ASCII art, sorted by topics
❂ http://patorjk.com/software/taag—A text-to-ASCII art generator (TAAG).

You type in words, and it automatically creates ASCII art for you.
❂ http://picascii.com—A tool that converts pictures to ASCII art

See if you can make some ASCII art for the title screen of your game that’s even
better than this. Have fun with it!

www.chris.com/ascii
http://patorjk.com/software/taag
http://picascii.com

100 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
strings. If you do, figure 4.6 shows an example of the error you’ll
receive in Python.

A similar mistake you might make is forgetting to start your string liter-
als with a triple quotation mark. In this case, Python will give you a
syntax error message (see figure 4.7).

It’s easy to fix this error by making sure there are triple quotation
marks at the beginning and end of the string literal. Use the highlight-
ing shown in the IDLE text editor to figure out which line is causing
the problem.

An error message pops up when you try
to run the program. EOL stands for end
of line. A string must start and end with
quotation marks and can’t be more than
one line long.

The closing quotation
mark is missing. It should
be print ("*" * 80)

Highlighting shows
where there is an error
in the program.

Figure 4.6 Python will display an error if you forget starting or ending quotation
marks. The line with the error will be highlighted in your program. Fix the program
by adding the missing quotation marks, and then save and run the program.

Collecting input from the player 101
Collecting input from the player
Your game has a proper introduction; now let’s start interacting with
the player. Games, websites, and apps are all about causing interac-
tions, whether it’s to create some fun or help you buy something online.
Contrast that with the last movie you watched. Movies don’t have any
interaction—they’re always the same.

A computer program’s ability to accept input and respond to that input
is special. In text-based games like the one you’re creating, this interac-
tion occurs through the keyboard. Players type in answers or make
choices, and the game responds.

For this game, you want to ask the game player to guess the age of the
parrot. The program knows the parrot’s age and checks whether each
of the player’s guesses matches it. To make this work, you have to give
the program the age of the parrot (it’s stored in a variable). This gives
you something akin to god-like powers as the programmer—as the
game’s maker, you can decide what the value is. Let’s create a variable
and set it to a value that you pick. One great thing about being a com-
puter programmer is that only you know the parrot’s true age.3

3 And anyone else who is reading this book! Later you’ll make the game use a random number so even
you don’t know the parrot’s age.

Error message pops up when trying to run
the program. Invalid syntax is a generic error
meaning something is not following Python’s rules.

The opening triple
quotation mark is
missing for our string
literal. It should be:
instructions = """

Figure 4.7 A string literal must start and end with a set of triple quotation marks. If
you forget, Python will tell you that you have a syntax error. Add the missing triple
quotes to fix the error.

102 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs

Leave a n
yourself t
this progr
allow the
guess five

o
s.
Let’s make the parrot old. Create a variable named parrot_age, and
assign it a value of 19.

Listing 4.4 Creating an age for the parrot

Making up the parrot's age
TODO: Make this automatically pick a random number between 1 and 20
parrot_age = 19

Notice that in the comments you include a TODO note: this tells you that
you have an item to do later.

TIP Use TODOs in your comments as reminders of areas of your pro-
gram that are left unfinished or need further improvement. Comments
are your friend, and they’re there to help you. Use them however you
need them!

Next let’s get the user’s first guess. Use Python’s input function (like
you did in chapter 2) to collect input from the user and store it in a
variable named guess. Give the input function a message that clearly
prompts the game player to enter an appropriate value. You don’t want
them typing in 50 when you’re expecting a number between 1 and 20.
In this case, you want them to guess a number from 1 to 20.

Listing 4.5 Getting a guess and storing it in a variable

Get a guess from the user
TODO: Need to make this repeat to give them five guesses
guess =input("Guess the age of the parrot

➥ [Pick a number from 1 to 20]: ")
guess = int(guess)

After gathering input from the user, you need to convert the value from
a string (for example, “5”) into an integer (simply the integer 5). By
default, anything input by the game player is stored as a string (even if
what they type in is a number). Figure 4.8 shows this graphically:

Create a variable and
store the number 19 in it.

ote to
o make
am

 user to
 times.

Display a prompt to
the user and store
whatever they type int
a variable called guesChange the value

stored in guess from
a string to an integer.

Collecting input from the player 103
you’re gathering input from the user and then converting it to an
integer. The int function takes the value in the guess variable, converts
it to an integer, and then stores it back in the guess variable.

One of the perils of working with people is they can type in whatever
they want. If someone typed in “one” instead of “1”, you’d see an error
like this:

Traceback (most recent call last):

 File "<pyshell#C>", line 1, in <module>

 int(guess)

ValueError: invalid literal for int() with base 10: 'one'

guess

guess = input("Guess the age of the parrot [Pick a number from 1 to 20]: ")

The input function gathers text typed in by the user. It always
returns a string, even if you type in a number, like 5.

guess = int(guess)

int converts the string "5" to the integer 5
(notice there aren’t quotes around it anymore).

Creates a new variable (or memory storage box) and
names it guess. The string "5" is placed inside it.

The memory storage box named guess
already exists, so Python replaces the value
in the box with 5 (the integer). "5" (the string)
is no longer stored.

int function

guess

Figure 4.8 The input function gathers text typed in by the user; then the text is
stored in a variable as a string data type. You take the value of the variable (“5”),
convert it to an integer (5), and store it as the variable.

104 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
This error is saying you haven’t given the int function a valid string
that is a number it can convert to an integer.

If you compare the logic you want to create in your code with the pro-
gram so far, you can see that you’ve checked off a couple of parts (see
figure 4.9).

Display the title and instructions
print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME")
print("*" * 80)

instructions = """
You walk into an old a...
"""
print(instructions)

Get a guess from the user
guess = input("Guess the age of the parrot
[number from 1 to 20]: ")
guess = int(guess)

Creating the logic in code

Display the title and
the instructions.

Logic for game

Keep track of the number of
guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

If true, then tell them they win!
Then break out of loop.

Get a guess from a player.

Keep track of the number of
guesses, and add one.

Check if the guess is correct.

Check if that was the fifth
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Else

?

?

?

Figure 4.9 On the left is the logic you want to create. On the right is your code. So far,
you’ve welcomed the user and given them the game instructions. You’ve also added code to
collect their guess.

Using if statements to respond to users in different ways 105

If True, t
message
on the sc

y a
age.
Fabulous! Test the program again to make sure it’s working. It’ll now
ask you to enter a guess. In the next section, you’ll see how to test
whether the guess is correct.

Using if statements to respond to users in different ways
When you wake up for breakfast, you might walk into the kitchen and
look around to see what there is to eat. You use logic to pick your
breakfast. If your favorite food is in the kitchen, you’ll eat it. For exam-
ple, if your favorite food is chocolate chip muffins, and there are some
in the kitchen, then you’ll eat them. If there aren’t, you might have a
bowl of cereal. In this example, you apply simple logic—you use rea-
soning to make a decision.

Computer programs use similar logic to interact with users and the
world around them. The interactions are based on a set of rules that
you (the programmer) write. One of the ways we as programmers can
create this logic is with something called the if statement.

In your game, you want to test whether the player’s guess matches (is
equal to) the parrot’s age. The logic you want to create in your code is
as follows:

❂ If the player’s guess is equal to the parrot’s age, congratulate them
and give them the Norwegian Blue to take home. End the game.

❂ Else (if the player’s guess isn’t equal to the parrot’s age) display a
mildly insulting message that they’re wrong. If it’s not their last
guess, let them guess again. If it’s their last guess, end the game.

Let’s use an if statement in the program to create the logic you need.

Listing 4.6 Adding logic to the game with an if statement

Checking to see if the guess is correct
if guess == parrot_age:
 print("Congratulations! You win! Enjoy your Norwegian Blue!")
else:
 print("Wrong! You obviously don't know your Norwegian Blues!")

Check if guess and
parrot_age are equal.

his
 displays
reen.

If False, displa
different mess

106 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
Let’s take a close look at how the if statement works and how it gives
you a way to create logic in your programs (see figure 4.10).

The keyword if is followed by guess == parrot_age, and the line ends
with a colon (:). guess == parrot_age is the condition that is being
tested. The double equals sign (==) is a special operator that checks the
equality of guess and parrot_age.

TIP Make sure you don’t use a single equals sign when testing equal-
ity. Single equals signs are used to assign (or store) values into
variables.

If they’re equals, the if condition is evaluated as True, and Python will
execute the indented commands after it. In this case, you’re printing a
message:

Congratulations! You win! Enjoy your Norwegian Blue!

If the guess is wrong (guess == parrot_age is False), then Python will do
the else part. The statements to be executed for the else part are

The first line of the
if statment must
end with a colon (:).

The condition
tested must be
either True or False.

The keyword
if starts the if
statement.

if guess == parrot_age:
 print("Congratulations! You win! Enjoy your Norwegian Blue!")
else:
 print("Wrong! You obviously don’t know your Norwegian Blues!")

Lines after the else statement
need to be indented four spaces
and are only executed when the
condition tested is False.

The else statement
ends in a colon (:)
and isn’t indented.

Lines after the if
statement need
to be indented
four spaces and
are only executed
when the condition
tested is True.

Figure 4.10 The if statement can control the flow of your programs. This example shows
how an if statement can be used to display one message if guess is equal to the parrot’s age
or a different message if they aren’t equal.

Using if statements to respond to users in different ways 107
indented four spaces. In this case, if the guess is wrong, the program
displays this on the screen:

Wrong! You obviously don't know your Norwegian Blues!

If you examine the code and think back to the logic you want to create,
you can see how the if statement lets you check whether the guess is
correct (see figure 4.11).

Display the title and instructions
print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME")
print("*" * 80)

instructions = """
You walk into an old a...
"""
print(instructions)

Creating the logic in code

Checking to see if the guess is correct
if guess == parrot_age:
 print("Congratulations! You win!
 Enjoy your Norwegian Blue!")

Get a guess from the user
guess = input("Guess the age of the
parrot [number from 1 to 20]: ")
guess = int(guess)

else:
 print("Wrong! You obviously don’t
 know your Norwegian Blues!")

Display the title and
the instructions.

Logic for game

Keep track of the number of
guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

If true, then tell them they win!
Then break out of loop.

Get a guess from a player.

Keep track of the number of
guesses, and add one.

Check if the guess is correct.

Check if that was the fifth
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Else

?

?

?

Figure 4.11 The logic you want to create is shown in the code. You use the if statement to
check whether the player’s guess is correct.

108 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
You’ve seen how the if statement can make a program make a deci-
sion. It’s an easy way to control programs by checking whether some-
thing is True or False.

Practicing if statements
Trying more examples of if statements will help you get used to the
logic and how to write them. Let’s do an example that checks to see

There is no “Ummm… maybe”
The if statement uses something called Boolean logic. In Boolean logic, the
answer must always be True or False. There is no “Ummmm… maybe.” It’s always
either True or False.

Boolean logic has its own set of operations for comparisons. These comparisons
should be familiar from math class, such as less than (<) and greater than (>).
Here is a table of some of the common comparisons you may need to use with
your if statements:

For this game, you’re using the equality comparison to check whether two values
are equal to each other.

If you need to reverse the logic in a comparison, you can use the not operator.
The not operator changes a True to False or a False to True. If x is True, then not
x is False.

Keep these comparison operators in mind. No matter which one you use, Python
analyzes the comparison and returns either a True or False answer.

Comparison operation Definition

== Equal

!= Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Using if statements to respond to users in different ways 109

whether a secret password is correct. If it is, the code should grant the
person access; otherwise it should deny them access.

Listing 4.7 Using an if statement to check a password

password = "cheese"
user_password = input("Enter the password: ")
if user_password == password:
 print("Access granted!")
else:
 print("Access denied!")

Python’s if statements are a powerful tool for creating programs that
respond the way you want them to. You now have the ability to make
logic so your programs react and respond based on interacting with a
user. This is the first step in adding a bit of artificial intelligence to your
programs. Fabulous job!

One of the most common mistakes when working with if statements is
forgetting to put the colon (:) at the end. Figure 4.12 is an example of
an if statement missing the colon.

Errors are common when writing programs. Try to remember to add a
colon at the end of your if statements. If Python throws a syntax error
box and highlights a space at the end of an if statement, you know
what you’ve done.

The equal-to comparison checks
if the passwords are equal.

The else part executes if the
passwords don’t match.

A colon (:) is missing at
the end of the if statement.

Figure 4.12 A missing
colon at the end of an if
statement will create a syntax
error. Python highlights where
the error is located. Add a
colon at the end of the line to
fix the problem.

110 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs

Star
whil

Exit t
when
is co

Che
fift
dis
me
Using while loops to repeat things
You have input from the user, but you need a way to let the user
repeatedly guess the parrot’s age. You might get bored repeating some-
thing over and over again, but computers will happily repeat something
as many times as you want. The repeating parts of programs are called
loops.

In the case of your guessing game, you’re giving the game player five
tries to guess the parrot’s age. Python has several types of loops: you’ll
use the while loop. A while loop repeats over and over until a certain
condition or circumstance is no longer true. What it repeats is for you
to decide. Each time through the loop, before the program repeats the
instructions you gave it, it checks that condition.

Let’s look at how you can use a while loop with your if statement to
give the user only five guesses. To help, you’ll create a variable named
number_of_guesses to keep track of the guesses.

Listing 4.8 Using a while loop to repeat instructions

number_of_guesses = 0
While loop will repeat until the number_of_guesses is five
while number_of_guesses < 5:
 # Get a guess from the user
 guess = input("Guess the age of the parrot [number from 1 to 20]: ")
 guess = int(guess)

 # Add one to our guess counter
 number_of_guesses = number_of_guesses + 1

 # Checking to see if the guess is correct
 if guess == parrot_age:
 print("Congratulations! You win! Enjoy your Norwegian Blue!")
 break
 else:
 print("Wrong! You obviously don't know your Norwegian Blues!")

 # Check to see if this is the fifth guess
 # If True, tell them they lost and reveal the parrot's age
 if number_of_guesses == 5:
 print("You lose!")
 print("The Norwegian Blue is " + str(parrot_age))

t the
e loop.

 Increase the guess
counter by one.

he while loop
 the answer

rrect.

ck if it’s the
h guess and
play the end
ssage if it is.

Using while loops to repeat things 111
 # Stop Indenting (This marks the end of while loop)

print("Thank you for playing!")

Notice how you have to rearrange the code in the program a bit. First
you start the while loop, and then you ask the user to input their guess.
Also notice that the code to repeat in the while loop is indented (shifted
over four spaces). Let’s take a closer look at the key elements of the
while loop (see figure 4.13).

Display the title and instructions
print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME")
print("*" * 80)
instructions = """
You walk into an old a...
"""
print(instructions)

Creating the logic in code

Checking to see if the guess is correct
if guess == parrot_age:
 print("Congratulations! You win! Enjoy your
 Norwegian Blue!")
 break

Get a guess from the user
guess = input("Guess the age of the parrot
[number from 1 to 20]: ")
guess = int(guess)

Add one to our guess counter
number_of_guesses = number_of_guesses + 1

number_of_guesses = 0

While loop will repeat until
the number_of_guesses is five
while number_of_guesses < 5:

else:
 print("Wrong! You obviously don’t know your
 Norwegian Blues!")

#Stop Indenting (This marks the end of while loop)

Check to see if this is the fifth guess
If True, tell them they lost and reveal
the parrot’s age
if number_of_guesses == 5:
 print("You lose!")
 print("The Norwegian Blue is " + str
 (parrot_age))

print("Thank you for playing!")

Display the title and
the instructions.

Logic for game

Keep track of the number of
guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

If true, then tell them they win!
Then break out of loop.

Get a guess from a player.

Keep track of the number of
guesses, and add one.

Check if the guess is correct.

Check if that was the fifth
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Else

?

?

?

Figure 4.13 Think of the logic you’re trying to create, and then translate it into your
code. When you need to repeat something, you can use a while loop. When you need
to check whether something is True or False, you can use an if statement.

112 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
There is a special thing about a while loop: you must indent all the code
that you want the loop to repeat (like you did for if statements). Each
line should be indented four spaces from the left (you measure this
from where you type the w in while). Similarly, you stop indenting code
when you want the while loop to end. Code that isn’t indented is out-
side the while loop and is only run after the while loop finishes.

TIP The IDLE text editor automatically indents the loop text for you.
Indentation is used in Python to group code together.

Notice that you create a variable named number_of_guesses that helps
keep track of how many guesses have been made. It starts with a value
of 0; after each guess, the value increases by one. When it reaches a
value of 5, if the last guess is incorrect, the game should end. As long as
the number of guesses is less than five, the program will check the
guess entered by the player to see if it’s correct. If a guess is correct, the
game should congratulate the player, break out of the loop, and end.

A closer look at while loops
while loops run a set of instructions or code repeatedly, but only while
the condition of the while loop is True. This is useful when you want to
have something repeat but need a switch that signifies when it should
stop. A very common use of while loops is in games. A loop makes it so
the user can play the game again and again until they say they don’t
want to play anymore.

The while loop in figure 4.14 counts from 0 to 99. Let’s look more
closely at its parts.

Like an if statement, a while loop has an expression that must be either
True or False. The example in figure 4.14 uses count < 100. The line
ends with a colon (:), and subsequent lines that belong with the loop
should be indented four spaces. In a while loop, you can use any other
commands you would normally use in Python. To signify the end of the
loop, stop indenting statements. Notice that the print("I finished

counting!") isn’t indented, so it’s only printed once, after the counting is

Using while loops to repeat things 113
complete. Python reads the indentation to know when you want your
loop to start and end.

TIP You can use if statements in while loops. In your game, you use
an if statement in a while loop. Sounds fancy, but you want to check
whether the player’s guess is correct, and you need to do this repeat-
edly to give them their five guesses.

Using loops can save you from writing a lot of code. They let you order
a computer to repeat a series of commands many times. The commands
only need to be written once in the loop.

Breaking out of a while loop
Sometimes you need to take a break to eat some food or grab a drink.
Python has a break command that lets you break out of a while loop
early. In this example, you want your loop to repeat if the player’s last
guess was incorrect. If the player guesses the parrot’s age correctly,
then you want to break out of the loop—even though you haven’t

count = 0

while count < 100:
 print(count)
 count = count + 1
print("I finished counting!")

p
be given a condition
that is True or False.

A colon goes at the end.

Start while loop.

Add one to the
value of count.

Display the current
value of count.

to count, and give
it a value of zero.

Display a message to the
screen: “I finished counting!”

Code in the loop
is indented four
spaces.

Figure 4.14 You can use a while loop to repeatedly perform a task. Code that is
part of the loop is indented four spaces. In this case, this while loop displays the
numbers from 0 to 99; when completed, it prints the message, “I finished counting!”
Typically, the condition should be such that code in the loop can make it False and
thus end the loop.

114 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
reached the fifth guess, you want to stop looping because the player got
the answer right.

Let’s modify the previous example of counting to 99 so it breaks out of
the loop when it reaches the number 77. You’ll use an if statement to
do this.

Listing 4.9 Breaking out of a loop

count = 0
while count < 100:
 print(count)
 if count == 77:
 break
 count = count + 1
print("I finished counting!")

Practicing while loops
Let’s try another example of using a while loop to get the hang of how
to write them: a while loop that asks your favorite color. See if you can
figure out what this program does.

Listing 4.10 Favorite colors

favorite_color = input("What is your favorite color? ")

while favorite_color != "blue":
 print("Nope, you got it wrong!")
 favorite_color = input("Try again: What is your favorite color? ")

print("Me too! What a coincidence!")

This example asks you for your favorite color; if you type in blue, it
says, “Me too! What a coincidence!” and ends. If you don’t input blue,
the program will keep asking you for your favorite color over and over
again (until you say it’s blue).

Suppose your loop doesn’t produce the output you expect. Maybe the
guessing game gives you six guesses instead of five. This is when you
try to find the problem and fix it—a process also called troubleshoot-
ing. Fixing errors in while loops can be tricky because there may be

Check if the value of
count is equal to 77.

If the value is equal to 77, the break
command breaks out of the loop.

Using Python code libraries to generate random numbers 115
many commands in the loop. The commands execute quickly, so it can
be hard to see what is happening. One troubleshooting technique you
can use is to add a print function in the loop and use it to print out the
value of a variable such as the counter each time through the loop.

In this example, you might add this line in your loop:

print(number_of_guesses)

This prints out the value stored in the number_of_guesses variable each
time the code goes through the loop. You can see whether the counter
is incrementing as you expect and whether it’s starting with the right
number.

Using Python code libraries to generate random numbers
You program should be working great. The player gets five guesses,
and if they guess the age of the parrot correctly, they win! One exciting
part about games is their unpredictability—you never know when you
might win or lose. Your next task is to have the program pick a random
number for the Norwegian Blue’s age. This will make it more thrilling
because even you won’t know the answer!

If you’ve ever tried to fix a broken bike, toaster, or car, you probably
needed some tools. Bare hands are good for many things, but they
probably weren’t enough for the job. Similarly, in Python, the standard
tools (your bare hands) aren’t enough. Sometimes you need to get a
toolbox and take out a big hammer, soldering iron, or screwdriver.

Python has toolboxes as well. These toolboxes are also called modules.
Each toolbox (module) contains different sets of tools (methods) that
are useful for specific jobs. Here are some examples of common Python
modules:

❂ datetime provides useful tools for getting the current time and date
and formatting them nicely.

❂ random gives you the ability to create random numbers.
❂ math supports a larger set of mathematical functions.
❂ fileinput supports reading information from files.

116 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
Before you can use these toolboxes, you must first carry them into the
room, like you might grab a toolbox of bike tools to fix a bike. To bring
in a toolbox, you use the import command:

import random

You can add this line anywhere in a program before you need to use it
to create a random number. Add it right after the comments at the
beginning of your game program. This brings in the toolbox at the
beginning of the program and makes it easier for other people who
read your code to see what toolboxes (or modules) you’re using. What
the line is actually doing is loading the toolbox into Python’s memory
so you can use the tools in your program.

Now that you’ve added the toolbox, you can use a tool called randint to
generate a random number between 1 and 20. This code replaces the
line parrot_age = 19:

parrot_age = random.randint(1,20)

Notice that you enter the name of the toolbox, put a period or dot (.),
and then put the name of the tool you want to use. This particular tool,
randint, needs you to give it two numbers: the lower and upper num-
bers that the random integer should be between. If you wanted a num-
ber between 1 and 100, you’d write

parrot_age = random.randint(1,100)

With these two lines of code added, the complete code listing should
match the code in figure 4.15.

Outstanding! You’ve made a Norwegian Blue Guessing Game and
learned how to create logic in your programs using both if statements
and while loops.

Using Python code libraries to generate random numbers 117
Display the title and
the instructions.

Title: The Norwegian Blue Parrot Guessing Game
Author: Ryan Heitz
The goal of the game is guess the age of a parrot.
The program generates a random age between 1 and 20.
The player gets 5 guesses to guess the age correctly.
If they’re correct, they win the parrot!
import random

Display the title and instructions
print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME")
print("*" * 80)

instructions = """
You walk into an old and smelly pet shop.
As the door closes behind you, you see
a beautiful blue parrot sitting very
still in a cage. The pet shop owner
greets you and says,

"Today is your lucky day!
This is the rare Norwegian Blue parrot.
Guess his age and take him home for free!

You get five guesses."
"""
print(instructions)

Making up the parrot’s age
Automatically picks a random number between 1 and 20
parrot_age = random.randint(1,20)

number_of_guesses = 0

While loop will repeat until the number_of_guesses is five
while number_of_guesses < 5:

Get a guess from the user
guess = input("Guess the age of the parrot
[number from 1 to 20]: ")
guess = int(guess)

Add one to our guess counter
number_of_guesses = number_of_guesses + 1

Checking to see if the guess is correct
if guess == parrot_age:
 print("Congratulations! You win!
 Enjoy your Norwegian Blue!")
 break
else:
 print("Wrong! You obviously don’t
 know your Norwegian Blues!")

Check to see if this is the fifth guess
If True, tell them they lost and reveal the parrot’s age
if number_of_guesses == 5:
 print("You lose!")
 print("The Norwegian Blue is " + str(parrot_age))

print("Thank you for playing!")

Logic for game

Creating the logic in code

Keep track of the number of
guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

Get a guess from a player.

Keep track of the number of
guesses, and add one.

Check if the guess is correct.

If true, then tell them they win!
Then break out of loop.

Check if that was the fifth
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Else

?

?

?

#Stop Indenting (This marks the end of while loop)

Figure 4.15 To randomly select a number, you need to import the random library and
use the randint function to select a random integer between 1 and 20.

118 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
Fruit Picker Extra: Scratch
Have you been wondering why your Pi has an icon that is a picture
of a cat head? That is the icon for Scratch. Developed by the Massa-
chusetts Institute of Technology (MIT) to help teach programming,
Scratch is a simple program you can use to create animations and
games on your Raspberry Pi. Scratch is also its own easy-to-use pro-
gramming language that is based on dragging and dropping pro-
gram blocks.

Open Scratch by clicking Menu > Programming > Scratch on your
Raspbian desktop. When Scratch opens, you’ll see a cat in a white
square. Figure 4.16 shows an overview of the Scratch interface.

Load a
background
image.

Cat sprite

Each sprite has three tabs
for writing programs, loading
costumes, and loading sounds.

Access help
documentation.

The stage is
where the sprites
can move around.

Click categories to
get different blocks.

Block palette: drag blocks
to the script area, and
snap them together.

Script area Load
or paint
a sprite.

Figure 4.16 The Scratch interface is divided into an area for sprites to move
around and a script area. You can create programs for your sprite by dragging
blocks and connecting them in the script area.

Challenges 119
Scratch can do many things, and we won’t explain them all. You can
learn more about how to create projects with Scratch by clicking Help
> Help Pages. The help tells you how to use each block and provides
some tutorials.

Do you have an idea for a project? As in Python, you can make pro-
grams that ask for input, display messages, generate random numbers,
and use if statements and loops. You might add a dog sprite and make
it sing like a human when you click it. Or try creating a Scratch version
of your favorite classic videogame.

Let’s play Rock, Paper, Scissors! For this challenge, try to create the
classic game.

Rock, Paper, Scissors is played with your hands. Each person simulta-
neously makes one of three shapes with their hand: the shape of a rock,
a piece of paper, or a pair of scissors. If two people make the same shape,
it’s a tie. The three game shapes interact with each other like this:

❂ Rock beats scissors.
❂ Paper beats rock.
❂ Scissors beats paper.

Let’s plan how to attack this challenge. Here are some of the key
elements:

❂ Use a while loop to repeatedly ask the player to choose rock, paper,
or scissors.

❂ Create a list of choices:

choices = ["Rock","Paper","Scissors"]

❂ Use the random library to have the computer randomly choose among
the three choices (“Rock”, “Paper”, and “Scissors”).

Challenges

120 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs
❂ Remember, randint selects a random integer. You can select and
store the random choice in a variable:

computer_choice = choices[random.randint(0,2)]

❂ You can select different items in the list by using a number repre-
senting where the item is in the list. This number is called a list
index. In this case, there are three items in the list. The first item has
an index of 0, the second item has an index of 1, and the third item
has an index of 2. To display the second item in the list, you write
print(choices[1]); the code displays “Paper” on the screen.

❂ Use an if statement to compare the player’s choice to the computer’s
choice and let the player know who won.

❂ Ask the player if they want to play again. If so, the loop should
repeat; if not, the game should end.

See if you can come up with a program! See appendix C for solutions.

In this chapter, you’ve learned some new techniques for working with
text in Python and a few foundational elements for creating logic in
your programs:

❂ You can make Python print things just how you want them. String
literals allow you to create text that spans multiple lines. Use them to
make text appear the same way you typed it in your programs.

❂ You can write intelligent code that can make decisions. if statements
add logic to programs by responding only if a certain condition is
True. You can combine if with else statements to make a program
do something different if the condition is False.

❂ You don’t have to type things repeatedly—you can make Python
repeat them for you. while loops can be used to repeat things over
and over, as long as a certain condition is True. The break command
lets you exit a while loop if you need to.

❂ You can use modules (toolboxes) to access more powerful tools to
use in your programs. The random module has a tool that generates
random integers.

Summary

5
Raspi’s Cave Adventure

In this chapter, you’ll create a game to learn new
programming techniques:

• Drawing flow diagrams to map out complex programs

• Using Boolean operators to check input from users

• Making code for multiple choices using if, elif, and else statements

• Creating and using your own functions to organize code and
avoid repeating code

• Nesting if/else statements to create games with complex logic

Like a great book, a game can create an entire imaginary world in your
mind. One of the most exciting aspects of games is when you feel like
you’re inside the game. This doesn’t require virtual-reality goggles or
high-definition graphics. You can create this immersive feeling even in a
completely text-based game by connecting with the player’s imagination
and creating a world where they can make decisions and determine their
own fate. To create games with imaginary worlds, you often have to gen-
erate a sense of depth by having the user move from room to room or
scene to scene. The game should allow the user to choose their own path
121

122 CHAPTER 5 Raspi’s Cave Adventure
and introduce elements of surprise. Finally, you should also have some
great descriptions that make the player feel like they’re in the room.

In this chapter, you’ll create just such a game, based on exploring an
underground cavern. Along the way, the player will have to make
choices, and if they make a wrong decision, the game is over. If they
make the right decision, they’ll find untold treasures of gold, rubies,
and diamonds!

Project introduction: Raspi’s Cave Adventure
The game is set in medieval days: a time of stone castles, knights with
swords, and (some say) mythical beasts that breathe fire. Your main
character is a young boy named Raspi.1 One day Raspi is out gathering
firewood and gets lost in the forest. He stumbles upon the entrance to a
cave. He peers in the entrance and finds that the cave splits into a left
tunnel and a right tunnel. He remembers a folk tale his grandmother
used to tell of a mysterious cave in this very forest that holds enormous
treasures. It’s said the treasure is guarded by a ferocious fire-breathing
dragon. Raspi can’t resist the temptation to explore the cave; although
he knows he should turn back, he walks slowly into the dark cavern.
This is the start of your next project: Raspi’s Cave Adventure.

The game can have many different outcomes, depending on the path
the player chooses for Raspi. A short sample of the program’s output is
shown in figure 5.1.

1 Because this is your game, feel free to make Raspi a girl or a boy.

Figure 5.1 Raspi’s
Cave Adventure
requires the player to
make decisions about
which way to go.
Based on their
choices, the player will
meet different fates.

Project introduction: Raspi’s Cave Adventure 123
Let’s look at a map of the cave to see where the treasure is and also
where the dragon lives! Because you’re the game designer and devel-
oper, you’ll use this as a guide to write the code creating the game logic
(see figure 5.2).

Let’s examine the different paths and choices Raspi has in the cave and
his possible fates. After Raspi enters the entrance to the cave, he can
choose to go left or right.

Left cave

Right cave

Left

Right

Enter cave with an
underground river

Use the boat, swim,
or keep walking?

Keep walking

Torch

Climb
down rope

Swim

You win

You win

Boat

Enter cave with
a hole in the floor

Climb
down rope or
walk toward

torch?

Enter a
dragon’s lair

Fight the
dragon or go
into the dark

room?

Dark
room

Fight
dragon

Start

= Game over

Figure 5.2 This map of the cave system shows that Raspi will need to make many
choices. If he makes the wrong ones, it’s game over! But if he makes the correct
choices, he’ll find the legendary treasure!

124 CHAPTER 5 Raspi’s Cave Adventure
Left cave
If Raspi goes into the left cave, he’ll find himself near an underground
river. He’ll need to decide whether to take a boat down the river, swim
down the river, or walk along the side of the river. If Raspi decides to
take the boat, he’ll soon learn that it has a hole in it, and he’ll sink
(game over). Should Raspi choose to avoid the river and walk along its
edge, he’ll quickly become distracted by his thoughts, trip on a rock,
and hit his head (game over). If Raspi is adventurous and decides to
swim in the river, he’ll make it to the other side and find a hidden trea-
sure room filled with riches!

Right cave
If Raspi decides to go into the right cave, he’ll need to decide whether
to climb down into a hole using a rope or walk toward what appears to
be a torch. After walking toward the torch, Raspi will enter a cave full
of crystals. The crystal cave sounds promising, but unfortunately a
crystal will fall from the ceiling, ending Raspi’s life (game over). Alter-
natively, if Raspi uses the rope and goes down the hole, he’ll find him-
self in the dragon’s lair with a final choice: whether to fight the dragon
or go into a dark room. If Raspi fights the dragon, the dragon will eat
him; but if Raspi heads toward the dark room, he’ll discover that it’s
filled with thousands of gold coins, rubies, and diamonds. Raspi is rich
and very much alive!

Hey wait, you need a plan (flow diagrams)
Your goal is to create a program that allows the player to make multiple
decisions. You have a map of the cave; now you need to make that map
into a diagram that can guide you as you write the code for the game.
Much as you did in chapter 2, you’ll lay out the logic of the game and
then write the code to create that logic.

You can make a map that also functions as a flow diagram. You can
visualize the set of decisions and the outcome of each decision. Figure
5.3 shows the map of the cave as a flow diagram.

Hey wait, you need a plan (flow diagrams) 125
Each decision in the diagram is represented by a diamond shape. Inside
the diamond is the question at hand. Outside the diamond are arrows
representing the possible choices available and the result of each
choice. Sometimes choices lead to other choices (other diamonds).
Other times, a choice leads to winning the game or game over!

You win

Left
or right
cave?

Enter cave with an
underground river

Enter cave with a
hole in the floor

Left cave Right cave
Left Right

Wrong
input

Start

Enter cave with
underground riv

Use
the boat,

swim, or keep
walking?

Keep
walking

Swim

Boat

You win

Torch

Fight
dragon

Climb
down rope

or walk toward
torch?

Enter a
dragon’s lair

Climb
down rope

Fight
the dragon or

go into the dark
room?

Dark room

= Game over

Figure 5.3 The flow diagram for Raspi’s
Cave Adventure shows the various decisions
the player can make and their outcomes. It’s
a map of the logic of the game, and it can
guide you as you program that logic.

126 CHAPTER 5 Raspi’s Cave Adventure

ive
he

The input
function a
user to en
choice an
it in a var
cave_choi

If False, d
text

walkin
the righ
Flow diagrams follow a few simple rules (see figure 5.4). You can con-
struct one for any set of decisions, including those used by games,
robots, and apps.

A flow diagram is a great way to organize your thoughts and break
down complex problems into a series of simple steps. Remember the
Python way: simple is better than complex.

Which way should Raspi go? (checking input)
With your diagram in hand, the first bit of logic is the user choosing
whether to go left or right. Let’s display text to tell the player what they
see in the cave, and then prompt them to enter a choice. You prompt
the user and collect information with the input function.

Listing 5.1 Choosing the left or right cave

1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel")
print("Do you choose to go left or right?")
cave_choice = input("Enter L for left or R for right: ")
if cave_choice == "L":
 # Left cave
 print("You walk into the left cave.")
else:
 # Right cave
 print("You walk into the right cave. The cave starts sloping downward.")

This example uses the input function and then an if/else statement to
create the logic you want. The code asks the user to make a choice by

Is
the button
pressed? No

Yes

Light is on

Light is off

Diamonds are
used to show
a decision.

Labels on the
arrows describe
the choices.

Boxes show an
activity or what
happens after a
decision.

Arrows from the
diamond show the
possible choices.

Figure 5.4 Flow diagrams
are ways to visually show the
logic of a program. They repre-
sent decisions, choices, and
activities using diamonds,
arrows, and boxes. This exam-
ple shows a flow diagram for a
program that turns on a light if
a button is pressed.

Display
descript
text to t
screen.

sks the
ter a

d stores
iable
ce.

Check if cave_choice
is equal to L.

If True, display text about
walking into the left cave.

isplay
 about
g into

t cave.

Which way should Raspi go? (checking input) 127
typing L or R. The if statement checks whether the user’s choice equals
“L”. If True, then the code displays a message that the player entered
the left cave. If their choice isn’t equal to L (if that condition is False),
then the program moves to the else statement and displays a message
that the player entered the right cave.

Handling unexpected input
Users often do unexpected things. As a programmer, one thing you
have to be thinking about is what happens if the user does something
you don’t expect. The person playing your game can type in whatever
they want. Let’s examine some different possibilities and see what
would happen:

❂ What if the user types in l (lowercase L)?

If the user types in l, the program checks (evaluates) whether “l” is
equal to “L”. Because these two strings are different, this condition is
False. The program will execute the else statement and display a
message that the user entered the right cave.

❂ What if the user types in left?

If the user types in left, the program evaluates whether “left” is
equal to “L”. Because these two strings are different, this condition is
False. The program will execute the else statement and display a
message that the user entered the right cave.

❂ What if the user types in something like 44992 or banana just to be silly?

The program checks whether “44992” or “banana” is equal to “L”.
Because neither of these equals “L”, this condition is False. The
program will execute the else statement and display a message that
the user entered the right cave.

❂ What if the user enters anything except L?

You guessed it; they will see a message that they entered the right cave.

This isn’t ideal. Let’s improve the code as follows:

1 Permit the user to enter L or l as well as Left or left to enter the left cave.

2 Permit the user to enter R or r as well as Right or right to enter the
right cave.

128 CHAPTER 5 Raspi’s Cave Adventure

ut from the
r() method

s the user’s
 uppercase.

The or
checks
conditi
True.

else han
where a
stateme
3 Take care of anything else by having the game scold the user for enter-
ing the wrong thing and end the game in a humorous way. Maybe a
stalactite could fall from the ceiling or a cave spider could bite them!

To create this behavior, you need to introduce the Boolean or operator.
You also need to convert the input information to all uppercase letters
using Python’s upper() method. Finally, to handle all three possible out-
comes, you’ll use a new if/elif/else statement (see listing 5.2).

Here’s the updated code to apply these new ways to avoid errors in
user input.

Listing 5.2 Improving the code for the player’s choice

1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel")
print("Do you choose to go left or right?")
cave_choice = input("Enter L for left or R for right: ").upper()
if cave_choice == "L" or cave_choice == "LEFT":
 # Left cave
 print("You walk into the left cave.")
elif cave_choice == "R" or cave_choice == "RIGHT":
 # Right cave
 print("You walk into the right cave. The cave starts sloping
 ➥ downward.")
else:
 # Wrong answer
 print("You seem to have trouble making good decisions!")

Methods
Methods are functions that only work on specific types of Python things, which
programmers call objects. In this example, .upper() is only able to work on
strings, so it’s called a string method. Methods are called differently than other
functions. Methods use dot notation, which means you type the name of the
thing (object) and then put a dot (.) and the method.

Here are some examples:

❂ "Left".upper() produces “LEFT”.
❂ "riGHt".lower() makes “right”.

Gather inp
user. The uppe

convert
input to all

operator
 if either
on is

elif checks if another
condition is True.

dles the case
ll if or elif
nts are False.

Which way should Raspi go? (checking input) 129
 print("Suddenly a stalactite falls from the ceiling and bonks you
 ➥ on the head.")
 print("Game Over!!!")

The upper() method converts the input text to all uppercase. If the user
enters LEFT, LeFt, left, or Left, the string is converted to “LEFT”.

THE BOOLEAN OR OPERATOR: CHECKING WHETHER EITHER ONE IS TRUE

The or operator checks whether one condition or another condition is
True. This gives your code more flexibility—it’s able to accept more
than one input and still proceed. If either one is True, the if statement
is True, and Python does whatever is indented under the if statement.

ELIF IS SHORT FOR ELSE IF

The elif statement is short for else if. It checks whether another con-
dition is True. Think of it like a multiple-choice question. If the user
doesn’t enter L or Left, the program moves on to the next option. If the
user doesn’t enter R or r, the program moves to the else statement and
drops a stalactite on their head. Game over! Take a closer look at the
if/elif/else statement in figure 5.5 to see how to make one.

The if, elif,
and else statements
all end with a colon (:).

Lines after if, elif,
and else statements
need to be indented
four spaces.

The condition tested must
be either True or False.

The elif statement
is only checked when
the previous if
statement is False.

The keyword if starts
the if statement.

if guess > parrot_age:
 print("Too high!")
elif guess < parrot_age:
 print("Too low!")
elif guess == parrot_age:
 print("Correct!")
else:
 print("That was not a valid guess!")

The else statement is executed only if all the
previous if and elif statements are False.

You can put together
multiple elif statements.
elif statements are only
checked if the previous
one is False.

Figure 5.5 The if statement can come in many flavors. This is an if statement with two
elifs and an else. It creates logic in the code that can do many different things depending
on the user’s input. In this case, you’re having a player guess the age of a parrot. The pro-
gram will tell them if their guess is too low, too high, correct, or invalid.

130 CHAPTER 5 Raspi’s Cave Adventure
Notice that you can have more than one elif statement. In fact, you
can have as many as you want. With the if/elif statement, you can cre-
ate the logic needed for your cave.

Boolean logic operators: and, or, and not
Python has a complete set of Boolean operators that you can use to make expres-
sions:

❂ or is used when you want the expression to be True if either of the operands
is True.

❂ and is used when you want the expression to be True only if both operands
are True.

❂ not is used to change an operand from True to False or False to True.

Let’s look at a few examples using these operators.

and OPERATOR

Pretend you want to create a program giving you access to the system only if
your name and password are both correct. You could write this using the and
operator:

if name == "Ryan" and password == "PiTaster":
 print("The name and password are correct!")
 print("Access granted! Welcome!")
else:
 print("Access denied!")

Only if both name and password are correct will the program grant you access.
Try creating one yourself!

or OPERATOR

Next let’s imagine you want to create a program giving someone a free pizza if
their age is under 20 or they have a coupon. Let’s assume you have a variable
age that is the age of the person and another variable coupon that already holds
a value of True or False. Using the or operator, you create this logic like so:

if age < 20 or coupon == True:
 print("You get 1 FREE PIZZA")
else:
 print("No free pizza for you!")

Which way should Raspi go? (checking input) 131
Time to go spelunking (a fancy word for exploring caves) with your
new knowledge of if/elif/else and Boolean operators!

Turning flow diagrams into code
For now, let’s concentrate on building a program for the left cave. The
player has entered the left cave and needs to make their next choice.
Looking at the map and the flow diagram, the next thing your player
encounters is an underground stream. The player sees a boat and must
choose among three options:

❂ Keep walking along the side of the river.
❂ Climb into the boat.
❂ Swim in the river.

Each of these will be an if or elif statement in your code. But wait!
There’s a fourth possible outcome—that they don’t enter one of the

If either is True, the user gets a pizza. If both are True, they get a pizza. If neither
is True, then no free pizza!

not OPERATOR

Finally, let’s say you have a variable is_absent that is equal to True or False.
is_absent tells you whether a student is present or absent. To print a “Welcome
to school!” message if a student is not absent, you can use the not operator:

if not is_absent:
 print("Welcome to school!")
else:
 print("Please return to school as soon as possible. School misses

you!")

The not operator changes a variable or statement that is True to False and a
False one to True. It helps you create conditional statements (if statements) that
make more sense when you read the code. As you can see, the Boolean operators
give you many different options for creating logical expressions.

132 CHAPTER 5 Raspi’s Cave Adventure
three choices. You’ll make this the else statement. Figure 5.6 shows the
left cave flow diagram and the code that creates the logic you need.

You display a few words about what Raspi sees inside the left cave.
You ask the user to choose what to do next. Then, once you’ve

You win

Enter cave with an
underground river

Left cave

Code

1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel")
cave_choice = input("Enter L for left or R for right: ").upper()

if cave_choice == "L" or cave_choice == "LEFT":
 # Left cave
 print("You walk into the left cave. It is cold and dark.")
 print("The cave opens up to a large room with an
 underground river.")
 print("You notice a small boat on the edge of the river.")
 print("Do you use the boat, swim, or walk along the side
 of the river?
 river_choice = input("Enter B for boat, S for swim, or W
 for walk: ").upper()

 if river_choice == "W" or river_choice == "WALK":
 # You walk along the edge of the river
 print("You walk along the narrow edge of the river.")

 elif river_choice == "B" or river_choice =="BOAT":
 # You hop in the boat
 print("You step in the boat and start drifting
 down the river.")

 elif river_choice == "S" or river_choice == "SWIM":
 # You jump in the water and start swimming
 print("You dive into the water and start swimming
 down the river.")

 else:
 # Wrong input
 print("You seem to have trouble making good decisions!")
 print("Suddenly a stalactite falls from the ceiling and
 bonks you on the head.")
 print("Game Over!!!")

elif cave_choice == "R" or cave_choice == "RIGHT":
 # Right cave
 print("You walk into the right cave. The cave starts
 sloping downward.")
else:
 # Wrong answer
 print("You seem to have trouble making good decisions!")
 print("Suddenly a stalactite falls from the ceiling and
 bonks you on the head.")
 print("Game Over!!!")

Enter cave with an
underground river

Use
the boat,

swim, or keep
walking?

Keep
walking

Swim

Boat
Wrong
input

Flow diagram

= Game over

Figure 5.6 The left cave has a stream inside it, and the user has three choices of what to do
next. In the code, you create an if statement followed by two elif statements to cover each
of the options. The else statement is used to control what happens if the user inputs some-
thing other than one of the three choices.

Simplify! Making your own functions 133
gathered this input, you evaluate that information and respond accord-
ingly. Notice that each of the possible choices appears in an if or elif
statement and is indented under the left cave if statement. The user
has to choose whether to keep walking (W), use the boat (B), or swim
(S). For each case, the program should display information as you
designed it in your flow diagram.

Excellent work! You’ve created the left cave logic for Raspi’s Cave
Adventure. Let’s add more decisions.

Simplify! Making your own functions
Yikes! The code for the left cave is starting to look long (and kind of
ugly and hard to read), and you still have the right cave to go. How can
you simplify your program?

This isn’t only for caves
Boolean operators and if/elif/else statements are great for when your pro-
gram needs multiple options or choices. Let’s see if you can create a program
that has four possible options: A, B, C, and none of the above. The following
snippet shows an example of using elif statements to create these four possi-
ble outcomes. In this example, you’re pretending that a person is on a game
show and picking a door with a prize behind it:

print("Welcome to the Pi Game Show!")
print("There are three doors with prizes behind them: A, B, and C.")
door = input("Select a door by typing A, B, or C").upper()

#Logic for door selection
if door == "A":
 print("You've won a new car!")
elif door == "B":
 print("You've won a new boat!")
elif door == "C":
 print("You've won a trip around the world!")
else:
 print("Uh oh! You didn't follow directions!")
 print("Game Over!!!")

print("Thank you for playing.")

Creating programs with choices based on logic is a powerful programming skill.
By combining simple choices, you can create complex programs.

134 CHAPTER 5 Raspi’s Cave Adventure

fines a
n. After

the name
function
colon.The funct

instructio
it does) m
indented
spaces un
def statem

Gather in
the user a
it in a var
river_cho

Displa
ending

if t
input
The answer is functions. This time you aren’t going to call a built-in
Python function—you’ll make your own!

Functions are like mini programs that you can create to organize or
simplify your code. When you have long programs, you can take logi-
cal chunks of code (code that all goes together) and put them in a func-
tion. Once you’ve created (or defined) a function, you can call (or use)
the function in your code.

NOTE Functions should always be defined at the top of a program.
The definition of a function must come before it’s called (or used).

Let’s see how this works by making (or defining) two functions for the
left cave.

Listing 5.3 Creating functions for the left cave

Displays a description of the left cave and their choices
def left_cave():
 print("You walk into the left cave. It is cold and dark.")
 print("The cave opens up to a large room with an underground
 ➥ river.")
 print("You notice a small boat on the edge of the river.")
 print("Do you use the boat, swim, or walk along the side of the
 ➥ river?")
 river_choice = input("Enter B for boat, S for swim, or W for walk:
 ➥ ").upper()
 return river_choice

Displays text describing the player's demise and a game over message
def wrong_answer():
 print("You seem to have trouble making good decisions!")
 print("Suddenly a stalactite falls from the ceiling and bonks you
 ➥ on the head.")
 print("Game Over!!!")

Before moving on, let’s look more closely at how you can make your
own functions (see figure 5.7). You’ve created two functions: left_cave
and wrong_answer. Let’s rewrite the cave program to use (or call) those

def de
functio
def is
of the
and a ion’s

ns (what
ust be

four
der the
ent.

put from
nd store
iable
ice.

Send information to the program
when the function is called.

y text for
the game
he wrong
 is given.

Simplify! Making your own functions 135
functions. Whenever you call a function, it’s as if the code is all in that
spot, but you’ve hidden it.

Some functions need to return something; others don’t. You might have
a function that prints something to the screen or plays a sound; those
types of functions don’t need to return anything. In the example code,
the wrong_answer() function is a good example. You call the function like
this:

wrong_answer()

Alternatively, when a function returns something and you want to store
that information, you write it like this:

choice = left_cave()

Line must end in a colon (:)

Parentheses are used to hold any parameters
(inputs) that the function might need. In this
case, none are needed, so they are empty.

Name of
the function

Input is gathered
from the user and
stored in a variable
river_choice.

Each line of the
function must be
indented four spaces.

def is a keyword
needed to define
a function.

def left_cave():
 print("You walk into the left cave. It is cold and dark.")
 print("The cave opens up to a large room with an underground river.")
 print("You notice a small boat on the edge of the river.")
 print("Do you use the boat, swim, or walk along the side of the river?
 river_choice = input("Enter B for boat, S for swim, or W for walk: ")
 return river_choice

river_choice is the
variable whose value is
returned from the function
whenever it is called.

return is a keyword needed
only if your function needs to
return information back to the
main program.

Figure 5.7 Functions simplify your code and can reduce repetition. Use the def keyword to
create a new function, and indent the function code under it. If you need a function to return
a value, include a return statement in the function.

136 CHAPTER 5 Raspi’s Cave Adventure

-

.

This takes whatever information is returned by calling the left_cave()
function and stores it in a variable named choice. Listing 5.4 shows how
you can simplify the program by calling the left_cave() and
wrong_answer() functions.

Listing 5.4 Using the new functions to simplify your code

1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel")
cave_choice = input("Enter L for left or R for right: ").upper()
if cave_choice == "L" or cave_choice == "LEFT":
 # Left cave
 choice = left_cave()

 if choice == "W" or choice == "WALK":
 # You walk along the edge of the river
 print("You walk along the narrow edge of the river.")
 elif choice == "B" or choice == "BOAT":
 # You hop in the boat
 print("You step in the boat and start drifting down the
 ➥ river.")
 elif river_choice == "S" or river_choice == "SWIM":
 # You jump in the water and start swimming
 print("You dive into the water and start swimming down the
 ➥ river.")
 else:
 # Wrong answer
 wrong_answer()
 elif cave_choice == "R" or cave_choice == "RIGHT":
 # Right cave
 print("You walk into the right cave. The cave starts sloping
 ➥ downward.")
 print("You come to a room with a large hole in the floor.")
else:
 # Wrong answer
 wrong_answer()

Amazing! The resulting code is easier to read, and you avoid repeating
code. Notice that you call the wrong_answer() function twice. This saves
you from having to write those lines of code twice. Also, if you ever

left_cave() calls your
function. The information
returned by the function is
stored in the variable choice.

The statements that displayed game
over information are replaced by
calling the wrong_answer() function

wrong_answer() can be called
as many times as needed.

Simplify! Making your own functions 137
want to change the ending for a wrong answer, you only have to
change it in one place (in the function). In addition to helping you
organize your code, the ability to reuse functions is one of their key fea-
tures. You haven’t changed the functionality of your program, but by
using functions, you’ve made it easier to read and simplified it.

DEFINITION Refactoring is a programming technique that focuses on
reorganizing and simplifying code in a program. Refactoring makes
the code easier to read and less complex.

Passing parameters: functions with inputs
You’ve looked at two different functions so far: one that doesn’t return anything
and one that does. Functions have another feature in addition to their ability to
return something—they can also receive information. Think of it as input to a
function. In programming speak, you say that the function has a parameter or
parameters. Let’s see how this works with an example. Suppose you have a
guessing game, and you want to create a function that prints a message to the
screen telling the player if their guess is too high, too low, or spot on:

def check_guess(guess, answer):
 # Compare the guess to the answer
 if guess == answer:
 print("You're correct!")
 is_correct = True
 elif guess < answer:
 print("Too low!")
 is_correct = False
 elif guess > answer:
 print("Too high!")
 is_correct = False
 else:
 print("Invalid guess")
 is_correct = False
 # Return True or False depending upon if the guess is correct
 return is_correct

In this case, the def statement has the name of your function (check_guess).
Inside the parentheses are two parameters separated by a comma: these are in-
puts to the function. The first input or parameter is guess. This is a guess the
user has made. The second is answer, which is the number the user is trying to
guess. The function then compares guess and answer and tells the user whether
they were right or guessed too low or too high. The great thing about this func-
tion is that it can work with any numeric guess and answer (1 to 10, 1 to
1,000,000). By using parameters, you make the code more flexible.

138 CHAPTER 5 Raspi’s Cave Adventure

Call a func
that displ
about Ras
source co
of the fun

t()
ns
The best way to learn about functions is by doing. Here are some func-
tions dos:

❂ Use a simple name that describes the function.
❂ Put comments about your function inside the function.
❂ Return values when you want to use them in a program.

And here are some functions don’ts:

❂ Use complex names.
❂ Create functions with only one line of code.
❂ Forget to put a colon at the end of the def statement.
❂ Forget to call the function in your main program.

Fantastic programming! You’re achieving the Zen of Python by sim-
plifying your code with functions.

Finishing the left cave
To complete the left cave, you need to add code for Raspi’s choices:
walking along the river’s edge, taking the boat, or swimming (the win-
ning ending). You’ll make each of these choices its own function to help
organize your code and keep it uncluttered. You can call the functions
in the main program, shown in the next listing.

Listing 5.5 Calling functions for each of the left cave choices

Main Program
1st Choice: Left or Right Cave?
 choice = left_or_right()
 if choice == "L" or choice == "LEFT":
 # You walk into the Left cave
 choice = left_cave()
 if choice == "W" or choice == "WALK":
 # You walk along the edge of the river... game over
 walk()
 elif choice == "B" or choice == "BOAT":
 # You get in the boat... game over
 boat()

tion called walk()
ays messages
pi’s fate. See the
de for examples
ctions.

Call a function named boa
that tells you what happe
if Raspi gets in the boat.

Simplify! Making your own functions 139
 elif choice == "S" or choice == "SWIM":

 # You jump in the water and start swimming... Raspi wins

 swim()

 else:

 # Wrong answer

 wrong_answer()

 elif choice == "R" or choice == "RIGHT":

 # You walk in the right cave

 else:

 # Wrong answer

 wrong_answer()

See the source code for chapter 5 for examples of each of these func-
tions (walk(), boat(), and swim()). They follow a structure similar to the
left_cave() and wrong_answer() functions. Feel free to make up your
own descriptions of what happens to Raspi or change the outcomes to
how you would like them.

Exploring the right cave
In this game, Raspi has two initial cave choices: left or right. Program-
ming the right cave is similar to the left cave. Once again, you’ll use the
map and flow diagram as your guides. Let’s add the logic for the right
cave, which starts with the user finding a hole in the ground (see
figure 5.8).

The right cave uses logic similar to that of the left cave. You’ll use if,
elif, and else statements to handle all the possible choices. As with the
left cave, notice that you indent the if/elif/else statements under the
other if statements to create the logic you desire. Nesting is the name
given to indenting one set of if statements inside another. The tech-
nique of nesting if statements is useful when you have logic that you
want executed only if a prior condition is True. In this case, you only
want to give the user the choice of fighting the dragon if they have
already decided to climb down into the hole using the rope. The logic
now matches the flow diagram for the game.

Let’s take another look at nesting using a different example. Imagine that
you want to write a program that displays a secret message after you

You guessed it: call the swim()
function that contains the
code for Raspi swimming.

140 CHAPTER 5 Raspi’s Cave Adventure
enter the correct secret name (“Tim”) and correct secret password
(“raspberrypi”). If the secret name is guessed correctly, then the user has
to guess the secret password (see figure 5.9) to see the secret message.

If the password is correct, the user has to enter their favorite color. If the
color is red, the program will display the secret message (see figure 5.9).

CodeFlow diagram

1st Choice: Left or Right Cave?
choice = left_or_right()
if choice == "L" or choice == "LEFT":
 # You walk into the Left cave
 choice = left_cave()
 if choice == "W" or choice == "WALK":
 # You walk along the edge of the river
 walk()
 elif choice == "B" or choice == "BOAT":
 # You get in the boat
 boat()
 elif choice == "S" or choice == "SWIM":
 # You jump in the water and start swimming
 swim()
 else:
 # Wrong answer
 game_over()
elif choice == "R" or choice == "RIGHT":
 # You walk in the right cave
 choice = right_cave()
 if choice == "T" or choice == "TORCH":
 # You walk towards the torch light
 torch()
 elif choice == "R" or choice == "ROPE":
 # You climb down the rope
 choice = hole()
 if choice == "S" or choice == "SLAY":
 # You try to slay the dragon
 slay()
 elif choice == "R" or choice == "ROOM":
 # You enter the dark room
 room()
 else:
 # Wrong answer
 wrong_answer()
 else:
 # Wrong answer
 wrong_answer()
else:
 # Wrong answer
 wrong_answer()

= Game over

Wrong
input

Enter cave with
hole in the floor

Right cave

You win

Torch

Fight
dragon

Climb
down rope

or walk toward
torch?

Enter
dragon’s lair

Climb
down rope

Fight
the dragon or

go into the dark
room?

Dark room

Figure 5.8 The right cave consists of a series
of decisions. One wrong move, and certain death
awaits Raspi. If the user makes the right choices,

Raspi will find the treasure. The code uses if/elif/else statements and functions.
See the code files for chapter 5 for examples of the functions.

Simplify! Making your own functions 141
Troubleshooting
A common error when creating if/elif/else statements is forgetting to
include the colon at the end of the if statement. In this case, when you
run the program, you’ll see a message pop up in IDLE saying “invalid
syntax”, and the Python text editor will highlight the end of the line in
red (see figure 5.10). You can fix this error by adding a colon at the end
of the if statement.

Another error is forgetting to put a colon at the end of the def state-
ment when creating your own function. In this case, you’ll see the same

Gathers input
from user

Indented to match the
password if statement,
this else is evaluated
only if the password
is incorrect.

The second if
statement is indented
within the first. It only
happens if the first
if statement is True.

The if statement tests whether
the user’s input matches
secret_name.

secret_name = "Tim"
secret_password = "raspberrypi"

name = input("Who are you who can summon code? ")
if name == secret_name:
 print("Welcome!")
 password = input(secret_name + ", enter the secret password: ")
 if password == secret_password:
 print("I bestow upon you a Raspberry Pi!")
 else:
 print("You are not worthy!")
else:
 print("Next time, try entering 'Tim'")

The secret message is displayed only if
the name was guessed correctly and
then the password was guessed correctly.

Asks the user to enter the password.
The message only appears if
the name was guessed correctly.

Indented to match the secret name
if statement, this else is evaluated
only if the name is incorrect.

Figure 5.9 if statements can be nested within other if statements. In this case, the user is
only prompted to guess the password if they first guess the secret name correctly. Python
uses indentation to figure out what statements belong together and which if statements are
nested within other ones.

Figure 5.10 Highlighting by IDLE when there is invalid syntax
due to a missing colon (:) at the end of an if statement

142 CHAPTER 5 Raspi’s Cave Adventure
message (“invalid syntax”) and red highlighting at the end of the line
missing the colon.

Finally, a third common error is using a single equals sign (=) when
comparing two values in an if statement. Python will highlight the
offending equals sign as shown in figure 5.11. Remember, you need to
use a double equals sign (==) to test the equality of two values. This
returns True (if the values are equal) or False (if they’re not). The sin-
gle equals sign (=) is used to assign a value to a variable, like x = 7.

Fix this error by replacing the single equals sign (=) with double equals
signs (==). As you can see, small problems can cause programs to have
errors. If you get really stuck, ask a friend to look at your code, or post
your code to a forum and ask for help. You’d be surprised by how help-
ful other programmers are!

Fruit Picker Extra: playing video
In addition to displaying text, as in the cave adventure game, the Rasp-
berry Pi can output sound, show images, and play videos. Let’s see how
you can play a video on your Raspberry Pi. See appendix A to learn
how to set up your Raspberry Pi’s Wi-Fi adapter. There are many dif-
ferent video player apps you can use on your Pi, but a great one is
OMXPlayer. It was created specifically for the Raspberry Pi and comes
preinstalled with Raspbian. We’ll explore the audio (or sound) play-
back capabilities of OMXPlayer in chapter 8.

To show off your Pi’s capability, let’s play a high-definition demo video
from a movie called Big Buck Bunny.2 It’s about 10 seconds long and
has no sound. Open LXTerminal, and at the prompt enter

omxplayer /opt/vc/src/hello_pi/hello_video/test.h264

2 This is a video developed to test video playback and display.

Figure 5.11 Highlighting by IDLE when there is only one equals sign

Fruit Picker Extra: playing video 143
You should see a silent video play for about 10 seconds. Enjoy it! If
you know of a video file on the web (.mp4 or H.264 format), OMX-
Player can play it as long as you have a good internet connection. For
example, to watch the trailer for another video called Sintel, make sure
you’re connected to the internet and type in

omxplayer https://download.blender.org/durian/trailer/sintel_trailer-

➥ 720p.mp4

Why not open movies in a web browser? Because OMXPlayer can play
them much more easily—it was designed to use the Pi’s graphics pro-
cessing unit (GPU) for playing videos. This means most of your Pi’s
resources are available to do other things.

Live streaming: exploring from your Pi
You’ve been pretending to explore a cave. Now let’s see if you can use
your Pi to explore the ocean or space by live-streaming videos from
web cameras. You can turn your Pi into a way to see the sharks and sea
turtles by connecting to a live stream coming from the Monterey Bay
Aquarium in California. Or maybe you want to see what the Earth
looks like from the International Space Station right now.

With a few steps, you can configure your Pi to play live-streaming vid-
eos. First you need a small utility called Livestreamer that can take live
video streams and output them for OMXPlayer to play, just like your
test video. Let’s make sure you have the Python package installer.
Make sure you have a working internet connection, and then open the
Raspbian command line using the Linux Terminal (select Menu--
>Accessories-->Terminal), and install the software:

sudo apt-get install python-pip

After it finishes, install Livestreamer:

sudo pip install livestreamer

Now you need a link to a live stream of video. Livestreamer will work
with many of the most popular live-streaming sites. For this example,
you’ll use Ustream, but you could also use YouTube Live and many

144 CHAPTER 5 Raspi’s Cave Adventure
others. If you go to the Ustream website,3 you can find links to live-
stream videos. Here are few different ones found on the site:

❂ Watch sharks and turtles at the Monterey Bay Aquarium:
www.ustream.tv/channel/9600798.

❂ Check out the sea life living in the kelp beds at the Monterey Bay
Aquarium: www.ustream.tv/channel/9948292.

❂ See the view from the International Space Station (it may appear
dark if the Space Station is in the shadow of the Earth):
www.ustream.tv/channel/9408562.

NOTE These links may change over time. You can get the latest links
by searching the Ustream website.

You’ll need an internet connection for the next couple steps. You need
to figure out the video resolutions available. For the Monterey Bay
Aquarium live stream, enter

livestreamer http://www.ustream.tv/channel/9600798

A few messages appear, and at the bottom are the supported stream
resolution(s). For this live stream, you should see a response that says

Available streams: mobile_240p (worst, best)

This means mobile_240p is the only available resolution for the video
stream. This is a low-resolution stream, but it’s still fun to watch. Tell
Livestreamer to send the video to OMXPlayer with this command:

livestreamer http://www.ustream.tv/channel/9600798 mobile_240p --

➥ player omxplayer --fifo

Great! You should see a video open after a few seconds. It will be low
resolution, but sit back and watch the amazing live view of fish, includ-
ing sharks (see figure 5.12)!

NOTE Notice that you have to type in mobile_240p. You’ll type in one
of the supported resolutions from the previous step.

3 Explore the UStream live-streaming videos at www.ustream.tv/explore/all.

www.ustream.tv/channel/9408562
www.ustream.tv/channel/9600798
www.ustream.tv/channel/9948292

Challenges 145
Press Ctrl-C to stop Livestreamer and OMXPlayer. Enjoy exploring
the world from your Pi!

These challenges focus on making improvements to the Raspi’s Cave
Adventure game. If you get stuck, check appendix C for hints and
solutions.

Introducing dramatic pauses
This first challenge is to include some drama in the game by adding
two-second pauses between the print and input statements throughout
Raspi’s Cave Adventure. This will create anticipation about what will

Challenges

Figure 5.12 The Pi’s monitor is a live stream from an aquarium. Check out
that shark! By using Livestreamer and OMXPlayer, you can stream live video
from exotic places, like water holes in Africa and the International Space Station.

146 CHAPTER 5 Raspi’s Cave Adventure
happen next and give the player more time to read the messages before
responding.

Here are some clues for how to accomplish this. First, Python has a
built-in time module that provides some useful functions for working
with time. At the top of the program, you need to add an import state-
ment to use this built-in Python toolbox:

import time

Once you’ve imported the time module, you can call the sleep function
in the program:

time.sleep(1)

This example code makes the program pause for 1 second. It takes the
form time.sleep(seconds), where seconds is the number of seconds you
want the program to pause. For example, if you wanted to display a mes-
sage, wait 3 seconds, and then display another message, you’d write

print("It was a dark, dark cave...")

time.sleep(3)

print("Suddenly, a dragon appears out of the shadows.")

Go ahead and try to create some drama. If you get stuck, check appen-
dix C or review the code files.

Random demise
Games are always more interesting when they have an element of
unpredictability. Try to add some surprises to your game by improving
the wrong_answer function to randomly display a message from a set of
possible ways your player could meet their demise. Here are a couple
of examples to get you started:

❂ Raspi sees a rock on the ground and picks it up. He feels a sharp
pinch and drops the rock. He realizes it wasn’t a rock but a poison-
ous spider as he collapses to the ground.

❂ Standing in the cave, Raspi sees a small rabbit approach. Raspi gets
a bad feeling about this rabbit. Suddenly the rabbit attacks him, bit-
ing his neck.

Summary 147
Hint: Create if/elif/else statements with different endings, and then
use the random module to select from the possible endings.

Play again?
Modify the game so that no matter how it ends, the user is always given
the option to play again. Hint: Create a variable play_again that is ini-
tially set to “Y”. You’ll also need to add a while loop to your game that
will make the game repeat as long as play_again is equal to “Y”.

Scream!
If you have a set of headphones or your Pi is connected to a TV with
built-in speakers via an HDMI cable, you should be able to play sounds
and hear them. Let’s look at a simple program to play a sound on your Pi:

import os

scream_file_path =

➥ "/usr/share/scratch/Media/Sounds/Human/Scream-male2.mp3"

os.system("omxplayer " + scream_file_path)

Test the program, and you should hear a scream. Now see how you can
integrate the scream or other sounds into Raspi’s Cave Adventure. You
can find more sounds on your Pi in the Scratch folder: /usr/share/
scratch/Media/Sounds/.

NOTE OMXPlayer works best with sound files ending in .mp3. Only
some files ending in .wav will work. We’ll talk more about sound files
and the OMXPlayer in chapter 8.

See appendix C if you need help solving these! Good luck!

You can create engaging programs by putting logic and instructions
together into more complex programs:

❂ Use flow diagrams to map out complex programs before you begin.

❂ Create flexible programs that can handle unexpected input through
the use of Boolean operators.

Summary

148 CHAPTER 5 Raspi’s Cave Adventure
❂ Build programs with multiple choices and outcomes using if, elif,
and else statements. Chain together multiple elif statements to cre-
ate as many choices as you need.

❂ When you have logic embedded within logic, nest if statements to
create decisions that depend on prior choices or conditions.

❂ Organize your code and cut down on repetition by defining your
own functions and then calling them in your program.

Part 3

Pi and Python projects

et’s face it. Pressing buttons, playing sounds, and lighting up cool col-
ored lights is fun! Now you get to use your Pi to make those things
happen. You’re going to create interactive projects that use your Pi’s
input and output pins. This makes your Pi a special type of computer
that doesn’t just show images on the screen, but that can control and
sense the world around it. This realm is called physical computing.
Robotics is physical computing, but think about all the creative possi-
bilities such as making interactive art, creating smart rooms that sense
your presence and turn on a light or play music, or producing some-
thing that can alert you if it’s about to start raining or your pet is drink-
ing water.

In part 3, you’ll build projects that can interact with the world using
Python and your Raspberry Pi. The projects will require some addi-
tional parts that you can purchase individually or as part of a kit, such
as the CanaKit Ultimate Kit, Adafruit Starter Kit, or MCM Electronics
Starter Kit:

❂ Raspberry Pi 2 Model B including SD card, power supply, cables,
keyboard, and monitor

❂ Breadboard
❂ GPIO ribbon cable for the Model B+ (40 pin)
❂ GPIO breakout board
❂ 1 dozen jumper wires, male to male

L

150 CHAPTER Pi and Python projects
❂ 1 red LED (light-emitting diode)
❂ 1 green LED

❂ 1 blue LED

❂ 3 push buttons
❂ 3 resistors, 10K ohm
❂ 3 resistors, 180 ohm (or between 100 and 300 ohms)
❂ Headphones or powered computer speakers

You start in chapter 6 by setting up your Pi with an electronics bread-
board, building a simple circuit, and controlling an LED (light) using
Python. You’ll learn how to communicate through your Pi’s output
pins to make something happen. In this case, you’ll make an LED light
up. Chapter 7 dives into creating an interactive guessing game that
uses lights to respond to a player’s input, letting them know with differ-
ent colors whether their answer is right or wrong. In chapter 8, you’ll
learn how to listen to your Pi’s input pins by wiring up a push button
on your breadboard and then responding when it’s pushed; and you’ll
complete a project that combines buttons and sounds to make your
own DJ Raspi sound mixer. By the end, the goal is for you to have the
knowledge, skills, and confidence to think up and create your own Pi
and Python projects.

6
Blinky Pi

In this chapter, you’ll be learning about

• Giving your Pi the ability to talk to the outside world through connectors to
anything

• Programming the world outside your Pi with simple electric/electronic circuits

• Programming the connectors using your previous Python knowledge to make
light patterns

Setting robots in motion, creating smart homes with sensors, and design-
ing an interactive electronic art exhibit sound like vastly different topics,
but they’re all things you can do with your Raspberry Pi. In each case,
the Pi can act as the brain and interact with the world by doing things like

❂ Checking a robot’s sensors and controlling its motors

❂ Sensing a room’s occupants and adjusting the thermostat or lights

❂ Controlling sound, motion, and light as part of an art display

In this chapter, you’ll set up your Pi to control small light bulbs called
light-emitting diodes (LEDs). You’ll make the LEDs blink using Python.
To do this, you’ll need to learn a bit about how to build electrical circuits
on breadboards. If you’ve never heard of a breadboard, don’t worry! It’s
151

152 CHAPTER 6 Blinky Pi
a small board with lots of holes in it to make it easier to build electrical
circuits. You’ll also be using short wires (called jumper wires) to con-
nect certain holes. You’ll even learn how to add resistors that keep your
LEDs from burning out. See figure 6.1 for a list of parts and what they
look like; gather the parts, and let’s get started!

Blinky Pi parts

Raspberry Pi
(not shown)

Ribbon cable
Breakout

board

3 jumper wires
(male-to-male): any

length will do.

3 light-emitting
diodes (LEDs): red,

green, and blue

3 resistors: 180 ohm
Color bands: brown,

grey, and brown

Solderless
breadboard

Figure 6.1 The Blinky Pi project requires parts that are commonly found in
Raspberry Pi starter kits or that can be purchased online.

Setting up your Pi for physical computing 153
Setting up your Pi for physical computing
Your Pi is unique compared to most computers because of its input and
output pins, called GPIO pins. Let’s learn how to work with those pins.

DEFINITION GPIO stands for general purpose input and output.
These are the pins on your Raspberry Pi that allow it to sense and con-
trol things around it.

GPIO pins
The Raspberry Pi 2 Model B and Raspberry Pi 1 Model B+ have 40
pins located on the edge of the board, arranged in 2 rows of 20 pins
each (see figure 6.2). Most of the pins on a Pi are used for input and
output, so they’re often referred to as the Pi’s GPIO pins.

WARNING This project is written for Raspberry Pi 2 Model B. Ear-
lier models of the Raspberry Pi have only 26 pins. See appendix B for
information about the differences from the more modern Pi boards.
To complete this project with a Raspberry Pi 1 Model B, you may
select different pins to light up your LEDs.

Top view

Side view

40 pins in 2 rows of 20 pins
each. 26 of the pins are called
GPIO pins because they're used
for general purpose input
and output.

Figure 6.2 The Raspberry Pi
2 Model B has a set of pins
arranged along the edge and
corner of the Pi board.

154 CHAPTER 6 Blinky Pi
Because all the pins look identical, you need a key or diagram to tell
you what each one does. Figure 6.3 shows the pins labeled.

Wow, that’s a lot of pins! Some pins are for power and are labeled
either 3V3 or 5V. These produce 3.3 volts or 5 volts, respectively.

Physical pins vs. GPIO pin numbers
In this book, we’ll always refer to the GPIO pin numbers, not the physical pin
locations. The physical pins are numbered from 1 to 40 (shown in the circles in
figure 6.3). The GPIO pin numbers go from 1 to 26, and those numbers don’t
match the physical pin numbers. For example, GPIO 24 corresponds to physical
pin 18. By always using the GPIO numbering, it will be easier to wire your circuits
and create programs.

You’ll find 26 GPIO pins
in no particular order.

5-volt and
3.3-volt pins:
two of each

8 ground pins
(0 volts)

Figure 6.3 The Raspberry Pi B+ has 40 pins. They do different things: some
provide 5 volts or 3.3 volts, some are ground pins (0 volts), and many of them
are input and output pins that you can program.

Setting up your Pi for physical computing 155
There are also 8 ground pins and 26 GPIO pins1—26 pins, just like
there are 26 letters in the alphabet.

The GPIO pins support sending out electrical signals (output) or listen-
ing for electrical signals from sensors (input). In your body, your brain
can send signals to your hand to smack yourself on the forehead (try
it!)—this is just like the output from a Pi. Signals are sent out of your
Pi to make something happen in the world.

The opposite of output is input. When someone pokes you, your body
can detect that poke using nerves in your body. An electrical signal
(input) is sent to your brain so you know you’ve been poked. This is
like the way your Pi can be used to detect input or actions in the world.

You’ll learn how to output signals in this chapter and chapter 7. Chap-
ter 8 will cover detecting input from the world, such as detecting when
a button has been pressed.

Let’s get ready to connect some wires! But wait: connecting an LED
directly to the GPIO pins on the board of your Raspberry Pi isn’t feasi-
ble, because the pins are so close together. What can you do? You need
more space to build circuits.

Breaking out the GPIO pins to a breadboard
To give you room, you’ll move the GPIO pins over to a breadboard.
This is called breaking them out. To do this, you need a ribbon cable,
breakout board, and solderless breadboard (see figure 6.4).

Breadboards make it simple to prototype circuits. Like a park might
provide large, open fields that make it easy to play sports, think of a
breadboard as a nice, open electrical playing field where you can play
with electrical parts. The breadboard allows you to plug wires and
components into small holes. You can build and rebuild circuits on a
breadboard with little effort.

1 Oddly, you'll notice that the GPIO pins are numbered from 2 to 27. Pins 0 and 1 are used for commu-
nicating with other computer chips using a super-special protocol called I2C. These are labeled ID
SDA and ID SCL in figure 6.3.

156 CHAPTER 6 Blinky Pi
Find your breakout board, and insert it into the top of the breadboard.
Line up the pins before you push it down hard (see figure 6.5). Your
particular breakout board may look a little different, but they all act the
same. With the breakout board in place, it’ll be easier to build circuits
with your GPIO pins.

Connect one end of the ribbon cable to the Pi’s GPIO pins; line it up
carefully before you push it down. Then connect the other end of the
cable to the breakout board on your breadboard (see figure 6.6). A
breakout board has a notch in it so the ribbon cable will only fit one way.

WARNING Ribbon cables usually have a stripe that marks the first
wire. White or grey ribbon cables often use a red stripe. Black ribbon
cables often have a white stripe. These mark the first wire on the
cable. Make sure this first wire is connected toward the edge of your
Pi’s board and away from the USB ports.

Usually the first
wire is marked in
red, to let you know
it's the wire for pin 1.

40-pin ribbon cable: super-
useful for connecting your
Pi to a breadboard

GPIO breakout board: A handy board
that lets you break out or move the
Pi's pins to a breadboard to make it
easier to build circuits

Solderless breadboard: Plug
the breakout board into the
breadboard and connect it to
the Pi with the ribbon cable.

Figure 6.4 To easily create projects using your Pi’s GPIO pins, you can connect the
Pi to a breadboard using a ribbon cable and breakout board. The parts shown are
examples of the ones commonly found in many Raspberry Pi kits.

Setting up your Pi for physical computing 157
There are two groups
of letters. On the left are
letters a–e, and on the
right are letters f–j.

The holes allow you to
connect components
so you can build
circuits easily.

Breadboards usually have numbers
along the side to label each row. Columns
are labeled with letters (a–j).

Insert the breakout board
into the breadboard. Make
sure to line it up carefully.

Insert it along the top edge
of your breadboard. Not sure
which way is up? Look at the
numbering on the board.

Figure 6.5 Carefully line up the breakout board, and then press it firmly into the
breadboard. The two rows of pins on the breakout board should straddle the center gap.

Connect the
ribbon cable to
the Raspberry Pi.

Connect the
ribbon cable to
the breakout board.

Caution: Be careful not to bend any pins. Line up
the connector and pins before pressing them together.

Warning! Make sure the
wire for pin 1 (marked red
or white) is toward the
corner of the Pi and away
from the USB ports.

!

!

Figure 6.6 Connect one end of the ribbon cable to the breakout board.
Connect the other end to your Raspberry Pi.

158 CHAPTER 6 Blinky Pi
Breadboard basics
A breadboard2 has a set of internal connections that you can’t see. But
if you had X-ray vision, you’d see that certain holes are connected.
Let’s look at the connections in your breadboard (see figure 6.7).

2 Prior to the development of the kind of breadboards we’re using, people built circuits on pieces of
wood that were used to cut bread on (hence the name). They needed a quick way to connect circuits,
and by drilling holes and using nails and wires, they could use bread boards to try different circuits.

X-ray goggles (not for sale)

Numbers are
used to label
each row of holes.

Note the letters labeling
the holes along the
bottom and top.

Each side has positive (+) and
negative (–) power buses.
These are connected vertically.

In each row, holes
a–e are connected
horizontally.

Holes on the left and right sides
are NOT connected across the gap.

Holes f–j in the
same row are
connected as well.

Figure 6.7 Breadboards have internal connections. You need to know about them in
order to build circuits. Rows of pins are connected horizontally, but not across the gap in
the middle. Long rails called power buses run vertically along the sides of the board.

Setting up your Pi for physical computing 159
On this breadboard, rows are labeled with numbers (1–30), and the
columns have letters (a–e on the left side and f–j on the right side). You
can refer to a specific hole in the breadboard by saying its row number
and letter. For example, if you wanted to refer to the hole located in
row 25, column c, you could say 25c (see figure 6.8). Just as you might
find your seat at a stadium by walking along the aisle to find the correct
row, and then moving along the row to find the right seat, you’ll use the
letters and numbers to guide you in building your circuits.

BREADBOARD (BB) HOLES

We’ll refer to the row and column, but we’ll prepend the letters BB so
you know it’s the breadboard location we’re talking about. Figure 6.8
shows the location of BB25c. If we’re talking about a GPIO pin or con-
nection, we’ll add GP before the number (GPIO pin 21 is GP21).

Try to keep in mind what is connected in a breadboard and what isn’t.
If you forget, you can always look back at figure 6.7. For example,
notice that BB25 a, b, c, d, and e are all connected. Similarly, BB30 f, g,

Row 25
(Note: Holes are
connected in the
row from a to e.)

Hole BB25c
(BB stands for
breadboard.)

Column c

Figure 6.8 To find a specific hole on a breadboard, use the row and column
labels. This is a close-up of a breadboard, showing how you can find the location of
hole 25c (we’ll refer to the hole as BB25c, where BB stands for breadboard).

160 CHAPTER 6 Blinky Pi
h, i, and j are connected. But the left side of the board isn’t connected
to the right. For example, BB25e isn’t connected to BB25f. To connect
them, you’d put a jumper from BB25e to BB25f.

You can see vertical columns of holes along the sides of the bread-
board. These are the power buses and provide easy ways to connect
electrical components to power (positive) and ground (negative).

Circuits 101
Let’s learn about electricity and circuits. At the simplest level, a circuit is a loop
or path where the electrical power starts at a source (the positive side of a power
source), goes through one or more electrical components (such as a light or mo-
tor), and then completes the loop (or path) by connecting back to the negative
side of the source.

WHAT IS ELECTRICITY?

Electricity is the flow of charge. Typically, it is the flow of electrons, which have
a negative charge. To get electrons to flow, you need to have a difference in
charges. Just as the north pole of a magnet is attracted to its opposite—the south
pole of another magnet—positive and negative electric charges are attracted to
one another. If the charge is free to move, it will move. We generally think of
circuits as having electricity flowing from the positive (+) side of the source to
the negative (-) side of the source. For your Pi, the power is coming from the
power supply (Micro USB plug). The Pi as a power source can provide either +3.3
volts or +5 V (volts). It provides this power through the physical pins 1, 2, and
4, but can also send +3.3 V out any of the 26 GPIO pins (you’ll program it to do
that soon).

VOLTAGE (VOLTS)

Voltage is a measure of the difference in electrical charge between the positive
and negative source. When you have two different charges, they’re attracted to
one another (positive and negative attract). The greater the difference in charge,
the greater the force (or electrical pressure) wanting to move charges through
the circuit from the positive side to the negative side.

Voltage is measured in volts (V), named after Alessandro Volta, who is credited
with inventing the first battery. A 9 volt (or 9 V) battery has a greater electric
force for moving charge than a AA battery, which only has a voltage of 1.5 V.

CURRENT (AMPERES)

The current in a circuit is the amount of charge flowing. So whereas voltage is a
measure of how badly charges want to flow, the current is a measure of how
much charge is actually flowing.

Imagine that you could be inside a wire and see the charge flowing through it. A
large current would mean a lot of charge (usually electrons) bumping along and

Building the LED circuit 161
On your breadboard, think of all the GPIO pins as potential sources of
voltage (positive). Circuits from the GPIO pins should end back at any
one of the many ground (negative) connections.

Building the LED circuit
Your first project is to light up a red LED. You’ll control the LED using
GPIO pin 21 (GPIO21). You need these parts:

❂ Raspberry Pi, ribbon cable, and breakout board connected to your
breadboard

❂ 1 red LED (5 mm)
❂ 1 180 ohm resistor
❂ 1 jumper wire (male-to-male)

through the wire over some period of time. A small current in that same wire
would mean a lot less charge flowing over that same time period. Current is mea-
sured in amperes (A), named after André-Marie Ampère. A current of 1 ampere
(or 1 A) is equivalent to the amount of charge of 6.241 × 1018 electrons flowing
through a wire per second! That is a lot of charge flowing. You can decrease the
current in a circuit by increasing the resistance of the circuit to the flow of elec-
tric charge.

RESISTANCE (OHMS)

The resistance in a circuit is a measure of how much it opposes the flow of
charge (current). A light bulb, a motor, and your body all have resistance. The
opposite of resistance is conductance. Substances such as metal (copper, silver,
and gold) are all good conductors, and this is why we build circuits with metal
wires for the electricity to flow through.

Sometimes you need to control the current (the flow of charge). Resistors are
used to do this; they’re made of materials that slow down the flow of charge. The
most common ones are made out of carbon (you’ll be using these in your proj-
ects). The resistance of a circuit is measured in ohms, named after Georg Ohm,
and is represented using the Greek symbol omega (Ω).

PI CIRCUITS

You can think of your Pi as providing 3.3 V from the positive side of the Pi or,
later, coming out of one of the GPIO pins. This +3.3 V is a force that is trying to
push electric charge to the negative (-) side of your source. The negative side is
sometimes called the ground—think of it as a big sink or reservoir to which elec-
tricity wants to flow if there is a path to get there. During the next few chapters,
you’ll build circuits with LEDs and resistors. You use a resistor with an LED to
decrease the flow of electric charge (the current) so it won’t be too large and
burn out your LED. Burning an LED smells bad!

162 CHAPTER 6 Blinky Pi
You’ll build the LED circuit on your breadboard and then program it to
light up. Figure 6.9 shows the circuit diagram. To light the LED, you’ll
have electricity (+3.3 V) flow from your Pi’s GPIO pin 21 through the
LED, through the resistor, and then to ground (0 V).

Figure 6.10 shows the LED circuit built on the breadboard. Note that
there are many different ways to create this circuit—this is just one
way. Let’s walk through the steps to build the circuit.

Symbol for LED
(light-emitting
diode)

3.3 V (volts) Ground

+ –

Symbol for resistor

Figure 6.9 Circuit diagram for the blinking LED project

1. Connect a
 jumper from
 BB20i to BB25a.

2. Connect an LED from BB25e (longer leg)
 to BB25f (shorter leg).

3. Connect a resistor
 from BB25j to the
 negative (or ground).

Figure 6.10 LED circuit built on the breadboard. You’re using GPIO pin 21
as the power source. The light won’t turn on until you program the voltage
to come out of the pin.

Building the LED circuit 163
NOTE You may have a different breadboard than the one used in this
book. If so, the numbering on your breadboard may be different than
what is shown here. In that case, you’ll need to create the circuit fol-
lowing the same principles, but with different numbered holes.

Step 1. Connect the jumper from GPIO pin 21
Raspberry Pi GPIO pins can output 3.3 V. You could pick any pin, but
this project uses GPIO pin 21.

Connect a short piece of wire from GPIO21 on your breadboard to an
empty row on the breadboard. Use row 25. Firmly push the wire into
the hole. The metal tip of the wire should go down into the hole, not sit
on top.

The breakout board pins are connected to rows on the breadboard.
We’ll refer to the holes on the breadboard (see figure 6.11). Insert one
end of the jumper into BB20i and the other end into BB25a.

Note: GP is short for GPIO.
So GP16 means GPIO 16.

Where is GP16?
Answer: It’s connected to
row 18f–j of the breadboard.

The breakout board has the GPIO,
power, and ground pins labeled.
(Don’t worry about the other labels—
they’re for more advanced projects.)

Where is GP22?
Answer: Row 8a–e
of the breadboard.

Where is GP21?
Answer: Row 20f–j of
the breadboard.

Figure 6.11 The breakout board has labels that correspond to the pins on your
Pi. To connect a wire to GP16, you plug it into the breadboard in the hole labelled
BB18f or BB18j.

164 CHAPTER 6 Blinky Pi
Step 2. Add the red LED
It’s time to connect the red LED.
LEDs only let electricity flow
through them one way, so it’s
important to put them in the right
way. LEDs have two wires or
legs. The longer leg is called the
anode and connects to the posi-
tive side of the circuit (see figure
6.12). The shorter leg, called the
cathode, connects to the negative
or ground side of the circuit.

With the red LED, connect the
longer leg to BB25e and the
shorter leg to BB25f. You may
need to bend the legs and push
them a bit to get them into the
holes.

Step 3. Connect a resistor
Grab your 180 ohm resistor.3 You can identify a resistor by its color-
coded bands. A 180 ohm resistor has colored bands of brown, grey, and
brown (see figure 6.13). They are followed by a fourth band that

3 If you don’t have a 180 ohm resistor, you can use a resistor with a value between 100 and 330 ohms. If
you use a resistor with a value that is too large, the LED may not light up or will be dim. Try experi-
menting with different resistors to adjust the brightness.

Very small flat spot on
the edge of the LED’s
negative side

Shorter leg connects
toward the negative (-)

Longer leg connects
toward the positive (+)

Figure 6.12 LEDs have two legs (wires)
coming out of them. The longer leg is
called the anode and connects to the
positive side of the circuit. The shorter
one is called the cathode and connects
to the negative side of a circuit.

Gold
(the tolerance
of the resistor:
gold = ±5%)Brown BrownGrey

180 ohm resistor

Figure 6.13 The value of a resistor
is determined by its colored bands.
See the sidebar “Resistor color codes”
for a chart; there are also many online
color-code charts.

Building the LED circuit 165
indicates the tolerance or quality of the resistor. Common colors for the
fourth band are gold (±5% tolerance) and silver (±10% tolerance).

The resistor prevents too much electric current4 from passing through
your LED and burning it out. Insert one end of the 180 ohm resistor into
BB25j and the other end into the negative (-) power bus (or ground).

Electricity will flow either way through a resistor, so which way you
connect it doesn’t matter. Remember that the negative power bus or
ground rail is running vertically along the right side of the breadboard.
Most boards have a blue stripe next to it.

4 Current is a measure of the flow of electric charges per second. If the current through an LED is too
high, the LED will burn out.

Resistor color codes
Resistors have color codes that tell their value and tolerance. This chart shows
you how to read the resistor color bands.

“27” x 100 = 2700 ohm or 2.7k ohm ±10%

Red RedPurple Silver

Example

Red RedPurple Silver

Black

Brown

Red

Orange

Yellow

Green

Blue

Purple

Grey

White
Silver

Gold

K = 1,000

M = 1,000,000
Resistor color codes

1st digit 2nd digit Multiplier Tolerance

166 CHAPTER 6 Blinky Pi
That’s it! You have a completed LED circuit built on your breadboard.
Now it’s time to program it!

Software: blinkLED program
Open IDLE by choosing Python 3 under Menu > Programming. This
opens IDLE to the Python 3.x Shell. In the Python Shell, let’s check to
see if your Pi has the GPIO libraries you need already installed:

>>> import RPi.GPIO as GPIO

If you don’t see an error, you’re ready to go. If you see an error saying
there is no module named RPi.GPIO, please refer to the sidebar “Updat-
ing your Pi.”

(continued)

For example, consider a resistor with red, purple, red, and silver bands. Follow
these steps to use the chart:

❂ Look up the digit for the first band and the digit for the second band, and
put them together. In this case, the digits are 2 and 7: put them together,
and you get 27. Note that you don’t add the numbers; you treat them as the
first and second digits of the resistor value.

❂ Find the multiplier by looking up the color for the third band. In this case,
it’s 100 ohms (red).

❂ Put it all together: 27 100 ohms is 2,700 ohms or 2.7K ohms (K = 1,000).
❂ The fourth band (silver) tells you the resistor has a tolerance of ±10%.

A red, purple, red, and silver resistor is a 2.7K ohm resistor with a ±10% toler-
ance. Use this handy chart any time you need to look up the value of a resistor.

Updating your Pi
Before programming, you need to check that your Pi is up to date. Make sure
your Pi is connected to the internet. Open the Terminal program by going to
Menu --> Accessories --> Terminal, and run the following commands to update
your Raspberry Pi and be certain you have the Raspberry Pi GPIO packages you
need.

First, let’s update the apt-get database. The apt-get program handles install-
ing and removing software from your Pi. In Terminal, enter this command:

pi@raspberrypi ~ $ sudo apt-get update

Software: blinkLED program 167
You’re going to write a program that blinks an LED. It’ll send a voltage
(+3.3 V) out of a GPIO pin to light the LED, then turn it off, and repeat
that over and over. Begin by creating the following new program in
IDLE. In the Python Shell, start a new program by pressing Ctrl-N or
selecting File > New Window.

Listing 6.1 Blinking LED program

import RPi.GPIO as GPIO
import time

Variable for the GPIO pin number
LED_pin_red = 21

Tell the Pi we are using the breakout board pin numbering
GPIO.setmode(GPIO.BCM)

Set up the GPIO pin for output
GPIO.setup(LED_pin_red, GPIO.OUT)

Loop to blink our led
while True:
 GPIO.output(LED_pin_red, GPIO.HIGH)
 print("On")
 time.sleep(1)
 GPIO.output(LED_pin_red, GPIO.LOW)
 print("Off")
 time.sleep(1)

You’ll need to wait while a bunch of files are downloaded and installed. You’ll
see lots of messages displayed in Terminal. When the command completes,
you’ll see the Terminal $ prompt again. Next, to get the latest Pi software, enter

pi@raspberrypi ~ $ sudo apt-get upgrade

Once again, files will be downloaded and installed. After a series of messages,
you’ll see a warning about the upgrade using additional disk space, and this
prompt: “Do you want to continue [Y/n]?” Enter Y and press Enter to continue the
upgrade.

This is a great time to grab a sandwich and soda. It can take 15 minutes or more
for the update to complete. When it’s finished, you’ll have the latest Raspberry
Pi software and Python libraries, including the ones you need to communicate
with and control the GPIO pins.

Load the libraries you need to
control the GPIO pins.

Create a variable for the
GPIO pin number you’re
using to control the LED.

Set up GPIO pin 21
as an output.

Turn on GPIO pin 21
(GPIO.HIGH means turn on).

Turn off GPIO pin 21
(GPIO.LOW means turn off).

168 CHAPTER 6 Blinky Pi
Save the program as blinkLED.py in your home folder. The program
can’t be run the same ways you’ve run programs before using IDLE.

Running the program
Select Run > Run Module (or press F5) from the IDLE text editor to
run your program.With older versions of Raspbian, programs using
GPIO pins must be run from the Raspbian command prompt as the
superuser (or root)5. If you run the program at the Python Shell in
IDLE, you’ll get an error:

RuntimeError: No access to /dev/mem. Try running as root!

In this case, you use the sudo command to do this. To run the blink-
LED.py program, open LXTerminal and enter the following command:

pi@raspberrypi ~ $ sudo python3 blinkLED.py

Behold the blinking LED! Try making the light blink faster by adjust-
ing the value in the sleep function. Use a smaller number of seconds,
such as 0.5 or 0.1.6 To stop the program, press Ctrl-C.

NOTE Stopping the program with Ctrl-C may result in the light being
left on (depending on when you press it). Also, the next time you run
the program, you may see a runtime error, but the program still works.
We don’t cover it here, but look online for the Python commands try/
except/finally and the GPIO.cleanup() command. It’s a fancy way to
make sure all the GPIO pins are reset when you exit the program.

TROUBLESHOOTING

If the light isn’t blinking, here are some things you can check:

❂ Are the on and off messages displaying on the screen? If so, it’s prob-
ably not your code that has a problem. Check the circuit on the
breadboard. Make sure the ribbon cable is connected properly, with

5 In October 2015, the Raspberry Pi Foundation released Raspbian version "Jessie," which allows you
to run programs using the GPIO pins directly from IDLE. With "Jessie" you don't need to open the
command prompt. Simply press F5 or select Run > Run Module from the IDLE text editor menu to
run your programs.

6 Too small a number may cause the light to appear to stay on, but more dimly. This is because your
eyes can only perceive blinking that is greater than about 1/25th of a second, or 0.04 of a second.

Software: blinkLED program 169
the first wire connected toward the edge of your Pi, away from the
USB ports. Double-check that the jumper, LED, and resistor are
connected to the correct holes.

❂ Could your LED be inserted the wrong way? Make sure the shorter
leg is toward the negative or ground side. Try turning it around.

❂ Double-check the size of the resistor you used in the circuit. If the
resistor is too large, the LED won’t light up. A resistor that is
between 100 and 300 ohms should work.

❂ Look through your Python program for errors. Check that you have
set LED_pin_red equal to 21 and that you’re setting it HIGH and then LOW.

blinkLED: how it works
Let’s take a closer look at how the blinkLED.py code works.

LOADING LIBRARIES

The import commands load the libraries or toolboxes you want to use in
your program:

import RPi.GPIO as GPIO
import time

These commands load the Python libraries for controlling the Pi’s
GPIO pins. They also load the time library so you can use the sleep
function to control the rate of blinking.

Once the libraries are loaded, you can set up your GPIO pins.

Importing libraries with the as keyword
Notice the as keyword in import RPi.GPIO as GPIO. Why can’t you just type
import RPi.GPIO?

The as keyword tells Python to load the library to a certain name you specify. It’s
kind of like giving the whole library a nickname. In this case, it’s so you can refer
to RPi.GPIO as simply GPIO.

An example will make it clearer. Once you’ve imported the RPi.GPIO library as
GPIO, you can type GPIO.setmode(GPIO.BCM). Without it, you would have to
type RPi.GPIO.setmode(RPi.GPIO.BCM). You can see how using as GPIO saves
you some typing!

170 CHAPTER 6 Blinky Pi
SETTING UP A GPIO PIN FOR OUTPUT

To set up a GPIO pin, you first need to tell Python on your Pi that
you’ll be referring to pins by the standard breakout numbering scheme.
These are the numbers printed on the breakout board. You use the set-
mode function:

GPIO.setmode(GPIO.BCM)

BCM stands for Broadcom—the maker of the computer chip that the
Pi uses. Next you tell your Raspberry Pi that you’ll be using
LED_pin_red (GP21) for output, meaning you’re planning to send some
electricity out of it:

LED_pin_red = 21

GPIO.setup(LED_pin_red, GPIO.OUT)

GPIO.OUT prepares GP21 to send out +3.3 V of electricity.

LOOPING AND BLINKING

Finally, you create an infinite while loop and turn the LED on (set
GPIO.HIGH) and off (set GPIO.LOW). You also add a delay using the sleep
method found in Python’s time library. Notice how the sleep function
takes a parameter that is the number of seconds to sleep or pause. In
this case, you use 1 second:

while True:
 GPIO.output(LED_pin_red, GPIO.HIGH)
 print("On")
 time.sleep(1)
 GPIO.output(LED_pin_red, GPIO.LOW)
 print("Off")
 time.sleep(1)

The print commands display messages to the screen. Although they
aren’t necessary to blink the LED, they can help debug your program.
If you do use them, the screen could quickly fill with messages. Set a
longer delay time to prevent this. If you see the messages on the screen
but your LED isn’t lighting up, then you probably have an error in
your circuit and not in your program. Check your wiring, try turning
around the LED, or try a different LED in case that one is defective.

Adding more LEDs 171
Adding more LEDs
One LED is fun, so three LEDs must be lots of fun. Let’s try adding
green and blue LEDs and modify the program to control them. Here
are the parts you need:

❂ Raspberry Pi and circuit from before
❂ 1 green LED
❂ 1 blue LED

❂ 2 180 ohm resistors
❂ 2 jumper wires (male-to-male)

Building the circuit
You’ll follow the same process as before to add the green and blue
LEDs. Figure 6.14 shows what the circuit diagram looks like now, and
figure 6.15 shows the circuit on a breadboard.

Note: Technically, the LEDs will be connected to a
common ground on the Pi, so we could show these
wires all connected together to one ground.

3.3 V (volts)
Red LED Resistor

GPIO pin 21

Ground

+ –

Green LED

GPIO pin 22

+ –

Blue LED

GPIO pin 23

+ –

Figure 6.14 Circuit diagram for three LEDs: red, green, and blue. You’ll use 180
ohm resistors like before. They will all be controlled by different GPIO pins. Red
will use 21, green will use 22, and blue will be connected to pin 23. You could use
any of the 26 different GPIO pins.

172 CHAPTER 6 Blinky Pi
To add the green LED, follow these steps:

1 GP22 is located on the left side of the breakout board in row 8 on the
breadboard. Connect it to row 27: insert one end of the jumper into
BB8c and the other end into BB27a.

2 Connect the long leg of the green LED to BB27e and the shorter leg
to BB27f. Bend the legs if needed.

3 Connect a 180 ohm resistor (brown, grey, and brown) from BB27j to
the closest hole in the negative power bus.

Here are the steps to add the blue LED:

1 GPIO23 is located on the right side of the breakout board in row 8 on
the breadboard. Connect it to row 29: insert one end of the jumper into
BB8i and the other end into BB29a.

Connect LEDs:
Red LED: BB25e to BB25f
Green LED: BB27e to BB27f
Blue LED: BB29e to BB29f

Connect jumpers:
BB20b (GP21) to BB25a

BB8i (GP23) to BB29a

BB8c (GP22) to BB27a

Connect resistors:
BB25j to ground (-)

BB27j to ground (-)

BB29j to ground (-)

Figure 6.15 The three-LED circuit is built on the breadboard. Each LED and its
corresponding resistor are placed in a row together. This example uses rows 25,
27, and 29.

Multiple LEDs: program it! 173
2 Connect the long leg of the blue LED to BB29e and the shorter leg to
BB29f. Bend the legs if needed.

3 Grab a 180 ohm resistor. You guessed it! It’s color-coded brown,
grey, and brown. Connect it from BB29j to the closest hole in the
negative power bus.

Multiple LEDs: program it!
You need to make a few changes to the program to add more LEDs and
get them all blinking at the same time. The following listing shows the
updated code.

Listing 6.2 Three blinking LEDs

import RPi.GPIO as GPIO
import time

Variable for the GPIO pin number
LED_pin_red = 21
LED_pin_green = 22
LED_pin_blue = 23

Tell the Pi we are using the breakout board pin numbering
GPIO.setmode(GPIO.BCM)

Set up the GPIO pins for output
GPIO.setup(LED_pin_red, GPIO.OUT)
GPIO.setup(LED_pin_green, GPIO.OUT)
GPIO.setup(LED_pin_blue, GPIO.OUT)

Loop to blink our LEDs
while True:
 GPIO.output(LED_pin_red, GPIO.HIGH)
 GPIO.output(LED_pin_green, GPIO.HIGH)
 GPIO.output(LED_pin_blue, GPIO.HIGH)
 print("On")
 time.sleep(1)
 GPIO.output(LED_pin_red, GPIO.LOW)
 GPIO.output(LED_pin_green, GPIO.LOW)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 print("Off")
 time.sleep(1)

Create variables for the
GPIO pins you’re using for
the green and blue LEDs.

Set up GPIO pins 22
and 23 as outputs.

Turn on the GPIO pins.

Turn off the GPIO pins.

174 CHAPTER 6 Blinky Pi
Save the code as blinkLED3.py, and try running it. Open LXTerminal,
and enter the following command:

pi@raspberrypi ~ $ sudo python3 blinkLED3.py

Fantastic! You have your own light show going on!

Try these challenges to practice controlling your Raspberry Pi’s GPIO
pins. Each one provides a unique problem to solve.

Wave pattern
Change the program to make each LED turn on, one at a time, until
they’re all on. Then, turn each LED off, one at a time. Hint: play with
where you put the time.sleep(1) command. Can you make the LEDs
light up and turn off in a wave pattern?

Simon Says
Write a function that blinks the LEDs and that can take five parame-
ters representing a pattern of colorful blinks. Each parameter is a
string representing a color: red, blue, or green. The function should
blink the lights in the appropriate pattern. Here is a series of Simon
Says patterns you should try to make your function produce:

Red, green, red, red, blue

Blue, green, blue, green, red

Green, blue, blue, red, green

Random blinking
Create a program that generates random durations for how long the
lights stay on and off. The durations should be random floating-point
numbers between 0 and 3 seconds. Hint: you can use the random method

Challenges

Summary 175
to generate a random floating-point number between 0 and 1.0. Here is
an example:

off_random_time = random.random() * 3

To scale this number so that it’s between 0 and 3, you can multiply
off_random_time by 3. If you get stuck on the challenge, check appendix
C and the chapter source code for hints and solutions.

In this chapter, you learned the following things:

❂ A Pi is capable of interacting with the world around it. With a few
extra parts, you can set it up for physical computing projects.

❂ A Pi can send out electrical signals! You can send output through
the GPIO pins, and this can be used to light up LEDs or control
many other electronic components (motors, buzzers, relays, and so
on).

❂ Breadboards are like playgrounds for electronics. They make it easy
to create circuits for your Pi because you can easily build and take
apart circuits for use with the Pi.

❂ The RPi.GPIO library has built-in functions to set up and control out-
put (voltage) to GPIO pins with Python.

Just imagine the possibilities of controlling pretty much any electrical
device using your Raspberry Pi. Even better, imagine making the
device work based on sensors (inputs) so you can create smart devices
programmed by you!

Summary

7
Light Up Guessing Game

In this chapter, you’ll be learning about

• Simplifying and improving your code with more thoughtful design and use of
functions

• Building a circuit to control a special LED (light bulb) that can make and com-
bine red, green, and blue light

• Adding together colors of light to create new colors
• Making your Pi come alive by having it respond using different colored light

Your Raspberry Pi has a unique ability to interact with the world around
it. In the last chapter, you made lights blink based on a programmed pat-
tern. Nice, but that isn’t truly interactive, because the Pi always blinks a
pattern that you program it to do. In this chapter, let’s see if you can cre-
ate an interactive project that responds to you through its GPIO pins.
You’ll draw on what you’ve learned about conditional logic (if/elif/else)
to have your Pi make decisions and respond. As you did in earlier chap-
ters, you’ll need to gather input, use loops, and apply a few other pro-
gramming techniques to get it done.

You’re making a Light Up Guessing Game, but not just any one: this
game will illuminate a small light called an RGB (stands for red, green,
blue) LED, which can make any color. You’ll use your Pi, breadboard,
176

177Guessing Game design
and electrical parts, along with a program you’re going to write. Your
Pi will let the player know if they’re correct by flashing the RGB in dif-
ferent colors if their guess is too high or too low.

Figure 7.1 shows the parts you need. You’ll notice that some of them
are the same as in chapter 6, but you’ll also need an RGB LED. Let’s
get started!

Raspberry Pi
(not shown)

Ribbon cable
Breakout

board
4 jumper wires (male-to-male):

any length will do.
1 red, green, blue light-emitting

diode (RGB LED)

3 resistors: 180 ohm
Color bands: brown,

grey, and brown

Solderless
breadboard

Light Up Guessing Game parts

Figure 7.1 The Light Up Guessing Game uses a red, green, blue (RGB) LED. An RGB
LED can produce many different colors because it has three LEDs (colored red, green,
and blue) packed inside it.

178 CHAPTER 7 Light Up Guessing Game
Guessing Game design
The object of the game is to guess a magic number. This time, the Pi
will give feedback to the user by lighting up the RGB LED in different
colors. Here are some game details:

❂ The magic number is a randomly generated number between 1 and 20.
❂ The player is given five tries to guess the number correctly.
❂ If they guess correctly, the RGB LED flashes green.
❂ If the guess is too high, the RGB LED flashes red.
❂ If the guess is too low, the RGB LED flashes blue.
❂ The player is given the choice to play again.

Figure 7.2 shows a sample of the game’s output.

Light flashes different colors to respond to the player’s guesses

Correct!
Green

Too high
Red

Too low
Blue

Figure 7.2 The Light Up Guessing Game
responds to the user after each guess. Lights
on the breadboard light up to let the player
know if their guess is too high or too low.

Hardware: building the circuit 179
You’ll approach this project in two parts. The first part is to build the
circuit (the hardware), and the second part is writing the program (the
software).

Hardware: building the circuit
Let’s get building! You’re building a circuit on your breadboard to con-
trol a new type of LED that can make any color you want. You’ll start
by connecting your Pi’s GPIO pins to the breadboard using the ribbon
cable and GPIO breakout board. Refer back to chapter 6 (section 6.1)
if you need a reminder about how to set this up. Your Pi and bread-
board should look like figure 7.3.

Numbers, numbers, numbers!
As first explained in chapter 6, you need a way to find a particular hole
on your breadboard, and to do that you’ll use the numbers and letters.
Remember, this is much like the way you might find your seat at a sta-
dium for a concert or sporting event.

Get ready to start
breadboarding
your circuit!

Remember, the wire for pin 1 goes toward the corner
of your board (usually marked red or white).

Connect your Pi
to your breadboard
using the ribbon cable.

!

Figure 7.3 The Pi, breakout board, and breadboard setup. And you thought
your desk was messy before!

180 CHAPTER 7 Light Up Guessing Game
To refer to a specific hole on the breadboard, we’ll refer to the row and
column, but we’ll add the letters BB to stand for breadboard. Not too
hard, right? Finding breadboard holes involves searching for the row
and then the column. When referring to a GPIO pin, we’ll add the let-
ters GP in front. For example, GPIO pin 12 is referred to as GP12.

Wiring an RGB LED
You’re wiring up a new type of LED, called an RGB LED.

DEFINITION An RGB LED is a light bulb that consists of three LEDs:
one red (R), one green (G), and one blue (B), all in a single plastic
LED bulb casing.

The RGB LED can produce pretty much any color you want, using the
three tiny LEDs inside it. By powering these in varying amounts, you
can mix light to make colors.

The RGB LED has four legs (or wires) coming out of it, so you’ll need
to figure out how to wire it up. It’s a bit different than the single-color
LEDs you wired up in chapter 6, but it’s pretty easy to use.

Circuit sketch
The circuit diagram for the Light Up Guessing Game is shown in Fig-
ure 7.4. To light the RGB LED, you’ll have electricity (+3.3 V) flow
from your Pi’s GPIO pins 12, 16, and 21; through each resistor;
through the LED; and then to ground (0 V).

You’ll build the RGB LED circuit on the breadboard and then program
it to light up. Wire it up in this order:

1 Put the RGB LED into the breadboard.

2 Connect the three jumper wires, which will connect the GPIO pins
to the LED (one for each color).

3 Add the three resistors to connect the jumpers to the LED’s red,
green, and blue legs.

4 Add the final jumper wire to connect the ground leg of the LED to
the negative (ground) power bus.

Hardware: building the circuit 181
When it’s done, the circuit will look like what you see in figure 7.5.
Let’s walk through the steps to build this circuit.

3.3 V (volts) Red LED

RGB LED

Resistor

GPIO pin 12

Ground

+

–
Green LED

GPIO pin 16

+

Blue LED

GPIO pin 21

+

RGB LEDs have 3 tiny LEDs
packed inside: one red,
one green, and one blue.

Figure 7.4 Circuit diagram for the Light Up Guessing Game project

Figure 7.5 The RGB LED circuit you’re building on the breadboard
uses GPIO pins 12, 16, and 21 to power the LEDs. The light won’t
turn on until you program the voltage to come out of the pins.

182 CHAPTER 7 Light Up Guessing Game
STEP 1. ADD THE RGB LED

Before you can add it to the breadboard, let’s look a bit closer at the
RGB LED. Remember that there are three tiny LEDs (red, green, and
blue) inside it. You need to be able to figure out which leg is which
color and which one is ground. Figure 7.6 is a handy reference.

NOTE You’ll need to bend the RGB LED’s legs quite a bit to get them
into the holes on the breadboard. Try to bend them to line up with the
holes, and slowly push the legs in all at once.

Grab your RGB LED, and let’s insert it into the breadboard. You’re
going to put it in rows 22, 24, 26, and 28 along column h on the bread-
board. Here’s where to connect the legs:

❂ Red leg into hole BB22h
❂ Ground leg (longest leg) into hole BB24h
❂ Green leg into hole BB26h
❂ Blue leg (shortest) into hole BB28h

What
are all these

legs for?

Each of the legs for the colors will
connect toward the GPIO pins (+).

Ground leg (longest)
connects toward the
negative (-).

Blue leg
(shortest)

Green legGround leg

RGB LED

Red leg

Don't forget to make your LEDs
happy by making sure each one has
a resistor. Without resistors, you
could burn out your RGB LED.

!

Figure 7.6 The RGB LED has lots of legs! The longest leg is the ground. The other
ones are for red, green, and blue. This applies to what is called a common cathode
RGB LED, which is what comes in Pi kits and what you’ll find most commonly at
electronics suppliers.

Hardware: building the circuit 183
When it’s inserted, it will look like Figure 7.7. Double-check that it’s
pushed down into the breadboard so all the legs will make a good con-
nection.

Good job! You just completed the trickiest part.

STEP 2. CONNECT THE GPIO JUMPER WIRES

The breakout board has numbers on it that refer to the Raspberry Pi’s
GPIO numbering system. Remember that we refer to GPIO pins by
adding GPIO before the number of the pin. So if we’re talking about
GPIO pin 12, it’s GPIO12.

Question: What hole on your breadboard is next to GPIO12 (GPIO
pin 12)?

Answer: Look closely, and you’ll see that the holes next to it are BB16i
and BB16j.

Insert the RGB LED
into the breadboard.

Rows 22, 24, 26, and 28

Column h

Figure 7.7 Bend the legs of the RGB LED, and insert it into the
breadboard at BB22h, BB24h, BB26h, and BB28h. The longest leg
goes into hole BB24h.

184 CHAPTER 7 Light Up Guessing Game
NOTE The color of the jumper wires doesn’t matter, but it’s some-
times helpful to pick ones that match the colors of the LED legs.
When you’re troubleshooting problems, that can help you easily
remember which GPIO pin is controlling each color of light coming
out of the RGB LED.

Now that you’ve located the holes near the GPIO pins, you can start
connecting jumper wires as follows:

❂ Jumper wire from BB16j to BB22a (connects GP12 to the red leg of
the RGB LED)

❂ Jumper wire from BB18j to BB26a (connects GP16 to the green leg
of the RGB LED)

❂ Jumper wire from BB20j to BB28a (connects GP21 to the blue leg of
the RGB LED)

When you’ve added the wires, the circuit will look like figure 7.8.

Jumpers from GPIO pins:
BB16j to BB22a, BB18j to BB26a, BB20j to BB28a

Figure 7.8 The jumpers connect the GPIO pins from your Pi to the RGB LED.
If you have an earlier model Pi, you can use other GPIO pins. Just remember
which ones you’re using, and use these numbers when you program the Pi to
turn the GPIO pins on and off.

Hardware: building the circuit 185
STEP 3. ADD THE THREE RESISTORS

It’s time to connect your 180 ohm resistors!1 They should have bands
of brown, grey, and brown, followed by a fourth gold or silver band.
Remember that electricity will flow either way through a resistor, so
the way you connect it doesn’t matter. Figure 7.9 is a handy diagram
that reminds you how you can figure out the value of a resistor by
using the colored bands.

1 This is a safe value that won’t risk damage to your Pi and will keep things simple. For those of you
who are into precision, technically you might want to use slightly different resistors for each color
LED (red, green, and blue), because each one requires a different amount of electrical current (amps)
to make it shine. Check out some of the online resistor calculators and Pi forums on RGB LEDs if
you’re interested.

“27” x 100 = 2700 ohm or 2.7k ohm ±10%

Red RedPurple Silver

Red RedPurple Silver

Black

Brown

Red

Orange

Yellow

Green

Blue

Purple

Grey

White
Silver

Gold

K = 1,000

M = 1,000,000Resistor color codes

Example

1st digit 2nd digit Multiplier Tolerance

Figure 7.9 The colored bands on a resistor tell you how much resis-
tance the resistor has. For this project, you want a brown (1), grey (8),
brown (10) resistor, or 18 10 = 180 ohm resistor. Don’t have one?
Any resistor between about 100 and 300 ohms should work well.

186 CHAPTER 7 Light Up Guessing Game
Connect the resistors as follows:

❂ Insert one end of the first resistor into BB22c and the other end into
BB22f.

❂ Insert one end of the second resistor into BB26c and the other end
into BB26f.

❂ Insert one end of the third resistor into BB28c and the other end into
BB28f.

Once they’re added, you’ll have something that looks like figure 7.10.
Now you’re ready for the final step!

STEP 4. ADD THE JUMPER TO GROUND

Remember that a ground rail runs vertically along the right side of the
breadboard, with a blue stripe next to it. Add a jumper from BB24j to

Add resistors:
BB22c to BB22f, BB26c to BB26f, BB28c to BB28f

Remember: Resistors can be placed
either way. It doesn’t matter.

Figure 7.10 Add your resistors! Make sure you push them
down into the breadboard holes. If you don’t like them sticking
up so high, you can trim the ends using wire cutters.

Hardware: building the circuit 187
the negative (-) power bus or ground rail (any hole next to the blue
stripe will do). Figure 7.11 shows how it looks.

Wahoo! You’ve completed the RGB circuit on the breadboard. With
the circuit complete, it’s time to write your program so you can test it.

Color mixing with an RGB LED
You can program your RGB LED to light up red, green, or blue by turning on or
off GPIO pins 12, 16, and 21. But RGB LEDs can make more colors by mixing
different amounts of red, green, and blue light. For example, you can combine
equal amounts of red and blue light to make a nice magenta color. Or to make
your LED yellow, you can combine equal amounts of green and red. Televisions
work on the same principle. This concept, called additive color, means mixing
varying amounts of different colors of light to make new colors.

Add a jumper from
BB24j to ground(-).

The jumper completes the circuit, but don’t
expect the RGB LED to light up just yet! You
need to tell your Pi to send it some electricity
from the GPIO pins (12, 16, and 21).

Figure 7.11 The jumper is added to connect the ground of the RGB LED to the
ground of the Raspberry Pi. The jumper can connect anywhere along the ground
rail (it usually has a blue stripe running next to it).

188 CHAPTER 7 Light Up Guessing Game
Software: LEDGuessingGame program
You’re creating a game to guess a magic number. As mentioned at the
start of the chapter, you’ll design the game play based on these simple
rules (feel free to change them to your liking):

❂ The magic number is a randomly generated number between 1 and 20.
❂ The player is given five tries to guess the number correctly.
❂ If they guess correctly, the RGB LED flashes green.
❂ If they guess too high, the RGB LED flashes red.
❂ If they guess too low, the RGB LED flashes blue.

(continued)

Wait! Your Pi can only turn LEDs on or off (you set them to HIGH or LOW)! How can
you make something like a raspberry red color that might be 80% red and 20%
blue? It’s possible, but you’ll need to learn how to very quickly pulse your Pi’s
GPIO output. This is called pulse width modulation (PWM). Check online for in-
formation on how you can use the RPi.GPIO module to do PWM and create al-
most any shade of color you want.

You can get many different
shades of color by varying
the amounts of each color.

Note: TVs and projectors work
by mixing colors like this!

MagentaRed light Blue light

CyanYellow

Green light

Additive color

Software: LEDGuessingGame program 189
❂ After five guesses, the game is over.
❂ The player is given the choice to play again.

As you’ve seen in earlier chapters, programming is often about break-
ing down complex problems into smaller ones and then solving them.
Let’s start by laying out a quick diagram outlining what the program
should do (see figure 7.12).

Is
guess

correct?

Set up your Pi to
control RGB LED

Loop for up to
5 guesses

Play
again?

Get a guess

Game over

End

Too low

You win!

No

Yes

Too
high

Correct

After
5 guesses

Repeat
5 times

Blue
blinking

Green
blinking

Red
blinking

Figure 7.12 Flow diagram showing how the guessing game
should work. Notice how you’re blinking LEDs if the guess is too
low, too high, or correct. You also give the player the choice of
whether they’d like to play again.

190 CHAPTER 7 Light Up Guessing Game
As you approach this program, let’s see if you can simplify the code by
organizing it into functions, especially when you have chunks of code
that can be easily separated. Remember that you can use functions to
organize your code and simplify it. You’ll create three functions to han-
dle each of the flashing lights, to simplify the main part of your program:

❂ flash_red—Flashes the RGB LED red
❂ flash_blue—Flashes the RGB LED blue
❂ flash_green—Flashes the RGB LED green

You’ll also create a function to display a message when the game is over.

Now that you have a plan, let’s code it in this order:

1 Import libraries, create the flashing and game-over functions, and set
up the GPIO pins for RGB LED output.

2 Display the title and introduction, create a loop, and get and check
up to five guesses.

3 Add logic to allow the user to decide if they want to play again.

Let’s begin! Open IDLE by choosing Python 3 under Menu > Pro-
gramming. This opens IDLE to the Python 3.x Shell. In the Python
Shell, start a new program by pressing Ctrl-N or selecting File > New
Window.

Setting up the GPIO pins for the RGB LED
In the IDLE 3 text editor, you’ll first load the Python libraries you
need, create functions, and prepare your Pi to send electricity to the
RGB LED (see figure 7.13).

SETTING UP YOUR PI’S GPIO PINS

You need to get your Pi ready for output to the GPIO pins and tell the
Pi which pins you plan to use (see listing 7.1). If you recall from the
earlier wiring, you’re using these pins to control the three LEDs that
are inside the RGB LED:

❂ GP12 for the red LED

❂ GP16 for the green LED

❂ GP21 for the blue LED

Software: LEDGuessingGame program 191
Later, you’ll write the code to control those pins. Let’s start by import-
ing the GPIO library for the Raspberry Pi and setting up the GPIO
pins so they can output a voltage to control the RGB LED.

Listing 7.1 Setting up the Pi’s GPIO pins

Light Up Guessing Game

Ryan Heitz

Is
guess

correct?

Set up your Pi to
control RGB LED

Loop for up to
5 guesses

Play
again?

Get a guess

Game over

End

Too low

You win!

No

Yes

Too
high

Correct

After
5 guesses

Repeat
5 times

Blue
blinking

Green
blinking

Red
blinking

Set up the GPIO
pins for output.

Create functions for
the flashing LEDs:
 flash_red()
 flash_green()
 flash_blue()
Create a function
for game over:
 game_over()

Figure 7.13 The program starts by importing the Python libraries you’ll need to
use, setting up your Pi’s GPIO pins for lighting up the LEDs, and defining the functions
you’ll need.

192 CHAPTER 7 Light Up Guessing Game

Use a for
to flash t
five time
importing the libraries we need
import RPi.GPIO as GPIO
import time
import random

#Tell the Pi we want to use a breakout board
GPIO.setmode(GPIO.BCM)

Create variables for the pins used for LEDs
LED_pin_red = 12
LED_pin_green = 16
LED_pin_blue = 21

Blink speed in seconds
blink_time = 0.25

Tell the Pi which Pins we will use
Set them up as OUT pins (send electricity out)
GPIO.setup(LED_pin_red,GPIO.OUT)
GPIO.setup(LED_pin_green,GPIO.OUT)
GPIO.setup(LED_pin_blue,GPIO.OUT)

Great! You’ve started by importing the time and random libraries,
because you’ll need them to flash the LED and help you generate a ran-
dom number when the game starts. You define variables for the pins
you’re using and even add a variable, BlinkTime, that says how much
time you’ll blink the light on and off. Finally, you tell your Pi that you
want to use three pins as output. Now let’s write the functions.

CREATING FUNCTIONS TO SIMPLIFY THE CODE

You need three functions to flash the three LEDs inside the RGB LED
and one for game over. Name the flashing functions flash_red,
flash_blue, and flash_green, as shown in the following listing.

Listing 7.2 Functions that flash LEDs different colors

Blinks an LED.
def flash_red():
 for i in range(1,6): #Blink on and off 5 times
 # Turning on LEDs

Import several libraries
you’ll need later.

Pick which GPIO pins you’ll
use to light the LEDs.

Create a variable to store how long
the light should blink on and off.

Tell your Pi to set up three
GPIO pins for output.

Define the name of
the flashing function.

 loop
he LED
s.

Software: LEDGuessingGame program 193

Tell the
(GPIO.H
voltage
 GPIO.output(LED_pin_red, GPIO.HIGH)
 time.sleep(blink_time)
 GPIO.output(LED_pin_red, GPIO.LOW)
 time.sleep(blink_time)

def flash_green():
 for i in range(1,6): #Blink on and off 5 times
 # Turning on LEDs
 GPIO.output(LED_pin_green, GPIO.HIGH)
 time.sleep(blink_time)
 GPIO.output(LED_pin_green, GPIO.LOW)
 time.sleep(blink_time)

def flash_blue():
 for i in range(1,6): #Blink on and off 5 times
 # Turning on LEDs
 GPIO.output(LED_pin_blue, GPIO.HIGH)
 time.sleep(blink_time)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 time.sleep(blink_time)

An ending to the game if they don't guess it
def game_over():
 print("You lost!")
 print("Better luck next time!")
 time.sleep(2)

In the code, you create four functions:

❂ flash_red()
❂ flash_green()
❂ flash_blue()
❂ game_over()

The three flashing functions blink a different color LED in the RGB
LED. The blinking is created by using a for loop and the sleep function
while you switch the output from the GPIO pin from HIGH (on) to LOW
(off). Think of this as being like standing at a light switch and flipping
it on and then off, five times.

Before you go any farther, save the program as LEDGuessingGame.py
in your home folder.

 Pi to start
IGH) outputting
 to the GPIO pin.

Tell the Pi to stop
(GPIO.LOW) outputting
voltage to the GPIO pin.

Display messages, and
pause for 2 seconds.

Pause the program to
blink the light.

194 CHAPTER 7 Light Up Guessing Game

REFACTORING YOUR FUNCTIONS

Did you notice that the functions for flashing the LEDs are very simi-
lar? Most of the code in each function is the same except for the GPIO
pin, so let’s see if you can improve this code to make it simpler. This
process of simplifying code is called refactoring.

What if you rewrote the three functions as a single function, as shown
in listing 7.3? This new function takes one parameter, LED_pin, that rep-
resents the number of the GPIO pin you want to control. It can be any
one of the GPIO pins you’re using for the colors of the RGB LED. For
example, if LED_pin is 16, this corresponds to GPIO pin 16, which
should blink the green light.

Listing 7.3 Refactoring the three flashing functions to a single function

Blinks an LED.

def flash(LED_pin):
 for i in range(1,6): #Blink on and off 5 times

 # Turning on LEDs

 GPIO.output(LED_pin, GPIO.HIGH)
 time.sleep(blink_time)

 GPIO.output(LED_pin, GPIO.LOW)

 time.sleep(blink_time)

In this case, you’re refactoring a set of functions that are very similar to
a single function that takes a parameter (LED_pin). This parameter
makes the function more flexible or dynamic so it can take the place of
the three separate functions.

When to use functions
Believe it or not, we don’t always know when to create a function. The ability to
figure that out is a skill that comes with experience in writing programs and see-
ing patterns. Here are some tips for deciding what to make a function:

❂ Is there a group of instructions that you’ll need to use over and over again,
with little variation?

❂ Do you have large blocks of code that make your programs hard to read?

Functions can simplify your code and make it easier to update.

The function takes one
parameter as input (the
GPIO pin number).

Turn the signal to
the LED on and off.

Software: LEDGuessingGame program 195
Main game loop and logic
The next part of the program creates the main game loop (see figure
7.14). You’ll do the following:

❂ Set up the game.
❂ Display the title and instructions for the person playing.
❂ Create some variables, and get a random number.
❂ Create the loop and guessing logic.

Is
guess

correct?

Set up your Pi to
control RGB LED

Loop for up to
5 guesses

Play
again?

Get a guess.

Game over

End

Too low

You win!

No

Yes

Too
high

Correct

After
5 guesses

Repeat
5 times

Blue
blinking

Green
blinking

Red
blinking

Display title and
instructions.

Define variables.
Get a random
number.

Start a loop.
Get a guess.
Check the guess,
and call a function
to flash the RGB
LEDs different
colors.

Figure 7.14 After displaying the game title and instructions, you need to define vari-
ables to store important game information, including a random number the player is
trying to guess. The main loop in the game is repeated to allow the user to make five
guesses; it also blinks the lights.

196 CHAPTER 7 Light Up Guessing Game
GAME SETUP

Let’s look at some of the variables you’ll need for the game:

❂ number_in_my_head holds a random number (an integer between 1 and
20) that the player is trying to guess.

❂ count_guesses helps you count and keep track of how many guesses
the player has made.

❂ play_again tracks the status of whether the player wants to play
again. You’ll use a Boolean type for this, because it should always be
True (yes, let’s play again) or False (no, let’s not play again).

The next listing adds these three variables and sets them up. You also
create and display the title and game instructions.

Listing 7.4 Creating variables and displaying the game title and instructions

A random number for our game
number_in_my_head = random.randint(1,20)
count_guesses = 1 # Counter for the number of guesses

Used to keep track of whether they want to play again
play_again = True

title = """
**
 Light Up Guessing Game
**
"""
print(title)

intro = """
Game Play:
I'm thinking of a number between 1 and 20. You have five guesses to

guess it.
After each guess, my light will blink.

 Red ---> Your guess is too high!
 Green ---> Your guess is correct!
 Blue --> Your guess is too low
"""

Software: LEDGuessingGame program 197

Start the
loop tha
player 5
guess co

pt
nter

Call t
funct
to fla
LED a

ctly.
Fantastic! The variables set the stage for the guessing-game logic. It’s a
lot like the foundation of a house—you need it in order to build the rest.

Guessing Game Loop and logic
The code features two loops, one inside the other. The outer loop gives
the user the option of playing again—we’ll call this the Play Again
Loop. Within that loop is another that gives the player five guesses—
we’ll call this the Guessing Game Loop.

The main game loop involves getting a guess, checking the guess,
blinking the RGB LED the appropriate color, and then repeating until
the player guesses right or has used all five guesses. The next listing
shows the program for the Guessing Game Loop and the logic for
checking guesses.

Listing 7.5 Guessing Game Loop

while count_guesses < 6:
 guess = input("Guess " + str(count_guesses) + ": ")
 guess = int(guess) # Convert the input string to an integer
 count_guesses += 1 # Add one to the number of guesses

 ➥ to keep track
 if guess == number_in_my_head: # Guessed it correctly
 flash(LED_pin_green)
 print("You won!")
 break # Breaks out of loop
 elif guess > number_in_my_head: # Guess too high
 flash(LED_pin_red)
 elif guess < number_in_my_head: # Guess too low
 flash(LED_pin_blue)
else: # For the while loop, it happens when the while condition

➥ isn't True
 game_over()
End of game

The Guessing Game Loop contains the logic to

❂ Keep track of the number of guesses.
❂ Get a guess.
❂ Check to see if a guess is correct, too high, or too low.

 game
t gives the
chances to
rrectly.

Display a prom
for a user to e
their guess.

he flash
ion and tell it
sh the RGB
 certain color.

Exit (break out of)
the game loop if the
player guesses corre

Call after the player
has guessed 5 times.

198 CHAPTER 7 Light Up Guessing Game

Print

Ask th
want

Get a
rando
Where is the logic for responding to the player? It’s in the loop. Each
time you get a guess, a series of if/elif statements checks whether the
guess is correct, too high, or too low. Based on which of those cases is
True, the flash() function is called to flash the appropriately colored
LED on and off. If the user guesses the number correctly, the RGB LED
will flash green, and then the break command will exit the while loop.

Notice that you add an else statement to the while loop. When the
number of guesses has been exceeded (count_guesses is greater than 5),
the else statement is triggered and the game_over function is called. The
else block only happens when the while condition is checked and is
False (in this case, when the number of guesses has exceeded 5).

In the next section, you’ll see how to give the player the option of play-
ing again.

Adding the Play Again Loop and logic
You want to add a feature to the game that lets the user choose whether
they want to play again. To do this, you need another loop that goes
around the Guessing Game Loop (see figure 7.15). The Play Again
Loop needs to repeat the Guessing Game Loop as long as the user
answers that they want to play again.

Listing 7.6 Play Again Loop

while play_again:
 print(intro)

 # Guessing Game Loop
 while count_guesses < 6:
 # Loop code hidden
 else
 game_over()
 # End of Guessing Game Loop
 answer = input("Would you like to play again [Y/N]? ")
 if answer.upper() == "Y":
 # Starting over. Get a new random number and reset the counter

 number_in_my_head = random.randint(1,20)
 count_guesses = 1

Start the Play Again Loop that repeats
as long as play_again is True.

 instructions.

e user if they
to play again.

 new
m number.

Reset the number
of guesses to 1.

Software: LEDGuessingGame program 199
 else:
 play_again = False
print("Good bye!")
GPIO.cleanup()

Set play_again to False, which
causes the Play Again Loop to end.

Reset the GPIO pins used in this
program (set them back to input).

Is
guess

correct?

Set up your Pi to
control RGB LED

Loop for up to
5 guesses

Play
again?

Get a guess

Game over

End

Too low

You win!

No

Yes

Too
high

Correct

After
5 guesses

Repeat
5 times

Blue
blinking

Green
blinking

Red
blinking

Add a game_over
function, reset the
guess count, and
get a new random
number.

Check if they want
to play again.

Add the Play Again Loop
(the Guessing Game Loop
is nested inside it).

Figure 7.15 The Play Again Loop is wrapped around the Guessing Game Loop. After the
player has exhausted their guesses or guessed the number correctly, they’re asked if they
want to play again. Depending on their answer, the game will either start over or end.

200 CHAPTER 7 Light Up Guessing Game
Awesome job! You have put together a circuit to control an RGB LED
and written the Python code to make a game interact with it. Now, let’s
test it.

Playing the game
Save the code as LEDGuessingGame.py, and try running it. Select
Run > Run Module (or press F5) from the IDLE text editor to run
your program. If you have an older version of Raspbian (prior to Octo-
ber 2015), open Terminal and enter the following command:

pi@raspberrypi ~ $ sudo python3 LEDGuessingGame.py

Excellent! You should see your guessing game start up. Let’s test it to
see if it works. Try seeing if you can guess the number. Try getting it
wrong, just to make sure the game_over function works.

NOTE Remember that any programs that use GPIO pins must be run
from the Raspbian command prompt as the superuser (or root). The
sudo command lets you do this. If you try running the program at the
Python Shell in IDLE, then you’ll get the error that ends “RuntimeError:
No access to /dev/mem. Try running as root!”

Troubleshooting
If the lights aren’t blinking after each guess is made, here are some
things you can check:

❂ Check the circuit on the breadboard. Is the ribbon cable connected
properly, with the first wire connected toward the edge of the Pi,
away from the USB ports?

❂ Double-check that the jumper, RGB LED, and resistors are con-
nected to the correct holes on the breadboard. Could your RGB LED
be inserted the wrong way (the shorter legs go toward the negative
or ground side)? Try turning it around if you aren’t sure.

❂ Look through your Python program for errors. If necessary, edit the
program to add some print statements so you can see which parts are
working. For example, in the inner loop that handles the five
guesses, you can use the print function to display the value of
count_guesses:

print(count_guesses)

Challenges 201
❂ Try adding a print message in the flash function so you’re sure it’s
being called. For example, you could add

print("Blinking the LED")

If you’ve enjoyed playing your game, try some additional challenges to
increase the fun factor!

These challenges use the RGB LED that you’ve already wired up. If
you can’t figure them out, check appendix C for hints and solutions.

Game winner
Write a function in the game that creates a flashing animation when-
ever the user correctly guesses the number. For example, you could try
quickly flashing the RGB LED different colors.

Easter egg
Was the last one too easy? Well, try this: create an Easter egg in your
game. Create logic so that if someone types in a certain word (maybe
Spam), the program displays a secret message and flashes the light in a
crazy way.

Warmer and colder
Expand the logic of your program to make the speed of the blinking
indicate whether the player’s guess is close to or far away from the cor-
rect answer. As a hint, think about the blinking speed you’ve set. Let’s
say a guess is off by 10 (the player guesses 15, and the magic number is
5). You want the light to blink slowly. You can take the difference
(ignore any negative signs) and divide it by 10. This will make the
blinking speed one-tenth of the difference, or once every second if
you’re off by 10 (pretty slow). If the player’s guess is off by 2, the light

Challenges

202 CHAPTER 7 Light Up Guessing Game
will blink every two-tenths of a second (pretty fast). This way, the
blinking speed tells the player if their guess is close or far away.

Darth Vader surprise
Let’s see if you can get an image of Darth Vader to pop up if the player
doesn’t correctly guess the number. Here’s a hint to get you started.
Install the Linux image-viewing software called fim,2 a program that
allows you to open images from the Raspbian command line. To install
fim, make sure your Pi is connected to the internet, and then open Ter-
minal and use the following command:

pi@raspberrypi ~ $ sudo apt-get -y install fim

Next, download an image of Darth Vader and have the game display it
on the screen. Let’s say you’ve downloaded an image called
Darth_Vader.jpg. You can display it with these commands in Python:

import os

os.system("fim Darth_Vader.jpg")

Good luck! May the Force be with you!

In this chapter, you learned that

❂ Pis can respond in rich and exciting ways by interacting through the
GPIO pins in your programs.

❂ Functions, loops, and conditional statements can be combined with
your Pi’s output capabilities to create programs that react to people
and the environment.

❂ RGB LEDs are very cool because they can make different colors and
are actually three LEDs packed into one small package.

❂ A while loop can have an else statement that allows you to control
what happens when the loop condition is no longer true.

2 fim is the improved version of fbi, image-viewing software for Linux that can be run from the com-
mand line.

Summary

Summary 203
❂ A play again loop can be wrapped around a main game loop to allow
users to play the game over and over again.

❂ Refactoring is a fancy word that just means simplifying or shorten-
ing your code by looking for ways to make it more efficient. Be care-
ful, though—you don’t want to simplify something so much that it
becomes too hard to understand (remember the Zen of Python)!

8
DJ Raspi

In this chapter, you’ll be

• Giving your Pi the ability to respond to input signals by making it interact with
you in response to button presses

• Learning about electronic buttons and how to build circuits on a breadboard
with them

• Running Raspbian operating system commands so your programs can play
music, show videos, and more

• Using Python to store sets of information called lists

• Exploring how you can play sounds on your Pi and make your Pi into a music
machine

We don’t think about our five senses (taste, smell, touch, hearing, and
sight), but without them we wouldn’t be able to feel, know, and interact
with the world around us. Think of your Pi as a person who, until now,
has had a limited set of senses. So far, your Pi has only been able to
respond to keyboard keys being pressed and mouse clicks.

Like a mad scientist bringing something to life, in this chapter you’re
going to embark on a project to wire up a new sense of touch for your Pi.
204

Project overview 205
Okay, maybe it won’t be as crazy as creating a bionic creature, but a
button gives your Pi a sense of touch. You’ll wire a couple buttons to
the Pi’s GPIO pins (recall that GPIO stands for general-purpose input/
output, so this is how your Pi can sense and affect the environment).
Then you’ll program your Pi to react to button presses. Exciting times
are ahead!

This project is a small glimpse of all the different senses you could pos-
sibly give your Pi. Electronic components that can detect the environ-
ment around them are called sensors. A button is one of the simplest
sensors, because it can detect touch. What other sensors could you
add? How about some of these ideas:

❂ A camera that can track a ball or face using special software called
computer vision that can recognize objects (this is similar to how a
Microsoft Kinect works)

❂ Super-human capabilities like a proximity sensor to detect when
someone is walking nearby (like the ones used to trigger the doors to
open at the grocery store)

❂ A microphone so it can hear

All this is possible with a Pi, some determination to figure it out, and a
bit of fearlessness about trying new things.

Project overview
In this chapter, you’ll turn your Pi into DJ Raspi—a musical computer
that plays different sounds when you press buttons. You’ll wire up two
mini pushbuttons on your breadboard and figure out how to write the
code to make the buttons play sounds. Later, if you want, you can add
other sensors to your Pi and program them. This project will give you
an example of how to work with input from sensors. Figure 8.1 shows
the parts you’ll need.

206 CHAPTER 8 DJ Raspi
DJ Raspi parts

2 resistors: 1OK ohm
Color bands: brown, black, and orange

2 mini
pushbuttons

4 jumper wires (male-to-male):
any length will do.

Headphones, powered computer speakers,
or TV with built-in speakers

Raspberry Pi
(not shown)

Ribbon cable
Breakout board

Solderless breadboard

Figure 8.1 The DJ Raspi project requires several different parts to turn your Pi into a music
player. The length and color of the jumper wires don’t matter.

Setting up your Pi to play sounds 207
Gather the parts and get ready for some fun. You’ll notice that some of
them are the same as in chapters 6 and 7, but you’ll also need a few new
items. Most of these are included in Raspberry Pi starter kits, but you
can find them at online electronics retailers as well. You’ll approach
this project in two parts: building the circuit (the hardware) and writ-
ing the program (the software). Let’s go!

Setting up your Pi to play sounds
To start, let’s get your Pi ready to play sounds. A Pi can output sounds
through the headphone jack (also called the 3.5 mm audio port) or
through HDMI. Before you start, plug in your headphones, powered
computer speakers, or, alternatively, a TV with built-in speakers con-
nected via an HDMI cable.

You’ll be focusing on playing MP3s from your Pi, because that is a
common audio file format. What can you use to play them?

All sounds aren’t the same: audio formats
If you wanted to leave a secret message for someone, you could choose several
different ways to make the message into a secret code. You could use different
symbols to represent words, or you might substitute letters or shift letters
around. There are many different ways to encode something.

Similarly, people have come up with many different ways to store sounds (or
audio files). These ways (called formats) are different ways of compressing
or encoding the information in a sound to make it easy to store on a computer
or music player. Sometimes sounds are encoded so they will only work on certain
music players.

Here are some common formats:

❂ MP3—The most common audio file format used in most audio players. The
files end in .mp3.

❂ WAV or WAVE—Stands for Waveform Audio File Format. It’s used on many
Windows computers. These files end in .wav.

❂ Ogg—An open format that was developed for streaming applications. The
files end in .ogg.

Each format uses a different method to compress or shrink a sound and make it
smaller to store. The Pi has many different software applications for playing au-
dio. Each one can play different formats. Check the Raspberry Pi forums if you
want to learn more about the different players and what they’re best for.

208 CHAPTER 8 DJ Raspi
OMXPlayer and MP3s
When you watch movies or listen to music on a computer, you may use
iTunes or Windows Media Player. Raspbian has its own equivalent
called OMXPlayer that can play sounds or videos. Lucky for you, it’s
capable of playing MP3 files (or MP3s)—one of the most common
audio formats.

DEFINITION OMXPlayer is a video and audio player that was created
for Raspberry Pi.

If you don’t have an MP3, you can test OMXPlayer using one of the
sounds already on your Pi. There are quite a few MP3s in the folders
included with the Scratch software. Open File Manager, and go to this
folder to see some of them: /usr/share/scratch/Media/Sounds/Vocals/.
In the folder, you’ll see both MP3 and WAV format files (see figure 8.2).

Notice there are both .wav
and .mp3 format sound files.

You’ll try playing this
file: Oooo-badada.mp3.

Type the path in
the address bar.

Figure 8.2 When you install Raspbian on your Pi, it comes with
Scratch, which has a number of sound files including vocals, sound
effects, animal sounds, and drum beats.

Setting up your Pi to play sounds 209
To play an MP3 using OMXPlayer, open Terminal, and enter

pi@raspberrypi ~ $ omxplayer /usr/share/scratch/Media/Sounds/Vocals/

➥ Oooo-badada.mp3

You should hear a short music clip of a woman singing. Enjoy the
song!

NOTE In Terminal, pressing the up and down arrows cycles through
previous commands. Press the up arrow once and then press Enter to
run the last command again.

Fantastic! Your Pi can speak to you now.

Troubleshooting
What if you have speakers or headphones plugged in but don’t hear
anything? OMXPlayer should automatically detect whether to output
the sound to the 3.5 mm audio output or HDMI. If it doesn’t, try this
command for the headphone jack (3.5 mm audio output):

pi@raspberrypi ~ $ omxplayer –o local /usr/share/scratch/Media/Sounds/

➥ Vocals/Oooo-badada.mp3

–o is a special switch or flag that lets OMXPlayer know that you want
to tell it something. In this case,–o stands for output, and it tells OMX-
Player where you want to output the sound. In this case, you set it to
-o local, which outputs sound to the 3.5 mm (headphone jack) output.

Switches (flags)
Switches, such as–o for output, act like options or special controls for a program.
They’re common when using the command-line interface. You can usually get a
list of what switches a program has by making the command print out its help
information. Most programs that you can run at the command line will give you
a list of all switches or flags when you type the name of the program and then
–h. The –h switch- stands for help. Try it with OMXPlayer:

pi@raspberrypi ~ $ omxplayer –h

You’ll see a long list of options you can use to control how video and audio files
are played. Try -h with other command-line programs to see what results you
get.

210 CHAPTER 8 DJ Raspi
If you need to specify sending the sound to speakers in your monitor,
then use the –o switch and specify hdmi for output to the HDMI port:

pi@raspberrypi ~ $ omxplayer –o hdmi /usr/share/scratch/Media/Sounds/

➥ Vocals /Oooo-badada.mp3

Now that you know you can play music, let’s build the circuit and write
some code to create your DJ Raspi!

Hardware: building the circuit
Building time! You’re building a circuit on your breadboard to detect
or listen to buttons. When a button is pressed, your circuit will send
electricity flowing to a GPIO pin on your Pi. You’ll start by connecting
the Pi’s GPIO pins to the breadboard using the ribbon cable and GPIO
breakout board. Refer back to chapter 6 (section 6.1) if you need to
recall how to set this up.

Wiring a button
Let’s get busy wiring the buttons. There
are many different types of buttons, but
you’ll be using a mini pushbutton (see
figure 8.3). These buttons commonly
come in Raspberry Pi kits along with
jumper wires, resistors, and LEDs. If
you need to purchase them, you can find
them at many online electronics retailers
in packs of 10 or 20 for less than the cost
of a cheeseburger. With the parts gath-
ered, let’s assemble the circuit.

A reminder about numbers
Like finding a seat in a stadium, we’ll refer to the holes on a breadboard using
the prefix BB. So the hole located in row 25, column a, is BB25a. Similarly, we’ll
refer to the Pi’s GPIO pins using the prefix GP and then the pin number. So GPIO
pin 24 is called GP24 for short.

Figure 8.3 The mini push-
button makes a nice clicking
sound when you press the
black button in the middle.
Pressing it acts like closing a
switch to complete a circuit.

Hardware: building the circuit 211
Circuit sketch
The circuit diagram for the DJ Raspi is shown in figure 8.4. To listen to
whether a button is being pressed, you’ll have electricity (+3.3 V) flow
from your Pi to the button. When the button is pressed, the electricity
will flow through the button and then split. A small amount of electric-
ity will flow to GPIO pin 6 (GP06) and the rest will flow through the
10K ohm resistor and then to ground (0 V). Let’s put it together on the
breadboard.

Let’s build the button circuit on the breadboard and program your Pi
to know when the button is being pressed. You’ll give your Pi the abil-
ity to feel the button being pressed, by wiring up the button in this
order:

1 Add the mini pushbutton to the breadboard.

2 Connect a jumper wire from 3.3 volts to the button. You’ll use the
positive power bus (+) that runs along the side of the breadboard.

The button acts as a switch
that is normally open so no
electricity flows through it
and nothing happens.

GPIO pin 6

Mini
pushbutton

When the button is pressed,
the switch is closed, and electricity
will flow through the button to
GPIO pin 6 and ground (-).

3.3 V (volts) Ground

+ –

10K ohm resistor

Figure 8.4 The circuit diagram for the first button in the DJ Raspi project
shows how electricity will flow through the circuit. The button is a switch that
allows electricity to flow to GP06 and ground (-) when it’s pressed or closed.

212 CHAPTER 8 DJ Raspi
3 Add the resistor from the button to the negative power bus (-), also
called ground.

4 Connect the second jumper wire from the button to GP06 (GPIO pin 6).

The completed circuit for one button will look like what you see in fig-
ure 8.5.

Don’t forget, nothing will happen when you press the button. You
have to program your Pi to react to this new-found sense of touch.
Let’s go through the steps to build the circuit:

STEP 1. ADD THE MINI PUSHBUTTON.

Let’s look at how pushbuttons work before we go on. If you had X-ray
goggles, you would see that the left and right legs at the top of the

Jumper connects
the button to GP06.

Jumper connects
the power (3.3 V)
to the button.

Insert the mini
pushbutton into
rows 23 and 25.

10K ohm resistor connects the button
to the negative (-). Color bands:
brown, black, orange.

Figure 8.5 The mini pushbutton will have 3.3 volts connected to it
from the positive power rail. When the button is pressed, power flows
through the button and splits. Some electrical current goes to GP06
(GPIO pin 6), and the rest goes through the resistor and then to the
negative power bus (-).

Hardware: building the circuit 213
button are connected. Similarly, the left and right legs along the bottom
of the button are connected. The top and the bottom of the button
aren’t connected.

But when you press the button, figure 8.6 shows what happens. Press-
ing the button pushes down a small metal bar so that the top and bot-
tom are connected. We say the switch is closed. When you let go of the
button, the spring in the button pushes the metal bar back up, and the

Connected
when pressed

Electricity can flow along the top and
bottom, but they are NOT connected.

Pressing the button connects
the top and bottom.

How pushbuttons work

Not pressed (open)

Top legs

Top legs

Bottom legs

Bottom legs

Pressed (closed)

Figure 8.6 In a button, the legs are connected along the top and are separately
connected along the bottom. When the button is pressed, the top and bottom are
connected by a small metal bar.

214 CHAPTER 8 DJ Raspi
switch is open again. Grab your mini pushbutton, and let’s insert it into
the breadboard.

NOTE You’ll need to push the button into the breadboard very firmly.
If the button legs aren’t lined up with the breadboard holes, you may
accidentally bend some of the button legs. Don’t worry—you can
bend them back and try again. If a leg breaks off, use a new button.

You’re going to put the button in rows 23 and 25 along columns d and
g on the breadboard. Connect the legs:

❂ Top legs: BB23d and BB23g
❂ Bottom legs: BB25d and BB25g

When the button is inserted, it will look like figure 8.7. Double-check
that it’s pushed down into the breadboard so that all the legs will make
a good connection. Good job—you just completed the trickiest part!

Firmly push the
button into the
breadboard.

Insert top legs into BB23d
and BB23g. Insert bottom
legs into BB25d and BB25g.

Figure 8.7 Align the pushbutton with the breadboard holes, and then
press it down into the breadboard. Make sure you press it so the button legs
are down into the breadboard holes and make a good connection. If you
accidentally bend the legs, don’t worry! Just bend them back and try again.

Hardware: building the circuit 215
STEP 2. CONNECT A JUMPER WIRE FROM 3.3 VOLTS TO THE BUTTON.

You need to connect the button to a source of electrical current. You’ll
use the positive power rail along the edge of the breadboard as the
source of power (you could also directly connect the jumper to the 3V3
pin on the breakout board).

Connect the jumper wire from the positive power bus (+) to BB25a.
Remember, you can connect the jumper to any hole along the power
rail (it has a red line next to it). When you’ve added the wire, it will
look like figure 8.8.

Fantastic! Now you have electricity reaching the bottom legs of the
button.

STEP 3. ADD THE 10K OHM RESISTOR.

Time to connect your 10K ohm resistor. It has bands of brown, black,
and orange followed by a fourth gold or silver band. Remember that

The jumper connects a source
of electricity (3.3 volts) to the
bottom legs of the button.

Jumper from
positive power bus (+)

Connect the other end
of the jumper to BB25a.

Figure 8.8 The jumper connects power (3.3 volts) to the bottom of the
button.

216 CHAPTER 8 DJ Raspi
electricity will flow either way through a resistor, so it doesn’t matter
which way you place it.

You’re connecting the resistor from the top of the button to the nega-
tive power bus (-). This is the set of holes with a blue stripe next to it
running along the edge of the breadboard.

Insert one end of the resistor into BB23i and the other end into the neg-
ative power bus (-). You can choose any hole along the blue line. Once
the resistor is added, you’ll have something that looks like figure 8.9.
Now you’re ready for the final step.

STEP 4. ADD THE JUMPER TO A GPIO PIN.

A small amount of electricity needs to reach a GPIO pin (you’ll use
GP06), so you need a jumper wire from the top of the button to a hole
next to the GPIO pin. To make this connection, add a jumper from
BB23a to BB16a. Figure 8.10 shows how it looks.

When the button is pressed, a small amount of electricity will flow to
GP06 and through the resistor to ground. Nothing happens yet, but
next you’ll write a Python program to detect that electricity and play
some sounds.

Connect the other end
of the resistor to the
negative power bus (-).

10K ohm resistor. Color bands
are brown, black, and orange.
The resistor connects the
button to ground.

Connect one end of
the resistor to BB23i.

Figure 8.9 Add the resistor. Make sure its ends are pushed down into the bread-
board holes.

Hardware: building the circuit 217
Adding the second button
Let’s add a second button to the board. Figure 8.11 shows what it will
look like when it’s done.

Connect jumper wire from
the top of the button to GP06

Connect one end of
jumper to hole BB23a

Connect the other end of
jumper to hole BB16a (GP06)

The color of your jumper wires
doesn’t matter (it’s simply the color
of the plastic on the outside of the wire).
Pick any color you like!

!

Figure 8.10 The jumper connects the top of the button to GP06. Later,
you’ll set your Pi to listen for electrical input on this GPIO pin.

Add a 10K ohm resistor
from BB28i to the
negative power bus (-).

Add the button in
rows 28 and 30.

Connect a jumper from
the button to GP19
(BB28a BB18a).

Add a jumper from
3.3 V to BB30a.

Figure 8.11 Add the second pushbutton just below the first one. The wiring is
the same, but you’ll connect it to GP19 (GPIO pin 19). Any available GPIO pin will
work, but remember that your code will have to reflect the GPIO pins you select.

218 CHAPTER 8 DJ Raspi
To add another button, you’ll create the same circuit but place the button
in rows 28 and 30 on your breadboards. You’ll wire the button to GP19.

STEP 1. ADD THE MINI PUSHBUTTON.

Insert the button so that the top legs are in BB28d and BB28g and the
bottom legs are in BB30d and BB30g.

STEP 2. CONNECT A JUMPER WIRE FROM 3.3 VOLTS TO THE BUTTON.

You need to connect power from the positive power bus to the bottom
of the button. The power rail is the line of holes with a red line running
next to it. Insert a jumper from anywhere along the positive power bus
(+) to BB30a.

STEP 3. ADD THE 10K OHM RESISTOR.

To prevent too much electricity from flowing when the button is
pressed, you need to add a resistor. As before, you’ll add a 10K ohm
resistor (color bands are brown, black, and orange) to connect the top
of the button to the negative power bus (-).

Insert one end of the resistor into BB28i and the other end into the neg-
ative power bus (-). Any hole along the blue line will work.

STEP 4. ADD THE JUMPER TO A GPIO PIN.

Finally, when the button is pressed, you need electricity to flow to a
GPIO pin. For the second button, you’re using GP19. Connect a
jumper wire from BB28a to BB18a (GP19).

Terrific! The second button is connected, and you’ve completed the
button circuit. Let’s call the first button Button 1. It’s wired to GP06.
The second button, Button 2, is wired to GP19. Now that everything is
wired up, let’s write code for it!

Software: the DJ Raspi program
Your project is to turn your Pi into an awesome music player that is
controlled by buttons. Here’s how it will work:

❂ Pressing Button 1 makes the Pi play random music clips.
❂ Pressing Button 2 makes the Pi play random vocal (singing) sounds.

Software: the DJ Raspi program 219
You’ll need one of the following to hear the sounds:

❂ Headphones
❂ Powered computer speakers
❂ Your Pi connected via HDMI to a TV with built-in speakers

Let’s think through how this program will work. Figure 8.12 shows a
quick diagram of the logic.

Let’s write the code in this order:

1 Set up your Pi to listen to input coming from the buttons.

2 Gather a list of music and vocal sounds.

3 Program a loop to check the buttons. If they’re pressed, then play
random sounds.

Button
pressed?

No

Set up your Pi to
listen to two buttons.

Get two lists of sound files:
music and vocals.

Check buttons.

Button 1

Button 1 Button 2

Play random
music
sound.

Repeat until
user quits

(presses Ctrl-C).

Button 2

Play random
vocal

sound.

Figure 8.12 A flow diagram showing how the DJ Raspi pro-
gram should work. The program must gather a list of sounds
at the beginning and then check whether the buttons are
pressed. The buttons will be checked over and over again.

220 CHAPTER 8 DJ Raspi
You’ll try to use functions along the way to simplify your code.

Let’s begin! Open IDLE by choosing Python 3 under Menu > Pro-
gramming. In the Python Shell, start a new program by pressing
Ctrl-N or selecting File > New Window.

Setting up the Pi: initializing the buttons
In the IDLE text editor, you’ll start by loading the Python libraries
you’ll need to use. You’ll also set up a couple of the Pi’s GPIO ports to
listen for electrical signals coming in from the buttons being pressed. In
the flow diagram, this is the first step of initializing the buttons (see fig-
ure 8.13).

When you set up the GPIO ports, you use GPIO.IN to tell the Pi that you
plan to use that port as an input. To prepare your Pi for input to the

Button
pressed?

Set up your Pi to
listen to two buttons.

Set up the GPIO
pins for input.

Get two lists of sound files:
music and vocals.

Check buttons.

Button 1

Button 1

Play random
music
sound.

Button 2

Play random
vocal

sound.

No

Button 2
Repeat until
user quits

(presses Ctrl-C).

Figure 8.13 The first step is to set up the buttons as inputs.
This will mean your Pi is ready to check whether it’s detecting any
voltage coming in, which will happen when a button is pressed.

Software: the DJ Raspi program 221
GPIO pins, you need to tell it which pins you plan to use. Based on the
circuit, you’re using these pins as inputs:

❂ GP06 for Button 1
❂ GP19 for Button 2

The following listing shows how you can use the GPIO.setup command
to set a GPIO pin to input.

Listing 8.1 Setting up GPIO pins for input

DJ Raspi

Ryan Heitz

importing the libraries you need

import RPi.GPIO as GPIO

import time

import random

import os

Variables for the button GPIO input pins

button_pin1 = 6

button_pin2 = 19

#Tell the Pi we want to use a breakout board

GPIO.setmode(GPIO.BCM)

Set up GPIO pins as input pins (detect electrical signals coming in)

GPIO.setup(button_pin1,GPIO.IN)

GPIO.setup(button_pin2,GPIO.IN)

You may notice that you import a new os module. We’ll talk about why
you need that in the next section when you gather your lists of sound
files.

Getting a list of sounds
Lists are everywhere around you. You make lists of things you need to
do, gifts to buy, places you want to visit, and favorite things, such as
your top-10 movies or books.

Import the os library that lets you
execute a Raspbian command.

Store the value of the GPIO pins.

Set up the pins for input
(notice you use GPIO.IN).

222 CHAPTER 8 DJ Raspi
Your DJ Raspi needs a list of sound files: one for music clips (or loops)
and one for vocals. Based on the design, you need to get a list of files
from a folder on your Pi, and then you need to select a random sound
file from the list and play it (see figure 8.14).

In Python, you can create lists or groups of things easily. Let’s look at
some examples.

Let’s create a list of basketball player names. Open IDLE to the Python
3.x Shell by choosing Python 3 under Menu > Programming. In the
Python Shell, make a list:

>>> basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul",

➥ "John Wall"]

Button
pressed?

No

Set up your Pi to
listen to two buttons.

Learn the basics of lists.
Build a list of files in a folder.
Filter the list for only MP3 files.

Get two lists of sound files:
music and vocals.

Check buttons.

Button 1

Button 1 Button 2

Play random
music
sound.

Button 2

Play random
vocal

sound.

Repeat until
user quits

(presses Ctrl-C).

Figure 8.14 The next step of the DJ Raspi program gets a list
of sound files. Later, you’ll add the part that uses the button to
trigger playing random sounds from the lists.

Software: the DJ Raspi program 223
Print out the list like this, and you’ll see what’s inside:

>>> print(basketball_players)

['Kevin Durant', 'LeBron James', 'Chris Paul', 'John Wall']

To make a list of the items, put them in a set of square brackets ([])
and separate each item with a comma (see figure 8.15). For lists of
strings, each item in the list has to have quotation marks around it.
Pretty simple! That’s the Python way.

Try creating a list called favorite_numbers, like so:

>>> favorite_numbers = [22, 27, 49, 121, 2, 25]

Display the contents of the list using print:

>>> print(favorite_numbers)

[22, 27, 49, 121, 2, 25]

NOTE When making a list of numbers, you don’t use any quotation
marks.

Enjoy making lists of some of your favorite things!

The equals sign
stores the list
in the variable
on the left.

Lists can be
stored in variables.

Square brackets must go around the list. Use
the left square bracket ([) to start the list and
the right square bracket (]) to end the list.

basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul", "John Wall"]

If you have a list of
strings, then each
item must be in
quotation marks.

Use commas to
separate each
item in the list.

Figure 8.15 You make lists by using square brackets to enclose a set of things. Each thing
in the list should be separated with a comma. Python will even let you make lists that com-
bine different types of data, like strings and integers.

224 CHAPTER 8 DJ Raspi
More things you can do with lists

There are lots of things you can do with lists! Let’s try a few.

You make a list longer by adding more items to it. To do this, use the append
method. Let’s add the name Stephen Curry to the list of basketball_players.
Here is how you can use append to do that:

>>> basketball_players.append("Stephen Curry")

Use print to see the result:

>>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'John Wall', 'Stephen Curry']

Excellent! To remove an item from a list you can use the remove method. If you
wanted to take John Wall out of the list, write

>>> basketball_players.remove("John Wall")

Print the list again to see if it worked:

>>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'Stephen Curry']

Wonderful! If you need to put a list in order alphabetically or from lowest to high-
est, you can use the sort method like so:

>>> favorite_numbers.sort()

Check that it worked by printing the list to the screen:

>>> print(favorite_numbers)
[2, 22, 25, 27, 49, 121]

The numbers are all sorted! This works on lists made of strings as well. If you
sort the list of basketball_players, it puts them in alphabetical order based
on the first letter of each string. Python has many built-in methods for lists.

Check the online Python documentationa for more things you can do with lists.
Then sit back and enjoy thinking about all you can do with them in your future
programs.

a Go to the Python website for more information on things you can do with lists:
https://docs.python.org/3.4/tutorial/datastructures.html.

https://docs.python.org/3.4/tutorial/datastructures.html

Software: the DJ Raspi program 225
For your DJ Raspi, let’s see how to

❂ Get the value of an item stored in a list.
❂ Get the length of a list.

Getting a value of an item stored in a list
Let’s start with a fresh list of basketball players:

basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul",

➥ "Stephen Curry"]

As you’ve seen, lists store information. What you might not know is
that each spot in a list is given a number called the index. The index of
the first item in the list is zero (0). The second item has an index of 1.
The third item’s index is 2, and so on. To get the third item in the
basketball_players list, you’d type

>>> print(basketball_players[2])
Chris Paul

If you want to search a list and have Python tell you the index of where
an item first appears in the list, you use the index method:

>>> basketball_players.index("Kevin Durant")
0
>>> basketball_players.index("Stephen Curry")
3

If the item isn’t in the list, Python will give you an error saying so:

>>> basketball_players.index("Me")
Traceback (most recent call last):
 File "<pyshell#40>", line 1, in <module>
 basketball_players.index("Me")
ValueError: 'Me' is not in list

NOTE Remember that the index for lists starts counting at 0, not 1!
For example, basketball_players[1] gives you "Lebron James", the sec-
ond item in the list.

226 CHAPTER 8 DJ Raspi
Figure 8.16 shows examples of the indexes for a list and how you can
get a specific item in a list.

Getting the length of a list
Finally, there are times when you’ve loaded information into a list and
you need a way to check how long the list is. Use the len() function to
do that:

>>> yummy_snacks = ["chips", "popcorn", "donuts", "cheese",
"pretzels", "spam"]

>>> print(len(yummy_snacks))
6

Great job—you know the basics of lists. Now let’s see how you can cre-
ate lists of MP3s.

Index of 0

Each item in the list is given a number, called an
index. The index represents its position in the list.

BasketballPlayers = ["Kevin Durant", "LeBron James", "Chris Paul", "Stephen Curry"]

Index of 1 Index of 2 Index of 3

The index numbers start at zero (0).

To find the index of a certain value in a list:
Returns 3basketball_players.index("Stephen Curry")

To find the value of an item at a certain index:
Returns “Kevin Durant”basketball_players[0]

Use len() to find how many items are in the list:
Returns 4len(basketball players)

!

Figure 8.16 Sets of things can be stored in lists. You can retrieve items from the list using
the index, which represents the position of an item in the list. The index of a list starts at 0.

Software: the DJ Raspi program 227
Building a list of sound files with the os library
To make the DJ Raspi project work, you need to

1 Grab two lists of sound files from folders on your Pi.

2 Make OMXPlayer play sound files from Python as part of the DJ
Raspi program.

Let’s learn how.

The Pi has both these abilities through a Python module called the os
module (OS stands for operating system). With it, you can run operat-
ing system commands (things you can type in the Terminal window)
from your Python programs. This is fantastic, because it means you can
get lists of files and also call OMXPlayer to play a certain file—exactly
what you need!

GETTING A LIST OF FILES FROM A FOLDER: USING LISTDIR()

Your Pi has some sound files on it already, as you saw in section 8.1.
You’ll use the files in these two folders:

❂ /usr/share/scratch/Media/Sounds/Music Loops/
❂ /usr/share/scratch/Media/Sounds/Vocals/

The os library provides a built-in function, os.listdir(some_path), to get
a list of files at some_path. To get a list of Scratch music loops and vocals,
use these commands:

Folders with sound files
path_music = "/usr/share/scratch/Media/Sounds/Music Loops/"
path_vocals = "/usr/share/scratch/Media/Sounds/Vocals/"

Creating two lists with the files in the folders
sounds_music = os.listdir(path_music)
sounds_vocals = os.listdir(path_vocals)

If you print the lists, you’ll have something that looks like this:

print(sounds_music)
['Cave.mp3', 'Techno.mp3', 'HipHop.mp3', 'Triumph.mp3', 'Medieval2.mp3',

➥ 'HumanBeatbox2.mp3', 'DripDrop.mp3', 'Xylo3.mp3', 'GuitarChords1.mp3',

228 CHAPTER 8 DJ Raspi
➥ 'DrumSet2.mp3', 'Xylo2.mp3', 'DrumSet1.mp3', 'Garden.mp3',

➥ 'GuitarChords2.mp3', 'Jungle.mp3', 'Xylo1.mp3', 'Eggs.mp3',

➥ HumanBeatbox1.mp3', 'Drum.mp3', 'DrumMachine.mp3', 'Techno2.mp3',

➥ 'Medieval1.mp3', 'xylo4.mp3']

print(sounds_vocals)
['Oooo-badada.mp3', 'Singer1.wav', 'BeatBox1.wav', 'Ya.wav',

➥ 'BeatBox2.wav', 'Come-and-play.mp3', 'Hey-yay-hey.mp3',

➥ 'Doy-doy-doy.mp3', 'Singer2.wav', 'Got-inspiration.mp3',

➥ 'Join-you.mp3', 'Sing-me-a-song.mp3']

Wow—you have nice-looking lists! But wait: it looks like sounds_vocals
has WAV (.wav) files and MP3s. Let’s filter out the WAVs so you only
have MP3s.

FILTERING FOR ONLY MP3S

To filter a list, you can use Python’s list-comprehension feature. List
comprehension is a quick way of creating lists. When you use it, you
can include certain conditions or operations that are applied to the
items in the list, such as making sure all the files in the list end with
.mp3. Let’s look at how you can use list comprehension to create a new
list from your old list, but only keep the files in the list that end with
.mp3:

sounds_music = [sound for sound in sounds_music if
sound.endswith('.mp3')]

sounds_vocals = [sound for sound in sounds_vocals if sound.endswith

➥ ('.mp3')]

The list comprehension has a for loop inside it. In this case, Python is
looping through the list of sound files in your original list of sounds.
For each item in the list, Python only adds it to the new sounds list if it
matches the condition of being a file ending with .mp3.

Playing a sound when a button is pressed
Next in your plan is to write the code that will play a random sound
from your lists when a button is pressed. You’ll need this to be in a loop

Software: the DJ Raspi program 229
so the buttons are repeatedly checked to see whether they’re being
pressed (see figure 8.17). Let’s start by creating the game’s title and
creating the main game loop.

LOOP TO CHECK THE BUTTONS

First let’s add some code to display a title screen and the DJ Raspi
instructions. Feel free to make the title screen fancier!

Listing 8.2 DJ Raspi title screen

Clear the screen

os.system("clear")

Button
pressed?

No

Set up your Pi to
listen to two buttons.

Get two lists of sound files:
music and vocals.

Check buttons.

Button 1

Button 1 Button 2

Play random
music
sound.

Button 2

Play random
vocal

sound.

Display a title screen
and instructions.

Loop and check both buttons
using an if statement.

If True, get a random
sound from the list.

Tell Raspbian to play
the random sounds
with OMXPlayer from
Python.

Repeat until
user quits

(presses Ctrl-C).

Figure 8.17 The main part of the DJ Raspi program is the loop to check the but-
tons. You’ll use a while loop to check the buttons over and over again. If one of
them is pressed, you’ll tell Raspbian to play a random sound using OMXPlayer.

The clear command makes the
Terminal a blank, black window.

230 CHAPTER 8 DJ Raspi

Play a ran
sound usin
function yo
#Display a title screen
title = """
 DJ RASPI!!!
 Press Button 1 for Music Sounds
 Press Button 2 for Vocal Sounds
 Press Ctrl + C to exit
"""
print(title)

Now let’s write the code to loop over and over again to check whether
either button is being pressed. When a button is pressed, the GPIO pin
will give you a response of True, and you can then call a function to
play a random MP3.

Listing 8.3 DJ Raspi game loop

Start an infinite loop (must use Ctrl-C to stop it)
while True:
 if GPIO.input(button_pin1):
 print("You pressed #1!")
 play_random_sound(path_music, sounds_music)
 time.sleep(.1)
 if GPIO.input(button_pin2):
 print("You pressed #2!")
 play_random_sound(path_vocals, sounds_vocals)
 time.sleep(.1)
 time.sleep(.1)

The code repeatedly checks whether Button 1 or Button 2 is pressed. If
Button 1 is pressed, the code plays a random music sound. If Button 2
is pressed, the code plays a random vocals (singing) sound. If neither is
pressed, the code loops around and checks them again. The loop never
ends, so you’ll need to press Ctrl-C to exit the program.

PLAYING SOUNDS: USING OPERATING SYSTEM COMMANDS FROM PYTHON

You’re ready to play your sounds! The os module will let you run oper-
ating system commands (ones you normally run using Terminal). To
play the first sound in the sounds_music list, you could write

Use triple quotation marks (""") to
create a string literal for the title.

If the GPIO detects
input, this is True, and
the sound is played.

dom
g the
u wrote.

Wait a small
amount of time.

Software: the DJ Raspi program 231
os.system("omxplayer -o local '" + path_music + sounds_music[0] + " &")

Later in this chapter, we’ll explain why the end of that command has
an ampersand (&). The result of this command would be the same as
typing this at the Raspbian command line:

omxplayer –o local "/usr/share/scratch/Media/Sounds/Music Loops/
Cave.mp3"

NOTE Remember, if you’re outputting the sound to HDMI (if your
TV has speakers), you need to change –o local to –o hdmi.

Excellent! Let’s review what you’ve learned so far:

❂ Your Pi can play sounds that are in MP3 format using OMXPlayer.
❂ Python can store sets of things as lists.
❂ The Python os library has a function called listdir(path) that can

give you a list of sounds in a folder.
❂ Python’s os library has an os.system(command) function that can run

operating system commands from Python, such as playing sounds
with OMXPlayer.

Functions!
Let’s think about how you can write the functions for DJ Raspi. You’ll
want to create two functions:

❂ get_MP3_sounds—This function will get a list of sounds ending in .mp3
from a specified folder. You’ll tell the function (pass it a parameter)
the name of the folder where you want to get the MP3 sound files.
The function will return a list of sounds.

❂ play_random_sound—This function will take a list of sounds, pick a
random number, and then use os.system to tell Raspbian to play the
sound with OMXPlayer.

232 CHAPTER 8 DJ Raspi
Figure 8.18 shows where these functions fit into the flow diagram.

Why not make this a single function? One reason is that you only need
to load a list of sound files once, near the beginning of the program.
You play the sound files every time a button is pressed. Listing 8.4
shows the code for the get_MP3_sounds and play_random_sound functions.

NOTE Remember to put these functions near the beginning of the
program. They must be added before they’re used for the first time.

At the end of this listing, you use (or call) get_MP3_sounds twice to get
your lists of music and vocal sound files.

Button
pressed?

Set up your Pi to
listen to two buttons.

Get two lists of sound files:
music and vocals.

Check buttons.

Button 1

Button 1

Play random
music
sound.

Button 2

Play random
vocal

sound.

Create a function,
get_MP3_sounds(sound_path),
that returns a list of sounds.

Create a function:
play_random_sound(sound_path, sound_files).

No

Button 2
Repeat until
user quits

(presses Ctrl-C).

Figure 8.18 There are two places where you can create functions
so you can reuse code. One function creates a list of sound files, and
the other function plays a random sound when a button is pressed.

Software: the DJ Raspi program 233

Use the
function
list of fil
folder on

filters
eep
p3.

Use the
and len
to get a
sound n nd

m.
Listing 8.4 Functions for loading and playing sound files

Returns a list of mp3 sound files for the path given
def get_MP3_sounds(sound_path):
 sound_filesound_files = os.listdir(sound_path)
 sound_filesound_files = [sound_file for sound_file in

sound_filesound_files
 if sound_file.endswith('.mp3')]
 return sound_filesound_files

Plays a random sound from a list of mp3s for the path given
def play_random_sound(sound_path, sound_filesound_files):
 random_sound_index = random.randint(0,len(sound_filesound_files)-1)
 os.system("omxplayer -o local '" + sound_path +
 "/" + sound_filesound_files[random_sound_index] + "' &")

Get the list of music loops and vocals (mp3s only)
sounds_music = get_MP3_sounds(path_music)
sounds_vocals = get_MP3_sounds(path_vocals)

You may have noticed that a few extra things are added to this line:

os.system("omxplayer -o local '" + sound_path +
 "/" + sound_filesound_files[random_sound_index] + "' &")

This line joins the command to run OMXPlayer with the path to your
sound files (sound_path) and the random sound file you want to play
(sound_filesound_files[random_sound_index]). At the end, you add an
ampersand (&). The ampersand tells Raspbian to run the command in
the background. This is so you can quickly press one button and then
the other.

Doing multiple things at once: meet the ampersand (&)

When you play sounds, you want to be able to press the buttons quickly, like a
DJ, and have the sounds overlap to create interesting music. Normally, your Pi
would play one sound, and, when it was finished playing, let you play another.
Not what you want. Here is an example of playing two sounds. You can’t run the
second command until the first one is finished:

omxplayer /usr/share/scratch/Media/Sounds/Vocals/Oooo-badada.mp3
omxplayer /usr/share/scratch/Media/Sounds/Vocals/Hey-yay-hey.mp3

listdir
 to get a
es in a
 your Pi.

Comprehension
the list to only k
files ending in .m

randint
functions
random
umber. Play the sou

with os.syste

234 CHAPTER 8 DJ Raspi
Great! You’re ready to test your project!

Testing: your first gig as DJ Raspi
Save the code as DJRaspi.py, and try running it. Select Run > Run
Module (or press F5) from the IDLE text editor to run your program.
If you have an older version of Raspbian (prior to October 2015),
programs that use the GPIO pins must be run from the Raspbian com-
mand prompt as the superuser (or root). Open Terminal, and enter the
following command:

pi@raspberrypi ~ $ sudo python3 DJRaspi.py

You should see the title screen display. Test it by pressing the buttons
to see if they work.

NOTE Remember that any program that uses GPIO pins must be run
from the Raspbian command prompt as the superuser (or root).

Believe it or not, it’s rare for a program to work perfectly the first
time. If it doesn’t, read through the following “Troubleshooting”

(continued)

Luckily, your Pi can do a few things at once. You might have several different
windows open at the same time. Each window is connected to some underlying
code or set of instructions running on your Pi. These underlying sets of code are
called processes or threads. Raspbian, like other modern operating systems,
manages these processes and assigns each one its own unique ID number. An
ampersand (&) placed at the end of a command tells your Pi to run the command
as another process in the background alongside any other processes.

Try these two commands again, but this time with ampersands:

omxplayer /usr/share/scratch/Media/Sounds/Vocals/Oooo-badada.mp3 &
omxplayer /usr/share/scratch/Media/Sounds/Vocals/Hey-yay-hey.mp3 &

Notice the ampersand (&) at the end of each command. In this way, the Pi will
play your sound, but the code won’t make your Pi wait for the sound to finish
before doing something else. Adding an ampersand at the end of the OMXPlayer
command makes the button play each sound in the background. Remove the
ampersand to play one sound at a time. Because this is a feature of the OS, the
concept of using ampersands to execute commands as their own unique pro-
cesses applies to other Linux commands that you know already or will learn.

Troubleshooting 235
section and review your circuit and program to try to figure out how
to get it working.

Troubleshooting
If sounds aren’t playing when you press the buttons, here are some
things you can check:

❂ Check the circuit on the breadboard. Is the ribbon cable connected
properly, with the first wire connected toward the edge of your Pi,
away from the USB ports?

❂ Double-check that the jumpers, buttons, and resistors are in the
right holes and pressed all the way into the breadboard.

❂ Does your program print “You pressed #1!” and “You pressed #2!”?
If it does, you know your circuit is working, and either it’s an issue
with the code to load the sound files or your speakers or headphones
aren’t working. Try running one of the following commands from
Terminal to check whether the speakers are working.

For headphones or speakers plugged into the 3.5 mm audio output:

omxplayer –o local /usr/share/scratch/Media/Sounds/Vocals/

➥ Oooo-badada.mp3

For TV speakers connected by HDMI:

omxplayer –o hdmi /usr/share/scratch/Media/Sounds/Vocals/

➥ Oooo-badada.mp3

❂ Look through your Python program for errors. Try adding some
print statements to your functions to make sure they’re getting the
list of MP3 files properly.

If you’ve enjoyed creating DJ Raspi, check out the button challenges.

236 CHAPTER 8 DJ Raspi
Try some of these button activities for extra fun!

Double button press surprise
Give your program a surprise button combination. See if you can make
pressing both buttons at once play a new set of sound effects.

Hint: When you want something to happen only if both conditions are
True, you can use the ampersand (&). The if statement will only be
True if both the first and second conditions are True. It looks like this:

if GPIO.input(button_pin1) & GPIO.input(button_pin2):

 print("Both buttons are pressed!")

Here is the path to some Scratch sound effects on your Pi:

path_effects = "/usr/share/scratch/Media/Sounds/Effects/"

Yoda Magic 8 Ball
There is a great classic toy called the Magic 8 Ball. It’s a ball that dis-
plays an answer to a question when you shake it. Ask it a question, and
you’ll get some truly magical advice. The Magic 8 Ball has 20 different
answers, ranging from “It is certain” to “My sources say no.”

NOTE I don’t recommend using the Magic 8 Ball to advise you on
major life matters!

Your challenge is to make a Magic 8 Ball program:

❂ Ask a question aloud, and then press a button.

❂ Pressing the button makes your Pi select a random Yoda clip from a
folder and play it.

To get started, find some short sound files of Yoda sayings. One place
to find them is on soundboard.com. Search for “yoda” to see if you can
locate some good clips (you’ll need to create an account to download
them for your personal use).

Challenges

Summary 237
Bonus: Try to give your Pi a handy button that plays Monty Python
sound clips whenever you press it.

Continuing to explore
Now that you’ve given you Pi a new sense of touch, you’ll only need to
change a few lines of code to make many other projects, such as these:

❂ An interactive display that shows different digital photographs each
time a button is pressed

❂ Your own Raspberry Pi movie player that plays clips or movies at
the press of a button

❂ An MP3 music player that shuffles through your favorite songs

You can also expand past buttons to sensors, such as passive infrared
(PIR) sensors or cameras. For example, PIR sensors detect motion near
the sensor. These are great for creating a Pi security system or some-
thing that scares people when they come to your door. Maybe you
want to trigger a movie to make a frightening zombie head appear or
generate a blood-curdling scream. Your only limit is your imagination
and mischievous thoughts.

In this chapter, you learned that

❂ A Pi can sense the environment around it using the input capability
of the GPIO pins. This creates incredible possibilities to make the Pi
have human or even superhuman senses.

❂ Python lists make it easy to store and retrieve sets of things like
numbers, sound files, images, and videos.

❂ Buttons act as simple switches that send a small amount of electricity
to your Pi’s GPIO pins, which it can detect. You have nothing to fear
in wiring up buttons or other sensors!

❂ Python programs can run Raspbian commands using the os library.
This opens lots of possibilities for your programs, from playing

Summary

238 CHAPTER 8 DJ Raspi
music to showing or taking videos, displaying or taking pictures, and
accessing information from websites.

You’ve completed a great adventure in learning Python programming
and how to use your Raspberry Pi. But there is much more excitement
ahead of you. Check out appendix D for even more ideas of projects
you can do with your Pi. With your Raspberry Pi, knowledge of
Python, and a bit of fearlessness, the possibilities are endless!

Appendix A
Raspberry Pi troubleshooting
In this appendix, you’ll learn how to solve common issues when setting
up a Raspberry Pi. We’ll cover common Pi startup (or boot) issues,
including how to fix an issue with an SD card for your Pi or set up a new
SD card.

Making sure your Pi has power
Sometimes a Pi won’t start up. Before you try something drastic like cre-
ating a new SD card for your Pi, check the Pi’s power:

❂ When you plug in your Pi, does the Pi’s red power light come on?

Look for a small, red light (LED) on your Pi board. All Pis have them,
but you may need to take off your case if you can’t see the Pi board.
The red power light tells you that your Pi is receiving power. It should
come on when you plug in your Pi and stay on the whole time you’re
using it. If it doesn’t come on, that means your Pi isn’t receiving power.
Check that the power supply is plugged in. If you’re using a power
strip, check that it’s turned on. Sadly, some power supplies are poorly
made. Get a new power supply if it’s a power issue.

❂ Next to the red light, does the green activity light (LED) flash a lot
when you plug in your Pi?
239

240 Appendix A Raspberry Pi troubleshooting
The flashing is a sign that your Pi is doing some work. The green
activity light should turn on and off, flashing quickly at times, as your
Pi boots up. When it’s done starting up, the green light will turn off
and only come on when your Pi is actively doing something like open-
ing a game or Python. If the green light comes on and stays on, but
nothing is displayed to the screen, it’s likely an issue with your SD
card. Jump ahead to section A.4 to learn how to create a new SD card.

If you suspect a power issue, purchase a new power supply and try it
out. Providing sufficient electrical power (2 amps) at the correct volt-
age (5 volts) is important for a Pi to work correctly.

Checking the connection to your TV or monitor
If the red light is staying on and the green light turns on and off after
you plug in your Pi, but you don’t see any image on your TV or monitor,
it’s time to check the connection to your screen. Here are a few things
to investigate, depending on the type of TV or monitor you’re using.

If you’re connecting an HDMI cable from your Pi to your TV or moni-
tor, try these things:

❂ Check that the TV or monitor is turned on.
❂ Check that the TV or monitor is set to the correct input. They typi-

cally have multiple inputs, and you must press an input button to
select the proper one. Otherwise, the screen will display nothing or a
message saying no input is detected.

❂ If you have an extra HDMI cable, try using it to see if it’s an issue
with the cable.

If your setup requires that you use an adapter to connect your Pi to
your TV or monitor, then you may need to make sure your adapter
works or is the correct type. There are two common types of adapters:

❂ HDMI-to-DVI adapter—This adapter is used to connect the Rasp-
berry Pi’s HDMI cable to a monitor with a digital visual interface
(DVI) port. Sometimes you might purchase a bad adapter that
doesn’t work. If you can, try connecting your Pi to another TV or

Making your Pi a new SD card 241
monitor that uses HDMI to check whether it’s an issue with the
adapter. Again, if the red light comes on and the green light flashes,
but you don’t see anything on your screen, it’s likely an issue with
the monitor connection.

❂ HDMI-to-VGA adapter—Older monitors don’t have HDMI or DVI
ports and may only have a video graphics array (VGA) port. Your
only option may be to buy an HDMI-to-VGA adapter to connect
your Pi to the monitor. Not all HDMI-to-VGA adapters work. Your
best bet is to buy one that is advertised to work with the Pi from a
store that sells Raspberry Pis. If you aren’t sure, try hooking up your
Pi to another TV or monitor using only the HDMI cable to test
whether that is your issue.

If, after all those steps, you don’t see a picture, it’s likely an issue with
your SD card.

Pi starts booting up but then stops
Another issue you may see is that your Raspberry Pi starts booting up,
you see a series of messages displayed on the screen, and then the mes-
sages stop but the Pi doesn’t reach the Raspbian desktop or command
line. If this is the case, it’s likely that the SD card has been damaged.
But another reason is that there could be something wrong with one of
your GPIO pins.

If you’re building circuits on a breadboard connected to your Pi (see
the examples in chapters 6–8), the Pi may fail to boot all the way up if a
wire is improperly connected. To see whether this is the issue, discon-
nect the ribbon cable and breadboard from your Pi and try powering it
up again. If the problem persists, it’s likely an issue with the SD card.

Making your Pi a new SD card
Still not starting up? An issue with an SD card is a common reason.
The SD card may stop working if the Pi is turned off when information
is being stored (or written) on the card, or it may fail with age.

242 Appendix A Raspberry Pi troubleshooting
NOTE When an SD card fails, you’ll need to start over, and you’ll lose
any data or new applications installed on the card. In the future, you
can create a backup of your SD card. Check out online forums to learn
how to do this.

You have a couple options if you think this is the problem:

1 Clean and reset your SD card with the Raspberry Pi New Out of the
Box Software (NOOBS).

2 Purchase a new card from one of the many online stores that sell
Raspberry Pis. They cost around $10.

Let’s go over how to clean and set up your SD card with NOOBS. To
perform these steps, you need another computer, such as a Windows
PC or a Mac.

Reformatting your SD card
Formatting is the process of setting up the memory storage so that
information can be put on it. To reformat your SD card and set it up
with a fresh version of NOOBS, do the following:

1 Using your other computer, download and install the SDFormatter
software from the SD Association website: https://www.sdcard.org.
On the website, look under Downloads, and download the appropri-
ate version of SDFormatter for either Windows or Mac. Follow the
install instructions to load the software on your computer.

2 Insert your SD card into the computer. Take note of which drive let-
ter is assigned to the SD card after it’s inserted: it may be E:, F:, or
similar.

NOTE For the Raspberry Pi Model 2 and B+, the SD card is a
microSD card, so you’ll need a microSD-to-SD card adapter in order
for it to insert into the SD card slot on your computer. You can pur-
chase such an adapter online.

3 Open SDFormatter, select the correct drive letter for your SD card,
and then click Format (see figure A.1). It’ll ask if you want to con-
tinue. Accept the warnings to reformat the SD card.

https://www.sdcard.org

Problems not covered here 243
4 Go to the Raspberry Pi website at https://www.raspberrypi.org/
downloads, and click the link to download the NOOBS zip file. It’s a
large file, so grab a snack while you’re waiting for the download.

5 Extract the NOOBS zip file, and drag all the extracted files onto
your SD card.

6 Once the files have been copied, take the SD card out of the com-
puter and put it into your Raspberry Pi. With your keyboard,
mouse, and monitor connected, plug in the Pi to see if it boots up. If
it doesn’t, it’s probably time to purchase a new NOOBS SD card for
your Pi from a local or online store that sells Raspberry Pis.

Problems not covered here
Not everything can be covered here, so get online! A large amount of
troubleshooting information is posted on the Raspberry Pi forums. If

Figure A.1 Clean up (or reformat) your SD card using the
SDFormatter software available from the SD Association web-
site. In SDFormatter, select the drive letter for your SD card,
and click Format to have your card wiped clean. This process
means you’re starting over—you lose anything saved or
installed on your Pi—but sometimes that is the only option.

https://www.raspberrypi.org/downloads
https://www.raspberrypi.org/downloads

244 Appendix A Raspberry Pi troubleshooting
you’re stuck, search the internet for “Raspberry Pi troubleshooting,”
and you’ll find numerous resources. Although we’re all special, it’s rare
to have an issue with the Pi that no one else has discovered. Chances
are, many other people have had the same issue, so read the forums to
benefit from all the knowledge that comes from the diverse community
of Raspberry Pi users!

Appendix B
Raspberry Pi ports and
legacy boards

In this appendix, you’ll find information about some of the Raspberry Pi
ports and connections that we didn’t discuss in chapter 1. Our focus is on
the Raspberry Pi 2 Model B. The connections and ports that we’ll cover
in more detail include the following:

❂ Wireless internet connections using a USB Wi-Fi adapter

❂ 3.5 mm audio/video port

❂ Camera Serial Interface (CSI) port

❂ Ethernet port

❂ TV or monitor connection options

In section B.2 of this appendix, we’ll review key differences between the
legacy Raspberry Pi 1 models as compared to the Raspberry Pi 2 Model
B. We’ll look more at these popular, but older models:

❂ Raspberry Pi 1 Model B rev 2 (released September 2012)

❂ Raspberry Pi 1 Model B+ (released July 2014)

Let’s take a closer look at ports and connections.
245

246 Appendix B Raspberry Pi ports and legacy boards
Raspberry Pi ports
The Raspberry Pi has many different ports, and you can connect many
different things to it. In chapter 1, we covered most of the common
ones you’ll use, but we’ll talk about a few of the other ports here. For
reference, figure B.1 shows the ports and their typical uses for the
Raspberry Pi 2 Model B.

Now let’s look in a little more detail at some of the ports and connec-
tions we didn’t cover in chapter 1 or in later chapters.

General-purpose
input/output (GPIO) pins

USB
ports

Ethernet
port

Where you connect
things (with USB
connectors)

Where you connect
to the internet

Where you can hear
sounds or plug into
an old-style TV

Where you plug wires to make
cool projects with electronics

Where you store
the operating
system, apps,
and files

Where you give it
a high-def display

PROJECTS

Memory
card slot

MicroUSB
power port

3.5 mm
audio/video outHDMI port

Where you plug
in the power cord

“The brain of
the operation”

System on a chip

Figure B.1 The Raspberry Pi 2 Model B has many different input and output ports that
allow you to connect a keyboard or mouse, monitor, and even high-definition cameras.

Raspberry Pi ports 247
Connecting to a wireless network
A preferred way to connect to the internet is using a USB Wi-Fi
adapter. Once connected, you can surf the web, download applications
from the Pi Store, or remotely log in to your Pi from another computer.
Most of us don’t have our Pi set up near an Ethernet cable, so connect-
ing wirelessly is the best and only option. Let’s look at how you do it.

PLUGGING IN YOUR USB WI-FI ADAPTER

With your Raspberry Pi turned off, plug your USB Wi-Fi adapter into
one of the USB ports. There are many different USB Wi-Fi adapters that
will work for the Pi. Most kits come with one, but if you need to buy
one, refer to the Raspberry Pi forums (see https://www.raspberrypi.org/
forums/) to research those that are known to work. Stores that sell Rasp-
berry Pis also tend to sell compatible USB Wi-Fi adapters.

CONFIGURING YOUR WI-FI CONNECTION

To connect to a Wi-Fi network for the first time, follow these steps:

In the top-right corner, click the network icon (looks like two small
computers connected). You'll see a list of available Wi-Fi networks (see
figure B-2).

Click on the wireless network
you want to connect to.

In the top-right corner of your Pi’s
desktop, click on the network icon to
view a list of available wireless networks.

Figure B.2 The network connection icon is located near the top-right
corner of the Raspbian desktop. Clicking on it allows you to view
nearby wireless networks.

https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/

248 Appendix B Raspberry Pi ports and legacy boards
Click on the Wi-Fi network name that you want to connect to.

Clicking on a Wi-Fi network name will make a small box appear.
Enter the pre-shared key (also called the Wi-Fi password) and click
OK to connect (see figure B.3). The network icon will change into a
Wi-Fi icon showing the strength of the Wi-Fi signal.

Fantastic! Open a web browser, such as your Raspberry Pi’s Epiphany
web browser, and go to one of your favorite websites to enjoy your new
Wi-Fi connection.

TROUBLESHOOTING

If you weren’t able to connect, check that your pre-shared key was
entered correctly. If it's correct and your web browser shows an error
message saying "cannot resolve hostname," then your Pi may need to
renew its IP address. The IP address is a unique series of numbers that
a wireless router assigns to your Pi and other devices on the network.
To renew your Pi’s IP address, open the Terminal and enter these two
commands:

pi@raspberrypi ~ $ sudo dhclient -v -r eth0
pi@raspberrypi ~ $ sudo dhclient -v eth0

If you still are unable to connect to the internet, check with the person
who set up or manages the network to get help.

3.5 mm audio/video port
Whether it’s Beethoven, Lady Gaga, or the creeper explosions in Mine-
craft, you’ll want to listen to sounds on your Pi. Meet the 3.5 mm

Enter the pre-shared
key for the wireless
network and click
OK to connect.

Figure B.3 Enter the pre-shared key for the network and click OK to connect to it.

Raspberry Pi ports 249
audio/video port (see figure B.4). This port is a black connector1 with a
round hole. It gets its name from the fact that the hole is 3.5 mm in
diameter. Connect either headphones or a set of powered-computer
speakers to listen to sounds from your Raspberry Pi.

TIP If you connect computer speakers, use powered speakers, such
as the type used with a desktop computer or iPod. The sounds that
come out of the Raspberry Pi 3.5 mm audio/video port are only loud
enough for a set of earphones or headphones. If you would like a
roomful of people to hear your music, connect a set of powered speak-
ers, which contain a built-in amplifier to boost the sound.

Starting with the Raspberry Pi 1 Model B+ and the Raspberry Pi 2
Model B, this port can also be used to output a video signal. The video

1 In older versions of the Raspberry Pi, the port may be blue rather than black.

Top view

Side view

Figure B.4 The Raspberry Pi’s 3.5 mm audio/video port is used to connect headphones
or speakers for playing sounds. It can also function as a low-quality video output, if you
purchase a 3.5 mm-to-RCA composite video adapter.

250 Appendix B Raspberry Pi ports and legacy boards
signal isn’t high resolution like the HDMI port, but in a pinch, it’s an
option. The output video signal is composite or single-channel video,
meaning all the video signal comes out in a single wire. It’s what many
of the older DVD players and video game consoles used at one time.
You can purchase a cable that plugs into the port and at the other end
has RCA connectors for plugging your Pi into an older TV.

Camera Serial Interface: connecting a camera
If you’d like to try time-lapse photography or set up a camera to take
pictures of wild animals or your pet, you’ll want to add a camera to
your Pi. The best way to add a high-def digital camera to your Rasp-
berry Pi is with the Raspberry Pi camera module. Created by the Rasp-
berry Pi Foundation, it doesn’t usually come with Pi kits, so you’ll have
to buy it separately. The module contains a 5 megapixel camera
mounted on a circuit board and comes with a short ribbon cable (see
figure B.5).

Ribbon cable

Lens
Metal contacts
are on one side.

Figure B.5 The Raspberry Pi camera module was created by the Raspberry Pi
Foundation to take high-def digital photographs and video. The camera attaches
to the Pi using a ribbon cable that connects to the Camera Serial Interface port.
The camera module can be programmed using Python and used for nature pho-
tography or creating your own home-surveillance system.

Raspberry Pi ports 251
The camera connects to your Pi’s Camera Serial Interface (CSI) port
(see figure B.6) and can take still photographs or high-def video. The
module is able to connect easily to the Pi and record high-def video
while consuming less processing power than using a USB camera with
your Pi.

To connect the camera module, follow these steps:

1 Open the CSI connector on your Pi by lifting up on the top portion
of the black plastic connector.

2 Insert the end of the ribbon cable into the CSI connector. The shiny
metal contacts on the ribbon cable should face away from the Ether-
net port and toward the HDMI port (see figure B.6).

Camera Serial
Interface (CSI)

Raspberry Pi
camera

Ribbon cable

When plugging in the
camera, make sure the
metal contacts on the
ribbon cable are facing
the HDMI port.

Figure B.6 The Raspberry Pi camera can connect to the CSI port, which is located
between the HDMI port and the 3.5 mm audio/video port. To connect a camera, you
need to lift up the black connector, insert the ribbon cable (metal contact toward the
HDMI port), and push down on the black connector again.

252 Appendix B Raspberry Pi ports and legacy boards
3 Push the black plastic connector back down to close it, clamping the
ribbon cable into the connector.

TIP The Pi camera board comes with a short ribbon cable. If you
need a longer one, you can find extension cables at online stores such
as Adafruit.

Once the camera module is connected, you need to enable it. Open
Terminal to enter Raspbian command-line mode. Enter the command
to open the Raspberry Pi configuration menu:

pi@raspberrypi ~ $ sudo raspi-config

When the blue screen and Raspberry Pi configuration menu appear,
select option 5: Enable Camera. Select Enable, and then select Finish
on the main configuration menu. Your Pi will ask if you would like to
reboot now; select Yes. When your Pi has rebooted, test out your cam-
era by opening Terminal and typing

pi@raspberrypi ~ $ raspistill -t 3000 -o PiPhoto.jpg

This will turn on the camera and take a picture after 3 seconds. The –t
3000 part tells the raspistill program the time to wait—in this case, it’s
set it to 3,000 milliseconds or 3 seconds. The image is saved to a file
called PiPhoto.jpg. You can view the file by opening File Manager and
looking in your pi\home folder. Check out online resources for more
that you can do with your camera, including using PiCamera, a Python
library for controlling the camera.

If you’re thinking about taking videos or photos at night, there is an
alternate version of the Pi camera module called the Pi NoIR (for near
infrared) camera module. It uses the same CSI port and connects the
same way. One difference is that you’ll need to shine an infrared light
source at the target you’re filming. With the Pi NoIR, you’re armed for
some great new possibilities for nighttime mischief with your Pi.

Raspberry Pi ports 253
Ethernet port
Having a connection to the internet lets you use your Pi to surf the web
and download software; you can even control your Pi from another
computer. Your Raspberry Pi’s Ethernet port is located next to the
USB ports (see figure B.7). Using the Ethernet port is an easy way to
connect a Raspberry Pi to the internet. The only trouble is that you’ll
need to have your Pi where an Ethernet cable connection can reach it.

TV or monitor connection options
It’s easiest to connect your Pi to a TV or monitor if it has an HDMI port
or DVI port; this is covered in chapter 1. But what if you don’t have
one of those ports? There are other ways to connect your Pi. Let’s first
identify a couple different types of ports you might see on the back of
your TV or monitor and then learn how to connect your Pi to them.

Top view

Side view

Figure B.7 The Ethernet port on the Raspberry Pi supports connecting a Pi to a home net-
work. Connect an Ethernet cable from your Pi to your router or modem to access the inter-
net. With your Pi connected to a network, you can remotely connect to the Pi from another
computer using special programs such as SSH and VNC Server.

254 Appendix B Raspberry Pi ports and legacy boards
IDENTIFYING PORTS AND MAKING THE CONNECTION

Take time to study the connections on your TV or monitor. Try to iden-
tify the video ports, comparing them to the pictures of connectors in
figure B.8.

For certain ports, you may need to buy an adapter that converts one
type of port to another. We’ll cover VGA, RCA, and component ports.
See chapter 1 for the HDMI and DVI port connections.

RCA PORT

This type of port is a yellow, round connector. It’s usually found next to
red-and-white RCA audio connectors.

You’ll need to purchase a special cable that is a 3.5 mm four-pole plug
at one end and an RCA composite video and audio cable at the other

DVI port VGA port

RCA port Component port

HDMI port

Figure B.8 Common types of video input ports found on TVs and mon-
itors. A Raspberry Pi can connect to any one of these ports. Some ports
(DVI, VGA, RCA [or composite], and component) require using
special adapters or converters with a Pi.

Raspberry Pi ports 255
end. Plug the cable into the 3.5 mm audio/video port, and plug the
other end into your screen’s composite video input. Typically, the
screen will have red-and-white audio-input connectors next to the
video input. Connect the red-and-white RCA audio connectors if you
want to have sound as well (see figure B.9).

VGA PORT

A VGA port has a flat top and bottom with sides that slant inward. The
port has three rows of five round pin holes. Connecting a Pi to a TV or
monitor with a VGA port isn’t recommended because you’ll need to
purchase an adapter and may run into potential issues with configuring
your Pi to detect your monitor. If you decide to try this option, you’ll
need an HDMI-to-VGA adapter. You’ll also need to update the
configuration settings on your Raspberry Pi. This isn’t covered in this

Raspberry Pi
(top view)

3.5 mm-to-RCA
composite video
and audio cable

RCA composite video
and audio port

TV or monitor

3.5 mm audio/
video port

Figure B.9 The Raspberry Pi can be connected to a TV or monitor using an RCA video
cable. The cable connects from the Pi’s 3.5 mm audio/video port to the RCA video input
port on the TV or monitor. Using the RCA connection produces a low-quality picture but
can be a good option if you don’t have a TV or monitor that supports HDMI.

256 Appendix B Raspberry Pi ports and legacy boards
book, but the Raspberry Pi forums can provide you with more infor-
mation on altering the configuration settings to use an HDMI-to-VGA
adapter.

COMPONENT VIDEO INPUT

A component video port on a TV has a set of three round connectors
that are green, blue, and red. Using this port isn’t recommended
because of the additional cost of a converter and because you may have
to do additional configuration of your Pi to successfully connect to
your monitor. If you decide to use this option, you’ll need a component-
to-HDMI converter. Such a converter should come with its own power
supply. Avoid ones that don’t, because they won’t work with your Pi.
The converter will cost you around $50, so if you have other options,
save your money—try using a different TV or monitor, or put that
money toward a new or used LCD or LED monitor for your Pi.

With the ports covered, let’s examine the differences between the
Raspberry Pi 2 Model B and older model boards.

Legacy boards
The Raspberry Pi is made by the Raspberry Pi Foundation, and sev-
eral versions and models have been released over the last several years.
We’ll show and discuss the major differences between the boards.

Raspberry Pi 1 Model B
The Raspberry Pi 1 Model B was the version of the Pi that many came
to love. The Pi was originally conceived to help develop a new genera-
tion of programmers and hackers, but it was unexpectedly popular
with many hobbyists and entrepreneurs because of all the great things
they could do and make with it. The board looks a bit different from
the Raspberry Pi 2 Model B (see figure B.10)

Legacy boards 257
General-purpose
input/output
(GPIO) pins

USB
ports

Ethernet
port

Where you connect
things (with USB
connectors)

Where you connect
to the internet

Where you plug a Pi
camera board to take
photos and videos

Where you can plug the Pi into an
old-style TV (see HDMI port for high-def)

Where you can
hear sounds

Where you plug wires
to make cool projects
with electronics

Where you store
the operating
system, apps,
and files

Where you give it
a high-def display

PROJECTS
RCA video out

3.5 mm
audio/video out

Memory
card slot

MicroUSB
power port

HDMI port Camera Serial
Interface port

Where you plug
in the power cord

“The brain of
the operation”

System on a chip

Figure B.10 The Raspberry Pi 1 Model B has been wildly popular. It has been used for a
spectrum of applications from scientific research to art and education.

258 Appendix B Raspberry Pi ports and legacy boards
Here are a few key differences between the Raspberry Pi 1 Model B
and the Raspberry Pi 2 Model B:

❂ USB ports—The Pi 1 Model B has only two USB ports. This makes
it challenging to connect a keyboard, a mouse, and a USB Wi-Fi
adapter. A great workaround is to use a powered USB hub to con-
nect more USB devices.

❂ RCA (or composite) video out—The Pi 1 Model B has a dedicated
RCA connector to connect it to old-style TVs. The Pi 2 Model B has
integrated this into the 3.5 mm audio/video port.

❂ System on a chip—The earlier Pi Model B uses a single-core 700
MHz processor, whereas the Pi 2 Model B uses a quad-core 900
MHz processor. Thus the newer model is about four times faster.

❂ Memory card slot—The Pi 1 Model B used a standard size SD card.
The Pi 2 Model B uses a mini-SD card slot that has a spring mecha-
nism to hold the card in securely.

❂ GPIO pins—The number of pins and how they’re numbered is dif-
ferent on the earlier Model B. There are only 20 pins on the older
model; the newer model has 40 pins. If you’re working with a Pi 1
Model B, refer to online references for the pin numbering.

Raspberry Pi 1 Model B+
After the Raspberry Pi 1 Model B came the Raspberry Pi 1 Model B+.
The boards look very different. In contrast, if you compare the Rasp-
berry Pi 1 Model B+ to the later Raspberry Pi 2 Model B, they’re
nearly identical—in terms of available ports and the location of those
ports, they’re exactly the same. Figure B.11 shows the Raspberry Pi 1
Model B+.

The key differences from the Raspberry Pi 2 Model B are as follows:

❂ System on a chip—The B+ has a single-core, 700 MHz processor,
whereas the Pi 2 Model B has a quad-core, 900 MHz processor.

❂ Working memory (RAM)—The Model B+ has 512 MB compared to
the Pi 2 Model B’s 1 GB.

Legacy boards 259
General-purpose
input/output
(GPIO) pins

USB
ports

Ethernet
port

Where you connect
things (with USB
connectors)

Where you connect
to the internet

Where you plug a Pi
camera board to take
photos and videos

Where you can
hear sounds

Where you plug wires
to make cool projects
with electronics

Where you store
the operating
system, apps,
and files

Where you give it
a high-def display

PROJECTS

3.5 mm
audio/video out

Memory
card slot

MicroUSB
power port

HDMI port Camera Serial
Interface port

Where you plug
in the power cord

“The brain of
the operation”

System on a chip

Figure B.11 The Raspberry Pi 1 Model B+ was a major revision of the Raspberry Pi 1 Model
B. It increased the number of USB ports from two to four, added more pins for GPIO, and
changed to a microSD memory card slot. The ports on the Raspberry Pi 1 Model B+ are the
same as those on the Raspberry Pi 2 Model B.

260 Appendix B Raspberry Pi ports and legacy boards
Other boards
We aren’t covering the Raspberry Pi Model A or A+, but many of the
ports are the same. The main difference is that the Model A and A+
have only one USB port, no Ethernet port, and less working memory
(RAM)—256 MB. The Model A and A+ are useful when you have a
project that needs a smaller computer that requires less power than the
Model B or B+.

Appendix C
Solutions to chapter
challenges

In this appendix, you’ll find answers to the challenges presented at the
end of each chapter. For challenges that require more lines of code than
will fit on a page, I provide hints and snippets of code. The complete pro-
grams for the solutions are found in the code download that goes with this
book. Comments are included in the code to help you understand the
design and function of the programs. The solutions to the challenges are
organized by chapter. Let’s begin!

Chapter 1
At the end of the first chapter, you go on a scavenger hunt:

❂ Squirrel—To find the squirrel game, choose Menu > Games > Python
Games. After you select how you would like sound (audio) to be out-
put, you’ll see a list of Python games. The squirrel game is near the
middle of the list. Win the game, and achieve Omega Squirrel.

❂ Calculator—Select Menu > Accessories > Calculator. 89 x 34 is 3,026.
❂ Shutdown—Shut down or restart your Raspberry Pi by choosing

Menu > Shutdown. The shutdown menu lets you choose to shut down,
reboot, or log out.
261

262 Appendix C Solutions to chapter challenges
❂ Black desktop—To change the desktop background to black, right-
click anywhere on the desktop and select Desktop Preferences. In
the Desktop Preferences window, look in the middle of the screen
for a Background Color label. Click the white box to select a new
background color. Click OK to select the color, and then click Close
to close the Desktop Preferences window.

❂ Scratch bonus—To open Scratch, select Menu > Programming >
Scratch. When Scratch opens, construct a program by dragging
blocks into the script area for your cat sprite. Figure C.1 shows an
example of a dancing cat program that makes the cat dance back and
forth 10 times when the space bar is pressed.

Chapter 2
The challenges in this chapter are about displaying characters to the
screen and doing some mathematics.

To keep the cat from flipping upside down when
it points in a new direction, click this button
so that the cat will only face left and right.

Figure C.1 Make the cat dance in Scratch by dragging program
blocks into the script area.

Chapter 3 263
The Matrix
Create a screen full of 1s and 0s by using the print function and the
multiplication operator like this:

matrix = "0100101101001100100110001011001011110000010101"
print(matrix * 100)

Building a brick wall
To solve this one, create a variable named brick and give it a string of
characters like this:

brick = "|__"
print(brick * 1000)

To make the bricks look like raspberries, you could try

brick = "|_o88{_"
print(brick*300)

Use your imagination to visualize that this is a sideways raspberry
brick. The bracket is the leaf on top of the raspberry.

Pi electrons
You’re trying to figure out how many electrons per second it takes to
equal 1 amp flowing into your Raspberry Pi. The calculation using
Python looks like this:

>>> electron_charge = 1.60 * 10**-19
>>> electrons_flowing = 1 / electron_charge
>>> print(electrons_flowing)
6.249999999999999e+18

The answer is 6,250,000,000,000,000,000. That’s a lot of electrons!

Chapter 3
These challenges are about gathering input, joining together strings,
and displaying text to the screen.

Knight’s Tale Creator 3000
To make this program, you want to first print a title and then gather a
series of words from the player:

title = "Knight's Tale Creator 3000"
print("*" * 80)

264 Appendix C Solutions to chapter challenges
print(title)
print("*" * 80)

player_name = input("Enter your name: ")
adjective = input("Enter an adjective: ")
famous_person = input("Enter the name of a famous person: ")
animal = input("Enter the name of an animal: ")
vacation_place = input("Enter a place you would go on vacation: ")
sharp_thing = input("Enter the name of something sharp: ")
exclamation = input("Enter something you might exclaim aloud: ")

Next, you join the input words with the story. You can do this sentence
by sentence to make the code a bit easier to follow:

sentence1 = "There was a brave knight, " + player_name + ", who was

➥ sent on a quest to vanquish the " + adjective + " evildoer,

➥ " + famous_person + ". "
sentence2 = "Riding on his/her trusty " + animal + ", the brave " +

➥ player_name + " traveled to the faraway land of " + vacation_place

➥ + ". "
sentence3 = player_name + " battled valiantly against " + famous_person +

➥ "'s army using his " + sharp_thing + " until he defeated them. "
sentence4 = "Emerging victorious, " + player_name + " exclaimed, '" +

➥ exclamation + "!!!' I claim the land of " + vacation_place + " in the

➥ name of Python."

Finally, let’s join the sentences and display the tale to the screen:

tale = sentence1 + sentence2 + sentence3 + sentence4
print(tale)

Subliminal messages
You’re trying to create a message that’s hidden in a large display of
characters. You start by asking for the person’s name and something
they would like:

title = "Subliminal Messages"
print("*" * 80)
print(title)
print("*" * 80)

player_name = input("Enter your name: ")
thing = input("Enter the name of something you want: ")

Gather input from the player
and store it in variables.

Gather input from
the player.

Chapter 4 265

Cre
mes

Get a r
compu
Next, create a pattern of letters, numbers, and symbols in which you’ll
hide the message:

weird_characters = "*#ad@32*)23)@*sad# 2&^ 32^423!"

Finally, you create the full message by making it read “You really want
to buy [player_name] a [thing]”, but hide it by printing out on the
screen the pattern of characters before and after the message:

message = "You really want to buy " + player_name + " a " + thing + "."
print(weird_characters * 10 + message + weird_characters * 10)

Chapter 4
This chapter’s challenge is about using some of your new skills, like if/
then (or conditional) statements, as well as toolboxes like the random
module.

Rock, Paper, Scissors!
For this challenge, you start by importing the random module, creating a
title, and defining any variables you’re going to need:

import random

play_again = "Yes"
choices = ["Rock","Paper","Scissors"]

Next, you want to display the title and then start a while loop that will
gather the player’s choice and get a random computer choice:

title = "Rock, Paper, Scissors!"
print("*" * 80)
print(title)
print("*" * 80)

while play_again == "Yes":
 print("Choose Rock, Paper, or Scissors:")
 player_choice = input("Enter your choice: ")
 computer_choice = choices[random.randint(0,2)]

You then want to display the two choices and use an if statement to
test whether the player and computer choices are the same. If not, you

ate the
sage.

Hide it between the
weird characters.

Get the player’s
choice.andom

ter choice.

266 Appendix C Solutions to chapter challenges

t

want to check whether you have one of the following Player versus
Computer combinations:

❂ Rock (Player) beats scissors (Computer)
❂ Scissors (Player) beats paper (Computer)
❂ Paper (Player) beats rock (Computer)

You program all this inside the while loop because you want it to be
repeated as long as the player wants to play. At the end of the loop, the
player is asked if they want to play again:

 print("You choice is " + player_choice + ".")
 print("The computer's choice is " + computer_choice + ".")
 if player_choice == computer_choice:
 print("It's a tie")
 else:
 if ((player_choice == "Rock" and computer_choice == "Scissors") or
 (player_choice == "Scissors" and computer_choice == "Paper") or
 (player_choice == "Paper" and computer_choice == "Rock")):
 print("!" * 80)
 print("You win!")
 print("!" * 80)
 else:
 print(":(" * 40)
 print("You lose!")
 print(":(" * 40)
play_again = input("Do you want to play again [Yes/No]? ")

You create a large if statement that tests whether player_choice and
computer_choice form one of the winning combinations. Each of the
combinations is wrapped in parentheses, and you use or between them.
This ensures that if any one of the combinations is correct, the winning
message will be displayed.

Chapter 5

Introducing dramatic pauses
You were given some good hints about how to do this in chapter 5.
Rather than display too much code here, I suggest that you head over
to the code download to see what this looks like.

Display the
wo choices.

Chapter 5 267
Random demise
In this challenge, you’re creating a more random and exciting end for
your adventurer, Raspi. For this, you need to import the random module
at the top of your program, define some new variables for the different
endings, and create a list of the endings. This will allow you to have the
computer pick a number:

import time
import random

demise1 = """Raspi sees a rock on the ground and picks it up. He feels a

➥ sharp pinch and drops the rock. Just then he realizes it wasn't a rock

➥ but a poisonous spider as he collapses to the ground."""
demise2 = """Standing in the cave, Raspi sees a small rabbit approach

➥ him. Raspi gets a bad feeling about this rabbit. Suddenly, the

➥ rabbit attacks him, biting his neck."""
demise3 = """Whoa, is that a piece of gold? As Raspi walks over to it,

➥ he doesn't see a hole in the floor. Suddenly, he falls down the hole,

➥ never to be heard from again."""
endings = [demise1, demise2, demise3]

You use triple quotation marks, called string literals, to make strings
that span multiple lines. You also store the three different endings in a
list called endings.

Finally, to solve this challenge, change the wrong_answer function to get
a random number, select an ending, and then display it to the screen:

def wrong_answer():
 print("You seem to have trouble making good decisions!")
 time.sleep(2)
 random_ending = endings[random.randint(0,2)]
 print(random_ending)
 time.sleep(2)
 print("Game Over!!!")

Check the code download to see how it all works together.

Play again?
To add a play-again option, add a new variable at the top of your pro-
gram and set it equal to "Y" to start:

play_again = "Y"

Select a random ending
 from the list of endings.

268 Appendix C Solutions to chapter challenges

Turn
one
Next, put all of your cave-selection logic in a while loop. The while loop
will depend on the value of play_again, but you’ll use the string function
upper() to make the play_again value all uppercase. This helps if the
user accidentally enters y instead of Y:

while play_again.upper() == "Y":

At the end of the while loop, you also need to ask the user if they want
to play again. Store their response in the play_again variable:

print("Do you want to play again?")
play_again = input("Enter Y for yes or N for no: ")

Another part of this challenge is adding a scream sound (or any other
sound you want). First, make sure you import the os module and set up
a variable with a sound file:

import os
scream_file_path =

➥ "/usr/share/scratch/Media/Sounds/Human/Scream-male2.mp3"

Add a new line to the wrong_answer function that calls OMXPlayer and
tells it to play the scream sound:

os.system("omxplayer " + scream_file_path)

Run the program to test it out! Add it to all the other game-over end-
ings in the game to make it even more fun!

NOTE Make sure you have speakers or headphones connected, or
you won’t hear anything.

Chapter 6
Wave pattern

Let’s turn on each LED one by one. Then, when they’re all on, you’ll
turn them off one by one. Each light is turned on or off by setting its
state to HIGH (on) or LOW (off). You create the sequence by adding a time
delay between each command:

while True:
 GPIO.output(LED_pin_red, GPIO.HIGH)
 time.sleep(1)

Loop to blink the LEDs
in a wave pattern.

 on the LEDs
 by one.

Chapter 6 269

Cre
the

r
 GPIO.output(LED_pin_green, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(LED_pin_blue, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(LED_pin_red, GPIO.LOW)
 time.sleep(1)
 GPIO.output(LED_pin_green, GPIO.LOW)
 time.sleep(1)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 time.sleep(1)

You can adjust the sleep time to get a faster or slower animation.

Simon says
In this challenge, you’re creating a program that blinks lights in a pat-
tern like the classic game Simon. As before, the program requires that
the GPIO and time modules be imported and the GPIO pins be set up
properly. See the code download for the full code listing. Start by
defining the simon_says function:

def simon_says(color1, color2, color3, color4, color5):
 colors = [color1, color2, color3, color4, color5]
 for i in range(0,5):
 color = colors[i]
 if color == "red":
 GPIO.output(LED_pin_red, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(LED_pin_red, GPIO.LOW)
 elif color == "green":
 GPIO.output(LED_pin_green, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(LED_pin_green, GPIO.LOW)
 elif color == "blue":
 GPIO.output(LED_pin_blue, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 time.sleep(1)

This creates a list with all the colors and loops through them one by
one. For each one, the function checks its value and turns on and off
the LED of that color. To use the function, you call it and give it the
pattern you want to create, along with some helpful messages:

Turn off the LEDs
one by one.

ate a list with
five colors.

Loop through
the five colors.

Grab the name of a single colo
and turn the color on and off.

270 Appendix C Solutions to chapter challenges

n_says
lay
print("Ready for #1!")
time.sleep(1)
print("Simon Says: red, green, red, red, blue")
time.sleep(1)
print("Watch my lights!")
time.sleep(1)
simon_says("red", "green", "red", "red", "blue")

print("Ready for #2!")
time.sleep(1)
print("Simon Says: blue, green, blue, green, red")
time.sleep(1)
print("Watch my lights!")
time.sleep(1)
simon_says("blue", "green", "blue", "green", "red")

print("Ready for #3!")
time.sleep(1)
print("Simon Says: green, blue, blue, red, green")
time.sleep(1)
print("Watch my lights!")
time.sleep(1)
simon_says("green", "blue", "blue", "red", "green")
time.sleep(1)
print("Thank you for playing!!!")

Go, Simon, go!

Random blinking
This challenge is about blinking LEDs on and off for random amounts
of time between 0 and 3 seconds. Let’s see how to do it. I won’t show
the top part of the program with the typical setup of the GPIO pins;
refer to the code download for the full code listing. At the top of your
program, don’t forget to import the random module so you can use it to
generate random numbers:

import random

To accomplish this challenge, you need to create two variables and
store in them a random number between 0 and 3. These variables are
the amount of time the lights should stay on and off:

on_random_time = random.random() * 3
off_random_time = random.random() * 3

Call the simo
function to p
the pattern.

Chapter 7 271

Loop t
the LE

Turn t
fo

amo

Flash t
differe
20 tim
Next, you can use the random time with the sleep function to make the
light blink. Put this inside a loop, making sure that each time through
the loop, new random on and off times are created:

while True:
 on_random_time = random.random() * 3
 off_random_time = random.random() * 3

 GPIO.output(LED_pin_red, GPIO.HIGH)
 GPIO.output(LED_pin_green, GPIO.HIGH)
 GPIO.output(LED_pin_blue, GPIO.HIGH)
 time.sleep(on_random_time)

 GPIO.output(LED_pin_red, GPIO.LOW)
 GPIO.output(LED_pin_green, GPIO.LOW)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 time.sleep(off_random_time)

The off and on times change each time through the loop. Enjoy some
fun blinking!

Chapter 7
The chapter challenges involve using your Guessing Game and con-
trolling the RGB LED.

Game winner
Let’s write a function to quickly flash the RGB LED three different col-
ors. Define a new function called winning_flash:

def winning_flash():
 for i in range(0,20):
 GPIO.output(LED_pin_red, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(LED_pin_red, GPIO.LOW)
 time.sleep(0.05)

 GPIO.output(LED_pin_green, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(LED_pin_green, GPIO.LOW)
 time.sleep(0.05)

o blink
D.

Get a random
number.

he lights on
r a random
unt of time.

Turn the lights off
for a random
amount of time.

Function to create a
winning flash sequence.

hree
nt colors
es.

Flash the red LED.

Flash the green LED.

272 Appendix C Solutions to chapter challenges

C
w

 GPIO.output(LED_pin_blue, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 time.sleep(0.05)

If you need help figuring out where to add this function and call it in
your code, check the code download for more answers. You add it to
the if statement when guess is equal to number_in_my_head so you get a
wonderful flashing celebration when you win.

Easter egg
To make an Easter egg in your program, you need to have the code
check to see whether the player entered a certain value instead of the
usual number guess. Edit the main portion of the logic for the LED
Guessing Game program to first check whether the secret word was
entered. If it wasn’t, the program continues to convert the input text
into an integer and check whether the guess was correct, too high, or
too low. If the player enters the word Spam, you call an easter_egg
function:

while count_guesses < 6:
 guess = input("guess " + str(count_guesses) + " - What is your
 ➥ guess?: ")
 if guess == "Spam":
 easter_egg()
 else:
 guess = int(guess)
 count_guesses += 1
 if guess == number_in_my_head:
 flash(LED_pin_green)
 print("You won! No doom for you!")
 break
 elif guess > number_in_my_head:
 flash(LED_pin_red)
 elif guess < number_in_my_head:
 flash(LED_pin_blue)
 else:
 game_over()

As a special bonus, you can create an easter_egg function that displays
a Spam song or whatever message you’d like.

Flash the blue LED.

heck to see if “Spam”
as entered. Call the easter_egg

function.

Chapter 7 273

Functi
create
flash s
def easter_egg():
 crazy_flash()
 print("Easter Egg!!!")
 time.sleep(1)
 print("""
 Spam spam spam spam.
 Lovely spam!
 Wonderful spam!
 Spam spa-a-a-a-a-am spam spa-a-a-a-a-am spam.
 Lovely spam!
 Lovely spam!
 Lovely spam!
 Lovely spam!
 Lovely spam!
 Spam spam spam spam!
 """)

In the easter_egg function, you call a crazy_flash function. The one
shown here makes the RGB LED quickly flash purple and green. It’s
similar to how you created the winning_flash function:

def crazy_flash():
 for i in range(0,20):
 GPIO.output(LED_pin_red, GPIO.HIGH)
 GPIO.output(LED_pin_blue, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(LED_pin_red, GPIO.LOW)
 GPIO.output(LED_pin_blue, GPIO.LOW)
 time.sleep(0.05)

 GPIO.output(LED_pin_green, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(LED_pin_green, GPIO.LOW)
 time.sleep(0.05)

Create your own easter_egg and crazy_flash functions, or see the code
download for example ones that you can modify.

Warmer and colder
Let’s alter the guessing game to flash slower if you’re colder or further
from the correct answer, and flash faster if you’re warmer or closer to

Define a special
Spam Easter egg.

on to
 a crazy
equence.

Flash different
colors 20 times.

Flash the red and
blue LED together.

Flash the green LED.

274 Appendix C Solutions to chapter challenges

Calcul
differe
the gu
actua
divide
the correct answer. Add some calculations so that blink_time is deter-
mined by the difference between the guess and the correct answer:

 elif guess > number_in_my_head:
 blink_time = abs(guess - number_in_my_head)/10
 flash(LED_pin_red)
 elif guess < number_in_my_head:
 blink_time = abs(guess - number_in_my_head)/10
 flash(LED_pin_blue)

The abs function gets the absolute value—the distance a number is
from zero. You need to do this because you can’t tell your Pi to sleep
for a negative amount of time. That would be silly! You make this addi-
tion for both cases: when the player’s guess is higher and lower than
the actual number. You divide the numbers by 10 to speed up
blink_time and make sure your light isn’t blinking too slowly.

Finally, a nice touch is to add extra information to the game instruc-
tions so the player knows the blinking speed gives them a hint about
how close or far they are. See the code download for an example.

Darth Vader surprise
Using what you learned in chapter 7 and a couple of new things, let’s
see if you can make a Darth Vader image pop up on the screen when
you lose the game. You’ll need an internet connection for the next few
steps. Download a good Darth Vader image from the web, and make
sure to save it to the home\pi folder where your Python programs are
located. Take special note of the filename.

After downloading the image, install the fim image-viewing software on
your Raspberry Pi:

pi@raspberrypi ~ $ sudo apt-get -y install fim

NOTE Make sure you include a line at the top of the program to
import the os module.

When it’s done, test that fim works from Terminal:

pi@raspberrypi ~ $ fim Darth_Vader.jpg

ate the
nce between
ess and the

l number and
 by 10.

Chapter 7 275
NOTE When fim is running, you need to press Esc (escape) to exit.

When you exit fim, the screen will display remnants of the image. It’s a
funny issue, which you can fix by grabbing one of your windows by the
title bar and swiping it around the screen to erase the image remnants
and return it to the normal Raspbian desktop appearance.

In the Guessing Game, because you need to call fim from your Python
program, add a line to import the os module at the top of the program:

import os

Next, edit the game_over function to display the image. The game_over
function is called only when the player guesses incorrectly five times:

def game_over():
 print("You lost!")
 print("Better luck next time!")
 time.sleep(2)
 os.system("fim –a Darth_Vader.jpg")

Notice that you use fim with the –a option to display Darth Vader. This
option automatically scales the image to fill the full screen. Here are
some commands you can use to rotate or resize the image when it’s dis-
played on the screen:

Test it to see if it works!

Option Result

+/- Zoom in/out

A Automatically scale

F Flip

M Mirror

R/r Rotate 10 degrees clockwise / counterclockwise

Esc/q Quit

276 Appendix C Solutions to chapter challenges

 Start
loop (
Ctrl-C
Chapter 8
Let’s see what fun things you can do with buttons.

Double button press surprise
This challenge involves taking the project from the chapter and making
something new and different happen when both buttons are pressed at
the same time. In this case, you’ll make your Pi play a percussion sound
to go with your vocals and music. You don’t need to change any of the
wiring because you already have the two buttons.

First let’s add some code at the top of the program to create a path to
where the sound effects are stored:

path_effects = "/usr/share/scratch/Media/Sounds/Effects/"

Next get a list of effects from the folder and store the list in a variable,
sounds_effects. Put this next to where you load the other lists:

sounds_effects = get_MP3_sounds(path_effects)

Finally, you need to tell your program to check whether button 1 and
button 2 are pressed. You’re going to modify the main game loop to
first check if both are being pressed. You use the if/elif statement for
this. Use the Boolean “and” operator—the ampersand (&)—to make
this if statement true only if both button 1 and button 2 are pressed. If
they aren’t, the statement will next check button 1, and finally it will
check button 2:

while True:
 if GPIO.input(button_pin1) & GPIO.input(button_pin2):
 #print("You pressed both #1 and #2!")
 play_random_sound(path_effects, sounds_effects)
 time.sleep(.1)
 elif GPIO.input(button_pin1):
 #print("You pressed #1!")
 play_random_sound(path_music, sounds_music)
 time.sleep(.1)
 elif GPIO.input(button_pin2):
 #print("You pressed #2!")
 play_random_sound(path_vocals, sounds_music)
 time.sleep(.1)
 time.sleep(.1)

an infinite
must use
 to stop it).

Pause slightly before
checking the button
for input again.

Chapter 8 277
Let’s test to see if it works! Check out the code download if you need
further details on the program.

Yoda Magic 8 Ball
Before you dive into the programming for this challenge, you need to
work on the hardware. Because this challenge needs only one button,
remove button 2 from the breadboard, along with its jumper wires and
resistor. Your breadboard should have one button now, connected to
GPIO 6.

Next, gather a set of Yoda sounds. You can download sounds from
Soundboard once you create a free account. For this example solution,
you’ll use five sound files, but feel free to use any ones you want. Make
sure they’re MP3 sound files so they’ll work with OMXPlayer. The
Yoda sound files in this example solution are as follows:

❂ Fear in You.mp3
❂ I am strong.mp3
❂ No.mp3
❂ Patience.mp3
❂ Use the Force.mp3

Much like the classic Magic 8 Ball game, the answers are sometimes
clear and other times strange or unclear.

As in the DJ Raspi project, you need to import several modules for this
project, set up your Pi’s GPIO pin for input (detecting electrical sig-
nals), and create some variables. Most notably, you need to create a
variable for the folder with your Yoda sound files:

import RPi.GPIO as GPIO
import time
import random
import os

button_pin = 6
play_again = "Y"

GPIO.setmode(GPIO.BCM)
GPIO.setup(button_pin,GPIO.IN)

path_yoda = "/home/pi/yoda/"

Import the libraries
you need.

Variable for the GPIO pin
used by the button.

Set the path to the
Yoda sound files.

278 Appendix C Solutions to chapter challenges
Use the same get_MP3_sounds and play_random_sound functions from your
DJ Raspi project. One slight improvement you can make to the
play_random_sound function is to hide the messages that OMXPlayer dis-
plays on the screen (they make it harder to read what the game is tell-
ing you to do). Change this one line to divert all the output messages to
an empty or null location:

def play_random_sound(sound_path, sound_files):
 random_sound_index = random.randint(0,len(sound_files)-1)
 # print("Playing: " + sound_files[random_sound_index])
 os.system("omxplayer -o local '" + sound_path +
 "/" + sound_files[random_sound_index] + "' >/dev/null")

This is a great example of being able to reuse code! Next, you’ll gather
the list of MP3 Yoda sounds from the folder.

sounds_yoda = get_MP3_sounds(path_yoda)

After printing out a nice title, you then show instructions to the player
and enter the main loop that checks whether the button was pressed. In
this loop, you call the play_random_sound function so the Raspberry Pi
responds with an answer to the player’s question:

print("*" * 80)
print("Ask aloud a Yes or No question, then press the button: ")
print("*" * 80)

while play_again.upper() == "Y":
 if GPIO.input(button_pin):
 print("Yoda is considering your question...")
 time.sleep(1)
 print("Listen to Yoda's answer:")
 time.sleep(.5)
 play_random_sound(path_yoda, sounds_yoda)
 print("*" * 80)
 print("Ask aloud a Yes or No question, then press the button: ")
 print("*" * 80)
else:
 print("Thank you for consulting Yoda!")

Enjoy making your future decisions with the help of Yoda!

Check if the button
has been pressed.

Appendix D
Raspberry Pi projects
In this appendix, you’ll find short discussions and descriptions of projects
you can do with your Raspberry Pi. The goal is to launch you on your
way. This isn’t a detailed set of instructions, but rather hints and basic
steps for how you can make some of these projects.

Halloween heads
Halloween can be an inspiring time to use your Raspberry Pi to create a
fun or scary display for your home. Let’s face it—it’s fun to scare people
on Halloween. This project is about building a system for surprising
trick-or-treaters who come to your door. When they approach, their
movement will trigger a motion sensor that will display a video of a face
talking or singing. The video is projected onto a Styrofoam head that is
placed next to the door.

Here is what you’ll need for this project:

❂ Raspberry Pi with a breadboard, a breakout board, and a ribbon cable
❂ Passive infrared (PIR) motion sensor
❂ Projector
❂ Powered computer speakers
❂ Styrofoam heads (one or more)
279

280 Appendix D Raspberry Pi projects
❂ Small tables: one for the Pi and projector, and another for the Styro-
foam head

❂ Extension cord and power strip

❂ Video of a singing or talking head

To construct this project, here are the steps:

1 Connect your Raspberry Pi to the breadboard, and add the PIR
sensor. This is similar to how you added the mini pushbutton in
chapter 8.

2 Download a video with a talking or singing head, or record your
own. Write a Python program to play the video when the PIR sensor
is triggered. This is similar to the DJ Raspi program, which plays a
sound when the button is pressed.

3 Test your program with the sensor and video working together.

4 Set up a small table about 10 feet from your front door. On the table,
set up your Raspberry Pi, breadboard with PIR sensor, speakers,
and projector. Place the PIR sensor so that it will detect motion as
someone approaches the door. Use an extension cord to provide the
electrical power needed. (Only set this up if no rain is predicted!)

5 Set up another small table or box next to your door. Place the Styro-
foam head on it. Position the head so that the projector’s video dis-
plays the face on the head. Test and adjust the projector and the
positioning of the head so that everything is aligned. When the video
plays, the head will appear to come alive!

Here are a couple of key resources that may help you with this project:

❂ Visit the SparkFun website at www.sparkfun.com and search for
PIR sensors. This company has lots of great components that can
help you make almost any electronics project you can imagine.

❂ You can make the whole screen blank (all black) by using OMX-
Player with the blank option like so:

pi@raspberrypi ~ $ omxplayer –b singheads.mp4

Time-lapse photography 281
Time-lapse photography
You can easily connect a high-definition camera to your Raspberry Pi
that is capable of taking digital photographs or videos (see appendix B
for more information). In this project, you explore how you can set up
your Pi to take time-lapse photographs.

Time-lapse photography typically involves taking a series of photo-
graphs and then stitching them together into a video. The individual
photographs may be taken seconds, minutes, hours, or days apart. This
technique is commonly used to show an accelerated view of something
happening. Here are some examples of time-lapse scenes:

❂ A glacier slowly retreating over the course of a year

❂ The sun rising and setting, and the moon rising and setting

❂ A plant growing

Here are some simple steps to get started with a time-lapse photogra-
phy project:

1 Set up your Raspberry Pi with the Pi camera kit, and test that it’s
working.

2 The subject of your time lapse determines how you need to mount
the Pi camera. The camera doesn’t come with a case or any way to
hold it up, so you’ll need to engineer a mount of some kind. Card-
board, hot glue, craft sticks, and duct tape are all great materials for
fabricating something to hold up the camera. LEGO blocks can also
be a useful material.

If you’re going to leave the camera outside for a long time, consider
whether you’ll need to waterproof your Raspberry Pi. Plastic con-
tainers left over from takeout food can make a great case; you’ll just
need to make holes in the container for wires and seal any gaps with
hot glue.

3 Plan how to get electrical power to your Pi. That may determine
where you set up the Pi and camera.

282 Appendix D Raspberry Pi projects
4 Program your Raspberry Pi to take the photographs and store them
in a folder. Open LXTerminal, and install the picamera module for
Python 3.X:

pi@raspberrypi ~ $ sudo apt-get install python3-picamera

To get you started, you can use a program like this to capture a series
of photographs. This example takes a photograph every 3 minutes:

import time
import picamera

with picamera.PiCamera() as camera:
 camera.start_preview()
 time.sleep(2)
 for filename in camera.capture_continuous
 ➥ ('image{counter:04d}.jpg'):
 print('Captured %s' % filename)
 time.sleep(180)

When the camera has finished taking images, you can press Ctrl-C to
end the program.

NOTE This program saves the images in the folder where the pro-
gram is being run. You should make a folder for your time-lapse proj-
ect and run the program from that folder.

Next you’ll need to combine the images into a video. You can use an
application called mencoder to turn images into a movie. Install it like this:

pi@raspberrypi ~ $ sudo apt-get install mencoder

Then you’ll create a simple text file that contains all the names of the
images you want to combine. You can use the list command (ls), select
all the files ending in .jpg, and output the list to a text file:

pi@raspberrypi ~ $ ls image*.jpg > list.txt

Next use mencoder to combine all the individual images into a time-lapse
movie. This example makes a movie called TimeLapseMovie.avi:

pi@raspberrypi ~ $ mencoder -nosound -ovc lavc -lavcopts

➥ vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf scale=1920:1080 -o

➥ TimeLapseMovie.avi -mf type=jpeg:fps=24 mf://@list.txt

Give the camera a couple
seconds to start up.

Start a loop to
take pictures
repeatedly.

Wait 3 minutes.

Raspberry Pi robot 283
When it’s done, you can watch the movie using OMXPlayer:

pi@raspberrypi ~ $ omxplayer TimeLapseMovie.avi

You can read more online about the mencoder options available.

Raspberry Pi robot
The Raspberry Pi can readily be turned into a robot by adding servo-
motors and sensors using the Pi’s GPIO capabilities. The Pi can be pro-
grammed in Python to make decisions, gather input from sensors, and
control servomotors to interact with the world.

Although you could assemble you own robot from scratch, there are
some Raspberry Pi robot kits that can make it a lot easier. For this
project, we’ll discuss using the GoPiGo kit from Dexter Industries. It’s
an affordable, well-engineered kit that within a few hours will let you
have your Pi moving around under your control. You can add an ultra-
sonic sensor (detects objects in front of it) and write a Python program
to make your Pi GoPiGo robot navigate the room autonomously (on its
own) using the same if/else statements you learned earlier.

We’ll cover the basic steps for building the GoPiGo (you can read the
full set of instructions online at www.dexterindustries.com/GoPiGo):

1 Build your GoPiGo robot following the online instructions. Connect
your Raspberry Pi to the robot: it fits upside down on top of the
GoPiGo board. The Pi communicates to the GoPiGo board through
the GPIO pins.

2 Insert the GoPiGo SD card into your Pi. The SD card contains a
custom distribution of Raspbian. Connect your Pi to a keyboard,
mouse, USB Wi-Fi adapter, and TV or monitor. Later you’ll be able
to connect to your GoPiGo remotely from another computer. Power
it up using the provided battery pack. Boot up your Pi, and connect
the GoPiGo to your wireless network.

3 Set up your computer to remotely access your Pi from another com-
puter. This means you’ll be able to see your Raspbian desktop from
another Windows or Mac computer in your home. To do so, you use
software called VNC. You need to install VNC Server on your

www.dexterindustries.com/GoPiGo

284 Appendix D Raspberry Pi projects
Raspberry Pi and then install VNC Client on your computer. There
are some great tutorials on how to do this, such as the one on the
Adafruit website. Go to https://learn.adafruit.com, and search for
“installing VNC.”

4 Using VNC, connect to your Raspberry Pi from your home Win-
dows or Mac computer. Once you’re sure VNC Server and Client are
working properly, you can disconnect your Pi from the monitor, key-
board, and mouse, leaving only the USB Wi-Fi adapter plugged in.
Your GoPiGo is ready to move!

5 From the VNC Client on your Windows or Mac, open LXTerminal
on your Pi. Change directories to the GoPiGo Python folder on the
desktop using the cd command:

cd Desktop/GoPiGo/Software/Python/

Run the GoPiGo test controller Python program:

sudo python basic_test_all.py

After the program starts, you can use these keys to move your GoPiGo
around the room:

Excellent! You’ve made your Raspberry Pi into a robot. Add sensors
and make programs to navigate around a room, or attach a Pi camera
and stream video to another computer so you can see what your Rasp-
berry Pi sees.

w Move forward

a Turn left

s Move back

d Turn right

x Stop

t Increase speed

g Decrease speed

 Index
Symbols
_ (underscore) 44
: (colon) 109, 112, 141
. (dot notation) 128
& (ampersand) 233
== (equality operator) 106, 142

Numerics
3.5 mm audio/video port 248–250

A
-a option 275
addition (math) 35–37
additive color 187
ampersand (&) 233
and operator 130
anode, defined 164
append method 224
as keyword 169
ASCII art 98
assignment operator 42
audio formats 207–208

B
Blinky Pi project

breadboards
electrical circuitry and 160–161
holes in 159–160
overview 158–159

circuit for
adding LED 164

adding more LEDs 171–173
connecting jumper from GPIO pin 163
connecting resistor 164–166
overview 161–166

GPIO pins
breaking out to breadboard 155–156
overview 153–155

overview 151–153
program for

adding more LEDs 173–174
loading libraries 169
main program loop 170
overview 166–168
running 168
setting up GPIO pin for output 170
troubleshooting 168–169

Boolean logic 108
booting

defined 19
issues 241

breadboards
breaking out GPIO pins to 155–156
circuit for Light Up Guessing Game

adding jumper to ground 186–188
adding resistors 185–186
connecting GPIO jumper wires

183–184
connecting RGB LED 182–183
sketch 180–182

connecting Pi to 179
electrical circuitry and 160–161
285

286 INDEX
breadboards (continued)
finding holes on 179–180
holes in 159–160
overview 158–159

bugs, defined 81
buttons

connecting in DJ Raspi project 210,
212–214, 218

connecting jumper wires to 215, 218

C
Camera Serial Interface. See CSI
capitalize method 78
cases 6
cathode, defined 164
central processing unit. See CPU
colon (:) 109, 112, 141
command-line mode 23
commenting code 73–75
common cathode RGB LEDs 182
comparison operators 108
component video input 256
computer vision 205
concatenation 80
conductance, defined 161
CPU (central processing unit) 7
CSI (Camera Serial Interface) 250–252
current, defined 160

D
datetime module 115
debugging 81–83
desktop, booting to 24–26
digital visual interface. See DVI
division (math) 37–38
DJ Raspi project

audio formats 207–208
circuit for

adding jumper to GPIO pin 216, 218
adding mini pushbutton 212–214, 218
adding resistor 215–216, 218
connecting jumper wire to

button 215, 218
sketch 211–212

MP3 format 208–209
overview 204–207

program for
building list of sound files with os

library 227–228
creating functions 231–234
getting length of list 226
getting list of sounds 221–225
getting value of item stored in

list 225–226
initializing buttons 220–221
overview 218–220
playing sound when button is

pressed 228–231
testing 234–235

troubleshooting 209–210, 235
wiring button 210

dot notation 78, 128
DVI (digital visual interface) 240
DVI port devices 16

E
electricity, defined 160
elif statements 129–130
else statements 127
equality operator (==) 106, 142
ethernet 6
Ethernet port 253
exponents 38–39

F
File Manager 27
fileinput module 115
fim program 274
flags, command-line 209
floating-point numbers 40
flow diagrams

overview 124–126
translating into code 131–133

for loop 228
functions

creating 133–138
creating for DJ Raspi project 231–234
defined 41
left cave exploration in Raspi’s Cave

Adventure 138–139
methods vs. 78, 128

INDEX 287
right cave exploration in Raspi’s Cave
Adventure 139–141

troubleshooting 141–142
when to use 194

G
GoPiGo kit 283
GPIO pins 17

adding jumpers to 216, 218
breaking out to breadboard 155–156
connecting jumper wires for Light Up

Guessing Game 183–184
defined 153
overview 153–155
purpose of 176
setting up pins for RGB LEDs 190–194

GPIO.cleanup() command 168
GPU (graphics processing unit) 143
GUI (graphical user interface) mode 23

H
Halloween heads project 279–280
hardware

cases 6
HDMI port

connecting TV or monitor 14–15
DVI port devices 16
overview 13–14

overview 4–6
ports 17
power supply 17
SD cards

inserting card in slot 12
NOOBS on 12
overview 11–12
portability of 13
replacing cards 12–13

system on a chip 7–8
USB ports

connecting keyboard 9–10
connecting mouse 10
overview 8–9

wireless keyboard and mouse
combination 10

hashtag comments 73–75

HDMI port
connecting TV or monitor 13–15
defined 6
DVI port devices 16
overview 13–14

I
IDLE (Integrated DeveLopment Envi-

ronment)
creating programs 54–56
overview 28–29, 33–34, 53–54
saving programs 56

if statements
in Norwegian Blue Guessing

Game 105–109
using in loops 113

import statements 116
index, list 225
input

defined 6
getting from player 101–105
handling unexpected

and operator 130
elif statements 129–130
not operator ??–131131
or operator 129–131
overview 127–129

input function 75–76, 102, 126
Integrated DeveLopment Environment.

See IDLE

J
jumper wires 152

K
keyboard

connecting to USB port 9–10
wireless 10

L
Leafpad 57–60
LEDs (light-emitting diodes) 151
legacy boards

Raspberry Pi 1 Model B 256–258
Raspberry Pi 1 Model B+ 258

legs, defined 164, 180

288 INDEX
len() function 46, 226
libraries

loading 169
using in programs 115–116

Light Up Guessing Game
breadboards

connecting Pi to 179
finding holes on 179–180

circuit for
adding jumper to ground 186–188
adding resistors 185–186
connecting GPIO jumper wires

183–184
connecting RGB LED 182–183
sketch 180–182

overview 176–179
program

guessing game logic 197–198
main game loop 195–197
overview 188–190
play again logic 198–200
playing game 200
setting up GPIO pins for RGB

LED 190–194
troubleshooting 200–201

RGB LEDs 180
light-emitting diodes. See LEDs
list-comprehension feature 228
live streaming video 143–145
Livestreamer 143
loops

using if statements in 113
while loops

breaking out of 113–114
overview 110–113
troubleshooting 114–115

lower method 78

M
math module 115
mathematical operators

adding and subtracting 35–37
exponents 38–39
multiplying and dividing 37–38
order of operations 48–50

remainders 38
square roots 39

memory 8
See also SD cards

mencoder program 282
methods, functions vs. 78, 128
microSD cards 12
Minecraft Pi 85–88
miniSD cards 12
MIT (Massachusetts Institute of

Technology) 118
monitors

component video input 256
connecting to HDMI port 14–15
identifying ports 254
RCA port 254–255
VGA port 255–256

monitors, checking connection to 240–241
mouse

connecting to USB port 10
wireless 10

MP3 format 207–209
multiplication 37–38

N
nano text editor 59
negative power bus 218
NOOBS (New Out of the Box

Software) 12, 242
Norwegian Blue Guessing Game

getting player input 101–105
if statements 105–109
overview 91–94
using libraries to generate random

numbers 115–116
welcome message and instructions

94–100
while loops

breaking out of 113–114
overview 110–113
troubleshooting 114–115

not operator 130–131

O
-o switch 209–210
Ogg format 207

INDEX 289
OMXPlayer 208, 280
operators

adding and subtracting 35–37
comparison 108
exponents 38–39
multiplying and dividing 37–38
order of operations 48–50
remainders 38
square roots 39

or operator 129–131
OS (operating system) 19, 227
os module 227, 230
output, defined 6

P
Pi NoIR module 252
Pi Store 29–30
picamera module 282
PIR (passive infrared) 279
ports 17

3.5 mm audio/video port 248–250
Camera Serial Interface 250–252
defined 9
Ethernet port 253
overview 246
TV/monitor

component video input 256
identifying ports 254
RCA port 254–255
VGA port 255–256

positive power bus 215, 218
power supply 17
print function 50

Python 50–51
troubleshooting using 200

PWM (pulse width modulation) 188
Python

creating programs 54–56
IDLE 28, 33–34, 53–54
mathematical operators

adding and subtracting 35–37
exponents 38–39
multiplying and dividing 37–38
order of operations 48–50
remainders 38

square roots 39
print function 50–51
saving programs 56
troubleshooting 51–52
type checking 40–41
using text editors 54
variables

box analogy 47
changing value of 46–50
creating and assigning values 42
defined 41–42
displaying values 42–45
naming 43–44
reassignment of 48
strings in 45–46

Q
quotation marks 45

R
RAM (random access memory) 8
randint tool 116
random module 115
random number generation 115–116
Raspberry Pi

cases 6
hardware overview 4–6
HDMI port

connecting TV or monitor 14–15
DVI port devices 16
overview 13–14

overview 4
Pi Store 29–30
ports 17
power supply 17
powering on checklist 18–19
Raspberry Pi 1 Model B 256–258
Raspberry Pi 1 Model B+ 258
Raspbian operating system

applications on 26
booting to desktop 24–26
configuring 21–24
files and folders 26–27
IDLE 28–29
installing 19–21

290 INDEX
Raspberry Pi (continued)
SD cards

inserting card in slot 12
NOOBS on 12
overview 11–12
portability of 13
replacing cards 12–13

system on a chip (SoC) 7–8
updating 166
USB ports

connecting keyboard 9–10
connecting mouse 10
overview 8–9

wireless keyboard and mouse
combination 10

Raspi’s Cave Adventure
flow diagrams

overview 124–126
translating into code 131–133

functions
creating 133–138
left cave exploration 138–139
right cave exploration 139–141
troubleshooting 141–142

handling unexpected input
and operator 130
elif statements 129–130
or operator 129–131
overview 127–129

left cave 124
overview 121–124
right cave 124

raspistill program 252
RCA port 254–255
refactoring, defined 137
remainders 38
remove method 224
resistance, defined 161
resistors

adding for DJ Raspi project 215–216,
218

connecting for Light Up Guessing
Game 185–186

purpose of 161

RGB LEDs
connecting to breadboard 182–183
overview 180

robot project 283–284

S
Scratch, overview 118–119
SD cards

inserting card in slot 12
NOOBS on 12
overview 11–12
portability of 13
reformatting 241–243
replacing cards 12–13

SDFormatter software 242
setmode function 170
Silly Sentence Generator 3000 69–71,

 73–77, 79–88
commenting code 73–75
creating program 69–71
debugging 81–83
input function 75–76
joining strings

building sentence 80–81
overview 77–79
using multiple inputs 79

Minecraft Pi 85–88
overview 67–69
printing to screen 83–84
saving program 71–73

SoC (system on a chip) 7–8
SparkFun website 280
square brackets 223
square roots 39
streaming video 143–145
string literals 97, 267
string methods 128
strings

joining
building sentence 80–81
overview 77–79
using multiple inputs 79

storing in variables 45–46
subliminal messages 89
subtraction (math) 35–37

INDEX 291
sudo command 168, 200
switches, command-line 209
system on a chip. See SoC

T
TAAG (text-to-ASCII art generator) 99
time-lapse photography project 281–283
triple double quotes 97
troubleshooting

checking monitor connection 240–241
checking power 239–240
DJ Raspi project 209–210, 235
functions 141–142
incomplete booting 241
Light Up Guessing Game

program 200–201
Python 51–52
reformatting SD card 241–243
searching online for help 243
while loops 114–115

TV connections
component video input 256
connecting to HDMI port 14–15
identifying ports 254
RCA port 254–255
VGA port 255–256

type checking 40–41

U
underscore (_) 44
upper() method 78, 129
USB ports

connecting keyboard 9–10
connecting mouse 10
defined 6
overview 8–9

V
variables

box analogy 47
changing value of 46–50
creating and assigning values 42
defined 41–42
displaying values 42–45
naming 43–44
reassignment of 48
strings in 45–46

VGA (video graphics array) 241
VGA port 255–256
video

live streaming 143–145
playing videos 142–143

voltage, defined 160

W
WAV format 207
while loops

breaking out of 113–114
overview 110–113
troubleshooting 114–115
using if statements in 113

whitespace 36
wireless keyboard/mouse 10

MORE TITLES FROM MANNING
Hello World!
Second Edition
by Warren Sande and Carter Sande

ISBN: 9781617290923
464 pages
$39.99
December 2013

For ordering information go to www.manning.com

Hello App Inventor!
by Paula Beer and Carl Simmons

ISBN: 9781617291432
360 pages
$39.99
October 2014

Hello! iOS Development
by Lou Franco and Eitan Mendelowitz

ISBN: 9781935182986
344 pages
$29.99
July 2013

https://www.manning.com/books/hello-world-second-edition
https://www.manning.com/books/hello-app-inventor
https://www.manning.com/books/hello-ios-development

	Raspberry Pi!
	Brief contents
	Contents
	Preface
	Acknowledgments
	About this book
	Part 1 Getting started
	1 Meet Raspberry Pi
	What is the Raspberry Pi?
	Exploring your Raspberry Pi’s parts: hardware
	Giving your Pi a cozy home: Pi cases
	The brain of your Pi: system on a chip
	Connecting a keyboard and mouse: USB ports
	Storing memories: your Pi gets a memory card
	Connecting a TV or monitor: HDMI port
	Other ports and connections
	Powering your Pi: microUSB power port
	It’s alive! Plugging in the Pi

	Getting your Pi running: software
	Installing the Raspbian operating system
	Configuring the operating system: making it yours
	Saving your configuration and rebooting

	Getting around: learning Raspbian
	Finding and opening applications on your Raspberry Pi
	Your files and folders
	Writing code

	Fruit Picker Extra: shopping at the Pi Store
	Challenge
	Scavenger hunt

	Summary

	2 Exploring Python
	Playing with Python
	Discovering Python’s mathematical operators
	Adding and subtracting
	Multiplying and dividing
	Figuring out whole numbers and remainders
	Exponents
	Square roots
	Challenge: stacking Pis!

	Storing information using variables
	Creating variables and assigning values
	Displaying variable values
	Storing strings in variables
	Changing the value of variables

	Displaying text on a screen
	Using the print function
	Troubleshooting

	Creating programs
	Writing Python programs with IDLE
	Starting a new program
	Saving programs
	Python interpreting the program

	Fruit Picker Extra: creating documents
	Writing silly things and saving them

	Challenges
	The matrix
	Building a brick wall
	Pi electrons

	Summary

	Part 2 Playing with Python
	3 Silly Sentence Generator 3000: creating interactive programs
	Creating a welcome message
	Starting a new program
	Saving the program

	Adding notes in your code
	Using hashtags for comments

	Getting and storing information
	Joining strings
	Using more than one input
	Building the sentence
	Troubleshooting

	Completing the program: displaying the silly sentence
	Fruit Picker Extra: Minecraft Pi
	What's Minecraft?
	Launching Minecraft Pi
	Python programming interface to Minecraft Pi

	Challenges
	Knight’s Tale Creator 3000
	Subliminal messages

	Summary

	4 Norwegian Blue parrot game: adding logic to programs
	Displaying the game introduction
	Creating the game welcome message and instructions

	Collecting input from the player
	Using if statements to respond to users in different ways
	Practicing if statements

	Using while loops to repeat things
	A closer look at while loops
	Breaking out of a while loop
	Practicing while loops

	Using Python code libraries to generate random numbers
	Fruit Picker Extra: Scratch
	Challenges
	Summary

	5 Raspi’s Cave Adventure
	Project introduction: Raspi’s Cave Adventure
	Left cave
	Right cave

	Hey wait, you need a plan (flow diagrams)
	Which way should Raspi go? (checking input)
	Handling unexpected input
	Turning flow diagrams into code

	Simplify! Making your own functions
	Finishing the left cave
	Exploring the right cave
	Troubleshooting

	Fruit Picker Extra: playing video
	Live streaming: exploring from your Pi

	Challenges
	Introducing dramatic pauses
	Random demise
	Play again?
	Scream!

	Summary

	Part 3 Pi and Python projects
	6 Blinky Pi
	Setting up your Pi for physical computing
	GPIO pins
	Breaking out the GPIO pins to a breadboard
	Breadboard basics

	Building the LED circuit
	Step 1. Connect the jumper from GPIO pin 21
	Step 2. Add the red LED
	Step 3. Connect a resistor

	Software: blinkLED program
	Running the program
	blinkLED: how it works

	Adding more LEDs
	Building the circuit

	Multiple LEDs: program it!
	Challenges
	Wave pattern
	Simon Says
	Random blinking

	Summary

	7 Light Up Guessing Game
	Guessing Game design
	Hardware: building the circuit
	Numbers, numbers, numbers!
	Wiring an RGB LED
	Circuit sketch

	Software: LEDGuessingGame program
	Setting up the GPIO pins for the RGB LED
	Main game loop and logic
	Guessing Game Loop and logic
	Adding the Play Again Loop and logic
	Playing the game
	Troubleshooting

	Challenges
	Game winner
	Easter egg
	Warmer and colder
	Darth Vader surprise

	Summary

	8 DJ Raspi
	Project overview
	Setting up your Pi to play sounds
	OMXPlayer and MP3s
	Troubleshooting

	Hardware: building the circuit
	Wiring a button
	Circuit sketch
	Adding the second button

	Software: the DJ Raspi program
	Setting up the Pi: initializing the buttons
	Getting a list of sounds
	Getting a value of an item stored in a list
	Getting the length of a list
	Building a list of sound files with the os library
	Playing a sound when a button is pressed
	Functions!
	Testing: your first gig as DJ Raspi

	Troubleshooting
	Challenges
	Double button press surprise
	Yoda Magic 8 Ball
	Continuing to explore

	Summary

	Appendix A Raspberry Pi troubleshooting
	Making sure your Pi has power
	Checking the connection to your TV or monitor
	Pi starts booting up but then stops
	Making your Pi a new SD card
	Reformatting your SD card

	Problems not covered here

	Appendix B Raspberry Pi ports and legacy boards
	Raspberry Pi ports
	Connecting to a wireless network
	3.5 mm audio/video port
	Camera Serial Interface: connecting a camera
	Ethernet port
	TV or monitor connection options

	Legacy boards
	Raspberry Pi 1 Model B
	Raspberry Pi 1 Model B+
	Other boards

	Appendix C Solutions to chapter challenges
	Chapter 1
	Chapter 2
	The Matrix
	Building a brick wall
	Pi electrons

	Chapter 3
	Knight’s Tale Creator 3000
	Subliminal messages

	Chapter 4
	Rock, Paper, Scissors!

	Chapter 5
	Introducing dramatic pauses
	Random demise
	Play again?

	Chapter 6
	Wave pattern
	Simon says
	Random blinking

	Chapter 7
	Game winner
	Easter egg
	Warmer and colder
	Darth Vader surprise

	Chapter 8
	Double button press surprise
	Yoda Magic 8 Ball

	Appendix D Raspberry Pi projects
	Halloween heads
	Time-lapse photography
	Raspberry Pi robot

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Raspberry Pi-back

