

Hello! Python

Hello! Python

Anthony Briggs

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

User Friendly artwork, characters, and strips used by permission from UserFriendly.Org.
All Rights Reserved.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without
elemental chlorine.

Development editor: Sebastian Stirling
Manning Publications Co. Technical proofreader: Marion Newlevant
20 Baldwin Road Copyeditors: June Eding, Tiffany Taylor
PO Box 261 Typesetter: Marija Tudor
Shelter Island, NY 11964 Cover designer: Leslie Haimes

ISBN: 9781935182085

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Brief contents
1 WHY PYTHON? 1

2 HUNT THE WUMPUS 28

3 INTERACTING WITH THE WORLD 70

4 GETTING ORGANIZED 99

5 BUSINESS-ORIENTED PROGRAMMING 143

6 CLASSES AND OBJECT-ORIENTED PROGRAMMING 181

7 SUFFICIENTLY ADVANCED TECHNOLOGY… 218

8 DJANGO! 253

9 GAMING WITH PYGLET 288

10 TWISTED NETWORKING 320

11 DJANGO REVISITED! 358

12 WHERE TO FROM HERE? 383
v

Contents
Foreword xv
Preface xvii
Acknowledgments xix
About this book xxi
About Hello! books xxv

1 Why Python? 1
Learning to program 2

Telling a computer what to do 3 ❍ Programming is made of
ideas 5 ❍ Programming is design 5

What makes Python so great? 7
Python is easy 7 ❍ Python is a real language 8 ❍ Python
has “batteries included” 8 ❍ Python has a large community 9

Setting up Python for Windows 9
Installing Python 9 ❍ Running Python programs on Windows 12
Running Python programs from the command line 14

Linux 18
Installing under Linux 18 ❍ Linux GUI 18 ❍ Linux command
line 20

Macintosh 21
Updating the shell profile 21 ❍ Setting the default
application 22

Troubleshooting 23
A syntax error 24 ❍ An incorrect file extension (Windows) 24
Python is installed in a different place (Linux) 24
vii

viii Contents
Text editors and IDEs 24
Summary 26

2 Hunt the Wumpus 28
What’s a program? 29

Writing to the screen 30 ❍ Remembering things with
variables 31 ❍ Asking the player what to do 32 ❍ Making
decisions 32 ❍ Loops 34 ❍ Functions 35

Your first program 36
The first version of Hunt the Wumpus 37 ❍ Debugging 39

Experimenting with your program 40
More (or fewer) caves 40 ❍ A nicer wumpus 40 ❍ More
than one wumpus 41

Making the caves 41
Lists 42 ❍ For loops 44 ❍ Coding your caves 44

Fixing a more subtle bug 47
The problem 47 ❍ The solution 48 ❍ Coding connected
caves 48

Clean up your code with functions! 51
Function basics 51 ❍ Variable scope 53 ❍ Shared state 54

Fixing the wumpus 55
Interacting with the caves 56 ❍ Creating the caves 57
Interacting with the player 59 ❍ The rest of the program 60

Bows and arrows 62
More atmosphere 65
Where to from here? 68

Bats and pits 68 ❍ Making the wumpus move 68
Different cave structures 69

Summary 69

3 Interacting with the world 70
“Batteries included”: Python’s libraries 71

Python’s standard library 72 ❍ Other libraries 72
Using libraries 72 ❍ What’s in a library, anyway? 74

Contents ix
Another way to ask questions 77
Using command-line arguments 77 ❍ Using the sys
module 78

Reading and writing files 79
Paths and directories (a.k.a. dude, where’s my file?) 79
Paths 81 ❍ File, open! 82

Comparing files 83
Fingerprinting a file 83 ❍ Mugshots: storing your files’
fingerprints in a dictionary 85

Putting it all together 86
Testing your program 91
Improving your script 93

Putting results in order 93 ❍ Comparing directories 95

Where to from here? 97
Summary 98

4 Getting organized 99
Planning: specifying your program 100
How do you know your program works? 101

Testing manually—boring! 101 ❍ Functional testing 102
Unit testing: make the computer do it 102 ❍ Test-Driven
Development 102

Writing the program 103
Making your tests pass 105

Putting your program together 107
Testing user interfaces 107 ❍ What do you do with your
input? 109 ❍ Running commands 110 ❍ Running your
program 113

Taking stock 114
What to do next? 115 ❍ I’m very busy and important 118
List comprehensions 119 ❍ Oops, a bug! 122

Saving your work 127
Editing and deleting 131

A quick fix 131 ❍ Deleting to-dos 134 ❍ Editing
to-dos 137

x Contents
Where to from here? 140
A help command 140 ❍ Undo 141 ❍ Different
interface 141 ❍ Time management and estimation 141
Study one of the unit-testing frameworks 142

Summary 142

5 Business-oriented programming 143
Making programs talk to each other 144

CSV to the rescue! 145 ❍ Other formats 146

Getting started 147
Installing Beautiful Soup 148 ❍ Installing Firefox and
Firebug 148 ❍ Examining the page 149

Downloading the page with Python 150
Chopping out the bit you need 152 ❍ Adding extra
information 153 ❍ Caveats for web scraping 156

Writing out to a CSV file 156
Emailing the CSV file 159

Email structure 159 ❍ Creating an email 160 ❍ Sending
email 162 ❍ Other email modules 163

A simple script—what could possibly go wrong? 164
No internet 165 ❍ Invalid data 165 ❍ Data you haven’t
thought of 165 ❍ Unable to write data 166 ❍ No mail
server 166 ❍ You don’t have to fix them 166

How to deal with breaking scripts 166
Communication 167 ❍ Tolerance of failure 167 ❍ Don’t
break in the first place 168 ❍ Fail early and loudly 168
Belt and braces 169 ❍ Stress and performance
testing 169 ❍ Try again later 169

Exceptions 172
Why use exceptions? 172 ❍ What it means when your
program goes “bang!” 173 ❍ Catching errors 176 ❍ The
traceback module 178

Where to from here? 179
Summary 179

Contents xi
6 Classes and object-oriented programming 181
What exactly are classes? 182

Classes contain data 182 ❍ They’re a type of their own 182
How do they work? 182 ❍ Your first class 183

Object-oriented design 186
Player input 189

First steps: verbing nouns 189

Treasure! 193
Where should your methods go? 193 ❍ Finding the
treasure 195 ❍ Picking up the treasure 196

Further into the caves 199
Here there be monsters! 205

Creating your monsters 205 ❍ Some object-oriented
design tips 207 ❍ Tying it all together 209

Danger and excitement 212
Where to from here? 215

Add more monsters and treasure 215 ❍ Extend combat
and items 216 ❍ Add more adventure 216 ❍ Experiment
with verbs and nouns 216 ❍ Investigate some more advanced
features of classes 216

Summary 217

7 Sufficiently advanced technology… 218
Object orientation 219

Mixin classes 219 ❍ super() and friends 222

Customizing classes 223
__getattr__ 223 ❍ __setattr__ 224
__getattribute__ 225 ❍ Properties 227

Emulating other types 229

Generators and iterators 233
Iterators 233 ❍ Generators 235 ❍ Generator
expressions 236

xii Contents
Using generators 237
Reading files 237 ❍ Getting to grips with your log
lines 241 ❍ Pulling out the bits 242

Functional programming 246
Side effects 247 ❍ Map and filter 247 ❍ Passing and
returning functions 248

Where to from here? 251
Summary 251

8 Django! 253
Writing web-based applications with Django 254

Installing Django 255 ❍ Setting up Django 255

Writing your application 260
The simplest possible todo list 260 ❍ Using
a template 261

Using a model 264
Setting up the database 264 ❍ Creating a model 265
Django’s admin module 267 ❍ Adding an admin
interface 269

Making use of your data 271
Using the model 271 ❍ Setting up your URLs 274
Submitting forms 277 ❍ Handling individual todos 280

Final polishing 285
Where to from here? 286
Summary 287

9 Gaming with Pyglet 288
Installing Pyglet 289
First steps 291
Starship piloting 101 293

Making things happen 295 ❍ Back to school: Newton’s
first law (and vectors) 298

Gravity 301
Calculating gravity 302 ❍ Watch out for that
planet! 305

Contents xiii
Guns, guns, guns! 308
Evil aliens 311
Where to from here? 317

Extending the game play 317 ❍ Altering the game
play 317 ❍ Refactoring 318 ❍ Get feedback 318

Summary 318

10 Twisted networking 320
Installing Twisted 320
Your first application 321
First steps with your MUD 326
Making the game more fun 332

Bad monster! 332 ❍ Back to the chat server 335

Making your life easier 340
Exploring unfamiliar code 340 ❍ Putting it all
together 342 ❍ Write your own state machine 347

Making your world permanent 352
Where to from here? 356
Summary 357

11 Django revisited! 358
Authentication 358

Logging in 359 ❍ Adding users 363

Listing only your own todos 364
Fixing your database 364 ❍ Back on track... 367
Covering all your bases 368 ❍ Updating your interface 371

Testing! 372
Unit testing 372 ❍ Functional testing 373 ❍ Running
your tests 375

Images and styles 377
Serving media from Django 377 ❍ Serving media from
another server 379 ❍ Last but not least 381

Where to from here? 381
Summary 382

xiv Contents
12 Where to from here? 383
Read some more code 384

Python Standard Library 384 ❍ Python recipes 384
Open source projects 385 ❍ Join the Python
community 385 ❍ Sign up for some mailing lists 385
Find a local user group 386 ❍ Help out an open source
project 386

Scratch your own itch 386
Look at more Python libraries 387

Profiling code 387 ❍ Logging 387 ❍ Subprocess
and multiprocessing 388 ❍ Better parsing 388
PIL and image processing 388 ❍ XML, ElementTree,
and JSON 388

Summary 389

 Index 391

Foreword
When Anthony asked me if I would write a foreword to this book, I
thought, “Oh, no! Another job! I’ll just refuse.” But something urged me
to at least take a look at the text, which I soon saw was sprinkled with
frames from the User Friendly cartoon series (a firm favorite, I am sure,
with those few surviving individuals who like me have been working with
computers since the days of punched cards and tape). So I thought I
would take a look at the manuscript, and found that in 12 short chapters
you can learn enough about Python and some of its most popular applica-
tions to either get started programming or decide that the program-
mer’s life is not for you.

Even the latter conclusion would make the money invested in buying
Hello! Python worthwhile—if you don’t enjoy programming in Python,
you are unlikely to enjoy programming at all, in which case you might
save yourself the trouble of years spent in a mismatched career.

The book is full of sound practical advice, and nowhere does it try to
make pretentious and unbelievable claims. It is a solid work that will, I
am sure, introduce many more people who might not currently think of
themselves as programmers to the Python language.

I hope that Hello! Python will give a broad audience new insights into
programming and the fascinating world of information technology. In the
absence of sensible computer science education in secondary schooling
(which many U.S. states appear unable to afford at present), this book is
appealing enough to draw students to the subject. By the time they
xv

xvi Foreword
discern the educational purpose they will be so engaged with the text
that they will digest the whole volume.

STEVE HOLDEN
PRESIDENT, THE OPEN BASTION

Preface
When I was first asked to write Hello! Python, I didn’t want to write just
another introductory book—I wanted to write something different. The
programming books that I’ve read in the past have often been just a laun-
dry list of features: a list can have things in it, and you can call len(mylist)
to find out exactly how many things, .pop() to chop an element from the
end, .append() to add … There you go, that’s all you need to know about
lists, now on to the next feature. If you’re shown a program, it’s usually
either a trivial few lines or a couple of chapters tacked on to the end of the
book as an afterthought.

Then I thought back to how I first learned to program. I didn’t read an
entire programming book from cover to cover and then write a program
after I knew everything there was to know. Instead I started with a goal,
something that I wanted to do, and worked toward it, figuring things out
as I went. I read programming books from time to time, but really only to
figure out the bits I was stuck on. When I was done, my programs
weren’t particularly elegant or fast, but they were mine—I knew how
they worked, and they solved a real problem that I was having.

Fast-forward to today, and my programs are elegant and fast, for the most
part. And most of the really good programmers I know have learned to
program the same way. In Hello! Python, I’ve tried to re-create that pro-
cess, but speeded up, with all the things I’ve learned about programming
and the pitfalls I’ve encountered. Every chapter (except the first and last)
includes a practical program at its core to illustrate either a particular
Python feature or a library—often several. Some of them are fun, some of
xvii

xviii Preface
them are useful, but there are no boring beginning chapters where you
learn, in excruciating detail, every feature of a list or dictionary—or,
worse, learn how Python adds numbers together.

Instead, you’ll watch a program being written and learn about Python
features as you need them, not before. Several of the chapters build on
previous ones, so you’ll learn how to extend existing programs to add
new features and keep their design under control—essential if you’re
going to be writing programs of any scope. The book also explores sev-
eral different styles of program, from simple scripts, to object-oriented
programs, to event-based games.

The idea is to provide a book that’s different—that lets you begin writ-
ing programs from the first chapter and learn how to use Python’s fea-
tures by seeing them used in action. I hope this is the sort of book that
will help people really understand how to use Python.

Acknowledgments
First I’d like to thank Lyndall, my beautiful wife, for being supportive
and giving me the time I needed to write this book. It took much longer
than we originally thought, but her enthusiasm was unwavering, despite
the many weekends that I spent cloistered in the study.

Second, I’d like to thank the team at Manning: my editor, Sebastian Stir-
ling, for his suggestions and experience; June Eding and Tiffany Taylor
for the final editing, proofreading, and push across the line; Karen Tegt-
meyer for organizing the whole thing; and Michael Stephens for helping
me develop the initial concept of the book.

Third, I’d like to acknowledge J.D. “Illiad” Fraser of User Friendly for
letting Manning use the User Friendly cartoons in the Hello! Series and
allowing me to put my own words in the characters’ mouths in this book.

Next, I’d like to thank all of my beta testers who helped find errors—
Daniel Hadson, Eldar Marcussen, William Taylor, David Hepworth, and
Tony Haig—as well as everyone in the MEAP program who offered
advice and criticism or discovered errors.

Finally, I would like to thank the following peer reviewers who provided
invaluable feedback on the manuscript at various stages of its develop-
ment: Tray Skates, Curtis Miller, Joe Hoover, Michael R. Bain, Fran-
cesco Goggi, Mike Stok, Michael R. Head, Cheryl M. Davis, Daniel
Bretoi, Amos Bannister, Rob Allen, Dr. John Grayson, William Z. Tay-
lor, Munch Paulson, David Hepworth, Eldar Marcussen, Daniel Had-
son, Tony Niemann, Paolo Corti, Edmon Begoli, Lester Lobo, Robby
xix

xx Acknowledgments
O’Connor, and Sopan Shewale. And special thanks to Marion Newle-
vant for her careful technical review of the final manuscript during
production and to Steve Holden for agreeing to write the foreword to
my book.

About this book
Hello! Python is written for people who’d like to learn more about Python
and how to program. You might be completely new to programming, or
you might have some prior experience; either way, Hello! Python will take
you from your first steps through writing networked games and web
applications.

The style of this book is different from most programming books. Rather
than present a laundry list of every possible feature, I’ve chosen to show
you a more real-world picture. Starting with chapter 2, you’ll be follow-
ing along as we write real, useful programs—warts and all. All program-
ming language features have a purpose, and it’s hard to recognize that
purpose if you don’t see all the bugs, broken code, and badly written pro-
grams that the feature is supposed to help with.

Some of the programs in Hello! Python are improved and expanded as the
book progresses, so you’ll see how Python features such as functions,
classes, and modules can help keep your code under control as it expands.
They will also reduce the amount of work you have to do when you need
to add new parts.

I think of Hello! Python as being split into three rough sections, although
that’s not explicitly mentioned in the book. The first chapters cover the
basic syntax of Python, how to use libraries, some common concepts, and
all the other pieces you’ll need to know to understand how things work.
The middle section covers more advanced features and introduces librar-
ies that will help you get more done without having to reinvent the wheel.
xxi

xxii About this book
In the final section, we write complete programs using frameworks,
which will help you even more.

The fun doesn’t stop when you’ve finished the book. All the programs
in Hello! Python are intended to be extended and reused when you write
your own programs. Most experienced programmers have a library of
code that they’ve previously written, and the code in this book will give
you a head start on your own projects.

Roadmap

Chapter 1 gives you an introduction to Python and programming, as
well as an idea of what it’s all about—why we program, and what you
can do with your programs. I also step through how to install Python
on Windows, Mac, or Linux, and some common issues you might run
into when doing so.

Chapter 2 jumps straight into the basic building blocks of programs,
and you write your first program based on Hunt the Wumpus. Over
the course of the chapter, you see firsthand some of the issues that pro-
grammers face, such as how to manage complex programs and make
them clear and easy to understand.

Chapter 3 teaches you about Python’s famed standard library, as well
as how to import its code along with code that other programmers have
written to perform common tasks. You learn how to use this code in
your own programs, saving you tons of time and making your pro-
grams easier to read.

Chapter 4 shows you how to test your programs, and covers both unit
testing and system testing as well as some common testing issues and
solutions. As you follow along, you’ll write a simple and easily extend-
able todo-list application.

Chapter 5 covers how you might use Python for business-style pro-
gramming by downloading web pages, parsing the information inside
them, and using that to generate emails and CSV files. It also looks at
how to make your programs more robust and harder to break in the
face of bad information and other errors.

About this book xxiii
In chapter 6, we write an adventure game, complete with locations,
monsters, and treasure. In the process, you learn how classes work and
how to design object-oriented programs.

Chapter 7 extends what you’ve learned about classes with some more
advanced features, like mixins, __getattribute__, and properties. We
also look briefly at some of Python’s other advanced features, such as
iterators and generators, as well as regular expressions and functional
programming.

Chapter 8 introduces Django and helps you get a personal todo list site
up and running. You learn about Django’s templates, database han-
dling, forms, and admin functions. The chapter also covers some com-
mon web development patterns, including RESTful design and using
the right HTTP methods.

Chapter 9 teaches you how to write an arcade game, loosely based on
Asteroids and Lunar Lander, using a library called Pyglet. You’ll learn
about geometry, event-based programming, and timers.

Chapter 10 extends the adventure program you wrote in chapter 6 so
that you and your friends can play it over a network using Telnet. You
use a Python networking library called Twisted to handle all the con-
nection handling, protocol definition, and logging needed to make the
game work.

Chapter 11 takes the todo list application that we wrote in chapter 8
and updates it so that everyone can have their own todo list. You’ll
learn how to handle logins, create users in Django, use Django’s
generic views, secure your web applications, and deploy behind a
server such as Apache or Nginx.

Finally, chapter 12 gives you some extra resources you can use as you
continue learning about Python—mailing lists and user groups, as well
as programs to read and explore, and other libraries you might want to
investigate.

xxiv About this book
Code downloads and conventions

The source code for this book is released under the 3-clause BSD
license. More information about the license is available within the
source code, available from manning.com/HelloPython/.

Throughout the book, I’ve used the convention of formatting code in a
monospaced font, as well as variable, class, and method names. Because
this book is primarily about reading and writing code, there’s a fair bit
of it—Manning uses a numbering scheme with code annotations to
more thoroughly explain what particular pieces of code do.

Author Online

Purchase of Hello! Python includes free access to a private web forum
run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and
from other users. To access the forum and subscribe to it, point your
web browser to www.manning.com/HelloPython. This page provides
information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the author can take place. It’s not a commitment to any specific
amount of participation on the part of the author, whose contribution to
the book’s forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will
be accessible from the publisher’s website as long as the book is in
print.

About the author

Anthony Briggs has been a Python programmer since early 2000. He’s
currently writing a web publishing system for Ramble Communica-
tions in Melbourne. Previously he worked on a core booking system
for a travel firm in Australia and Canada, eventually becoming lead
developer overseeing the entire project.

About Hello! books
At Manning, we think it should be just as much fun to learn new tools as
it is to use them. And we know that fun learning gets better results. Our
Hello! series demonstrates how to learn a new technology without getting
bogged down in too many details. In each book, User Friendly cartoon
characters offer commentary and humorous asides, as the book moves
quickly from Hello World into practical techniques. Along the way, read-
ers build a unique hands-on application that leverages the skills learned in
the book.

Our Hello! books offer short, lighthearted introductions to new topics,
with the author and cartoon characters acting as your guides.
xxv

xxvi About Hello! books

1
Why Python?

This chapter covers

• What a computer and a program are,
and why you’d want to write a program

• What Python is and why it’s so great

• Installing Python

If you’ve picked up this book, you’re probably trying to learn how to
program. Congratulations! Not many people set out to learn programming,
but it’s one of the most interesting and rewarding subjects that you can
teach yourself. Programming is the new literacy; if you’re not sure how to
write a simple program, whether as a batch file, mail filter, or formula in a

spreadsheet, you’re at a disadvantage compared to
those who do. Programming is also a lever. With
programming, you can turn your ideas into reality.

I first started to program when I was around 10,
using the Commodore 64. Back then, there wasn’t
much available in the way of preprogrammed

HI. MY NAME IS
GREG, AND
I'LL BE YOUR
CHARACTER
FOR THIS BOOK.
1

2 CHAPTER 1 Why Python?
software, unless you counted games or simple word processing. Com-
puters like the Commodore came with BASIC built in, and program-
ming was a lot more accessible—you didn’t need to learn a great deal to
be able to get results quickly.

Since then, computers have departed from that early ideal. Now you
have to go out of your way to install something so that your computer
can be programmed. But once you know how, you can create all sorts
of wondrous programs which will do boring work for you, inform you,
and entertain you. Especially that last part—programming is fun, and
everybody should try it.

You’ll notice the cartoons sprinkled throughout the book. I’ve used
these to give you some background information about what’s going on
in the chapter, or to cover some common problems, all while having a
bit of fun. Although the characters are from User Friendly, the text and
jokes are all mine—so if you don’t like them, you know who to blame.

Let’s start by learning the basics of programming.

Learning to program
Because this book is about programming, it makes
sense to give you some sort of overview before we
jump in and start learning the details in chapter 2.
What is programming? How does it work? The defi-
nition of programming is simple.

DEFINITION Programming is telling a computer what
to do.

But, like most definitions, this is a drastic oversimplification. Like
chess, learning the initial rules of programming is easy; but putting
them together in a useful way and mastering them is much harder. Pro-
gramming touches on most areas of human endeavor these days—if
you want to create something meaningful with a computer, it’s really
hard to do so without having to program in some sense—and it’s just as
much about design and ideas and personal expression as it is about
numbers and calculation.

PROGRAMMING IS
ART, MAN.
THAT'S ALL YOU
NEED TO KNOW.

Learning to program 3
Telling a computer what to do
Let’s break down the different parts of our definition and look at them
individually. In order to understand our definition, we need to know
what a computer is; what we mean by “telling” it what to do; and what,
exactly, “what to do” consists of.

A COMPUTER

A computer is a fast calculator that can make simple decisions based on
your instructions. Computer instructions are simple and usually consist
of tasks like adding numbers and making comparisons. But sets of
instructions can be combined to create large programs that can do
complex things like write documents, play games, balance your
accounts, and control nuclear reactors.

Computers seem smart, but they’re actually stupid and single-minded,
and they lack common sense. After all, they’re only machines; they will
do exactly what you (or the developers of Python) tell them to do—no
matter the consequences. Consider a command to delete an entire hard
drive. Most people would find that to be a bit drastic, and they’d prob-
ably check to make sure that’s what you wanted before proceeding.
But a computer will go right ahead and destroy all your data, no ques-
tions asked.

NOTE The great thing about computers is that they do exactly what you tell
them. The terrible thing about computers is that they do exactly
what you tell them.

If a program that you’re using (or that you’ve written) is doing some-
thing odd or crashes for no reason, it’s nothing personal—it’s just fol-
lowing the instructions it was given.

TELLING

When working with Python, you’ll typically instruct it by typing
program code into a text file and then telling the Python program to run
it; you’ll find out how to do this later in the chapter. The instructions
that you type can be complex or simple, and they cover a wide range of
tasks—adding numbers, opening other files, placing things on screen,
and so on. A simple Python program looks like this:

4 CHAPTER 1 Why Python?
number = "42"
print "Guess my number..."
guess = raw_input(">")
if guess == number:
 print "Yes! that's it!"
else:
 print "No - it's", number

raw_input("hit enter to continue")

Don’t worry too much about trying to understand this program yet;
this example is just meant to provide you with some background.

WHAT TO DO

This is where the fun starts. Most modern computers are “Turing com-
plete,” which means they can do anything; anything you can think of, a
computer can do. At least in theory—it might take longer or be more
complicated than you first expected, or need special hardware if you
want to interact in a certain way, but if the computer has access to
enough data and you’ve programmed it properly, the sky’s the limit.
Here are some of the tasks that computers have been used for:

❂ Controlling manned and unmanned spacecraft and probes and guid-
ing robots on other planets, including the Mars exploration rovers
Spirit and Opportunity.

❂ Transmitting data around the world via a network of computers—
the internet and World Wide Web! Online, you can transmit or
receive information from around the world in a fraction of a second.

❂ Building robots, from industrial robot arms to
Roomba vacuum cleaners to lifelike human
robots that can climb stairs or mimic human
emotions.

❂ Modeling real world processes such as gravity,
light, and weather. This includes scientific
models, but also most games.

You might not have the hardware that’s needed
to send a robot probe to another planet, but, in

MEANWHILE, IN ORBIT ABOVE OUR PLANET…

ALIEN MIND-

READING SHIP

Learning to program 5
principle at least, you can still run the same programs. Incredibly, the
computers used to drive Spirit and Opportunity, for example, are
much less powerful than the computer sitting on your desk, in your lap,
or even in your pocket (your mobile phone).

Programming is made of ideas
It’s easy to focus on the concrete aspects of
computer programming—instructions, add-
ing numbers, networks, hardware, and so
on—but the core of programming is about
ideas: specifically, successfully capturing
those ideas in a program so that other peo-
ple can use them. Helping other people by
discovering new, cool things has been hap-
pening since early man started using pointy sticks, and programming is
no exception. Computers have helped to develop many new ideas since
their invention, including the internet, spreadsheets, interactive games,
and desktop publishing.

Unfortunately, I can’t help you come up with new ideas, but I can
show you some of the ideas that other people have come up with as
inspiration to develop some of your own.

Programming is design
Most of the aspects of programming that we’ll cover in this book deal
with design. Design is typically described as a common solution to a
particular problem. For example, architecture is the design of buildings
and the space that they occupy. It addresses some of the problems com-
mon to buildings, such as how people get in and out and move around
inside a building, how they occupy it, how to make people happy about
being in a building, using materials sensibly, and so forth.

What makes a design good—and what makes one design better than
another—is whether it solves your problems effectively. This means a
design is never complete; there are always other, potentially better
ways to solve a problem. Always question what you’ve designed. Is the
solution accurate? Or does it only solve part of your problem? How

TO BECOME A TRUE
PROGRAMMER, YOU MUST
BECOME ONE WITH THE TAO
OF THE COMPUTER AND
SWIM IN YOUR IDEAS AS A
FISH SWIMS IN THE STREAM.

FOR REAL? OR DID
YOU READ THAT ON
A FORTUNE COOKIE
AT LUNCH?

6 CHAPTER 1 Why Python?
easy is your design to build? If it’s 10% better in some way but twice as
hard to put into practice, then you might go with the simpler design.

If programming is the design of ideas, what are some of the problems
that it solves? Some of the problems that you’re likely to run into
include the following:

❂ Your idea isn’t fully formed—there are details that need to be
worked out.

❂ Most ideas are complicated, and have a lot of details involved once
you start writing them down.

❂ Your ideas need to be clear and easy to follow, so that other people
can use them, understand them, and build on them.

The key thing that programs need to do is to express your ideas as
clearly and simply as possible. One of the common themes in the devel-
opment of computer languages is the management of complexity. Even
when working on straightforward programs, it’s easy to get bogged
down in details and lose sight of what you’re trying to do. When it
comes time to make changes to a program, you can misunderstand the
original purpose of the program and introduce errors or inconsisten-
cies. A good programming language will have features to help you
work at different levels of detail, allowing you to move to more (or less)
detailed levels as necessary.

Another important factor is how flexible your programs are when writ-
ten in a particular language. Exploratory programming is a useful tool
when developing ideas, and we’ll be doing a lot of it in this book—but
if your programming language doesn’t have strong facilities for manag-
ing complexity or hiding detail, then they become hard to change, and
a lot of the benefit is lost.

Now that you have a basic understanding of programming, it’s time to
check out this book’s chosen language, Python.

What makes Python so great? 7
What makes Python so great?

In this book, you’ll be learning Python, which, not so coincidentally,
happens to be my favorite programming language. For a number of
reasons, It’s ideal for a beginner who’s just started programming.

Python is easy
If you compare Python to other programming languages, the first thing
you’ll notice is that it’s easy to read. Python’s syntax is intended to be
as clear as possible. Some features that make Python especially user-
friendly include the following:

❂ It avoids the use of punctuation characters like { } $ / and \ .
❂ Python uses whitespace to indent lines for program control, instead

of using brackets.
❂ Programmers are encouraged to make their programs clear and easy

to read.
❂ Python supports a number of different ways to structure your pro-

grams, so you can pick the best one for the job.

Python’s developers try to do things “right,” by making programming
as straightforward as possible. There have been several cases where
features have been delayed (or even cancelled outright) while the core
developers figured out the best way to present a particular feature.
Python even has its own philosophy on how programs should look and
behave. Try typing “import this” once you have Python installed (later
in the chapter).

HEY GREG, WE'RE
SHORT OF
PROGRAMMERS.
SO WE NEED YOU
TO LEARN PYTHON. PYTHON?

IF YOU DON'T
LIKE IT, I COULD
DO WITH SOME
HELP ON MY
EXCEL VBA
MACROS.

AND I HAVE
SOME PERL
SCRIPTS THAT
NEED … ER …
TIDYING UP.

8 CHAPTER 1 Why Python?
Python is a real language
Although Python is an easy-to-use language, it’s also a “real” language.
Typically, languages come in two flavors: easy ones with training
wheels, to teach people how to program; and harder ones with more
features to let you get real work done. When you’re learning how to
program, you have two choices:

❂ Jump head first into a real language, but be prepared to be confused
until you figure out the hard language.

❂ Start with a beginner’s language, but be ready to throw away all of
the work that you’ve done when you need a feature that it doesn’t
have.

Python skips the drawbacks and manages to combine the best aspects
of these approaches. It’s easy to use and learn, but as your program-
ming skills grow, you’ll be able to continue using Python, because it’s
fast and has lots of useful features. Best of all, jumping in and learning
how to do things the real way is often easier than following all of the
steps that you need to learn how to program “properly.”

Python has “batteries included”
A large number of libraries are included with Python, and there are
many more which you can download and install. Libraries are program
code that other programmers have written that you can easily reuse.
They let you read files, process data, connect to other computers via
the internet, serve web pages, generate random numbers, and do pretty
much any other sort of basic activity. Python is a good choice for the
following:

❂ Web development
❂ Networking
❂ Graphical interfaces
❂ Scripting operating system tasks
❂ Games
❂ Data processing
❂ Business applications

MMM, GAMES …

Setting up Python for Windows 9
Often, when it comes time to write a program, most of the hard bits are
already done for you, and all you have to do is join together a few
libraries to be able to do what you need. You’ll read more about
Python’s libraries and how to use them in chapter 3.

Python has a large community
Python is a popular language and has a large, friendly community that
is happy to help out new Python developers. Questions are always wel-
come on the main mailing list, and there’s also a specialized mailing list
set up specifically to help new developers. There are also a lot of intro-
ductions and tutorials, and a great deal of example code, available on
the internet.

TIP “Good artists borrow, great artists steal.” Because of the size of the
Python developer community, there are a lot of programs to beg,
borrow and steal, regardless of what type of program you’re writing.
Once you have some Python experience, reading other people’s pro-
grams is an excellent way to learn more.

One of the other advantages of having a large community is that
Python gets a lot of active development, so bugs are fixed rapidly and
new features are added regularly. Python is constantly improving.

Now that you know about programming and why Python is a good
choice, let’s install Python on your computer so that you can run your
own programs. If you’re running Linux, skip ahead a section. If you’re
running Mac, skip ahead two sections.

Setting up Python for Windows
Over the next couple of sections, we’ll go through the installation pro-
cess step by step, create a simple program to make sure that Python is
working on your system, and teach you the basic steps involved in run-
ning a program. Making sure that Python is working properly now will
save you a lot of frustration later on.

Installing Python
We’ll be using the latest version of Python 2, because most of the
libraries that we’ll use in this book don’t yet support Python 3. At the

10 CHAPTER 1 Why Python?
time of writing, Python 2.6 is the standard version, but Python 2.7
should be available by the time you read this. To install Python, we
need to download a program from the Python website and run it. That
program includes Python, its libraries, and everything you need to run
Python programs.

The first step is to go to http://python.org/ and click Download. That
should take you to a page that lists all of the operating systems that
Python can be installed on. Click the Windows version, and save it to
your desktop.

Once it’s finished download-
ing, double-click the pro-
gram’s icon to open and run it.
You’ll probably be shown a
screen similar to figure 1.2.
Click Run to run the Python
installer.

Figure 1.2 Are you sure you want

to run this strange program

from the internet? Yes!

Figure 1.1

Python.org’s

download page

Setting up Python for Windows 11
You’ll now be given a series of options for installing Python. Typically,
the defaults (the options that have already been chosen for you) are
good enough, unless your computer is low on disk space and needs to
install to a different partition. If you’re happy with the options at each
step, click Next to go to the next screen.

Figure 1.3 Install Python for all users.

Figure 1.5 Choose which bits of Python

you want.

Figure 1.4 Choose Python’s location.

Figure 1.6 Installing Python

12 CHAPTER 1 Why Python?
The final stage might take a little
while depending on the speed of
your computer, but once you see
figure 1.7, you’re done.

Congratulations! You’ve installed Python!

Running Python programs on Windows
Now that you have Python installed on your system, let’s create a sim-
ple program. This will let you know that Python is installed correctly
and also show you how to create a program and run it.

Python programs are normally written into a text file and then run by
the Python interpreter. To start, you’ll use Notepad to create your file
(but if you already have a favorite text editor, you can use that). Avoid
using Microsoft Word or Wordpad to create your programs—they
insert extra characters for formatting which Python won’t understand.
Notepad is in the Programs > Accessories section of your Start menu.

Figure 1.8 Here’s where Notepad lives.

Figure 1.7 Hooray! Python’s installed!

NEXT …
 NEXT …
NEXT …
 NEXT …
AM I MISSING
SOMETHING?
THIS IS
SUSPICIOUSLY
EASY …

Setting up Python for Windows 13
In the Notepad window that opens, type the following code. Don’t
worry too much about what it does yet—for now you want to test out
Python and make sure that you can run a program. Type the following:

print "Hello World!"
raw_input("hit enter to continue")

When you’re done, save
it to your desktop as
hello_world.py. The .py
on the end is impor-
tant—that’s how Win-
dows knows that it’s a
Python program.

If you have a look on your desktop, you should be able to see your pro-
gram, with the blue and yellow Python icon on it. Double-click the
document icon, and your program should run.

Figure 1.9

The test program for Python

Figure 1.10 Save your test program to the desktop.

AH, I REMEMBER MY
FIRST HELLO WORLD
PROGRAM LIKE IT
WAS YESTERDAY …

14 CHAPTER 1 Why Python?

Congratulations! Python is installed and working properly on your
computer! Read on to find out how to run Python from the command
line—it can be an important troubleshooting tool when things go
wrong. If you don’t see the output, don’t worry—the “Troubleshoot-
ing” section has some common problems and their solutions.

Running Python programs from the command line
It’s also possible to run Python programs from the command line. This
is often easier when you have a program that deals mainly with text
input and output, or runs as an operating system script, or needs lots of
input—using command-line options can be easier to program than a
custom settings window.

NOTE There are many different ways to access and run programs. Double-
clicking through the GUI is one way; the command line is another.
You’ll learn several during the course of the book.

Running from the command line is also easier when you have a pro-
gram that has a bug, because you’ll see an error message, rather than
seeing no window or having your window close immediately.

The Windows command-line program is available from Program Files
> Accessories under the Windows Start menu.

If you run that program, you should see a black window with some
white text. Type cd Desktop to change to the desktop directory, and

Figure 1.11 Run your script by double-

clicking it.

IT WAS GREEN, AND
IT SAID:
 "HELLO WORLD!"

Setting up Python for Windows 15
then python hello_world.py to open Python and tell it to run the script
file that you created earlier.

When you do this, one of two things will happen: either your program
will run, in which case you’re done; or you’ll see an error message say-
ing that the Python program couldn’t be found. If that happens, don’t
panic—you just need to tell Windows where to find Python.

Figure 1.13 Windows doesn’t know where Python is!

You need to make some changes to the
path settings of Windows. The path is a
list of places where Windows looks to
find programs that you’ve asked it to
run. To start, right-click your My Com-
puter icon, and click Properties.

Figure 1.14

Looking in your computer’s properties

Figure 1.12 Where the Windows command line lives

16 CHAPTER 1 Why Python?
Figure 1.15 Editing your

system properties

Then select the Advanced
tab, and click the Envi-
ronment Variables button
at the bottom. You should
see a list of environment
variables like those in the
figure at right.

In the bottom half, look
for the line named Path
and double-click it. In the
edit box that appears, you
need to add ;c:\python26
at the end of the line and
click OK.

Figure 1.16 Opening the PATH variable

Setting up Python for Windows 17
NOTE Paths are what Windows uses to find files. Each individual file on
your computer has a path. You’ll learn more about paths and how to
use them in chapter 3.

Once you’ve done that, click OK in all of the windows that you’ve
opened until you’re back at your desktop. Open another command
prompt window (the old one will still have the old path settings), and
type python hello_world.py again. You should see the output from your
program.

Figure 1.18 Success! Now Windows knows where Python is.

Congratulations! You’re now ready to start programming. You might
want to read the “Troubleshooting” section first, though, to find a bet-
ter program to edit your Python programs.

Next, we’ll review how to install Python on Linux machines.

Figure 1.17

Adding Python to your

PATH variable

18 CHAPTER 1 Why Python?
Linux
Using Python with Linux is harder to describe exactly, because there
are a large number of Linux distributions available and they all do
things in a slightly different way. I’ve chosen to use Gnome and
Ubuntu as an example; other Linux distributions will be similar.

Installing under Linux
Installing Python for Linux isn’t often necessary, depending on which
distribution you’re running. Most will have some version of Python
installed by default, although it’s often a few revisions out of date. You
can use python -V to find out which one you have.

There are two main methods of installation under Linux: you can use a
package or compile from source.

Package managers are straightforward to use and han-
dle most of the dependency and compilation issues for
you. Under Debian’s apt-get system, you can type some-
thing like sudo apt-get install python and have the most
up-to-date version of Python installed automatically.
You can also use apt-cache search python to find out
what else is available, because there are usually a num-
ber of other packages (python-dev or python-docs) that
you’ll probably want to install as well.

Compiling from source is also an option, but it’s somewhat outside the
scope of this book. It can be a complicated process, and you’ll need sev-
eral other libraries (like gnu-readlines and OpenSSL) installed if you
want all of Python’s features. It’s usually easier to install via package,
but you can find more information on compiling Python at
www.python.org/download/source/ if you want to go down this route.

Linux GUI
In general, Linux users will be more comfortable with the command
line, which we’ll cover next, but you can also run Python programs
from a GUI such as Gnome—although it’s a little more involved than

GREG? I'M JUST
HEADING DOWN TO
THE CORNER. DID
YOU WANT ANYTHING?
GREG?

… LIKE TO GAMBLE,
BABY …

Linux 19
the Windows version. Type the following program into a text editor
and save it:

#!/usr/bin/python
print "hello world!"
ignored = raw_input("Hit enter to continue")

You’ll also need to edit the permissions for
the file to set it executable, so that you can
run it directly, as shown in figure 1.19.

Figure 1.19

The permissions

window for

hello_world.py

Once you’ve done that, you
can double-click the program
file and click Run in Termi-
nal to run your program.

When you see the window in
figure 1.21, you’re done.
Although this is the easiest

Figure 1.20 Choosing what to do with

your program

Figure 1.21

Your test program

running in a termi-

nal window under

Ubuntu Linux

GREG? DID YOU GET
THOSE REPORTS I
SENT YOU? GREG?

… BEEN A LONG
TIME SINCE I DID
THE STRO-OLL …

20 CHAPTER 1 Why Python?
method of running Python programs from the GUI, there are other
options for running scripts that don’t involve choosing whether to run or
display your program. Under Gnome, you can set up a program
launcher. The permissions window is displayed, as in the following
figure.

Bear in mind that for a terminal-based program such as your test
script, you’ll need to run it within a terminal window, by issuing some-
thing like the following command:

gnome-terminal -e '/usr/bin/python /home/anthony/Desktop/hello_world.py'

Although these examples are Gnome-specific, there are similar options
for other distributions and window managers.

Linux command line
A lot of Linux programs are run from the command line, and Python is
no exception. You’ll need to be able to open a terminal window. If
you’re using Gnome, then this is available under the Applications >
Accessories menu.

Figure 1.22

Setting the command in a launcher

GREG, HAVE YOU …
GREG?

GREG!

Macintosh 21
Once you’ve opened the terminal window, you’ll see a command
prompt. To execute your script, type

python path/to/your/script

If you’ve saved your script to the desktop, this can be shortened to

python ~/Desktop/hello_world.py

If you want to make your script look more like a system command, you
can omit the .py on the end of the file, save it somewhere on your path
(most systems support a ~/bin folder), and make it executable with a
command like chmod 755 path/to/script.py. As long as you’ve kept the
#!/usr/bin/python line as the first line of your file, you should be able to
type your script’s name from anywhere and have it run.

Now that Windows and Linux users have been covered, let’s see how
to install Python on the Mac.

Macintosh
Using Python on the Mac is pretty much like running under Linux,
with the obvious exception of the graphical parts. Mac OS 10.5 comes
with Python 2.5 preinstalled, and Snow Leopard (Mac OS 10.6) comes
with Python 2.6. Either version should work with the code that you’ll
be using in Hello Python.

If you need to install a later version of Python, you can also download
it from the Python website and install it via a standard .dmg image
file—but there are a few details to take care of to get things running
properly.

Updating the shell profile
The first thing you’ll need to do is tell Mac OS X to use the new version
of Python if you’re running things from the Terminal. Otherwise, it
will continue to use the built-in version. Fortunately, Python includes a
script to set this for you. If you navigate to the Python folder within
Applications and run the application called Update Shell Profile,
future shell windows should use the right version.

22 CHAPTER 1 Why Python?
Setting the default application
The second step is to set what Python programs do when you double-
click them. By default, they will open in IDLE, the editor that comes
with Python; but I prefer to have them run the Python program
instead, so they behave more like a real application. If you right-click
(or control-click) a .py Python file, you should see this pop-up menu.

Figure 1.24 Setting the default action for Python files

This lets you choose which program to run your Python script this
time; but if you select Other, you can pick which program will run each
time.

Figure 1.23 Setting the new Python path properly

Troubleshooting 23
Select the Python Launcher within the Python folder in the Applica-
tions directory, select the Always Open With check box, and click
Open. Now, each time you double-click a .py script, it will run it
instead of opening in IDLE. If you want to test that the command line
is working properly, you can open the Terminal application and try out
all of the previous commands in the Linux section.

Now that you have Python installed on your chosen operating system,
it’s time to figure out any hiccups.

Troubleshooting
If you don’t see a window when you run your
Python program, there could be a few things
wrong. You’ll potentially face a lot of errors like
this as you learn to program. A good source of
information is to do a web search for the exact
error message or symptoms that you’re getting
when you try to run a program. Also, don’t be
afraid to ask for help (for example, on one of the Python mailing lists)
if you get stuck. Here are some of the more common problems.

Figure 1.25 Setting the Python Launcher as the default app

AH. NOW YOU
EMBRACE THE TRUE
TAO.

CAN I HAVE MY
HEADPHONES
BACK?

24 CHAPTER 1 Why Python?
A syntax error
If you made a mistake in typing your program, you might see a window
flash on and off briefly. Double-check that you’ve typed everything
correctly, and then rerun your program. If it’s still not working, try
running it from the command line; that will tell you what Python is
doing and if there are any errors.

An incorrect file extension (Windows)
If you don’t see the blue and yellow icon on your document, it means
Windows isn’t recognizing that it’s a Python program. Double-check
that your file ends in .py. If that doesn’t work, it’s possible that Python
isn’t installed properly; try uninstalling and reinstalling it.

Python is installed in a different place (Linux)
Under Linux, the #! line you put at the start of your program tells the
shell which program to use to run your script. If that program doesn’t
exist, then your command-line program will fail with something like
the following error:

bash: ./hello_world.py: /usr/local/bin/python: bad interpreter:
 No such file or directory

To fix this, you need to find out where Python is installed and update
the line. The easiest way is to type which python at the command line,
which should respond with the current location of Python. Another
option is to use #!/usr/bin/env python, which will use the env program to
look for Python instead of referring to it directly.

Finally, let’s see how text editors and IDEs can make programming
easier.

Text editors and IDEs
To create your programs, you’ll need to use a text editor to edit the files
that Python reads. Programs like Microsoft Word and Wordpad are a
bad choice, because they use a more complicated format that won’t
work with Python (or other programming languages). Instead, you’ll

Text editors and IDEs 25
want to use a program that edits text directly and doesn’t support for-
matting like bold text or pages.

If you’re using a Windows PC, you can always use Notepad, and simi-
lar applications are available under Linux and Mac OS X; but it’s
extremely basic and won’t help you to catch many common program-
ming errors, such as indenting your code properly or not closing quotes
in strings.

A better option is to use the IDLE editor that comes with Python, or
else download one of the editors listed in a moment, which are specifi-
cally designed for programming. Programming editors often have extra
features that make programming much easier:

❂ They automatically indent your code.
❂ They can color in different instructions to make your program easier

to read.
❂ They can run your program and send you back to the exact line

where an error occurred, making it faster to write your programs.

A long list of editors that are usable for Python editing is available on
Python’s website at http://wiki.python.org/moin/PythonEditors. Some
of the more commonly used ones include the following:

❂ IDLE, which is installed with Python.
❂ Emacs and Vim are used by a great many developers and are power-

ful, but they have a fairly steep learning curve. Cream is a variant of
Vim that has more normal keybindings.

❂ Notepad++ is a Windows-specific editor with lots of features.

Some editors are also integrated development environments (IDEs).
IDEs provide extra services above and beyond text editing, to save you
time when programming. Typically, they will give you access to a
Python interpreter, some sort of auto-completion, and more advanced
code navigation (for example, jumping directly to the source of an error
in your program), as well as interactive debugging tools so that you can
run your code step by step and look at variables while your program is
running. There’s also a list of Python IDEs on the Python wiki at http://

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

26 CHAPTER 1 Why Python?
wiki.python.org/moin/IntegratedDevelopmentEnvironments. Some IDEs
that you might want to consider include the following:

❂ IDLE is a simple IDE—it has a Python interpreter included, as well
as pop-up completion, and it takes you directly to errors.

❂ Wing IDE is a commercial IDE with integrated unit testing, source
browsing, and auto-completion. Wingware offer a free license to
developers working on open source projects.

❂ PyDev is an open source plugin for Eclipse.
❂ SPE is also open source and offers a wide range of features, includ-

ing a code checker that tests for common programming mistakes and
rates the quality of your code.

❂ Komodo is available in a number of forms, including an open source
editor called OpenKomodo.

Ultimately, whether you use an IDE
or an editor, and which one you use,
tend to be decisions based on per-
sonal preference and the scope of
your project. As you start building larger programming projects, the
investment in learning a more featured editor or an IDE will pay off.
The best advice is to try a number of editors and see which ones you
prefer.

Summary
In this chapter, we covered the basics that you’ll need to know in order
to get started programming in Python. You learned some high-level
details: what programming is, the philosophy of programming, and the
sorts of problems that programmers tend to face; and also some low-
level details, such as how to install and run Python, how to create pro-
grams, and how to run them from both a graphical user interface and
the command line.

One of the most important long-term skills to learn when you’re pro-
gramming is how to deal with errors that might occur. When this

I.D.E.s? I.D.E.s?
IN MY DAY, WE TOGGLED
PROGRAMS IN THROUGH
THE FRONT PANEL …
AND WE *LIKED* IT!

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Summary 27
happens, tracing them back to their source and fixing the root cause of
the problem can require some persistence and detective work, so being
aware of the resources that are available to you is important. You’ll
learn how to deal with errors in your programs in later chapters.

Everything you’ve learned in this chapter—particularly how to run a
Python program—will help you in the chapters to come, when we’ll
take a look at Python’s basic statements and use them to write a game
called Hunt the Wumpus.

2
Hunt the Wumpus

This chapter covers

• Writing your first real program

• How programs work

• Some easy ways to organize programs

Now that you have Python set up and installed and know how to enter
and run a test program, let’s get started with writing a real one. I’ll begin
by explaining a few of Python’s basic features, and then you’ll create a
simple text-based adventure game called Hunt the Wumpus.

As you progress through the chapter, you’ll add features to your game,
building on the initial version. This is how most programmers (including
the author) learned to program: learn just enough about the language to
be able to write a simple program, and then build up from there. In order
to do that, you need more knowledge—but you only need to learn a little
bit more to be able to make small additions to your program. Repeat the
process of adding small features a few more times, and you’ll have a pro-
gram that you couldn’t have created in one sitting. Along the way, you’ll
have learned a lot about the programming language.
28

What’s a program? 29
In this chapter, you’ll experience the early days of programming first
hand, as you write your own version of Hunt the Wumpus. The text-
based interface is ideal for your first program because you only need to
know two simple statements to handle all of your input and output. Be-
cause all of your input will be strings, the logic of your program is straight-
forward and you won’t need to learn a lot to start being productive.

By the end of this chapter, you’ll know how
to add features to your fully functioning ver-
sion of Hunt the Wumpus, and you’ll even be
able to tweak it to create your own version.

Before we get to the cave adventures, let’s figure out the basics.

What’s a program?
As you learned in chapter 1, a program consists of statements that tell
the computer how to do something. Programs can execute simple tasks,
such as printing a string to the screen, and can be combined to execute
complex tasks, like balancing accounts or editing a document.

PROGRAM A series of instructions, usually called statements, that tell your
computer how to do certain things.

The basic mechanics of a program are straightforward: Python starts at
the first line and does what it says, then moves to the next and does what
that says, and so on. For example, enter this simple Python program:

print "Hello world!"
print "This is the next line of my program"

A brief history of Hunt the Wumpus
Hunt the Wumpus was a popular early computer game written by Gregory Yob in
1976. It puts you in the shoes of an intrepid explorer, delving into a network of
caves in search of the hairy, smelly, mysterious beast known only as the
wumpus. Many hazards faced the player, including bats, bottomless pits, and,
of course, the wumpus. Because the original game was released with source
code, it allowed users to create their own versions of Hunt the Wumpus with dif-
ferent caves and hazards. Ultimately, reinterpretations of Wumpus led to the de-
velopment of an entire genre of first-person adventure games, such as
Adventure and Zork.

HAIRY, SMELLY
BEAST? SOUNDS
LIKE PITR!

30 CHAPTER 2 Hunt the Wumpus
The code outputs output the following text to the screen:

Hello world!
This is the next line of my program

Python can do many different types of things. So
that you can get started on your program as soon as
possible, this chapter will give you a brief idea of the
statements you can use to tell Python what to do.
We won’t go into extensive detail, but you’ll learn
everything you need so that you can follow what’s
going on.

There’s a lot to take in, so don’t worry too much if
you don’t understand it all at once. You can think of

programming like this as painting a picture; you’ll begin with a light
pencil sketch before you get started properly. Some parts will be hazy
at first, but it’s important to get a sense of the whole before you try to
make sense of the details.

You might also want to read this chapter at your computer, so that you
can experiment with different statements to see what works and try out
your own ideas.

We’ll start by investigating that print statement you just tried out.

Writing to the screen
The print statement is used to tell the player what’s happening in your
game, such as which cave the player is in or whether there’s a wumpus
nearby. You’ve already seen the print statement in the Hello World pro-
gram, but there are some extra things that it can do, too. You’re not lim-
ited to printing out words; pretty much anything in Python can be
printed:

print "Hello world!"
print 42
print 3.141592

You can print out lots of things at once by putting a comma between
them, like this:

WHAT'S UP, GREG? HOW'S
THE PYTHON COMING ALONG?

I HEARD ABOUT THIS
"HUNT THE WUMPUS"
GAME, SO I THOUGHT I'D
WRITE MY OWN VERSION.

What’s a program? 31
print "Hello", "world!"
print "The answer to life, the universe and everything is", 42
print 3.141592, "is pi!"

But printing statements wouldn’t make for an interactive game. Let’s
see how you can add options.

Remembering things with variables
Python also needs some way to know what’s
happening. In the Hunt the Wumpus game,
for example, Python needs to be able to tell
which cave the wumpus is hiding in, so it will
know when the player has found the wum-
pus. In programming, we call this memory
data, and it’s stored using a type of object
called a variable. Variables have names so they
can be referred to later in the program.

To tell Python to set a variable, you choose a name for the variable and
then use the equals sign to tell Python what the variable should be.
Variables can be letters, numbers, words, or sentences, as well as some
other things that we’ll cover later. Here’s how to set a variable:

variable = 42
x = 123.2
abc_123 = "A string!"

In practice, your program can get quite complex, so it helps if you
choose a name that tells you what the variable means or how it’s sup-
posed to be used. In the Hunt the Wumpus program, you’ll use vari-
able names like this:

player_name = "Bob"
wumpus_location = 2

NOTE There are some restrictions on what your variable names can be; they
can’t start with a number, have spaces in them, or conflict with some
of the names which Python uses for its own purposes. In practice,
you won’t run into these limitations if you’re using meaningful
names.

OK. I'LL GIVE
THAT A TRY.

I THINK PITR WAS SAYING
THAT HE'D WRITTEN A
VERSION. HIS CODE CAN BE
A BIT CRUFTY SOMETIMES,
BUT WHY DON'T YOU TAKE
A LOOK?

32 CHAPTER 2 Hunt the Wumpus
Table 2.1 gives you an overview of the variable types you’ll be using in
your Hunt the Wumpus program.

Now that you have variables working, how do you get the player
involved?

Asking the player what to do
The program also needs some way of asking the player what to do in
certain situations. For Hunt the Wumpus, you’ll use the raw_input com-
mand. When Python runs that command, it will prompt the player to
type something in, and then whatever was typed can be stored in a
variable:

player_input = raw_input(">")

Next, you need to figure out what to do with user input.

Making decisions
If that was all there was to programming, it would be kind of boring. All
of the interesting stuff happens when the player has to make a choice in
the game. Will they pick cave 2 or cave 8? Is the wumpus hiding in
there? Will the player be eaten? To tell Python what you want to

Table 2.1 Types of variable used in Hunt the Wumpus

Type Overview

Numbers Whole numbers like 3 or 527, or floating-point numbers like 2.0 or 3.14159.
Python won’t switch between them, so you’ll need to be careful in some
cases; for instance, 3 / 2 is 1 instead of 1.5. 3.0 / 2 will give the right
answer.

Strings A sequence of characters, including a–z, numbers, and punctuation. They
can be used for storing words and sentences. Python has a few different
ways of representing strings: you can use both single or double quotes—
'foo' or "foo"—as well as special versions with triple quotes that can run
over multiple lines.

Lists A collection of other variables, which can include other lists. Lists begin and
end with a square bracket, and the items inside are separated with commas:
["foo", "bar", 1, 2, [3, 4, 5]].

What’s a program? 33
happen in certain situations, you use the if state-
ment, which takes a condition, such as two variables
being equal or a variable being equal to something
else, and something to do if the condition is met:

if x == y:
 print "x is equal to y!"
if a_variable > 2:
 print "The variable is greater than 2"
if player_name == "Bob":
 print "Hello Bob!"

You can also use an else command, which tells Python what to do if the
condition doesn’t match, like this:

if player_name == "Bob":
 print "Hello Bob!"
else:
 print "Hey! You're not Bob!"

So that Python can tell the body of the if statement from the rest of
your program, the lines which are part of it are indented. If you put an
if statement within another if statement—usually referred to as nest-
ing—then you need to indent again, for a total of eight spaces. Nor-
mally, you’ll use four spaces for each level of indentation.

Some common conditions are listed in table 2.2.

Table 2.2 Common conditions

Condition Overview

name == "bob" True if the variable name stores the string “bob”. Python uses two equal
signs to distinguish it from assignment: name = "bob" means some-
thing completely different.

name != "bob" True if the variable name is something other than the string “bob”. != is
generally read as “not equals.”

a > 0 True if the variable a stores a number that is greater than 0.

0 <= a <= 10 True if a is a number between 0 and 10, inclusive.

IT'S A MESS!
THERE ARE
GLOBAL
VARIABLES
EVERYWHERE …

HOW'S IT GOING
WITH PITR'S CODE?

34 CHAPTER 2 Hunt the Wumpus
Now that you have a handle on decision-making statements, let’s see
what you can do to keep the program going.

Loops
One of the great things about computers is not that they can do things,
but that they can do things over and over and over and not get bored.
Big lists of numbers to add? No problem. Hun-
dreds of lines of files? Ditto. The program only
needs to know what it’s going to be repeating
and when it should stop. In the Hunt the Wum-
pus program, you’ll be using a structure called a
while loop, which loops as long as a condition that
you specify is true, and a break statement, which
allows you to control when it stops. Here’s an
example:

while True:
 print "What word am I thinking of?"
 answer = raw_input(">")
 if answer == "cheese":
 print "You guessed it!"
 break
 else:
 print "No, not that word..."

We’re almost to the end of the tour of Python’s basic features; our last
one is functions.

"ab" in "abcde" You can also tell whether a string is part of another string by using in.

not "bob" in "ab"
"bob" not in "ab"

Python also has the not and not in commands, which reverse the
sense of an expression.

Table 2.2 Common conditions (continued)

Condition Overview

OK.

HMM. HOW ABOUT
YOU SET
WUMPUS_REAL_
WRLD_ENABLE
TO 1 IN THAT
SECTION?

AND I CAN'T FOLLOW
WHAT HALF OF THESE
FUNCTIONS DO …

What’s a program? 35
Functions
There are also a few statements called functions in
the Wumpus program. They usually tell you use-
ful things about your program, the player, or the
variables, and they look like this:

range(1,21)
len(cave_numbers)

Normally, functions will tell you things by returning a value, which you
can store in a different variable or use directly:

cave_numbers = range(1,21)
print "You can see", len(cave_numbers), "caves"

Now that we’ve covered some of the basics, let’s see how you can use
them to build a simple program. This doesn’t do everything that the
original Hunt the Wumpus program did, but for now we want to get
something off the ground to see how it all fits together.

Table 2.3 lists the basic features that you’ll learn in this chapter.

Incremental programming
In later sections of this chapter, you’ll build on this program by adding features or
refining ones that are already there, and tidy up as you go. This is how most pro-
grammers tend to work: start simply and build as you go. You can download this
program from www.manning.com/hellopython, but I’d suggest following along
and typing it in as you read it. That’ll help you remember the individual state-
ments more easily, but you’ll also be establishing a key habit which will help you
as you write larger programs—start with a small program and grow from there.

Table 2.3 Basic Python features

Feature Overview

Statements Usually one line in a program (but can be more) that tells Python to do
something.

Variables Used to refer to information so that a program can use it later. There are
many different types of information that Python can refer to.

A WUMPUS?

>SNFF< >SNFF<
THAT SMELL REMINDS
ME OF MY UNIVERSITY
DAYS … A WUMPUS!

WELL, THAT DID
SOMETHING, BUT I'M
NOT SURE WHAT.

www.manning.com/hellopython

36 CHAPTER 2 Hunt the Wumpus
You’ve learned a lot in this section, but in the next section you’ll put
this knowledge to good use and write your first program.

Your first program
Now that you have an understanding of the basics
of Python, let’s take a look at the program. It’s dif-
ficult to see how a program works just by reading
about individual features, because, in a working
program, they all depend on each other. In this sec-
tion, we’ll explore the first version of Hunt the
Wumpus and solve the first problem that comes up.

if-then-else This is how you tell Python to make a decision. An if statement consists of
at least a condition such as x == 2 or some_function() < 42 and some-
thing for Python to do if that expression is true. You can also include an
else clause, which tells Python what to do if the expression is false.

Loops Used to repeat certain statements multiple times. They can be either while
loops, which are based on a condition like an if statement, or for loops,
which run once for each element of a list. From within a loop, you can use
the continue statement, which jumps to the next iteration of the loop, or a
break statement, which breaks out of the loop entirely.

Functions A series of statements that can be run to return a value to a separate part of
your program. They can take input if necessary, or they can read (and
sometimes write) other variables in your program.

Indenting Because you can nest functions, loops, and if statements within each other,
Python uses white space (normally four spaces per level) at the start of a
line to tell which statements belong where.

Comments Whenever Python encounters a # character at the start of a line, it will
ignore that line and not run it. Additionally, if there’s a # character that’s not
inside a string, it will ignore the rest of the line. Comments are used to
explain parts of your program, either to other programmers or to yourself in
a few weeks—when you’ve forgotten most of the details of what you were
doing. You won’t see too many in the book, because we use numbered
comments for code listings.

Table 2.3 Basic Python features (continued)

Feature Overview

RUN!

RRRR!

Your first program 37
NOTE Experimentation is critical to developing an intuition for how Python
works, and how all of the parts fit together. Without it, you’ll be
stuck cut and pasting other people’s programs, and when you have a
bug, it’ll be impossible to fix.

The first version of Hunt the Wumpus
If you don’t understand the next listing right away, don’t worry. A good
way to figure out what a program does is to experiment with it—change
a few statements, run it again, and see what the differences are. Or,
copy a few statements into another file so you can run them in isolation.

Listing 2.1 Your first version of Hunt the Wumpus

from random import choice

cave_numbers = range(1,21)
wumpus_location = choice(cave_numbers)
player_location = choice(cave_numbers)
while player_location == wumpus_location:
 player_location = choice(cave_numbers)

print "Welcome to Hunt the Wumpus!"
print "You can see", len(caves), "caves"
print "To play, just type the number"
print "of the cave you wish to enter next"

while True:
 print "You are in cave", player_location
 if (player_location == wumpus_location - 1 or
 player_location == wumpus_location + 1):
 print "I smell a wumpus!"

 print "Which cave next?"
 player_input = raw_input(">")
 if (not player_input.isdigit() or
 int(player_input) not in cave_numbers):
 print player_input, "is not a cave!"

 else:
 player_location = int(player_input)
 if player_location == wumpus_location:
 print "Aargh! You got eaten by a wumpus!"
 break

Set up caveb

Welcome playerc

Main game
loop

d

Warn if Wumpus
is nearby

e

Ask player
to pick cave

f

Move playerg

38 CHAPTER 2 Hunt the Wumpus
Let’s start with the “setup” part of the program B. You’re storing a list
of numbers in the program, each of which represents a cave. Don’t
worry too much about the first line—you’ll learn more about the import
statement in chapter 3. The choice function will return one of the caves,
picked at random, and you use it to place the wumpus and the player in
their starting positions. Note the loop at the end that you use to tell if
the player and the wumpus are in the same spot—it wouldn’t be a fun
game if the player got eaten right away!

The introductory text c tells the player
how the game works. You use the len()
function to tell how many caves there are.
This is useful because you may want to
change the number of caves at a later
point, and using a function like this means
you only have to change things in one place
when you define the list of caves.

Your main game loop d is where the game starts. When playing the
game, the program gives the player details of what the player can see,
asks the player to enter a cave, checks to see whether the player has been
eaten, and then starts over at the beginning. while loops will loop as long
as their condition is true, so while True: means “loop over and over again
without stopping” (you’ll handle the stopping part in a minute).

The first if statement e tells the player where the player is and prints a
warning if the wumpus is only one room away (“I smell a wumpus!”).
Note how you’re using the player_location and wumpus_location vari-
ables. Because they’re numbers, you can add to and subtract from
them. If the player is in cave 3, and the wumpus is in cave 4, then the
player_location == wumpus_location - 1 condition will be true, and
Python will display the message.

You then ask the player which cave the player wants next f. You do
some checking to see that the player has put in the right sort of input. It
has to be a number, and it has to be one of the caves. Note also that the
input will be a string, not a number, so you have to convert it using the
int() function. If it doesn’t match what you need, you display a mes-
sage to the player.

ER …
WHAT DO THESE
WUMPUSES
LOOK LIKE?

YES, STEF. A WUMPUS. WE'LL
NEED BOWS AND ARROWS—
QUICKLY! WELL, IT'S COMING

OUT OF YOUR
EXPENSE ACCOUNT!

Your first program 39
If the input does match a cave number, it will
trigger this else clause g. It updates the
player_location variable with the new value
and then checks to see if the player’s location is
the same as the wumpus’s. If it is … “Aargh!
You got eaten by a wumpus!” Once the player
has been eaten, the game should stop, so you
use the break command to stop your main loop.
Python has no more statements to execute, and
so the game ends.

Debugging
If you’ve typed in listing 2.1 exactly as written and run it, you’ll notice
that it doesn’t quite work as planned. In fact, it refuses to run at all. The
exact results will depend on your computer’s operating system and how
you’re running your Python program, but you should see something
similar to what is shown in the following listing. If you don’t, try run-
ning your program from the command line by typing python wumpus-1.py.

Listing 2.2 BANG! Your program explodes

Welcome to Hunt the Wumpus!
You can see
Traceback (most recent call last):
 File "wumpus-1.py", line 10, in ?
 print "You can see", len(caves), "caves"
NameError: name 'caves' is not defined

What’s happened is that there’s a bug in the program.
There’s a statement in listing 2.1 that Python doesn’t
know how to run. Rather than guess what you
meant, it will stop and refuse to go any further until
you’ve fixed it.

Luckily, the problem is easy to fix: Python tells you
what line is at fault and the type of error that’s been
triggered, and it provides a rough description of the

RRRR!

NO ONE'S QUITE SURE—
THEY'RE MASTERS OF
DISGUISE!

ANYONE COULD
FIND IT?!

YOU LEFT YOUR
EXPERIMENTAL CODE
ON THE SERVER WHERE

I AM TELLINK NOT TO BE
TOUCHING CODE! NOW
EXPERIMENT IS RUINED!

40 CHAPTER 2 Hunt the Wumpus
problem. In this case, it’s line 10, and the error is NameError: name

'caves' is not defined. Oops—the program tried to access the variable
caves instead of cave_numbers. If you change line 10 so that it reads

print "You can see", len(cave_numbers), "caves"

then the program should run.

Congratulations—your first real Python program! Next, let’s see what
else you can do to improve Hunt the Wumpus.

Experimenting with your program
Experimenting with programs is the most common way that most pro-
grammers learn how to deal with new programming problems and find
solutions. You, too, can experiment with your new program and see
what else you can get it to do. You’re the one typing it in, so the wumpus
program is yours. You can make it do whatever you want it to. If you’re
feeling brave, try the following ideas.

More (or fewer) caves
You might find 20 caves to be too many—or too few. Luckily, it’s your
program now, so you can change the line where you define cave_numbers
to be smaller or larger. Question: what happens if you have only one
cave?

A nicer wumpus
You haven’t put a bow and arrow into the game yet, so all the player can
do is wander aimlessly around the caves until the player bumps into the
wumpus and gets eaten. Not a very fun game. How about if you change
the line where the player finds the wumpus to read:

print "You got hugged by a wumpus!"

Aww, what a nice wumpus! (The author and publisher disclaim any and
all responsibility for dry-cleaning your clothes to get out the wumpus
smell should you choose this option.)

Making the caves 41
More than one wumpus
The wumpus must be awfully lonely down in the caves. How about giv-
ing it a friend? This is a bit trickier; but you already have the existing
wumpus code to work from. Add a wumpus_friend_location variable, and
check that wherever you check the first wumpus_location as shown here.

Listing 2.3 Adding a friend for the wumpus

wumpus_location = choice(cave_numbers)
wumpus_friend_location = choice(cave_numbers)
player_location = choice(cave_numbers)
while (player_location == wumpus_location or
 player_location == wumpus_friend_location):
 player_location = choice(cave_numbers)
...

if (player_location == wumpus_location - 1 or
 player_location == wumpus_location + 1):
 print "I smell a wumpus!"
if (player_location == wumpus_friend_location - 1 or
 player_location == wumpus_friend_location + 1):
 print "I smell an even stinkier wumpus!"
...

 if player_location == wumpus_location:
 print "Aargh! You got eaten by a wumpus!"
 break
 if player_location == wumpus_friend_location:
 print "Aargh! You got eaten by the wumpus' friend!"
 break

Now that’s a more interesting game!

There’s still more you can do to improve the
Hunt the Wumpus game, starting with the
cave structure.

Making the caves
The first thing that you might have noticed
about listing 2.1 is that the “maze of caves”

NYET …

AND THOSE WUMPUS
EXTERMINATORS ARE
EXPENSIVE!
AT LEAST WE'LL BE BACK
UP AND RUNNING SOON.

42 CHAPTER 2 Hunt the Wumpus
isn’t a maze. It’s more like a corridor, with the caves neatly placed in a
line, one after the other. It’s easy to figure out where the Wumpus is—
move into the next cave in sequence until you smell it. Because figuring
out the location of the wumpus is such an integral part of the game, this
is the first thing to fix. While addressing this, you’ll learn a bit more
about Python’s lists and for loops.

Lists
Assume for a second that you wanted to write a program to help you do
your shopping. The first thing that you’d need is some way to keep
track of what you wanted to buy. Python has a built in mechanism for
exactly this sort of thing, called a list. You can create and use it like any
other variable:

shopping_list = ['Milk', 'Bread', 'Cheese', 'Bow and Arrow']

If you want to find out what’s on your shopping list, you can print it out
or you can use an index to find out what’s in a specific place. Lists will
keep everything in the order in which you defined it. The only catch is
that the index of an array starts at 0, rather than 1:

>>> print shopping_list
['Milk', 'Bread', 'Cheese', 'Bow and Arrow']
>>> print shopping_list[0]
Milk

A clever trick if you need it, is that an index of -1 gets the last item in
your array:

>>> print shopping_list[-1]
Bow and Arrow

You can also check whether a particular thing is in your list:

if 'Milk' in shopping_list:
 print "Oh good, you remembered the milk!"

The other cool thing about lists is that they fulfill many purposes.
You’re not limited to strings or numbers—you can put anything at
all in there, including other lists. If you had lists for two stores (say, the

Making the caves 43
supermarket and Wumpus ‘R’ Us (“for all
your Wumpus-hunting needs!”), you could
store them in their own lists and then store
those lists in one big list:

>>> supermarket_list = ['Milk', 'Bread',
'Cheese']

>>> wumpus_r_us_list = ['Bow and Arrow',
'Lantern', 'Wumpus B Gone']

>>> my_shopping_lists = [supermarket_list,
wumpus_r_us_list]

You can also put things into a list and take them out again. If you forget
to put rope on your list, that’s easily fixed:

>>> wumpus_r_us_list.append('Rope')
>>> print wumpus_r_us_list
['Bow and Arrow', 'Lantern', 'Wumpus B Gone', 'Rope']

You want to catch a Wumpus instead of scaring it away, so perhaps the
“Wumpus B Gone” isn’t such a good idea:

>>> wumpus_r_us_list.remove('Wumpus B Gone')
>>> print wumpus_r_us_list
['Bow and Arrow', 'Lantern', 'Rope']

You can also cut out parts of a list if you need to, by giving two values
separated with a colon. This is called slicing a list. Python will return
another list starting at the first index, up to but not including the second
index. Remember that list indexes start at zero:

first_three = wumpus_r_us_list[0:3]

If you give a negative value, then Python will measure from the end
instead of the front:

last_three = wumpus_r_us_list[-3:]

Notice that that last example left out the last index. If you leave a value
out of a slice like that, Python will use the start or end of the list. These
two slices are exactly the same as the previous two:

first_three = wumpus_r_us_list[:3]
last_three = wumpus_r_us_list[1:]

RRRR!
AIEEEEE!

IS GREATER SIBERIAN
WUMPUS—MUCH
TOUGHER THAN PUNY
AMERICAN WUMPUS!

44 CHAPTER 2 Hunt the Wumpus
Finally, once you’ve taken everything out of a list, you’ll end up with
an empty list, which is represented with two square brackets by
themselves: [].

NOTE One difference between Python and some other programs, such as
C, is that Python’s variables aren’t variables in the classic sense. For
the most part, they behave as if they are, but they’re more like a label
or a pointer to an object in memory. When you issue a command like
a = [], Python creates a new list object and makes the a variable
point to it. If you then issue a command like b = a, b will point to the
same list object, and anything that you do via a will also appear to
happen to b.

Now that you know about lists, let’s tackle for loops.

For loops
Once you have all of your things in a list, a common way to use the list is
to do something to each item in it. The easiest way to do this is to use a
type of loop called a for loop. A for loop works by repeating some state-
ments for every item in a list, and assigns that item to a variable so that
you can do something with it:

print "Wumpus hunting checklist:"
for each_item in wumpus_r_us_list:
 print each_item
 if each_item == "Lantern":
 print "Don't forget to light your lantern"
 print "once you're down there."

Except for the variable, for loops are much the same as while loops. The
break statement which you used in the while loop in listing 2.1 will also
work in for loops.

NOTE This is a common pattern in programming—get a bunch of stuff, and
do something to everything in your bunch.

Coding your caves
In Hunt the Wumpus, each cave is only supposed to connect to a small
number of other caves. For example, cave 1 might only have tunnels to
caves 5, 7, and 12, and then cave 5 has tunnels to 10, 14, and 17. This

Making the caves 45
limits the number of caves the player can visit at
once, and navigating their way through the cave
system to try and find the wumpus becomes the
central challenge of the game.

In your first version of Hunt the Wumpus, you
were already using a list of cave numbers to tell
Python where the wumpus and player were. In
your new version, you’ll use a similar sort of list,
but changed so that it can tell you which caves
can be visited from a particular place. For each cave, you’ll need a list
of other caves, so what you’re after is a list of lists. In Python, it looks
like this:

caves = [[2, 3, 7],
 [5, 6, 12],
 ...
]

What this tells you is that cave 0 (don’t forget that lists start with their
index at 0) links to caves 2, 3, and 7; cave 1 links to caves 5, 6, and 12;
and so on. Because the caves are generated randomly, your numbers
will be different, but the overall structure will be the same. The number
of the cave is the same as its index in the list so that Python can easily
find the exits later. Let’s replace section 1 of listing 2.1 with the follow-
ing listing so that it sets up your new and improved cave system.

Listing 2.4 Setting up your caves

from random import choice

cave_numbers = range(0,20)
caves = []
for i in cave_numbers:
 caves.append([])

for i in cave_numbers:
 for j in range(3):
 passage_to = choice(cave_numbers)
 caves[i].append(passage_to)
print caves

A LIST OF LISTS? HOW
DOES THAT WORK?
AH. I SEE—[2, 3, 7]
IS A CAVE …
AND THE
NUMBERS TELL
PYTHON WHICH
CAVES THE
TUNNELS GO TO:

46 CHAPTER 2 Hunt the Wumpus
You’re still using a range function to generate the list of caves, but
you’ve changed the range so that it starts at 0 instead of 1, to match the
indexes of your list. Then you make an empty list for each of the caves
that you’re supposed to have. At this point, it’s a list of unconnected
caves.

For each unconnected cave in your list, you pick three other caves at
random and append them onto this cave’s list of tunnels. To make
things easier, you use another for loop inside the first one, so that if you
need to change the number of tunnels later, you only need to change
the number 3 to whatever you’d like.

When you’re picking a cave to link to, you use a temporary variable to
store it. The main advantage of this is that you can use a meaningful
name to make the code much easier to read, because you know what
that variable does. Note that you could have joined these two lines
together by writing caves[i].append(choice(cave_numbers)) instead
(using the choice(cave_numbers) function directly), but it’s much harder
to read.

So that you can check the program is working properly, you print out
the list of caves. This is usually referred to as a debug string, because it’s
a handy technique when you’re trying to debug a program. You can
remove this line once the program is running properly, because the
player shouldn’t know the caves ahead of time.

Now, when you run your program, it should print out a list of caves,
like this:

[[8, 7, 14], [1, 18, 4], [4, 8, 15], [6, 6, 0],
 [5, 3, 6], [15, 9, 10], [2, 13, 5], [17, 18, 3],
 [4, 8, 15], [18, 17, 2], [1, 9, 15], [11, 4, 16],
 [16, 10, 6], [2, 10, 5], [13, 4, 6], [8, 14, 11],
 [16, 4, 10], [3, 12, 17], [18, 18, 0], [2, 8, 5]]

This is exactly what to expect. In this one, cave 0 links
to caves 8, 7, and 14; cave 1 links to caves 1, 18, and
4; and so on. Now that you have the list, all that
you have to do is alter the rest of your program to use

AH. YOU PROGRAMMINK
WUMPUS GAME.

IS FEATURE—NOT
BEING EATEN BY
WUMPUS.

YEAH. EXCEPT MY
WUMPUS IS STUCK,
AND I CAN'T REACH IT.

Fixing a more subtle bug 47
it. Sections 4 and 5 of listing 2.1 should be replaced with the following
listing.

Listing 2.5 Altering your program to use the new cave system

print "You are in cave", player_location
print "From here, you can see caves:", caves[player_location]
if wumpus_location in caves[player_location]:
 print "I smell a wumpus!"

print "Which cave next?"
player_input = raw_input(">")
if (not player_input.isdigit() or
 int(player_input) not in caves[player_location]):
 print player_input + "?"
 print "That's not a direction that I can see!"
 continue

You’re only using the cave list to find out which caves the player can
enter next, so the changes to the code B are pretty straightforward.
Instead of checking whether the player’s input is within the list of cave
numbers, you check the list for the specific cave you’re in.

There’s a bug in the code you used to set up your caves. You may not
believe me, especially if you’ve played a few games already, but there
is. Let’s get back into debugging mode.

Fixing a more subtle bug
What makes the bug hard to spot is that the code runs properly, but
sometimes the game is impossible to win. In this section, we’ll look at
why the game can be unwinnable and how to fix it.

NOTE These are the worst kind of bugs to hunt down—your program
doesn’t crash or spit out any obvious errors, but it’s definitely wrong.

We’ll start by examining how the caves are linked.

The problem
The trick is that all the cave tunnels are generated randomly, so they can
be linked in any possible way. Let’s think about an easier case, with a

Changes
to the code

b

48 CHAPTER 2 Hunt the Wumpus
small cave system. Suppose the tunnels happened to link like they do in
figure 2.1.

The player wouldn’t ever be able to catch the wumpus.

With lots of caves, it’s less likely that you’ll strand the player in an iso-
lated corner of the map; but, ideally, you’d like the program to be as
bulletproof as you can make it, so that it’s impossible, rather than
unlikely.

The solution
You need to make two changes to the map gen-
eration to solve the problem. The first is to
make the tunnels two-way. If you can go from
cave 1 to cave 2, then you should be able to
move back from cave 2 to cave 1.

The second is to make sure that every cave is
linked together and that there are no isolated
caves (or networks of caves). This is called a
connected structure. That way, no matter how
you join up the rest of the passages, you can be sure players can reach
every cave, because players can go back the way they came and choose
a different passage. If players forget which way they came then they
can still get lost, but that’s their fault rather than yours.

Now, how do you use Python to link tunnels?

Coding connected caves
Connecting caves is straightforward—when you create a one-way tun-
nel, you add another one way tunnel back the way you came. Every

Figure 2.1
This isn’t a very fun game.

I GUESS. BUT IT'S NOT
MUCH OF A GAME …

A WHA?

AH. THEN YOU ARE
NEEDING "CONNECTED
GRAPH CAVE NETWORK."

Fixing a more subtle bug 49
time you say caves[a].append[b], you also say caves[b].append[a]. The
program looks something like the following listing.

Listing 2.6 Creating a linked cave network

import random

cave_numbers = range(0,20)
caves = []
for i in cave_numbers:
 caves.append([])

unvisited_caves = range(0,20)
visited_caves = [0]
unvisited_caves.remove(0)

while unvisited_caves != []:
 i = choice(visited_caves)
 if len(caves[i]) >= 3:
 continue

 next_cave = choice(unvisited_caves)
 caves[i].append(next_cave)
 caves[next_cave].append(i)

 visited_caves.append(next_cave)
 unvisited_caves.remove(next_cave)

 for number in cave_numbers:
 print number, ":", caves[number]
 print '----------'

for i in cave_numbers:
 while len(caves[i]) < 3:
 passage_to = choice(cave_numbers)
 caves[i].append(passage_to)

 for number in cave_numbers:
 print number, ":", caves[number]
 print '----------'

First, create a list of caves that you haven’t visited, and visit cave 0 B.
You loop until unvisited_caves is empty c; that is, there are no unvisited

Set upb

Main loopc

Pick random
visited cave

d

Link it to an
unvisited one

e

Mark cave
as visited

f

Progress reportg

Dig out rest of
tunnels

h

Progress reportg

50 CHAPTER 2 Hunt the Wumpus
caves left. You pick one that has fewer than three tunnels to other caves
d. If you link 1 cave to 10 others, the game will be too hard, because it
will be difficult or impossible to work out which tunnel leads to the
wumpus.

e is where you’re building the cave. You pick a random unvisited
cave, put a tunnel in the old cave to the new one, and then link from the
new one back to the old one. This way you know that players can find
their way back. In figure 2.2, you’re adding cave 3 to your structure—
it will get linked to one of either cave 0, 1, or 2.

Figure 2.2 Adding cave 3 to
your network

Once you’re done with the cave, you can move it from the unvisited list
to the visited list f. Steps d, e, and f get repeated until you run out
of caves (unvisited caves == []). Your cave structure will start to look
like figure 2.3.

Figure 2.3
That’s much better!

DA!
AND REPEATING?

THEN IS JUST
YOUR LATHERINK
AND RINSINK.

IS EASY:
MAKE ONE CAVE, THEN
JOIN OTHER TO IT.
THEN JOIN THIRD TO
ONE OF THESE TWO.

Clean up your code with functions! 51
The progress report lines g are optional, but if you include them you’ll
be able to see your caves in the process of being built, because every
time Python goes through the loop it will print out the current cave
structure. It also looks a bit nicer than print caves.

Now that all the caves are linked, the rest of the job requires adding
some more one-way tunnels h. It’s exactly the same as the previous
example, except that you’ll already have at least one tunnel in each
cave. So that you don’t add more than three tunnels, you change your
for loop into a while loop.

With your cave problem solved, let’s see how functions can improve
the readability of your code.

Clean up your code with functions!
If you’ve been following along with the examples (you should!), you’ll
notice that your program is growing longer and longer. It’s a relatively
short example, but, even so, it’s becoming hard to understand what’s
happening in the program. If you wanted to give a copy of your pro-
gram to a friend for them to use, they might have a hard time figuring
out what all the pieces do.

NOTE Remember how we were talking about hiding complexity in chapter
1? Functions are one of the critical ways that Python can hide the
complex parts of your program.

It’s time for a spring-cleaning, and you’re going to do that by designing
your program to use some functions. You’ve been using a few functions
so far; they’re the choice(), len(), raw_input() parts of your code—so
you have a rough idea of how they work. What you don’t know (yet) is
what they really are or how to create your own.

Function basics
Functions are a way of making a section of your program self contained,
often referred to as encapsulation. It’s an important way of breaking
down a program into easily understood parts. A good rule of thumb is
that each function “should do one thing and do it well.” There should be
as little overlap between your functions as possible. This is similar to the

52 CHAPTER 2 Hunt the Wumpus
way the parts of a car engine work; if a fan
belt breaks, you should replace the fan
belt—it wouldn’t make much sense to have
to change your tires or spark plugs as well.

There are several advantages to using func-
tions in your program:

❂ You only have to write that part of the
program once, and then you can use it
wherever you like. Later, if you don’t like
the way your program works or you find a bug, you only have to
change your code in one place.

❂ In much the same way you can choose nice variable names that tell
you what’s going on in your program, you can also choose nice func-
tion names that describe what the function does.

❂ One of the reasons your code is hard to understand now is that it’s
all in one big piece and it’s difficult to tell where parts begin and end.
If it were broken into smaller parts, with a part for setting up the
caves, a part for making a tunnel, a part for moving the player, and
so on, you would only need to read (and understand) one small piece
of the program instead of a large chunk.

Functions are one of the main units of encapsulation in Python. Even
advanced structures such as classes, which we cover in chapter 6, are
composed of functions. Python also has what are called first-class func-
tions, which means that you can assign functions to variables and pass
them to other functions. You’ll learn more about how to use functions
like this in chapter 7.

Functions have input and output, which you’ve seen already—when
you use a function, you send it some data and then get back some more
data as an answer. Some functions will do things themselves, but other
functions will return a value after performing some calculations. Here’s
a simple function that will add two numbers together:

def add_two_numbers(a, b):
 """ This function adds two numbers """
 return a + b

TO PAY
THEM WHEN
THEY GET
EATEN!

THAT'LL BE THE THIRD
ONE THIS WEEK!
AT LEAST WE DON'T HAVE

I MAY HAVE FOUND US A
WUMPUS EXTERMINATOR.

Clean up your code with functions! 53
Let’s look at the initial line of the function declaration. It starts with the
reserved word def, followed by a name for your function, and then the
parameters that the function will expect within brackets. When you
call the function later in your program, you specify what these parame-
ters are—they can be explicit values or variables.

The second line is called a docstring, and it’s another useful way of mak-
ing your programs easier to read when combined with good variable
and function names. It should be a short description of the function
and what it does—anything that someone might need to know in order
to use the function properly. You’ve also used a special version of a
Python string with three quotes, so that you can extend the docstring
over more than one line if you need to.

The third line is where the function does its work. In this case it’s
easy—add a and b together. The return statement tells Python that the
function has finished and to send the result of a + b back to whoever
called it.

Variable scope
Python places some limits on functions so
they can only affect a small part of your
program, normally the function itself. Most
variables that are set inside your functions
are known as local variables, and you won’t
be able to use them outside of the function:

def create_a():
 a = 42

create_a()
print a

When you try and run this program, you’ll get an error like this one:

Traceback (most recent call last):
 File "<stdin>", line 5, in test.py
NameError: name 'a' is not defined

What happened? You set the a variable inside the create_a() function,
didn’t you? Actually, it was only created inside the function. You can

WUMPII,
ACTUALLY.

ACCORDING TO MY OLD
PROFESSOR, THIS ONE'S
BEEN HUNTING WUMPUSES IN
THE ANDES FOR 20 YEARS …

54 CHAPTER 2 Hunt the Wumpus
think of it as “belonging” to create_a. As soon as Python has finished
with a variable, it gets thrown away—in this case, as soon as the func-
tion exits.

Additionally, you won’t be able to change most variables that have
been defined outside the function. Instead, when you create a variable,
you’ll be creating a new one. The following code won’t work:

a = 42
def add_to_a(b):
 a = a + b
add_to_a(42)

Unless you tell it otherwise, Python assumes that the a variable is sup-
posed to be within the add_one_to_a function. Trying to access a vari-
able inside of a function produces an error like this:

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in add_to_a
UnboundLocalError: local variable 'a' referenced before assignment

The rule of thumb to remember is that the variables used in functions
and the variables used in the rest of your program are different. Within
a function, you should only use the variables that are passed into it as
parameters, and, once back in the main part of your program, you
should only use the variables that are returned from the function.

But, like most rules of thumb, there are exceptions. In your program,
you’re making one exception when you’re modifying the list of caves.
In Python, the lists of caves and cave networks are a special type of
variable called an object, and behind the scenes you’re sending messages
to these objects instead of modifying them directly. You’ll learn more
about how that works in chapter 6. But, for now, think of lists as being
a special exception to the rule that you can’t modify external variables.

Shared state
When functions (or objects) work on a single copy of something, it’s
referred to as shared state. You can use shared state by making functions
work on a list of caves, but, generally, shared state is a bad thing to have

Fixing the wumpus 55
in your programs. If you have a bug in one of your functions, Python
may corrupt your data (perhaps truncate it, or replace it with something
odd). You won’t notice this until a completely separate part of your pro-
gram tries to read the garbled data and displays odd results. When that
happens, your program will become much harder to fix, depending on
the number of functions that access your shared state.

NOTE Shared data is a double-edged sword. You need to have some, but it’s
also a source of bugs—particularly if a lot of functions share the data.

In chapter 6, you’ll learn how to limit the number of functions that
have access to shared state by using another Python structure called a
class. For now, though, you’ll have to be careful; you’ll only modify
your caves when you set them up, and you’ll leave them alone once
you’re playing the game.

Now that you know what functions are and why you’d want to use
them, let’s go ahead and see how to break up your wumpus game into
individual functions.

Fixing the wumpus
In principle, encapsulating a program into functions isn’t too hard: look
for parts of your program that fit some of the following criteria, and try
to pull them out into functions where they

Data and operations on data
Most programs can be thought of as a collection of information or data that also
features rules about ways to interact with that data. The Hunt the Wumpus pro-
gram is no exception. You have a cave structure and locations for the wumpus
and the player, functions that make changes to that data, and then a main pro-
gram that ties it all together using the functions.

Designing your programs this way makes them much easier to write and debug
and gives you more opportunities to reuse your code than if you had thrown ev-
erything into one big program or function.

If you have a data structure that fits everything your program needs and makes
it easy to retrieve the data you need, that’s usually half the battle when it comes
to writing your program.

56 CHAPTER 2 Hunt the Wumpus
❂ Do one particular thing (self contained)
❂ Are repeated several times
❂ Are hard to understand

When considering the Hunt the Wumpus game, you should be able to
see that it has three main sections. You’ll start with the simplest func-
tions first and then use them to build the rest of your program.

Interacting with the caves
When dealing with cave-related tasks, there are several simple actions
that you perform quite often:

❂ Create a tunnel from one cave to another.
❂ Mark a cave as visited.
❂ Pick a cave at random, preferably one that is ok to dig a tunnel to.

To make your life easier when working with the list of caves, you can
create what are known as convenience functions. These are functions that
perform a (potentially complicated) series of actions but hide that com-
plexity when you’re using the function in your program. The benefit is
that you can perform the actions in one step in your main program, and
you don’t have to worry about the details once you’ve created the func-
tion. That makes your program easier to understand and helps to
reduce bugs in your programs. The next listing introduces some conve-
nience functions that you can use to make Hunt the Wumpus clearer
and more comprehensible.

Listing 2.7 Adding convenience functions

def create_tunnel(cave_from, cave_to):
 """ Create a tunnel between cave_from
 and cave_to """
 caves[cave_from].append(cave_to)
 caves[cave_to].append(cave_from)

def visit_cave(cave_number):
 """ Mark a cave as visited """
 visited_caves.append(cave_number)
 unvisited_caves.remove(cave_number)

Create tunnels
and visit cavesb

Choose cavec

Fixing the wumpus 57
def choose_cave(cave_list):
 """ Pick a cave from a list, provided
 that the cave has less than 3 tunnels."""
 cave_number = choice(cave_list)
 while len(caves[cave_number]) >= 3:
 cave_number = choice(cave_list)
 return cave_number

def print_caves():
 """ Print out the current cave structure """
 for number in cave_numbers:
 print number, ":", caves[number]
 print '----------'

Creating tunnels and visiting caves are both obvious candidates for
functions b. It’s easy to make an error by using the wrong variable to
refer to a cave, and using code like create_tunnel(cave1, cave2) makes
your program much easier to read.

In the choose_cave function c, you can hide even more detail. When
you choose a cave, you’re normally only interested in caves that have
fewer than three tunnels. Adding that check into the function will
remove a lot of duplicated code from your main program. Note also
that choose_cave accepts a list of caves as input so you can use it to pick
a cave from either the visited or unvisited cave list.

It’s not only the “final” versions of your code that can have convenience
functions. You can also create convenience functions to help you while
programming. If you want to debug your code at a later point, a func-
tion to print all of your caves d comes in handy. .

Next let’s turn our attention to how to create your caves.

Creating the caves
We’ve already talked about the data that a program uses. One good rule
of thumb is to create functions that do particular things to your data or
that tell you about your data, and then use only those functions to “talk”
to your data. In programming terminology, this is normally referred to
as an interface. With an interface to guide you, it’s much harder to make

Print cavesd

58 CHAPTER 2 Hunt the Wumpus
a mistake or get confused about what the data means. To some extent,
you’ve already started that process.

In Hunt the Wumpus, there are three tasks that you need to perform
when creating caves that are ideal candidates for functions:

❂ Set up the cave list.
❂ Make sure all of the caves are linked.
❂ Make sure there are three tunnels per cave.

In listing 2.8, three functions do exactly that. These functions are the
essential core of your program, so it will pay off to try to get them right.
There are no hard and fast rules, but some signs that your program is
well written include the following:

❂ It’s easy to read and understand.
❂ It’s easy to find and fix bugs.
❂ You only have to change limited parts of your program when you

add new features.
❂ You can reuse some of your functions when modifying the program.

Ultimately, though, what “right” means will vary from program to pro-
gram depending on the design and what that design is trying to
achieve.

Listing 2.8 Cave-creation functions

def setup_caves(cave_numbers):
 """ Create the starting list of caves """
 caves = []
 for cave in cave_numbers:
 caves.append([])
 return caves

def link_caves():
 """ Make sure all of the caves are connected
 with two-way tunnels """
 while unvisited_caves != []:
 this_cave = choose_cave(visited_caves)
 next_cave = choose_cave(unvisited_caves)

Create list
of cavesb

Connect cavesc

Fixing the wumpus 59
 create_tunnel(this_cave, next_cave)
 visit_cave(next_cave)

def finish_caves():
 """ Link the rest of the caves with
 one-way tunnels """
 for cave in cave_numbers:
 while len(caves[cave]) < 3:
 passage_to = choose_cave(cave_numbers)
 caves[cave].append(passage_to)

Creating the list of caves b hasn’t changed much from the previous
listing, but it’s still a good idea to put well-defined sections of code in
their own functions for readability.

All the hard work of connecting the caves and tunneling is done in
link_caves c. Did you notice how the convenience functions that you
defined in the previous listing help to tidy things up even further?
Even if you didn’t know what this function was doing, it’d be pretty
easy to guess.

With finish_caves, you haven’t created a convenience function d. It’s
the only section of code where you create a one-way tunnel, so the ben-
efit is a bit more limited than in the other cases. Whether you create a
function in cases like this might depend on whether you were planning
on adding more functionality later. Decisions like this can be some-
thing of a stylistic issue, so pick the option that feels best for you. You
can always change it later if you need to repeat some code.

Finally, let’s bring functions to how Hunt the Wumpus interacts with
the player.

Interacting with the player
When running the program, there are two tasks that you perform regu-
larly to find out what the player wants to do next:

❂ Tell the player about where they are.
❂ Get some input from the player.

Three tunnels
per caved

60 CHAPTER 2 Hunt the Wumpus
Because the appearance of a program is likely to change substantially,
either due to the feedback of the people using it or from adding new
features, it often makes sense to keep the interface separated from the
rest of the program and interact with the player through well-defined
mechanisms. The next listing defines two functions you’ll use for these
two tasks in your user interface.

Listing 2.9 Player-interaction functions

def print_location(player_location):
 """ Tell the player about where they are """
 print "You are in cave", player_location
 print "From here, you can see caves:"
 print caves[player_location]
 if wumpus_location in caves[player_location]:
 print "I smell a wumpus!"

def get_next_location():
 """ Get the player's next location """
 print "Which cave next?"
 player_input = raw_input(">")
 if (not player_input.isdigit() or
 int(player_input) not in
 caves[player_location]):
 print player_input + "?"
 print "That's not a direction that I can see!"
 return None
 else:
 return int(player_input)

Here’s the mechanism that I was talking about. It doesn’t matter what
the player enters; this function will always return either a special value
of None (Python’s version of null) if the input wasn’t right, or the num-
ber of the cave that the player wants to enter. You can check this easily
in the main part of your program.

The rest of the program
Once you have all of these functions, it doesn’t leave much of your pro-
gram that isn't a function. But this is a good thing, as you’ll see shortly.

Get next
location

Fixing the wumpus 61
Listing 2.10 shows the final installment of the updated Hunt the Wum-
pus game. It behaves exactly the same way as the program in listing 2.6
as far as the player is concerned, but the structure has completely
changed. All of your tasks are now stored within functions, and the
main program uses those functions to do everything in the game—dis-
play the current cave, get input, move the player, and so on.

Listing 2.10 The refactored wumpus game

from random import choice

...function definitions...

cave_numbers = range(0,20)
unvisited_caves = range(0,20)
visited_caves = []
caves = setup_caves(cave_numbers)

visit_cave(0)
print_caves()
link_caves()
print_caves()
finish_caves()

wumpus_location = choice(cave_numbers)
player_location = choice(cave_numbers)
while player_location == wumpus_location:
 player_location = choice(cave_numbers)

while True:
 print_location(player_location)
 new_location = get_next_location()
 if new_location isn’t None:
 player_location = new_location
 if player_location == wumpus_location:
 print "Aargh! You got eaten by a wumpus!"
 break

Notice how short and easy to follow the main part of the program is
now. It’s only 20 lines, and, because you’ve chosen useful function
names, you could probably figure out what it does even if you didn’t

62 CHAPTER 2 Hunt the Wumpus
know anything about Python. That’s the ideal that you should be aim-
ing for. Clear, easy-to-understand code will save you a lot of time when
reading and modifying it later on.

Caves … check. Wumpus … check. Running around in the caves …
check. A way to win the game… Hmm. There’s no way to win the
game. Better do something about that.

Bows and arrows
In the traditional wumpus game, you had
a bow and one arrow, and when you
thought that you knew which cave the
wumpus was in, you could choose to fire an arrow into that cave. If you
guessed wrong, too bad!

NOTE One of the golden rules of game design is that the player has to be
able to enjoy your game. Without a bow and arrow, you can still
explore and have fun, but firing the bow and arrow is how you find
out whether your exploration and understanding of the cave system
is correct.

Simplify
You’ve seen how you refined and simplified the program as you went along, in-
cluding going back and changing parts completely when necessary. If you can
simplify your code, there’s normally no reason not to. The simpler a program is,
the easier it is to write, understand, debug, and modify. The refining process is
typically along the lines that you’ve seen so far in this chapter:

❂ Use meaningful names for both variables and functions.
❂ Use white space to separate different sections of program.
❂ Store values in intermediate variables.
❂ Break up functions so that they do one thing well.
❂ Limit the amount of shared state that functions use, and be clear about what

that shared state is.

Perfection is achieved not when there is nothing left to add, but
when there is nothing left to take away.

 —Antoine de Saint-Exupéry

BOW AND ARROW?
NOW WE'RE
TALKING!

Bows and arrows 63
It should be easy to see how to add this sort of feature by now, because
it’s similar in style to the get_next_location() function. You’ll add a total
of three more functions:

❂ Ask whether the player wants to move or shoot.
❂ Find out where to move.
❂ Find out where to fire an arrow.

You’ll also modify the get_next_location() function into a general func-
tion ask_for_cave(). That’s what it is already, and you can call it from
both your movement and firing functions. By writing it this way, your
two input functions will be short, which helps keep your program man-
ageable. If you add another feature later that needs to ask for a cave,
then you’ll already have a useful function to call on, which makes pro-
gramming easier and faster.

Listing 2.11 Adding arrows

def ask_for_cave():
 """ Ask the player to choose a cave from
 their current_location."""
 player_input = raw_input("Which cave?")
 if (not player_input.isdigit() or
 int(player_input) not in caves[player_location]):
 print player_input + "?"
 print "That's not a direction that I can see!"
 return None
 else:
 return int(player_input)

def get_action():
 """ Find out what the player wants to do next. """
 print "What do you do next?"
 print " m) move"
 print " a) fire an arrow"
 action = raw_input("> ")
 if action == "m" or action == "a":
 return action
 else:
 print action + "?"
 print "That's not an action that I know about"
 return None

Redefine
player_input()b

Get player actionc

64 CHAPTER 2 Hunt the Wumpus
def do_movement():
 print "Moving..."
 new_location = ask_for_cave()
 if new_location is None:
 return player_location
 else:
 return new_location

def do_shooting():
 print "Firing..."
 shoot_at = ask_for_cave()
 if shoot_at is None:
 return False

 if shoot_at == wumpus_location:
 print "Twang ... Aargh! You shot the wumpus!"
 print "Well done, mighty wumpus hunter!"
 else:
 print "Twang ... clatter, clatter!"
 print "You wasted your arrow!"
 print "Empty handed, you begin the "
 print "long trek back to your village..."
 return True

...

while 1:
 print_location(player_location)

 action = get_action()
 if action is None:
 continue

 if action == "m":
 player_location = do_movement()
 if player_location == wumpus_location:
 print "Aargh! You got eaten by a wumpus!"
 break

 if action == "a":
 game_over = do_shooting()
 if game_over:
 break

Functions for
program
actions, too

d

Main program
is clear

e

More atmosphere 65
You don’t need to make too many changes to
your earlier get_next_location function; you
just need a name change to make its intention
clear and some cosmetic changes to how the
program asks for input b. The fact that you
don’t need to make extensive changes is nor-
mally a good sign that a function is designed
properly. If you had to significantly modify
your function, it could be a sign that the orig-
inal was trying to do too much at once.

The function get_action() c is similar to the ask_for_cave() function,
except that the valid input differs. Hmm … perhaps there’s the possi-
bility that you can create a clearer function, one that both of these can
call. In chapter 6, you’ll learn about a good way to do that.

It’s not just input that can be made into its own function. Actions
within the game can be functions too d. Perhaps actions is too strong a
word—notice how the action functions don’t do anything (that is, set
any variables); they only return what should happen, and then the
main program takes action based on what the functions tell it to do.

The main part of your program is still as clear as it was previously e,
even though you’ve added a major new piece of functionality. If it’s
much more complicated, that’s usually a sign that you might need to
create a new function for some parts of your program and simplify the
core of what you’re doing.

More atmosphere
Congratulations! You now have a fully functional Hunt the Wumpus
program, which you can play over and over again and use to impress
your friends. Well, sort of. It works, but a number for each cave isn’t
atmospheric or impressive. It makes your program easier to think about,
but it needs that extra bit of polish. How about changing the program so
that instead of numbers, it uses descriptive names for each cave?

NOTE The core game mechanics are what make Hunt the Wumpus fun, but
the final bits of polish like this are what distinguish good games from
great games.

WHAT'S WITH THE CRATE?
I'M GETTING TIRED OF
THIS WUMPUS SMELL.
SO I'M TAKING MATTERS
INTO MY OWN HANDS.

66 CHAPTER 2 Hunt the Wumpus
One way to do that is to reference a list of cave names stored in your
program based on the cave number. Instead of displaying the raw cave
number, display cave_names[cave_number]. When you ask the player for a
cave, they should instead pick a number from 1 to 3, with the name of
the cave after the number. You’re aiming for something similar to
what’s shown in the following listing.

Listing 2.12 An interface for Hunt the Wumpus

Black pit
From here, you can see:
 1 - Winding steps
 2 - Old firepit
 3 - Icy underground river
I smell a wumpus!

What do you do next?
 m) move
 a) fire an arrow
>

The list of cave names is relatively easy. You
can borrow mine or create your own. Notice
that, in the following listing of cave names,
you can break a list over multiple lines at the
commas between items. This is to make the
program easier to read and modify.

Listing 2.13 A list of cave names

cave_names = [
 "Arched cavern",
 "Twisty passages",
 "Dripping cave",
 "Dusty crawlspace",
 "Underground lake",
 "Black pit",
 "Fallen cave",
 "Shallow pool",
 "Icy underground river",

I'VE PUT ALL OF OUR OLD
DUST PUPPY MASCOTS IN
HERE. ALONG WITH SOME
OF PITR'S OLD SOCKS.

RRRR!WHAT'S THAT
GOING TO DO?

More atmosphere 67
 "Sandy hollow",
 "Old firepit",
 "Tree root cave",
 "Narrow ledge",
 "Winding steps",
 "Echoing chamber",
 "Musty cave",
 "Gloomy cave",
 "Low ceilinged cave",
 "Wumpus lair",
 "Spooky Chasm",
]

The only other changes that you need to make are to what you’re dis-
playing, and what input you’ll accept, as shown in the following listing.

Listing 2.14 Hunt the Wumpus—now with 40% more atmosphere!

def print_location(player_location):
 """ Tell the player about where they are """
 print
 print cave_names[player_location]
 print "From here, you can see:"
 neighbors = caves[player_location]
 for tunnel in range(0,3):
 next_cave = neighbors[tunnel]
 print " ", tunnel+1, "-", cave_names[next_cave]
 if wumpus_location in neighbors:
 print "I smell a wumpus!"

def ask_for_cave():
 """ Ask the player to choose a cave from
 their current_location."""
 player_input = raw_input("Which cave? ")
 if player_input in ['1', '2', '3']:
 index = int(player_input) - 1
 neighbors = caves[player_location]
 cave_number = neighbors[index]
 return cave_number
 else:
 print player_input + "?"
 print "That's not a direction that I can see!"
 return False

Changes to
player’s view

b

Simplify player
input

c

Nothing else
has changedd

68 CHAPTER 2 Hunt the Wumpus
Here’s where you print out the current caves and the list of
caves the player can see b. They’re all using the printable
cave name from your list of cave names, rather than the
number. Instead of printing the cave list, you’re using a for
loop, with tunnel as an index into the list of tunnels. You’re
also adding one to it to get 1, 2, or 3 rather than the 0, 1, or
2 indexes, to make it extra friendly.

Now that you know there are only three valid choices, you can check
directly for those c rather than needing the user to enter the number
of the cave. You’re also subtracting one from the result, because you
need 0, 1, or 2 for your list index, rather than 1, 2, or 3.

Even though you’re using 1, 2, and 3 as choices, you still return the
cave number as an index. All of your changes are contained within the
print_location and ask_for_cave functions and use the interface that we
talked about earlier, so nothing else in your program needs to be
changed at all d.

Where to from here?
You don’t have to stop with the program as listed. There are a number
of features you can add, including some that were in the original version
of Hunt the Wumpus. Feel free to invent your own—this is your pro-
gram now, and you can make it do whatever you like.

Bats and pits
In the original Hunt the Wumpus, there were other hazards: bats,
which carried the player to another cave, and pits, which worked in a
similar way to the wumpus (“I feel a draft!”).

Making the wumpus move
One wumpus variant made the wumpus move to a different, random
cave if the player missed with their arrow—instead of causing the
player to lose the game.

THE
ANDES,
CHILE

Summary 69
Different cave structures
The original Hunt the Wumpus had a static cave structure, in which the
caves were vertices of a dodecahedron. You don’t necessarily have to
follow this format, but experimenting with different cave structures
could make for a more fun game. For example, perhaps you don’t like
one-way tunnels; that should be easy to fix. Also, in the current version,
caves can tunnel to themselves. I happen to like that sort of layout, but
you may not. Being able to write your own programs means that you’re
not stuck with my design choices; you’re free to make your own.

Summary
This chapter covered a lot of material. Not only did you learn the basics
of Python and how to fit them together to make a program, but we also
covered possible ways to design your programs and took a look at why
certain design choices might be better than others.

The best way to start writing a program is to choose something simple
that either does part of what you need or describes the core of your
program; then, build it from there. In Hunt the Wumpus, the first step
was to create the initial game loop of choosing a cave and allowing the
player to move to a different one. From there, you were able to develop
a proper cave system; after making sure that the caves were connected
properly, your program became a fully fledged game that can be played
and won (or lost).

The best way to continue to develop your program is to refine it as you
go, by breaking commonly used parts into functions and trying to
develop an interface between different sections of your program.
Because it’s easy to lose track of the overall structure in low-level details,
such as adding items to lists or making sure that caves have three tun-
nels, a large part of your interfaces will often entail hiding superfluous
details or making sections of your program easier to work with.

3
Interacting with the world

This chapter covers

• What libraries are

• How to use libraries, including Python’s standard library

• An example program that uses Python’s os and sys libraries

• Python’s dictionary data type

One of the key strengths of Python is its standard library. Installed along
with Python, the standard library is a large suite of program code that
covers common tasks like finding and iterating over files, handling user
input, downloading and parsing pages from the web, and accessing data-
bases. If you make good use of the standard library, you can often write
programs in a fraction of the time that it would take you otherwise, with
less typing and far fewer bugs.

GUIDO’S TIME
MACHINE

 The standard library is so extensive that one of the running
jokes in the Python community is that Guido (the inventor of
Python) owns a time machine. When someone asks for a mod-
ule that performs a particular task, Guido hops in his time
machine, travels back to the beginning of Python, and—
“poof!”—it’s already there.
70

“Batteries included”: Python’s libraries 71
In chapter 2, you used the choice function in Python’s random module
to pick something from a list, so you’ve already used a library. In this
chapter, we’ll go in depth and find out more about how to use libraries,
what other libraries exist, and how to use Python’s documentation to
learn about specific libraries. In the process, you’ll also pick up a few
other missing pieces of Python, such as how you can read files, and
you’ll discover another of Python’s data types—the dictionary.

The program in this chapter solves a common problem that you’ve
probably faced before: you have two similar folders (perhaps one’s a
backup of your holiday photos), and you’d like to know which files dif-
fer between the two of them. You’ll be tackling this program from a dif-
ferent angle than in chapter 2, though. Rather than write most of your
own code, you’ll be using Python to glue together several standard
libraries to get the job done.

Let’s start by learning more about Python libraries.

“Batteries included”: Python’s libraries
What are libraries used for? Normally, they’re geared toward a single
purpose, such as sending data via a network, writing CSV or Excel
files, displaying graphics, or handling user input. But libraries can
grow to cover a large number of related functions; there’s no hard or
fast rule.

LIBRARY Program code that is written so that it can be used by other
programs.

Python libraries can do anything that Python can, and more. In some
(rare) cases, like intensive number crunching or graphics processing,
Python can be too slow to do what you need; but it’s possible to extend
Python to use libraries written in C.

In this section, you’ll learn about Python’s standard library, see which
other libraries you can add, try them out, and get a handle on exploring
a single library.

72 CHAPTER 3 Interacting with the world
Python’s standard library
Python installs with a large number of libraries that
cover most of the common tasks that you’ll need to
handle when programming.

If you find yourself facing a tricky problem, it’s a good
habit to read through the modules in Python’s standard
library to see if something covers what you need to do.
The Python manuals are installed with the standard
Windows installer, and there’s normally a documenta-
tion package when installing under Linux. The latest

versions are also available at http://docs.python.org if you’re connected
to the internet. Being able to use a good library can save you hours of
programming, so 5 or 10 minutes up front can pay big dividends.

The Python standard library is large enough that it can be hard to find
what you need. Another way to learn it is to take it one piece at a time.
The Python Module of the Week blog (www.doughellmann.com/
PyMOTW/) covers most of Python’s standard library and is an excellent
way to familiarize yourself with what’s available, because it often con-
tains far more explanation than the standard Python documentation.

Other libraries
You’re not limited to the libraries that Python installs. It’s easy to
download and install extra libraries to add the additional functionality
that you need. Most add-on libraries come with their own installers or
installation script; those that don’t can normally be copied into the
library folder of your Python directory. You’ll find out how to install
libraries in later chapters, Once the extra libraries are installed, they
behave like Python’s built-in ones; there’s no special syntax that you
need to know.

Using libraries
Once installed, using a library is straightforward: just add an import
line at the top of the script. There are several ways to do it, but here are
the three most common.

GREG, HAVE YOU SEEN
MY FILE?

FILE? WHAT FILE?

“Batteries included”: Python’s libraries 73
INCLUDE EVERYTHING

You can include everything from a library
into your script by using a line like

from os import *

This will read everything from the os

module and drop it straight into your
script. If you want to use the access func-
tion from os, you can use it directly, like
access("myfile.txt"). This has the advan-
tage of saving some typing, but with seri-
ous downsides:

❂ You now have a lot of strange functions in your script.
❂ Worse, if you include more than one module in this way, then you

run the risk of functions in the later module overwriting the func-
tions from the first module—ouch!

❂ Finally, it’s much harder to remember which module a particular
function came from, which makes your program difficult to maintain.

Fortunately, there are much better ways to import modules.

INCLUDE THE MODULE

A better way to handle things is with a line like import os. This will
import everything in os but make it available only through an os object.
Now, if you want to use the access function, you need to use it like this:
os.access("myfile.txt"). It’s a bit more typing, but you won’t run the
risk of overwriting any other functions.

INCLUDE ONLY THE BITS THAT YOU WANT

If you’re using the functions from a module a lot, you might find that
your code becomes hard to read, particularly if the module has a long
name. There’s a third option in this case: you can use a line like from os
import access. This will import directly so that you can use access
("myfile.txt") without the module name, but only include the access
function, not the entire os module. You still run the risk of overwriting

I'LL HAVE A LOOK IN
YOUR SHARED
FOLDER …

IT'S AN IMPORTANT REPORT
THAT I'M WORKING ON. I HAD
IT SAVED ON THE SERVER
YESTERDAY. BUT NOW IT'S
GONE!

74 CHAPTER 3 Interacting with the world
with a later module, but, because you have to specify the functions and
there are fewer of them, it’s much less likely.

What’s in a library, anyway?
Libraries can include anything that comes with standard Python—
variables, functions, and classes, as well as Python code that should be
run when the library is loaded. You’re not limited in any way; anything
that’s legal in Python is fine to put in a library. When using a library for
the first time, it helps to know what’s in it, and what it does. There are
two main ways to find out.

TIP dir and help aren’t only useful for libraries. You can try them on all
of the Python objects, such as classes and functions. They even sup-
port strings and numbers.

READ THE FINE MANUAL

Python comes with a detailed manual on every aspect of its use, syntax,
standard libraries—pretty much everything you might need to refer-
ence when writing programs. It doesn’t cover every possible use, but
the majority of the standard library is there. If you have internet
access, you can view it at http://docs.python.org, and it’s normally
installed alongside Python, too.

EXPLORATION

One useful function for finding out what a library contains is dir().
You can call it on any object to find out what methods it supports, but
it’s particularly useful with libraries. You can combine it with the

__doc__ special variable, which is set to the doc-
string defined for a function or method, to get a
quick overview of a library’s or class’s methods
and what they do. This combination is so useful
that there’s a shortcut called help() that is defined
as one of Python’s built-in functions.

For the details, you’re often better off looking at
the documentation; but if you only need to jog
your memory, or if the documentation is patchy

I'LL BET
IT IS …

HEY! THAT'S LEGITIMATE
MARKETING MATERIAL!

"BIG_BAZONGAS.JPG"?!
IS THAT IT?

“Batteries included”: Python’s libraries 75
or confusing, dir(), __doc__, and help() are much faster. The following
listing is an example of looking up some information about the os
library.

Listing 3.1 Finding out more about the os.path library

>>> import os
>>> dir(os.path)
['__all__', '__builtins__', '__doc__', '__file__',
 '__name__', '__package__', '_getfullpathname',
 'abspath', 'altsep', 'basename', 'commonprefix',
 'curdir', 'defpath', 'devnull', 'dirname', 'exists',
 'expanduser', 'expandvars', 'extsep', 'genericpath',
 'getatime', 'getctime', 'getmtime', 'getsize',
 'isabs', 'isdir', 'isfile', 'islink', 'ismount',
 'join', 'lexists', 'normcase', 'normpath', 'os',
 'pardir', 'pathsep', 'realpath', 'relpath', 'sep',
 'split', 'splitdrive', 'splitext', 'splitunc',
 'stat', 'supports_unicode_filenames', 'sys',
 'walk', 'warnings']
>>> print os.path.__doc__
Common pathname manipulations, WindowsNT/95 version.

Instead of importing this module directly, import os
and refer to this module as os.path.

>>> print os.path.isdir.__doc__
Return true if the pathname refers to an existing
directory.
>>> print os.path.isdir('c:/')
True
>>> print os.path.isdir('c:/windows/system.ini')
False

>>> help (os)
Help on module os:

NAME
 os - OS routines for Mac, NT, or Posix depending
 on what system we're on.

FILE
 c:\python26\lib\os.py

Import osb

Explore
os.path

c

Docstring for
os.path
module

d

Docstring for the
isdir function

e

Test functionsf

help() functiong

76 CHAPTER 3 Interacting with the world
DESCRIPTION
 This exports:
 - all functions from posix, nt, os2, or ce,
 e.g. unlink, stat, etc.
 - os.path is one of the modules posixpath,
 or ntpath
 - os.name is 'posix', 'nt', 'os2', 'ce' or
 'riscos'
 - os.curdir is a string representing the
 current directory ('.' or ':')
 - os.pardir is a string representing the
 parent directory ('..' or '::')

First, you need to import the os module B. You can import os.path
directly, but this is the way that it’s normally done, so you’ll have fewer
surprises later. Next, you call the dir() function on os.path, to see
what’s in it c. The function will return a big list of function and vari-
able names, including some built-in Python ones like __doc__ and
__name__.

Because you can see a __doc__ variable in os.path, print it and see what
it contains d. It’s a general description of the os.path module and how
it’s supposed to be used.

If you look at the __doc__ variable for a function in os.path e, it shows
much the same thing—a short description of what the function is sup-
posed to do.

Once you’ve found a function that you think does what you need, you
can try it out to make sure f. Here, you’re calling os.path.isdir() on a
couple of different files and directories to see what it returns. For more
complicated libraries, you might find it easier to write a short program
rather than type it all in at the command line.

Finally, the output of the help() function g contains all the same infor-
mation that __doc__ and dir() do, but printed nicely. It also looks
through the whole object and returns all of its variables and methods
without you having to look for them. You can press space or page up
and down to read the output, and Q when you want to go back to the
interpreter.

help() functiong

Another way to ask questions 77
In practice, it can often take a combination of these methods before you
understand enough about the library for it to be useful. A quick over-
view of the library documentation, followed by some experimenting at
the command line and a further read of the documentation, will pro-
vide you with some of the finer points once you understand how it all
fits together. Also, bear in mind that you don’t necessarily have to
understand the entire library at once, as long as you can pick and
choose the pieces you need.

Now that you know the basics of Python libraries, let’s see what you
can do with them.

Another way to ask questions
There’s one thing that you need to know before
you can start putting your program together.
Actually, there are a couple of other things, but
you can pick those up on the way. What you’d
like to be able to do in order to begin is tell the
computer which directories you want to com-
pare. If this were a normal program, you’d
probably have a graphical interface where you
could click the relevant directories. But that sounds hard, so you’ll pick
something simpler to write: a command-line interface.

Using command-line arguments
Command-line arguments are often used in system-level programs.
When you run a program from the command line, you can specify
additional parameters by typing them after the program’s name. In this
case, you’ll be typing in the names of the two directories that you want
to compare; something like this:

python difference.py directory1 directory2

If you have spaces in your directory name, you can surround the
parameters with quotation marks; otherwise, your operating system
will interpret it as two different parameters:

python difference.py "My Documents\directory1" "My Documents\directory2"

I'M SICK OF STEF
WHINING ABOUT HIS
MISSING REPORT, SO
I'VE HACKED
TOGETHER A PYTHON
SCRIPT TO
FIND IT
FOR HIM …

HEY GREG, WHATCHA
WORKING ON?

78 CHAPTER 3 Interacting with the world
Now that you have your parameters, what are you going to do with
them?

Using the sys module
In order to read the parameters you’ve fed in, you’ll need to use the sys
module that comes with Python’s standard library. sys deals with all
sorts of system-related functionality, such as finding out which version
of Python a script is running on, information about the script, paths,
and so on. You’ll be using sys.argv, which is an array containing the
script’s name and any parameters that it was called with. Your initial
program is listing 3.2, which will be the starting point for the compari-
son script.

Listing 3.2 Reading parameters using sys

import sys

if len(sys.argv) < 3:
 print "You need to specify two directories:"
 print sys.argv[0], "<directory 1> <directory 2>"
 sys.exit()

directory1 = sys.argv[1]
directory2 = sys.argv[2]

print "Comparing:"
print directory1
print directory2
print

First, you check to make sure that the script has been called with
enough parameters b. If there are too few, then you return an error to
the user. Note also that you’re using sys.argv[0] to find out what the
name of your script is and sys.exit to end the program early.

Because you know now that there are at least two other values, you can
store them for later use c. You could use sys.argv directly, but this
way, you’ve got a nice variable name, which makes the program easier
to understand.

Check
parameters

b

Store parameter
values

c

Debug stringsd

Reading and writing files 79
Once you have the variables set, you can print them out d to make
sure they’re what you’re expecting. You can test it out by trying the
commands from the section “Using command-line arguments.” The
script should respond back with whatever you’ve specified.

NOTE File objects are an important part of Python. Quite a few libraries
use file-like objects to access other things, like web pages, strings,
and the output returned from other programs.

If you’re happy with the results, it’s time to start building the program
in the next section.

Reading and writing files
The next thing you’ll need to do in your duplicate checker is to find
your files and directories and open them to see if they’re the same.
Python has built-in support for handling files as well as good cross
platform file and directory support via the os module. You’ll be using
both of these in your program.

Paths and directories (a.k.a. dude, where’s my file?)
Before you open your file, you need to know where to find it. You want
to find all of the files in a directory and open them, as well as any files
in directories within that directory, and so on. That’s pretty tricky if
you’re writing it yourself; fortunately, the os module has a function
called os.walk() that does exactly what you want. The os.walk() func-
tion returns a list of all of the directories and files for a path. If you
append listing 3.3 to the end of listing 3.2, it will call os.walk() on the
directories that you’ve specified.

Listing 3.3 Using os.walk()

import os

for directory in [directory1, directory2]:
 if not os.access(directory, os.F_OK):
 print directory, "isn't a valid directory!"
 sys.exit()

 print "Directory", directory
 for item in os.walk(directory):
 print item
 print

Don’t repeat
yourself

b

 Input checkingc

Walk over
directory

d

80 CHAPTER 3 Interacting with the world
You’re going to be doing the same thing for both
directory1 and directory2 b. You could repeat
your code over again for directory2, but if you
want to change it later, you’ll have to change it in
two places. Worse, you could accidentally change
one but not the other, or change it slightly differ-
ently. A better way is to use the directory names
in a for loop like this, so you can reuse the code
within the loop.

It’s good idea to check the input that your script’s been given c. If
there’s something amiss, then exit with a reasonable error message to
let the user know what’s gone wrong.

d is the part where you walk over the directory. For now, you’re print-
ing the raw output that’s returned from os.walk(), but in a minute you’ll
do something with it.

I’ve set up two test directories on my computer with a few directories
that I found lying around. It’s probably a good idea for you to do the
same, so you can test your program and know you’re making progress.

If you run the program so far, you should see something like the fol-
lowing output:

D:\code>python difference_engine_2_os.py . test1 test2
Comparing:
test1
test2

Directory test1
('C:\\test1', ['31123', 'My Music', 'My Pictures', 'test'], [])
('C:\\test1\\31123', [], [])
('C:\\test1\\My Music', [], ['Desktop.ini', 'Sample Music.lnk'])
('C:\\test1\\My Pictures', [], ['Sample Pictures.lnk'])
('C:\\test1\\test', [], ['foo1.py', 'foo1.pyc', 'foo2.py', 'foo2.pyc',

'os.walk.py', 'test.py'])

Directory test2
('C:\\test2', ['31123', 'My Music', 'My Pictures', 'test'], [])
('C:\\test2\\31123', [], [])
('C:\\test2\\My Music', [], ['Desktop.ini', 'Sample Music.lnk'])

YES MASTER.
FINDING REPORT …

DID THE LIGHTS
JUST DIM?

THERE. THAT SHOULD DO IT.
 >CLICK<

Reading and writing files 81
('C:\\test2\\My Pictures', [], ['Sample Pictures.lnk'])
('C:\\test2\\test', [], ['foo1.py', 'foo1.pyc', 'foo2.py', 'foo2.pyc',
'os.walk.py', 'test.py'])

In Python strings, some special characters can be created by using a
backslash in front of another character. If you want a tab character, for
example, you can put \t into your string. When Python prints it, it will
be replaced with a literal tab character. If you do want a backslash,
though—as you do here—then you’ll need to use two backslashes, one
after the other.

The output for each line gives you the name of a directory within your
path, then a list of directories within that directory, then a list of the
files … handy, and definitely beats writing your own version.

Paths
If you want to use a file or directory, you’ll
need what’s called a path. A path is a string
that gives the exact location of a file, including
any directories that contain it. For example,
the path to Python on my computer is
C:\python26\python.exe, which looks like
"C:\\python26\\python.exe" when expressed as
a Python string.

If you wanted a path for foo2.py in the last line of the previous listing,
you can use os.path.join('C:\\test2\\test', 'foo2.py'), to get a path
that looks like 'C:\\test2\\test\\foo2.py'. You’ll see more of the details
when you start putting your program together in a minute.

TIP One thing to keep in mind when using paths is that the separator will
be different depending on which platform you’re using. Windows
uses a backslash (\) character, and Linux and Macintosh use a for-
ward slash (/). To make sure your programs work on all three sys-
tems, it’s a good idea to get in the habit of using the os.path.join()
function, which takes a list of strings and joins them with whatever
the path separator is on the current computer.

Once you have the location of your file, the next step is opening it.

I'M SURE IT'S JUST
YOUR IMAGIN … AH.

82 CHAPTER 3 Interacting with the world
File, open!
To open a file in Python, you can use the file() or open() built-in func-
tion. They’re exactly the same behind the scenes, so it doesn’t matter
which one you use. If the file exists and you can open it, you’ll get back
a file object, which you can read using the read() or readlines()
method. The only difference between read() and readlines() is that
readlines() will split the file into strings, but read() will return the file
as one big string. This code shows how you can open a file and read its
contents:

read_file = file(os.path.join("c:\\test1\\test", "foo2.py"))
file_contents = list(read_file.readlines())
print "Read in", len(file_contents), "lines from foo2.py"
print "The first line reads:", file_contents[0]

First, create a path using os.path.join(), and then use it to open the file
at that location. You’ll want to put in the path to a text file that exists
on your computer. read_file will now be a file object, so you can use
the readlines() method to read the entire contents of the file. You’re
also turning the file contents into a list using the list() function. You
don’t normally treat files like this, but it helps to show you what’s going
on. file_contents is a list now, so you can use the len() function to see
how many lines it has, and print the first line by using an index of 0.

Although you won’t be using it in your program, it’s also possible to
write text into a file as well as read from it. To do this, you’ll need to
open the file with a write mode instead of the default read-only mode,
and use the write() or writelines() function of the file object. Here’s a
quick example:

write_file = file("C:\\test2\\test\\write_file.txt", "w")
write_file.write("This is the first line of the file\n")
write_file.writelines(
 ["and the second\n",
 "and the third!\n"])
write_file.close()

You’re using the same file() function you used before, but here you’re
feeding it an extra parameter, the string "w", to tell Python that you
want to open it for writing b.

Open fileb
Write
one linec

Write multiple linesd
Close filee

Comparing files 83
Once you have the file object back, you can write to it by using the
.write() method, with the string you want to write as a parameter c.
The "\n" at the end is a special character for a new line; without it, all of
the output would be on one line. You can also write multiple lines at
once, by putting them into a list and using the .writelines() method
instead d.

Once you’re done with a file, it’s normally a good idea to close it e,
particularly if you’re writing to it. Files can sometimes be buffered,
which means they’re not written onto the disk straight away—if your
computer crashes, it might not be saved.

That’s not all you can do with files, but it’s enough to get started. For
your difference engine you won’t need to write files, but it will help for
future programs. For now, let’s turn our attention to the last major fea-
ture you’ll add to your program.

Comparing files
We’re almost there, but there’s one last hurdle. When you’re running
your program, you need to know whether you’ve seen a particular file
in the other directory, and if so, whether it has the same content, too.
You could read in all the files in and compare their content line by line,
but what if you have a large directory with big images? That’s a lot of
storage, which means Python is likely to run slowly.

NOTE It’s often important to consider how fast your program will run, or
how much data it will need to store, particularly if the problem that
you’re working on is open ended—that is, if it might be run on a large
amount of data.

Fingerprinting a file
Fortunately, there’s another library to help you, called hashlib, which is
used to generate a hash for a particular piece of data. A hash is like a
fingerprint for a file: from the data it’s given, it will generate a list of
numbers and letters that’s virtually guaranteed to be unique for that
data. If even a small part of the file changes, the hash will be com-
pletely different, and you’ll be able to detect the change. Best of all, the

84 CHAPTER 3 Interacting with the world
hashes are relatively small, so they won’t take up much space. The fol-
lowing listing features a small script that shows how you might gener-
ate a hash for one file.

Listing 3.4 Generating a hash for a file

import hashlib
import sys

file_name = sys.argv[1]
read_file = file(file_name)
the_hash = hashlib.md5()
for line in read_file.readlines():
 the_hash.update(line)
print the_hash.hexdigest()

After importing your libraries, you read a file name from the command
line and open it b. Next, you create a hash object here c, which will
handle all of the hash generation. I’m using md5, but there are many
others in hashlib.

Once you have an open file and a hash object, you feed each line of the
file into the hash with the update() method d.

After you’ve fed all the lines into the hash, you can get the final hash in
hexdigest form e. It uses only numbers and the letters a–f, so it’s easy
to display on screen or paste into an email.

An easy way to test the script is to run it on itself. After you’ve run it
once, try making a minor change to the script, such as adding an extra
blank line at the end of the file. If you run the script again, the output
should be completely different.

Here, I’m running the hash-generating script on itself. For the same
content, it will always generate the same output:

D:\test>python hash.py hash.py
df16fd6453cedecdea3dddca83d070d4
D:\test>python hash.py hash.py
df16fd6453cedecdea3dddca83d070d4

Open fileb
Create hash
object

c

Update hashd
Print digeste

Comparing files 85
These are the results of adding one blank line to the end of the hash.py
file. It’s a minor change (most people wouldn’t notice it), but now the
hash is completely different:

D:\test>hash.py hash.py
47eeac6e2f3e676933e88f096e457911

Now that your hashes are working, let’s see how you can use them in
your program.

Mugshots: storing your files’ fingerprints in a dictionary
Now that you can generate a hash for any
given file, you need somewhere to put it.
One option is to put the hashes into a list,
but searching over a list every time you
want to find a particular file is slow, particu-
larly if you have a large directory with lots
of files. There’s a better way to do it, by
using Python’s other main data type: the
dictionary.

You can think of dictionaries as a bag of data. You put data in, give it a
name, and then, later, when you want the data back, you give the dic-
tionary its name, and the dictionary will return the data. In Python’s
terminology, the name is called a key and the data is called the value for
that key. Let’s see how you use a dictionary by taking a look at the fol-
lowing listing.

Listing 3.5 How to use a dictionary

test_dictionary = {}
test_dictionary = {'one' : 1, 'two' : 2}
test_dictionary = {
 'list' : [1,2,3],
 'dict' : {'one' : 1, 'two' : 2},
}
print test_dictionary['list']
del test_dictionary['list']
print test_dictionary.keys()
print test_dictionary.values()
print test_dictionary.items()

GREG! NOBODY CAN GET
ANY WORK DONE WHILE YOUR
SEARCH IS RUNNING!

Put anything you
like in dictionary

b

Access valuesc
Remove valuesd

Useful dictionary
methods

e

86 CHAPTER 3 Interacting with the world
Dictionaries are fairly similar to lists, except that you use curly braces
instead of square brackets, and you separate keys and their values with
a colon.

The other similarity to lists is that you can include anything that you
like as a value b, including lists, dictionaries, and other objects. You’re
not limited to storing simple types like strings or numbers, or one type
of thing. The only constraint is on the key: it can only be something
that isn’t modifiable, like a string or number.

To get your value back once you’ve put it in the
dictionary, use the dictionary’s name with the key
after it in square brackets c. If you’re finished
with a value, it’s easy to remove it by using del fol-
lowed by the dictionary and the key that you want
to delete d.

Dictionaries are objects, so they have some useful
methods e as well as direct access. keys() returns
all of the keys in a dictionary, values() will return

its values, and items() returns both the keys and values. Typically,
you’ll use it in a for loop, like this:

for key, value in test_dictionary.items(): ...

When deciding what keys and values to use for a dictionary, the best
option is to use something unique for the key, and the data you’ll need
in your program as the value. You might need to convert the data
somehow when building your dictionary, but it normally makes your
code easier to write and easier to understand. For your dictionary,
you’ll use the path to the file as the key, and the checksum you’ve gen-
erated as the value.

Now that you know about hashes and dictionaries, let’s put your pro-
gram together.

Putting it all together
“Measure twice, cut once” is an old adage that often holds true. When
programming, you always have your undo key, but you can’t undo the
time you spent writing the code you end up throwing away.

IT SEEMS TO BE STUCK IN
STEF'S "MARKETING MATERIALS."
THAT FOLDER MUST BE
HUGE …

CAN'T YOU DO SOMETHING?

Putting it all together 87
When developing a program, it often helps to have some sort of plan in
place as to how you’ll proceed. Your plan doesn’t have to be terribly
detailed; but it can help you to avoid potential roadblocks or trouble
spots if you can foresee them. Now that you think you have all of the
parts you’ll need, let’s plan out the overall design of your program at a
high level. It should go something like

❂ Read in and sanity-check the directories you want to compare.
❂ Build a dictionary containing all the files in the first directory.
❂ For each file in the second directory, compare it to the same file in

the first dictionary.

That seems pretty straightforward. In addition to having this overall
structure, it can help to think about the four different possibilities for
each file, as shown in the following figure.

Figure 3.1 The four possibilities for differences between files

Given this rough approach, a couple of issues should stand out. First,
your initial plan of building all the checksums right away may not be
such a good idea after all. If the file isn’t in the second directory, then
you’ll have gone to all the trouble of building a checksum that you’ll
never use. For small files and directories it might not make much dif-
ference, but for larger ones (for example, photos from a digital camera
or MP3s), the extra time might be significant. The solution to this is to
put a placeholder into the dictionary that you build and only generate
the checksum once you know you have both files.

CAN’T YOU
USE A LIST?

If you’re putting a placeholder into your dictionary instead of
a checksum, you’d normally start by using a list. Looking up a
value in a dictionary is typically much faster, though; for large
lists, Python needs to check each value in turn, whereas a

Case 1 The file doesn’t exist in
directory 2.

Case 2 The file exists, but is different in
each directory.

Case 3 The files are identical in
both.

Case 4 The file exists in directory 2, but
not in your first directory.

88 CHAPTER 3 Interacting with the world
dictionary needs a single lookup. Another good reason is that
dictionaries are more flexible and easier to use than lists if
you’re comparing independent objects.

Second, what happens if a file is in the first directory but not the sec-
ond? Given the rough plan we just discussed, you’re only comparing
the second directory to the first one, not vice versa. You won’t notice a
file if it’s not in the second directory. One solution to this is to delete
the files from the dictionary as you compare them. Once you’ve fin-
ished the comparisons, you know that anything left over is missing
from the second directory.

Planning like this can take time, but it’s
often faster to spend a little time up front
working out potential problems. What’s
better to throw away when you change
your mind: five minutes of design or half
an hour of writing code? Listings 3.6 and 3.7 show the last two parts of
your program based on the updated plan. You can join these together
with listings 3.2 and 3.3 to get a working program.

Listing 3.6 Utility functions for your difference program

import hashlib

def md5(file_path):
 """Return an md5 checksum for a file."""
 read_file = file(file_path)
 the_hash = hashlib.md5()
 for line in read_file.readlines():
 the_hash.update(line)
 return the_hash.hexdigest()

def directory_listing(dir_name):
 """Return all of the files in a directory."""
 dir_file_list = {}
 dir_root = None
 dir_trim = 0
 for path, dirs, files in os.walk(dir_name):
 if dir_root is None:
 dir_root = path

ARE YOU SURE YOU KNOW WHAT
YOU'RE DOING? NO?
I GUESS THAT'S WHY YOU'RE
PLANNING, THEN …

MD5 functionb

Directory listing
function

c

Finding root
of directory

d

Putting it all together 89
I'M SORRY, GREG.
I CAN'T LET YOU
DO THAT.

I'LL JUST UNPLUG MY
PC, AND EVERYTHING
SHOULD BE BACK TO
NORMAL … OW!

 dir_trim = len(dir_root)
 print "dir", dir_name,
 print "root is", dir_root
 trimmed_path = path[dir_trim:]
 if trimmed_path.startswith(os.path.sep):
 trimmed_path = trimmed_path[1:]
 for each_file in files:
 file_path = os.path.join(
 trimmed_path, each_file)
 dir_file_list[file_path] = True
 return (dir_file_list, dir_root)

This is the program from listing 3.5, rolled up into a function. Notice
how a docstring has been added as the second line b so it’s easy to
remember what the function does.

Because you’ll be building a list of files for two directories, it makes
sense to have a function that returns all the information you need about
a directory c, so you can reuse it each time. The two things you need
are the root, or lowest-level directory (the one typed in at the command
line) and a list of all the files relative to that root so you can compare
the two directories easily. For example, C:\test\test_dir\file.txt and
C:\test2\test_dir\file.txt should both be entered into their respective
dictionaries as \test_dir\file.txt.

Because os.walk() starts at the root of a directory by default, all you
need to do is remember the first directory that it returns d. You do
that by setting dir_root to None before you enter the for loop. None is a
special value in Python that means “not set” or “value unknown.” It’s
what you use if you need to define a variable
but don’t know its value yet. Inside the loop,
if dir_root is None, you know it’s the first time
through the loop and you have to set it.
You’re setting a dir_trim variable too, so that
later you can easily trim the first part of each
directory that’s returned.

Once you have your directory root, you can
chop off the common part of your directories

Finding root
of directory

d

Building
dictionary
of files

e

Returning
multiple values

f

90 CHAPTER 3 Interacting with the world
and path separators from the front of the path returned by os.walk() e.
You do that by using string slices, which will return a subsection of a
string. It works in exactly the same way as a list index, so it starts at 0
and can go up to the length of the string.

When you’re done, you return both the directory listing and the root of
the directory f using a special Python data type called a tuple. Tuples
are similar to lists, except that they’re immutable—you can’t change
them after they’ve been created.

Now that you’ve checked your inputs and set up all of your program’s
data, you can start making use of it. As in chapter 2, when you simpli-
fied Hunt the Wumpus, the part of the program that does stuff is fairly
short, clear, and easy to understand. All the tricky details have been
hidden away inside functions, as you can see in the next listing.

Listing 3.7 Finding the differences between directories

dir1_file_list, dir1_root = directory_listing(directory1)
dir2_file_list, dir2_root = directory_listing(directory2)

for file_path in dir2_file_list.keys():
 if file_path not in dir1_file_list:
 print file_path, "not found in directory 1"
 else:
 print file_path, "found in directory 1 and 2"
 file1 = os.path.join(dir1_root, file_path)
 file2 = os.path.join(dir2_root, file_path)
 if md5(file1) != md5(file2):
 print file1, "and", file2, "differ!"
 del dir1_file_list[file_path]

for key, value in dir1_file_list.items():
 print key, "not found in directory 2"

To assign both of the variables you get back from your function, you
separate them with a comma b. You’ve already seen this when using
dictionary.items() in a for loop.

Use
directory
functions

b

Files not in
directory 1

c

Compare
checksums

d

Files not in
directory 2

e

Testing your program 91
Here’s the first comparison c: if the file isn’t in directory 1, then you
warn the user. You can use in with a dictionary in the same way that
you would for a list, and Python will return True if the object is in the
dictionaries’ keys.

If the file exists in both directories, then you build a checksum for each
file and compare them d. If they’re different, then you know the files
are different and you again warn the user. If the checksums are the
same then you keep quiet, because you don’t want to overwhelm peo-
ple with screens and screens of output—they want to know the
differences.

Once you’ve compared the files in section
3, you delete them from the dictionary. Any
that are left over you know aren’t in direc-
tory 2 and you tell the user about them e.

That seems to about do it for your program,
but are you sure it’s working? Time to
test it.

Testing your program
If you haven’t already, now’s probably a good time to create some test
directories so you can try your script and make sure it’s working. It’s
especially important as you start working on problems that have real-
world consequences. For example, if you’re backing up some family
photos and your program doesn’t report that a file has changed (or
doesn’t exist), you won’t know to back it up and might lose it if your
hard drive crashes. Or it might report two files as the same when
they’re actually different.

You can test your script on directories that you already have, but spe-
cific test directories are a good idea, mainly because you can exercise
all the features you’re expecting. At a minimum, I’d suggest

❂ Adding at least two directory levels, to make sure paths are handled
properly

❂ Creating a directory with at least one space in its name

NO NEED TO PANIC.
CONTINUE ABOUT YOUR
BUSINESS, CITIZENS.

AAGH!
NO FILES!
AAGH!
NO FILES!

WHAT HAPPENED?
HOW DID YOU …

92 CHAPTER 3 Interacting with the world
❂ Using both text and binary files (for example, images)
❂ Setting up all the cases you’re expecting (files missing, file differ-

ences, files that are the same)

By thinking about all the possible cases, you can catch bugs in your
program before you run it over a real directory and miss something or,
worse, lose important data. The following figure shows the initial test
directory (called test) that I set up on my computer.

Figure 3.2 A test directory for the difference engine

This test directory doesn’t get all the possible failures, but it does check
for most of them. The next step was to copy that directory (I called it
test2) and make some changes for the difference engine to work on, as
shown in figure 3.3. I’ve used the numbers 1 to 4 within the files to rep-
resent each of the possible cases, with 1 and 4 being missing files, 2 for
files that have some differences, and 3 for files that are identical in both
directories.

Figure 3.3 test2, an almost identical copy of the first test directory

Improving your script 93
You can see the output of running your script over these directories:

D:\>python code\difference_engine.py test test2
Comparing:
test
test2
dir test root is test
dir test2 root is test2
test\test 2\test2.txt and test2\test 2\test2.txt differ!
image4.gif not found in directory 1
test 2\test4.txt not found in directory 1
test\image2.gif and test2\image2.gif differ!
test4.txt not found in directory 1
test\test2.txt and test2\test2.txt differ!
test1.txt not found in directory 2
test 2\test1.txt not found in directory 2
image1.gif not found in directory 2

That seems to be pretty much what you were expecting. The script is
descending into the test 2 directory in each case and is picking up the
differences between the files—1 and 4 are missing, 2 is different, and 3
isn’t reported because the files are identical.

Now that you’ve tested out your script, let’s see what you can do to
improve it.

Improving your script
Your script so far works, but it could do with a few improvements. For
a start, the results it returns are out of order. The files that are missing
from the second directory appear right at the end. Ideally, you’d have
them appear next to the other entries for that directory, to make it eas-
ier to see what the differences are.

NOTE Does this strategy look familiar? It’s exactly what you did when
developing Hunt the Wumpus. You start by writing a program that’s
as simple as you can make it and then build on the extra features that
you need.

Putting results in order
It initially might be difficult to see how you might go about ordering
the results, but if you think back to chapter 2, one of the strategies that

94 CHAPTER 3 Interacting with the world
you used with Hunt the Wumpus was to separate the program from its
interface. In your difference engine, you haven’t done so much of that
so far—now might be a good time to start. You need two parts to your
program: one part that does the work and stores the data it generates,
and another to display that data. The following listing shows how you
generate your results and store them.

Listing 3.8 Separating generated results from display

dir1_file_list, dir1_root = directory_listing(directory1)
dir2_file_list, dir2_root = directory_listing(directory2)
results = {}

for file_path in dir2_file_list.keys():
 if file_path not in dir1_file_list:
 results[file_path] = "not found in directory 1"
 else:
 file1 = os.path.join(dir1_root, file_path)
 file2 = os.path.join(dir2_root, file_path)
 if md5(file1) != md5(file2):
 results[file_path] = "is different in directory 2"
 else:
 results[file_path] = "is the same in both"

for file_path, value in dir1_file_list.items():
 if file_path not in results:
 results[file_path] = "not found in directory 2"

Here’s the trick. Rather than try to display the results as soon as you
get them, which means you’re trying to shoehorn your program struc-
ture into your display structure, you store the results in a dictionary to
display later b.

The result of each comparison is stored in result c, with the file path as
the key and a description of the result of the comparison as the value.

That should take care of storing the results; let’s take a look at how you
display them:

print
for file_path, result in sorted(results.items()):

Results
dictionaryb

Store
results

c

 Sort resultsb

Improving your script 95
 if os.path.sep not in file_path and "same" not in result:
 print path, result

for path, result in sorted(results.items()):
 if os.path.sep in file_path and "same" not in result:
 print path, result

sorted() is a built-in Python function that
sorts groups of items b. You can give it
lists, dictionary keys, values or items,
strings, and all sorts of other things. In
this case, you’re using it to sort
result.items() by file_path, the first part
of result.items().

Within the body of the loop, you’re using
in to check the contents of the strings c.
You want to know whether this path is
part of a directory, in which case it will have os.path.sep somewhere
within it, and you also want to know whether the result shows that the
files are the same.

Now that you’ve displayed everything within the root of the directory,
you can go ahead and show everything within the subdirectories d.
You’re reversing the sense of the if statement to show everything that
wasn’t shown the first time around.

In hindsight, that was relatively easy. Following the pattern you estab-
lished in Hunt the Wumpus, separating data from its display is a pow-
erful tactic that can make complicated problems easy to understand
and program.

Comparing directories
The other thing your program should probably handle is the case
where you have empty directories. Currently it only looks for files, and
any empty directories will be skipped. Although unnecessary for your
initial use case (checking for missing images before you back up), it
will almost certainly be useful somewhere down the track. Once you’ve
added this feature, you’ll be able to spot any change in the directories,

Check in strings
c

Other
directories

d

ALL STEF'S "MARKETING
MATERIAL" WAS PUT ON A
SEPARATE DRIVE AFTER LAST
TIME. I JUST … REMOVED IT.

MASTER
HELP ME!
AAGH!
NO FILES!

WHAT ARE YOU
GOING TO DO
WITH IT?

96 CHAPTER 3 Interacting with the world
short of permission changes to the files—and it requires surprisingly
little code. The next listing shows how I did it.

Listing 3.9 Comparing directories, too

def md5(file_path):
 if os.path.isdir(file_path):
 return '1'
 read_file = file(file_path)

...

 for path, dirs, files in os.walk(directory_name):
 ...
 for each_file in files + dirs:
 file_path = os.path.join(trimmed_path, each_file)
 dir_file_list[file_path] = True

The first thing to do is to include directory paths as well as files when
generating a listing c. To do that, you join the dirs and files lists with
the + operator.

If you try to open a directory to read its contents,
you’ll get an error b; this is because directories
don’t have contents the same way files do. To get
around that, it’s ok to cheat a little bit. You alter the
md5 function and use os.path.isdir() to find out
whether it’s a directory. If it is, you return a
dummy value of '1'. It doesn’t matter what the
contents of a directory are, because the files will be
checked in turn, and you only care whether a direc-
tory exists (or not).

Once you’ve made those changes, you’re done. Because the directories
follow the same data structure as the files, you don’t need to make any
changes to the comparison or display parts of your program. You’ll
probably want to add some directories to both your test directories to
make sure the program is working properly.

Don’t try to checksum
directories

b

Include directory
and file paths

c

OH, I'LL JUST PUT IT IN
WITH THE NEGATIVES FROM
THE LAST OFFICE XMAS
PARTY—I'M PRETTY SURE
I HAVE A PAY REVIEW
COMING UP SOON …

Where to from here? 97
You’ve improved your script, but that doesn’t mean there isn’t more
you can do.

Where to from here?
The program as it stands now is feature-complete based on your initial
need, but you can use the code you’ve written so far for other purposes.
Here are some ideas:

❂ If you’re sure you won’t have any different files, you can extend the
program to create a merged directory from multiple sources. Given a
number of directories, consolidate their contents into a third, sepa-
rate location.

❂ A related task would be to find all the identical copies of a file in a
directory—you might have several old backups and want to know
whether there are any sneaky extra files you’ve put in one of them.

❂ You could create a change monitor—a script that notifies you of
changes in one directory. One script would look at a directory and
store the results in a file. The second script would look at that file
and directory and tell you if any of the output has changed. Your
storage file doesn’t have to be complicated—a text file containing a
path and checksum for each file should be all you need.

❂ You can also use your os.walk functions as a template to do some-
thing other than check file contents. A script to check directory sizes
could be useful. Your operating system will probably give you infor-
mation about how much space a particular directory takes up, but
what if you want to graph usage over time, or break your results
down by file type? A script is much more flexible, and you can make
it do whatever you need.

You’ll need to avoid the temptation of reinventing the wheel. If a tool
has already been written that solves your problem, it’s generally better
to use that, or at least include it in your script if possible. For example,
you might consider writing a program that shows you the changes
between different versions of files as well as whether they’re differ-
ent—but that program’s already been written; it’s called diff. It’s

98 CHAPTER 3 Interacting with the world
widely available as a command-line program under Linux, but it’s also
available for Windows and comes in graphical versions, too.

One of the other programming tricks is knowing when to stop. Gold-
plating your program can be fun, but you could always be working on
your next project instead!

Summary
In this chapter, you learned about some of the standard library pack-
ages available with every installation of Python, as well as how to
include and use them and how to learn about unfamiliar ones. You built
what would normally be a fairly complex application, but, because you
made good use of several Python libraries, the amount of code you had
to write was minimal.

In the next chapter, we’ll look at another way of organizing programs,
as well as other uses for functions and some other Python techniques
that can help you to write clearer, more concise code. The program in
this chapter was fairly easy to test, but not all programs will be that
straightforward, so we’ll also look at another way of testing programs
to make sure they work.

4
Getting organized

This chapter covers

• How to plan programs more thoroughly

• Testing programs using unit tests

Until now, you’ve been learning how to use Python, and programming
has been “by the seat of your pants.” Hunt the Wumpus didn’t have much
in the way of planning and no tests at all, and, although you tested in the
last chapter, you did so only fairly lightly. Now, you’ll change tactics and
focus on how to plan and test programs more thoroughly. You’ll also do
some more tricky things with functions and learn about pickle and text-
wrap, two more of Python’s standard libraries.

The major change in this chapter is that you’ll start learning how to test
programs automatically. Unit tests are a relatively recent idea and help
offload a lot of the grunt work of testing and debugging your programs
onto the computer. You’ll also be turning development practice on its
head by using Test-Driven Development, writing tests before the pro-
gram. It sounds odd, but it can be enlightening to see how unit testing can
make tricky problems easy, and how writing tests first can help shape the
design of your program for the better.
99

100 CHAPTER 4 Getting organized
Because the theme for this chapter is “getting organized,” the program
you’ll be writing is a productivity application to help manage to-do
lists. You’ll be making it a command line application so you can focus
on the important parts, namely, getting the to-do list functionality
right. Later, in chapter 8, we’ll take a look at how you can extend the
core of this program and give it a web interface.

Let’s start by figuring out what you’d like to accomplish.

Planning: specifying your program
The first thing you need to do is try to figure out ahead of time what
your program needs to do, as well as what would be nice to have. That
way, you’ll have the advantage of knowing in advance what you’re try-
ing to do, and you’ll have had time to think about the best way to
approach a problem.

You’ll be using a top-down approach to design, where you break down
your program and describe each part. You’ll also want to think about
how each part fits together and how they’ll communicate and store
data—commonly referred to as the architecture of your program. If you
have enough detail to start programming: great. If not, you can repeat
it by breaking down your parts into other parts until each is detailed
enough for you to start work (or, for your customer to sign off). Differ-
ent projects will require different levels of detail depending on what
they are and who the final customer is. The finished product of this
process is known as a specification, or spec, and it’s similar to a blueprint
for a building.

In the case of the to-do list program, you
can use the popular computer industry
acronym CRUD to help guide your spec.
CRUD isn’t a statement on the quality of your program; it stands for
create, retrieve, update, and delete, which are the four basic things you
generally need to be able to do with your data:

1 Add a to-do item (create).

2 View the to-dos you’ve already created (retrieve).

NOTHING WRONG
WITH A NICE BIT
OF CRUD!

How do you know your program works? 101
3 Edit the information in a to-do (update).

4 Delete a to-do from your list (delete).

The program will also need to handle input from the user, in addition
to saving the current to-dos so they’re accessible later, and searching
for specific to-dos (or at least displaying a list of the ones which match
certain criteria, such as “due today”).

In terms of architecture, you’ll reuse the route featuring functions plus
shared data that you put together for Hunt the Wumpus, but you’ll
enhance the user interface so you can ask the user for more detailed
information.

How do you know your program works?
Before we dive into coding, let’s first talk a little about unit tests and
how to test your programs more thoroughly. Testing properly sounds
boring, but it’s actually the opposite. If you don’t test, you’ll invariably
end up debugging your program instead—if you think testing is bor-
ing, debugging is ten times worse. Let’s see how automated tests can
help make programming more fun.

Testing manually—boring!
In the Hunt the Wumpus program, you had no automatic testing at all.
Any changes you made to the program were verified manually; when-
ever you made a change, you’d run the program and type some input,
and, if everything looked good, then you could assume your change
was good. This can have some downsides, as you’ve seen. Your pro-
gram can look ok but have errors you can’t see.

NOTE Why the emphasis on testing? The simple
answer is that creating a program is much
more fun than trying to debug it. Testing
thoroughly, particularly with automatic tests,
helps to nip errors in the bud, and will keep
your programming fun!

The other problem is that it’s boring. That means,
as you develop your program further, you’re

HMM. I WONDER IF
THIS WILL WORK?

102 CHAPTER 4 Getting organized
more likely to assume something’s working when it may be broken,
particularly as you ask old parts of your program to do new things. An
“easy fix” can end up seriously damaging your program.

Functional testing
When writing your difference engine, you used some simple functional
testing to make sure the program worked properly. You set up two
directories, ran the program, and checked that it output the right
results; that is, you tested its functionality directly. That’s a lot better
than manually testing, because it’s easier and faster and you’re not
likely to get too bored, but the downside is that it only finds bugs in
your program. You still need to go through the arduous process of
debugging in order to find out what’s causing the error.

The other problem is that if you change how your program works, then
you might need to change your tests, which could potentially be a lot of
work. In that case, you might be tempted to ignore your tests and go
back to testing manually.

Unit testing: make the computer do it
Luckily, there’s an easier way to deal with repetitive, boring tasks:
make the computer do it. The mechanism you’ll use in this chapter is
called unit testing. Unit testing works by testing small parts, or units, of
your program. In the same way you’ve been breaking down programs
to make them easier to write, unit testing breaks down the program
into units—such as functions—and makes sure they work for a range
of inputs. Unit tests also help to isolate the code you’re testing, which
means any errors that occur when running your tests can be quickly
tracked down to individual functions and fixed.

Test-Driven Development
The key way to use unit testing when developing your programs is to
write your tests first. That seems backward, but it forces you to focus
on the higher-level design of your code instead of the details. The way
it works is this: if you want to add a feature, you write a test and run it.
You won’t have written the code the test needs yet, so it will break. You

Writing the program 103
then add enough code so your test passes and starts to work; then you
think of another test, and repeat the process. Figure 4.1 is a handy
three-step chart you can follow if you get lost.

As you work, you’ll be building a suite of tests that will help keep your
program on the right track. Your unit tests will also act as a low-level
specification for how your program should work. It will answer ques-
tions such as, exactly what input should Python expect from this func-
tion? What should it do when you give it some input it’s not expecting,
or if the input is wrong?

Writing the program
Let’s get started with writing the first test. There are libraries that can
help you to test your programs, but, for now, you’ll keep things simple
and use Python’s built-in assert statement. assert takes the following
format:

assert something == something_else, "Message if assert is triggered!"

Python will test the first condition, exactly like an
if statement, and, if it’s false, then an error is
raised with the message you’ve specified in the
second part. You’ll test each part of the program
with a function that tries a particular section of
the program then uses assert to make sure the
results are what you expect.

Type the program from the following listing into a file called
test_todo.py. This test specifies how one function from your program
should behave.

Figure 4.1
The Test-Driven Development cycle

AWOOOOGAH!
BUG DETECTED
IN CODE!!
NO TEST CASE
WRITTEN!!
FIX IMMEDIATELY!!
IMMEDIATELY!!

104 CHAPTER 4 Getting organized
Listing 4.1 Your first unit test

import todo

def test_create_todo():
 todo.todos = []
 todo.create_todo(todo.todos,
 title="Make some stuff",
 description="Stuff needs to be programmed",
 level="Important")

 assert len(todo.todos) == 1, "Todo was not created!"
 assert todo.todos[0]['title'] == "Make some stuff"
 assert (todo.todos[0]['description'] ==
 "Stuff needs to be programmed")
 assert todo.todos[0]['level'] == "Important"

 print "ok - create_todo"

test_create_todo()

This is the program you’ll write, which will be called todo.py B. Don’t
create the file just yet; you’ll do that in the next section.

The first test is a simple function c. Note that you should follow the
same rules for your unit tests that you do for the functions in the rest of
your program. If they’re confusing, then you’ll have trouble finding
errors or fixing things when your tests fail.

todos will be where your program will store its list of to-dos d. Note
that you’re overriding whatever the current list of to-dos is by making
it an empty list. This helps you write your tests faster—if you had a
shared to-do list, then you’d have to worry about what other tests had
done to it before you’d run the tests. The other thing to note is that
you’re referring to the module’s version of todos. If you were to only
use a local todos variable, you’d have two versions: one in the module
and another you’d created, and you might confuse the two.

The test runs one small part of the to-do program e, creating a to-do.
It might be tempting to do more in one test, but the larger your test is,
the more difficult it is to track down errors when they happen.

Import to-do
programb First testc

List of to-dosd

Run small part
of program

e

Test resultsf

Run testg Run testg

Writing the program 105
Now you use Python’s assert command to test that create_todo has
done the right thing f. It should have created a to-do item with the
right details and added it into your to-do list.

Once you’ve set up the test, you can call it to run it and test the pro-
gram g. You’ve also added a print statement so you know when the
test has been run successfully.

NOTE It’s not just your tests that should be simple. Unit testing also forces
you to make your code simple. Large, clumsy functions are hard to
test—and, by extension, hard to understand.

The main thing to notice about listing 4.1 is that it’s short and simple.
Unit tests shouldn’t be long, complicated, and hard to understand—if
they are, then there’s something wrong with either your tests or your
code.

Making your tests pass
You have a unit test, but what does it do? Let’s run it and see what
happens:

Traceback (most recent call last):
 File "D:/Documents and Settings/Anthony/.../test_todo.py",
 line 2, in <module>
 import todo
ImportError: No module named todo

Uh-oh, what’s gone wrong? Well, nothing. That’s
pretty much what you were expecting. Because
you haven’t written the program yet, your test
doesn’t have a todo module to work with. From
here, you’ll be adding bits to the program to fix the
errors you’ll get from your unit tests, so go ahead and create a file
called todo.py in the same directory and run the test again:

Traceback (most recent call last):
 File "D:/Documents and Settings/Anthony/.../test_todo.py",
 line 18, in <module>
 test_create_todo()
 File "D:/Documents and Settings/Anthony/.../test_todo.py",

COOL, ISN'T IT? THAT'S
"ORWELL," OUR NEW
TESTING AND
PERFORMANCE
FRAMEWORK!

WHA?
HUH?

106 CHAPTER 4 Getting organized
 line 6, in test_create_todo
 todo.create_todo(
AttributeError: 'module' object has no attribute 'create_todo'

Another error, but it’s different this time and on line 6 rather than line
2, so you’re making progress. Your test is now complaining that it can’t
find the create_todo function, so let’s go ahead and add that to todo.py.
As input, it will need to have your to-do list, plus a title, description,
and level, because that’s what you’ve specified in the test:

def create_todo(todos, title, description, level):
 pass

It’s a simple program that uses Python’s pass statement to do nothing at
all. It doesn’t pass your test either, but you’re making progress. You’re
starting to test the functionality of the program rather than whether a
function exists:

Traceback (most recent call last):
 File "D:/Documents and Settings/Anthony/.../test_todo.py",
 line 18, in <module>
 test_create_todo()
 File "D:/Documents and Settings/Anthony/.../test_todo.py",
 line 10, in test_create_todo
 assert len(todo.todos) == 1, "Todo was not created!"
AssertionError: Todo was not created!

Now your test is complaining that the to-do wasn’t added to the to-do
list. The code to make your test pass is pretty obvious now, so fix it all
in one fell swoop:

def create_todo(todos, title, description, level):
 todo = {
 'title' : title,
 'description' : description,
 'level' : level,
 }
 todos.append(todo)

The test passes. When you run the test against this program, you
should see ok - create_todo printed to the screen. Fantastic—the test

Putting your program together 107
passes, so you know the function is working. Now, let’s have a look at
how you’ll be calling this function within your program.

Putting your program together
You’ll follow the same strategy you did for
Hunt the Wumpus: get something simple up
and running quickly, and then build from
there. The simplest usable program you can
create will be something that’s only able to
create to-dos—but that should be enough.
To get there, you’ll have to think about how
you want to be able to input to-dos, as well
as how to get from that input to running the
relevant function in the program, and then
how to return output to the screen. More important, you want to think
about an easy way for you to write tests to make sure everything is
working properly.

Testing user interfaces
One of the big problems with unit testing is that it’s not so good at test-
ing user interfaces. For example, there’s no Python command that will
let you type information into raw_input. Things get even harder when it
comes to testing graphical interfaces, with mouse positions and pop-up
windows.

The solution is to make your user interface as simple as possible, so it’s
easy to test. Ideally, it should be possible to make sure your code is cor-
rect just by looking at it. In your to-do list application, you’ll use the
following snippet to run everything in the program. Go ahead and add
it to todo.py at the bottom of the file.

Listing 4.2 One part of the program you can’t test

def main_loop():
 user_input = ""
 while 1:
 print run_command(user_input)
 user_input = raw_input("> ")

IS NOT BUG!
AM IMPLEMENTINK EXACTLY
AS STEF DESCRIBE!

I'M NOT SURE
THAT STEF REALLY
WANTED A $100
CREDIT FOR
ANYONE WITH A
RUSSIAN SURNAME!

Do something with
user input

b
Get new
input

c

108 CHAPTER 4 Getting organized
 if user_input.lower().startswith("quit"):
 print "Exiting..."
 break

if __name__ == '__main__':
 main_loop()

First, you do something with the command the person using the pro-
gram has typed in b. Initially, you’re not accepting input, which might
seem a bit backward, but it will let you print a welcome/help screen
when the program is first run. run_command is the meat of the program,
but it takes whatever input has been typed in; that will make it easier
for you to test in a minute.

Once you’ve run with the input you’ve been given, tell Python to ask
for some more input c.

The one command that’s outside the run_command function is quit. You
check here for any command that starts with the word quit d. If you see
it, you break out of the while loop right away; this will end the program.

When you’re importing your program as part of your tests, you don’t
want to run the main_loop function, but you do if you run it directly as a
program e. The solution is this if statement, which is common in
Python programs. __name__ is the current namespace, or the name of
the module you’re running in. If a program is run directly, it will be
called __main__, and you can catch it with the if statement. Usually, this
if block will go at the end of your program to make sure all the func-
tions it uses are defined.

NOTE This type of structure is called an event loop; it tells Python to wait for
input from the person using the program—or some other source, like
the network—and then takes action based on what it finds.

The other thing you need is some way to get multiple lines of input. If
you’re adding a new to-do, then you’ll need to ask for its title, descrip-
tion, and level. That’s also fairly hard to test without resorting to dras-
tic measures, like modifying the raw_input function. The following

Check to see if
you should quit

d

Only run main_loop if
you’re run directly

e

Putting your program together 109
function goes in todo.py too and prompts the person using the program
for an entry into a list of fields.

Listing 4.3 The other part of the program you can’t test

def get_input(fields):
 user_input = {}
 for field in fields:
 user_input[field] = raw_input(field + " > ")
 return user_input

Again, this is a straightforward part of the program. We’re keeping it
as simple as possible so you have little to debug manually. If there’s an
error your tests can’t pick up, it should be obvious where that error is.

What do you do with your input?
Now you can start writing the
run_command script in earnest. The first
thing you’ll want the program to do is to
pick a Python function to run based on
what the user types in, so let’s do that part
first. It’s fairly easy, but you’ll need to use
a new Python trick. You should put the
next section in test_todo.py. All the test-
ing code will go in that file, and the pro-
gram code itself will go in todo.py:

def test_get_function():
 assert todo.get_function('new') == todo.create_todo
 print "ok - get_function"
...
test_get_function()

You’re planning on setting up a function that tells you what to run for a
given command. Then, when you call it with a new command, you
expect it to return the create_todo function—not the results of the func-
tion, but the function itself. In Python, you can assign functions to vari-
ables the same way you can assign strings, numbers, lists, and
dictionaries. You’ll see how to make use of it shortly.

I AM HAVING EMAILS WITH
DESCRIPTION!

I DIDN'T TELL YOU TO
DO THAT! BESIDES—IF
ORWELL SAYS IT'S A
BUG, IT MUST BE A BUG!

110 CHAPTER 4 Getting organized
Now that you have your test, add the code to call it beneath the
test_create_todo() one and run the tests again. The new test you’ve just
added should fail.

Here’s some code that fixes it and allows room for you to expand to
include other functions:

commands = {
 'new' : create_todo,
}

def get_function(command_name):
 return commands[command_name]

commands is a dictionary with all your commands in it. The key is the
name of the command, and the value of the dictionary is the function
that will be called.

Given the name of the command you want to run, get_function will
return the function you need to call.

Running commands
That’s one piece of the puzzle. The next piece is how you get the input
from your get_input function into your final function. Well, you’ll need
to know what fields a particular function needs, so let’s start with that:

def test_get_fields():
 assert (todo.get_fields('new') ==
 ['title', 'description', 'level'])
 print "ok - test_get_fields"

That’s pretty easy, because it’s much the same thing you did to find the
command function. Add the test function at the bottom as before, run
your tests, and make sure your new test fails; then you can write your
code. My version is featured in the following listing.

Listing 4.4 Finding command fields

commands = {
 'new' : [create_todo, ['title', 'description', 'level']],
}

Putting your program together 111
def get_function(command_name):
 return commands[command_name][0]

def get_fields(command_name):
 return commands[command_name][1]

Notice that the commands dictionary has
changed as well as the code you wrote to find
the function. It makes more sense to keep the
command function and the fields it’s expecting
in the same place so they’re easier to change
and don’t get mixed up. That’s completely
normal and perfectly ok—as long as your tests
still pass.

Now that you’ve created and tested those two low-lying functions,
you’re ready to try to create the run_command function. That will com-
plete the user interface section of the program, and you can work on
the rest of the code that does the work. There are a few more unit-
testing techniques you’ll need to use first, though.

The following listing is a new test that makes sure your run command
works.

Listing 4.5 Testing run_command

def test_run_command():
 result = todo.run_command(
 'test',
 {'abcd':'efgh', 'ijkl':'mnop'}
)
 expected = """Command 'test' returned:
abcd: efgh
ijkl: mnop"""
 assert result == expected, \
 result + " != " + expected
 print "ok - run_command"

Ideally, when you’re unit testing, you’d like to test exactly one aspect of
the program. If you have tests that combine results from lots of

IS NOT BUG!
IS TOO!

IS TOO!
IS NOT!

Create “test”
command

b

Design by
wishful thinkingc

Architecture
helps testing

d

112 CHAPTER 4 Getting organized
functions and one of those functions fails, you still have to debug the
program. You only want to test run_command, so let’s create a dummy
test program b that only returns its input, rather than forcing the tests
to use (and then interpret the results from) the create_todo function.

The other thing you need to test is that data is fed into the command
function properly. But how do you do that without forcing someone to
enter the data every time you test? The solution is to use a Python
default variable to mimic the data entry c. When the program runs
normally, it will ask the user via the get_input function; but if you feed
in a dictionary, it will use that instead.

Because the architecture is only moving text around d, your function
is easy to test—feed in some input dictionary, and check that you get
the right output back. Note that I’ve broken up the line here in a differ-
ent way, by using a backslash character (\) instead of braces. If you
choose to use this too, make sure it’s the very last character on the line;
otherwise it won’t work.

Let’s see what the code looks like that will make your test pass. Again,
once you’ve written the test, the code is relatively straightforward—
and you generally don’t have to debug functions you’ve already writ-
ten. My version looks like the following listing.

Listing 4.6 Writing run_command

def test(todos, abcd, ijkl):
 return "Command 'test' returned:\n" + \
 "abcd: " + abcd + "\nijkl: " + ijkl

commands = {
 'new' : [create_todo, ['title', 'description', 'level']],
 'test' : [test, ['abcd', 'ijkl']],
}

todos = []

def run_command(user_input, data=None):
 user_input = user_input.lower()
 if user_input not in commands:
 return user_input + "?" \
 " I don't know what that command is."

Default
variable

b

Figure out
which command
function you
need to run

c

Putting your program together 113
 else:
 the_func = get_function(user_input)

 if data is None:
 the_fields = get_fields(user_input)
 data = get_input(the_fields)
 return the_func(todos, **data)

First, you use a default variable b. You set data to None for most cases,
but, when testing, you can feed in data as a dictionary to mimic user
input.

You use the lower() method to make the command lowercase, and then
you look it up in your dictionary c. If you can’t find it, then you return
an error.

When running the program normally, data will be None. When you see
this, you know you need to read some input from the user, and you can
call get_fields so you know what to ask d.

Now that you know which function to call and what data to call it with,
you can go ahead and pass control over e. The command function will
do whatever it’s supposed to and feed the results back as a string, which
you hand back to the user. The ** in front of your input dictionary looks
a bit weird—what it does is pass in the dictionary arguments as keyword
arguments. This way, you can see what values a particular function is
expecting in the function definition, rather than having one big value.

Great—now you have a straightforward way to assign text input from
the person using the program and pass that on to a particular function.
The rest of the chapter will deal with adding to that framework by
writing other functions that fit into it.

Running your program
You might’ve noticed something odd by this stage;
you haven’t actually run the program yet to make
sure it works. In previous chapters, you’ve been
writing your program, running it to make sure it
works, and then writing a bit more. Because

Figure out which command
function you need to run

c

Get input from
user, if necessary

d

Call functione

BATHROOM BREAK
DETECTED!!
YOU HAVE 4
MINUTES AND 59

SECONDS TO
RETURN TO
YOUR SEAT!

114 CHAPTER 4 Getting organized
you’ve been unit testing, though, you haven’t had to do that once—the
unit tests pass, so the code must be working, right?

You might be a bit skeptical about that, but your program is pretty
functional at this stage, and you can run it if you want to make sure.
The following listing shows a sample run.

Listing 4.7 Your program so far

D:\Documents and Settings\Anthony>python todo.py
? I don't know what that command is.
> test
abcd > qwer
ijkl > uiop
Command 'test' returned:
abcd: qwer
ijkl: uiop
> new
title > Test Todo
description > This is a test
level > Very Important
None
> quit
Exiting...

There are still a few loose ends to tidy up, but you can already create a
to-do item from the user interface on your program, which means all of
your infrastructure is working. You’re on a roll!

Taking stock
So far, you’ve made a good start on your pro-
gram, and you have most of the core of it
working. Additionally, you have tests you can
run to make sure the program stays working.
Your unit tests have also had another benefit;
because you’ve only been testing small parts of
the program, your program is already broken
down into small functions, and there’s no need
to tidy it up or refactor it. At least, not yet.

FIVE MINUTES FOR A
BATHROOM BREAK? YOU'VE
GOT TO BE KIDDING ME!

PROGRAMMER
INSUBORDINATION

NOTED!

Taking stock 115
What to do next?
The next important part of your application is showing what’s in the to-
do list; there’s not much point in adding to your list if you can’t see
what’s in it later. To get started, you’ll write a test for a function that
will show you all your to-dos. Then, you’ll look at streamlining it to
hide those that aren’t as important. After you’ve done that, we’ll look at
how you can save your lists and reload them, so you don’t have to reen-
ter everything when you restart the program.

This next listing makes sure a to-do is shown properly when you view
it in your program.

Listing 4.8 Testing your to-do list view

def test_show_todos():
 todo.todos = [
 { 'title' : 'test todo',
 'description' : 'This is a test',
 'level' : 'Important'
 }
]
 result = todo.show_todos(todo.todos)
 lines = result.split("\n")

 first_line = lines[0]
 assert "Item" in first_line
 assert "Title" in first_line
 assert "Description" in first_line
 assert "Level" in first_line

 second_line = lines[1]
 assert "1" in second_line
 assert "test todo" in second_line
 assert "This is a test" in second_line
 assert "Important" in second_line

 print "ok - show_todos"

First, you set up a to-do list b. Because your to-do list is in a known
state, this will make it easier to test. It’s tempting here to reuse your

Set up datab

Run show_todos
function

c

Test resultsd

116 CHAPTER 4 Getting organized
creation test to set up the to-do list, but that’s a trap. Even though it
might save some code, you’re creating a dependency between your tests.
Later, if there was a bug in the creation function, you’d have two (or
more) test failures, and the bug would be much harder to track down.

You run the view function over the to-do list c and get the results
back. To make life easier, you split the result into lines by using the
split() method of the result string to split on line endings. I’m imagin-
ing that the list of to-dos will look something like the following:

Item Title Description Level
1 test todo This is a test Important

Next, you test that the words you’re expecting exist in
each line d. The first line should be the headers for the
columns, and the second should have the values you’re
expecting. Notice that you’re specifying each value indi-
vidually in the test—you could generate a string for the
exact result you’re expecting from the function, but that’s
another trap. Specifying the results too strictly makes the
test fragile, and the slightest change to how the results

are formatted or the order of the columns can make your test fail when
it shouldn’t. In practice, you should only test what’s important and
leave out as much of the rest as you can.

Now that you know what you’re expecting of your function, you can
go ahead and write it. Python strings have several methods you can use
to format the output; let’s see how you can use them. The show_todos()
function in the following listing shows you how a few of them work.

Listing 4.9 Displaying to-do items

def show_todos(todos):
 output = ("Item Title "
 "Description Level\n")
 for index, todo in enumerate(todos):
 line = str(index+1).ljust(8)
 for key, length in [('title', 16),
 ('description', 24),
 ('level', 16)]:

YOU HAVE 4
MINUTES AND
42 SECONDS
TO RETURN TO
YOUR SEAT!

Taking stock 117
 line += str(todo[key]).ljust(length)
 output += line + "\n"
 return output

commands = {
 'new' : [create_todo, ['title', 'description', 'level']],
 'show' : [show_todos, []],
 'test' : [test, ['abcd', 'ijkl']],
}

First, you initialize the output as a list of headers. You’ll be copying
each line onto the end of the output as you go. Notice how the string is
placed on two lines and wrapped within brackets? This makes it easier
to read on the page. Python automatically joins strings like this, so
there’ll only be one big string when it’s assigned to output.

Next, you go through each of the to-dos and add
numbers. I’ve added an index to make it easier
to see how many to-dos you have. enumerate()
takes a list or iterable and returns the next item
along with its index in the list—handy for situa-
tions like this.

In order to format the results, you start the line
by printing the number of the to-do. So that the
rest of the columns line up, you convert it to a string and use the
.ljust() string method to space it out to eight columns. Python strings
have many other methods like this, such as .rjust() and .center().

Next, you print each part of your to-do in a column. Here I’ve been a
bit tricky and pulled out the key you’re printing and its width into a
list, which you’re looping over. That way, you can pull out each value
from the to-do and make it the right width.

Finally, don’t forget to add the show command into the list of commands
so you can use it when you’re running your program. It doesn’t take
any arguments, so it has an empty list instead.

The code you’ve added is straightforward, but if you were developing
this using “code and bugfix” as you did for Hunt the Wumpus, you’d

OK. OK.
I'LL
MAKE IT
BLUE.

BUG DETECTED!!
THE PROGRAM AS
ENTERED DEVIATES
FROM MANDATE
#8394: "THE SITE
MUST BE BLUE"!
RECTIFY
IMMEDIATELY!

118 CHAPTER 4 Getting organized
have to go back and forth several times to get the code working. With
unit testing, you can specify exactly what your output should be and
then add it directly to your program.

I’m very busy and important
The other thing you’d like to check is
that your view function displays your to-
dos in the right order. Ideally, important
things should be displayed differently depending on how important
they are. You’ll put the important items at the top and unimportant
ones at the bottom. The problem is that, so far, you’ve been putting the
level of importance as a text field, which would appear to make your
list a bit hard to sort. Luckily, there are tools in Python to deal with this
sort of thing.

But we’re getting ahead of ourselves. First you need a test to make sure
your program sorts your to-dos properly! The test in the following list-
ing should do the trick.

Listing 4.10 Testing the order of your view

def test_todo_sort_order():
 todo.todos = [
 { 'title' : 'test unimportant todo',
 'description' : 'An unimportant test',
 'level' : 'Unimportant'
 },
 { 'title' : 'test medium todo',
 'description' : 'A test',
 'level' : 'Medium'
 },
 { 'title' : 'test important todo',
 'description' : 'An important test',
 'level' : 'Important'
 },
]
 result = todo.show_todos(todo.todos)
 lines = result.split("\n")

HOW ABOUT WE PUT
EVERYTHING MARKED
AS UNIMPORTANT IN
THE ROUND FILE?

Sample list
of to-dos

b

Taking stock 119
 assert "IMPORTANT" in lines[1]
 assert "Medium" in lines[2]
 assert "Unimportant" in lines[3]

 print "ok - todo sort order"

Here’s your sample list of to-dos b. They’re in
reverse order (unimportant to important), to
make sure the sorting is working.

The to-dos should be in order from important
to unimportant c. You also display the impor-
tant statuses in capitals, so they stand out more.

This covers what you’re expecting. How do you
get there? In practice, you’ll still be entering
them as text strings, so how about if you put all the important fields
first, all the ones marked “unimportant” at the bottom, and everything
else in between?

The standard way you’d do that would be with three for loops one
after the other, each for a separate case—but I’d like to show you a
faster way, which is also clearer once you get used to it.

List comprehensions
List comprehensions are a powerful built-in Python tool for making
sense of lists of things. They’re a general solution to a common pro-
gramming problem: handling groups of items. Perhaps you want to get
the total of every item in a list, or filter out the ones that aren’t impor-
tant, or only include the ones that have been open for too long. List
comprehensions will let you do all these things.

What you’re trying to ask for when you want to display important to-
dos is something like this: “Python, please give me every to-do in the
to-do list that is marked as ‘Important.’”

You can use a list comprehension to get exactly that and more. The fol-
lowing listing gives you a look at some common types of list compre-
hension and a feel for what they can do.

Test they’re in
right order

c

OK. IT'S
HALF BLUE
AND …
HALF GREEN.
HAPPY NOW?

BUG DETECTED!
THE PROGRAM AS
ENTERED DEVIATES
FROM MANDATE
#973: "THE SITE
MUST BE GREEN"!
RECTIFY
IMMEDIATELY!

120 CHAPTER 4 Getting organized
Listing 4.11 Lots of things you can do with list comprehensions

important_todos = [todo for todo in todos
 if todo['level'].lower() == 'important']

def capitalize(todo):
 todo['level'] = todo['level'].upper()
 return todo

important_todos = [capitalize(todo) for todo in todos
 if todo['level'].lower() == 'important']

squares = [x**2 for x in range(10)]
names = [name.title() for name in list_of_names]

coordinates = [(x,y) for x in range(10)
 for y in range(10)]

Here’s a list comprehension that gives you what you’re after b. Python
will go through each to-do in your list and collect the ones that match
your if statement (that is, have a level of “important”). You add a
.lower() call so the level will get converted to lowercase; important,
Important, and IMPORTANT will all match.

That’s not all list comprehensions can do. You can also
apply functions to each member of the final result to get a
different list c. Here, you’re writing a function to capital-
ize the level and then calling it on each to-do that’s marked
as “important”.

If you have a list of numbers, you can perform other oper-
ations on them as well d. If they’re an object, you can call

any method of that object, and so on. Anything you can do to the origi-
nal value you can do within a list comprehension.

Finally, you have a list comprehension that uses two lists of numbers to
generate a list of coordinates e.

Given all that, your final code listing could look something like the
following.

Basic
version

b

You can use
functions

c

You can also
use numbers

d

You’re not limited
to using one list

e

PROGRAMMER
INSUBORDINATION
DETECTED!
YOU HAVE
4 MIN 59 SEC
TO ATTEND
PERFORMANCE
REVIEW!

Taking stock 121
Listing 4.12 Code to sort your list of to-dos

def capitalize(todo):
 todo['level'] = todo['level'].upper()
 return todo

def show_todos(todos):
 output = ("Item Title "
 "Description Level\n")
 important = [capitalize(todo) for todo in todos
 if todo['level'].lower() == 'important']
 unimportant = [todo for todo in todos
 if todo['level'].lower() == 'unimportant']
 medium = [todo for todo in todos
 if todo['level'].lower() != 'important' and
 todo['level'].lower() != 'unimportant']
 sorted_todos = (important +
 medium +
 unimportant)

 for index, todo in enumerate(sorted_todos):
 line = str(index+1).ljust(8)
 for key, length in [('title', 16),
 ('description', 24),
 ('level', 16)]:
 line += str(todo[key]).ljust(length)
 output += line + "\n"
 return output

Here are three list comprehensions b, each for a separate level of to-
do: “Important”, “unimportant”, and “everything else.” You capitalize
the important ones to make them stand out a bit more.

Once you have the to-do lists separated, you can join them back up by
using a + c.

If you want to see what the output looks like when running your tests,
you can print the output here, right before it’s sent back. Your program
will print exactly what the function returns, so you’ll see what the end
user will see d. Alternatively, you can put the print statements in your
tests. If you’re having trouble with a failing test, printing out some of
the variables you’re working with can save a lot of time.

Filter
to-dos

b

Join to-dos
back up

c

Debugd

122 CHAPTER 4 Getting organized
Finally, if you run your tests again, you’ll notice that one of your earlier
tests, test_show_todos, is now failing. In this case it’s nothing to worry
about—you wrote that test before you’d really thought about how the
program should look. Just change the “Important” in the test to
“IMPORTANT”, and the test should pass.

Now, you can sort to-dos into a specific order by using some list com-
prehensions, a powerful tool that’s easy to understand. Often, you’ll
find you can replace complicated for loops with a simple function and a
list comprehension.

Oops, a bug!
If you look at the output in listing 4.13, you’ll notice the columns don’t
quite display properly. The show_todos test looks ok, but the second one
has all its fields squashed together—where an item is too long, it’s
pushing the other columns out.

Listing 4.13 Output from your tests

C:\Documents and Settings\Anthony>python test_todo.py
ok - create_todo
ok - get_function
ok - get_fields
ok - run_command
Item Title Description Level
1 test todo This is a test IMPORTANT

ok - show_todos
Item Title Description Level
1 test important todoThis is an important testIMPORTANT
2 test medium todoThis is a test Medium
3 test unimportant todoThis is an unimportant testUnimportant

ok - todo sort order

That doesn’t look nice. Isn’t unit testing supposed to make sure code is
bug-free? Unfortunately, not entirely. You can test for things you’ve
thought of, but if there’s something you haven’t considered, then you
might still have bugs in your program. If you’re using unit testing and

Taking stock 123
you notice a bug in your program like this, the solution is relatively
easy: write a test that covers the behavior you do expect, make sure it
fails, and then fix your program.

It’s also possible you might have made a mistake in one of your tests.
Again, unit testing is a useful tool, but not a complete solution. It’s still
possible to test the wrong thing, or to have bugs in your unit tests. In
practice, that’s a lot less likely than having errors in your program
because the unit tests are easier to follow.

The question still remains, though: what do you want the program to
do when a line is too long? If you don’t have a clear answer for that,
then it’s hard to write a test! You could trim the string down to a fixed
width if it was too long—but you’d like all the information to still be
visible. A better way to do it would be to wrap each to-do.

Listing 4.14 A better way to display your to-dos

Item Title Description Level
1 test important This is an important IMPORTANT
 todo test
2 test medium This is a test Medium
 todo
3 test This is an unimportant Unimportant
 unimportant test
 todo

From a visual point of view, that looks a lot better. But how on earth
are you going to program it? The short answer is … exactly the way
you’ve been programming it so far: write a test first! I came up with
test_todo_wrap_long_lines, which you can see in the next listing.

Listing 4.15 Testing that your to-dos wrap lines

def test_todo_wrap_long_lines():
 todo.todos = [
 { 'title' : 'test important todo',
 'description' : ('This is an important '
 'test. We\'d really like '
 'this line to wrap '

Set up datab

124 CHAPTER 4 Getting organized
 'several times, to '
 'imitate what might '
 'happen in a real '
 'program.'),
 'level' : 'Important'
 },
]
 result = todo.show_todos(todo.todos)
 lines = result.split("\n")

 assert "test important" in lines[1]
 assert "This is an important" in lines[1]

 assert "todo" in lines[2]
 assert "test. We'd really like" in lines[2]

 assert "this line to wrap" in lines[3]
 assert "several times, to" in lines[4]
 assert "imitate what might" in lines[5]
 assert "happen in a real" in lines[6]
 assert "program." in lines[7]

 print "ok - todo wrap long lines"

First, you set up a to-do with long lines that should be wrapped b. In
this example, I’ve made it look as close as I can to what a real to-do might
look like to make sure wrapping works when you have to wrap over sev-
eral lines, as well as only one. Notice that I’ve broken up the description
so the lines are less than 24 characters long, which is the width of the
description column. That helps when you’re writing the test, because
you can see what you need to check for.

Then you test that the correct parts of the lines appear when the to-do is
viewed c. The test for the description goes for several lines, but this way
you’re sure the program is wrapping properly for larger descriptions.

Well, the test was easy; but I suspect that writing the code might be a
bit harder. Fortunately, you’ve been testing thoroughly so far, so if you
make a mistake, your tests should catch you.

Set up datab

Test that
lines wrap

c

Taking stock 125
NOTE What would you do if the code was too hard to write? In that case,
the answer is usually that you’re trying to do too much at once, and
you need to break the problem into smaller, easier parts.

The problem is that you’re wrapping the lines, but within other lines,
so you can’t rely on Python’s built-in printing mechanisms. Python
does have a textwrap module available, which doesn’t quite do what
we’d like, but it’s a start. The overall plan would then be to write a
function to generate the lines for each to-do. Within that, you can split
each section of the to-do (the title, description, and so on) into lines
using the textwrap module, and then somehow knit them together into
the final output. Let’s try that. The following listing features the new
function, show_todo, and the changes you’ll need to make to show_todos.

Listing 4.16 A function to show a to-do

import textwrap
...
def show_todo(todo, index):
 wrapped_title = textwrap.wrap(todo['title'], 16)
 wrapped_descr = textwrap.wrap(todo['description'], 24)

 output = str(index+1).ljust(8) + " "
 output += wrapped_title[0].ljust(16) + " "
 output += wrapped_descr[0].ljust(24) + " "
 output += todo['level'].ljust(16)
 output += "\n"

 max_len = max(len(wrapped_title),
 len(wrapped_descr))
 for index in range(1, max_len):
 output += " " * 8 + " "
 if index < len(wrapped_title):
 output += wrapped_title[index].ljust(16) + " "
 else:
 output += " " * 16 + " "
 if index < len(wrapped_descr):
 output += wrapped_descr[index].ljust(24) + " "
 else:
 output += " " * 24 + " "
 output += "\n"

 return output

Wrap title and
description

b

Output
first line

c

Output
any
remaining
lines

d

126 CHAPTER 4 Getting organized
def sort_todos(todos):
 important = [capitalize(todo) for todo in todos
 if todo['level'].lower() == 'important']
 unimportant = [todo for todo in todos
 if todo['level'].lower() == 'unimportant']
 medium = [todo for todo in todos
 if todo['level'].lower() != 'important' and
 todo['level'].lower() != 'unimportant']
 todos = important + medium + unimportant
 return todos

def show_todos(todos):
 output = ("Item Title "
 "Description Level\n")
 sorted_todos = sort_todos(todos)
 for index, todo in enumerate(sorted_todos):
 output += show_todo(todo, index)
 return output

First, you use the textwrap module’s wrap() function to wrap the title
and description to the right number of characters b. You’ll also need
import textwrap at the top of your script.

You start by building the first line with the index and level, which you
assume don’t wrap, plus the first wrapped line of the title and descrip-
tion c. You’re using the += operator, which is shorthand for output =
output + (You’re also adding two spaces between each column, to
make it easier to read.)

If there are any lines left in your title or description, you print them
here and put in placeholders for the index and importance d. You’re
using a slightly different version of range, where you specify the start-
ing index as well as the ending one. If there’s only one line, max_len will
be 1 as well, enumerate will be empty, and no extra lines will be printed.
The other catch is that before you print out each line in the title and
description, you need to make sure you still have something to print;
otherwise, Python will crash with a “list index out of range” error. You
use the multiplier operation on a single blank space so it’s obvious how
long the strings are.

Sort
to-dos

e

New version of
show_todos

f

Saving your work 127
Although it isn’t strictly necessary, you break the sorting of to-dos out
into its own function e. You can do this because you have unit tests to
catch any breakages, and it makes the program nicer to look at.

The new version of show_todos calls on both show_todo and sort_todos
and is much shorter and easier to follow f. That tells you you’re mov-
ing in the right direction; if it were longer and more complicated, you’d
be doing the wrong thing.

The last thing you’ll need to do is update the test_todo_sort_order test
case so it references the new line numbers in the output. If you run
your tests after that change, they should all pass, and you now have a
much prettier view of your to-dos. Ta-da! Next feature!

Saving your work
The last essential thing you need to be able to do is save the to-do list to
a file. Without that, the person using the program would have to reen-
ter all their work. Well, they probably wouldn’t—they would instead
find a program that could save their data. Because you’ll be using this
program yourself, that’s not an option.

To save your to-do list, you’ll be using a Python module called pickle,
which is designed for writing Python objects to a file. There are some
limitations on the sorts of objects you can pickle, but all the basic
Python types such as strings, lists, and dictionaries are supported, so
it’s ideal for your program. Using pickle has the advantage of being
quick to implement and easy to test, but it won’t be editable in a plain-
text editor. Writing your own functions to read and write a custom
format is possible, but it’s harder to program and difficult to get
completely right. Here you’ll take the easy option, but you can always
write your own format at a later stage if you need it.

How do you test your saving function? The easiest option is to use
what’s called a round-trip: create a to-do list and save it, and then reload
it from the same file and compare it to the original. If it’s the same, then
your test passes; but the downside is that you’re testing both the load
and save functionality in one go. If your test doesn’t pass, then it’s hard
to tell whether it’s the load function or the save function (or both) that

128 CHAPTER 4 Getting organized
is at fault. The way around that is to create a known good file from a suc-
cessful save. But that implies you’ve already saved properly.

Let’s pick the first option and see how it goes. You’ll be using a built-in
Python module in a pretty straightforward way, so you’re not likely
to run into any major problems. The
next listing is your round-trip test,
test_save_todo_list.

Listing 4.17 Testing that your application saves properly

import os
...
def test_save_todo_list():
 todos_original = [
 { 'title' : 'test todo',
 'description' : 'This is a test',
 'level' : 'Important'
 }
]
 todo.todos = todos_original
 assert "todos.pickle" not in os.listdir('.')

 todo.save_todo_list()
 assert "todos.pickle" in os.listdir('.')

 todo.load_todo_list()
 assert todo.todos == todos_original
 os.unlink("todos.pickle")
 print "ok - save todo list"

Here you’re creating your to-do list b exactly the same way you’ve
been doing in previous tests. The only difference is that you’re keeping
another copy so you can refer back to it once you’ve reloaded the to-do
list. You also make sure you don’t have an existing to-do list; otherwise
the tests would fail or overwrite someone’s to-do list.

First, you run the save command c. Although you can’t test the con-
tents of the save file directly, you can test that the file has been created
by using the os.listdir() function. '.' is shorthand for whatever the
current directory is.

Create
to-do
list

b

Test
saving

c

Test loadingd

CAREFUL NOT TO DO
TOO MANY ROUND-TRIPS.
YOUR DATA MIGHT
GET DIZZY!

Saving your work 129
Next, you clear the to-do list out and then call
the load_todo_list() function to reload it d.
At the end, you’ll have two lists of dictionar-
ies that should be exactly the same.

Run your tests, make sure the new one fails,
and then you can add the following code to
create your save file and reload it.

Listing 4.18 Loading and saving your to-dos

import pickle
import os
...
def save_todo_list():
 save_file = file("todos.pickle", "w")
 pickle.dump(todos, save_file)
 save_file.close()

def load_todo_list():
 global todos
 if os.access("todos.pickle", os.F_OK):
 save_file = file("todos.pickle")
 todos = pickle.load(save_file)

pickle needs an open file to work with, so you first open your save file
b, which you’ve called "todos.pickle", with a mode of "w", which
means open it and overwrite whatever’s already there.

The pickle syntax is straightforward—just
call the pickle.dump() function c with the
object you want to pickle and the file
where you want it to be pickled.

Next, you close the file d. You don’t have
to do this step, because Python will close
the file once it leaves the save_todo_list()
function, but it’s a good habit to get into
and helps to keep things tidy.

NO. IN FACT, WE LIKE
THE … DISCIPLINE AND
STRUCTURE THAT IT
BRINGS TO OUR WORK.

WE'RE NOT OPPOSED TO
ORWELL …

Open save fileb
Dump todos
into file

c

Close save
filed

todos variable
needs to be global

e
Make sure save
file exists

f

Load todos
from file

g

IT'S JUST THAT WE FEEL
THAT OTHERS COULD
BENEFIT FROM THE SAME
LEVEL OF RIGOR.

DA! IS NOT
BEINK
"TEAM
PLAYER."

STEF'S WORK, FOR
EXAMPLE, ISN'T BEING
CHECKED TO THE SAME
STANDARDS AS OURS.

130 CHAPTER 4 Getting organized
Because you’re replacing your to-do list when you load it, you’ll need
to declare it as a global variable e. This means the changes you make
to the todos variable will be visible outside your function.

One thing you need to check before you do anything is that the file
exists f. If you try to open a non-existent file, then Python will raise
an error and the program will crash.

Once you’re ready to load from your save file, it should be opened in
read mode g. The pickle.load() method will then read the to-do list
you previously saved. When you’re done, you close the save file. You
don’t need to return the object, because it’s a global variable and you’ve
already updated it.

The only question that remains after you’ve added the load and save
functions is where you call them. You could make the user call them
explicitly, but they’d have to know the functions were there and
remember to call them. An easier way is to call load automatically when
the program starts, and then save when the program exits. You can
easily add that by calling load_todo_list() and save_todo_list() at the
start and end of the main loop, as in the listing that follows.

Listing 4.19 Automatic loading and saving

def main_loop():
 user_input = ""
 load_todo_list()
 while 1:
 print run_command(user_input)
 user_input = raw_input("> ")
 if user_input.lower().startswith("quit"):
 print "Exiting..."
 break
 save_todo_list()

Before you start accepting any user input, you first look for a pre-exist-
ing save file, and, if it exists, you load the to-dos from that.

Once the user issues a quit command, you break out of the loop and
the program will automatically save its to-do list. If you want to be

Editing and deleting 131
even more cautious, you can call save_todo_list() at the end of each
function that might cause a change: create_todo(), edit_todo(), and
delete_todo().

You can add, view, and save your to-do lists (that’s the C and R in
CRUD for those of you who remember the first part of the chapter)
and store all the to-dos entered to date, so all you have to do now to
have completed all the absolutely essential features is to handle the
editing and deleting of the existing to-dos.

Editing and deleting
For this particular application they’re not quite as essential, which is
why we’ve left them until last, but it’d be pretty annoying to have to do
without deletion or editing.

A quick fix
First, there’s one problem which you should deal
with before you start. When you sorted the to-
dos earlier, you didn’t update the stored list, and
sorted your list every time you viewed it. When
the user wants to tell you which to-do they want
to edit or delete—say, with the index number—
you’ll have to rebuild the list again to know
which one they mean. It’d be much easier to
have the to-do list sorted already. Let’s do that
now. It will mean calling the sort_todos function every time a to-do is
added to the to-do list. The user might’ve changed the importance of a
to-do when editing it, so you’ll need to call it then, too, but you won’t
need to call it for deletion because it will already be in order then.

As you’ve done so far, start by writing a unit test.

Listing 4.20 Adding a to-do sorter

def test_todo_sort_after_creation():
 todo.todos = [
 { 'title' : 'test unimportant todo',
 'description' : 'This is an unimportant test',

DO YOU THINK WE
LAID THAT ON A
BIT THICK?

NYET—TIE IS
INTERFERING WITH
DETECTION OF
SARCASM.

Set up
initial data

b

132 CHAPTER 4 Getting organized
 'level' : 'Unimportant'
 },
 { 'title' : 'test medium todo',
 'description' : 'This is a test',
 'level' : 'Medium'
 },
]

 todo.create_todo(todo.todos,
 title="Make some stuff",
 description="Stuff needs to be programmed",
 level="Important")

 assert todo.todos[0]['level'] == "IMPORTANT"
 assert todo.todos[1]['level'] == "Medium"
 assert todo.todos[2]['level'] == "Unimportant"

 print "ok - todo sort after creation"

This should be pretty familiar by now. For this test, you’re
only setting up two to-dos, in the reverse order b.

c is where the action takes place. You create an important
to-do. With the code as it currently stands, this will only
append the important to-do at the bottom.

Now you check that all the to-dos are in the right order d.
Important ones come first, unimportant at the bottom, and
everything else in the middle.

Run your tests now, and the newest one should fail. Time to write some
code!

Listing 4.21 New sort_todos

def sort_todos():
 global todos
 important = [capitalize(todo) for todo in todos
 if todo['level'].lower() == 'important']
 unimportant = [todo for todo in todos
 if todo['level'].lower() == 'unimportant']
 medium = [todo for todo in todos

Set up
initial data

b

Create another
to-do

c

Check to-do orderd

AWOOOGAH!
TIE IS 12
DEGREES FROM
VERTICAL!
INSUFFICIENT
PERSONAL
GROOMING
DETECTED!

Alter sort_todosb

Editing and deleting 133
 if todo['level'].lower() != 'important' and
 todo['level'].lower() != 'unimportant']
 todos = important + medium + unimportant

def create_todo(todos, title, description, level):
 todo = {
 'title' : title,
 'description' : description,
 'level' : level,
 }
 todos.append(todo)
 sort_todos()
 return "Created '%s'." % title

def show_todos(todos):
 output = ("Item Title "
 "Description Level\n")
 for index, todo in enumerate(todos):
 output += show_todo(todo, index)
 return output

Ideally, you’d like to be able to call sort_todos() from anywhere in the
program, but that’s a bit hard in its current state. The easiest way for-
ward is to make todos a global variable b. Note that once you’ve done
this, you don’t have to return todos from sort_todos(). Now you can call
it from any function you want to.

Now that sort_todos() is easier to use, you can remove it from
show_todos() and put it wherever the order of todos is likely to be
changed c. In the next section, you’ll also call it when changing to-dos
in the to-do list.

You’ll find that you have test failures once show_todos() doesn’t sort the
to-dos any more, but they’re easy to fix. In test_todo_sort_order() and
test_show_todos(), just call todo.sort_todos()once you’ve set up your list
of to-dos, to make sure they’re in the right order and have the correct
formatting.

That should be enough to get you going
for the next section. What you’ve done is

Alter sort_todosb

Move sort_todos
from show_todos
to create_todo

c

CHAINSAW CODING …
WITH A SAFETY NET!

134 CHAPTER 4 Getting organized
to ensure that the to-do list is always sorted in the same order, whether
that’s behind the scenes or when displayed on the screen. It’s a major
change to the way the program stores its data, but because you have a
suite of unit tests, you can be confident that making major changes like
this won’t have broken anything in the program. Let’s press on and put
the final pieces in place.

Deleting to-dos
Now you’re ready to starting deleting to-dos from your list. The code
to do this is pretty straightforward, but because you’re starting on
destructive functions that can potentially delete user data, you’ll step
up the unit testing a notch. Up until now you’ve mainly been testing
the “happy path,” by making sure the code works for normal usage. It’s
equally important to make sure your program notices input or data
which is wrong and generates an appropriate error message. Let’s take
a look now at how you test that in the following listing.

Listing 4.22 Testing deletion

def test_delete_todo():
 todo.todos = [
 { 'title' : 'test important todo',
 'description' : 'This is an important test',
 'level' : 'IMPORTANT'
 },
 { 'title' : 'test medium todo',
 'description' : 'This is a test',
 'level' : 'Medium'
 },
 { 'title' : 'test unimportant todo',
 'description' : 'This is an unimportant test',
 'level' : 'Unimportant'
 },
]

 response = todo.delete_todo(todo.todos, which="2")

 assert response == "Deleted todo #2"
 assert len(todo.todos) == 2
 assert todo.todos[0]['level'] == 'IMPORTANT'
 assert todo.todos[1]['level'] == 'Unimportant'

Test
“happy path”

b

Editing and deleting 135
def test_delete_todo_failure():
 todo.todos = [
 { 'title' : 'test important todo',
 'description' : 'This is an important test',
 'level' : 'IMPORTANT'
 },
]

 for bad_input in ['', 'foo', '0', '42']:
 response = todo.delete_todo(
 todo.todos, which=bad_input)
 assert response == ("'" + bad_input +
 "' needs to be the number of a todo!")
 assert len(todo.todos) == 1

 print "ok - test delete todo failures"

For the deletion test, you set up three to-dos and delete
the middle one. This tests that you don’t delete the
wrong to-do, as well as that the right one is deleted b.
You’re also checking that delete_todos gives back a
reasonable message to tell you what it’s done.

One of the things you’ve been able to skip over so far is checking user
input. For your deletion script, that’s no longer possible, because you
might put in a wrong number or something that isn’t a number. Here,
you check that all the possible types of bad input generate an error
message and don’t delete any to-dos c.

That covers all the potential things I can think of can go wrong, but it’s
important to note that testing failures like this is an ongoing process. In
other words, the failure tests aren’t final. Especially with more complex
functions, there may be bad input or data which will cause errors you
haven’t considered. When you find input like that, you should consider
it a bug in your program. But the fix is easy: add either another unit
test or an extra case to your failure test that will cover the failure, and
then fix your code so the test passes.

The following listing is the code I wrote to make the two deletion tests
pass.

Test for
bad input

c

HEY! YOU'RE
SUPPOSED TO
BE CHECKING UP
ON EVERYONE
ELSE, NOT ME!

136 CHAPTER 4 Getting organized
Listing 4.23 Deleting to-dos

def delete_todo(todos, which):
 if not which.isdigit():
 return ("'" + which +
 "' needs to be the number of a todo!")
 which = int(which)
 if which < 1 or which > len(todos):
 return ("'" + str(which) +
 "' needs to be the number of a todo!")
 del todos[which-1]
 return "Deleted todo #" + str(which)

commands = {
 ...
 'delete' : [delete_todo, ['which']],

Here’s where you do your checking to make sure the input you’re fed
matches a to-do in your list. It has to be a number, so you first use the
.isdigit() method to make sure of that. Then, you turn it into a num-
ber by using int(), and check to see if it corresponds to an entry in the
to-do list. If your input fails any of these checks, you do nothing except
return an informative error message.

Now you can delete the to-do. Notice that you’re converting the num-
ber you’re given into a list index by subtracting one from it.

The person using the program probably wants to know what you’ve
done, so you tell them here d. Whatever string you return will be
printed on the screen as a result.

Because you’ve added a new command, you’ll also need to
add it to the commands dictionary too. The only argument it
takes is 'which', which is the id of the to-do you want to
delete.

That’s all you need to do to make sure deleting to-dos
works properly. All your tests should pass now, and you’re
ready to move on to the next section.

MARKETING
INSUBORDINATION
DETECTED!
PREPARING
ATTITUDE
READJUSTMENT
PROBE!

Editing and deleting 137
Editing to-dos
Editing to-dos is also fairly straightforward.
Because, in many ways, editing is a cross
between deletion and editing, you can combine
code from your previous unit tests and program
code to create an edit_todo() function. There’s
nothing in principle that we haven’t already cov-
ered in this chapter.

The only catch is that you’re running into a lim-
itation of Python’s raw_input() function. Because
you can’t pre-populate the text that’s entered into the function, you
can’t make it as easy as you’d like to edit an existing entry. Unfortu-
nately, you’ll need to work around it. The easiest way is to make a
blank entry not overwrite an existing field; rather, for any field you
want to edit, you’ll need to either reenter the data or cut and paste it
from earlier on in the output. It’s annoying, but there’s not a lot you
can do about it. In chapter 8, you’ll extend your to-do list and give
it a web interface with Django, so proper editing will have to wait
until then.

Let’s go ahead and write a test that covers the functionality you can
add.

Listing 4.24 Testing to-do editing

def test_edit_todo():
 todo.todos = [
 { 'title' : "Make some stuff",
 'description' : 'This is an important test',
 'level' : 'IMPORTANT'
 },
]

 response = todo.edit_todo(todo.todos,
 which="1",
 title="",
 description="Stuff needs to be programmed properly",
 level="")

PREDICTING STEF
COMING TO HIS
SENSES IN
5 … 4 … 3 …
AAAAIIIIEEE!!

Edit
to-do

b

138 CHAPTER 4 Getting organized
 assert response == "Edited todo #1", response
 assert len(todo.todos) == 1
 assert todo.todos[0]['title'] == "Make some stuff"
 assert (todo.todos[0]['description'] ==
 "Stuff needs to be programmed properly")
 assert todo.todos[0]['level'] == "IMPORTANT"

 print "ok - edit todo"

Here’s a function call that should edit a to-do b. You’re simulating
blank entries with blank strings in the input arguments.

Now you test that the to-do has the right fields c. Those that were
blank should be unchanged, and those that weren’t should be set to the
correct values. You’re also checking that you still have only one to-do
and that you get the right response.

The other thing you need to test is that editing the level of a to-do will
result in it being reordered. If a to-do suddenly becomes important,
you want it to appear at the start of the list, rather than still being half-
way down. The following listing shows how to test that.

Listing 4.25 Testing sort order after editing

def test_edit_importance():
 todo.todos = [
 { 'title' : 'test medium todo',
 'description' : 'This is a medium todo',
 'level' : 'medium'
 },
 { 'title' : 'test another medium todo',
 'description' : 'This is another medium todo',
 'level' : 'medium'
 },
]
 response = todo.edit_todo(todo.todos,

 which="2",
 title="",
 description="",
 level="Important")

Test that
correct fields
were edited

c

Set up two
medium
to-dos

b

Edit last
to-do in list

c

Editing and deleting 139
 assert todo.todos[0]['level'] == "IMPORTANT"
 assert todo.todos[1]['level'] == "medium"

 print "ok - edit importance"

First, you set up two Medium level to-dos b. You edit the last to-do
and set its level to Important but leave the other fields unchanged c.

Now that the importance of the second to-do has been changed, it
should appear first in the list rather than second d.

That covers the behavior you’re expecting from editing a to-do. Let’s
see how you go about implementing it in your program.

Listing 4.26 Code to edit a to-do

def edit_todo(todos, which, title, description, level):
 if not which.isdigit():
 return ("'" + which +
 "' needs to be the number of a todo!")
 which = int(which)
 if which < 1 or which > len(todos):
 return ("'" + str(which) +
 "' needs to be the number of a todo!")

 todo = todos[which-1]
 if title != "":
 todo['title'] = title
 if description != "":
 todo['description'] = description
 if level != "":
 todo['level'] = level

 sort_todos()
 return "Edited todo #" + str(which)

commands = {
 ...
 'edit': [edit_todo,
 ['which', 'title', 'description', 'level']],

Important to-do should
now appear first

d

Check user
input

b

Update to-doc

Tidy upd

140 CHAPTER 4 Getting organized
You use exactly the same code you’re using in delete_todo() to check
user input b. You could probably pull it out and make it a function,
but because you’re only using it in two places, whether you do so or not
is a line call. If you add a third function that uses this code, then it
should definitely be separated.

Now you update the to-do c. For any non-blank input, you override
the field of the to-do with what’s been entered.

The final step is to sort the to-dos (because the level might have
changed) and return a message to let the user know what’s happened
d. Don’t forget to add the edit_todo() function to the commands diction-
ary with the arguments it needs.

You’re done! All the essential features you set out at the start of the
chapter have been completed, and you have a usable to-do list program.

NOTE The definition of “essential” will vary from person to person, but get-
ting the core of your application in place will definitely help put the
finishing touches on the rest of the essential parts.

Better yet, you have a comprehensive test suite that covers all the
major functionality of the application, so if you make any changes fur-
ther down the line, you can easily check to make sure the program still
works.

Where to from here?
Like all the programs in this book, the to-do list program is now yours,
and you can extend and enhance it to suit your own needs. Although
it’s usable, there are some things that could dramatically improve it,
and adding them would be a useful exercise. Here are some ideas for
features you could add.

A help command
If you’re getting confused about what each of the commands does, a
help command would probably make things clearer. To make it even
easier, you might want to bind it to multiple commands such as ? and

Where to from here? 141
help, and possibly add it to the error message given if the program
doesn’t understand the command given.

Undo
When deleting or editing to-do items, there’s no way out if you make a
mistake. You’re only human, and it makes sense to try to allow for
errors as much as possible, especially when deleting to-do items. When
you’ve deleted one, there’s no way to get it back.

One way to get around this would be to mark deleted to-dos instead of
removing them from the list, and not display them under normal cir-
cumstances. If necessary, you could use another command to display
the to-dos that were deleted (perhaps showdeleted?) and restore them
(restore).

Different interface
You might find the fact that this interface requires you to click prompt,
then click response, then prompt, then response, and so on, to be a bit
annoying. The interface was designed to be as easy to program as pos-
sible, but that doesn’t mean it’s as easy to use as possible. One alterna-
tive is to allow arguments after commands the user types in. For
example, instead of typing delete <enter> 3 <enter>, you could instead
type delete 3 <enter> and have the program do the same thing. How
essential this is will depend on whether you prefer the existing inter-
face or not, but if you decide to add this type of interface, the shlex
module will be extremely useful.

Time management and estimation
Another useful feature would be to record an estimate of how long you
think a task will take to complete and then, later, mark items as done
and record the time you spent on them. At the end, you could generate
a report showing where you’ve spent your time, and discover how
accurate your initial estimates were. Being able to estimate the time it
will take to complete a task can be a useful skill, but it improves only if
you practice and get feedback on how accurate your estimates were.

142 CHAPTER 4 Getting organized
Study one of the unit-testing frameworks
Unit testing in itself isn’t particularly difficult, which is why you devel-
oped your own method in this chapter. But there are a number of unit
testing modules you can use, and using them offers two key advan-
tages. First, they can help you organize your tests into test suites and
classes and run them all automatically from multiple files, as well as run
setup and tear-down code before and after each test. Second, they
allow you to test a lot more than you can with only simple assert state-
ments, and they’ll give you more detailed information when things go
wrong. The three unit-testing modules you’ll initially want to look at
are unittest and doctest, both included with Python, and py.test,
which is a lighter-weight version of unittest, available from http://
pytest.org/.

Summary
In this chapter, you learned about unit testing, saw firsthand how to
use it to write programs, and developed a large suite of unit tests so you
could extend your application without worrying about how you might
break it if you change something. You also learned about some aspects
of the program (mainly user input) that were harder to unit test, and
you discovered how to work around that by keeping the untested sec-
tions of code as small and simple as possible.

You also learned that Python has first-class functions that can be
assigned to variables in the same way as more basic types, such as inte-
gers and strings, and that one good way to make use of functions is by
assigning them as values in a dictionary. You’ll learn more about first-
class functions in chapter 7. You used two more Python libraries,
pickle and textwrap, and also discovered how you could filter the to-do
lists using list comprehensions, a simple but powerful way of filtering
and processing lists.

The final thing we covered was how to work around problems that
arise in development. Sometimes, as with editing to-do items, there’s
not much that can be done beyond finding a reasonable workaround.
In other cases—for example, when wrapping the text of to-dos—some
patience and persistence (and a decent suite of tests) can pay off.

5
Business-oriented
programming

This chapter covers

• Writing programs for the real world

• Interacting with existing systems

• How to handle errors in your program

In this chapter, we’re going to take a look at how Python can be used in
the real world to help you to do your job better and faster. As a sample
project, you’ll take some stock data from a web page on the internet,
extract the figures you’re interested in, and then see how you can make
use of that data, report on it, and send those reports to interested parties.
To make your life easier, all of this will be written so it’s easy to automate.

One of the critical tasks facing many programmers and system adminis-
trators is to make many different systems talk to each other. You might
need to do the following:

❂ Read some data from one system
❂ Compare it with the results from a second
143

144 CHAPTER 5 Business-oriented programming
❂ Check that both of them make sense (often referred to as a sanity
check)

❂ Save the results for later use
❂ Email relevant people with a report about what you found or any

problems you encountered

People are depending on the information from these systems, so what-
ever you write has to be robust. You can’t try something and hope for
the best. Sound daunting? Don’t worry—Python is at its heart a prac-
tical language, and has a number of features and library modules to
make interfacing with the real world and all of its quirks much easier.

WHY AUTOMATE? The more selfish reason for wanting to automate is that
once you’ve set up your program, you don’t have to
worry about it anymore, which frees you up to think
about more important and interesting things.

You’ll start by building your reporting program, and then we’ll look
at what steps you can take to anticipate errors and make the program
bulletproof.

Making programs talk to each other
How do you make programs talk to each other? Typically, programs
will have some sort of data input and output, so integrating two pro-
grams is normally a question of taking the output of one program, read-
ing its data, and then presenting that data in a format that the second
program will understand. Ultimately, you can chain lots of different
programs together with Python acting as an interpreter. The system
you’ll be building looks something like figure 5.1.

Programs for tasks like this are normally referred to as glue code,
because you’re gluing two or more programs together into one system.

Email

Figure 5.1 Python as a glue
language, helping other pro-
grams “talk” to each other

Making programs talk to each other 145
THIS IS IMPORTANT. THE BOSS
IS ON HOLIDAY IN THE
BAHAMAS, BUT HE WANTS
REGULAR UPDATES FROM
THE NEW ACCOUNTING
SYSTEM. THE BAHAMAS, EH?

CSV to the rescue!
The process of gluing programs together is
much easier if you have a common data for-
mat—a data “language” that all of the pro-
grams in question speak. The format that’s
closest to being a lingua franca of data
exchange is the humble comma-separated
value (CSV) file, which is a simple spread-
sheet format consisting of a header line and a
number of rows afterward. The items on the
rows are separated by commas, hence the term comma-separated value.
Some CSV files will use other character values, such as tabs, to sepa-
rate their values, but the principle is the same.

There are many advantages to using CSV files. CSV is a simple and
straightforward format, which is important when developing or debug-
ging your system. If you run into problems, you can read the file in a
text editor. Most programming languages will have a library to read
and write CSV, and a lot of programs also use CSV as an import or
export format, so you can reuse all the routines you write for one pro-
gram on the next one. Finally, it also maps reasonably well onto most
data—you can even think of it as an SQL table—so it’s generally useful
in most cases.

A nice feature of using CSV is that most spreadsheet programs, such as
Excel, can import it easily, and you can then use them to generate
graphs or color-coded charts. An important warning, though: many
spreadsheet programs will convert data
into their internal formats when they
import, which means your data may get
silently corrupted. This is particularly
important for anything that looks like a
date, or a string that looks like a number.
An employee ID of 00073261, for exam-
ple, would get converted to the number
73,261. Wherever possible, it’s best to use
Excel to view data and consider any data

HELLO, SID. I HAVE A
LITTLE JOB FOR YOU …

COULDN'T IT WAIT
UNTIL AT LEAST
AFTER MY MORNING
COFFEE?

146 CHAPTER 5 Business-oriented programming
that it outputs as tainted. Don’t use it for any further work—just the
original CSV file.

TIP If you need to get work done quickly, it’s often quicker to build on
systems that already exist. Python will let you email a report from
one system to your program, along with some data from a web page,
and dump it into a CSV file or database.

Other formats
In addition to CSV, Python has libraries to read many other formats, all
of which can be used in data exchange in some way. Here’s a quick list
of the most common ones; many others are available either in Python’s
standard library or as add-on packages you can install.

HTML

You might not realize it, but HTML is a data format, and most pro-
gramming languages have libraries that let you write programs that
behave as if they were web browsers, reading HTML and posting data
back via HTTP, POST, or GET requests. Python has several libraries
available to download and interpret web pages and send data back in
this way. In the next section, we’ll look at how you can download a web
page using Python’s built-in urllib library and then extract stock prices
from it using an add-on module called Beautiful Soup.

JSON, YAML, AND MICROFORMATS

If you need more structured data, such as a nested tree or a network of
object, then CSV might not be the best fit. Other formats, such as
JSON and YAML, are more general.

SQLITE

If you might be upgrading your data storage to a database or you need
your data access to be fast, then you might want to consider SQLite,
which is included in the Python standard library as of version 2.6. It
provides a subset of the SQL commands that you would expect to find
in databases such as MySQL or PostgreSQL, and saves its data to a
local file. Many programs such as Mozilla, Skype, and the iPhone use
SQLite as a data-storage format.

Getting started 147
MAILBOXES (MBOX)

Python is also capable of reading most com-
mon mailbox formats, such as mbox and
maildir, and parsing the messages within
them, including extracting attachments and
reading multipart MIME messages. Any-
thing you receive via email can be read,
interpreted, and acted on. Python is also
capable of acting as a normal mail reader,
via add-on libraries like getmail, and can
send emails back out via SMTP.

XML

Python supports reading, writing, and parsing XML files, as well as
XML Remote Procedure Call (XMLRPC) services. The latest version
of Python, version 2.6, includes ElementTree, which is an easy and
powerful library for dealing with XML.

Any program you need to interface with will have its own way of doing
things, so it’s important to know what libraries are available to output
the formats the program wants, and, conversely, to read in the formats
it outputs. Fortunately, Python can handle a wide variety of formats
very easily. Let’s move on and take a look at the tools you’ll be using in
this chapter.

Getting started
Your first task is to look at the data that’s exported by the program you
want to interface with. In this case, you’d like to interface with Yahoo’s
stock-tracking site, which you can access at http://finance.yahoo.com/
q?s=GOOG, and report on some of the statistics of the stock price over
time. That link gives you the results for Google, but feel free to pick a
different one, such as IBM or AAPL (Apple). You might be called on to
interface with an entirely different site, but the general principles here
will hold. You’ll be using two main tools when parsing: Beautiful Soup,
to let Python read HTML, and Firebug, to help you inspect the site’s
HTML and figure out which elements you want to extract.

I'M TOLD THAT IT'S
POSSIBLE FOR YOU TO
WRITE AN EMAIL PROGRAM
TO DO THIS
FOR US … FINE. I'LL GET

PITR AND GREG
TO LOOK AT IT.

http://finance.yahoo.com/q?s=GOOG
http://finance.yahoo.com/q?s=GOOG

148 CHAPTER 5 Business-oriented programming
HI PITR. SID SAYS THAT I'M
HELPING YOU WITH AN EMAIL
SCRIPT OR SOMETHING.
WHERE DO WE START?
FIRST TO BE LEARNINK
ABOUT OUR FOE.

UH, OUR FOE?

Installing Beautiful Soup
Beautiful Soup is a Python library that’s designed to be easy to use, but
it also handles a wide variety of HTML markup, including “pathologi-
cally bad” markup. Often, you won’t have a choice about which page
you want to scrape, so it pays to pick a library like Beautiful Soup that
isn’t too fussy about the HTML it’s given.

Beautiful Soup is available from www.crummy.com/software/
BeautifulSoup/. To install it, download the file to your desktop and
unzip it; then, from within a command prompt window, cd into the
directory and run python setup.py install. If you’re on Linux or Mac,
you’ll need to prefix this with sudo; and if you use Windows, you’ll need
to run the terminal application with administrator privileges. Beautiful
Soup will then install itself into Python’s site-packages folder so you
can use it from anywhere. To make sure it’s installed properly, open a
Python command prompt and type import BeautifulSoup. If there’s no
error, you’re good to go!

Installing Firefox and Firebug
The other tool you need is Firefox, which is a more open and
standards-compliant browser than Internet Explorer. That will help
you when you’re looking at the code of web pages. You can get Firefox
from http://getfirefox.com/.

Firebug provides a lot of extra development features for the Firefox
web browser. It isn’t essential for your task, but it does make interact-
ing with the HTML of web pages a lot easier. You can download it by
visiting http://getfirebug.com/ in Firefox and
clicking the big Install Firebug button. You
might need to change your settings to allow
Firefox to install from that particular site, but
other than that, everything should be auto-
matic. When you’re done and Firefox has
restarted, you’ll see a small bug icon in the
lower-right corner of your Firefox window,
and you’ll have extra options when you right-
click some elements of your page.

http://getfirefox.com/
www.crummy.com/software/BeautifulSoup/
www.crummy.com/software/BeautifulSoup/

Getting started 149
Examining the page
Now that you’ve got Firebug installed, you can look at the elements
you’d like to be able to export in your Python script. If you right-click
a section of one of Yahoo’s finance pages, such as the title of the stock,
and select Inspect Element, the bottom half of the window should open
and show you the HTML corresponding to the title. It will be some-
thing like

<div class="yfi_quote_summary">
 <div class="hd">
[<div class=”title”>]
<h2>Google Inc.</h2>
 (NasdaqGS: GOOG)
 </div>
 ...
<div>

Figure 5.2 shows what it looks like in my browser.

Figure 5.2 Examining elements using Firebug

150 CHAPTER 5 Business-oriented programming
You can use a similar process when examining other elements of the
page to find out what their HTML looks like. If you’re not sure which
parts of the HTML correspond to particular elements of the page, you
can hover your mouse over either the HTML or the element you’re
interested in. Firebug will highlight the relevant sections of the page, as
you can see in figure 5.3.

Now that you know how to use Firebug to
examine a page and find the elements you’re
looking for, extracting data from the HTML
will be a lot easier.

Downloading the page with Python
You’ll start out by downloading the entire
page using Python’s urllib2 module, as
shown in the following listing. You’ll do this

Figure 5.3 Using Firebug with highlighting

WELL, ACCORDING TO THEIR
WEBSITE, THEIR SYSTEM
COMBINES SEVERAL BEST-
OF-BREED SYSTEMS INTO A
DYNAMIC WHOLE.

MEANS IS HAVINK TO
INTEGRATE MANY
CRAPPY SCHLOTKAS
AT SAME TIME.

Downloading the page with Python 151
by writing a function that will return the HTML code for any stock
page you name. This will be an easily reusable function that you can
paste directly into the final script.

Listing 5.1 Downloading a web page

import urllib2

def get_stock_html(ticker_name):
 opener = urllib2.build_opener(
 urllib2.HTTPRedirectHandler(),
 urllib2.HTTPHandler(debuglevel=0),
)
 opener.addheaders = [
 ('User-agent',
 "Mozilla/4.0 (compatible; MSIE 7.0; "
 "Windows NT 5.1; .NET CLR 2.0.50727; "
 ".NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)")
]

 url = "http://finance.yahoo.com/q?s=" + ticker_name
 response = opener.open(url)
 return ''.join(response.readlines())

if __name__ == '__main__':
 print get_stock_html('GOOG')

urllib uses opener objects to read web pages.
Here, you’re creating one b and feeding it
two handlers, which are objects that handle
certain types of HTTP responses from the
web server. HTTPRedirectHandler will automati-
cally follow redirects, so if a page has moved
temporarily, you don’t have to worry about
writing code to follow it. HTTPHandler will read
any web pages that are returned.

Unfortunately, some websites like to block automated agents like this,
so to be on the safe side you’re being sneaky here and setting the user
agent you send to the server so you appear to be a completely different

Create opener
object

b

Add headers
to request

c

Read web
page with
opener

d

Call functione

THEY ALSO SAY THAT
THEY HAVE A CS-XML
EXPORT FUNCTION. MAYBE
WE COULD USE THAT.

COMMA-
SEPARATED
XML.

NYET! NYET!
IS NOT
POSSIBLE!

CS-XML?

152 CHAPTER 5 Business-oriented programming
web browser c. In this case, you’re pretending to be Internet Explorer
7 running on Windows XP. You can find other user agent strings by
doing a web search for “user agent strings.”

Now all you need to do to be able to read a web page is call the opener’s
open() method with a URL d. That method returns a file-like object that
which responds exactly like an open file, so you can get the text of the
web page by calling readlines() and joining its response together.

It’s easy to call the function now e, and all the tricky urllib parts are
hidden away. If you run this script, it will print out the entire contents
of the http://finance.yahoo.com/q?s=GOOG page on the screen.

NOTE In Python 3.0, the urllib, urllib2, urlparse, and robotparse modules
have all been merged into urllib, and several improvements have been
made. The methods you’re using here have been moved into the
urllib.request module, but other than that, they’re the same.

The entire content of the page is a little much for what you’re trying to
do. You’re only interested in the part that has the stock price. You need
to limit the result to the section of the page you’re interested in.

Chopping out the bit you need
Let’s get your feet wet with Beautiful Soup and parse out only the
quote element you’re interested in and print it. Once you’ve done that,
you can start pulling out individual elements for the final output.

Most of the time, you can simplify your parsing by looking for land-
marks in the web page’s HTML. Normally there will be ID and class
attributes that you can use to pinpoint a particular section and then
narrow down your search from there. In this case, it looks like there’s a
<div> element with a class of yfi_quote_summary that contains all the
information you need. The following listing features a function that
uses Beautiful Soup to pull only that section out of your stock page.

Listing 5.2 Finding the quote section

from BeautifulSoup import BeautifulSoup
...
def find_quote_section(html):

Downloading the page with Python 153
 soup = BeautifulSoup(html)
 quote = soup.find('div',
 attrs={'class': 'yfi_quote_summary'})
 return quote

if __name__ == '__main__':
 html = get_stock_html('GOOG')
 print find_quote_section(html)

The first thing you need to do when parsing
HTML is to create a Beautiful Soup object
b. This object looks at all of the HTML it’s
fed and provides lots of methods for you to
examine, search through, and navigate it.

The soup object provides a find() method,
which can quickly search through the
HTML. Here, you’re finding all the <div>
elements that also have a class of
yfi_quote_summary c. The find() command returns the first element it
finds that matches the criteria, but as another soup object, so you can
perform further searching if you need to.

As a shortcut, if you print a soup object d it will return a string contain-
ing its HTML. In your case, this is exactly what you’re looking for—the
HTML of the yfi_quote_summary <div>.

If you run this script, it should print out a much shorter piece of
HTML, which is the quote section you’re looking for. You should be
able to see some sections like the stock name and price, and some of the
other <div> elements. Let’s now add another function that will take the
soup object for the summary <div> and produce more meaningful data.

Adding extra information
Now that you have the smaller section of HTML, you can examine it fur-
ther and pull out the specific parts you need. The find() command will
return another soup object, so you don’t have to worry about parsing it
again—you can call the find() method on the results to extract the data

Create parse objectb
Find yfi_quote_
summary element

c

Print
quote_section

d

HOW'S THE INTEGRATION
COMING ALONG?

CS-XML?
AH. SO THAT'S
WHAT PITR
WAS CRYING
ABOUT.

COMMA-
SEPARATED
XML.

WELL, NOW THAT WE HAVE
THE CS-XML PARSER …

154 CHAPTER 5 Business-oriented programming
you need. The following listing shows a function that uses a number of
find() calls to build a dictionary of data from your stock page.

Listing 5.3 Extracting the data for the stock

def parse_stock_html(html, ticker_name):
 quote = find_quote_section(html)
 result = {}
 tick = ticker_name.lower()

 # <h2>Google Inc.</h2>
 result['stock_name'] = quote.find('h2').contents[0]

 ### After hours values
 # 329.94
 result['ah_price'] = quote.find('span',
 attrs={'id': 'yfs_l91_'+tick}).string

 #
 # 0.22
 result['ah_change'] = (quote.find(
 attrs={'id': 'yfs_z08_'+tick}).contents[1])

 ### Current values
 # 330.16
 result['last_trade'] = quote.find(
 'span', attrs={'id': 'yfs_l10_'+tick}).string

 #
 # 1.06
 def is_price_change(value):
 return (value is not None and
 value.strip().lower()
 .startswith('yfi-price-change'))

 result['change'] = (
 quote.find(attrs={'id': 'yfs_c10_'+tick})
 .find(attrs={'class': is_price_change})
 .string)

 return result

if __name__ == '__main__':
 html = get_stock_html('GOOG')
 print parse_stock_html(html, 'GOOG')

Include elements
as comments

b
Simple findc

More involved
find

d

Differences
between
Beautiful
Soup and
Firebug

e

Function to
locate elements

f

Use functiong

Downloading the page with Python 155
Does this look familiar? It’s the old divide-and-conquer strategy again:
write something simple that works, and then refine it a bit at a time
until you have the data you need.

You might find it helpful to include the HTML you’re trying to match
as comments, like b. It saves switching back and forth between your
editor window and your web browser to remind yourself what the
HTML looks like.

Next, you run a simple find over your quote summary to find the first
h2 element c. Once you’ve done that, you get the first element from the
.contents attribute, which in this case will be the name of your stock.
The .contents attribute returns all the sub-elements within a particular
element as a list of soup objects.

Notice that in the HTML, the IDs you’re
looking for are named after the company.
That’s not much of a problem, because you
can pass in the ticker name and make it low-
ercase d. You’re also using the .string

method. If you’re certain there will only ever
be one text node within your search results,
you can use the .string shortcut, which will
return that node as text.

If you have a close look at the search here and the corresponding
HTML in Firebug e, you might notice they’re different. The code
seems to be ignoring the extra span you can see in the browser. The
answer is that sometimes, when HTML is invalid, Firebug will insert
extra elements to make the HTML code valid. That’s not a problem for
Beautiful Soup, though, which returns both the image and text as two
elements. If in doubt, you can always view the source of the page from
the browser itself and search for the ID or class of the element to see
the HTML exactly as you received it from the server.

If you need more flexibility in how you search, then another way you
can use Beautiful Soup’s find() method is to use a function instead of a
string f. Beautiful Soup will feed the function the attribute name—if
the function returns True, then the element is included.

SO NOW THAT WE HAVE THAT,
ALL WE NEED TO DO IS PASS
IT TO EXCEL FOR
CALCULATIONS, THEN WRITE IT
OUT TO PLAIN TEXT, AND
EMAIL IT OFF TO THE BOSS'S
IPHONE. I'M SURE

PITR WILL
BE HAPPY
IT'S ALMOST
OVER.

156 CHAPTER 5 Business-oriented programming
Using the function from f when searching is easy: just use the func-
tion g instead of the string. In this section you’re also chaining find()
calls together. The first find() looks for elements with an ID of
yfs_c10_goog and returns another Beautiful Soup object, which you use
to immediately run another find() command. The whole set of calls is
contained in brackets so you can wrap it over multiple lines and make
it easier to understand.

You can continue in this vein until you’ve extracted all the data you
need from the page. Be careful that your parsing doesn’t grow too
unwieldy. If it does, you may want to consider breaking parse_

stock_html into functions, one per data value, and looping over a dic-
tionary of data value names and functions when you’re parsing:

parse_items = {'stock_name': parse_stock_name,
 'ah_price': parse_ah_price, ... }

Caveats for web scraping
Although reading data directly from the web is a useful tool, it’s not
without its drawbacks. The main issue is that web pages change fre-
quently, and your parsing code may need to change with it. You can
lessen the risk somewhat by focusing on the elements of the page least
likely to change, such as ID or class variables, but you’re still at the
mercy of whoever creates the page. If at all possible, it’s usually much
better in the long term if you can rely on official channels, such as a
published API for accessing data, rather than doing it all yourself.
Later, we’ll look at strategies for dealing with failures in your script and
how you can mitigate them.

But first, you need to add some complexity to your tool.

Writing out to a CSV file
An individual stock price isn’t useful. To make any recommendations
about whether it’s good to buy or sell, or what the stock is likely to do
in the future, you’d like some history of the stock price and its move-
ment. That means you need to save the data you’ve just read so you can
use it again in future. As we said in the section “CSV to the rescue!,”

Writing out to a CSV file 157
the most common data format is a CSV file. The following listing will
save your results dictionary to a row in a CSV file.

Listing 5.4 Writing a CSV file

import csv
import time
import os

field_order = ['date', 'last_trade', 'change',
 'ah_price', 'ah_change']
fields = {'date' : 'Date',
 'last_trade' : 'Last Trade',
 'change' : 'Change',
 'ah_price' : 'After Hours Price',
 'ah_change' : 'After Hours Change'}

def write_row(ticker_name, stock_values):
 file_name = "stocktracker-" + ticker_name + ".csv"
 if os.access(file_name, os.F_OK):
 file_mode = 'ab'
 else:
 file_mode = 'wb'

 csv_writer = csv.DictWriter(
 open(file_name, file_mode),
 fieldnames=field_order,
 extrasaction='ignore')

 if file_mode == 'wb':
 csv_writer.writerow(fields)
 csv_writer.writerow(stock_values)

if __name__ == '__main__':
 html = get_stock_html('GOOG')
 stock = parse_stock_html(html)
 stock['date'] = time.strftime("%Y-%m-%d %H:%M")
 write_row('GOOG', stock)
 print stock

Before you start creating your CSV file, you need to know which key-
value pairs in the dictionary correspond to which headers in the CSV

Field to header
mapping

b

Look for
existing
CSV file

c

Create
csv.DictWriter
object

d

Write rowse

Include datef

158 CHAPTER 5 Business-oriented programming
file b. Storing them in a dictionary means you can
easily access them later. Dictionaries aren’t guaran-
teed to be in a specific order, though, so there’s
another list to tell you what order the columns
should be in.

When you write the file, you’ll name it after the
stock you’re tracking so it’s easier to find and so any
other scripts will be able to easily access it. You also
need to know whether you’ve written to this file

before, so you can add the headers to it if necessary. os.access does the
trick, and you need to know whether it exists c.

csv.DictWriter is a class that writes dictionaries into a CSV file d. It
needs two arguments to function: a file opened in binary mode and a list
of the fields in the order that they should appear in the CSV file. I’ve also
added an extrasaction argument, which tells DictWriter whether it
should ignore extra values in the dictionary or raise an exception. In this
case, you have an extra stock_name field that you’d rather not have appear
over and over again in the CSV file, so you’ll ignore it.

Once the DictWriter object is created, using it to write a row is easy e:
feed it a dictionary to write. If any keys are missing, though, an error
will be raised.

You’re also interested in when a particular stock record was retrieved.
In Python, here’s how you output the current local time and date f.
The %Y %H parts of the string will be replaced with the current year,
hour, and so on. You can arrange them in any order you like, as long as
you keep the % signs together with their corresponding character.

Now you have a CSV file that will be updated every time you run your
script. If you run it several times, you’ll see extra lines being appended
to the end. Typically, you’d automate this script using cron (if you’re
using Linux or Mac), or Windows Scheduler or similar if you’re run-
ning on Windows. You can stop at this point for some scripts, but if the
results are important, you’ll want to make sure other people know
about them.

Next, let’s figure out how to create an email with your CSV file.

ANY PROGRESS ON THE
EXPORT PROGRAM?

WELL, THE CS-XML
PARSER THINKS THAT
WE EARNED $öþýŋø
LAST MONTH, SO
WE'RE HAVING TO
PARSE THE INTERNAL
HTML REPORTS
INSTEAD.

Emailing the CSV file 159
Emailing the CSV file
If you need to do anything with email, the email module is normally the
place to start. It contains classes and functions for parsing email and
extracting their information as well as tools for creating and encoding
emails, even the creation of multipart emails containing HTML, text (if
the recipient can’t read HTML), and attachments. Normally you’d start
with a simple section and build up, but when creating an email it’s eas-
ier to remove the sections you don’t need.

Creating an email is straightforward, but it definitely helps if you have
some background knowledge of how emails work. Let’s take a look at
that first, and then you’ll see how to put it into practice in your program.

Email structure
Most emails, other than the simplest plain-text emails, are composed of
containers, with parts within them. These parts can be text, HTML, or
any other part that can be described with a MIME type. When the
email is sent, the email structure will be converted into a plain text for-
mat that can be reassembled when it reaches its destination.

Normally, there will be at least two parts:
one that contains your email in HTML, and
another that contains a text version—but
an email can in theory contain as many dif-
ferent parts as you need. The structure I’ve
found most useful, and that displays the

best across a variety of
email programs, is in
figure 5.4.

This structure has two
containers. The out-
side one contains the
message part and any number of attachments, and
the inside container has the two versions of your
email. If you need extra attachments, attach them
to the outside container.

Figure 5.4 The structure
of a HTML email

I SEE. AND THEN?

AND THEN OFF TO THE
BOSS? OK. LET ME
KNOW HOW IT GOES …

WELL, THEN WE'LL BE
ABLE TO SEND IT OUT
TO THE SPREADSHEET,
THEN TEXT FILES …

160 CHAPTER 5 Business-oriented programming
Creating an email
Now that you know how MIME messages are constructed, let’s take a
look at the corresponding program in the following listing. This func-
tion will take an email address and a stock ticker name, such as
“GOOG,” and construct an email ready to be sent.

Listing 5.5 Creating a MIME email

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

def mail_report(to, ticker_name):
 outer = MIMEMultipart()
 outer['Subject'] = "Stock report for " + ticker_name
 outer['From'] = "me@example.com"
 outer['To'] = to

 # Internal text container
 inner = MIMEMultipart('alternative')
 text = "Here is the stock report for " + ticker_name
 html = """\
 <html>
 <head></head>
 <body>
 <p>Here is the stock report for
 """ + ticker_name + """
 </p>
 </body>
 </html>
 """
 part1 = MIMEText(text, 'plain')
 part2 = MIMEText(html, 'html')
 inner.attach(part1)
 inner.attach(part2)
 outer.attach(inner)

 filename = 'stocktracker-%s.csv' % ticker_name
 csv_text = ''.join(file(filename).readlines())
 csv_part = MIMEText(csv_text, 'csv')
 csv_part.add_header('Content-Disposition',
 'attachment', filename=filename)
 outer.attach(csv_part)
 return outer

Create
external
container

b

Create
body of
email

c

Attach body to
external container

d

Create CSV
part and
attach it

e

Emailing the CSV file 161
if __name__ == '__main__':
 email = mail_report('youremail@example.com', 'GOOG')
 print email.as_string()

The first thing you need to do is to create the external container b that
will contain all the other parts. It’s also where you put all the message
headers—the Subject, To, and From lines.

Next up is the body of the email c, the
HTML and text parts. Normally an email
program will display the last part of this con-
tainer as the body, and fall back on the others
if it can’t handle it, so you put the HTML last.

Now you can create MIMEText objects to hold
the email body. They’ll automatically be of
type text/something, and the second argu-
ment tells what that something will be. Once
you have those objects, you call attach to insert them into the inner
container, and then attach the inner container to the outer one d.

You do the same thing for the CSV section that you did for the body of
the email. Once you’ve read in the CSV file, you create a text/csv part
and insert it into the outer section e. The only extra thing you need to
do is add a Content-Disposition header to say that it’s an attachment,
and give it a file name. Without a file name, you’ll get a default name
like “Part 1.2,” which doesn’t look friendly or professional.

If you want to see what you’ve created, use the as_string() method on
your outer message object, and it will print out the email exactly as it
will be sent f. You’ll be writing a send_message() function in the next
section, which you’ll use to send the email via an SMTP server.

That’s all you need to do with the report email; it’s ready to be sent. If
you’d like to reuse this function, there are a number of things you can
do to extend it. The first obvious one is to pass in the subject, and text
and HTML content, as arguments, instead of hard-coding them in the
body. Another is to be able to pass in more than one attachment, as a
list. An important function for this second part is mimetypes.guess_type,

Email objectf

GREG, YOU AND PITR HAVE
BEEN UP FOR 36 HOURS
STRAIGHT NOW—WHAT'S
GOING ON?

WE FOUND OUT THAT
THE INTERNAL HTML
THINKS THAT OUR
INCOME FOR LAST
YEAR IS BIGGER THAN
BELGIUM'S …

162 CHAPTER 5 Business-oriented programming
which will give you a MIME type and an encoding (such as zip, gzip, or
compress) based on the filename of the attachment. From there, you
can create the right type of MIME object, such as MIMEApplication or
MIMEImage, and attach it to the email.

By the way, if you’re attaching images, you can link to them from
within the HTML body by using a cid: URL, like this: <img src=

"cid:image_name.gif">.

Sending email
The last thing you need to do with your email is send it. This is the
most straightforward part of the email sending process and only needs
a From address, a list of To addresses, and the email itself.

Listing 5.6 Sending an email

import smtplib
...
def send_message(message):
 s = smtplib.SMTP('mail.yourisp.com')
 s.sendmail(
 message['From'],
 message['To'],
 message.as_string())
 s.close()

if __name__ == '__main__':
 email = mail_report('youremail@example.com', 'GOOG')
 send_message(email)
]

First you create an SMTP object, which will handle the sending of your
email b. This will normally be enough if you’re connecting to your
internet service provider’s mail server, normally something like
mail.yourisp.com or smtp.yourisp.com—you can get it from the “send-
ing email” section of your email program if you don’t know what it is.
Some ISPs require a username and password for SMTP that you can
include with a line like s.login('user', 'password').

Create SMTP
sender

b

Use sender to
send an email

c

Close
connectiond

Include
mail_report
function

e

Emailing the CSV file 163
Once you have an SMTP object, you can call its sendmail() method to
send email c. You’re pulling the email addresses as well as the body of
the email out of the message; that way, you don’t have to specify them
as separate arguments, and your code stays neater. You can call the
sendmail() method multiple times if you need to.

When you’re done you can close the connection d. This saves some
load on the SMTP server, because it will have one less connection to
keep track of—but if you have multiple email messages to send, it’s bet-
ter to reuse the connection.

To create an email to send, you use your mail_report() function and
feed it your email address and the name of the stock . Then you pass it
to the send_message() function to send it e. If you prefer a weekly
report, then you can run this on a separate schedule to the script,
which reads the web page. If you’d like to email multiple people at
once, then you still feed one string to mail_report()—but with commas
separating the email addresses.

That’s all you need to do for your script. It scrapes data from a web
page, posts it into a CSV file, and then emails a report to someone who
can make use of the information. A surprisingly large amount of busi-
ness programming boils down to a roughly similar process: gather
some data, process it, and then send or store the results somewhere,
either to a human who needs the information, or to another program.

Other email modules
Although you didn’t need them in this script,
there are other email-related modules you
can make use of if you need more flexibility
when dealing with email, or if you need to
do something outside what this script can
do. The two that I most commonly use, other
than the modules in this script, are the mail-
box module and getmail.

The mailbox module contains classes to read several different types of
mailbox, including the two most common, mbox and maildir, and provides

… SO WE'RE TAKING WEBCAM
SHOTS OF THE SCREEN IN
ACCOUNTS. RUNNING O.C.R.
SOFTWARE OVER IT.
ACCOUNTS WILL THEN ADD IT
UP MANUALLY. PUT IT INTO A
.CSV FILE, WHICH WE'LL THEN
 DEAL WITH.

164 CHAPTER 5 Business-oriented programming
an easy way to loop over each message in the file. Parsing mbox files is
relatively easy, but there are several catches to it, and it’s easier to use a
library. In addition to writing emails, the email module provides
email.parser to read the header lines, body, and attachments out of a flat
text file. Together they provide everything you need to be able to handle
email.

Getmail is an add-on module written by Charles Cazabon and available
from http://pyropus.ca/software/getmail/. It handles POP and IMAP4,
including via SSL, and can save messages to mbox or maildir storage as
well as passing them to another program. It’s also easy to use and only
requires one configuration file to work.

Between Python’s built-in email modules and getmail, you should be
able to deal with almost any email programming problem that comes
your way, whether you need to read, download, parse, or analyze email.

A simple script—what could possibly go wrong?
There’s a useful question you can ask yourself when completing a proj-
ect like this: “Am I done?”

Try it now and see what you think the answer is. Are you done? Would
you be confident that you could run this script every day and not have
to worry about it? Would it ever break? If the CEO or director of your
company was relying on the results of your script, would you be able to
sleep at night? Even if your script isn’t vital, how would you know it
was working? Would you have to babysit your script to make sure it
worked, perhaps checking the results every few days to make sure
nothing had gone wrong?

It’s possible to write a program that works at first but needs so much
assistance to run that you might as well have not written it in the first
place. To keep your sanity, try to analyze your program and find as
many potential failure points as you can.

NOTE This is the toughest part of writing programs—anything and every-
thing might fail in some way, and you have to be ready for the poten-
tial consequences. If you’ve ever wondered why a lot of programmers
and system admins seem like cagey pessimists, now you know.

A simple script—what could possibly go wrong? 165
Here’s a list of some possible issues that
might break your script. Then, in the next
section, we’ll look at how you can go about
fixing them.

No internet
Obviously, if there’s no internet connection,
the script won’t be able to download the
stock page or send email, and there will be
nothing you can do about it. But what hap-
pens exactly? Will your script fail immediately, or will it get halfway
through and corrupt your data? If you can’t connect for a day, what
should appear in the CSV file?

Invalid data
If Yahoo decided to change the design of their site, what would happen
to your script? If it’s expecting a particular ID within the HTML and
that ID is removed, then your script will break. Alternately, there could
be a partial outage and you’ll see null or zero values. Or if the server is
under load, you might see timeout errors or only receive half a page.
How does your script handle that? Does it try to parse the error page
and fail? Or does it recognize what’s happened? In the worst case, it
will have data that looks similar to the data you’re expecting, you won’t
notice it’s changed, and your data will be silently corrupted.

Data you haven’t thought of
There’s another failure mode related to invalid data: sometimes you can
be given data that’s valid, but only within the range you’re expecting. It
might also be formatted or presented differently if it’s within a certain
range or currently unknown. These sorts of values are generally known
as edge cases. They don’t happen often, so they can be harder to predict,
but they still have a large effect on the stability of your program. The
best way to deal with edge cases is to try to consider the entirety of the
range of your data and include any cases that are in doubt into your
test suite.

LALALALALA!
I CAN'T
HEAR YOU!!!

THAT SOUNDS … COMPLICATED.
WHAT HAPPENS IF -

166 CHAPTER 5 Business-oriented programming
Unable to write data
When you’re processing, you’re assuming you’ll be able to write to the
CSV file. This is normally the case, but there are some circumstances
where you might not be able to: if an administrator on the site has set
the wrong permissions, or your computer is out of space. You might
want to consider rotating your CSV files every so often: zip the old
ones and delete those that have been around the longest (or download
and archive them). The exact timeframe will depend on both the
amount of free space you have on your server and the requirements of
your program.

No mail server
You can also run into problems when trying to send your email. Most
of the time, email is pretty foolproof, but it’s possible for a mail server
to be down. If that’s the case, what happens to your script? It might be
enough for it to store the row in the CSV file and resend it the next
night, or you might need to check that the mail server is up and try an
alternative route if it isn’t.

You don't have to fix them
These are by no means the only things that can go wrong with your
script, but they’re the most likely. Depending upon your script, its pur-
pose, and the environment it runs in, these might be more or less of an
issue. Or you might not need to worry about them at all. But you still
need to consider them.

Let’s move on and take a look at ways you might solve, or at least miti-
gate, some of these issues.

How to deal with breaking scripts
There are a number of strategies for dealing with the weak points
you’ve seen so far in your script. Which one you choose depends on the
nature of your script and its purpose. First, let’s examine two factors
that affect how you program your script as well as how you look at
potential failures and how you solve them.

How to deal with breaking scripts 167
Communication
When you’re building software for other people, communication is
vital. It’s important to know the overall goals of your project, how it
impacts on other aspects of the business, what the likely effects of a
failure are, and how people in the business will use your final product.
Although, strictly speaking, a program that doesn’t do what’s needed
isn’t a bug, it might as well not have been written.

It’s also important to keep people informed as you build your program,
because the problem you’re solving can change at any point. There’s
nothing worse than finishing a program only to find that it’s no longer
required and that weeks of effort have been wasted.

Tolerance of failure
There are many different ways to deal with
a potential error, and they all have varying
costs. Which ones you choose will depend
on the business’s tolerance of failure.

THE EXPENSIVE CASE

For example, if the business were using
your script to buy and sell millions of dol-
lars worth of stock, then it would have a
low tolerance of any possible failure. You might host the script on a
dedicated server or multiple servers in separate locations—an extra
several thousand dollars would be a small price compared to the risk of
losing millions of dollars worth of trades. You’d also want to pay a few
hundred dollars a month to access an API specifically provided for the
purpose rather than scraping web pages, and have a full suite of func-
tional and unit tests to catch any errors.

THE CHEAPER CASE

If, instead, you were using your script as a more general business intel-
ligence application, a stock failing here or there or taking a day to prop-
agate through the system might not be so bad. Cost is more of an issue,
so you’d run your script on a server with several other applications.
This opens you up to the possibility of extra errors, like running out of

HEY GREG, I HEAR YOU AND
PITR ARE HAVING SOME
TROUBLE WITH THE NEW
ACCOUNTS SYSTEM.
SID TOLD ME ALL ABOUT THE
PROBLEMS YOU'RE HAVING.

WELL, IF YOU HAVE
ANY BRIGHT IDEAS,
BE MY GUEST!
I'M GOING TO HAVE
A LITTLE LIE DOWN …

168 CHAPTER 5 Business-oriented programming
disk space or having one application use so much CPU that nothing else
can get anything done—but the impact of any errors like this is minor
compared to the relative cost of separate servers.

Don’t break in the first place
It might sound obvious, but the easiest way to avoid bugs in your pro-
gram is to not write them in the first place. It’s easy to throw together a
script that looks like it works, but often you’ll find there are all sorts of
issues lurking in your code, waiting for an opportunity to crash your
program.

First, consider all of the possible data, including weird pathological
cases, when you write your program. Look for edge cases and things
that “can’t possibly happen,” and make sure they can’t. If you’re work-
ing with numbers, what happens when the number is zero? Or nega-
tive? Or enormous? Should the program throw an error? Ignore that
particular value? Thinking about this ahead of time is easier than
thinking about it when your program crashes and you have to fix it
right now.

Once you know what data you can and can’t handle, you can include it
in your tests. Your unit tests and functional tests can verify what hap-
pens when you give a program data that’s either invalid (“fruit” when
you were expecting a number) or likely to be a problem (zero, nega-
tive, or very large). If you find input that gives you an error while
you’re testing or when your program goes live, you can add it to your
test suite to ensure that it doesn’t happen again.

Fail early and loudly
If at some point in your program there’s an error,
normally the best way to deal with it is for your pro-
gram to stop immediately and start “yelling” (via
email or by printing to the screen). This is particu-
larly true during development or if the problem is
unexpected. Trying to soldier on in the face of
errors is dangerous, because you can overwrite
important data with nonsense results.

HMM—WHAT MAKES YOU THINK
THE CHIEF WILL BE ABLE TO
CONFIGURE HIS IPHONE'S EMAIL
FROM THE BAHAMAS?
I THINK A WEB-BASED
INTERFACE MIGHT BE BETTER …
WUH?
BAHAMAS

BURBLE
BURBLE

How to deal with breaking scripts 169
HI MIKE—WHAT'S THE NEWS?

ALREADY? BUT …
BUT … HOW?

I'VE SET UP A WEB
PAGE FOR THE CHIEF
TO VIEW HIS ACCOUNTS
INFORMATION.

Wherever possible, check data and any error codes returned from the
libraries you’re using. If you’re trying to load data from the web, you
can check the response code: anything other than 200 (success) means
there’s been an error somewhere and you should stop. If you have trou-
ble parsing the data returned, it’s possible you’re seeing a different type
of page, or the data isn’t what you’re expecting. In that case, it’s also a
good idea to log it somewhere and skip processing. Don’t forget to
include relevant data in the error so you can replicate the problem.

Belt and braces
To mitigate the effects of any errors, it can often help to have multiple
fallbacks if things go wrong. For example, you might have two copies
of your script running on separate servers. If something goes wrong
with one script, such as the network being unavailable, the other script
may still be able to access the data.

Another tip is to save intermediate copies of the data whenever possi-
ble. In your script, you might want to consider saving the HTML you
download from the server before you analyze it. If some of the data
looks odd, or you have an error when parsing, you can double-check
your results and see what’s gone wrong.

Stress and performance testing
A common problem when your program goes live is that it works well
on small amounts of data but fails or runs too slowly when used on real
data. Make sure your program can handle the workload in the volumes
that are expected when it goes live, and use
real data when testing wherever possible.

Try again later
If your program fails due to an outside
source not being available, you can often try
again several times before giving up. Per-
haps the site you’re trying to load is having
some temporary downtime and will be back
up in a few minutes. If you take this route,

170 CHAPTER 5 Business-oriented programming
be sure to wait a while between queries, and wait a little longer
between them if they’re failing. If you want five retries, you might wait
1 minute, then 3, 5, 7, and then finally give up. If you need to send data
via email, a queue can simplify your error-handling. Instead of sending
emails directly to the server, queue them to a directory on disk instead.
A second process reads the files that are saved and tries to send them.
If the mail is sent successfully, then you delete the mail file or move it to
a separate directory, but if it fails you leave it ready for next time. The
following listing shows how you might add that sort of logic to your
stock-tracking script.

Listing 5.7 Queuing email to a temporary file

import tempfile
import os
...
def queue_mail(message):
 if os.access('mail_queue', os.F_OK) != 1:
 os.mkdir('mail_queue')
 handle, file_name = tempfile.mkstemp(
 prefix='mail',
 dir='mail_queue',
 text=True)
 mail_file = open(file_name, 'w')
 mail_file.write(message['From'] + '\n')
 mail_file.write(message['To'] + '\n')
 mail_file.write(message.as_string() + '\n')

First, you check that the mail queue directory exists. If it doesn’t, then
you need to create it b.

Next, you use the tempfile module to create the mail file c. By doing it
this way instead of figuring out the filename yourself, you’re much less
likely to run into a conflict with naming if you’re running multiple
scripts at once.

Now that you have your file, you can write all the information you
need when it’s time to send your email: To, From, and the body of the
email itself d.

Create mail queue
directory

b

Make
temporary
file

c

Write mail info
to mail file

d

How to deal with breaking scripts 171
Once you have the email queued to disk, you can use a second process
to read it and send it out. The next listing shows how the second pro-
cess might be written.

Listing 5.8 Sending email from a mail queue directory

import os
import smtplib
import sys

mailserver = smtplib.SMTP('mail.yourisp.com')
mail_files = os.listdir('mail_queue')

for eachfile in mail_files:
 file_name = 'mail_queue' + os.path.sep + eachfile
 file = open(file_name, 'r')
 me = file.readline()
 them = file.readline()
 mail_body = ''.join(file.readlines())
 file.close()

 mailserver.sendmail(me, them, mail_body)
 os.remove(file_name)

mailserver.quit()

This part of the process is the opposite of the
one you just looked at. Given a directory, you
want to read in all of the files in it b and, for
each of them, read out the To and From lines
and then the mail body.

The smtplib server will generate an error for
anything that means the mail can’t be sent, so
you try to send the email c. If it succeeds,
then you know the mail has been sent and you
can delete the mail file and continue.

Now you don’t have to worry about mail being lost if the mail server is
down for maintenance, or if you can’t reach it via the network. All mail

Read in
mail files

b

Try to send mail,
then delete it

c

I JUST SET UP A PAGE WITH
THE HTML FROM THE
INTERNAL REPORTS, AND ADD
A BIT TO THE TOTAL EVERY
SO OFTEN. BY THE TIME THE
CHIEF GETS BACK, WE WON'T
NEED IT ANY MORE …

IT WORKED FOR
GMAIL, DIDN'T IT?

GAH!

BUT … THAT'S
CHEATING!

172 CHAPTER 5 Business-oriented programming
will be queued in the mail_queue directory and will only be deleted after
it’s been sent.

There are still a few limitations, though. The main one is that the first
error your program runs into will abort the entire mail-sending pro-
cess. For your purposes it works well enough, because if one email fails
the others are likely to fail as well. But you’d like your program to be as
robust as you can make it. A malformed email address, for example,
can cause the SMTP server to reject your connection request, and then
that email will be repeated over and over again, blocking all the others
queued up behind it.

NOTE Gracefully handling errors is even more important if your program
takes a while to return or is a batch process that runs overnight. If
you have to wait six hours to find out whether it ran properly, it can
take a week or more to shake out all the errors. Detailed error
reports help, but you can also work on smaller data sets until you’re
confident your program works.

One error shouldn’t bring your whole program grinding to a halt, so
what you need are exceptions: a feature in Python designed to help you
react to errors like this as they occur and recover gracefully.

Exceptions
Whenever Python runs into a problem that it can’t handle, it triggers
an error called an exception. There are a wide variety of exceptions, and
you can even define your own to suit particular types of errors if a
built-in one doesn’t fit your exact error. Exceptions aren’t final,
though—you can write code to catch them, interpret their results, and
take whatever action you need.

Why use exceptions?
Exceptions, when used well, make your program much easier to under-
stand. You don’t need as much error-checking and handling, particu-
larly for error codes and return results, because you can generally
assume that anything that goes wrong will raise an exception. Not hav-
ing error-handling code means the part of your program that does

Exceptions 173
things stands out a lot more and is easier to understand because it’s not
being interrupted by checking return codes.

What it means when your program goes “bang!”
Before we get into how to use exceptions, let’s take a look at a few
examples and see how they work. When you get an error in your pro-
gram, you’ll see what’s called a traceback. This will give you the whole
function “stack,” from the part of your program that triggered the error
through intermediate functions to the one that originally started in the
core of your program.

Let’s start with a traceback from the mail sender you wrote in the pre-
vious section. It shows the most recent error last, so you’ll be working
backward.

Listing 5.9 A traceback when sending mail

anthony@anthony:~/Desktop/stocktracker$ python mailsender.py
Traceback (most recent call last):
 File "mailsender.py", line 5, in <module>
 mailserver = smtplib.SMTP('mail.yourisp.com')
 File "/usr/lib/python2.5/smtplib.py", line 244, in __init__
 (code, msg) = self.connect(host, port)
 File "/usr/lib/python2.5/smtplib.py", line 296, in connect
 for res in socket.getaddrinfo(host, port, 0,

 socket.SOCK_STREAM):
socket.gaierror: (-2, 'Name or service not known')
anthony@anthony:~/Desktop/stocktracker$

You start at the end of the listing with the name of the exception and a
short description of the error that occurred f. If you can’t figure out
what’s going wrong with your program, doing a web search for the
exception and description can often give you a clue.

The last line that was executed is the one where the exception was
raised e. Note, though, that the bug may be earlier on in the program,
if a variable wasn’t set properly or a function is being called with the
wrong parameters.

Errorb

Traceback
c

Where’s
 that
line?

d

Line that triggered
exception

e

Exceptionf

174 CHAPTER 5 Business-oriented programming
d is the file, line number, and function name where the exception in e
was raised. Notice that this is within Python’s standard library, so you
probably haven’t found the problem yet. When in doubt, always
assume there’s a bug in your program, rather than Python’s standard
library.

The traceback c will continue to the function that called your original
one. Notice how the function name you’re calling, self.connect, is the
same as the function listed in d, the last part of the traceback.

Now that you get into the code, the error is obvious. You’ve forgotten
to take out the example ISP mail server and substitute your own b.
There’s no web address at mail.yourisp.com, hence the original error:
“name or service not known.” Often the root cause of an exception
might be several layers deep in the traceback, and it’s a case of tracing
the function calls back until you find the source of the error.

Python handles exceptions by propagating them up the stack: that is, it
will first look for an exception handler in the current function. If it
can’t find one, it will look in the function which called the current one,
then that function’s parent, and so on, all the way back to the top of
your program. If there’s still no handler, Python will halt and print out
the unhandled exception and the stack trace. Bang!

Figure 5.5 shows how the stack
trace from listing 5.9 is gener-
ated, with the function calls on
the left side and the traceback
rewinding on the right side.

Figure 5.5 A diagram of a stack
trace

Function
Call

mailsender.py

smtplib.py

Function
Call

Exceptions 175
For a different point of reference, here’s another traceback, from
parse_stock_html.

Listing 5.10 A traceback when parsing an HTML page

Traceback (most recent call last):
 File "./stocktracker.py", line 172, in <module>
 stock_values = parse_stock_html(html, ticker_name)
 File "./stocktracker.py", line 61, in parse_stock_html
 result['ah_change'] = (quote.find(attrs={'id':
'yfs_z08_'+tick}).contents[1])
IndexError: list index out of range

The exception that was triggered b is an IndexError, which means
you’ve tried to access an index of an array that doesn’t exist. Something
like ['foo'][1] will trigger a similar exception, because there’s no sec-
ond element of that array.

If you look at the line above it, you can see what might be causing the
problem. You’re running a find in Beautiful Soup and are trying to
access the second element c. There’s obviously some data for which the
HTML only has one element, and the parsing code doesn’t handle it.

The error in this case is due to the up or down arrow image not being
shown when the stock price hasn’t moved, which is changing the num-
ber of elements returned from .contents(). The following figure shows
the two versions of the HTML side by side so you can see what I mean.

Line that
triggered it

c

Exceptionb

Figure 5.6 The HTML changes if there’s no movement in the stock.

176 CHAPTER 5 Business-oriented programming
This problem is fixed relatively easily by using a negative index, like
this: .contents[-1]. Now Python will access the last element of the list:
either the second element, if there are two, or the first one if there’s
only one. You can be pretty sure there won’t be more than two ele-
ments in that particular span.

Now you should have some pointers in using tracebacks to help you
troubleshoot errors. The main thing to bear in mind is to work back-
ward carefully, looking for potential errors or odd results. If that
doesn’t help, you might need more traditional checks, such as print or
assert statements. Once you’ve tracked down the error, you should add
it to your testing suite if possible.

Catching errors
The main reason for having exceptions is to catch them if they are
raised and deal with them appropriately. You do this by using a
try..except block, commonly known as an exception handler. The code
within the try part is run, and if an exception is raised, Python looks at
the except part to see how to deal with the error. The following listing
shows how you how you might catch some common exceptions in your
mail-sending program.

Listing 5.11 A mail sender with exception handling

 try:
 mailserver.sendmail(me, them, mailouttext)
 except smtplib.SMTPAuthenticationError, error:
 print "Bad username or password:", error
 except (smtplib.SMTPConnectError,
 smtplib.SMTPHeloError), error:
 print "The server is not responding!", error
 except Exception, error:
 print "An unexpected exception: ", error
 else:
 os.remove('maildir'+os.path.sep+eachfile)

You start with the part of your program you’d like to wrap b, to catch
any exceptions. It behaves much like any normal indented block, so

Normal program
flow

b

Normal exception
handler

c

Multiple
exception
handlers

d

Generic exception
handler

e

If you ran
successfully

f

Exceptions 177
you can include if statements, loops, function calls, and whatever else
you need to.

c is how you handle a single exception, which is how most exception-
handling is done. The handler works a little like a function in that you
give it the type of exception it needs to handle and a variable to store
the error message. When an exception is raised, you can print an error
message and the error message you’ve received.

You can also handle multiple types of exception with one handler by
putting the exceptions you’re expecting into a tuple, instead of having
one by itself d.

If you need to catch every exception that’s raised, use Exception, which
is a generic exception object e. It’s generally considered poor form to
use a generic handler like this, because you may end up masking errors
you’d rather have propagate up. If possible, you should handle specific
errors, but there are occasions where you don’t know what exceptions
you’ll need to handle.

You can also use else: to include a section of code to execute if the
try..except block ran successfully and didn’t raise any exception f. In
this case, you’re deleting the mail you’ve just sent. There’s also a
finally: option that you can use if you have something that needs to be
run all the time, regardless of whether you had any exceptions.

Exception handling like this should handle most of your needs and
allow you to write programs that can recover from error conditions, or
at least fail gracefully, and you can use it wherever you need to handle
errors. Where that is depends on the nature of the program and the
errors you’re trying to catch. A program that handles user input might
have one high-level exception handler that wraps your entire program
in a try..except clause. That way, no matter what the user types, you
can handle it and return a reasonable error message. You can also use
error handlers around subsections of your program, or around specific
modules that throw exceptions.

But handling exceptions on servers doesn’t give you a lot of information
about what went wrong. Especially in the case of critical production

178 CHAPTER 5 Business-oriented programming
systems, it’s extremely helpful to know where the error occurred and in
what file. You’d like to be able to see tracebacks as if you were running
the program locally. Fortunately, there’s a Python module that can help
you to print out detailed debugging messages and find out what when
wrong: the traceback module.

The traceback module
The traceback module gives you a number of functions for handling
exceptions as well as formatting and extracting tracebacks and error
messages. The two key ones are print_exc() and format_exc(), which
print out a traceback and return a traceback as a string, respectively.
You can extract this information from the sys module, via sys.exc_type,
sys.exc_value, and sys.exc_traceback, but it’s much more straightfor-
ward to use traceback. Let’s extend the error handling in the last section
to print out a nice traceback if you get an unknown error, as shown in
the following listing.

Listing 5.12 Using the traceback module

import traceback
...
 try:
 mailserver.sendmail(me, them, mailouttext)
 ...
 except:
 traceback.print_exc()
 traceback_string = traceback.format_exc()
 print traceback_string
 else:
 os.remove('maildir'+os.path.sep+eachfile)

Let’s start with a shortcut: you don’t have to specify Exception for a
generic handler. If you omit any exception types at all, it behaves in
exactly the same way b.

The print_exc() function will print a formatted traceback c. This is
useful if you’re running the program interactively or if you use some-
thing like cron, which will email you with the output of any programs
you run.

Shortcutb
Print exceptionc

Extract formatted
exception

d

Summary 179
If you need to log to a file, then you can use the format_exc() function to
return a string with the traceback d. Other than that difference, it’s
exactly the same output.

Now you have everything you need to be able to handle any errors that
crop up in your program. You can extend the code in this section to
handle most situations you’ll run into in practice, and if not, then at
least leave enough data behind for you to be able to figure out what’s
gone wrong.

Where to from here?
The scripts in this chapter are self-contained, so there aren’t any spe-
cific suggestions as to how you can extend them. Instead, try applying
the lessons (and code) from this chapter to automate something you do
frequently, either at work or home. Good candidates are anything you
find dull and boring, or which requires detailed steps and is difficult to
do properly.

If you can’t automate all of your process, you can at least cover part of
them—for example, download required data so it’s all in one place, or
send out several emails from a central data store.

Often, a good script can save you several hours of work over the course
of a month, so you can use all the new free time you have to write another
script. Eventually, you might not have to do any work at all!

Summary
The first half of this chapter covered some of the basic but important
libraries in Python that you can use to connect to the outside world and
get real work done. We covered a number of technologies:

❂ Downloading HTML from the web
❂ Parsing HTML using Beautiful Soup
❂ Writing data out to a CSV file
❂ Composing email, including writing HTML email and attaching

documents
❂ Sending email via SMTP

180 CHAPTER 5 Business-oriented programming
In the second half of the chapter, we took a step back and looked at
how you can make your programs more reliable—after all, this is the
real world, and other people might have a lot of money riding on your
programs.

We first looked at how you can find areas of a program are at risk. Then,
we considered whether you should fix them, based on the costs of doing
so and the fallout from any potential failures. Finally, we covered some
simple strategies to make your programs more reliable, and we also took
a look at ways to reduce the damage done if a program fails.

Finally, we covered exceptions and tracebacks, which are Python’s
way of handling errors when they occur, and how you can catch excep-
tions, examine them, and deal with the problem if you’re able to.

In the next chapter, we’ll take a break and write your own adventure
game, with monsters, treasure, danger, and excitement!

6
Classes and object-oriented
programming

This chapter covers

• An easier way to think about classes

• How to use classes to design your programs

Until now, we’ve been skimming over one of the fundamental ways you
can organize your program in Python: the class. Classes and object-
oriented programming are normally seen as big, scary things that real
programmers use to write their programs, and you might think you need
a lot of theoretical knowledge in order to use them properly. Nothing
could be further from the truth. In Python, it’s possible to ease into
classes and object-oriented programming.

In this chapter, you’ll start with the code you wrote back in chapter 2 to
generate caves for Hunt the Wumpus and then see how much easier it is
to write it using classes. Then you’ll build up from there into a full-
fledged adventure game along the lines of Adventure or Zork. While you
do that, you’ll find out all about Python’s classes and how to make the
most of them.
181

182 CHAPTER 6 Classes and object-oriented programming
What exactly are classes?
If you think all the way back to chapter 2, you might remember that
you had a group of functions that dealt with caves for the player and
wumpus to live in. There was a function for creating a cave, another for
linking two caves together to create a tunnel, one to make sure all the
caves were linked, and so on. When you were writing the program, you
dealt with the caves entirely through functions. One way to create a
class is to identify a group of functions like this and make their rela-
tionship official.

Classes contain data
Another way to think about classes is as if a class was a container or a
wrapper placed around data you want to use in your program. You can
group all the data needed to perform a particular task, and provide
functions to deal with it, particularly if the data is complicated, difficult
to work with, or needs to be consistent—for example, the program that
keeps track of the balance of your account at the bank.

They’re a type of their own
Classes are similar to something called an abstract data type, which is a
set of data and all the operations that can be performed on that data.
You don’t have to specify all the possible things you can do with the
data inside your class, only what’s useful for your particular situation.
When designing your class, though, it often helps to think of all the
possible things you might want to use it for, and add those that
make sense.

How do they work?
Think of classes as a big rubber stamp. Once you’ve created your rub-
ber stamp, you can easily stamp out as many pictures as you like.
Classes work the same way. You generally don’t work directly with a
class: you instead work with instances of that class, which you create by
using the original class.

Classes in a program have one advantage—if you need a slightly differ-
ent picture, it’s easy to create a copy of the original class, change it a

What exactly are classes? 183
bit, and work with that. Figure 6.1 shows you what the classes in this
chapter might look like, if they were rubber stamps.

Both the instance and the class itself can have methods for you to call
and data to access. For the most part, these will be set when you first
create an instance, but Python also allows you to update them on the
fly if you need to, even to the point of rebinding methods.

NOTE Object-oriented programming includes a great deal of terminology—
most of it apparently designed to confuse the unwary reader. You’ll
hear people refer to classes, objects, instances, methods, class meth-
ods, getters, setters, and so on. If you’re unsure what someone
means, try to figure out whether they’re talking about the rubber
stamp or the mark it’s making on your program.

Your first class
The class in the following listing should look familiar, although there
are some parts that are quite different. It contains the cave list and
methods you wrote in chapter 2, but updated so they’re contained
within a class.

Listing 6.1 An object to store caves

from random import choice

class Caves(object):
 def __init__(self, number_of_caves):
 self.number_of_caves = number_of_caves
 self.cave_list = range(number_of_caves)

Figure 6.1 Monsters are
like the player, except with
horns and a frowny face.

Create
class

b

Set up variables
within class

c

184 CHAPTER 6 Classes and object-oriented programming
 self.unvisited = range(number_of_caves)[1:]
 self.visited = [0]
 self.caves = []
 self.setup_caves(number_of_caves)
 self.link_caves()

 def setup_caves(self, cave_numbers):
 """ Create the starting list of caves """
 for cave in range(cave_numbers):
 self.caves.append([])

 def link_caves(self):
 """ Make sure all of the caves are connected
 with two-way tunnels """
 while self.unvisited != []:
 this_cave = self.choose_cave(self.visited)
 next_cave = self.choose_cave(self.unvisited)
 self.create_tunnel(this_cave, next_cave)
 self.visit_cave(next_cave)

 def create_tunnel(self, cave_from, cave_to):
 """ Create a tunnel between cave_from
 and cave_to """
 self.caves[cave_from].append(cave_to)
 self.caves[cave_to].append(cave_from)

 def visit_cave(self, cave_number):
 """ Mark a cave as visited """
 self.visited.append(cave_number)
 self.unvisited.remove(cave_number)

 def choose_cave(self, cave_list):
 """ Pick a cave from a list, provided
 that the cave has less than 3 tunnels."""
 cave_number = choice(cave_list)
 while len(self.caves[cave_number]) >= 3:
 cave_number = choice(cave_list)
 return cave_number

 def print_caves(self):
 """ Print out the current cave structure """
 for number in self.cave_list:
 print number, ":", self.caves[number]

Set up variables
within class

c

Turn
functions
into
methods

d

What exactly are classes? 185
if __name__ == '__main__':
 caves = Caves(20)
 caves.print_caves()

You start with the syntax Python uses to create a class b. It’s similar to
the creation of a function, except that, by convention, a class name
starts with a capital letter (classes are important, after all). The object
in brackets is the class that this one inherits from—in this case,
Python’s generic object class, because you’re not inheriting anything.

Most Python classes will have the __init__ method, which is responsi-
ble for setting up instances of the class when the class is first created c.
Did you notice that you’ve gained a self argument in the method?
That’s so a method can access variables and share state. All the lists
you used in chapter 2 are here, but prefixed with self so they refer to
the variables in the instance.

The functions you used to set up the caves are here, and they’ve
received the self treatment, too d. Other than that, there aren’t many
changes to them, which is what you’re expecting because they’re just
functions with an explicit self.

Once you’ve set up your class, you create an
instance of it and call its print_caves()

method to test it out e. Python runs the
__init__ method of the class, which in turn
calls setup_caves() and link_caves() and cre-
ates your cave network, which you can see
from the results of caves.print_caves().

What have you gained from putting all the
functions inside a class? The main benefit is
that all the details of the caves are contained within the instance you’ve
created. You could now create extra cave systems at the same time and
not have to worry about them conflicting with each other. From here,
you can also extend the class—perhaps including the atmospheric cave
names and other functions I’ve excluded—or adding a method to
extend the cave system.

Test by creating
instance

e

HEY GUYS—I'VE JUST
WRITTEN AN ADVENTURE
GAME!

WOAH! AN ADVENTURE
GAME? DIDN'T THEY DIE
OUT IN THE 80S?

186 CHAPTER 6 Classes and object-oriented programming
NOTE Classes are another divide-and-conquer mechanism you can use in
your programs. Once you’ve created an instance, you don’t need to
think about why it works, just about what you can use it for in your
code.

There’s one problem with your new Caves class, though. Although
you’ve created the class and it works well, it’s still not an object-
oriented design. You’ve just taken your existing functional design and
pushed it into a class. If, in the future, you wanted to add extra func-
tionality—such as having treasure to pick up within the caves, more
monsters, or other features—they’d be hard to add. Much in the same
way that adding functions changed the design of your program back in
chapter 2, using classes properly will change the emphasis of your
design now.

Object-oriented design
One of the reasons many people prefer object-oriented programs is
that objects tend to map well onto the things you deal with in the real
world and make it easier for you to think about how they interact when
you’re developing your program. If you were writing a program to
manage your finances, you might create classes called Account, Expense,
Income, and Transaction. If you were writing a program to control a fac-
tory, you could have classes called Component, ConveyorBelt, Assembly (as
in, multiple components joined together), and AssemblyLine.

Let’s take a step back and think about the adventure game a bit more.
What sorts of things will it have? Well, if you take a traditional
approach, the player will be an intrepid adventurer, searching for trea-
sure, fame, and glory in an underground dungeon or cave system filled
to the ceiling with monsters. The following figure shows a “back of the
envelope” sketch of what your game might look like, the sort of draw-
ing you might use to explain it to a friend.

The fundamental feature you should be addressing is the cave, rather
than the cave system as a whole. The mechanics of the lists and func-
tions may have tricked you into thinking the cave system was the
important part, but you can get a much cleaner design by thinking
at the right level: of individual caves and what’s inside them. The

Object-oriented design 187
following listing shows how the caves could be written. You should
put it into a file called caves.py; otherwise some of the code later in
this chapter won’t work.

Listing 6.2 A more object-oriented design

from random import choice, shuffle

class Cave(object):
 def __init__(self, name, description):
 self.name = name
 self.description = description
 self.here = []
 self.tunnels = []

 def tunnel_to(self, cave):
 """Create a two-way tunnel"""
 self.tunnels.append(cave)
 cave.tunnels.append(self)

 def __repr__(self):
 return "<Cave " + self.name + ">"

cave_names = [
 "Arched cavern",
 ...]

Figure 6.2
A basic sketch
of your game

New Cave
object

b

Each cave “knows”
what it’s
connected to

c

Add __repr__
method

d

188 CHAPTER 6 Classes and object-oriented programming
def create_caves():
 shuffle(cave_names)
 caves = [Cave(cave_names[0])]
 for name in cave_names[1:]:
 new_cave = Cave(name, name)
 eligible_caves = [cave for cave in caves
 if len(cave.tunnels) < 3]
 new_cave.tunnel_to(choice(eligible_caves))
 caves.append(new_cave)
 return caves

if __name__ == '__main__':
 for cave in create_caves():
 print cave.name, "=>", cave.tunnels

You start with the setup for the new Cave object b. Rather than set up
one list for cave names, another for linking, and a third to tell whether
a cave’s been visited or not, you store it all within the object itself.
When you build lists of caves later, you can easily filter by these attri-
butes. You add a self.here list to store any other objects (such as the
player, monsters, and treasure) that might be in the cave, and also a
description string, which will describe the cave when the player enters
it. You’ll ignore these two new values for now.

Because you can easily tell what a cave is linked to c, adding a tunnel
to another cave is easy: add them into the list of tunnels and add self
(self is the current Cave instance) into the list of tunnels. Notice, too,
how you’re dealing with the caves at the instance level, which makes
your program a lot clearer.

One last thing you’ll do is add a __repr__ method to
your class d. The one that’s built in to the base
object is a little unreadable (it will be something like
<__main__.Cave object at 0x00B38EF0>), and this
makes your program’s output look much nicer when
you have to print out a cave.

Now all you need to do is to figure out how to link
the caves. Borrowing the list of cave names from

Function to
set up caves

e

Print list of
caves as a test

f

I'LL GIVE IT A GO.
I USED TO PLAY
ADVENTURE BACK
BEFORE A.J. WAS BORN.

WELL, WHAT'S WORLD OF
WARCRAFT THEN, EXCEPT AN
ADVENTURE GAME WITH
PRETTY PICTURES?

Player input 189
chapter 2, you can assign each one to a new cave instance, link that
instance to an existing cave, and then add it into the caves list e. The
only even slightly tricky bit is how you find caves to link to. But you
can easily figure that out by checking the length of each cave’s tunnel
list inside a list comprehension. Also, notice that Python doesn’t con-
strain how you solve a problem—you’re free to use functions, classes,
and bare code wherever you need to.

If you’re not convinced that it works, f print out the complete cave list.

The main thing to notice is how much of listing 6.1 is replaced. The
original version of Caves had six different methods calling each other;
you’ve replaced that with one class and an external function. As you
learned in chapter 2, shorter, simpler code is often a sign that you’re on
the right track, and an object-oriented design maps well onto your
adventure game. Let’s move on and tackle the next part of your pro-
gram: handling input from the player.

Player input
Most adventure games are played by typing instructions at a prompt,
things like GO NORTH, GET SWORD, KILL MONSTER, and GET
TREASURE. The game then responds with the results of your action,
as well as a description of the room you’re in and things that are in the
room. You’ll take the same approach and use some of the properties of
objects to make your program easy to extend. Bear in mind that you’ll
also want to make your code easy to test, so you’ll break out your user
input into a separate function.

First steps: verbing nouns
You’ll start by trying to find a good way to
write the “verb noun” interface into your
class structure. Normally, because an object
will be a noun, and the methods on that
object will be verbs, a command like GET
SWORD should try to find the sword object
in the current room and call its get interface.
Designing this way means that, rather than

IN ZAT CASE, PERHAPS FIRST
TO COMPLETE ADVENTURE IS
NOT HAVINGK TO WORK FRIDAY?

YOU'RE ON!

190 CHAPTER 6 Classes and object-oriented programming
having one massive Player class that knows how to do everything possi-
ble in the game, you can instead have more, smaller classes, which are
easier to understand (and change and extend).

The following listing has the code for the core of your application: the
player object. It’s responsible for reading input from the player, as well
as finding the right object to call to interpret the command. You put it
into a file called player.py.

Listing 6.3 A Player object

import shlex

class Player(object):
 def __init__(self, location):
 self.location = location
 self.location.here.append(self)
 self.playing = True

 def get_input(self):
 return raw_input(">")

 def process_input(self, input):
 parts = shlex.split(input)
 if len(parts) == 0:
 return []
 if len(parts) == 1:
 parts.append("")
 verb = parts[0]
 noun = " ".join(parts[1:])

 handler = self.find_handler(verb, noun)
 if handler is None:
 return [input +
 "? I don't know how to do that!"]
 return handler(self, noun)

 def find_handler(self, verb, noun):
 if noun != "":
 object = [x for x in self.location.here
 if x is not self and
 x.name == noun and
 verb in x.actions]

Player v
ariables

b

Handle input
from player

c

What to do
with
command?

d

Find handler
on objects

e

Player input 191
 if len(object) > 0:
 return getattr(object[0], verb)
 if verb.lower() in self.actions:
 return getattr(self, verb)
 elif verb.lower() in self.location.actions:
 return getattr(self.location, verb)

 def look(self, player, noun):
 return [self.location.name,
 self.location.description]

 def quit(self, player, noun):
 self.playing = False
 return ["bye bye!"]

 actions = ['look', 'quit']

The variables you’ll initially need within your Player class are pretty
straightforward b. You add them to a location and tell the game
they’re playing.

You split up the command here and make sure there’s always some-
thing in the verb and noun variables c. You’re using shlex.split() to
split your command because it handles quotes much better than the
normal split. If, for example, the player types GET “GOLD KEY,” then
shlex.split() will read GOLD KEY as one part. You join anything after
the verb and assume it’s part of the noun, so GET GOLD KEY will
work, too.

Once you have your command in an easy-to-process format, you try to
find a method to call d. If the method finder returns None, it means
there wasn’t a method to handle the command, and you return an error
(if you’ve ever played an adventure game, this will be all too familiar).

When you have your command, you try to find a method to handle it
e. If you have a noun, you look for an object that matches it—for
example, the SWORD in GET SWORD—and see if it can respond. The
getattr() function is a good way to do this—it looks for a class attribute
or method whose name is set in a variable. If it can’t find it, then it
passes the command through to either the location or the player (this
will help you provide a better interface in the next few sections).

Find handler
on objects

e

Find handler
in location
or yourself

f

Some
simple
commands

g

192 CHAPTER 6 Classes and object-oriented programming
If the player hasn’t given you a noun, then it might be a more generic
command, like LOOK or QUIT, so you look for it in your current loca-
tion and the Player object f. If neither of those works, then you
haven’t found one, and you “fall off” the end of the method. This means
you return None, which results in an error.

You add two basic commands g to the Player, LOOK and QUIT, so
you can get a feel for how they’ll work in the finished game. You’ll need
to add an empty actions list to the Cave class, too; otherwise, this will
raise an error if the Player instance can’t handle a command.

Now that you have a player, you need to be able to read input from the
player and use that input to run the game. A sample framework is
shown in the following listing. You make a simple cave, put the player
into it, and then loop, reading input until the player is finished playing.
Later, you’ll probably incorporate this into a Game object, but because
Python is flexible, you can leave it as a function while you write and
test the other classes.

Listing 6.4 Running your Player class

def test():
 import cave
 empty_cave = cave.Cave(
 "Empty Cave",
 "A desolate, empty cave, "
 "waiting for someone to fill it.")
 player = Player(empty_cave)

 print player.location.name
 print player.location.description
 while player.playing:
 input = player.get_input()
 result = player.process_input(input)
 print "\n".join(result)

if __name__ == '__main__':
 test()

Set up test
environment

b

Main loopc

Treasure! 193
Your Player class needs a location to work
properly, so you set up a test cave here and
put the player into it b. A simple description
and name is all you need to get going.

Once you’ve done that, you get input from the
player and pass it to the process_input()

method, which will run your code and return
the results as a list of strings c. You then print
them one to a line using the join() method of
the "\n" string. When the player has issued the quit command, the
player.playing variable will be false, and you stop the program.

If you run the adventure program now, you should be able to give it
commands such as LOOK and QUIT. It’s simple stuff, but you’ll see
how to extend the interface in the next section.

Treasure!
Let’s start adding some more exciting things to the game. First, you’d
like to be able to give the player some equipment or treasure early on,
to draw them into the game and get them involved. It’s not an adven-
ture without treasure or a sword, so let’s add those first. Before you do,
though, you’ll need to think a bit more about your design.

Where should your methods go?
You’ll obviously need to interact with your items, which means you’ll at
least want to be able to do things like GET SWORD, LOOK SWORD,
and DROP SWORD. With your current way of doing things, that
means there will need to be a method somewhere to handle GET,
LOOK, and DROP.

One option is to store it in the Player class—after all, it’s the player
doing the getting and dropping. It’s tempting to think along these lines,
but when doing any object-oriented programming, you’ll want to dele-
gate as much responsibility as possible. For example, later on you’ll
probably want to add objects that the player can’t pick up, like a heavy

ARE YOU PLAYING GREG'S
ADVENTURE GAME TOO?

I'M COMPLETELY
STUCK—I CAN'T EVEN GET
PAST THAT FIRST ORC.

WELL, I'M A LITTLE
WAY INTO IT.

194 CHAPTER 6 Classes and object-oriented programming
chest or a statue. That’s fine; add a check to see if the object has an
immovable flag set. What if the player can pick up the chest if they have
the gilded girdle of strength? Hmm, another check. You can see where
this is going—by the time you finish the game, you might have 5 or 6
(or 20) conditions in the get() method on your player.

NOTE Class design can be a tricky thing when you’re first starting out. The
main thing to remember is that experience counts, so you’ll get better
with practice. Also, don’t forget that you can experiment with differ-
ent designs and pick the best one.

A better way is to make the objects themselves responsible for judging
whether they can be picked up. A chest “knows” it’s heavy, and can
check to make sure the player has the right items in their inventory
before allowing itself to be picked up. It sounds odd, but the Player
object shouldn’t be responsible for how heavy objects are or how mon-
sters fight, and adding things like that to the Player object will make it
too complicated. Let’s see how you’d program some objects that can be
looked at; then, you’ll modify them so they can be picked up.

Listing 6.5 An object that can be looked at

class Item(object):
 def __init__(self, name, description, location):
 self.name = name
 self.description = description
 self.location = location
 location.here.append(self)

 actions = ['look']

 def look(self, player, noun):
 return [self.description]

The things the Item needs to know are pretty much the same as for the
Player and Cave objects: what its name is and where it is. You can feed
all those in when you create an Item instance.

Initially, your item responds to one command: LOOK. When the player
issues a LOOK ITEM command with the item’s name as a noun, this is

Treasure! 195
A TROLL TOO? GREG'S
INDULGING ALL OF HIS
GRUBBY FANTASY CLICHES …

OH YEAH—DON'T
FORGET TO GET THE
SUPERFLUOUS
APOSTROPHE OF
ANT'IARC FROM THE
ANCIENT WIZARD.

the method that will be called; all it does is
return the item’s description.

Finding the treasure
Additionally, you’ll want to modify the
description of the cave so the player knows
what items are in a particular location. While
you’re at it, you’ll follow the lead set so far and
move the look() method from the Player class;
delete the method from Player, and add this one into the Cave class.

Listing 6.6 Modifying the look() command

 def look(self, player, noun):
 if noun == "":
 result = [self.name,
 self.description]
 if len(self.here) > 0:
 result += ["Items here:"]
 result += [x.name for x in self.here
 if 'name' in dir(x)]
 else:
 result = [noun + "? I can't see that."]
 return result

 actions = ['look']

The main change to this method is to list all the items in the location
and place them under the description b. Without this, the player won’t
know there’s a sword in the cave, unless they
happen to guess there might be.

This function will also be called if the player
tries to refer to something that doesn’t exist
(such as LOOK AARDVARK). If there’s no
aardvark in the room, you need to return an
error c.

Don’t forget to update the actions the Cave
object can handle d and remove 'look' from

AH. WELL, YOU NEED TO
GET THE HAMMER FIRST.
THAT'S A PRETTY GOOD
WEAPON.
ONCE YOU HAVE THAT, YOU
SHOULD BE OK. BUT LET
ME KNOW IF YOU FIGURE
OUT HOW TO BEAT THE
TROLL.

List
items

b

Error
handling

c

Update
actions

d

196 CHAPTER 6 Classes and object-oriented programming
the Player class—otherwise, it will continue to try to handle the LOOK
command.

Listing 6.7 Updating your setup

 ...
 "A desolate, empty cave, "
 "waiting for someone to fill it.")

 import item
 sword = item.Item("sword",
 "A pointy sword.", empty_cave)
 coin = item.Item("coin", "A shiny gold coin. "
 "Your first piece of treasure!", empty_cave)

 player = Player(empty_cave)
 ...

Add items into your adventure! Set their name, description, and loca-
tion, and the Item object will take care of the rest.

If you run the adventure now, you should be able to look at your trea-
sure and a shiny sword, but you can’t reach them. So … tantalizingly
… close …

Picking up the treasure
All you need now is for the objects to respond to being picked up. You
need to make two updates: the first is to the objects, to give them get()
and drop() methods, and the second is to update the Player class so it
can carry things. The next listing shows how you can add those com-
mands to the game.

Listing 6.8 Items that will let themselves be picked up

 actions = ['look', 'get', 'drop']

 def get(self, player, noun):
 if self.location is player:
 return ["You already have the " + self.name]

Get
method

b
Check
whether
already
added

c

Treasure! 197
 self.location.here.remove(self)
 self.location = player
 player.inventory.append(self)
 return ["You get the " + self.name]

 def drop(self, player, noun):
 if self not in player.inventory:
 return ["You don't have the " + self.name]
 player.inventory.remove(self)
 player.location.here.append(self)
 self.location = player.location
 return ["You drop the " + self.name]

The get() method itself is straightforward b.
The object needs to remove itself from the
here array in the current location and put
itself into the player’s inventory (you’ll make
that list in a minute) and set its current loca-
tion. Once you’ve done that, you return a
message to let the player know.

If you run the previous code without this
check c it will work fine; but if the player
tries to pick up the item again, your program will crash, because it
can’t remove an item from a list if it isn’t there.

The drop() method is pretty much the same as the get() method, only in
reverse d. Just like the previous get() method, you need to check that
the object is in the player’s inventory before you move it back to the
location you’re in.

The next listing updates the Player class so it can hold objects, adds
some commands to tell you what you’re carrying, and outputs error
messages. Let’s also look in the inventory when trying to find handlers
for commands.

Listing 6.9 Updates to the Player class

class Player(object):
 def __init__(self, location):
 self.location = location

Get methodb

Drop methodd

DAMN ORCS!

198 CHAPTER 6 Classes and object-oriented programming
 self.location.here.append(self)
 self.playing = True
 self.inventory = []

 ...

 actions = ['quit', 'inv', 'get', 'drop']

 def get(self, player, noun):
 return [noun + "? I can't see that here."]

 def drop(self, player, noun):
 return [noun + "? I don't have that!"]

 def inv(self, player, noun):
 result = ["You have:"]
 if self.inventory:
 result += [x.name for x in self.inventory]
 else:
 result += ["nothing!"]
 return result

 ...

 def find_handler(self, verb, noun):
 # Try and find the object
 if noun != "":
 object = [x for x in
 self.location.here + self.inventory
 if x is not self and
 ...

To start with, the player needs to be able to carry
things around with an inventory b. The easiest
option is to add a list to your class. When the player
picks up objects, they’ll be appended to this list.

These error handlers c are similar to the error
handler you wrote for the Cave class. If you try to
get something that’s not in the current location,
then these methods will be called to handle the
GET and DROP commands.

Player’s
inventoryb

Add error
handlers

c

Inventory
command

d

Check inventory
when finding
handlers

e

Further into the caves 199
Players should be able to remember what they’ve found so far, so d is
a command that will list everything they’re carrying.

The final change is to check the items in your inventory when looking
for handlers e. This way, players can LOOK at or DROP things in
their inventory.

Now you can pick up the sword and shiny coin, as well as look at them.
You can also put them back down again (although that’s much less
adventurous). Your trusty sword and first piece of treasure in hand, it’s
time to venture further into the caves.

Further into the caves
An adventure isn’t an adventure without some
sort of exploration. In most games, you move
around by issuing commands like GO NORTH,
or just NORTH or N for short. As you travel,
the game will update the descriptions to tell you
about the area you’ve just moved through.
You’ll set up your movement commands in the
same way you set up the other commands, but you’ll add some short-
cuts, too, so typing your movement is easier.

First, let’s look at how you add the directions themselves into the Cave
class. Then, you’ll create the commands that let your player move
around.

Listing 6.10 Adding movement to the Cave class

class Cave(object):
 directions = {
 'north' : 'south',
 'east' : 'west',
 'south' : 'north',
 'west' : 'east' }

 def __init__(self, name="Cave", description=""):
 ...
 self.tunnels = {}
 for direction in self.directions.keys():
 self.tunnels[direction] = None

GREG!!!

List of
directions

b

Add tunnels
to cave

c

200 CHAPTER 6 Classes and object-oriented programming
 def exits(self):
 return [direction for direction, cave
 in self.tunnels.items()
 if cave is not None]

 def look(self, player, noun):
 if noun == "":
 ...
 if len(self.exits()) > 0:
 result += ['Exits:']
 for direction in self.exits():
 result += [direction + ": " +
 self.tunnels[direction].name]
 else:
 result += ['Exits:', 'none.']

 def tunnel_to(self, direction, cave):
 """Create a two-way tunnel"""
 if direction not in self.directions:
 raise ValueError(direction +
 " is not a valid direction!")
 reverse_direction = self.directions[direction]
 if cave.tunnels[reverse_direction] is not None:
 raise ValueError("Cave " + str(cave) +
 " already has a cave to the " +
 reverse_direction + "!")
 self.tunnels[direction] = cave
 cave.tunnels[reverse_direction] = self

The first part of the changes adds a list of valid direc-
tions into the Cave class b, so you know all the direc-
tions you can travel. You can also use this to find the
opposite direction (you’ll need that in a minute).

When you’re creating each cave, you’ll need to set up
the basic data structure you’ll use to store the caves
that can be reached in each direction c. For now,
they’re all None, which means there’s no other cave
that way.

List all
valid exits

d

Add exits
to look
command

e

Tunnel from one
cave to another

f

Exceptions
to handle
bad behavior

g

Tunnel from one
cave to another

f

GREG, WHAT'S GOING ON
WITH YOUR GAME?
I SEEM TO BE HAVING
SOME "PROBLEMS."

THAT'S NOT WHAT
I MEAN. HERE, HAVE
A LOOK AT THIS …

HAVE YOU BEATEN
THE ORC YET?

Further into the caves 201
d is a convenience method to list the directions of all the exits for a partic-
ular cave. It’s pretty simple—a list comprehension over self.tunnels—but
it makes your code much easier to follow when you can access
cave.exits(). Don’t let the order the functions are written in fool you—the
code for this method was pulled from look when that started to look ugly.

Players will want to know which way they can go from cave to cave, so e
lists all the valid exits. If there aren’t any, then you let them know that, too.

You also need a way to create tunnels between your caves. Linking one
way is easy: you put the cave in self.tunnels in the right direction. But
you’d like your tunnels to be two-way, so you look up the reverse
direction in the list and add a link to yourself from the target cave f.

If this method looked a little strange, it’s because you added some
exceptions to catch error cases when linking tunnels g. The raise()
command will create errors similar to the ones you’ve been seeing so
far: for example, when you’ve mistyped something. In this case you’re
effectively creating your own type of object, much like an integer or a
string, so it’s much better to behave like one and raise an exception
rather than print an error or ignore the bad input. You’ll be crashing
close to the source of the problem and giving a clear error message,
which makes it much easier to troubleshoot your programs.

TIP When you’re designing classes like Cave (which are effectively
library classes), it’s always a good idea to catch cases like this and
raise an exception where possible. That way, when you’re using the
class later, it’s obvious when you’ve made a mistake.

Now you have a Cave class that can store directions and links to other
caves, as well as describe those directions to the player. Let’s now add
some commands to let the player move between caves, as shown in the
following listing.

Listing 6.11 Commands to move between caves

 def go(self, player, noun):
 if noun not in self.directions:
 return [noun + "? "
 "I don't know that direction!"]
 if self.tunnels[noun] is None:
 return ["Can't go " + noun + " from here!"]

Check
player
input

b

202 CHAPTER 6 Classes and object-oriented programming
 self.here.remove(player)
 self.tunnels[noun].here.append(player)
 player.location = self.tunnels[noun]
 return (['You go ' + noun] +
 self.tunnels[noun].look(player, ''))

 def north(self, player, noun):
 return self.go(player, 'north')
 n = north
 def east(self, player, noun):
 return self.go(player, 'east')
 e = east
 def south(self, player, noun):
 return self.go(player, 'south')
 s = south
 def west(self, player, noun):
 return self.go(player, 'west')
 w = west
 l = look

 actions = ['look', 'l', 'go',
 'north', 'east', 'south', 'west',
 'n', 'e', 's', 'w']

The basic command you’re adding is called GO (as in, GO NORTH).
First, you need to check the direction the player entered, to make sure
it’s valid and that there’s a cave in that direction b.

Once you’re sure it’s valid, you can go ahead and move the player c.
The mechanics are straightforward: remove the player from the cur-
rent cave, add the player to the new one, and update the player’s loca-
tion. You also append the new cave’s description onto the results of the
command, to make life easier on the player and save wear and tear on
their keyboard.

You can also make life easier by providing shortcuts for common com-
mands d. Typing GO NORTH over and over again gets tedious, so you
allow the player to use NORTH or just N, and similar for each of the
other cardinal directions. Behind the scenes, these commands call the
original go() method, so there’s no difference in how they behave.

Move playerc

Add some
shortcuts

d

Update actions
for Cave class

e

Further into the caves 203
The last thing you need to do is update the
list of valid actions for the Cave class e. You
also add a shortcut for the look() command
while you’re at it.

There, you’re done. Notice how you’ve split
the functionality between the player and the
location they’re in? This is a normal feature
of good object-oriented design, where the
objects have well-separated responsibilities.
In this case, the cave object is responsible for keeping track of its exits
and where they go, and the player object can use that information from
inside its go() command. If, later, something else might make use of
directions, you don’t have to extract the code from the player object, or
wherever you’ve hidden it, to make the new functionality work.

The player still needs somewhere to move to, though, so the next listing
extends the previous cave-generating function to help out.

Listing 6.12 Creating a cave network

Class Cave(object):
 ...
 def can_tunnel_to(self):
 return [v for v in self.tunnels.values()
 if v is None] != []

cave_names = [
 "Arched cavern",
 ...
 "Spooky Chasm",
]

def create_caves():
 shuffle(cave_names)
 caves = [Cave(cave_names[0])]
 for name in cave_names[1:]:
 new_cave = Cave(name)
 print caves
 eligible_caves = [cave for cave in caves
 if cave.can_tunnel_to()]
 old_cave = choice(eligible_caves)

Another convenience
method

b

Modify existing
function

c

Pick cave
from list

d

204 CHAPTER 6 Classes and object-oriented programming
 directions = [direction for direction, cave
 in old_cave.tunnels.items()
 if cave is None]
 direction = choice(directions)
 old_cave.tunnel_to(direction, new_cave)
 caves.append(new_cave)
 return caves

player.py:
if __name__ == '__main__':
 import cave
 caves = cave.create_caves()

 cave1 = caves[0]
 import item
 sword = item.Item("sword", "A pointy sword.", cave1)
 coin = item.Item("coin", "A shiny gold coin. "
 "Your first piece of treasure!", cave1)

 player = Player(cave1)
 print '\n'.join(player.location.look(player, ''))
 while player.playing:
 input = player.get_input()
 result = player.process_input(input)
 print "\n".join(result)

You start with another convenience method b. In a minute you’ll see
how it’s used, but it’s to tell you whether a cave can be linked to (or
not, if all four directions are occupied).

This function c is a modification of the previous
create_caves() that you wrote all the way back in
listing 6.2. The main difference is that this one picks
a direction as well as a cave, but other than that, it’s
the standard connected cave structure.

You pick the next cave to link to by using the
can_tunnel_to() convenience method in a list com-
prehension d.

Pick direction
to link it to

e

Link in
new cave

f

Update
game
setup in
players.py

g

I DIDN'T PUT
ANYTHING LIKE
THAT IN …

I DON'T UNDERSTAND.
WHAT'S "XYZZY"?

IT'S A MAGIC
SPELL FROM
ADVENTURE.

Here there be monsters! 205
You also need to pick an empty direction to link your cave against e.
The choice function will fail if you don’t have any directions, but you’re
not too worried about that happening because can_tunnel_to() method
has already told you that it has at least one.

Once you have your cave with a spare slot, it’s easy to link the new
cave in f. You also add your new cave to the list so other new caves
can be linked to it, too.

Finally, update the game setup (in player.py) to use the new cave sys-
tem g. Rather than have only one empty, desolate cave, you now put
everything into the first cave in the list, including the player. Other
than that, it’s pretty much the same.

Now when you run players.py, you should see some exits from your
starting position, as well as the normal description and items. You can
pick up your sword, move around, drop it in another location, and
come back to it.

Congratulations, you’ve created a world! Feel free to go and explore it.
When you come back, you’ll add some more parts.

Here there be monsters!
You now have a player, items, and treasure to collect. All that’s left to
put in your adventure is sudden, painful death, also known as danger
and excitement. You’ll add to your game some monsters that will move
around the map and that might attack the player if they’re in the same
cave and feeling nasty, or else pick up any treasure lying around. The
player can attack the monsters, too, and loot their treasure.

Creating your monsters
Let’s think about that for a second. Don’t the monsters sound awfully
familiar? Let’s draw up a chart to help.

Monster Player

Moves around the map Moves around the map

Collects treasure Collects treasure

Attacks the player Attacks monsters

206 CHAPTER 6 Classes and object-oriented programming
The monsters and the player seem to share an awful
lot in common. In a function-based program, you’d
look at this and recognize that you need to avoid
duplication, but how do you do that with an object-
oriented program? The answer is to subclass Player,
commonly referred to as inheritance.

Inheritance is a fancy way of saying “make a slightly
different copy of my class that does this and this dif-

ferently.” In the case of the monsters in your game, they’ll behave
much the same way, but instead of the player telling them what to do
next, the monsters figure it out for themselves. The monsters will also
need to have a name and description so the player can look at them.
That means their __init__ and get_input functions need to be different,
but you’ll keep most of the rest of the Player class intact. The next list-
ing is a first draft of the new Monster class.

Listing 6.13 Adding monsters to the game

import random
import player

class Monster(player.Player):

 def __init__(self, location, name, description):
 player.Player.__init__(self, location)
 self.name = name
 self.description = description

 def get_input(self):
 if random.choice((0, 1)):
 return ("go " +
 random.choice(self.location.exits()))
 else:
 return ""

 def look(self, player, noun):
 return [self.name, self.description]

 def get(self, player, noun):
 return ["The " + self.name +
 " growls at you."]

PITR!!!

Include player module
and subclass Player

b

Call parent
classes __init__c

Monster’s
brain

d

Functions
for player
interaction

e

Here there be monsters! 207
The first thing you need to do is to import the player module b. Once
that’s done, you can use player.Player instead of object when you cre-
ate your class. Now, instead of using the base object, Python will look
in player.Player when it tries to find an attribute or method that isn’t
defined directly in the Monster class.

When you’re initializing your monster class, you’ll also need to initialize
the parent class to make sure everything’s set up properly c. In this
case, the main thing that needs to be set is the location of the monster.

Here’s where you can see the similarities between the player and
monster classes. Your monster AI is a different version of get_input that
generates a command rather than asking the player to provide one d.
To start, you’ll keep things simple, returning either a blank string to do
nothing or a random direction to move around (making good use of the
cave class’s exits() function).

The player will want to try to interact with the monster, so you need to
provide mechanisms for that to occur e. look() is copied from the Item
class and returns the monster’s description, and get() gives an amusing
error message.

Now you have a monster class that is fully capable of interacting with
the world in the same way the player can, and that will see all the same
information. This is important for a few reasons. Let’s take a closer
look at those reasons and how they tie in to object-oriented design.

Some object-oriented design tips
The first reason to use inheritance is that
you can rely on having the common func-
tionality of the base class, which reduces the
amount of “special casing” that your pro-
gram needs in order to run. You don’t need
two separate game loops, one for the player
and another for the monsters, or program
code that looks like if player then: ... else
if monster then: Instead, you can treat
monsters and players identically.

208 CHAPTER 6 Classes and object-oriented programming
The second reason to use inheritance is that it makes your program
easier to extend; this effectively builds an interface which monsters,
players, and whatever else you can think of can interact with the world.
If you needed to add a third type of actor to your world, you only need
to write the parts specific to that actor.

The final reason is that using inheritance greatly reduces the amount of
code you have to write and makes your program much easier to under-
stand, which is always good, whether your program is object-oriented
or not.

The other point to note is that this isn’t the only way you can design
your classes. A different, possibly better, way is to create a third class
(called something like Mobile or Actor) with all the common functional-
ity between the player and the monster, and then have both the player
and monster classes inherit from that. In object-oriented design, this is
normally referred to as an abstract class. You’re not supposed to create
instances of Actor; instead, you inherit from it, add the bits that are
missing, and then create an instance from your subclass.

NOTE Object-oriented terminology can be confusing, but once you’ve seen
a few examples, you’ll find it pretty straightforward. Just relate it
back to something you know well, like the Cave, Player, and Monster
classes in this chapter.

In this case, the advantages of specifying an abstract class aren’t imme-
diately clear because you only have two classes. But, it’s an option in
the future if you find there’s functionality that the Player class needs
but monsters shouldn’t have access to, or vice versa.

Another design point is that, up until now, you’ve favored composition
over inheritance. Inheritance is normally referred to as an “is/a” rela-
tionship: a player is an actor, a monster is an actor, too. Composition,
on the other hand, is a “has/a” relationship: a cave has a player in it, a
player has a number of items. Composition tends to couple your objects
less tightly—they have to interact via method calls and inspecting each
other’s values—unlike inheritance, which automatically inserts the
methods of one object into the other. Most of the time, you’ll want to
use composition; but when used in the right situation, inheritance can

Here there be monsters! 209
make a big difference. Figure 6.3 shows the difference between compo-
sition and inheritance in your game so far.

Tying it all together
Now that you have the player and monster classes, you need to make
some changes to how the game handles the player when it runs. You no
longer want the special case of getting input only for the player; your
monsters have equal rights, too! You’d also like all the functions you’ve
been using up until now enclosed within a class, so it’s easier for them
to interact properly. The following listing features a class that does just
that—you can use it to set up a game, build caves, and gather input
until the player has finished.

Listing 6.14 A Game class

import random
import item, player, monster, cave
import random

class Game(object):
 def __init__(self):
 self.caves = self.create_caves()
 cave1 = self.caves[0]
 sword = item.Item("sword", "A pointy sword.", cave1)
 coin = item.Item("coin", "A shiny gold coin. "
 "Your first piece of treasure!", cave1)
 orc = monster.Monster(cave1, 'orc',

Mobile

Player Player

Troll pillager
multitudes, slayer

Bel-shogoth,

Figure 6.3
Some of the
inheritance and
composition in
your game

Move game initialization
to __init__

b

210 CHAPTER 6 Classes and object-oriented programming
 'A generic dungeon monster')
 self.player = player.Player(cave1)

 cave_names = [
 "Arched cavern",
 ...
 "Spooky Chasm",
]

 def create_caves(self):
 random.shuffle(self.cave_names)
 caves = [cave.Cave(self.cave_names[0])]
 for name in self.cave_names[1:]:
 new_cave = cave.Cave(name)
 eligible_caves = [each_cave for each_cave in caves
 if each_cave.can_tunnel_to()]
 old_cave = random.choice(eligible_caves)
 directions = [direction for direction, each_cave
 in old_cave.tunnels.items()
 if each_cave is None]
 direction = random.choice(directions)
 old_cave.tunnel_to(direction, new_cave)
 caves.append(new_cave)
 return caves

 def do_input(self):
 get_input_from = [thing for cave in self.caves
 for thing in cave.here
 if 'get_input' in dir(thing)]
 for thing in get_input_from:
 thing.events = []
 thing.input = thing.get_input()

 def do_update(self):
 things_to_update = [thing for cave in self.caves
 for thing in cave.here
 if 'update' in dir(thing)]
 for thing in things_to_update:
 thing.update(

 def run(self):
 while self.player.playing:
 self.do_input()
 self.do_update()

Move game
initialization
to __init__

b

Get input from
player and
monsters

c

Act on input
gathered

d

New game
loop

e

Here there be monsters! 211
if __name__ == '__main__':
 game = Game()
 game.run()

This __init__ function contains all the setup code you’ve been running
from the Player class so far, creating items, monsters, and the player.
__init__ is a much more sensible place to put it b.

Next, you ask each actor in the game what it’s going to do next c.
Note that the dir() function applies equally well to your own classes as
it does to Python’s built-in objects. Splitting the input away from the
processing like this means one actor can’t make decisions based on
what other actors are about to do, which makes the game easier to
understand for both the player and yourself.

Once you’ve gathered all the input, each actor will act in turn d. The
mechanism is much the same: build a list of actors and then iterate over
them. If you want to be fair, you should probably shuffle this list to
determine who acts first, but the monsters don’t care about fairness.

Here’s your main game loop e. It’s the same as the one you had previ-
ously, except it calls out to do_input and do_update, and the player and
monsters store their output in a result list. You’ve also created a sepa-
rate events list, to store things that happen during each turn.

The final benefit is that you now have a nice clean __main__ loop f. All
the tricky code that used to be here has been broken into bits and con-
tained within methods.

The last thing you need to do is to add an
update function to the Player class. When
the code checks all the objects in the game
world, it will see the player, and every-
thing derived from the Player class, as
things that need to be updated:

Class Player(object):
 ...
 def __init__(self, location):
 self.name = "Player"
 self.description = "The Player"

main() section gets
much simplerf

212 CHAPTER 6 Classes and object-oriented programming
 ...
 def update(self):
 self.result = self.process_input(self.input)

All this does is call process_input with whatever the player’s input has
been, and store the return value—which will be a list of strings—in
self.result. You also need to add a name to the Player class too,
because Monster will be calling process_input on the player when they’re
trying to run commands.

If you run your program now, you should see an orc in the room with
you. Press the Enter key a few times to simulate waiting a while, and
the orc should leave for another room. If you search around, you
should be able to find the orc aimlessly wandering the caves. Unless
you want your game to resemble a European art house piece exploring
the futility of existence, though, you’d better start adding some more
interesting game elements.

Danger and excitement
The final part of your game will be to
allow the players and monsters to attack
each other. Some sort of element of com-
petition is essential in games, whether
you’re competing on combat, speed, who
can build the biggest city, exploring, or
building the best house. In this case,
you’re writing a dungeon adventure, so
combat is pretty much essential—any-
one who’s played Dungeons and Drag-
ons will be expecting to be able to hit orcs. Because combat will be
between the player and monsters, you’ll start with the Player class and
add an attack method, as per the following listing.

Listing 6.15 Attacking other objects

class Player(object):

 def __init__(self, location):

Danger and excitement 213
 self.name = "Player"
 self.description = "The Player"
 self.hit_points = 3
 self.events = []
 ...

 def attack(self, player, noun):
 if player == self:
 return ["You can't attack yourself!"]
 hit_chance = 2
 has_sword = [i for i in player.inventory
 if i.name == 'sword']
 if has_sword:
 hit_chance += 2

 roll = random.choice([1,2,3,4,5,6])
 if roll > hit_chance:
 self.events.append("The " +
 player.name + " misses you!")
 return ["You miss the " + self.name]

 self.hit_points -= 1
 if self.hit_points <= 0:
 return_value = ["You kill the " + self.name]
 self.events.append("The " +
 player.name + " has killed you!")
 self.die()
 return return_value

 self.events.append("The " +
 player.name + " hits you!")
 return ["You hit the " + self.name]

 def die(self):
 self.playing = False
 self.input = ""
 self.name = "A dead " + self.name

You start by adding some extra attributes you’ll need for the attack()
method b. hit_points is pretty obvious, events is for storing things that
happened to the player (or which they saw) during the turn, and

Extra player
attributes

b

Handle deathg

Calculate player’s
chance to hit

c

Roll to hitd

Report
death

e

Report any
attacks

f

Handle deathg

214 CHAPTER 6 Classes and object-oriented programming
you’ve already added a name and description so
you can handle combat easily whether the target is
a monster or a player.

You’ll use a simple combat mechanism: calculate a
to-hit number, roll a die, and, if the number rolled is
under or equal to the to-hit roll, the player or mon-
ster is hit c. The to-hit number will normally be 2,
but if you have a sword, then it will be 4. Remem-
ber that the attack() command will be called on the

object that’s being attacked, rather than the one doing the attacking.

Next, you roll to see if you hit d—it’s a random choice from 1 to 6. If
the number rolled is greater than the to-hit number, then you miss.
Before you exit, though, you tell both the attacker and the attacked
what’s happened.

If you’re hit, then you lose a hit point. If the hit points are reduced to
zero or below, then you die e. If it’s the player that has died, this will
trigger the end of the game. Either way, you report it, but generate the
messages before you call out to the die() function, because that may
modify it ("You kill the A dead orc!").

If you’re not dead yet, then the situation is much the same as a miss:
report it to the attacker and the target, and move on f.

Because there could potentially be a lot of bookkeeping to be done
when a monster dies, you pull that out into its own method g. You
mark yourself as not playing, cancel any outstanding orders, and
change your name to reflect your newly deceased status. You also add
a sanity check to make sure you can’t attack yourself.

That’s all you need to do to enable combat in your game! Because the
classes are all nicely encapsulated, there’s no need to make any changes
to the Cave, Item, and Game classes. Well, not entirely. If you think back
to the last chapter or run the code, you’ll see an obvious problem: the
monsters don’t fight back. Worse, after you’ve killed them, they still
run around! Both of these problems are easy to fix with a simple
upgrade to the monster’s AI, as shown in the next listing.

COMRADE PITR, THE
GLORIOUS PEOPLE'S
REVOLUTION IS HERE TO
SEIZE THE MEANS OF
PROGRAMMING.

I THINK YOU'LL BE
IN THE GULAG THIS
FRIDAY.

Where to from here? 215
Listing 6.16 Updating your monster’s AI

 def get_input(self):
 if not self.playing:
 return ""
 player_present = [x for x in self.location.here
 if x.name == "Player"]
 if player_present:
 return "attack " + player_present[0].name
 if random.choice((0, 1)):
 return "go " + random.choice(self.location.exits())
 else:
 return ""

Dead monsters tell no tales. If it’s dead, then it shouldn’t be generating
any input at all b; without this section, you’d have an undead orc run-
ning around your caves after you kill it.

Next, you can let the monster get revenge on the player c. If the mon-
ster can see the player in the cave, then you issue an attack order,
exactly as the player would if they could see the monster. Take that,
player! If the monster can’t see them, then it goes back to its random
wandering around the caves.

Now you have all the elements of an adventure game: a network of
rooms to explore, monsters to attack the player, and items and treasure
to collect to help players in their quest. Armed with the code in this
chapter and your imagination, you should be able to create pretty
much any type of adventure game you like.

Where to from here?
The classes and methods that have been introduced in this chapter
have only scratched the surface of what you can add to your game.
Depending on the type of game you prefer, you can take your develop-
ment in any direction. Here are some ideas on how you could extend
the game you’ve written so far.

Add more monsters and treasure
Currently, there’s only one orc and a couple of different items. You
could add more types of monsters and treasure (or more powerful

Monster doesn’t
know it’s dead

b

Monster
doesn’t like
player very
much

c

216 CHAPTER 6 Classes and object-oriented programming
weapons or weapons that affect monsters differently). You’d also want
a score that the player can access with a score method on the player,
and that should also be printed out when the player quits, or dies.

Extend combat and items
You could extend the Item class or Player.attack() method, to add other
items that might be useful, such as armor or rope, and something to use
them on. If you’re adding lots of weapons or armor with different to-hit
modifiers, you might want to think about ways to simplify how to find
the amount you add or subtract from the to-hit roll or damage done.

Add more adventure
Some adventure games are more about exploring atmospheric loca-
tions than killing monsters. You could add proper descriptions during
the setup phase, or have a pre-generated cave system instead of a ran-
domly generated one, and add specific methods to handle particular
events—such as a boat that sets sail, or a castle drawbridge that you
can raise or lower.

Experiment with verbs and nouns
You might want to play around with adding different methods to the
Item class, to see what you can do when you override built-in methods.
For example, you could add the movement methods go(), north(), and
so on to an item, and make a door that’s impassable until the player has
the right key. That’s also possible with a static monster that needs the
right magic sword or a secret password in order to pass. There’s also
scope for allowing other items to handle particular commands if the
game can’t find the original object.

Investigate some more advanced features of classes
It’s important to note that you haven’t dealt with all the functionality of
classes, just the common parts you’ll deal with in 95% of your pro-
grams. There are other advanced class features, such as missing
method and attribute handling, properties, and mix-in classes, that
we’ll introduce in later chapters as they become relevant. If you’re
already familiar with classes from other languages, though, you might

Summary 217
want to have a look through Python’s class documentation to see what
else you can do with them.

Summary
We’ve covered a number of object-oriented topics and design issues in
this chapter and looked at how classes can help make your programs
clearer and easier to understand. In particular, we addressed the
following:

❂ How classes can encapsulate data and functions and initialize them
to make instances, which you can reason about and understand
much more easily than separate data and functions

❂ How classes can interact, calling each other’s methods and looking at
data to make decisions about what to do

❂ That classes can be combined using composition (where instances
can contain other instances) and inheritance (where classes can be
declared to be particular subtypes of another class)

We haven’t covered all the features of Python’s class system yet—far
from it—but you now have a firm grasp of the fundamentals of how
classes are used and, more important, how to use them to solve prob-
lems in your programs. In future chapters, you’ll be making more use
of classes and their more advanced features. In the next chapter,
though, we’ll be taking a look at another Python feature that is closely
related to the function: the generator.

7
Sufficiently advanced
technology…

This chapter covers

• More advanced features of classes

• Generators

• Functional programming

In this chapter, we’re going to be looking at some of the more advanced
tasks Python can do. In chapter 1, you learned that Python is known as a
multi-paradigm language, which means it doesn’t confine you to just one
way of doing things. There are three main styles of programming: imper-
ative, object-oriented, and functional. Python lets you work with all
three, and even mix and match them where necessary.

We’ve already covered imperative and most of object-oriented program-
ming in the chapters so far, so this chapter will focus mostly on functional
programming and the more advanced parts of object-oriented program-
ming in Python.
218

Object orientation 219
Object orientation
Let’s start by taking a second look at how object-oriented classes
should be organized, using two separate methods: mixin classes and the
super() method.

Mixin classes
Sometimes you don’t need an entire class to be able to do something.
Perhaps you only need to add logging, or the ability to save the state of
your class to disk. In these cases, you could add the functionality to a
base class, or to each class that needs it, but that can get pretty repeti-
tive. There’s an easier way, called a mixin class.

The idea is that a mixin class contains only a small, self-contained piece
of functionality, usually a few methods or variables, which are unlikely
to conflict with anything in the child class. Take a look at this listing,
which creates a Loggable class.

Listing 7.1 A logging mixin

class Loggable(object):
 """Mixin class to add logging."""
 log_file_name = 'log.txt'
 def log(self, log_line):
 file(self.log_file_name).write(log_line)

class MyClass(Loggable):
 """A class that you've written."""
 log_file_name = "myclass_log.txt"
 def do_something(self):
 self.log("I did something!')

The mixin class is defined in exactly the same way as a regular class.
Here, you add a class variable for the file name and a method to write a
line to that file. If you want to use the mixin class, all you need to do is
inherit from it.

Once you’re in the child class, all of the mixin’s methods and variables
become available, and you can override them if you need to.

220 CHAPTER 7 Sufficiently advanced technology…
Using simple file logging like this works well, but the following listing
features a slightly more involved version that uses Python’s built-in
logging module. The advantage of this version is that, as your program
grows, you can take advantage of some of the different logging meth-
ods—you can send it to your system’s logs, or automatically roll over to
a new file if the old one gets too big.

Listing 7.2 Using Python’s logging module

import logging

class Loggable(object):
 """Mixin class to add logging."""

 def __init__(self,
 log_file_name = 'log.txt',
 log_level = logging.INFO,
 log_name = 'MyApp'):
 self.log_file_name = log_file_name
 self.log_level = log_level
 self.log_name = log_name
 self.logger = self._get_logger()

 def _get_logger(self):
 logger = logging.getLogger(self.log_name)
 logger.setLevel(self.log_level)

 handler = logging.FileHandler(
 self.log_file_name)
 logger.addHandler(handler)

 formatter = logging.Formatter(
 "%(asctime)s: %(name)s - "
 "%(levelname)s - %(message)s")
 handler.setFormatter(formatter)

 return logger

 def log(self, log_line, severity=None):
 self.logger.log(severity or self.log_level,
 log_line)

 def warn(self, log_line):
 self.logger.warn(log_line)
 ...

Initialize
Loggable

b

Create Logger
object

c

Logging
methods

d

Object orientation 221
class MyClass(Loggable):
 """A class that you've written."""

 def __init__(self):
 Loggable.__init__(self,
 log_file_name = 'log2.txt')
 #super(MyClass, self).__init__(
 # log_file_name = 'log2.txt')

 def do_something(self):
 print "Doing something!"
 self.log("I did something!")
 self.log("Some debugging info", logging.DEBUG)
 self.warn("Something bad happened!")

test = MyClass()
test.do_something()

Rather than rely on class methods, it’s bet-
ter to instantiate them properly from an
__init__ method b. This way, you can take
care of any extra initialization you need to
do, or require that variables be specified on
creation.

c is all the setup you need to do when cre-
ating a logger from Python’s logging mod-
ule. First, you create a logger instance.
Then, you can add a handler to it, to specify what happens to log entries,
and a formatter to that handler, to tell it how to write out log lines.

Your mixin class also needs methods so you can log d. One option is to
use a generic log method that you give a severity when you call it, but a
cleaner way is to use the logger’s methods like debug, info, warn, error,
and critical.

Now that you’re using __init__ in Loggable, you’ll need to find a way to
call it e. There are two ways. The first is to call each parent class
explicitly by using its name and method directly, but passing in self.
The second is to use Python’s super() method, which finds the method

How do you call
Loggable.__
init__()?

e

Create class
and logging
methods

f

GREG, PITR—WE'VE DECIDED
THAT YOU PROGRAMMERS
NEED A NEW, BIGGER OFFICE.
ONE WITH A DOOR!

222 CHAPTER 7 Sufficiently advanced technology…
in the next parent class. In this case, they do much the same thing, but
super() properly handles the case where you have a common grandpar-
ent class. See the next section for potential problems when using this
method, and the sample code in super_test.py in the code tarball for
this book.

Once all that’s done, you can use the logging class exactly the same
way you did in the previous version f. Note that you’ve also exposed
the logger object itself, so if you need to, you can call its methods
directly.

super() and friends
Using the super() method with diamond inheritance (see figure 7.1) can
be fraught with peril—the main reason being that, when you use it
with common methods such as __init__, you’re not guaranteed which
class’s __init__ method you’ll be calling. Each will be called, but they
could be in any order. To cover for these cases, it helps to remember the
following things when using super():

❂ Use **kwargs, avoid using plain arguments, and always pass all the
arguments you receive to any parent methods. Other parent meth-
ods might not have the same number or type of arguments as the
subclass, particularly when calling __init__.

❂ If one of your classes uses super(), then they all should. Being incon-
sistent means an __init__ method might not be called or might be
called twice.

Figure 7.1
A diamond inheritance structure

Customizing classes 223
❂ You don’t necessarily need to use super() if you can design your pro-
grams to avoid diamond inheritance—that is, without parent classes
sharing a grandparent.

Now that you have a better sense of how classes should be organized
and what to watch out for when using multiple inheritance, let’s take a
look at some of the other things you can do with classes.

Customizing classes
Python gives you a great deal of power when it comes to defining how
the methods in your class work and which methods are called. Not only
do you have access to all of Python’s introspection power, but you can
also decide to use different methods at runtime—even methods that
don’t exist.

When Python looks up an attribute or method on a class (for example,
self.log_file_name or test.do_something() in listing 7.2), it will look up
that value in a dictionary called __dict__. __dict__ stores all the user-
defined values for a class and is used for most lookups, but it’s possible
to override it at several points.

Python provides a number of possible ways to customize attribute
access by overriding some built-in methods. You do so in the same way
you’ve been using __init__ to initialize classes.

__getattr__
__getattr__ is used to provide methods or attributes when they’re not
found in the class or a parent class. You can use this to catch missing
methods or write wrappers around other classes or programs. The fol-
lowing listing shows how you can use the __getattr__ method to over-
ride the way Python looks up missing attributes.

Listing 7.3 Using __getattr__

class TestGetAttr(object):

 def __getattr__(self, name):
 print "Attribute '%s' not found!" % name
 return 42

224 CHAPTER 7 Sufficiently advanced technology…
test_class = TestGetAttr()
print test_class.something

test_class.something = 43
print test_class.some-
thing

The __getattr__ method takes one argument, the attribute name, and
returns what the value should be. In this case, you print the name and
then return a default value, but you could do anything—log to a file, call
an API, or hand over the responsibility to another class or function.

Now when you try to access a value that doesn’t exist in the class,
__getattr__ will step in and return your default value.

Because __getattr__ is only called when the attribute isn’t found, set-
ting an attribute first means that __getattr__ won’t be run.

Now that you can get your attributes, let’s also learn how to set them.

__setattr__
__setattr__ is used to change the way that Python alters attributes or
methods. You can intercept calls to your class, log them, or do what-
ever you need to. The following listing shows a simple way to catch
attribute access and redirect it to a different dictionary instead of
inserting it into the default __dict__.

Listing 7.4 Using __setattr__

class TestSetAttr(object):

 def __init__(self):
 self.__dict__['things'] = {}

 def __setattr__(self, name, value):
 print "Setting '%s' to '%s'" % (name, value)
 self.things[name] = value

 def __getattr__(self, name):
 try:
 return self.things[name]

Set up replacement
dictionary

b

__setattr__
inserts into
things

c

__getattr__ reads
from things

d

Customizing classes 225
 except KeyError:
 raise AttributeError(
 "'%s' object has no attribute '%s'" %
 (self.__class__.__name__, name))

test_class2 = TestSetAttr()
test_class2.something = 42
print test_class2.something
print test_class2.things
print test_class2.something_else

b is where you set things, which will store all
the attributes you’ll set. One catch when using
__setattr__ is that you can’t directly set some-
thing in the class, because that will result in
__setattr__ calling itself and looping until
Python runs out of recursion room. You’ll
need to set the value in the class’s __dict__
attribute directly, as you do here.

Once things is set in __dict__, though, you can read from it normally,
because __getattr__ won’t be called when you access self.things.
__setattr__ takes a name and a value, and in this case you’re inserting
the value into the things dictionary c instead of into the class.

This version of __getattr__ looks in the self.things dictionary for your
value d. If it’s not there, you raise an AttributeError to mimic Python’s
normal handling.

The class you’ve written behaves exactly like a normal class, except
you have close to complete control over how its methods and attributes
are read e. If you want to override everything, though, you’ll need to
use __getattribute__.

__getattribute__
Another approach is to override all method access entirely. If
__getattribute__ exists in your class, it will be called for all method and
attribute access, right?

d

Use classe

GIFT OF
PEOPLEWARE
LAST XMAS IS
ALREADY PAYINK
DIVIDENDS!

ME? A PROGRAMMER?

226 CHAPTER 7 Sufficiently advanced technology…
Well, that’s sort of true. Strictly speaking, even __getattribute__

doesn’t override everything. There are still a number of methods, such
as __len__ and __init__, which are accessed directly by Python and
won’t be overridden. But everything else, even __dict__, goes through
__getattribute__. This works, but in practice it means you’ll have a
hard time getting to any of your attributes. If you try something like
self.thing, then you’ll end up in an infinite __getattribute__ loop.

How do you fix this? __getattribute__ won’t be much use if you can’t
access the real variables. The answer is to use a different version of
__getattribute__: the one you would normally be using if you hadn’t
just overridden it. The easiest way to get to a fresh __getattribute__ is
via the base object class, and feed in self as the instance. The following
listing shows you how.

Listing 7.5 Using __getattribute__

class TestGetAttribute(object):

 def __init__(self, things=None):
 my_dict = object.__getattribute__(
 self, '__dict__')
 if not things:
 my_dict['things'] = {}
 else:
 my_dict['things'] = things

 def __setattr__(self, name, value):
 print "Setting '%s' to '%s'" % (name, value)
 my_dict = get_real_attr(self, '__dict__')
 my_dict['things'][name] = value

 def __getattribute__(self, name):
 try:
 my_dict = get_real_attr(self, '__dict__')
 return my_dict['things'][name]
 except KeyError:
 my_class = get_real_attr(self, '__class__')
 raise AttributeError(
 "'%s' object has no attribute '%s'" %
 (my_class.__name__, name))

Borrow object’s
getattribute

b

Easier wayc

_getattribute__
d

Customizing classes 227
YOU'LL NEED TO
CLEAR IT OUT,
THOUGH—IT'S WHERE
THE BOSS STORES
HIS OLD EMAILS.

def get_real_attr(instance, name):
 return object.__getattribute__(instance, name)

test_class3 = TestGetAttribute({'foo': 'bar'})
print object.__getattribute__(test_class3, '__dict__')
test_class3.something = 43
print object.__getattribute__(test_class3, '__dict__')
print test_class3.foo

Python methods are functions, so it’s relatively easy to call back to
object. The only thing you need to do is to pass it self as the instance,
and the name of the attribute you want b. I’ve also updated __init__ so
you can pass in values to set up the internal things dictionary.

To tidy up the calls to object, you can define a helper function to make
the call for you. c is a version of __setattr__ that uses it.

Other than the fact that you need to use object to get the dictionary
you’re editing, the call to __getattribute__ d is much like the one to
__getattr__; it receives a name and returns a value, converting KeyError
to AttributeError along the way.

After you’ve been through all that, your class is ready to be used e. It
follows the same usage pattern, but you can now hide the things dic-
tionary from casual inspection (it’s still visible if you use the old
object.__getattribute__, though).

If using __getattribute__ seems like a lot of work, don’t worry. Most of
the time, you won’t need to use it. But many third-party libraries make
use of it in addition to __getattr__ and __setattr__. If you need to use
them, they can save a lot of work and make
your class interfaces a lot more Pythonic and
easy to use.

Properties
A more specific method for customizing your
attributes is to use Python’s property function.
Whereas __getattr__ and __getattribute__

work across the entire class, property allows

Easier wayc

Use classe

228 CHAPTER 7 Sufficiently advanced technology…
you to specify functions, commonly known as getters and setters, that are
responsible for controlling access to an attribute or method.

Properties solve a common programming problem: how to customize
attribute access without altering your class’s external interface. With-
out properties, it’s standard practice to use getters and setters for every
attribute, even if you don’t need them, due to the difficulty in switching
from attribute access to using a function. Python allows you to do this
without having to change everything that uses your class. The next list-
ing shows how you might create an integer attribute that can only be
set to an integer from 0 to 31.

Listing 7.6 Using properties

class TestProperty(object):

 def __init__(self, x):
 self.x = x

 def get_x(self):
 return self._x

 def set_x(self, value):
 if not (type(value) == int and 0 <= value < 32):
 raise ValueError("TestProperty.x "
 "must be an integer from 0 to 31")
 self._x = value

 x = property(get_x, set_x)

test = TestProperty(10)
print test.x
test.x = 11
test.x += 1
assert test.x == 12
print test.x

try:
 test2 = TestProperty(42)
except ValueError:
 # ValueError: TestProperty.x must be
 # an integer between 0 and 32
 print "test2 not set to 42"

Class setupb

x is really _xc

Set _xd

Define
property

e

Interfacef

Bounds
checking

g

Customizing classes 229
The initial setup b looks similar to any class’s __init__ function. Some
introductions set the hidden variable directly; but I prefer it this way,
because it means you can’t have x set to something out of bounds.

c is your getter, which returns the value of _x—although you could
convert it to whatever you liked, or even return None.

d is your setter, which first checks to make sure the value is an integer
from 0 to 31. If it isn’t, then you raise a ValueError.

Finally, you set x on the class to be a property e and pass it the getter
and setter functions, get_x and set_x. Note that you can also define a
read-only property if you only pass a getter. If you then try to set x,
you’ll get AttributeError: can’t set attribute.

If you didn’t know it was a property, you wouldn’t be able to tell by
using the class. The interface f for your defined x is exactly the same
as if it were a regular attribute.

The only exception to the interface is the one you’ve included. If you
try to set the value of test2.x to something out of bounds, you’ll get an
exception g.

In practice, you’ll want to use the methods that are most suited for your
use case. Some situations, such as logging, wrapping a library, and
security checking, call for __getattribute__ or __getattr__, but if all you
need to do is customize a few specific methods, then properties are nor-
mally the best way to do it.

Emulating other types
One other common practice is to write
classes to emulate certain types, such as
lists or dictionaries. If you have a class
that is supposed to behave similarly to a
list or a number, it helps when the class
behaves in exactly the same way, support-
ing the same methods and raising the
same exceptions when you misuse it.

UH … EMAILS?

230 CHAPTER 7 Sufficiently advanced technology…
There are a number of methods you can define that Python will use
when you use your class in certain ways. For example, if you need two
instances of your class to compare as equal, you can define an __eq__
method that takes two objects and returns True if they should be treated
as equal.

The next listing provides an example: here, two methods are added to
the previous class so you can compare them to each other. I’ve
renamed the class LittleNumber, to make its purpose clearer (you’ll also
want to rename the class name in the exception).

Listing 7.7 Extending properties

class LittleNumber(object):
 ...

 def __eq__(self, other):
 return self.x == other.x

 def __lt__(self, other):
 return self.x < other.x

 def __add__(self, other):
 try:
 if type(other) == int:
 return LittleNumber(self.x + other)
 elif type(other) == LittleNumber:
 return LittleNumber(self.x + other.x)
 else:
 return NotImplemented
 except ValueError:
 raise ValueError(
 "Sum of %d and %d is out of bounds "
 "for LittleNumber!" % (self.x, other.x))

 def __str__(self):
 return "<LittleNumber: %d>" % self.x

one = LittleNumber(1)
two = LittleNumber(2)
print one == one
print not one == two

__eq__b

__lt__c

Add valuesd

Use classe

Customizing classes 231
print one != two
print one < two
print two > one
print not one > two
print two >= one
print two >= two

onetoo = LittleNumber(1)
print onetoo == one
print not onetoo == two

print onetoo + one
print one
print onetoo + one == two

This method b checks the value against the other one you’re given.
Whenever Python encounters a == b, it will call a.__eq__(b) to figure
out what the real value should be.

In the same way as __eq__, __lt__ c will compare two values and
return True if the current instance is less than the one passed in.

__add__ is also useful and should return the result of adding something
to the class d. This case is somewhat more complex—you return a new
LittleNumber if you’re passed an integer or another LittleNumber, but
you need to catch two cases: where the value goes out of bounds and
where someone passes you a different type, such as a string. If you
can’t (or won’t) handle a particular case, you can return NotImplemented,
and Python will raise a TypeError. Again, a more understandable error
message here will save you a lot of debugging further down the track.

Believe it or not, that’s all you need to get your class to behave some-
thing like an integer e. Note that you don’t necessarily need to imple-
ment all of the mirror functions like __gt__ and __ne__, because Python
will try their opposites if they’re not defined. All of the expressions
here should return True.

Here’s a table of some of the most common methods you’ll want to
override if you’re providing a class similar to some of the built-in
types.

Use classe

232 CHAPTER 7 Sufficiently advanced technology…
These are by no means the only methods you can set, but they’re by far
the most common, unless you’re doing something exotic. Let’s look at a
practical example of how these methods are used in practice, by exam-
ining Python’s generators and iterators.

Table 7.1 Common methods you may want to override

Type Methods Description

Most types __eq__(self, other)
__ne__(self, other)
__gt__(self, other)
__lt__(self, other)
__le__(self, other)
__ge__(self, other)

Tests for equality and relative value,
==, !=, >, <, <=, and >=.

__str__(self)
__repr__(self)

Returns a printable version of the class
and a printable representation of the
class.

Dictionary,
list, or other
container

__getitem__(self, key)
__setitem__(self, key, value)
__delitem__(self, key)

Gets, sets, and deletes an entry.

keys(self) Returns a list of keys (dictionaries only).

__len__(self) Returns the number of entries.

__iter__(self) and
iterkeys(self)

If your object is large, you might want to
consider using these methods to return an
iterator (see the next section for details).

__contains__(self, value) The value of an entry (of a list or set), or a
key (of a dictionary).

Numbers __add__(self, other)
__sub__(self, other)
__mul__(self, other)
__floordiv__(self, other)
__pow__(self, other)

Returns the result of adding, multiplying,
dividing, and raising to a power.

__int__(self)
__float__(self)

Converts an instance of a class into an
integer or float.

Generators and iterators 233
Generators and iterators
Generators are one of Python’s best-kept secrets after list comprehen-
sions, and they’re worth looking into in more detail. They’re intended
to solve the problem of storing state in between function calls, but
they’re also useful for cases where you need to deal with large amounts
of data, perhaps too large to fit easily in memory.

First we’ll look at iterators, Python’s method for dealing with looping
objects. Then we’ll look at how you can make use of generators to
quickly deal with large amounts of data in log files.

Iterators
You’ve been using iterators throughout the book, right from chapter 2,
because every time you use a for loop or a list comprehension, iterators
have been acting behind the scenes. You don’t need to know how itera-
tors work in order to make use of them, but they’re useful for under-
standing how generators operate.

NOTE Iterators are a common solution to a frequent programming task: you
have a bunch of things—now how do you do something to each one
of them? The trick is that most Python collections, be they lists, files,
or sets, can be used as iterators.

The interface of an iterator is straightforward. It has a .next() method,
which you call over and over again to get each value in the sequence.
Once all the values are gone, the iterator raises a StopIteration excep-
tion, which tells Python to stop looping. In practice, using an iterator
looks something like figure 7.2.

Figure 7.2
The iterator protocol:
once you run
through three
iterations, it stops.

234 CHAPTER 7 Sufficiently advanced technology…
When you ask Python to iterate over an object such as a list, the first
thing it does is call iter(object), which calls that object’s __iter__
method and expects to get an iterator object. You don’t need to use the
__iter__ call directly unless you’re creating your own custom iterator.
In that case, you’ll need to implement both the __iter__ and the next()
methods yourself. This listing shows how to use the iter function to
create an iterator from any iterable Python object.

Listing 7.8 Using an iterator the hard way

>>> my_list = [1, 2, 3]
>>> foo = iter(my_list)
>>> foo
<listiterator object at 0x8b3fbec>
>>> foo.next()
1
>>> foo.next()
2
>>> foo.next()
3
>>> foo.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

You use the iter() function to create an iterator object for my_list b. If
you print it, you can see that’s it’s a new type of object—a listiterator—
not a list. When you call the next() method of your iterator c, it returns
the values from the list: 1, 2, and 3.

Once you’ve run out of values d, the iterator will
raise a StopIteration exception to signal that the
iterator has finished.

The iterator protocol is simple, but it’s a funda-
mental underpinning of the looping and iteration
mechanisms in Python. Let’s have a look at how
generators use this protocol to make your pro-
gramming life easier.

Create iteratorb

Iterate over itc

No more valuesd

HERE YOU GO. REARRANGE
THE OFFICE HOWEVER YOU
LIKE—JUST DON'T LOSE ANY
OF THE BOSS'S EMAILS.

Generators and iterators 235
Generators
Generators are similar to iterators. They use exactly the same .next()
method, but they’re easier to create and to understand. Generators are
defined exactly like functions, except they use a yield statement instead
of a return. Here’s a simple example of a generator, which counts down
to zero from a specified value:

def counter(value):
 print "Starting at", value
 while value > 0:
 yield value
 value -= 1

Let’s look at this one step at a time.

Generators start out like functions, including the way you give them
arguments b. We’re also including a debugging string here, so you can
follow how the generator is called.

Generators need some way to return values repeatedly, so usually
you’ll see a loop c within the body.

The yield statement d will stop your function and return the value you
give it.

Finally, after each call, Python will return into the generator via the
next() method. You subtract 1 from the value each time, until it’s no
longer greater than zero, and then the generator will finish with a
StopIteration exception.

That’s only half of the puzzle, though—you still need to be able to call
your generator. The following listing shows how you can do that, by
creating a counter and then using it in a for loop. You can also call it
directly with a line like for x in counter(5).

Listing 7.9 Using your counter generator

>>> foo = counter(5)
>>> foo
<generator object at 0x896054c>
>>> for x in foo:
... print x

Definitionb

Loopingc
Yieldd

Create counter
generator

b

Use generator
in loop

c

236 CHAPTER 7 Sufficiently advanced technology…
...
counting down from 5
5
4
3
2
1
>>>

First, you create the counter b. Even though it looks like a function, it
doesn’t start right away; instead, it returns a generator object.

You can use the generator object in a loop like c. Python will call the
generator repeatedly until it runs out of values or the generator exits
normally.

d is what the loop prints out. The first line is the initial debug from the
generator, and the other lines are the results it returns.

There’s one last mechanism you should know, which can save you a lot
of time setting up generator functions.

Generator expressions
Generator expressions are a lot like list comprehensions, except that,
behind the scenes, they use generators rather than building a whole
list. Try running the following expressions in a Python prompt:

foo = [x**2 for x in range(100000000)]
bar = (x**2 for x in range(100000000))

Depending on your computer, the list comprehension will either take a
long time to return or else raise a MemoryError. That’s because it’s creat-
ing a hundred million results and inserting them into a list.

This generator, on the other hand, will return immediately. It hasn’t
created any results at all—it will only do that if you try to iterate over
bar. If you break out of that loop after 10 results, then the other
99,999,990 values won’t need to be calculated.

If generators and iterators are so great, why would you ever use lists or
list comprehensions? They’re still useful if you want to do anything else

Output from
generator

d

Using generators 237
with your data other than loop over it. If you want to access your val-
ues in a random order—say the fourth value, then the second, then the
eighteenth—then your generators won’t help because they access val-
ues linearly from the first through to the one millionth. Similarly, if you
need to add extra values to your list or modify them in some way, then
generators won’t help—you’ll need a list.

Now that you know how generators work, let’s look at where they can
be useful when you write your programs.

Using generators
As you learned at the start of the chapter, you can use generators in
cases where reading in a large amount of data would slow your pro-
gram down or make it run out of memory and crash.

NOTE In case you haven’t realized it yet, Python is an intensely pragmatic
language. Every feature has gone through a rigorous community-
based vetting process known as a Python Enhancement Proposal
(PEP), so there will be strong use cases for each feature. You can
read more about PEPs at www.python.org/dev/peps/pep-0001/.

A common problem that involves a large amount of data is the process-
ing of files. If you have a few hundred log files and need to find out
which ones have a certain string in them, or collate data across several
website directories, then it can be hard to make sense of what’s hap-
pening within a reasonable amount of time. Let’s take a look at a few
simple generators that can make your life easier if you run into this sort
of problem.

Reading files
One of the areas where Python makes use of
generators is in the file-processing sections of
the os module. os.walk is a good example—it
allows you to iterate recursively through
directories, building lists of the files and sub-
directories within them, but because it builds
the list as it goes, it’s nice and fast. You’ve

I'LL GO GET THE SNOW
SHOVEL.

NO, GREGORY. I AM HAVINK
BETTER IDEA …

238 CHAPTER 7 Sufficiently advanced technology…
already encountered os.walk in chapter 3, when you were building a
program to compare files. A typical use is shown in the following list-
ing, which is a program to read a directory and return the files that are
of a certain type—in this case, .log files.

Listing 7.10 os.walk revisited

import os

dir_name = '/var/log'
file_type = '.log'

for path, dirs, files in os.walk(dir_name):
 print path
 print dirs
 print [f for f in files if f.endswith(file_type)]
 print '-' * 42

First, you specify your directory and the file type you want to search
for b. os.walk returns a generator you can use to iterate over the direc-
tory c. It will give you the path of the directory, as well as any subdi-
rectories and files within it.

You assume that anything that ends in .log is a log file d. Depending
on your specific situation, an assumption like this may or may not be
warranted, but because you will, in practice, have control of the web
server, you can add the .log part if you need to.

When you run the program in listing 7.10, it will output something like
the following. Each section contains the directory you’re iterating over
and then its subdirectories and the log files within the current directory.

Listing 7.11 The output from os.walk

/var/log
['landscape', 'lighttpd', 'dist-upgrade', 'apparmor', ...]
['wpa_supplicant.log', 'lpr.log', 'user.log', ...]
--
/var/log/landscape
[]
['sysinfo.log']

Directory and
file type

b

Iterate using
os.walk

c

Log filesd

Using generators 239
--
/var/log/dist-upgrade
[]
['main.log', 'apt-term.log', 'xorg_fix_intrepid.log', ...]
--
...

You can use some generators to make your code a little easier to work
with. As an example, let’s say you’re monitoring your web server for
errors, so you want to find out which of your log files have the word
error in them. You’d also like to print out the line itself so you can track
down what’s going on if there are any errors. Here are three generators
that will help you do that.

Listing 7.12 Generators to work through a directory

import os

def log_files(dir_name, file_type):
 if not os.path.exists(dir_name):
 raise ValueError(dir_name + " not found!")
 if not os.path.isdir(dir_name):
 raise ValueError(dir_name + " is not a directory!")
 for path, dirs, files in os.walk(dir_name):
 log_files = [f for f in files
 if f.endswith(file_type)]
 for each_file in log_files:
 yield os.path.join(path, each_file)

def log_lines(dir_name, file_type):
 for each_file in log_files(dir_name, file_type):
 for each_line in file(each_file).readlines():
 yield (each_file, each_line.strip())

def list_errors(dir_name, file_type):
 return (each_file + ': ' + each_line.strip()
 for each_file, each_line in
 log_lines(dir_name, file_type)
 if 'error' in each_line.lower())

if __name__ == '__main__':

Wrap
os.walk in
generator

b

Generator for
each line
of files

c

Filter out
non-error
lines

d

240 CHAPTER 7 Sufficiently advanced technology…
 dir_name = '/var/log'
 file_type = '.log'
 for each_file in log_files(dir_name, file_type):
 print each_file
 print
 for each_error in list_errors(dir_name, file_type):
 print each_error

This is the same code you saw in listing 7.10,
but wrapped in a generator function b. One
issue with os.walk is that it won’t raise an
exception if you give it a nonexistent direc-
tory or something that’s not a directory, so
you catch both of those cases before you
start.

Now that you have log_files as a generator,
you can use it to build further generators.

log_lines reads each file in turn and yields successive lines of each log
file, along with the name of the file c.

This generator builds on the log_lines generator to return only those
lines that have the word error in them d. Notice also that you’re return-
ing a generator comprehension instead of using yield. This is an alter-
native way of doing things, one that can make sense for small
generators, or where the values you’re returning fit the generator com-
prehension style well.

Once you’ve done all the hard work of creating the generators e, call-
ing them is easy—give them the directory and file type, and do what
you need to with each result.

Now you can find all the error lines in all the log files in a certain direc-
tory. Returning the lines with error in them isn’t particularly useful,
though. What if you had an error that didn’t contain the word error?
Instead, it could contain something like Process #3456 out of memory!
There are all sorts of conditions you’d like to check in your log files, so
you’ll need something a little more powerful.

Create
generators

e

MORE DUCT TAPE,
GREGORY. THE
SCANNER WILL NOT
HOLD ITSELF …

THERE! THAT OUGHT
TO DO IT.

Using generators 241
Getting to grips with your log lines
You’d like to have a lot more control over the data in your log files,
including being able to filter by any field or combination of fields. In
practice, this means you’ll need to break the data from each line in your
log file up and interpret the bits. The following listing shows some
examples from an old Apache access log I had lying around.

Listing 7.13 Apache log lines

124.150.110.226 - - [26/Jun/2008:06:48:29 +0000] "GET / HTTP/1.1" 200 99
"-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.14) Gecko/20080419
 Ubuntu/8.04 (hardy) Firefox/2.0.0.14"

66.249.70.40 - - [26/Jun/2008:08:41:18 +0000] "GET /robots.txt HTTP/1.1"
404 148 "-" "Mozilla/5.0 (compatible; Googlebot/2.1;
 +http://www.google.com/bot.html)"

65.55.211.90 - - [27/Jun/2008:23:33:52 +0000] "GET /robots.txt HTTP/1.1"
404 148 "-" "msnbot/1.1 (+http://search.msn.com/msnbot.htm)"

These lines are in Apache’s Combined Log
Format. Most of the fields are self explana-
tory—IP address is the computer making the
request, referer is the URL of the page (if any)
that was used to reach the page, HTTP request
contains the path the user was requesting, size
is the number of bytes transferred as a result of
the request, and so on.

In listing 7.13, you should be able to see three separate requests: one
from Firefox running under Linux, one from Google’s search spider,

NOW I'LL JUST
SWITCH THE
SHREDDER ON AND …

VRMMMM!
ZZZZZZZZZZZZ!

Figure 7.3 An Apache log line

242 CHAPTER 7 Sufficiently advanced technology…
and one from Microsoft’s MSN. As you learned in chapter 5, the user
agent string is supplied by the client and so can’t be trusted, but in
most cases it’s accurate. The HTTP request part is the full command
sent to the web server, so it includes the type of request (usually GET
or POST) and the HTTP version as well as the path requested.

Pulling out the bits
That explains what the separate fields mean, but how are you going to
get them? You could split on quotes or spaces, but it’s possible they’ll
appear in odd places and throw the split function off track. For exam-
ple, there are spaces in both the user-agent and the date-time string.
It’s also possible to have quotes within the user agent string and the
URL, although they’re supposed to be URL encoded.

TIP My rule of thumb is to use Python’s string methods, like endswith()
and .split(), when looking for simple things—but I find they can
get unwieldy when you’re trying to match against more complicated
patterns, like the Apache log line.

In cases like this, it’s usually easier to break out the big guns right at
the start, rather than experiment with splitting the fields on various
characters and trying to make sure it will work for everything. In this
case, the fastest solution is probably to use a parsing tool called a regu-
lar expression, which is useful for reading single lines like this and
breaking them down into chunks.

Regular expressions work by using special matching characters to des-
ignate particular types of character, such as spaces, digits, the letters a
to z, A to Z, and so on. A full description of the gory details of regular
expressions is out of the scope of this book, but the handy quick refer-
ence in table 7.2 will get you started.

Table 7.2 A regular expression cheat sheet

Expression Definition

\ Regular expressions use a backslash for special characters. If you need to
match an actual backslash, then you can use two backslashes together, \\.

\w A “word” character: a–z, A–Z, 0–9, and a few others, such as underscore.

Using generators 243
The regular-expression string you’re going to use to match the Apache
log lines looks like this:

log_format = (r'(\S+) (\S+) (\S+) \[(.*?)\] '
 r'"(\S+) (\S+) (\S+)" (\S+) (\S+) '
 r'"(.+)" "(.+)"')

\W A non-word character—the opposite of \w.

\s A whitespace character, such as space or tab.

\S A non-whitespace character.

\d A digit character, 0–9.

. Any character at all.

+ Extends a special character to match one or more times. \w+ will match at least
one word character, but could match 20.

* Like +, but matches zero or more instead of one or more.

? You can use this after a * or + wildcard search to make them less “greedy.”
.*? will match the minimum it can, rather than as much as possible.

() You can put brackets around a set of characters and pull them out later using
the .groups() method of the match object.

[] You can put characters between square brackets to match just those. [aeiou],
for example, matches vowels.

r'' A string preceded with r is a raw string, and Python won't escape any backs-
lashes within it. For example, "line 1\nline 2" will normally be split over
multiple lines, because Python will interpret \n as a return, but r"line
1\nline 2" won’t.

match vs.
search

Two main methods are used on the regular expression object. match will try to
match from the start of a line, but search will look at the whole string. Normally,
you’ll want to use search, unless you know you want to match at the start.

Table 7.2 A regular expression cheat sheet (continued)

Expression Definition

244 CHAPTER 7 Sufficiently advanced technology…
It looks complicated, but it’s not so hard if you break it down and look
at the individual parts:

❂ Most of the fields are groups of alphanumeric characters separated
by spaces, so you can use (\S+) to match them. They’re surrounded
by brackets so you can access the fields after they’ve been matched.
Each part corresponds to one field in the Apache log line.

❂ The date-and-time field is the only one with square brackets around
it, so you can also match that easily and pull out everything, includ-
ing spaces, with a wildcard match. Notice that you escape the [and]
by putting a backslash in front of them so the regular expression
treats them as normal characters.

❂ The referer and the user agent are also
matched using wildcards, because they
might have quotes or spaces in them.

❂ The whole string is wrapped in brackets
so you can break it over multiple strings
but still have Python consider them as a
single string.

Now that you have a rough idea of how you
can use regular expressions to match the
fields in a log line, let’s look at how you write the Python functions and
generators to make sense of the overall scope of your log files. The fol-
lowing listing extends listing 7.7 to add new Apache-related functions
and generators.

Listing 7.14 Parsing Apache log lines

import re
...

apache_log_headers = ['host', 'client_id', 'user_id',
 'datetime', 'method', 'request', 'http_proto',
 'status', 'size', 'referrer', 'user_agent']
log_format = (r'(\S+) (\S+) (\S+) \[(.*?)\] '
 r'"(\S+) (\S+) (\S+)" (\S+) (\S+) '
 r'"(.+)" "(.+)"')
log_regexp = re.compile(log_format)

IS WORKINK! TIME
TO GO HOME!

SCHLOOORP!
VRMMMM!
ZZZZAARRTT!

Set upb

Using generators 245
def parse_apache(line):
 log_split = log_regexp.match(line)
 if not log_split:
 print "Line didn't match!", line
 return {}
 log_split = log_split.groups()

 result = dict(zip(apache_log_headers, log_split))
 result['status'] = int(result['status'])
 if result['size'].isdigit():
 result['size'] = int(result['size'])
 else:
 result['size'] = 0
 return result

def apache_lines(dir_name, file_type):
 return (parse_apache(line)
 for line in log_lines(dir_name, file_type))

...
if __name__ == '__main__':
 for each_line in log_lines('/var/log/apache2', '.log'):
 print each_line
 print parse_apache(each_line)

 print sum((each_line['size']
 for each_line in
 apache_lines('/var/log/apache2', '.log')
 if line.get('status', 0) == 200))

Before we get into the functions proper, it’s a good idea to set up some
of the variables that you’ll need for your regular expressions b.
apache_log_headers is a list of names for all of the fields you’ll see in your
log file, and log_format is the regular expression string we looked at
earlier. You also compile log_format into log_regexp so your matching is
faster when you’re parsing the log line.

First, you set up a function that is responsible for parsing a single line
c. Here’s where you use the compiled regular expression object
against the line you’ve been passed, using the match method. If it
matches, log_split will be a match object, and you can call the

Parse apache
line

c

Convert parsed
line into
dictionary

d

Generator
for line
parser

e

Use new
generator

f

246 CHAPTER 7 Sufficiently advanced technology…
.groups() method to extract the parts you matched with brackets. If
there’s no match, log_split will be None, which means you have a line
that is probably illegal. There’s not much you can do in this case, so
you’ll return an empty dictionary.

If your function is going to be widely useful, you’ll need to easily access
different parts of the log line. The easiest way to do that is to put all of
the fields into a dictionary d, so you can type line['user_agent'] to
access the user-agent string. A fast way to do that is by using Python’s
built-in zip function, which joins the fields together with the list of
headers. It creates a sequence of tuples (identical to the results of an
.items() call on a dictionary), and then you can cast that to a dictionary
with the dict() function. Finally, you turn some of the results into inte-
gers to make them easier to deal with later.

Now that you have your line-parsing function, you can add a generator
to call it for each line of the log file e.

If you have more information about what’s in the line, you can search
for more detail in your logs f. Here you’re adding up the total size of
the requests, but only where the request is successful (a status code of
200). You could also do things like exclude the Google, MSN, and
Yahoo spiders to get “real” web traffic, see what volume of traffic is
referred to you by Google, or add up individual IP addresses to get an
idea of how many unique visitors you have.

When you run the program in listing 7.14, you should see a list of lines
and their parsed representation, with a number at the end. That’s the
number of bytes that were transferred in successful transactions. Your
program is complete, and you can start adding to it if there are particu-
lar features you’d like to add.

Functional programming
As you become more familiar with programming, you’ll start to find
that certain features are more or less error-prone than others. For
example, if your program makes use of a lot of shared state or global
variables, then you might find that a lot of your errors tend to be

Functional programming 247
around managing that state and tracking down which !$%@% function
is replacing all your values with None.

It makes sense to try to find ways to design your program that don’t
involve error-prone features, and which are clearer and easier to
understand. In turn, you’ll be able to write larger programs with more
features, and write them faster than you could before.

One of those strategies is called functional programming. Its main crite-
rion is that it uses functions that have no side effects—their output is
entirely determined by their input, and they don’t modify anything out-
side the function. If a function is written like this, it makes it much eas-
ier to reason about and test, because you only need to consider the
function by itself, not anything else.

Another feature of functional programming is
that functions are objects in their own right —
you can pass them as arguments to other func-
tions and store them in variables. This might
not seem particularly important, but it enables
a lot of functionality that would otherwise be
quite difficult to implement.

Side effects
Side effects refer to anything a function does that is outside its sphere of
control or that doesn’t relate to the value it returns. Modifying a global
variable or one that’s been passed in, writing to a file, and posting val-
ues to a URL are all examples of side effects. Functions should also
only rely on values that are passed in, not on anything outside the
function.

Map and filter
Once you know that functions are safe to run and aren’t going to do
anything weird, you can use them much more frequently—and for situ-
ations where you might not normally use functions.

Two common examples are map and filter. map takes a function and an
iterable object, like a list or generator, and returns a list with the result

NEXT MORNING …

BY NOW, EMAILS
SHOULD BE ALL
SHREDDED AND IN
BAGS.

248 CHAPTER 7 Sufficiently advanced technology…
of that function applied to each item in the iterable. filter, on the other
hand, takes an iterable function and returns only those items for which
the function returns True.

In the case of your log files, you might have code like this:

errors = map(extract_error, filter(is_error, log_file.readlines()))

Note that extract_error pulls the error text from a log line, and is_error
tells you whether the line is an error line. The result will be a new list of
the error messages from your log file, and the original list will be
untouched.

But, in practice, map and filter tend to make your programs less read-
able than using something like a list comprehension:

errors = [extract_error(line) for line in log_file.readlines()
 if is_error(line)]

A better use of functional programming is to use functions to change
the behavior of other functions and classes. A good example is the use
of decorators to change how functions and methods behave.

Passing and returning functions
Decorators are essentially wrappers around other functions. They take
a function as an argument, potentially with other arguments, and
return another function to call in its place. To use a decorator, you
place its name above the function you’re decorating, preceded by an @
symbol and any arguments you need afterward, like a function.

A real-world example is Django’s user_passes_test function, shown
next, which is used to create decorators like login_required.
login_required checks to see whether the user is logged in, and then
either returns the regular web page if they are (Django calls them
views) or redirects them to the site’s login page if they aren’t. It’s fairly
complex, but it uses most of the functional programming techniques
described so far, plus a few others. I think you’re ready to handle it,
and we’ll take it step by step.

Functional programming 249
Listing 7.15 Django's user_passes_test decorator

from functools import wraps

def user_passes_test(test_func, login_url=None,
 redirect_field_name=REDIRECT_FIELD_NAME):

 def decorator(view_func):
 @wraps(view_func,
 assigned=available_attrs(view_func))
 def _wrapped_view(request, *args, **kwargs):
 if test_func(request.user):
 return view_func(request,
 *args, **kwargs)
 ...
 from django.contrib.auth.views \
 import redirect_to_login
 return redirect_to_login(
 path, login_url, redirect_field_name)
 return _wrapped_view
 return decorator

def login_required(function=None,
 redirect_field_name=REDIRECT_FIELD_NAME,
 login_url=None):
 actual_decorator = user_passes_test(
 lambda u: u.is_authenticated(),
 login_url=login_url,
 redirect_field_name=redirect_field_name
)
 if function:
 return actual_decorator(function)
 return actual_decorator

@login_required
def top_secret_view(request, bunker_id, document_id):
 ...

@login_required(login_url="/super_secret/login")
def super_top_secret_view(request, bunker_id, document_id):
 ...

Functoolsd

User_passes_test
returns decorator

b

Decorator functionc

Functoolsd

If user is
logged in

e

If user isn’t
logged in

f

Decorator functionc
User_passes_test
returns decoratorb

login_required
decorator

g

Use
decorator

h

250 CHAPTER 7 Sufficiently advanced technology…
The first thing to notice is that user_passes_test
isn’t a decorator itself: it’s a function that returns
a function for you to use as a decorator b. This
is a common trick if you need a few similar func-
tions—pass in the bits that are different, and
have the function return something you can use.

c is the decorator itself. Remember, all it has to
do is return another function to use in place of
view_func.

If you’re planning on writing a few decorators, it’s worth looking into
functools d, a Python module that provides functional programming–
related classes and functions. wrap makes sure the original meta informa-
tion, such as the docstring and function name, are preserved in the final
decorator. Notice also that you’re using *args and **kwargs in your func-
tion, so the request’s arguments can be passed through to the real view.

e is the first part of the test. If test_func returns True, then the user is
logged in, and the decorator returns the results of calling the real view
with the same arguments and keyword arguments.

If they’re not logged in f, then you return a redirect to the login page
instead. Note that I’ve snipped out some extra code that figures out
path based on some Django internals—but that’s not necessary to
understand how the decorator works.

Next, you define the decorator g. You call user_passes_test with the
relevant arguments and get back a function you can use in place of the
real view. You also use lambda, which is a Python keyword you can use
to define small, one-line functions. If your function is much more com-
plex than this, though, it’s usually better to define a separate function
so you can name it and make it clearer.

Python will use the function returned by login_required in place of the
real view h, so your top_secret_view function will first check to make
sure the user is logged in before it returns any secret documents from
one of your bunkers. You can also include arguments if you want the
decorator to behave differently: in this case, by redirecting to a sepa-
rate login system at /super_secret/login.

HMM. VACUUM BAG
MUST BE JAMMED …

I'LL GO GET THE
SNOW SHOVEL.

Summary 251
The emphasis in most programming is on objects and how they inter-
act, but there’s still a place for well-written, functional programs. Any-
where you need some extra configuration, have common functionality
that can be extracted, or need to wrap something (without the over-
head of a whole class), you can use functional programming.

Where to from here?
From here, you can extend your log-parsing script to capture different
sorts of traffic. You could categorize log entries by type (visitor, logged-
in user, search engine, bot), which section of your site they use, or what
time of day they arrive. It’s also possible to track individuals by IP
address as they use your site, to work out how people make use of your
site or to determine what they’re looking for.

You can use Python’s generators in other types of programs, too. If you
were reading information from web pages rather than log files, you
could still use the same strategies to help you reduce the amount of
complexity in your code or the number of downloads you needed. Any
program that needs to reduce the amount of data it has to read in, or
that needs to call something repeatedly but still maintain state, can ben-
efit from using generators.

You should also keep an eye out for areas in your programs might ben-
efit from using some of the advanced functionality we looked at in this
chapter. The secret is that, when you use it, it should make your pro-
grams simpler to understand by hiding the difficult or repetitive parts
in a module or function. When you’re writing an application in Django,
you only need to include @login_required above each view you want
protected—you don’t need to explicitly check the request’s user or
redirect to a login page yourself.

Summary
In this chapter, you learned about the more advanced Python features,
like generators and decorators, and you saw how you can modify
classes’ behavior and bend them to your will.

You saw how to alter the way a class’s methods are looked up, catch a
missing method, and even swap out the normal method lookups and

252 CHAPTER 7 Sufficiently advanced technology…
use your own criteria. You saw how to transparently swap out attri-
butes for functions by using properties, and make your class behave
like an integer, list, or dictionary by defining special methods.

We also looked at how to use generators to help you organize the data
in your programs, and how they can reduce the memory required in
your program by only loading data as it’s needed, rather than ahead of
time in one big chunk. We covered how to link generators together to
help write more complicated programs, using an example where you
parsed information from an Apache log file. We also explored using the
regular expression module when you need a good way to match or
extract information from some text.

Finally, we discussed functional programming, and you saw how
Python supports it with map and filter, in addition to having functions
that can be assigned to a variable. Then we looked at decorators and
how they work in practice by defining and returning different functions.

We’ve covered most of Python’s features, so from here on, we’re going
to take a slightly different tack and look at some common libraries that
are used with Python. In the next chapter, we’ll examine Django, the
main web framework used with Python.

8
Django!

This chapter covers

• Writing web applications in Django

• Designing a web application

• Some common web practices, such as only editing via POST

In chapter 3, we looked at building a simple todo list to help you track
what you were working on. Now we’re going to look at expanding the
application and making it available through a web browser, so you can
see what you need to do next regardless of where you are (as long as you
have an internet connection, obviously). To make your life easier, you’re
going to use a web framework called Django.

What’s a web framework, you ask? When you’re developing for the web,
you need to keep track of a lot of details. In addition to displaying the
HTML and handling form input, there are lots of extra bits and pieces:

❂ Handling cookies, sessions, and logins
❂ Detecting errors and displaying them
❂ Storing data in a database
253

254 CHAPTER 8 Django!
❂ Separating your page design from the rest of the application (so your
web designers can design the pages without having to bother you)

And so on. With a framework like Django, you can use code to handle
all these things and get your web application built more quickly.

Writing web-based applications with Django
Django is the main Python web framework, and has a large developer
following. It’s not the only Python framework by a long stretch, but it’s
the most commonly used and best documented one. It mostly follows
the Model-View-Controller (MVC) style of programming, but it some-
times bends that structure a little. In Django, there’s a lot of built-in
functionality to make your life much easier when developing web
applications.

Table 8.1 Django-ese to MVC-ese

Django MVC Purpose

Model Model Stores data

Template View Presents a user interface

View Controller Does “stuff”

Model-View-Controller
Model-View-Controller (MVC) is a method of design that separates out your data
from how it’s presented. The Model stores your data and has functions for ma-
nipulating it. The View presents your data and a user interface to the end user.
Finally, the Controller does everything in between.

MVC is often used as a catch-all term, but different people, applications, and web
frameworks interpret and use it in different ways; it’s hard to give a definition
that will work in every situation. See table 8.1 for the differences between Djan-
go’s terminology and “classic” Model-View-Controller. The most important thing
to take away is that it separates your data, the presentation of that data, and the
business logic “glue” that exists in between.

http://docs.djangoproject.com/en/dev/topics/install/
http://docs.djangoproject.com/en/dev/topics/install/

Writing web-based applications with Django 255
Installing Django
Django is straightforward to install,
because you already have Python. Down-
load the latest release from www.django
project.com/download/, decompress it,
and run python setup.py install from
within the install directory. On Linux and
Mac OS X, you’ll need to prefix it with sudo, and on Windows you’ll
need to run it from a command shell with administrator privileges.
Once the install process has finished, type import django from within
Python to make sure it’s working. You shouldn’t see any errors.

If you run into any issues, or if you think you might need to install a
more complicated setup (if you want to run a PostgreSQL or MySQL
database server, or use a separate web server such as Apache or
Nginx), more detailed installation instructions are available at http://
docs.djangoproject.com/en/dev/topics/install/.

Setting up Django
Now that you’ve installed Django, you can start work on your project.
Django sets most things up for you; all you need to do is to plug your
code into the right places and change a few settings. Pick a directory on
your computer where you’d like to store and run your project, and type
the code in listing 8.1 into the command line. This should work as-is
under Linux, but for Windows you’ll need to do two extra things:

❂ Add C:\Python26\Scripts to your PATH environment variable, as
you did in chapter 1, and then restart your terminal for django-admin
to work.

❂ Include your project path in a second environment variable called
PYTHONPATH. This variable lets you add extra paths for Python to
check when importing modules. Django’s settings are imported as a
Python module, so Python needs to know where to find them. The
following figure shows how I edited them on my PC.

www.djangoproject.com/download/
www.djangoproject.com/download/

256 CHAPTER 8 Django!
Once you’ve made the necessary adjustments, you’re ready to go!

Listing 8.1 Django first run

anthony:~$ django-admin.py startproject todos
anthony:~$ cd todos/
anthony:~/todos$ ls
__init__.py manage.py settings.py urls.py
anthony:~/todos$ python manage.py runserver
Validating models...
0 errors found

Django version 1.0.2 final, using settings 'todos.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
[06/Jun/2009 22:59:35] "GET / HTTP/1.1" 200 2051

Most of the setup and later interaction with your
server is done through django-admin b, which is a
script that comes included with Django.

Once you’ve created your project, you can take a look
around and see what Django has created c. There’s
not much to see right now, but you’ll be building on it
as you write the application.

While you’re at it, start up Django and see what happens. From within
the todos folder, type python manage.py runserver d.

When the server starts, it will tell you what IP address and port num-
ber it’s running on e. If you’d like to run on a different IP address or

Figure 8.1 Setting system paths for Django

Start
projectb

Basic Django
project

c

Start up
Djangod

Server
location

e

Server won’t quitf
First requestg

BLA BLA WEB 2.0
BLA BLA SHINY
SHINY BLA BLA

Writing web-based applications with Django 257
port, specify it when you run manage.py. For example, python manage.py
runserver 0.0.0.0:80 will connect to every interface on your PC on port
80, so you can impress your friends by allowing them to connect to the
fancy new web server running on your computer.

Django will keep running until you stop it manually f. runserver is the
development server, which will automatically detect changes to your
files and restart if necessary, so in most cases you don’t even need to
restart to refresh your application.

As requests come in, Django will print log lines out so you can see what
it’s doing g; this can be useful for debugging.

If you go to the URL listed in the previous output, http://
127.0.0.1:8000/, you should see something like figure 8.2.

If you look carefully, you’ll see that Django even tells you what steps to
take next; but you’ll ignore the database part for now and install an
application. In Django’s terminology, an application is a module that
does a specific thing, such as managing todos or user registration. A

Figure 8.2 Django’s starting screen

258 CHAPTER 8 Django!
project might have several applications included, and Django will set
up and coordinate between them. You can leave the development
server running—it will automatically detect and reimport most changes
you make.

NOTE The Django developers encourage you to reuse code, and one of the
ways they do that is to split projects into applications. Ideally, you’ll
have a number of applications within any one project, which all con-
tribute their own part. You might have one application for storing
your todos, another for email handling, a third for Paypal sign-ups,
and so on. The next time you create a site with Django, you’ll be able
to reuse some of these applications to help you build it.

Now you can add an application and create your first simple page. This
will help you confirm that everything’s working and give you your first
taste of creating a Django application. You need to edit two files:
urls.py and todo/view.py. The next listing shows how I set up my todo
application and what I put into my settings.py and url.py files.

Listing 8.2 First steps

anthony:~/todos$ python manage.py startapp todo
anthony:~/todos$ ls
__init__.py __init__.pyc manage.py settings.py
settings.pyc todo urls.py urls.pyc
anthony:~/todos$ ls todo
__init__.py models.py tests.py views.py
todo/views.py:
Create your views here.
from django.http import HttpResponse
def hello_world(request):
 return HttpResponse("Hello world!")

urls.py:
...
import todo.views

urlpatterns = patterns('',
 (r'.*', todo.views.hello_world),
 ...
)

Create appb

Placeholder/
signpost

c
Django’s
HttpResponse

d

View
function

e

Use simple view
for everything

f

Writing web-based applications with Django 259
The first step is to create your application with manage.py b. Django
will create a todo folder to store all of your application-specific code.

Next you create your view. Django helpfully puts a comment in so you
know you’re in the right place c.

When you create a page to send back to the requester, there’s a lot of
detail involved: setting MIME types, status codes, and so on. Django’s
HttpResponse takes care of all that d and stores all the possible variables
in one place if you need to alter them.

e is a function that Django can call to display a web page. It takes a
Request object, which represents the request for a web page, and
returns a Response object. You’re not doing anything fancy for now—
just returning a response of “Hello world!”

urls.py is where you tie everything together f; you could think of it as
Django’s traffic controller, making sure each request goes to the right
place. The patterns function takes a number of tuples containing regu-
lar expressions and functions. If a regular expression matches, Django
will call the corresponding function and display whatever it returns.
For now, you’ll use .*, which will match everything.

TIP Save time by keeping a directory somewhere with everything you
need to set up a new project—in this case, the Django installer, your
initial “Hello world!” setup, and anything you find useful as you go.
It makes setting up your next project much faster.

If you refresh your page now,
you should see the not-quite-
so-helpful “Hello world!” mes-
sage, something like figure 8.3.

Figure 8.3 “Hello world!”

BLA BLA $30/MO
BLA BLA TODO
LIST BLA BLA

260 CHAPTER 8 Django!
It’s not much, but it’s your “Hello world!” Now that you know a bit more
about Django and how it works, let’s start working on your todo list!

Writing your application
Because you have a pretty good idea of what your todo application
should look like, you’ll start with the front view and add back-end
functionality as you need it, or else create a simple stand-in. As the
need arises, you’ll gradually introduce more and more of Django’s
functionality.

NOTE This development strategy is only one way of building a program
with Django. You can use other methods, such as creating the mod-
els you’ll be working with first, or the business logic you’ll need to
control everything. It all depends on your application, where the
technical risks lie, and what makes the most sense.

The simplest possible todo list
Here’s your new todo list! It’s simple, but you can already use it to keep
track of your todos. You need to return the HTML for your todo page
from your view, instead of the simple “Hello world!”

Listing 8.3 A simple todo list

def hello_world(request):
 return HttpResponse("""<html>
<head>
<title>My Todo list!</title>
</head>
<body>
<h1>Todos:</h1>
<p>Mow the lawn</p>
<p>Backup your PC</p>
<p>Buy some Milk</p>
</body>
</html>""")

If you need a new todo, add it into your view. When you’ve finished
something, delete it. Perhaps that’s not very useful, and it’s annoying

Writing your application 261
I'VE HEARD GOOD
THINGS ABOUT THIS
"RUBY ON TOP OF
RAILS" THING, TOO.
YOU SHOULD
DEFINITELY LOOK
INTO THAT.

having to enter all the HTML by hand, but
bear in mind that this is what Django does
with any web page you ask it for. You need a
better way of generating your HTML markup.

Using a template
Django and most other web frameworks solve
this problem by using a template. Rather than
typing all the HTML up front, you can use a
simple programming language to generate it from variables and lists
that you have access to. The following listing gives a simple example.

Listing 8.4 Using a template

from django.template import Context, loader
from django.http import HttpResponse

def hello_world(request):
 todos = [{'title': 'Mow the lawn',
 'importance': 'Minor'},
 {'title': 'Backup your PC',
 'importance': 'High'},
 {'title': 'Buy some Milk',
 'importance': 'Medium'},]
 t = loader.get_template('index.tmpl')
 c = Context({
 'todos': todos,
 })
 return HttpResponse(t.render(c))

Here’s your todo list. Nothing fancy for the moment: just remembering
to mow the lawn, back up your PC, and buy some milk b.

The template handles the display of the page c, including all the fiddly
HTML bits. You’ll see what a template looks like and how to create it in
a minute.

A context is a way of passing in variables to a template d. In this case,
you’re only interested in your list of todos, so that’s all the template
needs to know about.

Datab

Get
template

c

Create
context

d
Return
response

e

262 CHAPTER 8 Django!
e is where all the work gets done. You call the template’s .render()
method with a particular context, create an HttpResponse object with it,
and send it back.

If you run this code as is, though, you’ll get a TemplateNotFound error (as
shown in figure 8.4), because you haven’t told Django about the
index.tmpl template.

You’ll need to create the index.tmpl template, either within your todos
application or within a separate template directory. My version of the
template is shown in the following listing.

Listing 8.5 A simple template

<html>
<head>
<title>My Todo List</title>
<style type="text/css">
 body { font-family: Arial, Helvetica, sans-serif;
 color: black;
 background: #ffffff; }
</style>
</head>
<body>
{% if todos %}
<table border="1">
<tr><td>Todo</td><td>Importance</td></tr>

Figure 8.4
Where’s my
template?

HTML templateb

if ... elsec

Writing your application 263
 {% for todo in todos %}
 <tr><td>{{todo.title}}</td>
 <td>{{todo.importance}}</td></tr>
 {% endfor %}
</table>
{% else %}
<p>You have nothing to do!</p>
{% endif %}

</body>
</html>

Your Django template is just an HTML page b,
but with a few special commands to create some
extra HTML on the fly. If you’re familiar with
HTML, templates won’t be too much of a stretch.

Your first bit of template code is an if statement
c. Python within the templates is wrapped
within either {% %} brackets for program code, or
{{ }} brackets for variables. The variables are sourced from the context
the template is passed when it’s rendered by your application.

You can also use for loops in your templates, to loop over a list or
iterator d.

Normal Python programs rely on indentation to tell where a for loop or
if statement begins and ends, but that’s impossible when embedding
code in a HTML template. To get around this problem, you need to
include explicit end tags when closing your if statements or for loops e.

Last of all, you need to edit the settings.py file within your todos
project so Django knows where to find the templates for your todo
application.

Listing 8.6 Editing settings.py

...
TEMPLATE_DIRS = (
 # Put strings here, like "/home/html/django_templates"
 # or "C:/www/django/templates".

for loopsd

if ... elsec endfor and endife

BUT WE DON'T
KNOW RUBY … OR
RAILS!

264 CHAPTER 8 Django!
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
 '/home/anthony/todos/todo',
)

Here’s where your todo templates are stored b. Django will search
subfolders, so if you find the application directory getting cluttered,
you can store your templates within a subdirectory such as todo/
templates/. Now if you refresh the page within your browser, you
should see a nicely formatted table listing the tasks you have to do. If
you think of another task, then add another item to the todos diction-
ary, and the template will take care of the rest.

But you still have a similar problem: you’ve gone from editing your
HTML directly to editing a dictionary directly. Separating the presen-
tation and data is an improvement, though, since now you’re able to
store your tasks in a database.

Using a model
But before you do that, you need to start a database, tell
Django where it is, and populate it with your initial data.
That’s quite a lot of work—but Django will do most of it
for you. You’re using the built-in SQLite database, which
is fine for your needs, but if you’re writing a larger appli-
cation, you might want a more industrial strength data-
base, like MySQL or PostgreSQL.

Setting up the database
First of all, you need to edit your settings.py file to tell Django what
database file to use. Open it up in your favorite editor, and change the
database lines to look like this:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = 'todo.db'

The rest of the database lines you can leave as they are. There are some
other settings to do with admin emails and time zones—which you can

Template
directoryb

BUT …

IS NOT TO
WORRY. WE
WILL BE
WRITING IT IN
DJANGO.

Using a model 265
edit if you want to—but they’re not immediately necessary. The one
exception is that your time zone needs to be set to the same one as your
system if you’re running under Windows. See the documentation at
http://docs.djangoproject.com/en/dev/ref/settings/#time-zone for more
details, including a link to a list of valid time zone settings.

Now, type

python manage.py syncdb

and Django will set up your database. During the process, it will also ask
you to create an admin user (a good idea). If you don’t set up an admin
user at this point, you can do so later on by running python manage.py
createsuperuser.

Creating a model
Now you’re ready to create model to store your data. Because you’ve
already done a todo application back in chapter 4, you’ll build on that
data structure. You’ll need to open up the models.py file within the todo
directory and type something similar to what’s in the following listing.

Listing 8.7 A todo model

from django.db import models

importance_choices = (
 ('A', 'Very Important'),
 ('B', 'Important'),
 ('C', 'Medium'),
 ('D', 'Unimportant'),
)

class Todo(models.Model):
 title = models.CharField(max_length=200)
 description = models.TextField()
 importance = models.CharField(
 max_length=1,
 choices=importance_choices)

Constrain
choices

d Django’s
model
module

b

Create Fieldsc

Constrain
choices

d

266 CHAPTER 8 Django!
All the database interaction code is stored within Django’s db module b.
To declare your todos in a format Django can understand, you create a
Todo class as a subclass of models.Model.

Fields in the database c are similar to variables in Python—they store
the values you need. Django has a number of different field types, and
you can even create your own.

One of the important parts of using a database is that you can restrict
the values that get entered into it d. This way, you can’t enter non-
sense information into your application—Django will catch it and
refuse to add or edit your todo. You’ve placed importance_choices out-
side the model so you can access it in other contexts.

Once you’ve created your model, you need to let Django know it exists.
You’ll update your settings.py to tell Django about the todo application,
and then sync your database, which tells Django to look for new models
or fields and create them. The next listing shows how I did it.

Listing 8.8 Adding the todo application to your project

settings.py:
INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'todos.todo',
)

Command line:
anthony:~/todos$ python manage.py syncdb
Creating table todo_todo
anthony:~/todos$

b is the line you need to add. These lines will be converted to import
lines by Django, so to be safe, you’ll generally want to include the proj-
ect name and the application.

Once you’ve done that, you can use manage.py to create your tables c.

Add
application

b

Generate database
tables with syncdb

c

Using a model 267
If you have some database experience and want to look at what
Django’s doing behind the scenes, the next listing shows you how to
use manage.py’s sql command to inspect the todo model.

Listing 8.9 Showing your model’s SQL

anthony:~/todos$ python manage.py sql todo
BEGIN;
CREATE TABLE "todo_todo" (
 "id" integer NOT NULL PRIMARY KEY,
 "title" varchar(200) NOT NULL,
 "description" text NOT NULL,
 "importance" varchar(1) NOT NULL
)
;
COMMIT;

Now that you have a database, all you need to do is add in some data so
you can test the application. Django has an easy way to do that, too.

NOTE When picking a framework like Django, one of the things to look out
for is how many time-saving libraries it offers. Most web frameworks
offer features like Model-View-Controller and routing URLs to
views, so it’s the extra features like the admin module that will make
your life easier.

Django’s admin module
One of Django’s strengths is its built-in admin system, which will let
you view and edit your data without having to write a lot of data han-
dling and checking yourself. You only need to make a few changes to
settings.py and urls.py, and sync your database, and you’ll be ready to
define an admin interface. Let’s start by switching it on

Listing 8.10 Activating Django’s admin system

settings.py:
INSTALLED_APPS = (
 ...
 'django.contrib.sites',
 'django.contrib.admin',

Add contrib.admin
application

b

268 CHAPTER 8 Django!
 'todos.todo',
)

urls.py:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
 (r'.*', todo.views.hello_world),
...
)

All the admin functionality is stored in the admin appli-
cation, and it needs to create some database tables, so
you include django.contrib.admin as an application b.

The autodiscover function looks through the admin inter-
faces you’ve written and automatically generates the con-
figuration Django needs c. You’ll also find that the
admin functionality is already added to your urls.py—

you only need to remove the comment characters from the start of the
relevant lines.

The convention is for ^admin/(.*), but you can add whatever path you’d
like if you’d prefer to keep things secret d. Anything that matches the
path gets sent off to the admin module’s root function.

Now all you need to do is to sync your db again, using python manage.py
syncdb, and Django will create the admin tables and indexes it needs to
function. Then visit http://127.0.0.1:8000/admin/, and you should see
the login page for your server. Use the admin username and password
you entered earlier and you should be able to get access to the admin
page.

You’re in, and there are some website-looking things, but where do
you edit your todos? First you need to register your model with the
Django admin interface, so it will know to include the model, which
fields to display, and so on.

Autodiscover admin
interfaces

c

Pick URL for the
admin appd

IS TELLINK
BOSS IS WRITTEN
IN WEB 2.1!
HE WILL BE WERY
HAPPY.

BUT …

Using a model 269
Adding an admin interface
Django gives you a lot of flexibility in how your admin interfaces are
designed, but for now, we’re going to keep things simple. The following
listing gives you the bare minimum you need to be able to see your
todos in the admin interface. All the admin code is stored in todo/
admin.py. There’s not a lot—import your Todo model and admin, and
register the Todo class as something that should be in the admin inter-
face. Django will take care of the rest.

Listing 8.11 Registering your model: admin.py

todo/admin.py:
from todos.todo.models import Todo
from django.contrib import admin
admin.site.register(Todo)

todo/models.py:
class Todo(object):
 ...
 def __unicode__(self):
 return self.title

The only change you’ll need to make to your model is to add a
__unicode__ method. Without this, Django won’t know how to refer to
any particular todo, and you’ll get the model name: Todo. You’ll need to
restart the server for the admin.autodiscover function to pick up your
admin changes, but once you do, you should see a Todos link appear in
the interface. If you click Todos and then Add Todo, you’ll see some-
thing like figure 8.6. Also, notice that if you don’t enter a value, or enter

Figure 8.5 Logging into Django’s admin system

270 CHAPTER 8 Django!
something that doesn’t fit in your model, Django will notice and give
you an error.

You can go ahead now and enter some todo items for yourself, then go
back and have a look at the Todos page. You’ll see that Django’s admin
page gives you a table of all the todos, and you can click through and
edit any you need to.

The admin interface is also easy to customize if you need to show or
hide some of the fields, or sort by a certain field. Let’s add a column to
show the importance of each todo:

class TodoAdmin(admin.ModelAdmin):
 list_display = ['title', 'importance']
 search_fields = ['title', 'description']
admin.site.register(Todo, TodoAdmin)

Normally, the Django admin will create this
class for you automatically, based on some sim-
ple defaults. To create your own custom version,
you subclass ModelAdmin and override the parts
you’d like to change, such as which items to dis-
play in the list view.

Figure 8.6 Editing a todo in the Django
admin interface

IF YOU
SAY SO …

YOU ARE WORRYING
TOO MUCH, COMRADE
GREGORY. THEY ARE
NOT KNOWING RUBY
FROM BADGERS!*

* TODO: REPLACE "BADGERS"
WITH SOMETHING FUNNY.

Making use of your data 271
There are many other attributes that can affect the admin display. For
example, you can include searching of title and description by adding
this one line.

Now, when you register your class, you include the custom admin class
instead of letting Django pick its own one.

If you restart your server and look at the todo list now, you’ll see a sec-
ond column. When you created your list of priorities earlier, you might
remember that it used the values A, B, C, and D. The secret reason is
that you can sort your todos according to priority by clicking at the top
of the column.

All right, I think your admin interface is done. You don’t normally
want to give everyone access to the admin interface, so we’ll take a look
at how to provide a front end suitable for general consumption in the
next section.

Making use of your data
Now that you have data to work with, you should provide an interface
so other people can see what you’re up to. It’s often a good idea to have
tangible output from your programs as soon as possible; that way, you
can see what needs to be done, and people can give you feedback and
ideas as early as possible.

Using the model
Let’s first find out how you can get at the data in your database and
make use of it. You’ll update your previous view so it makes use of the
database instead of your dictionary.

Listing 8.12 Altering your view

...
from todos.todo.models import Todo

def todo_index(request):
todos = Todo.objects.all().order_by(
 'importance', 'title')

Import
modelb

Search
models

c

272 CHAPTER 8 Django!
 t = loader.get_template('index.tmpl')
 c = Context({
 'todos': todos,
 })
 return HttpResponse(t.render(c))

Your model class is the main interface between the view and the data-
base, so you need to import it b.

c looks for all your todos—nothing too fancy yet. Todo.objects.all()
will return a QuerySet object that contains all your Todos, that you can
then order with the .order_by method. There are other QuerySet meth-
ods that will help you to search through your model—a short list is in
table 8.2.

Other than that, you don’t need to make any changes to your view d—
Django’s templates are smart enough to adjust when you feed it a set of
objects instead of a list of dictionaries.

There’s one thing you need to change about your display, though. Your
priorities are shown using the underlying letter, rather than the

Table 8.2 Some common Django QuerySet methods

Method Description

.all()[0] A QuerySet object won’t trigger a query until it absolutely
has to, so you can use slices like these to filter only the
first few results in a query.

.filter(criteria)

.exclude(criteria)

.get(criteria)

.filter(), .exclude(), and .get() will return results
according to criteria you specify as keyword arguments.

.get(id__exact=14)

.filter(importance__lte='B')

.exclude(

 title__contains=

 '[blocked]')

The keywords are specified as follows:
 <field>__<type of match>

Django will convert them to the relevant SQL. You can
also chain QuerySets together to further restrict the
results you return.

Nothing else
changes

d

Making use of your data 273
human-readable one. Fortunately, that’s a simple change to the model
and template, so let’s do it now.

Listing 8.13 Readable priorities

models.py:
class Todo(models.Model):
 ...
 def text_importance(self):
 choices = dict(importance_choices)
 return choices[self.importance]

index.tmpl:
...
 {% for todo in todos %}
 <tr>
 <td>{{todo.title}}</td>
 <td>{{todo.text_importance}}</td>
 </tr>
 {% endfor %}
 ...

The first step is to update your model so it can
provide you with the human-readable version
of the priority without having to jump through
too many hoops. The easy way to do that is to
convert the importance_choices tuple to a dic-
tionary b and then use self.importance to
access the right one.

Now, use the text_importance method within
the template to display the importance of your
todo c. Notice that Django’s templates are once again smart enough to
do the right thing regardless of what you feed them.

That’s the basic functionality you need to display your todo items. You
can extend your template to make the page look prettier, perhaps
color-code the items according to how important they are, and so on.
The for and if elements and the methods of your models should be
enough to create most of the application.

Convenience
function

b

Update
template

c

GREG, WE'VE JUST
SIGNED A MAJOR
COSMETICS
COMPANY.

WHICH ONE?

274 CHAPTER 8 Django!
Table 8.3 shows some other template syntax elements that might be
useful—but you’re normally better off trying to include the functional-
ity within the model or controller rather than the template if you need
anything more complicated.

Now you have a way of getting data from the database out to the end
user—but you need to be able to get data back again. To do that, you’ll
need to be able to submit forms.

Setting up your URLs
First, you need to think a little about how your application will be laid
out. One good way that is easily supported by Django is called Repre-
sentational State Transfer, or REST for short. In a nutshell, it’s a style
you can use to represent resources on the web, and the actions that can
be performed on them.

Table 8.3 Django template syntax cheat sheet

Syntax Usage

{% for variable in iterable %}

 <tr class="{% cycle 'row1' 'row2' %}"

 {{ variable }}

{% endfor %}

You’ve already seen the for loop in action.
One handy extra, though, is cycle—it will
swap between the values you give it on
each pass through the loop.

{% comment %}

 ...

{% endcomment %}

If you need to add comments to your tem-
plate, this is the way to do it. Neither the
comment tags nor the code between them
will appear in the final output. Adding com-
ments can be useful, but generally your tem-
plates should be simple enough that you
don’t need them.

{% filter force_escape|lower %}

 HTML-escaped lower case text.

{% endfilter %}

{{ variable|urlencode}}

You can apply various filters to the output of
the template by either wrapping filter
tags around what you need to escape or
using the pipe character | and filter names.
There are many different filters, such as
upper, lower, and urlencode, that you can
use—you can even write your own!

Making use of your data 275
REST works well for typical data-based applications, such as your todo
application. In this case, you have a number of todos, and you’d like to
be able to view, add, edit, and delete each individual todo. A typical
REST design might look like the following listing.

Listing 8.14 A RESTful URL design

http://localhost:8080/todos
http://localhost:8080/todos/add
http://localhost:8080/todos/1
http://localhost:8080/todos/1/edit
http://localhost:8080/todos/1/delete

If you think of the list of todos as a resource, this is the root level of
your application b. Adding a todo won’t be linked to a todo, so it’s best
to make add a method of your root resource.

Once you’ve created a todo, viewing it means appending its ID onto
the end of the URL c.

Generally, the default method for any resource is to view it, but when
you need to edit or delete a todo, you’ll sometimes want to append the
method d. In this application, though, you’ll just use the same URL for
viewing and editing.

NOTE One of the advantages of using a RESTful interface is that it encour-
ages you to do one piece at a time. It’s not normally a big deal if you
haven’t got deletion working yet—you can still test the other parts,
because they’re independent.

Now that you’ve mapped out how the application should work, how do
you put it into practice? All your URL handling is stored within
urls.py. It’s there that you can specify which URLs will work and
which views should handle them, and also extract the IDs. To help
encapsulate your todo application a little better, though, you’re going
to create your own urls.py within todo and then include it from the
standard urls.py.

View todosb
View todoc

Modify todosd

276 CHAPTER 8 Django!
Listing 8.15 Setting URLs and views

urls.py:
urlpatterns = patterns('',
 ...
 (r'^todos/', include('todos.todo.urls')),
 ...
)

todo/urls.py:
from django.conf.urls.defaults import *
import todo.views

urlpatterns = patterns('todo.views',
 (r'^$', 'todo_index'),
 (r'^add$', 'add_todo'),
 (r'^(\d+)$', 'view_todo'),
 (r'^(\d+)/edit$', 'edit_todo'),
 (r'^(\d+)/delete$', 'delete_todo'),
)

First, you include a separate urls.py file from
within the root urls.py b. Note that the path is
relative to the root of the project. You can also
remove import todo.views.

Next, create urls.py within todo and add these
two lines to it c. The first includes the default
Django URL-handling functions, and the second
imports the views.

Your pattern definition d is exactly the same function definition
you’ve been using in the root urls.py. One time saver here is that you
can include the starting part of the function, rather than call
todo.views.some_function several times.

Next, you define the URLs for viewing your todo list e and adding a
todo. Note that I’ve renamed the hello_world view to todo_index, which
is a bit more sensible. The include function will also snip the previous
todos/ part off the front, so you’re matching a blank URL.

Add include() lineb

todo/urls.pyc

Patterns
definition

d

Todo urlse

Individual
todos

f

I CAN'T TELL YOU
JUST YET. BUT I'LL
NEED YOU TO MAKE
THE CUSTOMER
ENTER THEIR EYE
AND HAIR COLOR WHEN
THEY SIGN UP TO
OUR TODO LIST SITE.

UH …

Making use of your data 277
Finally, f is the URLs for individual
todos. There’s one for viewing, one for
editing, and another for deleting. Note
that the URL regular expression has a
group defined with brackets. The number
that it matches will be fed in as an extra
argument to the view—you’ll see how to
make use of it when we look at how to
handle individual todo items.

Note that in the todo/urls.py file, you’re not specifying the absolute
path to any of your views, or anything outside your area of responsibil-
ity. This will help you later, particularly if you’re trying to combine
several different applications or you need to use your application some-
where else.

That’s all you need to do to your URLs for now. Let’s move on and
write some views that can handle input from the user.

Submitting forms
The first thing you’ll do is create the form and view necessary to handle
adding a new todo. There’s not much point in writing a todo-editing
form if there aren’t any todos to start with. You’ll add it to the root
page—it makes the most sense to include it there. When it’s submitted,
it will go to http://localhost:8080/todos/add, which will take care of the
rest. The next listing shows how you can add a form to your template.

Listing 8.16 A submission form

index.tmpl:
...
<p>Add a todo:

<form action="add" method="POST">
 Todo:<input type="text" name="title">

 Importance:<select name="importance" />
 {% for value, importance in choices %}
 <option value="{{value}}">
 {{importance}}</option>
 {% endfor %}

WELL, IF YOU GUYS
CAN'T DO IT, WE'LL
HAVE TO HIRE
SOMEONE WHO CAN …

GREAT. GREAT.

SHOULD NOT BE
PROBLEM.

Form’s
action

Importanceb

278 CHAPTER 8 Django!
 </select>

 <textarea name="description"></textarea>
 <input type="submit" value="Add">
</form>
</p>
...

views.py:
from todos.todo.models import Todo, importance_choices

def todo_index(request):
 todos = Todo.objects.all().order_by(
 'importance', 'title')
 t = loader.get_template('index.tmpl')
 c = Context({
 'todos': todos,
 'choices': importance_choices,
 })
 return HttpResponse(t.render(c))

Don’t forget that you’d like your todo application to be portable. It’s
tempting to use a hard-coded path like /todos/add, but that would mean
you’d need to edit your template whenever you reused the application.

So that you don’t have to repeatedly add separate instances of
importance_choices—which could get out of sync—you include the ver-
sion from your model b. The choices will need to be passed through to
the template from the model c.

Now, if you refresh the /todos/ page, you
should see a form at the bottom, under the list
of todos.

But if you try to submit the form, you’ll get an
error. You haven’t written your handler yet, so
despite the fact that, in theory, Django knows
what to do, it can’t find the function. The next
listing shows you how to do that.

Figure 8.7 A form to add a todo

Feed choices
into template

c

Making use of your data 279
Listing 8.17 A view to handle adding a todo

...
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
...
def add_todo(request):
 t = Todo(
 title = request.POST['title'],
 description = request.POST['description'],
 importance = request.POST['importance'])
 t.save()
 return HttpResponseRedirect(
 reverse(todo_index))

def view_todo(request, todo_id):
 pass
def edit_todo(request, todo_id):
 pass
def delete_todo(request, todo_id):
 pass

Handling post requests is no different than
any other view. Define a function that takes
a request parameter b.

Next, you create a new Todo instance, based
on the values fed in via HTTP POST c.
There aren’t any restrictions on what you can
enter, so you feed the parameters straight in.

Once you’ve created the todo, its .save()
method writes it out to the database d.

You’re finished, so you return to the index page with HttpResponse-
Redirect e. So you’re not hard-coding the URL with something like
/todos/, you use the reverse() function, which takes either a view or the
name of a view and returns its URL.

The reverse() function doesn’t like having unimplemented views, so
you’ll add some now. Because they’re all related to a particular todo,
you make sure the ID for the todo is included f.

Addition viewb

Create new
todo

c

Don’t forget to
save new todo!dRedirect todo_

index view
e

Stubs for
other views

f

GREG—GREAT NEWS!
WE'VE JUST SIGNED
A DEAL WITH A MAJOR
PET FOOD
DISTRIBUTOR! SO
WE'LL NEED TO
KNOW WHAT SORTS
OF PETS OUR
CUSTOMERS HAVE …

280 CHAPTER 8 Django!
That should be all you need to do. If you enter a todo in the form and
submit it, you should see it appear in the list. Congratulations! You
now have a functioning web application. You can display data to the
user from a database and accept input back, which your application
can use to make additions to that data.

SECURITY
IN DJANGO

If you’ve had some previous experience in web development,
you’re probably gritting your teeth over the previous code.
Normally, blindly accepting input from the people using your
site is a major security hole, leading to SQL injection and XSS
(cross-site scripting) attacks, but Django’s database layer and
templating layer will automatically escape any input and data
being displayed unless you tell it otherwise.

Almost any web framework, or even a CGI application, will let you do
show data and accept requests. The nice thing about Django is that you
can do it with only a small amount of simple, straightforward code, and
build more advanced things on it easily.

You still need to take care of the individual todos, though—editing and
deleting are just as important as being able to create new ones. We’ll
also look at some other ways you can make your development even eas-
ier, using some of Django’s more advanced functionality.

Handling individual todos
One of the main advantages in using a web framework is that a lot of
the simple, boilerplate stuff is already written for you. In Django’s case,
two of the most useful parts are generic views and model forms:

❂ Generic views are implementations of common types of views, for
example, displaying a list of items from a particular model in the
database, and all of the editing, updating, and deleting associated
with it.

❂ Model forms are forms that are built directly from your model.
Because they know the structure and type of your data, they can take
care of the parsing and sanitizing of form data automatically, making
it easy to get information back from the user of your application.

Making use of your data 281
You’ll mainly be using generic views for your application, but we’ll
touch on some of the model forms. Because your models and views are
already written, you’ll start with the URLs for your application and
move on to templates in a minute.

Listing 8.18 Updating urls.py

from django.conf.urls.defaults import *
from django.views.generic.create_update \
 import update_object, delete_object

import views
from models import Todo

urlpatterns = patterns('',
 (r'^$', views.todo_index),
 (r'^add$', views.add_todo),

 (r'^(?P<object_id>\d+)$',
 update_object,
 {'model': Todo,
 'template_name': ‘'templates/todo_form.html',
 'post_save_redirect': '/todos/%(id)s',
 }),

 (r'^(?P<object_id>\d+)/delete$',
 delete_object,
 {'model': Todo,
 'template_name':
 'templates/todo_confirm_delete.html',
 'post_delete_redirect': '..',
 }),
)

django.views.generic.create_update contains the two views you need to
use b. There are other views within create_update, but these are the
only two you need.

Now that you’re using generic views, the sources of your views differ
and you can’t use the 'todo.views' shortcut. Instead, you’ll feed in the
functions directly c.

Import generic
views

b

Define
patterns

c

Match
object ID

d

Generic
update

e

Generic
delete

f

282 CHAPTER 8 Django!
e is a more advanced way of linking to a view,
broken into multiple lines to make it easier to fol-
low. The first line is the URL regular expression
as usual, and the second is the view function. The
third line onward is a dictionary of arguments to
the view, which you also put one per line. The
only mandatory one is model, but you’re overrid-
ing template_name too (the default is todo/
todo_form.html). The final parameter, post_save_
redirect, tells Django where to go next. %(id)s is

interpreted in the context of whatever object you’re editing, so it will
evaluate to /todos/1 if you’re editing a Todo model with ID 1.

If you read e and wondered how the view knew which object to edit,
the ?P<object_id> part here is how it’s done d. If you have a named
match like this in your URL, Django will add it to the dictionary of
arguments that is passed to the view, so you don’t need to specify it
explicitly. I normally name all the parameters in my URLs, because if
you don’t, they’ll be fed in as arguments, and might be in the wrong
order.

Finally, f is the generic delete function. It’s pretty much the same as
the update one, except that once you’ve deleted your todo, you won’t
be able to redirect back to it; so you jump back one directory to the
index page with the post_delete_redirect argument.

That’s all you need to do within your URLs. Now you need to add two
templates: one for updating and the other for confirming deletion.
These have the same HTML as the previous index template, so I’ve
omitted everything that’s the same.

Listing 8.19 A todo editing template

...
<title>Edit Todo #{{object.id}}</title>
...
<form action="" method="POST">
 <table>
 <tr><td valign="top">

GREG! THE TAILOR'S
ON BOARD NOW. SO
CAN YOU ADD "INSIDE
LEG MEASUREMENT"
TO THE SIGN-UP
FORM TOO?

Todo is called
object

b

Form
actionc

Making use of your data 283
 {{ form.title.label_tag }}
 <td>{{ form.title }}
 <tr><td valign="top">
 {{ form.importance.label_tag }}
 <td>{{ form.importance }}
 <tr><td valign="top">
 {{ form.description.label_tag }}
 <td>{{ form.description }}
 <tr><td colspan="2">
 <input type="submit" value="Save">
 </table>
</form>
<p>Return to todo list</p>
...

The generic edit template is fed two variables automatically. The first
one is object b, which is the object you’re editing—in this case, your
todo.

The view handles both the display and editing, so you don’t need to do
anything with the form’s action attribute c; your input will be passed
to the current URL.

The second variable you’re given is form, which is one of Django’s
ModelForm objects that we touched on at the start of this section d. It
has fields that match the ones defined in your model, along with a
label_tag attribute, so you don’t have to repeat the field names in your
template. The ModelForm field will automatically output the right input
element for the fields: text for the title, a dropdown for the importance,
and a textarea element for the description.

If you don’t want to edit a todo, or you’ve finished editing, you can use
this link to go back to the main index page e. The 1 in todos/1 doesn’t
count as a directory, so you want to go to your current directory,
which is “.”

Let’s see what the edit form looks like. For now, you’ll need to type the
URL to your todo manually. http://localhost:8080/todos/1 should look
like figure 8.8.

You have a form
you can use

d

Redirect back
to index page

e

284 CHAPTER 8 Django!
If you enter new values for the todo and click Save, they should be
saved to the database. You might want to have a separate window open
with the index page, and refresh when you save, to double check.

Last but not least, you’ll need to be able to delete a todo once you’re
done with it. The following form will let you do that.

Listing 8.20 A deletion template

...
<form action="" method="POST">
 <p>Are you sure you want to delete
 todo #{{object.id}}:
 "{{object.title}}"?

 <input type="submit" value="Delete!">

 Back...
</form>
...

It’s a good idea to force destructive behavior, such as editing or delet-
ing a todo, to be done with a POST rather than a GET request b; this
way, if someone accidentally browses to that page, or Google tries to
index your site, nothing is damaged. Django follows this behavior—
typing http://localhost:8000/todos/1/delete into the address bar of
your browser is a GET request, so Django will prompt you to confirm
your action via a POST.

Figure 8.8 Your edit view

POST vs. GETb

Return to
index pagec

Final polishing 285
You might not want to delete the todo (perhaps you clicked the wrong
thing or mistyped), so you include a way to go back to the index page c.
/todos/1/delete is one level deeper than /todos/1 because the /1/ is
counted as a directory, so this back link goes one directory up.

Now if you go to http://localhost:8000/todos/1/delete, you should be
prompted to delete todo #1. If you click Delete, your todo should be
deleted from the system.

Final polishing
You’re almost done with adding, editing, and deleting—the last thing
you need to do is tie it all together and make it easy to click through to
edit and delete an entry. You’ll improve a few other things in the inter-
face while you’re at it.

Listing 8.21 Editing the index page

index.tmpl:
<table border="1">
<tr><td>del.</td>
 <td>Todo</td>
 <td>Importance</td>
 <td>Description</td></tr>
{% for todo in todos %}
<tr>
 <td>X</td>
 <td>{{todo.title}}</td>
 <td>{{todo.text_importance}}</td>
 <td>{{todo.short_description}}</td>
</tr>
{% endfor %}
</table>
...

models.py:
 def short_description(self):
 return self.description.split(‘\n’)[0][:80]

You’ve added two extra columns to your listing b. The first is for a
link to delete the todo, and the second is a snippet of the description.

Extra
columns

b

Links to edit
and delete

c

Shorter
descriptiond

Methode

286 CHAPTER 8 Django!
You also added links to the edit and delete func-
tionality you’ve just written c.

A description might be several lines long and
mess up your beautiful page, so you include
todo.short_ description d instead. This is a con-
venience method e that returns, at most, 80
characters from the first line of the description.

Now you can add, edit, and delete todos by click-
ing through from the index page. Polish isn’t so

important while you’re developing your application, but once you start
to use it, you’ll appreciate the extra effort you put in to make your
application more usable.

Where to from here?
Your application is pretty much feature complete, although the design
of the front page is bare “programmer HTML” and might need a little
work. You can also add more functionality, to make your application
easier to use or more featureful. Here are some ideas:

❂ Color-code todos based on their importance.
❂ Include some JavaScript to sort the columns by clicking the header

of the table.
❂ Allow todos to be assigned to a group. You’ll need to be able to add

and remove groups, and you’ll want to create a foreign-key link from
the todo model to a particular group.

❂ Assign optional due dates to the todos, and sort by those instead of
the importance.

We’re not done with Django yet. In chapter 11, you’ll extend the todo
application further, allowing your friends to log in and create their own
todo lists. We’ll also look at some of Django’s more advanced function-
ality, such as built-in unit testing, and look at some advanced database
manipulation.

OK GUYS—WE NEED
TO FIND OUT WHY
NOBODY'S SIGNING UP
FOR OUR TODO LIST
APPLICATION!

Summary 287
Summary
Now you can create your own web applications in Python using
Django. We’ve covered all the basics in this chapter, including design-
ing the URLs for your site and setting up views, models, and templates.

We also touched on several design issues when writing web applica-
tions, such as separating the design and data models from each other,
limiting destructive edits to POST requests, and some simple design
strategies. These suggestions are based on common practices and expe-
rience; working “with the grain” like this can save you lots of time and
energy fighting with your development environment.

We’ll return to the todo application in chapter 11, but for now take a
break and try your hand at writing a desktop application. In this case,
you’ll be using a graphics library called Pyglet to create your own
arcade game.

9
Gaming with Pyglet

This chapter covers

• Display images and text on the screen

• Using event loops and timers

• Game design, and making your game fun

In this chapter, you’ll be writing your own arcade game using a library
called Pyglet. Pyglet bills itself as a “cross-platform windowing and multi-
media library for Python,” but you’ll be using it for its real purpose—writ-
ing games!

If you’re familiar with various arcade games, yours will be sort of a cross
between Spacewar!, Asteroids, and Space Invaders—it will have a space-
ship, evil aliens to shoot, and a planet to run into. To make the game more
interesting, you’ll give the planet some gravity, so it draws in the ship
gradually.

But first, you’ll need to get Pyglet installed and working on your computer.
288

Installing Pyglet 289
Installing Pyglet
The first thing you’ll need to do is to download and install Pyglet. A Win-
dows installer and source code are available from www.pyglet.org/
download.html, and Pyglet is available as a package for several Linux
distributions. Pyglet installation is straightforward under Windows:
download the installer program, and run it. Mac users can download a
.dmg image with an installer on it, and there are packages for most Linux
distributions. The next figure shows the Windows installer doing its
thing.

NOTE Pyglet uses OpenGL under the hood, so you’ll need an OpenGL-
capable graphics card. This normally isn’t a problem, unless you’re
running an old computer—most cards released in the past five years
or so support OpenGL automatically.

If none of those options work for you, you can always download the
source package and run python setup.py install, though you’ll also
need to install AVbin separately if you take this route.

Figure 9.1 Installing Pyglet

www.pyglet.org/download.html
www.pyglet.org/download.html

290 CHAPTER 9 Gaming with Pyglet
Let’s start with a simple Pyglet program, breaking it down line by line:

import pyglet
window = pyglet.window.Window(fullscreen=True)
pyglet.app.run()

All the submodules of Pyglet are stored within the pyglet module. You
can access the window module, for example, with pyglet.window. This
saves you importing several modules at the top of your program, and
makes your code easier to read.

Pyglet’s Window object handles all the screen initialization and render-
ing. You’ll generally need one in every Pyglet application you write.
You’re passing in fullscreen=True as an argument so the window takes
up the whole screen.

Pyglet is a framework, so after you’ve set everything up, you need to
call its main application loop.

If you type this program in and
run it, you should see a screen
similar to figure 9.2.

That’s right—a big black screen. Not very impressive, but it’s your
black screen: the blank canvas on which you’ll write your masterpiece.
As an added bonus, you know Pyglet is working properly. To exit
Pyglet, press the Escape key.

Next, we’ll figure out how to make that black screen more impressive.

Figure 9.2 A black screen

I MANAGED TO CONVINCE
THE BOSS THAT OUR
WORKPLACE NEEDS A BIT
MORE FUN IF WE'RE GOING
TO BE A WEB 2.0
COMPANY …

OH?

First steps 291
First steps
Let’s get started! The first thing you’d like to do is display an image on
the screen. Because you’re writing a space game, let’s make it a nice big
planet. I’ve used an image of Mars that I downloaded from NASA’s
website at www.nasa.gov/multimedia/imagegallery/, but feel free to
create your own if you’re feeling artistic. The next listing will display
your planet image on the screen.

Listing 9.1 Drawing on the screen

import pyglet

window = pyglet.window.Window(fullscreen=True)
pyglet.resource.path.append('./images')
pyglet.resource.reindex()

def center_anchor(img):
 img.anchor_x = img.width // 2
 img.anchor_y = img.height // 2

planet_image = pyglet.resource.image('mars.png')
center_anchor(planet_image)

class Planet(pyglet.sprite.Sprite):
 def __init__(self, image, x=0, y=0, batch=None):
 super(Planet, self).__init__(
 image, x, y, batch=batch)
 self.x = x
 self.y = y

center_x = int(window.width/2)
center_y = int(window.height/2)
planet = Planet(planet_image, center_x, center_y, None)

@window.event
def on_draw():
 window.clear()
 planet.draw()

pyglet.app.run()

Image resource
folder

b

Load planet
image

c

Create
Sprite
class

d

Handle image
drawing

e

292 CHAPTER 9 Gaming with Pyglet
Before you display images, you need to tell Pyglet
where to find them. To do that, you append the path
to an images folder onto Pyglet’s resource path B
and ask it to reindex its resources. You’ll also need
to create the folder manually and save your planet
image in it.

Once you have your image source, all you need to
do is call the pyglet.resource.image function, which
will read the image from your resource directory c.

By default, an image has an anchor at the lower-left corner; you’d pre-
fer it in the center. I’ve created a function that will do that for you.
Because you want the x and y coordinates to be integers, Python’s inte-
ger division operator (//) makes sure the result is an integer.

Pyglet is capable of drawing images directly to the screen, but a faster
and cleaner way is to use a Sprite class d. Sprites track their position
and image and have their own optimized drawing routines, which
make your program run faster. You’ll create one instance of your
planet and stick it right in the middle of the screen. One thing to note is
that you’re calling super(Planet, self) to get the parent class of your
sprite—so you don’t have to worry about manually updating it.

TIP Games are an area where a class-based design often makes a lot of
sense, because there are usually a number of entities that behave
similarly.

Once you’ve created the sprite,
you need to tell Pyglet to draw it
every frame. To do this, you cre-
ate an on_draw event handler e
for the window (we’ll cover
event handlers in more detail in
the next section). You’ll do more
later, but for now you clear the
screen and draw the planet.

You should see a nice big planet
in the middle of your screen.

SO HE AGREED TO
INSTALL AN ARCADE
TABLE.

WHAT? REALLY?

Figure 9.3 Your planet. Ideal for running
into with your spaceship! (Image courtesy of
NASA/JPL/Malin Space Science Systems)

Starship piloting 101 293
The planet will be a hazard for your space-
ship, but first you need a spaceship. Let’s do
that part next. In the process, we’ll introduce
some important concepts when writing
games or any event-based program.

Starship piloting 101
Your ship follows much of the same process
as the planet, with one main exception: it will
move around the screen in response to the player pressing keys. If
you’ve ever played Asteroids, you’ll be familiar with the control
method you’ll use. The up arrow will fire your engines, and left and
right will turn your ship. If you want to slow down or go backward,
you need to turn your ship around completely and fire your engines in
the opposite direction.

The following listing shows the start of your Ship class. You’ll be add-
ing features to it through the rest of this section. I’ve included this class
in the same file as the planet, but feel free to create a new file and
import it.

Listing 9.2 Ship class

ship_image = pyglet.resource.image('ship.png')
center_anchor(ship_image)
...
class Ship(pyglet.sprite.Sprite):
 def __init__(self, image, x=0, y=0,
 dx=0, dy=0, rotv=0, batch=None):
 super(Ship, self).__init__(
 image, x, y, batch=batch)
 self.x = x
 self.y = y
 self.dx = dx
 self.dy = dy
 self.rotation = rotv
 self.thrust = 200.0
 self.rot_spd = 100.0

...

ALL THE COOL STARTUPS
ARE HAVINK THEM. I
PERSONALLY WAS SPACE
INVADER CHAMPION AT
EVIL TECHNICAL COLLEGE
IN MOSCOW.

Load ship
image

b

Sprite
class

c

294 CHAPTER 9 Gaming with Pyglet
ship = Ship(ship_image,
 x=center_x + 300, y=center_y,
 dx=0, dy=150, rotv=-90) #...
@window.event
def on_draw():
 window.clear()
 planet.draw()
 ship.draw()

First, you load the image for your ship B, in the same way you did for
the planet. Your Ship class looks similar to Planet, but you have some
extra information c: .dx and .dy are the ship’s speed in the x and y direc-
tions, and .rotation is how far left or right you’ve turned. You also put
in .thrust and .rot_spd to determine how fast the ship should accelerate
and turn. The higher these numbers are, the faster the ship will go.

Now you can create an instance of your ship d. You feed in the ship’s
speed here as dx and dy, but it won’t have any effect until you start
updating the ship’s position in the next section.

Once you have your ship, you can add ship.draw() to the on_draw event
handler, and your ship will appear on the screen e.

Now you can see where your ship will start, and what it looks like.

Create Ship
instance

d

Don’t forget to
draw the ship!

e

Figure 9.4 Your spaceship

WELL, WE'LL SEE. I'LL
GIVE YOU A FEW DAYS TO
PRACTICE BEFORE I KICK
YOU TOO HARD …

Starship piloting 101 295
So far it’s no different than the planet you’re drawing, but now that
you’ve set up your sprite, you can start making it do things.

Making things happen
In most games, you have control over some aspect—such as the main
character—and can give input to tell them what to do next. Push the
left arrow and move left; push the right arrow and move right. In this
section, you’ll see how games accomplish this.

Pyglet uses an event-based programming model, and it’s how most inter-
active programs like games and graphical user interfaces are written.
Rather than checking or waiting for input at certain sections of your
program, you instead register functions to be called when something
interesting happens. Pyglet refers to these functions as event handlers. If
you’re used to a standard imperative design (“do this, then this...”), an
event-based structure can seem odd, but it’s a much cleaner way of
writing some sorts of programs. The next listing introduces two event
handlers—one for when keys are pressed, and another for when
they’re released.

Listing 9.3 Handling events

from pyglet.window import key
...
@window.event
def on_key_press(symbol, modifiers):
 if symbol == key.LEFT:
 ship.rot_left = True
 if symbol == key.RIGHT:
 ship.rot_right = True
 if symbol == key.UP:
 ship.engines = True

@window.event
def on_key_release(symbol, modifiers):
 if symbol == key.LEFT:
 ship.rot_left = False
 if symbol == key.RIGHT:
 ship.rot_right = False
 if symbol == key.UP:
 ship.engines = False

Define event
handler

b Key symbolsc

Update Sprited

Update
Sprite

d

296 CHAPTER 9 Gaming with Pyglet
To respond to keys, Pyglet defines two event han-
dlers, on_key_press and on_key_release B. They’re
defined in much the same way the on_draw function
is, but they have two arguments: the key that is
pressed, and any extra keys that are held down,
such as Shift or Ctrl.

The symbol argument is an integer, but Pyglet
defines a large number of keys you can use c with-

out having to worry about how to represent non-printable keys, like left
arrow or the Esc key. To use them, import key from pyglet.window.

If arrow keys are pressed, you need to make some change to the game’s
state. In this case, they correspond directly to the ship, so you’ll make a
change to the ship’s state, and let the ship handle the changes during its
update method d.

TIP Events are a powerful technique that make your programs simpler
and easier to write. The alternative is to write one big loop that
checks everything in your game. It has to run as quickly as possible,
or your game will be slow and unplayable.

Once you’ve done that, pressing the arrow keys will trigger an
on_key_press event and update your ship’s status—but you won’t see
anything happen on the screen. That’s because you haven’t told the
ship how to respond to changes in its status. For that, you’ll need to
write an update method to change the rotation of the ship according to
its status.

Listing 9.4 Updating the ship

class Ship(pyglet.sprite.Sprite):
 def __init__(...):
 ...
 self.rot_left = False
 self.rot_right = False
 self.engines = False

 def update(self, dt):

WOW. SID REALLY WENT
ALL OUT.

DA! EVEN HAS GENUINE
FAKE WOOD
PANELLING FROM
EARLY 80S!

Set initial stateb

Ship’s update
function

c

Starship piloting 101 297
 if self.rot_left:
 self.rotation -= self.rot_spd * dt
 if self.rot_right:
 self.rotation += self.rot_spd * dt
...
def update(dt):
 ship.update(dt)

pyglet.clock.schedule_interval(update, 1/60.0)

When the ship is first created, it won’t be turning left or right, or firing
its engines. You set the ship’s state here B so your update function
won’t throw an exception later.

By convention, most Pyglet classes will have an update method that gets
called on each “tick” of the game engine c. This is where your sprites
change their position, create new objects in the game, and update their
internal state. An update method takes one argument, dt, which tells
you how much time has passed since the last time update was called.

You’re starting out simply, so you’re rotating the ship left and right for
now d. If you’re turning, then you update the .rotation attribute (a
Pyglet built-in that rotates the sprite) by multiplying your rotation
speed by dt.

Later, you’ll have other objects with update methods, so it’s a good idea
to collect all of the method calls in one place e.

Rotating shipd

Main update
function

e

Call update
function

f

Figure 9.5 Turning the ship

THEN WE SHALL START
WITH THE ONE TRUE
GAME:

THERE ARE ABOUT A
THOUSAND GAMES ON HERE!

 SPACE
 INVADERS!
YOU MAY HAVE THE
FIRST GAME …

298 CHAPTER 9 Gaming with Pyglet
Finally, you set Pyglet’s built-in scheduler to call your main update
method 60 times per second f. This is the maximum speed at which
Pyglet will run your game. If it’s slower, then you’ll get different values
for dt, but your game will still run.

Now your feedback loop is finished, and you can see the results of all
your hard work. If you run the program, you should be able to rotate
your ship left and right by pushing the left and right arrow keys.

The next step is to make your ship move. To do that properly, though,
you’ll need to learn a bit about how to specify directions and distances.

Back to school: Newton’s first law (and vectors)
In order to make your ship move consistently, you’ll need to apply a lit-
tle bit of theory. You may remember some of this from school, from
math or physics courses. If not, don’t worry—we’ll be taking things
one step at a time. The first thing to know is that x represents values
that go left to right, and y represents values that go up and down, as
illustrated here.

NEWTON’S FIRST LAW

If you think back to your physics classes, you might remember New-
ton’s first law. Briefly, it states, “A body in motion will continue that
motion unless acted on by an external force.” What this means is that
your ship should move in a straight line unless you fire the engines.
You already have a velocity—that’s the .dx and .dy attributes of your
Ship class.

Figure 9.6 x and y coordinates. x represents
values that go left to right, and y represents
values that go up and down.

Starship piloting 101 299
VECTORS

The second thing you need is a way to
convert the angle of the ship and its
acceleration into values you can add to
the ship’s x and y velocities. Whenever
your ship’s engines are firing, you’ll need

to break up its angle like this to work out the effect
on your velocity in the x and y directions. The direc-
tion in the next figure means that when the ship’s
engines fire, you’ll need to add 2 to your x velocity
and 3 to your y velocity.

You’ll need a few math modules to do this in
Python, but the principle isn’t any different from
figure 9.7: figure out the x and y parts of the acceler-
ation, and add those to your x and y velocities. Dur-
ing each update, add your velocity to your position.

Listing 9.5 Moving the ship

import math
...
ship_image_on = pyglet.resource.image('ship_on.png')
center_anchor(ship_image_on)
...
def wrap(value, width):
 if width == 0:
 return 0
 if value > width:
 value -= width
 if value < 0:
 value += width
 return value

def to_radians(degrees):
 return math.pi * degrees / 180.0
...
class Ship(...):
...
 def update(self, dt):
 self.image = ship_image

PEW!
PEWPEW!
…
PEW!
KABOOOM!

Figure 9.7
The ship’s angle can
have x and y parts.

Import Python’s
math moduleb

Visual
feedback

c

Wrap
function

d

Find x and y components
of rotation

e

Visual feedbackc

300 CHAPTER 9 Gaming with Pyglet
 if self.rot_left:
 self.rotation -= self.rot_spd * dt
 if self.rot_right:
 self.rotation += self.rot_spd * dt
 self.rotation = wrap(self.rotation, 360.)

 if self.engines:
 self.image = ship_image_on
 rotation_x = math.cos(
 to_radians(self.rotation))
 rotation_y = math.sin(
 to_radians(-self.rotation))
 self.dx += self.thrust * rotation_x * dt
 self.dy += self.thrust * rotation_y * dt

 self.x += self.dx * dt
 self.y += self.dy * dt

 self.x = wrap(self.x, window.width)
 self.y = wrap(self.y, window.height)

All the trigonometric functions you need are
stored in Python’s math module, so you start by
importing it B.

Thinking ahead a little, you’ll also want to be
able to handle the case where the ship moves off
the edge of the screen. You’ll take the easy
option and wrap the game up and down and left

to right d. wrap is a function that does that—given the value and the
amount you’d like it to be constrained to.

Next, you break your angle into x and y parts e. Note that these might
be negative if the angle points left or down. Also, Pyglet and the .math
module use different representations of angles (degrees versus radi-
ans), so you need a function to convert from Pyglet’s version into
something the math module can use. You also need to flip your rotation
around to get the right values in the y direction.

Wrap functiond

Visual feedbackc

Find x and y
components
of rotation

e

Alter
velocity

f

Update
position

g

Wrap
function

d

A FEW HOURS LATER …

57,030! A
NEW HIGH
SCORE!

WE WILL BE
SEEINK ABOUT
THAT …

Gravity 301
Once you have your two components, the rest is relatively straightfor-
ward. You multiply each part by the ship’s acceleration and how long
it’s been since your last update, and add each 1 to your velocity f.

The last step is to update your position on the screen g. You also check
to make sure you can’t go over the edge of the screen by wrapping your
x and y positions based on the height and width of the window.

Finally, it looks a bit odd for your ship to be flying around without any
visual feedback, so I created an extra image with some flames shooting
out of the back. You swap it over whenever the ship’s engines are on c.

Now you can drive your ship around the screen, accelerate, and turn
around to decelerate. Wheee! It’s fun for a while, but ultimately there’s
not much to do, and the mechanics are easy to understand. What you’d
like is to have something more complex, so you have more opportuni-
ties for different sorts of interaction with the game.

Gravity
You’ll add to the game by making the planet have gravity, so it pulls on
the ship. If the ship collides with the planet, then BOOM! No more
ship! Fending off aliens while trying to keep clear of the planet should
add enough difficulty to keep the player occupied and entertained.

Figure 9.8
Now you can drive your spaceship
around. Brrm! Brrm!

PEW! PEW!
PEWPEWPEW!
PEW!
PEW! PEW!
KABOOOM!

302 CHAPTER 9 Gaming with Pyglet
Calculating gravity
How exactly do you go about adding that functionality? Well, the obvi-
ous place to put it is within the Planet class. It makes sense because it’s
the planet that’s affecting the ship, and if you want anything else to be

pulled by the planet’s gravity, it won’t be too
hard to add. Essentially, you’re adding another
force to the ship, just as you did when firing its
engines.

Figure 9.9 shows you what the problem looks
like. The long line is the vector from your ship
to the planet. You’d like to find that, convert it
into a force vector, and then split that vector
into an x and y so you can easily add it to your
ship’s velocity. Let’s deal with the easy bit first:
splitting the force vector.

Listing 9.6 Planet updates

class Planet(pyglet.sprite.Sprite):
 def __init__(self, image, x=0, y=0, batch=None):
 super(Planet, self).__init__(
 image, x, y, batch=batch)
 self.x = x
 self.y = y

 def update(self, dt):
 force, angle = self.force_on(ship)
 force_x = force * math.cos(angle) * dt
 force_y = force * math.sin(angle) * dt
 ship.dx += force_x
 ship.dy += force_y
...
def update(dt):
 planet.update(dt)
 ship.update(dt)

First you need to find out how much gravitational force the planet will
put on the ship. We’ll gloss over this part for now; all you need to know

Figure 9.9 Gravity applies
a force to your ship.

Apply force
to ship

b

Update
planet

c

Gravity 303
is that, in a minute, you’ll create a method that will tell you the magni-
tude and direction of the force B. Other than this, it’s the same as
when you updated the ship when its engines were firing.

Don’t forget to include the update

method c in the main update function.

Now you have a nice, well-defined
problem to solve: find the distance and
angle to the ship. This is the opposite
problem to the one you solved earlier.
Back then, you had an angle and dis-
tance and wanted the x and y parts; now you have the x and y parts
and want to know the angle and distance.

Listing 9.7 Figuring out gravity

class Planet(...):

 def __init__(self, image, x=0, y=0, batch=None):
 super(Planet, self).__init__(image, x, y, batch=batch)
 self.x = x
 self.y = y
 self.mass = 5000000 # experiment!

 def dist_vec_to(self, target):
 dx = target.x - self.x
 dy = target.y – self.y
 sqr_distance = dx**2 + dy**2
 distance = math.sqrt(sqr_distance)

 angle = math.acos(float(dx) / distance)
 if dy < 0:
 angle = 2*math.pi - angle
 return (distance, angle)

 def force_on(self, target):
 G = 1 # experiment!
 distance, angle = self.dist_vec_to(target)
 return ((-G * self.mass) / (distance ** 2), angle)

72,490! YOU WILL NOT
BE BEATING THAT ONE
FOR SOME TIME,
COMRADE GREG!

Planet has
massb

Which way is
the ship?

c

Calculate
x and y

d

Find distancee

Find anglef

Return vectorg

Calculate
force

h

304 CHAPTER 9 Gaming with Pyglet
First, set your planet’s mass B. The
heavier your planet is, the more it will
pull on your ship. This is one of the ele-
ments of your game you can tweak to
make it easier or harder.

The core of your method is to find out
how far away the ship is, and in which direction c. Based on that, you
can calculate everything else you need.

Next, you find out the distance to the target (the ship) in the x and y
directions d. The distances might end up being negative if the ship is
to the left or below—that’s normal.

Now you can find the first part of what you need, which is the distance
to the ship e. This is determined using the Pythagorean theorem:
square the two smaller sides, and take the square root.

The angle is a little trickier f. With a horizontal
and vertical distance, you can use math.acos or
math.asin to find the angle, but you need to take
the complete 360-degree range into account.
math.acos is only valid for the first half of the cir-
cle, so you need to reflect the angle by subtract-
ing it from 2*math.pi if it’s in the wrong half.
Figure 9.10 shows this in a little more detail: the
two angles are different, even though the x dis-
tance and the direct distance are the same.

Once you have the distance and angle, you can
return those vectors g. I’ve chosen (distance,
angle) as the way a vector is represented, to
avoid accidental confusion later.

NOTE If all this math seems a little complicated, don’t worry too much. You
have easy-to-use methods for calculating vectors and forces that you
can reuse in your next game.

Now that you know the distance and direction to the ship, calculating
the force due to gravity is easy h. It’s proportional to the mass of the

YOU TWO GET BACK TO
WORK—WE'RE NOT
PAYING YOU TO PLAY
GAMES ALL DAY!

HMMPH!

Figure 9.10 Two different
angles, same x position and
distance

Gravity 305
planet and diminishes with the square of the distance. The closer the
ship, the more force you apply to it. Figure 9.11 shows a time lapse of
the ship moving.

When you run the program, you should see the ship being affected by
gravity! Rather than moving in a straight line, it will have a force
applied to it by the planet and will move in a graceful curve. If you’re
careful, you can even put your ship into an orbit around the planet.

Watch out for that planet!
For collision detection, we’re sticking with circles around the ship,
planet, and alien. Circles like those in figure 9.12 make the code sim-
pler and more straightforward; but in trading accuracy for simplicity,
you might notice a few collisions that
should have been near misses. It’s pos-
sible to get pixel-perfect accuracy with
Pyglet by comparing the overlap of
the images themselves, but that’s out-
side the scope of this chapter.

In practice, though, you don’t need to
draw circles—you can compare the dis-
tance between the ship and the planet,
and then compare that to the radius of
the planet and the ship.

Figure 9.11
Your ship in orbit
around the planet

OK, LET'S SEE HOW
THE OLD REFLEXES
ARE DOING …

PEW! PEWPEWPEW!
PEW! *ZART*
PEWPEWPEWPEW!
PEWPEWPEWPEW!

Figure 9.12 The planet’s and
ship’s collision circles

306 CHAPTER 9 Gaming with Pyglet
Listing 9.8 Crashing into the planet

class Planet(...):
 def __init__(...):
 ...
 self.radius = (self.image.height +
 self.image.width) / 4
 ...
 def update(self, dt):
 distance, angle = self.dist_vec_to(ship)
 if distance <= ship.radius + self.radius:
 ship.reset()
 ship.alive = False
 return
 ...

class Ship(...):
 def __init__(...):
 ...
 self.alive = True
 self.radius = self.image.width / 2

 def reset(self):
 self.life_timer = 2.0 # seconds until respawn
 self.x = center_x + 300;
 self.y = center_y
 self.dx = 0; self.dy = 150
 self.rotation = -90

 def update(self, dt):
 ...
 if not self.alive:
 print ("Dead! Respawn in %s" %
 self.life_timer)
 self.life_timer -= dt
 if self.life_timer > 0:
 return
 else:
 self.reset()
 self.alive = True
...
ship = Ship(ship_image)
ship.reset()

Add attributes
objects

b

How far away
is the ship?

c

Crash!d

Add attributes
objects

b

Reset
ship

e

Handle player’s
death; respawn

f

Reset
ship

e

Gravity 307
...
@window.event
def on_draw():
 window.clear()
 planet.draw()
 if ship.alive:
 ship.draw()

You’ll need a few attributes on your
objects B. One is to tell the game whether
the ship is alive or not, and the others are
the radius of the planet and the ship. To
make life easier, you’ll calculate the radius
of the ship and the planet from the size of
their images. If you change the image later,
you won’t need to update the object’s radius.

With circles to detect collisions, all you need to do is compare the dis-
tance between the ship and the planet, and the sum of their radiuses c.
If the distance is shorter, then the circles intersect, and you have a
collision.

Once your spaceship has crashed d, you mark the ship as dead and
reset the player’s position.

The ship’s .reset() method puts the ship back at the start e and sets its
velocity to something reasonable. You’re also setting a “life timer” that
determines the time until the ship restarts, giving the player a few sec-
onds to think about what went wrong. You can use this to set the ship’s
position at the start so you don’t need to feed in a position when you
create your class.

To delay the ship’s return, you check the life_timer attribute you set in
the .reset() method f. If you’re dead and the timer is greater than
zero, then you still have some time left. If it’s less than 0, then you can
mark the ship as alive and reset its position once more (because gravity
still affects it), and you’re back to normal.

The last thing you need to do is make sure the ship isn’t drawn when
it’s dead g. A simple if statement takes care of that.

Dead players
aren’t drawn

g

SID, YOU'VE BEEN
PLAYING FOR AN HOUR.
AND YOUR SCORE'S
ONLY 30,000?

PEWPEWPEWPEW
FANFARE
PEWPEWPEPWPEWP
EWPEWPEWPEWPEW
PEWPEW …

308 CHAPTER 9 Gaming with Pyglet
Now that your game is starting to take shape, you can see the general
form a game takes. It has a certain state, effectively a simulation of a
number of things like planets and ships, and you can have an effect on
that simulation in certain ways. With some thought, a bit of luck, and
some experimentation, your simulation will have aspects that are fun.

Next up, let’s add some excitement to your game.

Guns, guns, guns!
What’s a space game without aliens to shoot? Even space trading
games have guns of some sort, so if you don’t have any, you’ll look a bit
odd. They’re easy to add, given the work you’ve already done on angles
and timers: set the bullet travelling at high speed at the same angle as
the ship, and update it in a similar way. You’ll also want to keep track
of whether the bullet has run into anything, and after a certain amount
of time, remove it from the game.

Listing 9.9 Shooting

bullet_image = pyglet.resource.image('bullet.png')
center_anchor(bullet_image)
...
class Ship(pyglet.sprite.Sprite,
 key.KeyStateHandler):
 def __init__(...):
 self.shot_timer = 0.1
 self.reload_timer = self.shot_timer
 self.bullets = []

 def update(self, dt):
 if self[key.LEFT]: ...
 if self[key.RIGHT]: ...

 rotation_x = math.cos(to_radians(self.rotation))
 rotation_y = math.sin(to_radians(-self.rotation))
 if self[key.UP]: ...
 ...
 if self.reload_timer > 0:
 self.reload_timer -= dt

Limit number
of shots

c

Delete
bulletsd

FIRE!e

Use
KeyStateHandler

b

Limit number
of shots

c

Guns, guns, guns! 309
 elif self[key.SPACE]:
 self.bullets.append(
 Bullet(self.x, self.y,
 rotation_x*500+self.dx,
 rotation_y*500+self.dy, bullets))
 self.reload_timer = self.shot_timer

class Bullet(pyglet.sprite.Sprite):
 def __init__(self, x=0, y=0, dx=0, dy=0, batch=None):
 super(Bullet, self).__init__(
 bullet_image, x, y, batch=batch)
 self.x = x
 self.y = y
 self.dx = dx
 self.dy = dy
 self.radius = self.image.width / 2
 self.timer = 5.0

 def update(self, dt):
 self.x += self.dx * dt
 self.y += self.dy * dt
 self.x = wrap(self.x, window.width)
 self.y = wrap(self.y, window.height)

 self.timer -= dt
 # collide with planet, or remove after 5 seconds
 distance, angle = planet.dist_vec_to(self)
 if distance <= planet.radius or self.timer < 0:
 ship.bullets.remove(self)
...
bullets = pyglet.graphics.Batch()

@window.event
def on_draw():
 window.clear()
 planet.draw()
 bullets.draw()
 if ship.alive:
 ship.draw()

Call update 60 times a second

FIRE!e

Limit number
of shotsc

Bullet classf

Delete
bulletsd

Bullet classf

Delete
bullets

d

Handle bullet
updates

g

310 CHAPTER 9 Gaming with Pyglet
def update(dt):
 planet.update(dt)
 ship.update(dt)
 for bullet in ship.bullets:
 bullet.update(dt)
...
window.push_handlers(ship)

An easier way to manage key presses is to
use Pyglet’s KeyStateHandler class B. This
class keeps track of which keys have been
pressed and makes them available with a
dictionary syntax, so you don’t need extra
event handlers and state on your Ship class.
If you push the left arrow key, then
self[key.LEFT] will be set to True. The only
tricky part to remember is that the ship

instance is now a key handler, so you need to do a window

.push_handlers(ship) so Pyglet knows to pass it events.

If you only let the player fire when the spacebar is pressed, they’ll get a
bullet per frame, or 60 shots per second! Even if your computer is fast
enough to handle hundreds of bullets onscreen, it makes the game a bit
easy: it means you can fill the screen with bullets until there’s nowhere
for the alien to hide. You’ll limit the number of shots by setting a timer
whenever the ship fires a bullet c. Every update, you’ll subtract dt
from the timer, until it’s 0 and the player is ready to fire again.

Firing is straightforward—you create an instance of the Bullet class
going in the right direction e. You give the bullets a speed of 500, with
the ship’s velocity added in (otherwise you get weird effects when
you’re travelling fast or shooting while travelling sideways). You store
the bullet instance in ship.bullets, because if you don’t have a refer-
ence to them somewhere, Python’s garbage collector will remove them,
and you’ll wonder why your bullets aren’t appearing on the screen.

f is the class you use whenever you fire a bullet. Bullet updates are easy,
because they’re not affected by gravity and move in a straight line.

Handle bullet
updates

g

Use KeyStateHandlerb

THIS BEHAVES EXACTLY
LIKE THE OLD ARCADE
MACHINES, REMEMBER?
ONCE YOU GET TO
999,999, IT'LL WRAP
AND START AGAIN
FROM ZERO.

WRAP?!

TWICE.

Evil aliens 311
You don’t want bullets hanging around forever, so they have their own
timer. Once they’ve been around for 5 seconds, you delete them from
ship.bullets and let Python handle the rest d. You also check for colli-
sions with the planet, the same way you did for the ship.

Because there are potentially so many bullets, it makes sense to use
Pyglet’s Batch class, which makes sprite rendering much faster if you
have lots of sprites to draw. To use the bullets batch, you pass it in
when creating the bullet sprite and then call bullets.draw() to draw all
the bullets at once g. You should see something like the next figure.

Now you can fly around the galaxy, doing good deeds and destroying
alien scum. Hang on—you don’t have any alien scum to shoot yet. Let’s
fix that next.

Evil aliens
What good are bullets without aliens to try them out on? In this section,
you’ll add an alien spaceship whose sole purpose in life is to destroy the
evil Earthling intruder. To make life easier, you’ll assume the alien has
advanced technology that isn’t influenced by gravity, and that they can
enter and leave the planet’s atmosphere at will. You’re going to be a little
lazy and not worry about all those vectors and collisions with the
planet—only whether the alien has hit the player. The next listing gives
you all the code you need to put an alien in your game.

Figure 9.13
Your ship firing—ready to

take on the alien armada

WHAT WAS PITR'S
SCORE? 72,000 AND
SOMETHING? LET'S
SEE … 75,000 OUGHT
TO DO IT … !?!

PEWPEWPEW
PEWPEW *ZART*
...
...
KABOOM!

312 CHAPTER 9 Gaming with Pyglet
Listing 9.10 A random alien

import random
...
alien_image = pyglet.resource.image('alien.png')
center_anchor(alien_image)
...
def make_vec((x1, y1), (x2, y2)):
 """distance and angle from (x1,y1) to (x2,y2)"""
 dx = x1 - x2
 dy = y1 - y2
 distance = math.sqrt(dx**2 + dy**2)
 if distance == 0:
 return (0,0)
 angle = math.acos(float(dx) / distance)
 if dy < 0:
 angle = 2*math.pi - angle
 return (distance, angle)

def vec_to_xy(distance, angle):
 x = distance * math.cos(angle)
 y = distance * math.sin(angle)
 return (x,y)

def dist_vec_to(source, target):
 return make_vec(
 (source.x, source.y),
 (target.x, target.y))
...
class Alien(pyglet.sprite.Sprite):
 def __init__(self, image, x=0, y=0,
 dx=0, dy=0, batch=None):
 super(Alien, self).__init__(
 image, x, y, batch=batch)
 self.x = x
 self.y = y
 self.dx = dx
 self.dy = dy
 self.radius = self.image.width / 2
 self.life_timer = 2.0
 self.accel_spd = 200.0
 self.max_spd = 400.0
 self.alive = True

Factor out vector
functionsb

Alien classc

Accelerate
in random
direction

d

Alien classc

Evil aliens 313
 def reset(self):
 self.alive = True
 self.life_timer = 2.0 # seconds until respawn
 self.x = random.random() * window.width
 self.y = random.random() * window.height
 self.dx = random.random() * (self.max_spd/2)
 self.dy = random.random() * (self.max_spd/2)

 def update(self, dt):
 if not self.alive:
 self.life_timer -= dt
 if self.life_timer > 0:
 return
 else:
 self.reset()

 if random.random() < 0.2:
 accel_dir = random.random() * math.pi*2
 accel_amt = random.random() * self.accel_spd
 accel_x, accel_y = vec_to_xy(accel_amt, accel_dir)
 self.dx += accel_x
 self.dy += accel_y

 self.dx = min(self.dx, self.max_spd)
 self.dx = max(self.dx, -self.max_spd)
 self.dy = min(self.dy, self.max_spd)
 self.dy = max(self.dy, -self.max_spd)

 self.x += self.dx * dt
 self.y += self.dy * dt
 self.x = wrap(self.x, window.width)
 self.y = wrap(self.y, window.height)
...
alien = Alien(alien_image)
alien.reset()

@window.event
def on_draw():
 ...
 if alien.alive:
 alien.draw()

def update(dt):
 ...
 alien.update(dt)

Alien classc

Factor out
vector

functions

b

Don’t go
too fast

e

Alien classc

314 CHAPTER 9 Gaming with Pyglet
One thing I’ve done in this section of code is pull the
vector functions out of the class and made them more
standalone d. I’ve left them as is here, but, ultimately,
you’ll probably want to put them into their own module
or find a vector library you can reuse.

The Alien class ends up being similar to the Ship
class, except for its update method c, so there
shouldn’t be any major surprises in this part.
You have all the same concepts—speed, accelera-

tion, wrapping the x and y position, death, and respawning after a
countdown.

Your alien has a simple AI—every so often, it accelerates in a random
direction B. The frequency of the acceleration and the parameters set
in __init__ give the alien enough changes in direction that shooting it
can be a bit of a challenge.

Finally, I noticed while play-testing that it’s possible for the alien to
accelerate to ridiculous speeds e, which makes it hard to shoot. To
stop it from doing that, you check that the x and y speeds are within
the alien’s maximum speeds and reduce them if they aren’t.

NOTE The alien is one thing in this game that you definitely want to exper-
iment with. The rough rule of thumb is that an alien should be easy
enough for the player to shoot some of the time, but hard enough to
be a challenge. Without the right balance, your game won’t be fun.

The last thing you need to do is make the alien interact with the other
objects you have onscreen: it should be killed by bullets and should kill
the player when it runs into the ship. You’d also like some sort of reward
system for the player, so you’ll add a score. Every time the player does
something wrong, like crash into the planet or the alien, you’ll subtract
100 points. If the player shoots the alien, then you’ll add 100 points.

Listing 9.11 Making the alien interact

class Alien(pyglet.sprite.Sprite):
 def update(self, dt):
 ...

HOW DO YOU *DO*
THAT, SID?

THRASHING
PITR? OH,
THAT JUST
COMES
NATURALLY.

NO … THE
GAME.

Evil aliens 315
 # check collisions with the player
 player_dist, player_angle = dist_vec_to(self, ship)
 if player_dist < (ship.radius + self.radius) * 0.75:
 # BANG! got the player
 self.reset()
 self.alive = False
 ship.reset()
 ship.alive = False
...
class Ship(pyglet.sprite.Sprite, key.KeyStateHandler):
 def __init__(...):
 ...
 self.score = 0

 def update(self, dt):
 ...
 score.text = "Score: %d" % self.score

 if not self.alive:
 self.life_timer -= dt
 if self.life_timer > 0:
 return
 else:
 self.reset()
 self.score -= 100
 self.alive = True
...
class Bullet(pyglet.sprite.Sprite):
 def update(self, dt):
 ...
 # check collision with Alien
 dist, angle = dist_vec_to(self, alien)
 if dist < alien.radius:
 # hit alien
 alien.reset()
 alien.alive = False
 ship.bullets.remove(self)
 ship.score += 100
 return
...
score = pyglet.text.Label('Speed: 0',
 font_name='Arial',
 font_size=36,

Alien should
crash into

player

b

Display
score on
screend Keep

score
c

You should be able
to shoot alien

e

Display score
on screen

d

316 CHAPTER 9 Gaming with Pyglet
 x=10, y=10,
 anchor_x='left', anchor_y='bottom')
score.color = (255, 255, 255, 255)

@window.event
def on_draw():
 ...
 score.draw()

You’d like the alien to be an extra hazard for the player to avoid, so you
check the distance between the ship and the alien B—the same way
you do for the ship and the planet. It’s up to you whether you want the
alien to disappear when it collides with the player.

A score c is how you let players know that they’ve done something
right according to the rules of the game, so you give them 100 points
for shooting the alien and subtract 100 points if they run into the alien
or the planet.

The bullets should have an effect on the alien e. So, for each bullet,
you check the range to the alien. If it’s within the alien’s radius, then
you’ve shot the alien! Resetting the alien works in pretty much the
same way it does for the player—only you draw the alien if it’s alive
and have a short delay between the alien dying and its reappearance.

Players need to be able to see their score on the screen d, so you add a
Label class in the bottom of the screen, 10 pixels from the lower-left
corner. Setting the color looks a little odd, because you might be
expecting three numbers for red, green, and blue. The fourth is the
alpha value—255 is opaque and 0 is completely transparent—which is
useful for fading text in and out.

You should see something like the next figure, complete with alien
scum!

Now you have a full-blown space-alien-shooting-get-as-many-points-
as-you-can-but-don’t-run-into-the-planet game (I’m sure you can think
of a catchier title). You can send the game to your friends and even
compete with each other.

Display score
on screen

d

Where to from here? 317
Where to from here?
You can make a number of improvements or changes to the game,
either to refine what’s already there, expand on the game play, or turn
the game into something completely different. Here are some ideas.

Extending the game play
There are a number of other elements that would normally be in a
game like this. A good idea might be to pick your favorite space-
shooting game and see how many of its features you can add. You
might want to make the alien shoot back, tweak its AI to make it nas-
tier, or add more aliens. Adding extra, harder levels with each wave of
aliens and limited lives for the player would be another feature. Sound
effects are also good for setting an atmosphere.

Altering the game play
Another option is to extend the game in a completely different direc-
tion—after all, perhaps you’re not a big fan of space-alien destruction.
If you add a second player, and make your shots affected by gravity,
you’ll have something pretty close to Spacewar!, the original space
shooting game, written for the PDP-1 back in 1962.

If shooting at stuff isn’t really your thing, you could add extra planets
and turn the game into a space-trading game or a 3D version of Lunar
Lander. Limited fuel and lighter or heavier gravity on different planets
would add to the challenge of the game, in addition to trading well.

Figure 9.14 Die, alien scum!

WELL, IF YOU
REALLY WANT
TO KNOW—
IT'S ALL IN
THE
GEOMETRY.

GEOMETRY?

318 CHAPTER 9 Gaming with Pyglet
Pyglet comes with several examples you can use to add text input and
other features.

Refactoring
Now that you understand the program, there are some areas where the
code could be improved. For example, there’s quite a bit of duplication
in terms of the objects and how their positions are updated—making
them derive from a subclass could make your code clearer and easier to
extend.

You could also use an external vector class within your objects, so you
don’t have to look at (or debug) all that geometry code. It helps to
know what’s behind the vector library before you start.

Unit tests would be a big help in ensuring that your program is func-
tioning properly when you make these changes. It’s difficult to test
visual and game play aspects, but you can still check that collisions are
detected properly by manually placing ship, bullet, and alien objects
and checking whether they overlap. Other game data, such as forces
and velocities, can be tested in the same way.

Get feedback
Another thing to bear in mind is that you’re
writing a game. You can write the most
beautiful code, with all sorts of features, but
all that will be for nothing if your game isn’t
fun to play. One good way to design and
develop games is to create a minimal version
that includes the elements you think will be
fun and test it out on a few people, tweaking
the various parts as necessary.

Summary
In this chapter, you learned how to write your own arcade game. You
used Pyglet graphics classes to display images onscreen and move them
around. To make your objects move realistically, you used some geom-
etry and physics modeling to update their positions onscreen.

SURE. GAMES ARE ALL
GEOMETRY BEHIND THE
SCENES. ONCE YOU SEE
THROUGH TO THE MATH
UNDERNEATH, YOU CAN
WIN AT ANYTHING.

OH YES, I WAS
THE STATE
NATIONAL
GEOMETRY
CHAMPION WHEN
I WAS AT
SCHOOL …

Summary 319
You added several types of objects and learned how to make them
interact with each other—your ship could run into a planet and fire
bullets; then, finally, you added an alien that could run into the ship
and be shot by bullets.

Along the way, you learned about other game elements, such as colli-
sion detection and scheduling actions to take place over time.

Finally, we covered some aspects of game design: your game needs to
be fun and include some familiar elements to attract people. It’s impor-
tant to get feedback from others: what’s fun for you might not be fun
for anybody else.

In the next chapter, you’ll learn more about Django and how you can
make the web applications you write available on the internet for other
people to use.

10
Twisted networking

This chapter covers

• Writing networked programs in Python

• Designing multiplayer games (including testing them on your friends)

• Issues you’ll encounter when writing asynchronous programs

In this chapter, we’ll be revisiting the adventure game you wrote in chap-
ter 6 and extending it so you can log in and play it with other people via
the internet. Normally these games are referred to as MUDs, which
stands for Multi-User Dungeon. Depending on the person creating them,
MUDs can range from fantasy hack-and-slash to science fiction, and play-
ers can compete or cooperate to earn treasure, points, or fame.

To get you started quickly, we’ll use a framework called Twisted, which
contains libraries for working with many different networking protocols
and servers.

Installing Twisted
The first step is to install Twisted and get a test application running.
Twisted comes with installers for Windows and Macintosh, which are
available from the Twisted homepage at http://twistedmatrix.com/. Some
320

Your first application 321
versions of MacOS ship with Twisted already installed, in which case
it’s easier to use that version. If you’re using Linux, there should be
packages available through your package manager.

The installer will pop up a window as it compiles
things, but once you see the window on the right in
figure 10.1, Twisted is installed!

The only other thing you need is a Telnet applica-
tion. Most operating systems come with one built-in,
and there are many free ones you can download. I
normally use an SSH terminal program called
PuTTY, which is available for Windows.

Your first application
You’ll start by writing a simple chat server. The idea is that people will
be able to log into it via a program called Telnet and send each other
messages. It’s a little more complex than “Hello World!” but you can
extend this program and use it in your game later on in this chapter.
Open a new file, and save it as something like chat_server.py.

Let’s start with the first part of your application: the protocol for the
chat server. In Twisted terminology, a protocol refers to the part of your
application that handles the low-level details: opening connections,
receiving data, and closing connections when you’re finished. You can

HEY SID—I'M TURNING
MY ADVENTURE GAME
INTO A MUD!

Figure 10.1 Installing Twisted on Windows

322 CHAPTER 10 Twisted networking
do this in Twisted by subclassing its existing networking classes. The
next listing shows a simple chat client, which you’ll build on when you
write your game in later sections.

Listing 10.1 A simple chat-server protocol

from twisted.conch.telnet import StatefulTelnetProtocol

class ChatProtocol(StatefulTelnetProtocol):
 def connectionMade(self):
 self.ip = self.transport.getPeer().host
 print "New connection from", self.ip
 self.msg_all(
 "New connection from %s" % self.ip,
 sender=None)
 self.factory.clients.append(self)

 def lineReceived(self, line):
 line = line.replace('\r', '')
 print ("Received line: %s from %s" %
 (line, self.ip))
 self.msg_all(line, sender=self)

 def connectionLost(self, reason):
 print "Lost connection to", self.ip
 self.factory.clients.remove(self)

 def msg_all(self, message, sender):
 self.factory.sendToAll(
 message, sender=sender)

 def msg_me(self, message):
 message = message.rstrip() + '\r'
 self.sendLine(message)

For your chat server, you use Twisted’s
StatefulTelnetProtocol B. It takes care of the
low-level line-parsing code, which means you
can write your code at the level of individual
lines and not have to worry about whether you
have a complete line or not.

ChatProtocol
is like Telnet

b

Override connectionMadec

New connectiond

Handle datae

Close
tconnection

f

Convenience
methods

g

…

Your first application 323
You’re customizing the protocol by overriding the built-in connectionMade
method c. This will called by for each connection the first time it’s made.

You’re taking care of a bit of housekeeping here—storing the client’s
IP address and informing everyone who’s already connected of the new
connection d. You also store the new connection so you can send it
broadcast messages in the future.

The Telnet protocol class provides the lineReceived method e, which
gets called whenever a complete line is ready for you to use (that is,
whenever the person at the other end presses the return key). In your
chat server, all you need to do is send whatever’s been typed to every-
one else who’s connected to the server. The only tricky thing you need
to do is to remove any line feeds; otherwise, your lines will overwrite
each other when you print them.

If the connection is lost for some reason—either the client disconnects,
or is disconnected by you—connectionLost will be called so you can tidy
things up f. In this case, you don’t really need to do much, just remove
the client from the list of connections so you don’t send them any more
messages.

To make the code easier to follow, I’ve created the msg_all and msg_me
methods, which will send out a message to everyone and just you,
respectively g. msg_all takes a sender attribute, which you can use to
let people know who the message is coming from.

NOTE Factory is a programming term for something that creates a class for
you to use. It’s another way to hide some of the complexity of a
library from the programmers who make use of it.

That takes care of how you
want your program to
behave. Now, how do you
link it to Twisted? You use
what Twisted refers to as a
Factory, which is responsible
for handling connections and
creating new instances of
ChatProtocol for each one.
You can think of the Factory Figure 10.2 A Factory creating protocols

324 CHAPTER 10 Twisted networking
as a switchboard operator: as people connect to your server, the Factory
creates new protocols and links them together, similar to figure 10.2.

So how do you do this in Twisted? Easy! Add a factory class, as shown
in the next listing.

Listing 10.2 Connecting your protocol

from twisted.internet.protocol import ServerFactory
from twisted.internet import reactor
 ...
class ChatFactory(ServerFactory):
 protocol = ChatProtocol

 def __init__(self):
 self.clients = []

 def sendToAll(self, message, sender):
 message = message.rstrip() + '\r'
 for client in self.clients:
 if sender:
 client.sendLine(
 sender.ip + ": " + message)
 else:
 client.sendLine(message)

print "Chat server running!"
factory = ChatFactory()
reactor.listenTCP(4242, factory)
reactor.run()

A Factory is object-oriented terminology for something
that creates instances of another class B. In this case, it
will create instances of ChatProtocol.

The ChatFactory is the natural place to store data that is
shared among all of the ChatProtocol instances. The send-
ToAll method is responsible for sending a message to each
of the clients specified in the clients list c. As you saw in
listing 10.1, the client protocols are responsible for
updating this list whenever they connect or disconnect.

ChatFactory?b

Wiring
everything
together

c

Talking to
everyone

d

Wiring
everything
together

c

SID?
IT'S LIKE AN
ADVENTURE GAME,
ONLY YOU CAN PLAY IT
WITH OTHER PEOPLE
OVER THE INTERNET.

Your first application 325
The final step is to let Twisted know about your new protocol and
Factory. You do this by creating an instance of ChatFactory, binding it
to a particular port with the listenTCP method, and then starting
Twisted with a call to its main loop, reactor.run() d. Here you use
4242 as the port to listen to—it doesn’t matter too much which one
you use, as long as it’s above 1024 so it doesn’t interfere with existing
network applications.

If you save the program and run it, you should see the message “Chat
server running!” If you connect to your computer via Telnet on port
4242 (usually by typing telnet localhost 4242), then you should see
something like figure 10.3.

It may not seem like much, but you’ve already got the basic functional-
ity of the MUD server going. If you’d like to explore the chat server
further, there’s a more fully featured version
included with the source code, available
from http://manning.com/HelloPython/. That
version adds commands to change your
name and see who else is connected, as well
as limit some common sorts of misbehavior
and allow you to remove anyone who’s
behaving badly.

Figure 10.3
Your chat
server is
running.

UM, YEAH …. I
USED TO PLAY
THEM … A WHILE
AGO …

326 CHAPTER 10 Twisted networking
First steps with your MUD
Now you’re ready to start connecting your adventure game to the net-
work. You’ll base it on the chat server, but instead of only broadcasting
what’s typed to everyone who’s connected, you’ll feed it directly into
the adventure game. This is a common way to get things done when
programming—find two programs (or functions or libraries) that do
separate parts of what you need, and then “glue” them together.

The basic gist is that you’ll have multiple players logged in at once, all
trying to execute commands (such as “get sword”) at the same time.
This could potentially cause problems for the server because you’re
mixing real-time Twisted code with the one-step-at-a-time of your
adventure game. You’ll head off most of the issues by queuing up
player commands and updating your game’s state once per second.

Let’s get started. Copy your adventure code from chapter 6 into a new
folder, along with the chat-server code you just created. You’ll proba-
bly also want to rename chat_server.py to something like
mud_server.py, to help keep things straight, and rename your classes
and variables as in the next listing.

Listing 10.3 Updating your chat protocol

from game import Game
from player import Player
import string

class MudProtocol(StatefulTelnetProtocol):

 def connectionMade(self):
 self.ip = self.transport.getPeer().host
 print "New connection from", self.ip

 self.msg_me("Welcome to the MUD server!")
 self.msg_me("")
 ...
 self.player = Player(game.start_loc)
 self.player.connection = self
 game.players.append(self.player)

Redirect input
to Player class

c
Update imports
and classes

b

Welcome
message

d

Create player
when connecting

e

First steps with your MUD 327
 def connectionLost(self, reason):
 ...
 game.players.remove(self.player)
 del self.player

 def lineReceived(self, line):
 line = line.replace('\r', '')
 line = ''.join([ch for ch in line
 if ch in string.printable])
 self.player.input_list.insert(0, line)

The first step is to import the Game and Player
classes into your code B. I’ve also changed the
name of the protocol so it’s obvious what you’re
trying to write.

Next, you give a nice, friendly start when some-
one first connects to your MUD d.

Now you’ll start to do the real work. But it turns
out to not be that hard. I’ve assumed the game
will keep track of its players somehow, and added a new player object
to the game’s list of players e. To make it possible for you to talk to the
player from within the game, I’ve also added the protocol to the player.
You’ll see how that works in a minute.

You’ll still need to handle the case where a player disconnects from the
server f. But, again, it’s straightforward: remove them from the
game’s list of players, and delete them.

Once players are connected, they’ll want to type commands, like “go
north” and “attack orc” c. First, you sanitize the input you’ve received
(in testing, I found that different Telnet programs can send different
weird characters). When it’s trimmed down to only printable charac-
ters, you assume the player has a list of commands waiting to be exe-
cuted, and push this one to the end.

Your protocol is done, but what about the Factory and the rest of it? It
turns out that you don’t need to do too much to your Factory—just
change a few lines.

Remove players when
disconnecting

f

Redirect input
to Player class

c

GREAT! I'LL EMAIL
YOU THE DETAILS,
AND YOU CAN LOG
IN AND PLAY!

328 CHAPTER 10 Twisted networking
Listing 10.4 Updating your chat Factory

from twisted.internet import reactor, task
...
class MudFactory(ServerFactory):
 protocol = MudProtocol
 ...

game = Game()
game.run()

def run_one_tick():
 game.run_one_tick()

print "Prototype MUD server running!"
factory = MudFactory()
game_runner = task.LoopingCall(run_one_tick)
game_runner.start(1.0)
reactor.listenTCP(4242, factory)
reactor.run()

You don’t need to do too much to update your Factory
c—change its protocol and rename it.

You’ll need a Game object, too, so you create it here d.
You don’t want to use the old run method, though,
because it still handles things the old way.

The design calls for you to run a game update once per
second. Because you’re using Twisted’s event loop

(that’s the reactor.run() part), you’ll need to use Twisted’s
task.LoopingCall to call the game’s update method B, run_one_tick,
which you’ll also create shortly.

That should be all you need to do to the network code for now. You’ve
made a few assumptions about how the game code will work, but often
this is easier than jumping back and forth between the Game and Mud-
Protocol classes and trying to fit it all together. Now that your protocol
is written, you have to make Game and Player play along, too.

Update
Factory

c

Create Game
instance

d
Run game
updates

b

NO, THAT'S
OK. I'M …
BUSY.

First steps with your MUD 329
Listing 10.5 Changing your game code to work with the new interface

class Game(object):

 def __init__(self):
 ...
 #self.player = player.Player(cave1)
 self.players = []
 self.start_loc = cave1
 ...
 def run_one_tick(self):
 self.do_input()
 self.do_update()
 self.send_results()
 ...
 def send_results(self):
 """Send results of actions to players"""
 things_to_update = [thing for cave in self.caves
 for thing in cave.here
 if 'send_results' in dir(thing)]
 for thing in things_to_update:
 thing.send_results()

The single-player version of the adventure game had one player, but
you’ll potentially have many, so you’ll make it a list instead B. You’re
also giving the starting cave a sensible name.

c is the main loop you called from the networking part of your code.
You should be able to follow what it’s doing from the names—get input
for each Player object (including monsters), run the update, and then
send the results back.

You already have methods for getting input and processing orders, but
you’ll need something to send back the results of each player’s actions
d. To do that, you’ll make another assumption: that each Player object
knows how to send results back to the player.

Now you have only two assumptions left to fill in, and they’re both in
the Player class. The first is that Player will have a list of pending com-
mands, and the second is that it will have a way to send the results of
any commands or events back to the player. The other thing you need

Don’t create only
one player

b

Game
loop

c

Send
results

d

330 CHAPTER 10 Twisted networking
to do is make sure the Player class reads from the list of pending com-
mands, rather than using raw_input.

Listing 10.6 Changing the Player code

class Player():
 def __init__(self, location):
 ...
 self.input_list = []
 self.result = []

 def get_input(self):
 #return raw_input(self.name+">")
 if self.input_list:
 return self.input_list.pop()
 else:
 return ''

 def send_results(self):
 for line in self.result:
 self.connection.msg_me(line)
 for line in self.events:
 self.connection.msg_me(line)

 def die(self):
 self.playing = False
 self.input = ""

 self.name = "A dead " + self.name

 for item in self.inventory:
 self.location.here.append(item)
 item.location = self.location
 self.inventory = []

 try:
 self.connection.msg_me("You have died! "
 "Better luck next time!")
 self.connection.transport.loseConnection()
 except AttributeError:
 pass # not everyone has a connection

class Monster(player.Player):

Add input and
output buffers
to Player

b

Update
get_input

c

Add send_results
methods

d

What
happens
when
you die?

e

http://twistedmatrix.com/documents/

First steps with your MUD 331
 ...
 def send_results(self):
 pass

 def get_input(self):
 if not self.playing:
 return ""
 player_present = [x for x in self.location.here
 if x.__class__ == player.Player
 and x.playing]

You start by creating your list of pending com-
mands and the result that needs to be sent back
to the player B. They’re just lists, and when
they’re in use they’ll have a list of strings.

You can’t use raw_input any more, so you need
to read your next command from self.input
_list c. pop removes the command for you so
you don’t have to worry about removing it from
the list later. pop called on an empty list raises an
exception, so you check for that case and assume the command is blank
if there’s nothing there.

To send the results of a player’s actions d, you use the self.connection
object that you set up in mudserver.py. Note that even if the player isn’t
doing anything, other players and monsters are, so you have two sepa-
rate sections: one for the results of your actions and another for events.

In the old version of the game, when the player died, the game ended.
That’s no longer the case, so you’ll need to gracefully handle the situa-
tion where a player dies e. To do that, you make the player drop what-
ever they’re carrying, send them a message, and drop the connection. If
you extend your game, you might want to make the player keep their
items. Alternatively, you can allow other players to “get sword from
Anthony” if you’re feeling mean.

Monsters don’t connect over the network and don’t have the self.
connection object, so the default send_results from the Player class won’t

Stub out send_results
in Monster

f

May be more
than one player

g

HEY AJ! WANT TO
SIGN UP FOR MY
MUD?

A MUD? COOL!
KINDA 80S, BUT
STILL COOL …

http://twistedmatrix.com/documents/current/api/
http://twistedmatrix.com/documents/current/api/twisted.conch.telnet.html
http://twistedmatrix.com/documents/current/api/twisted.conch.telnet.html

332 CHAPTER 10 Twisted networking
work. They don’t need to know the results of their actions, so you’ll
stub out their version of send_results and return immediately f.

The previous adventure game looked at the player’s name to figure out
whether to attack them. Now that you have multiple players, who
probably all have different names, you’ll need to be a bit more discern-
ing g. A better way is to examine the class of the object the monster is
looking at, using the __class__ method. That will return the class,
which you can compare to player.Player.

NOTE This works so well because your game has only one point of commu-
nication with the player: the commands the player types and the
responses the game returns.

That should be all you need to do. Now, when you run your server and
connect via Telnet, you’ll see your familiar adventure-game prompt,
and you can run around the server collecting loot and slaying monsters.
Go ahead and bask in the adventure and glory.

Well, sort of. Although the game works, and you can explore and do
everything you need to, there are a few more things to take care of
before your game is playable.

Making the game more fun
I made the previous code available to some of
my friends online and got feedback from
them. They raised two major issues: the mon-
ster was too hard to beat, and there wasn’t
enough interaction between the players. Nor-
mally, in an adventure game like this, you’ll be
able to change your name and description,
talk to other players, look at their description,
and so on.

Bad monster!
The problem with combat is pretty obvious once you run into the orc
for the first time. You’re limited to the actions you type in—but the
monsters react at computer speed. The next figure shows what I mean.

I ASKED SID TO JOIN
TOO, BUT HE DIDN'T
SEEM INTERESTED.

DIDN'T YOU KNOW?
SID USED TO BE A
MUD JUNKIE.

Making the game more fun 333
The solution that most MUDs use is what’s known as an angry list.
Rather than attacking things directly, the game maintains a list of mon-
sters and other players you’re angry at. If you’re not explicitly doing
anything else, and there’s something present that’s on your angry list,
then you’ll attack it. If something attacks you, then it will go on your
angry list, too, so you’ll at least put up a token defense. Let’s look at
how you can implement the angry list in your game.

Listing 10.7 Angry lists

class Player(object):
 def __init__(self, game, location):
 ...
 self.angry_list = []

 def update(self):
 self.result = self.process_input(self.input)

 if (self.playing and
 self.input == "" and
 self.angry_list):
 bad_guys = [x for x in self.location.here
 if 'attack' in dir(x) and
 x.name in self.angry_list]

Figure 10.4 Bad monster! No beating on the player!

Add angry
list

b

Attack
bad guys

c

334 CHAPTER 10 Twisted networking
 if bad_guys:
 bad_guy = random.choice(bad_guys)
 self.events += bad_guy.do_attack(self)

 def die(self):
 ...
 self.angry_list = []
 ...
 def stop(self, player, noun):
 self.angry_list = [x for x in self.angry_list
 if x.name != noun]
 return ["Stopped attacking " + noun]

 def attack(self, player, noun):
 player.angry_list.append(self.name)
 self.angry_list.append(player.name)
 result = ["You attack the " + self.name]
 result += self.do_attack(player)
 return result

 def do_attack(self, player):
 """Called when <player> is attacking us (self)"""
 hit_chance = 2
 ...
 actions = [..., 'stop']

Both players and monsters will need a way to
remember who they’re angry at. You’ll make it a
list B, because you’re not expecting it to grow too
large.

Next, you’ll modify your update method. If your
input attribute is blank, you know that the player
(or monster) hasn’t entered any commands, and
you can go ahead and attack if necessary. You
build a list of all the things you’re angry at that are
present, and then attack one of them c.

If a player or monster is dead, they shouldn’t keep attacking, so you
clear their angry list d.

Attack
bad guys

c

Dead players
tell no tales

d

Stop attackinge

Modify
attack
method

f

Add stop to list
of actions

g

A MUD JUNKIE? COME
ON. THERE'S NO SUCH
THING …

NO, REALLY. HE HAD
TO BE HOSPITALIZED
FOR A WHILE …

Making the game more fun 335
The players will also need a way to stop attacking things (maybe
they’re friends again). The stop command will remove an attacker from
the list of things that the player is angry at e.

The final major thing you’ll do is make the attack command modify the
angry lists of both the attacker and attacked f. Now, when something
gets attacked, it will automatically fight back. Note how you build your
result before you do the attack. That way, if the target dies, you won’t
see “You attack the dead orc.” do_attack is the mechanism from your
old attack attribute with a different name.

The final, final thing is to add stop to your list of commands g—other-
wise you won’t be able to use it!

Now the player should have half a chance against the orc. If the orc
beats the player now, the player will at least feel that they haven’t been
completely robbed by the game. If you pick up the sword, you’ll find it
helps a lot, which is what you want. There are plenty of other opportu-
nities for improving the combat system, but you need to deal with a
more pressing problem, instead.

Back to the chat server
The second problem is that players can’t interact with each other. This
is often a big draw when it comes to a multiplayer game—players will
come for the game but stay for the company. Fortunately, making your
game more social is easy to do. You’ll add a few extra commands to the
Player class.

Listing 10.8 Social gaming

help_text = """
Welcome to the MUD

This text is intended to help you play the game.
Most of the usual MUD-type commands should work, including:
...
"""

class Player(object):
 ...

Help!b

336 CHAPTER 10 Twisted networking
 def help(self, player, noun):
 return [help_text]

 def name_(self, player, noun):
 self.name = noun
 return ["You changed your name to '%s'" % self.name]

 def describe(self, player, noun):
 self.description = noun
 return ["You changed your description to '%s'" %
 self.description]

 def look(self, player, noun):
 return ["You see %s." % self.name, self.description]

 def say(self, player, noun):
 for object in self.location.here:
 if ('events' in dir(object) and
 object != self):
 object.events.append(
 self.name + " says: " + noun)
 return ["You say: " + noun]

If a player is completely new to the game, you need to give them at
least half an idea of what they can do. You’ll make “help” output some
helpful instructions B. The full help text I added is in the source code.

Another easy win is to let players customize their appearance by
changing their name and description c. Rather than being “player #4,”
the player can now be “Grognir, Slayer of Orcs.”

Of course, the description’s not much good if other players can’t see it d.

You’ll also need to add to most important case of all:
a say command, so your players can talk to each
other e. All this command needs to do is send what
you’ve typed to every other object in the current
room. This simple change will allow players to inter-
act on a human level, which will in turn help keep
them coming back.

Help!b

Change name
and description

c

Lookd

Talk to
people

e

HE'S ON SOME SORT
OF COURT-SPONSORED
NETHACK PROGRAM
NOW. I THINK …

Making the game more fun 337
One of the issues you’ll run into is that with the new commands, the old
find_handler method will sometimes call the wrong thing. For example,
both the player and the location have a look method, and which one is
correct will depend on the context. Additionally, some of the com-
mands you’ve just added only apply to the players themselves, and you
shouldn’t look for an object to apply them to. The following listing has
an updated version that is a lot more explicit about which objects it
should look at.

Listing 10.9 Updating find_handler

no_noun_verbs = ['quit', 'inv', 'name_', 'describe',
 'help', 'say', 'shout', 'go']
...
def find_handler(self, verb, noun):
 if verb == 'name':
 verb = 'name_'
 if verb == "'":
 verb = 'say'

 if noun in ['me', 'self']:
 return getattr(self, verb, None)

 elif noun and verb not in self.no_noun_verbs:
 # Try and find the object
 object = [x for x in self.location.here + self.inventory
 if x is not self and
 x.name == noun and
 verb in x.actions]
 if len(object) > 0:
 return getattr(object[0], verb)
 else:
 return False

 # if that fails, look in location and self
 if verb.lower() in self.location.actions:
 return getattr(self.location, verb)
 elif verb.lower() in self.actions:
 return getattr(self, verb)

def process_input(self, input):
 ...

Special
cases

c

Talking to
yourself

d

Non-noun
verbs

b

Can’t find
that

e

338 CHAPTER 10 Twisted networking
 handler = self.find_handler(verb, noun)
 if handler is None:
 return [input+"? I don't know how to do that!"]
 elif handler is False:
 return ["I can't see the "+noun+"!"]
actions = […, 'name_', 'describe', 'look', 'help', 'say',...]

Let’s pay close attention to word choice. Some verbs
don’t apply to nouns, or else they implicitly apply to the
player B.

There are a few special-case commands c that you can’t
handle with your current system. You could rewrite the
entire handler, but it’s easier to catch those commands
and explicitly convert them to something you can han-
dle. Of course, if it becomes more than a handful of con-

versions, then you’ll have to rethink things; but it will do for now.

So that you can see how you look, you’ll add a self object, too d. “Look
self” should return your description as it appears to other people.

e is another improvement to make things easier for the new player.
Rather than have one error message when things go wrong, you’ll have
one for a command you don’t understand, and another when you can’t
find what the player’s looking for.

Now your players can chat to each other and compliment each other on
their fine threads.

Finally, what would social gaming be without the opportunity to be
antisocial, too? Most MUDs have the option to shout, which works
much like speaking, except that everyone connected can hear you.

Listing 10.10 Antisocial gaming

 def shout(self, player, noun):
 noun = noun.upper()
 for location in self.game.caves:
 for object in location.here:
 if ('events' in dir(object) and
 object != self):

Can’t find
that

e

THAT WAS A CRAZY
BUG, GREG. HOW DID
PITR MANAGE TO
ATTACK HIMSELF?

Shouting looks
like shouting

b
Send to
all caves

c

Find objects
that can
hear shout

d

Making the game more fun 339
 object.events.append(
 self.name + " shouts: " + noun)
 return ["You shout: " + noun]

class Player(object):
 def __init__(self, game, location):
 self.game = game
 ...

class Monster(player.Player):
 def __init__(self, game, location, name, description):
 player.Player.__init__(self, game, location)
 ...

class Game(object):
 def __init__(self):
 ...
 orc = monster.Monster(self, self.caves[1],
 'orc', 'A generic dungeon monster')

class MudProtocol(StatefulTelnetProtocol):
 def connectionMade(self):
 ...
 self.player = Player(game, game.start_loc)

First, you’ll convert the text to uppercase B,
SO THAT IT LOOKS A LOT MORE LIKE
SHOUTING!

Now you need to visit each cave in turn—but
there doesn’t seem to be any way to find out
what the caves are. For now, you’ll assume
you have access to the game’s list of caves c.

This is pretty much the same as when players
talk to each other d. Merging the two
together—for example, by pushing the code into the location class—is
left as an exercise for the reader.

Now you need to give your Player class access to the caves list from the
game e by making it a variable you pass in from the game when you

Find objects
that can
hear shout

d

Update Player
class

e

Update all Player
and Monster

instances

f

OH, I MESSED UP THE
INDEX IN THE ROOM'S
LIST OF THINGS.

IS NOT
FUNNY!

340 CHAPTER 10 Twisted networking
create a player or monster. Then, update each place where you create
an instance of a player or monster f, so it now knows about the game
object and can tell where all the caves are.

There! That’s a few more rough edges smoothed off your game.
There’s plenty left to do, but you won’t be writing any new features for
the game now. Instead, you’ll focus on making the infrastructure
around the game a bit more robust, so players won’t be put off by hav-
ing all their hard work disappear.

Making your life easier
If you only want to write the game for your friends, you can probably
stop here; they can connect and play your game, after all. Currently,
though, there are still a few issues that will make your life harder than
it needs to be. Anyone can log on as anyone else, so the game isn’t par-
ticularly secure; and the game doesn’t save any progress, so every time
you restart the game server, the player will have to start over from
scratch.

Let’s fix that. You’ll add usernames and passwords to the game, as well
as a mechanism to allow new players to register. Once you know who’s
logged on, you can save the players’ progress every so often, and also
when they quit the game. You’ll need to learn a bit more about Twisted,
though, because you’ll be digging into the guts of one of its Telnet
classes. But don’t worry; it’s straightforward once you get the hang of it.

Exploring unfamiliar code
Twisted is a large codebase and has a huge number of modules to help
you network your application. That’s great, because it means you don’t
have to write your own code to handle the networking in your applica-
tion, but it raises a related problem: you must have at least a basic
understanding of how everything fits together before you can make use
of all that great code.

Ideally, the documentation for libraries like Twisted would be 100%
up-to-date and cover everything you need to do with a nice, gentle
introduction—but this isn’t always the case. Often, you’ll be able to

Making your life easier 341
find something close, but then you’ll need to piece together how the
code works with some guessing, experimentation, and detective work.

It sounds hard, but in practice it’s usually pretty
easy. The trick is not to get too overwhelmed,
and to use all the resources at your disposal.
Here are some ideas on how you can get a grip
on a large codebase and make it work in your
application.

FIND AN EXAMPLE

Searching for “twisted tutorial” online gives you a number of starting
points, and you can also add “telnet” or “telnet protocol” into the mix.
As you learn more about Twisted, you’ll find other keywords or
method names that will help you narrow down what you’re looking for.
You can also start with a working example that sort of does what you
need, and then tweak it until it covers exactly what you need it to do.

THE TWISTED DOCUMENTATION

There’s reasonably comprehensive documentation available in the
Conch section of the main Twisted site, http://twistedmatrix.com/
documents/, but it doesn’t cover all of what you need to do. There are
some simple examples of SSH and Telnet servers, which you can skim
through to get an idea of how everything fits together.

THE TWISTED API DOCS

Detailed, automatically generated documentation is available for the
entire Twisted codebase, which you can see at http://twistedmatrix
.com/documents/current/api/. Don’t let the sheer number of packages
put you off—we’ll focus on the Telnet one: http://twistedmatrix.com/
documents/current/api/twisted.conch.telnet.html.

THE TWISTED CODE

You can also read most of the Twisted code directly. The Windows ver-
sion of Python stores its libraries at C:\Python26\Lib\site-packages\
twisted; under Linux, it will be somewhere like /usr/lib/python2.6/
dist-packages/twisted; and under Mac, it’s usually at /Developer/SDKs/

NEVER MIND, PITR. I'M
SURE YOU'LL GET
THAT VORPAL WABBIT
SOMEDAY …

http://twistedmatrix.com/documents/
http://twistedmatrix.com/documents/
http://twistedmatrix.com/documents/current/api/
http://twistedmatrix.com/documents/current/api/
http://twistedmatrix.com/documents/current/api/twisted.conch.telnet.html
http://twistedmatrix.com/documents/current/api/twisted.conch.telnet.html

342 CHAPTER 10 Twisted networking
MacOSX10.6.sdk/System/Library/Frameworks/Python.framework/
Versions/2.5/Extras/lib/python/twisted. All the Twisted code is stored
there, and you can open the files and read the code to find out exactly
what a method does.

INTROSPECTION

If a library doesn’t have API documentation, all is not lost. You can still
create instances of classes and use dir(), help(), and method.__doc__ to
find out what they do. If you have a one-off method you need to know
about, this can often be easier than reading the code or documentation.

In practice, none of these sources will cover all the details you need to
know when writing your program, so you’ll end up using a combina-
tion of them going back and forth as you learn new parts or run into
problems.

Putting it all together
Let’s get started putting together your login system. From a quick scan
of Twisted’s Telnet module, it looks like the best starting point is the
AuthenticatingTelnetProtocol class. You’ll get that working with your
code, then make it register new players, and finally make the game able
to save player data.

To start with, I looked at the Twisted documentation and the API refer-
ence for AuthenticatingTelnetProtocol. It sort of made sense, but from the
methods and classes it’s hard to see how to tie everything together. The
protocol needs a Portal, which in turn depends on a Realm, an Avatar, and
a PasswordChecker. Hmm, confusing. It looks like it’s time to try to find
an example of how the classes fit together.

There are a few different searches you could try:
“twisted telnet,” “twisted telnet example,” and so on, but
I didn’t find much until I put in some terms from the
code. The search “twisted telnet TelnetProtocol exam-
ple” led me to www.mail-archive.com/twisted-python@
twistedmatrix.com/msg01490.html, which, if you follow
it through to the end, gives you some example code that
is enough to see how the classes work together.

AFTER ALL, "IS ONLY
CUTE LITTLE BUNNY.
HOW TOUGH CAN IT
BE?"

www.mailarchive.com/twistedpython@twistedmatrix.com/msg01490.html
www.mailarchive.com/twistedpython@twistedmatrix.com/msg01490.html

Making your life easier 343
The basic gist is something like this: set up a Realm class, along with a
Portal to get into it. The docs don’t say whether it’s a magic portal, but
it should do. A Portal controls access to your Realm, using one or more
password Checkers, via a TelnetTransport. Of course, the Authenticating-
TelnetProtocol only handles authentication, so you’ll need to hand off to
another protocol like your MudProtocol once you’re logged in.

Got all that? No, me neither. I had to draw a picture to see how it all
worked, and without the example I probably would’ve been lost. Fig-
ure 10.5 shows what I came up with.

Using the diagram and the example code, you can get a simple login
going. The following listing shows how I changed the mudserver.py file.

Figure 10.5 The Twisted class structure

344 CHAPTER 10 Twisted networking
Listing 10.11 Mudserver.py

import sys

from zope.interface import implements
from twisted.internet import protocol, reactor, task
from twisted.python import log

from twisted.cred import portal
from twisted.cred import checkers
from twisted.cred import credentials

from twisted.conch.telnet import AuthenticatingTelnetProtocol
from twisted.conch.telnet import StatefulTelnetProtocol
from twisted.conch.telnet import ITelnetProtocol
from twisted.conch.telnet import TelnetTransport

...
class Realm:
 implements(portal.IRealm)

 def requestAvatar(self, avatarId, mind, *interfaces):
 print "Requesting avatar..."
 if ITelnetProtocol in interfaces:
 av = MudProtocol()
 print "**", avatarId, dir(avatarId)
 print "**", mind, dir(mind)
 av.name = avatarId
 av.state = "Command"
 return ITelnetProtocol, av, lambda:None
 raise NotImplementedError("Not supported by this realm")

...
class MudProtocol(StatefulTelnetProtocol):

 def connectionMade(self):
 …
 # self.factory.clients.append(self)
 self.player.name = self.name
 checker = portal_.checkers.values()[0]
 self.player.password = checker.users[self.player.name]
 game.players.append(self.player)

 def connectionLost(self, reason):
 print "Lost connection to", self.ip

Lots of
imports!

b

Create
Realm

c

Use debugging
strings

d

Create
Realm

c

Set up
ServerFactory

g

Find player’s
username and

password

e

Making your life easier 345
 if 'player' in dir(self):
 if self.player in game.players:
 game.players.remove(self.player)
 del self.player

if __name__ == '__main__':
 print "Prototype MUD server running!"

 realm = Realm()
 portal_ = portal.Portal(realm)
 checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
 checker.addUser("AA", "aa")
 portal_.registerChecker(checker)

 game = Game()
 ...
 factory = protocol.ServerFactory()
 factory.protocol = lambda: TelnetTransport(
 AuthenticatingTelnetProtocol, portal_)

 log.startLogging(sys.stdout)
 reactor.listenTCP(4242, factory)
 reactor.run()

To start, you’ll import all the bits of Twisted you need B. There are a
lot, but think of it as code you don’t have to write.

The Realm is the core class that represents your game’s login c. You
only need to override one method: the one to get an Avatar. Avatars are
instances of the MudProtocol and represent the player’s login. Notice
that you set the player’s name so you have access to it in MudProtocol,
and set state to "Command"; otherwise, you’ll get logged out right away.

NOTE The “code that you don’t have to write” part is important. It’s easy to
overestimate how hard it is to learn how existing code works, and
underestimate how hard it is to write new code that’s as well tested.

While you’re figuring out how everything works, it’s perfectly fine to
print out things to the screen to try and work out what each object
does d. You can use what you learn to search online, or through the
code to find out what else uses these classes.

Find player’s
username and
password

e

Set up Realm and
PasswordCheckers

f

Set up
ServerFactory

g

Send logging
to screenh

346 CHAPTER 10 Twisted networking
Most of MudProtocol is unchanged, but you’ll need to
know your player’s username and password for later
e, when you start saving to a file. The Realm has
already given you the username, so you can use that
to get the password from the checker. The other
thing you change is the connectionLost method—if
you lose the connection to the player, you want to
clean up properly.

Now we’re into the section where you set the code in motion. The first
thing to do is create a Realm and then attach a Portal and Checkers to it.
Once you’ve done that, you can insert usernames and passwords into
your checker f. InMemory..DontUse is fine for your purposes, even
though, in theory, it’s insecure and you’re not supposed to use it.
There’s also a file-based checker available, but it doesn’t support sav-
ing new users back to the file.

Now that you’re using TelnetTransport and your Realm to control things,
you don’t need a custom Factory, and you won’t need to manually track
the clients in the factory any more g. The TelnetTransport will use
AuthenticatingTelnetProtocol to handle usernames and passwords, but
once that’s done it will hand off to the Realm to get the final protocol.

One last thing is that Twisted uses Python’s log facility. To see what
it’s up to, you can add this line h, which will redirect the logging to
sys.stdout—that is, print it on the screen.

What does all this give
you? Well, if you run your
server now and try to con-
nect to it, you should be
presented with a login
request instead of a pass-
word, similar to what’s
shown in figure 10.6. If
you enter the username
and password that are in
the script, you should con-
nect to the game.

WHAT'S ALL THIS FUN
AND FRIVOLITY I CAN
HEAR?

Figure 10.6 Logging in to your game

Making your life easier 347
That’s not all you need to do, though.
Remember that you want to allow players to
register their own username and password.
For that you’ll have to learn a bit more about
Twisted.

Write your own state machine
What you’re going to do in this section is cre-
ate a subclass of the class you’ve been using so
far, which is AuthenticatingTelnetProtocol. It’s what generates the User-
name: and Password: prompts in the login. What you’d like instead is a
prompt that asks the player whether they want to log in or register a new
account. If it’s a registration, then it still asks you for a username and
password, but creates the account instead of checking whether it exists.

Let’s first take a look at AuthenticatingTelnetProtocol, to see how it’s
done. You can find the Telnet module on your computer at
C:\Python26\Lib\site-packages\twisted\conch\telnet.py, or somewhere
like /usr/lib/python2.6/ site-packages/twisted/conch/telnet.py if you’re
using Linux or MacOS X. If you open that file and scroll to the bottom,
you’ll find the class you’re looking for; it’s also shown in listing 10.12.

Listing 10.12 Twisted’s AuthenticatingTelnetProtocol class

class AuthenticatingTelnetProtocol(StatefulTelnetProtocol):
 ...
 def telnet_User(self, line):
 self.username = line
 self.transport.will(ECHO)
 self.transport.write("Password: ")
 return 'Password'

 def telnet_Password(self, line):
 username, password = self.username, line
 del self.username
 def login(ignored):
 creds = credentials.UsernamePassword(
 username, password)
 d = self.portal.login(creds, None, ITelnetProtocol)
 d.addCallback(self._cbLogin)
 d.addErrback(self._ebLogin)

AHEM! ER … SO, HOW'S
THE GRAPHIC DESIGN
COMING ALONG, AJ?

ER … FINE,
GREG!
JUST FINE!

AuthenticatingTelnetProtocol
uses StatefulTelnetProtocol

bSkip some bitsc

Usernamed

Passworde

Fancy
Twisted bits

f

348 CHAPTER 10 Twisted networking
 self.transport.wont(ECHO).addCallback(login)
 return 'Discard'

 def _cbLogin(self, ial):
 interface, protocol, logout = ial
 assert interface is ITelnetProtocol
 self.protocol = protocol
 self.logout = logout
 self.state = 'Command'

 protocol.makeConnection(self.transport)
 self.transport.protocol = protocol

 def _ebLogin(self, failure):
 self.transport.write("\nAuthentication failed\n")
 self.transport.write("Username: ")
 self.state = "User"

All the Telnet classes we’ve looked at so far are state
machines—there are multiple steps involved in log-
ging in, and the next one depends on the input you get.
You’re initially in the "User" state, which means input
is fed to the telnet_User method B. Each method
returns a string, which determines the next state.

There are a few other methods: connectionMade and
connectionLost, but you don’t need to deal with them
in this case c.

The first line (after the initial greeting) goes to telnet_User and sets the
username within the instance d. The transport.will() call tells the local
client that the server (that is, you) will be responsible for echoing any-
thing the user types—but in this case, it’s the password, so you don’t.
Then "Password" is returned, so the next line goes to telnet_Password.

Now that you have the password, you can compare it with what you
have for that username in the portal’s password checker e.

Twisted has a mechanism called a Deferred, that helps to speed up the
server f. A password checker might look at a file on disk, or connect
to a different server to see whether the password is correct. If it waits

If everything goes
great: callback

g

If everything goes
bad: errorback

h

GREG? I NEED TO
BORROW YOUR PC FOR
A MINUTE …

NO, GREG!
DON'T LISTEN
TO HIM!

Making your life easier 349
for the result (normally known a blocking), nobody else will be able to
do anything until the disk or remote server responds. Deferred objects
are a way to say “When we get a response, handle it with this function”
and then continue with other tasks. There are two possibilities: a call-
back and an error back.

If the checker responds that the password is right g, you can go ahead
and do the rest of the login, which means storing some values, setting
your state to "Command", and switching out your protocol for the final one.

If the checker tells you the password or the username is wrong h, then
you can tell the user off and switch back to the "User" state. The user
will need to type in the username and password again—and you the
user will get it right this time.

How can you subclass AuthenticatingTelnetProtocol? The answer is to
add some new states so there’s a registration branch as well as the nor-
mal login one, similar to the flowchart in figure 10.7.

The next listing adds a new protocol with three extra states—"Welcome",
"NewUserName", and "New Password"—along with methods to handle each
of them.

Listing 10.13 RegisteringTelnetProtocol

from twisted.conch.telnet import ECHO
class RegisteringTelnetProtocol(
 AuthenticatingTelnetProtocol):
 state = "Welcome"

 def connectionMade(self):
 self.transport.write("Welcome to the server!")
 self.transport.write("(L)ogin or (R)egister "
 "a new account? ")

Welcome

NewPassword

UserName

NewUserName

Password Logged In
(L)ogin

(R)egister

OK

Bad Kicked back
to Welcome

Figure 10.7
The states in
RegisteringTelnet-
Protocol

Welcome
to server

b

350 CHAPTER 10 Twisted networking
 def telnet_Welcome(self, line):
 if line.strip().lower() == 'r':
 self.transport.write(
 "Enter your new username: ")
 return "NewUserName"
 elif line.strip().lower() == 'l':
 self.transport.write('Username: ')
 return "User"
 self.transport.write(
 "I don't understand that option.")
 return 'Welcome'

 def telnet_NewUserName(self, line):
 for checker in self.portal.checkers.values():
 if line.strip() in checker.users:
 self.transport.write(
 "That account already exists! ")
 return "Welcome"
 self.username = line
 self.transport.will(ECHO)
 self.transport.write(
 "Enter your new password: ")
 return "NewPassword"

 def telnet_NewPassword(self, line):
 self.transport.write(
 '\r\nWelcome to the server!\r\n')
 self.addNewUser(self.username, line)
 return self.telnet_Password(line)

 def addNewUser(self, username, password):
 for checker in self.portal.checkers.values():
 checker.addUser(username, password)

 def _ebLogin(self, failure):
 self.transport.write("\nAuthentication failed:"
 " %s (%s)\n" % (failure, dir(failure)))
 self.connectionMade()
 self.state = "Welcome"

 factory = protocol.ServerFactory()
 factory.protocol = lambda:
 TelnetTransport(RegisteringTelnetProtocol, portal_)

Pick pathc

Register new
named

Register new
name

d

As long as it’s
not taken

e

Add userf

Add userg

Handle errors
properly

h

Update
factory
protocol

i

Making your life easier 351
Welcoming the user to the server B is pretty much the same as the pre-
vious example, only with different values. You’re prompting the user to
enter R to register or L to login.

Because your previous state was "Welcome", the first method is
telnet_Welcome. The code is straightforward: R sets the state to "NewUser-
Name", L to "User", and anything else will kick them back to "Welcome" c.

telnet_NewUserName is the same as telnet_User, too d. It prompts slightly
differently and passes to a different state: "NewPassword" instead of
"Password".

Of course, you can’t have two Gandalfs or Conans running around
your server, so you need to check that the username doesn’t already
exist on the server e. If it does, you kick the user back to "Welcome".
Pick something more original!

Now that the player has passed all the hur-
dles you’ve set, you should probably add the
player to the server f. To make life easier for
the player, you also automatically log the
player in.

The last bit didn’t add the user, it only pre-
tended to. g will do the trick. You’re calling
each of your checkers in turn and calling their
addUser method. Note that this won’t work if
you use the file-based checker, twisted.cred.FilePasswordDB—or at least
not permanently, because it won’t write the players back to the file.

If the login raises an error, you should return to the initial "Welcome"
state h, rather than to "User", so the user can register instead if the user
can’t remember their username (or if you’ve deleted it for some
reason).

Finally, you need to update your factory’s protocol so it uses Registering-
TelnetProtocol instead of the old AuthenticatingTelnetProtocol i.

Awesome! Now you won’t have to enter usernames and passwords for
everyone who wants to check out your cool new game. In practice, this
will mean you’ll get more players, because it sets the bar to entry much

JUST ONE LITTLE
ORC? IT CAN'T HURT!
JUST ONE!

NO, SID! I CAN'T
LET YOU DO IT
TO YOURSELF!

352 CHAPTER 10 Twisted networking
lower, and the players won’t have to wait around for you to check your
email. The next step, if you’re interested, is to include a password-reset
or -retrieval mechanism, so the players (if they’ve set their email
address in-game) can be sent their password if they forget it.

Making your world permanent
You have a few more pressing concerns now: players can register and
log in, but if you restart the server for some reason (say, to add a new
feature), then they lose all their progress and have to reregister! You
don’t have to save everything, though—what you’ll do is save only the
players and their items and restart all the monsters from scratch. This
is common practice in most MUDs, so the monsters, puzzles, and sto-
ries reset each night.

NOTE One of the other reasons to implement saving is that it breaks the
player’s suspension of disbelief if everything suddenly vanishes. You
want the player to believe on some level that the world you’re creat-
ing is real, and real worlds don’t disappear in a puff of virtual smoke.

Listing 10.14 Loading players

import os
import pickle

class Game(object):
 ...
 def __init__(self):
 ...
 self.start_loc = cave1
 self.player_store = {}
 self.load_players()

 def load_players(self):
 if os.access('players.pickle', os.F_OK) != 1:
 return
 load_file = open('players.pickle', 'rb')
 self.player_store = pickle.load(load_file)

You don’t need to store every player, because you’re only interested in
players’ data—what they’ve called themselves, how they look and which

Create player
store

b

Load playersc

Load player
store

d

Making your world permanent 353
items they’re carrying. You’ll put that information into the store B so
you can call it out at will.

The next thing you’ll do is figure out how you’re going to call the code
you’ll use to load the player store c. I think you’ll be alright if you cre-
ate a method.

The method to load the player store d turns out to be pretty simple.
Check to see if the file exists—if it does, then open it and load the
player_store from it using Pickle.

Easy! Of course, you’re not done yet—that only loads the player store.
Now you need to work out what goes in the store, and save it to a file.

Listing 10.15 Saving players

class Game(object):
 ...
 def save(self):
 for player in self.players:
 self.player_store[player.name] = \
 player.save()
 print "Saving:", self.player_store
 save_file = open('players.pickle', 'wb')
 pickle.dump(self.player_store, save_file)

class Player(object):
 def __init__(self, game, location):
 ...
 self.password = ""

 def save(self):
 return {
 'name': self.name,
 'description': self.description,
 'password': self.password,
 'items': [(item.name, item.description)
 for item in self.inventory], }

You add each player to the player store in typical object-oriented fash-
ion—by calling player.save to find out what should be stored for each
player B.

Save each
player

b

Save filec

Add password
to player

Create
player
store

d

354 CHAPTER 10 Twisted networking
Once you’ve refreshed the store, you can go ahead and save it to disk
c, ready for the next time you start the game.

All the player.save method needs to do is make a dictionary of all of the
player’s data and return it d.

Now your game.save method should be working, and you can load from
it. The last step is to trigger game.save at appropriate points and make
sure the players are loaded with all their data when they log in.

Listing 10.16 Updating the server

from item import Item

class Player(object):
 ...
 def load(self, config):
 self.name = config['name']
 self.password = config['password']
 self.description = config['description']
 for item in config['items']:
 self.inventory.append(
 Item(item[0], item[1],
 self.location))
 ...
 def quit(self, player, noun):
 self.playing = False
 self.game.player_store[self.name] = self.save()

 # drop all our stuff(?)
 for item in self.inventory:
 self.location.here.append(item)
 item.location = self.location
 self.inventory = []

 return ["Thanks for playing!"]
...
class Game(object):
 def connectionMade(self):
 ...
 self.player.password = \
 checker.users[self.player.name]

Load playerb

Update quit
method

c

Making your world permanent 355
 if self.player.name in game.player_store:
 self.player.load(
 game.player_store[self.player.name])
 game.players.append(self.player)

if __name__ == '__main__':
 ...
 def do_save():
 print "Saving game..."
 game.save()
 print "Updating portal passwords..."
 for player in game.player_store.values():
 for checker in portal_.checkers.values():
 checker.users[player['name']] = \
 player['password']

 do_save()
 game_saver = task.LoopingCall(do_save)
 game_saver.start(60.0)

Loading the player is much the same as saving it B, only the other way
around. Rather than dump your state into a dictionary, you update the
state from one.

Rather than have the players die whenever they quit, they’ll now save
themselves and exit nicely c. For this game you only have one sword
and one coin to share among all the players, so you’ll drop all your
items; but that’s not normal practice for an adventure game.

To save everything d, you’ll set up another periodic function using
Twisted.

The players can change their passwords in game,
so it makes sense to refresh the server’s pass-
word list along with saving the game e. You do
this right after the call to game.save(), so you
know game.player_store is as fresh as possible.

Note that there’s a bug in this code: when a
player changes their name, the old name isn’t
removed. You’ll want to either update the

Load player
on creation

Save gamed

Refresh portal’s
password list

e

Save every
minute

f

OW!
NOOOOO …

NYAHHH! LET ME!
MY PRECIOUS!

NOW, SID—TIME
FOR SLEEPIES …

STAB!

356 CHAPTER 10 Twisted networking
name-changing code in Player to delete the old name from both the por-
tals and player_store, or else disable the name-changing code. Disal-
lowing name changes is probably the best option, because it also
discourages bad behavior.

Once your function is complete, you only call it when you start up, and
every minute or so after that f. I’ve picked 60 seconds as a reasonable
timeframe, but you might find that a longer or shorter span works better
for you. In practice, it will be a tradeoff between the load on the server
when the game is saved, and the risk of losing your players’ stuff.

That should be it. Now you have a stable base for your future develop-
ment, and you don’t have to worry about players not being able to log
in, or having to respond to everyone who wants to log in.

Where to from here?
Your MUD is working and feature complete, but you’ve only scratched
the surface of what you could do. One way to find out what needs to be
done is to invite some of your friends to play—make sure they know it’s
a work in progress—and ask them for suggestions and bug fixes. If you
don’t have any friends who are into MUDs, the following is a list of
some ideas you could try:

❂ Make the orc respawn once you’ve killed it (in a different location),
or add different monsters. They might have different attacks, take
more or fewer hits to kill, and drop different sorts of treasure.

❂ Saving the cave layout as well as the players’ info will help players
identify it more strongly as an actual place. Also, most MUDs will let

you log in as a “wizard” and extend the game
while you’re playing it, adding rooms or mon-
sters.

❂ Different items, armor, and weapons can add
an extra level of interest, as players explore
or save up their gold for new ones.

❂ Let the players gain experience and levels,
with higher-level characters being tougher
and more powerful. Different character

POOR SID—NEVER
MIND. THE HOME FOR
DERANGED GAMERS
WILL HAVE YOU BACK
ON YOUR FEET AGAIN
IN NO TIME …

Summary 357
classes and statistics (strength, intelligence, dexterity, and so on) can
help players identify with the game and make it more enjoyable.

❂ A number of open source MUDs are available, in several languages;
download them and see how they work. Most of the core compo-
nents will be similar, so you’ll know what to look for when you’re
trying to make sense of them.

Summary
In this chapter, you learned how to add networking to a game and
about the issues you need to deal with in networked environments. You
started with a simple chat server and learned about Twisted’s Protocol
and Server classes, before creating a similar setup so you could play
your game over Telnet. Because Twisted is asynchronous (does lots of
things simultaneously), you also needed to learn how to use Twisted’s
task.LoopingCall for your game loop.

Once you’d done that, you opened your game for testing and discov-
ered a few issues with the game play in the new environment. To fix
these, you added some new features, such as angry lists, talking to
other players, and commands to change player names and descriptions.

Finally, you set up a system so new players could log into your system
without you having to add them to a list of users. You learned a bit
more about the details of Twisted, particularly its Telnet implementa-
tion, but also about how it interfaces with Protocols, Servers, and also
Deferreds—one of Twisted’s lower-level features.

11
Django revisited!

This chapter covers

• Adding authentication

• Unit-testing and functional-testing applications

• Updating the database when models change

• Serving static images and CSS style sheets

In Chapter 8, you built a simple todo list with Django, which allowed you
to keep track of tasks you needed to do. Although useful for you, it’s not
helpful to other people. In this chapter, we’ll look at some of the polishing
steps you need to take to make your Django application useful to others.
Let’s get started!

Authentication
Your application was pretty much finished from a functionality point of
view—you can delete and change any of your todos, and add as many as
you like. Here’s the problem: so can anyone else, if that person has access
to your web interface. If that person is malicious, then all your todos
might be deleted, or your important ones could be tampered with.
358

Authentication 359
In order for your application to be safe, you’ll need to restrict who can
access your application, and you shouldn’t be able to tamper with any-
one else’s todos. In practice, this means you’ll introduce the following
checks:

❂ You should need to log in to the application.
❂ Once logged in, you should only see your own todo items.
❂ Whenever you try to add, change, or delete a todo, it should only

work if it’s your todo.

Once these three constraints are in place, you
should be safe against anyone trying to fiddle
with anyone else’s todo list.

Logging in
Let’s start with logging in to your application.
Django provides a built-in application called
auth, along with middleware to handle sessions
and store user data. It makes user-based applications such as yours
much more straightforward, and it’s a lot more robust and secure than
creating your own from scratch.

Listing 11.1 Django authentication and login views

views.py:
...
from django.shortcuts import render_to_response
from django.contrib.auth import authenticate, \
 login, logout
...
def todo_login(request):
 username = request.POST.get('username', '')
 password = request.POST.get('password', '')
 error_msg = ''

 if (username and password):
 user = authenticate(
 username=username,
 password=password)

SALES ARE STILL
DOWN FOR
WEB2.0TODO …

Redirect back
to login page

b

Django’s auth
modules

c

Set up common
variables

d

Authenticatee

360 CHAPTER 11 Django revisited!
 if user is not None:
 if user.is_active:
 login(request, user)
 return HttpResponseRedirect(
 reverse(todo_index))
 else:
 error_msg = ("Your account has "
 "been disabled!")
 else:
 error_msg = ("Your username and password "
 "were incorrect!")
 password = ''

 return render_to_response(
 'todo_login.tmpl',
 {'username': username,
 'password': password,
 'error_msg': error_msg,
 })

def todo_logout(request):
 logout(request)
 return HttpResponseRedirect(reverse(todo_login))

You start with the three functions you need to import
to use Django’s authentication c.

This view is used in a few different ways: as the initial
display of the login form and for checking a user-
name and password. So that you don’t run into Key-
Error exceptions, you’re setting up the username and
password variables d from the request.post diction-

ary’s get method; this way, if those values aren’t set in the request,
they’ll default to being blank. You also set error_msg to a blank string.

If you have a username and password, then someone is trying to log in,
and you use Django’s authenticate function e to check them against
your list of users.

If the username and password check out OK, then authenticate will
return a User object. If not, it will return None. That’s easy to test for,

Log in and
redirect
to todos

f

Redirect back
to login page

b

Logoutg

I MET WITH SOME
CONSULTANTS, WHO
SUGGESTED THAT
WE NEED A RE-DES-IGN.

Authentication 361
but the other thing you need to look for is where a user has been
deactivated. If both of those tests pass, then you can log in the user
with login and redirect to the todo index f.

If you haven’t been redirected to the index page, you’ll pass through to
this section, where you redisplay the login page B. So that you can
repopulate the form if there’s an error, you pass back the username and
password, along with any error messages you’ve generated. You’re also
using one of Django’s convenience functions, render_to_response, which
will find and render a template directly when given the template name
and a dictionary of variables.

Logging out is even easier—call the logout function with the request,
and it will remove any session data and cookies the user’s been using g.
Once you’ve done that, you redirect back to the login page.

Great—now you only need a template to display the login form. That’s
not too hard to do. The following listing shows my version, which I put
in todos/templates/todo_login.tmpl.

Listing 11.2 Login template

<html>
<head>
<title>Todo Login</title>
<style type="text/css">
 body { font-family: Arial, Helvetica, sans-serif;
 color: black;
 background: #ffffff; }
 .error { color: red; }
</style>
</head>
<body>

{% if error_msg %}
 <p class="error">{{ error_msg }}</p>
{% endif %}

<form action="" method="POST">
 <table>
 <tr><td valign="top">Username:
 <td><input type="text" name="username"
 value="{{username}}">

Show any
errors

b

Login formc

362 CHAPTER 11 Django revisited!
 <tr><td valign="top">Password:
 <td><input type="password" name="password"
 value="{{password}}">
 <tr><td colspan="2">
 <input type="submit" value="login">
 </table>
</form>

</body>
</html>

If you get an error back from the view, you’d like to
display it, so B is a section of template code that
does just that. You’ve also added an error class,
which displays the error in red.

Other than including the username and password
as values, the form is a standard username and
password login c. You’re including the username

and password that are fed in, so if there’s an error, the user doesn’t
have to retype everything. Little touches like this go a long way toward
making your application look professional.

Last but not least, you’ll tell Django about the views so it can display
them. Here’s the plumbing from urls.py to link everything up—login

and logout go straight to the relevant views:

(r'^login$', views.todo_login),
(r'^logout$', views.todo_logout),

Now, if you go to http://localhost:8000/todos/login in your browser,
you should be able to type in your username and password and have it
redirect you to the index page. It should also give you a nice red error
message if you mistype your password or username.

NOTE If you’d rather not enter users by hand, there’s a Django application
called django-registration that will let people add their own accounts
via email.

Login formc

CAN WE HAVE ONE OF
THOSE ON OUR SITE?

Authentication 363
Adding users
The other thing you’re probably wondering at this point is how to add
new users. It’s easy—use Django’s admin screen (http://localhost:8000/
admin/) to create some. I’m not sure what your friends’ names are; I’ll
call my friend “Bruce,” to save confusion.

Click Users in the admin screen, and you should see something like the
first screen in figure 11.1. Fill in the username and password, and your
user will be created. Then, edit the relevant fields. If you look carefully
at the permissions list, you’ll see that there are permissions for adding,
editing, and deleting todos. You won’t use them in this application,
because they apply to every todo, but they’re available if you need them.

What’s next? Now that you have to log in to your application, let’s
make the todos a bit more secure.

Figure 11.1 Adding a user through Django’s admin screen

PERHAPS WE COULD
STREAMLINE THE
SIGNUP PROCESS
INSTEAD?

WOULD MEAN
REWRITINK SITE FROM
SCRATCH.

364 CHAPTER 11 Django revisited!
Listing only your own todos
Now that your users can log in, you can start making changes to how
your application displays. Currently, your index page still lists every
todo in the database, but you’d like it to only show the todos that have
been created by the current user. Come to think of it, you don’t have
any way to tell which todos belong to which user. You’d better fix that
part before you do anything fancy.

To add a link to the owner of a todo, you add a foreign key to the Todo
class in models.py, something like this:

class Todo(models.Model):
 ...
 owner = models.ForeignKey(User)

Don’t forget to import the User model from Django as well:

from django.contrib.auth.models import User

The problem, though, is that now you can no longer use python manage
.py syncdb to update your database. For safety reasons, Django will
only add new tables, not tamper with your existing ones. But you have
to do something, because Django will give you an error if you try to use
the todo model, as shown in figure 11.2.

Your database and your model are out of sync! You have two choices
at this point: either remove the todo.db database file and start from
scratch, or install SQLite and use it to update the existing database.

Fixing your database
You’ll take the second option—although it’s somewhat harder, you’ll
need to be able to update the database like this once you start working

Figure 11.2
Your database is broken!

Listing only your own todos 365
on applications where you have existing
data. Don’t worry, it’s not too difficult to do
once you know a few simple commands. If
you don’t already have the sqlite3 program
installed, SQLite is available from
www.sqlite.org, and all you need to do is put
the executable somewhere where your oper-
ating system can find it. The following listing
shows how I updated my database.

Listing 11.3 Adding a field to the database backend

anthony:~/todos$ python manage.py sql todo
BEGIN;
CREATE TABLE "todo_todo" (
 "id" integer NOT NULL PRIMARY KEY,
 "title" varchar(200) NOT NULL,
 "description" text NOT NULL,
 "importance" varchar(1) NOT NULL,
 "owner_id" integer NOT NULL REFERENCES \
 "auth_user" ("id")
);
COMMIT;
anthony:~/todos$ sqlite3 todo.db
SQLite version 3.6.10
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
auth_group auth_user_user_permissions
auth_group_permissions django_admin_log
auth_message django_content_type
auth_permission django_session
auth_user django_site
auth_user_groups todo_todo
sqlite> .schema todo_todo
CREATE TABLE "todo_todo" (
 "id" integer NOT NULL PRIMARY KEY,
 "title" varchar(200) NOT NULL,
 "description" text NOT NULL,
 "importance" varchar(1) NOT NULL
);

NO—DEFINITELY NOT!
WE NEED ALL THAT
VALUABLE MARKETING
INFORMATION!

What
to add?b

Common
SQLite
commands

c

366 CHAPTER 11 Django revisited!
sqlite> alter table todo_todo
 ...> add column "owner_id" integer NOT NULL
 ...> REFERENCES "auth_user" ("id");
SQL error: Cannot add a NOT NULL column with \
 default value
sqlite> select * from auth_user;
1|anthony|||anthony@example.com|sha1$7405c$...
2|bruce|Bruce|||sha1$01946$...
sqlite> alter table todo_todo
 ...> add column "owner_id" integer NOT NULL
 ...> DEFAULT 1 REFERENCES "auth_user" ("id");
sqlite>

First, you need to figure out what to add B. manage.py won’t make
any changes for you, but it still knows what should be there. python
manage.py sql todo will tell you the exact SQL needed for the database
you’re using, which beats having to rack your brain trying to create the
right SQL command.

It pays to know common SQLite commands c. If you need to find your
way around the database, .help, .tables, and .schema are three useful
commands to know.

Next, you issue an alter table command, with the SQL syntax cribbed
from manage.py d. Unfortunately, SQLite won’t accept it—you’ve
told it that the field shouldn’t be NULL, but you haven’t given it a default
either, so SQLite won’t know what to do with that field for all your
existing todos. To fix the alter command, you can either drop the NOT
NULL clause or add a reasonable default.

In this case, you make the default be that the existing todos are owned
by the admin user (with id=1) e.

TIP A Django application called South can automatically alter your data-
base for you based on your models.py file. It doesn’t get everything
(such as field renames), but it can be a lifesaver if you have a com-
plex application.

Now that you’ve added your owner column and Django knows about
it, your application is a lot more useful, and you can use the owner field
to do all sorts of cool stuff. For example, the Django admin system will

Alter table,
take one

d

Alter table,
take two

e

Listing only your own todos 367
now let you change the owner of a todo with a convenient drop-down
menu, as shown in figure 11.3.

The Django admin application is good at reading your models and
making appropriate choices about how to display your data. All it
needs is for the right relationships to be defined.

Back on track...
Your original plan was to only show todos owned by the person who’s
logged in. That’s now easy to do—the following listing shows updated
todo_index and add_todo views that will filter the todo list you’re shown
when you log in.

Listing 11.4 Showing only your todos

views.py:
def todo_index(request):
 if request.user.id is None:
 return HttpResponseRedirect(
 reverse(todo_login))
 todos = Todo.objects.filter(owner=request.user
).order_by('importance', 'title')
 return render_to_response(
 'index.tmpl')
 {'todos': todos,
 'choices': importance_choices,
 'user': request.user,
 })

Figure 11.3
Changing the owner of a todo

THE CONSULTANTS
HAVE DONE SOME
MORE MARKET
TESTING ON
WEB2.0TODO …

Catch people who
haven’t logged in

b

Filter todos
by owner

c

Refactor
response

d

368 CHAPTER 11 Django revisited!
def add_todo(request):
 t = Todo(title = request.POST['title'],
 description = request.POST['description'],
 importance = request.POST['importance'],
 owner=request.user)
 t.save()
 return HttpResponseRedirect(reverse(todo_index))

If someone hasn’t logged in, they could still manu-
ally type in the index URL, or bookmark the index
page and forget to log in. That will mess up your
application, so if they’re anonymous, you redirect
them to the login page B.

Instead of returning all the todos, this database
query c will return those where the user is the same
as the one currently logged in.

In general, once you’ve found a clever new way to do things, it’s a good
idea to go back and clean up the code you’ve already written. Here’s
your old template-calling code from chapter 8, but now it uses the new
render_to_response function d.

The only thing left is to add the owner to all your new todos e. Easy
peasy!

Now you can view only your todos, and nobody else can see what
you’re up to. When you create a new todo, it’s linked to your user ID.
All you need to do is perform the same checking when editing or delet-
ing your todos. They won’t appear in the list of todos, but that won’t
stop evil people from noticing that your todos are referenced by IDs
and seeing what happens when they put in a different ID. Oops! Just
deleted someone else’s todo!

Covering all your bases
Here’s where Django’s simplicity comes into play. Your views are just
functions that are fed certain things depending on the request that
comes in, and you can use that simplicity to your advantage. Rather
than rewrite the entire view—and throw away all your work—you can

Set owner in
add_todoe

… AND THEY'VE
CONCLUDED THAT
THE SITE NEEDS
MORE "BLING."

Listing only your own todos 369
WHAT'S OUR TARGET
MARKET? BLIND
JEWELRY
MERCHANTS?

DA. WHO ALSO
LIKE TO PUNCH
MONKEYS!

wrap the view with some of your own code to check the request, and
then pass your values to the generic view if the request is OK. The fol-
lowing listing shows you how.

Listing 11.5 Wrapping the update and delete views

from django.views.generic.create_update \
 import update_object, delete_object
from django.shortcuts import render_to_response, \
 get_object_or_404
...
def update_todo(request, todo_id):
 todo = get_object_or_404(Todo, id=todo_id)
 if todo.owner.id != request.user.id:
 return HttpResponseRedirect(
 reverse(todo_index) +
 "?error_msg=That's not your todo!")
 return update_object(
 request,
 object_id=todo_id,
 model=Todo,
 template_name='todo_form.html',
 post_save_redirect='/todos/%(id)s'
)

def delete_todo(request, todo_id):
 todo = get_object_or_404(Todo, id=todo_id)
 if todo.owner.id != request.user.id:
 return HttpResponseRedirect(
 reverse(todo_index) +
 "?error_msg=That's not your todo!")
 return delete_object(
 request,
 object_id=todo_id,
 model=Todo,

template_name=('todo_confirm_delete.html'),
 post_delete_redirect='..'
)

B are the generic views, but you’re importing
them in views.py rather than urls.py.

Import generic
views

b

Old viewd

Another handy
shortcut

c

Check that it’s
your todo

e

Call generic
update
function

f

Delete todosg

370 CHAPTER 11 Django revisited!
You may notice the stub view we looked at earlier in the chapter d,
but you’re expanding it. You only need the request and the ID of the
todo you’re editing.

get_object_or_404 is another Django shortcut c. It tries to access the
model with that ID, and, if it can’t, it triggers a 404 error.

Before you get to the generic view, you want to check that the todo is
owned by the person trying to edit it e. If the ID of todo.owner doesn’t
match the one in the request, then you redirect to the index page with
an error.

If you get here, then the user owns the todo, and you can pass control
through to the generic view f. All the same arguments that were in
urls.py previously are here, but they’re specified as function arguments
rather than keys and values in a dictionary.

Deleting a todo follows exactly the same steps as updating a todo g,
except that the variables passed to the generic view are slightly different.

Now you need new URLs to point to your new views. The following
listing shows a much cleaner version of the previous urls.py.

Listing 11.6 New urls.py

from django.conf.urls.defaults import *

import views

urlpatterns = patterns('',
 (r'^login$', views.todo_login),
 (r'^logout$', views.todo_logout),

 (r'^$', views.todo_index),
 (r'^add$', views.add_todo),
 (r'^(?P<todo_id>\d+)/{0,1}$', views.update_todo),
 (r'^(?P<todo_id>\d+)/delete$', views.delete_todo),
)

You should be able to follow these updated URLs easily by now B.
(?P<todo_id>\d+) matches an ID and feeds it to the view as an argument.

Updated
URLs

b

Listing only your own todos 371
You also add an optional forward slash to the editing URL, in case
someone adds one by hand.

Updating your interface
The last thing you need to do is update your index page so it can take
an optional error argument. That’s easy to do, and you’ve already done
this for the login form, so you can cut and paste it into the relevant sec-
tions here.

Listing 11.7 Error messages on the index page

views.py:
def todo_index(request):
 ...
 'user': request.user,
 'error_msg': request.GET.get('error_msg', ''),
 })

index.tmpl:
 .error { color: red; }
...
{% if error_msg %}
 <p class="error">{{ error_msg }}</p>
{% endif %}

The first step is to pass in any error messages from
the request into the template B. You’re using a
one-liner here that is similar to the way you han-
dle usernames and passwords in the login script.

Now you can update the template to show a nice
red error message if one is set in the URL c.

With that, your application is done! You can look
at, add, edit, and delete todos from your todo list.
Your interface is also limited to only those people
whom you choose to give a username and password. Additionally, if
you go back and look through the code you’ve written, you’ll notice it’s
nicely broken up—everything to do with display is in your templates,
your models contain all the data and data-formatting functions, and

Pass in error
messages

b

Show error
messages on
index page

c

THAT SHOULD
BE OK, BUT
I'D BETTER
CHECK IT …

372 CHAPTER 11 Django revisited!
your views handle logins, data extraction, and redirecting when
something happens.

Testing!
In your original todo application, you developed it with unit testing,
but so far you haven’t seen any testing code. You can get away without
having any testing code while your project is small, but as it grows, it
will need some sort of testing to keep it in check. Also, Django’s testing
infrastructure is cool. Let’s take a quick look at how you can test your
Django applications.

Unit testing
The first thing you need to know how to do is how to create unit tests to
test your model. You can also use unit tests for other functions and classes
that are independent and don’t depend on any other infrastructure. The
following listing shows how to create unit tests for your application. You
should put it in a file called tests.py in your application folder.

Listing 11.8 Unit testing (tests.py)

from django.test import TestCase
from django.contrib.auth.models import User
from todos.todo.models import Todo

class TestTodo(TestCase):

 def setUp(self):
 self.password = "IamBruce"
 self.user = User(id=1, username="bruce")
 self.user.set_password(self.password)
 self.user.save()
 self.todo = Todo(
 title='Test Todo',
 description='This is a test todo',
 importance='A',
 owner=self.user)
 self.todo.save()

 def test_short_model_name(self):
 self.assertEqual(self.todo.short_description(),
 'This is a test todo')

Importsb

Set up
sample
todos

d

Unittest
layout

c

Test short_
description

e

Testing! 373
 self.todo.description = "Test\nMultiple\nLines"
 self.assertEqual(self.todo.short_description(),
 'Test')

 self.todo.description = ("A"*50) + ("B"*50)
 self.assertEqual(self.todo.short_description(),
 ("A"*50) + ("B"*30))

You’re using Django’s TestCase class to organize
your testing code. It’s mainly modeled on the
xUnit style of testing, although it’s possible to use
doctests with Django, too. Your Todo class needs
to link to a user, so you’re importing that as well
as the Todo class B.

xUnit tests are structured with a parent class and
multiple test_ methods within it c. The parent class gives you lots of
convenience methods to test for equality, truth, exceptions being
raised, and so on.

xUnit also has the concept of a setUp method, which is called before
each test method and is used to do things like set up common data
structures. Here you’re setting up a user and a todo you need for your
tests d. There’s also a corresponding tearDown, which is called after
each test.

e is one example of what a unit test might look like. You’re testing the
short_description method of the Todo class, so you’re setting up your
test todo with different descriptions and making sure the method
returns the right value using TestCase’s assertEqual method.

You’ll typically have a number of unit tests for each of your models, to
test all of their functionality, but what about the views? They’re even
more important to test, because they typically define most of your
application and link everything together.

Functional testing
For views.py and urls.py, you’ll need to use functional tests to make
sure everything’s working. For functional testing, Django lets you

Test short_
description

e

AUUGH!

BLING!

374 CHAPTER 11 Django revisited!
submit “pretend” forms with the Client class, which mimics a browser
and the entire web request/response process. The following listing
shows a few simple functional tests.

Listing 11.9 Functional testing

...
from django.test.client import Client
from django.core.urlresolvers import reverse
import views
...

class TestTodo(TestCase):
 ...
 def test_login(self):
 """Login should redirect to the index page"""
 client = Client()
 response = client.post(
 reverse(views.todo_login),
 {'username': self.user.username,
 'password': self.password})

 self.assertEqual(response.status_code, 302)
 self.assertTrue(response['location'].endswith(
 reverse(views.todo_index)))

 def test_index(self):
 """Index page should welcome the user"""
 client = Client()
 client.login(username=self.user.username,
 password=self.password)
 response = client.get('/todos/')

 # print response.content
 self.assertTrue('Welcome, Bruce' in
 response.content)
 self.assertTrue(self.todo.title in
 response.content)

Because you’re testing views, the imports B will be the same as the
ones you set up in your views.

Importsb

Django’s
Client class

c

Simulated
POST

d

Response
object

e

Client
login

f

Access HTML
content

g

Testing! 375
Creating an instance of the Client class is easy c—it doesn’t require
any arguments.

Once you have a Client class, you can use its .post method to send data
to your application d. .post takes a URL and a dictionary of POST
arguments and returns a response object. Notice that you’re using
reverse here—as with views, it’s important to keep your unit tests inde-
pendent of where you happen to store your code. There’s also a corre-
sponding .get method, which doesn’t need the argument dictionary.

The response object e contains everything that’s returned from the
POST request you’ve just run, such as status code, content, headers,
cookies, and so on. Here you’re interested in two things: that the
response is a redirect, and that the redirect is to the index page
(because you’ve logged in successfully).

You don’t want to have to send in a login
request every time you test something in
your application, so Django provides the
login method for the client f. It creates all
the cookies and session variables needed to
simulate an actual login.

If you’re testing a more normal request and
you need to test what it returns, you can
access it through response.content—it’s a
string containing the HTML, as if you were viewing the source of a
page in your browser g.

Now you have your tests, but that’s not much good—you need to be
able to run them and make sure your code tests OK. The beauty is that
finding your test code and running your tests is done automatically.

Running your tests
Django’s manage.py contains a test command that will collect your test
code and run it, as well as set up all the associated database infrastruc-
ture, and so on. The following listing shows a sample test run against
the todo application.

PITR, HAVE YOU
FINISHED THE
ACCOUNT PAGE YET?

BLING!

376 CHAPTER 11 Django revisited!
Listing 11.10 Test run

anthony:~/todos$ python manage.py test todo
Creating test database...
Creating table auth_permission
Creating table auth_group
Creating table auth_user
Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table todo_todo
Installing index for auth.Permission model
Installing index for auth.Message model
Installing index for admin.LogEntry model
Installing index for todo.Todo model
...
--
Ran 3 tests in 0.817s

OK
Destroying test database...
anthony:~/todos$

If you only want to run your tests against one application, then include
the application’s name after the test command B. Otherwise, Django
will test all of your installed applications, including applications like the
admin interface, which might not be what you want.

For each test run, Django will create a test database and connect to
that instead of your live database c. This makes your testing indepen-
dent of the data you have stored in your application—you can even run
tests against a live server if you need to.

Output from the tests is much like what you would have for a standard
unit-test style test run d. Each test will get a dot (pass), an E (error), or
an F (failure). Once the tests have run, you’ll get a report on how many
failed, and tracebacks for any errors or failures.

When the testing is complete, Django will delete the test database e.

Run testsb

Test database
setup

c

Test’s
output

d

Delete test
databasee

Images and styles 377
Now you know how to make sure your applications run according to
plan, even if you need to pull them apart and refactor them completely.
You can make sure your releases don’t have any known bugs and that
your code doesn’t regress when you’re developing—all you need for a
robust, healthy, stress-free project.

Images and styles
One of the last things you need to do is to con-
figure serving images and style sheets. Up to this
point, you’ve been hard-coding style sheets into
the HTML; but if you want to make a change
later, you’ll need to edit every template. Django
refers to images, style sheets, JavaScript, and
other bits and pieces like that as media.

First, let’s look at a simple way to serve media directly from Django,
and then a more robust method where your media is delivered with a
server such as Apache or Nginx.

Serving media from Django
First, a warning: this method is only really suitable for a development
server. Django is written in Python and is slow at serving flat files such
as images when compared to a server written in C. If you get any sig-
nificant traffic on your server, it won’t be able to handle the load.

TIP Do one thing, and do it well. Django’s built more for returning
HTML populated with results from a database, so it’s best to use it
for that, and use something else to serve images.

That said, let’s look at how to configure Django to serve static media
files using one of Django’s built-in views, django.views.static.serve.
You’ll need to make changes to both settings.py and urls.py.

Listing 11.11 Serving static files with Django

settings.py:
MEDIA_ROOT = '/home/anthony/todos/'
MEDIA_ROOT = 'C:/Documents and Settings/
 Anthony/Desktop/todos/media/'

ALMOST, GREGORY.
AM JUST ADDING
DISCLAIMERS TO
SPLASH SCREEN.

BLING!

Pick directory
to store files

b

378 CHAPTER 11 Django revisited!
...
MEDIA_URL = '/site_media/'

urls.py:
from django.conf import settings
...
if settings.DEBUG:
 urlpatterns += patterns('',
 (r'^site_media/(?P<path>.*)$',
 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT}),
)

First, pick a directory to store your media B. To
make it easy, I normally call it “media” and put it in
the root of my project. I’ve included versions for
both Windows and Linux—note that the second
and third lines are one line, and that Django uses
forward slashes, even under Windows.

You’ll also want to pick a URL from which to serve
your files c. You’re free to pick any URL you like,
but be aware that if you choose /media/ you’ll
interfere with the admin application’s media set-

ting. /site_media/ is the convention for most Django applications.

To be absolutely certain you’re not going to use Django to serve up
images when your site goes live, you check the value of DEBUG from
settings.py d. If it’s set to True, then you’re in development and should
be safe.

Finally, you set up the django.views.static.serve view e. The two vari-
ables it needs are the path and the document root; other than that, it
can take care of itself. To save duplicating your setup, you’re also
including the MEDIA_ROOT from settings.py.

Once you’ve made those changes, you can restart the server and begin
adding images and style sheets. Figure 11.4 shows the Django logo dis-
played on my development server.

Decide where to
serve them fromc

Check settingsd

Serve files!e

IF YOU WOULD BE
PROOFREADING? IS
HARD TO CHECK WHEN
WORDS ARE BURNT ONTO
RETINAS.

AH. I'LL GET MY
WELDING GOGGLES.

BLING!

Images and styles 379
Now you can include images, CSS files, and JavaScript in your appli-
cation templates by referencing /site_media/ like this:

<link rel="stylesheet" type="text/css"
 href="/site_media/style.css">

Actually creating a logo for your todo list is left as an exercise for the
reader!

Serving media from another server
A better way to serve media, though, is to use a program expressly
designed to serve static content, such as images and style sheets, and
save Django for dynamic pages. This is relatively easy to do with most
web servers, and there are a number of ways to achieve the same end.
The following listing gives an example of how you might configure
Apache with mod_python to serve requests for media and images, but
pass other page requests on to Django.

Listing 11.12 A sample Apache mod_python configuration

<VirtualHost *>
ServerName www.example.com
DocumentRoot /var/www/www.example.com

Figure 11.4 Serving up images with Django

380 CHAPTER 11 Django revisited!
<Location "/">
 SetHandler python-program
 PythonHandler django.core.handlers.modpython
 SetEnv DJANGO_SETTINGS_MODULE todos.settings
 PythonDebug On
</Location>

<Location "/media">
 SetHandler None
</Location>

<LocationMatch "\.(jpg|gif|png)$">
 SetHandler None
</LocationMatch>

</VirtualHost>

B is pretty much a stock Django-with-mod_python
configuration section. You use Django’s mod_python
handler, use your todos.settings as the settings
module, and switch on debugging—at least, while
you’re setting up and testing everything.

For /media, though, you’d like Apache to serve files
normally, which means it will fall back to the nor-
mal document root for the server and display the
media you’ve stored in /var/www/www.example
.com/media c.

You can do much the same thing with a Location-
Match directive, so URLs like http://www
.example.com/not_a_media_folder/logo.gif will fall

back to the image stored at /var/www/www.example.com/not_a_
media_folder/logo.gif d.

Note also that you’re not limited to using subfolders like this—you can
use completely separate domains. For example, if you had www.exam-
ple.com serving Django pages, then it’s possible to serve media from
media.example.com or images.example.com. If your application model
supports it, arranging your URLs like this can save a lot of configuration.

Configure
mod_python to
serve Django

b

But not
for /media

c

Or anything
involving images

d

WARNING: USE OF
THIS SITE MAY CAUSE
FITS OR SEIZURES IN
PEOPLE PREDISPOSED
TO EPILEPSY, AND
THOSE WHO HAVE
TASTE AND/OR
GRAPHIC DESIGN
SKILLS. SIDE EFFECTS
OF USING THIS SITE
MAY INCLUDE
DIZZINESS, NAUSEA,
LOSS OF BODILY
FUNCTIONS, DISMAY …

BLING!

BLING!

http://www.example.com/not_a_media_folder/logo.gif
http://www.example.com/not_a_media_folder/logo.gif
www.example.com
www.example.com

Where to from here? 381
Last but not least
The final thing you need to do is to edit your settings.py file and find
the DEBUG setting. With this set to True, Django will give you detailed
information whenever something goes wrong. It’s useful while develop-
ing, but this information can be dangerous in the wrong hands. Once
you’ve switched it to False, Django will return a standard 500 error if
your site breaks and will keep your application’s innards safe.

Where to from here?
Your application is now fully functioning, plus you can install it on a
server on an intranet or the internet and give out accounts to all your
friends. It’s still somewhat bare-bones, though, so here are some ideas
for extending it to make it more useful:

❂ Now that you can use separate style sheets, you can pretty up your
application, add logos and icons to your main page, and put your
forms in tables. A little beautification can make a big difference to
how seriously people take your application.

❂ Your todos are fairly basic. What about adding some extra data to
them, such as deadlines? If you recorded email addresses, the system
could also email people when their deadlines are a week or a day
away.

❂ Once you have a few users, you could consider making the applica-
tion more collaborative. Perhaps you could add a field to mark todo
items as public. Other people’s public todo items would be included
in your list, and you’d be able to view but not edit them. A list of
users in the system and what people are working on might also be
useful.

❂ Or, the ability to add notes to your todos might be useful; you might
even allow other people to add comments.

A wealth of information is available on advanced aspects of Django.
The Django documentation, for example, is excellent and freely avail-
able from the Django website.

You can also download some of the many Django-based applications
and read through them. It’s a good way to learn how to structure your

382 CHAPTER 11 Django revisited!
project and about new libraries to make development even easier. A
good place to start is the Pinax website (http://pinaxproject.com/),
which provides a number of reusable modules such as user registration
and pagination (breaking a big list into smaller pages of 10 or 20). There
are also modules for integrating external services like PayPal or Face-
book, and entire applications such as content-management systems.

Summary
In this chapter, you learned about some of the issues associated with
hosting and maintaining Django. You started with adding users and log-
ins to your system and saw how to update the database when you made
changes to your model. Then, you took a look through your system so
far and secured all your pages and forms so different users (or even
external attackers) couldn’t access todo lists that were supposed to be
private. In the process, you got a lot more hands-on with your views and
saw how to wrap some of Django’s built-in views so you could add extra
features without having to reimplement the views from scratch.

You then saw how to add tests to your Django application, and how
Django allows you to easily add functional tests by providing a Client
class that acts like a web browser.

Finally, we looked at how you can serve your static content, such as
images and style sheets—both with a built-in view in Django and
through a more efficient mechanism like Apache.

That’s all the Python programming you’ll learn in this book. In the next
chapter, you’ll find out what your next steps should be to improve your
Python skills even further, and you’ll learn about several sources of
assistance if you get stuck on your journey.

12
Where to from here?

This chapter covers

• Further improving your Python skills

• Making contact with other Python programmers

• Other Python libraries you may find useful

If you’ve gotten to this point in the book, you’ve learned several different
Python programs in a number of different styles. We started out with a
straightforward program in chapter 2, when you wrote Hunt the Wum-
pus. Since then, we’ve covered libraries, classes, event-based programs,
and interacting with the web. You could think of Hello! Python as a tast-
ing plate, letting you try different styles of Python programming before
you delve too deeply into one particular topic.

Although we’ve covered a lot of ground in this book, we’ve only
scratched the surface of what you can do with Python. This chapter is
intended as a springboard for the next stage of your development as a
programmer.
383

384 CHAPTER 12 Where to from here?
Read some more code
One of the best ways to learn how to write better programs is to look at
how other people have written their programs and figure out what
they’ve done and why. There’s something of an art to reading other
people’s code—experience definitely helps.

I find that the best way to understand new code is to skim its structure
first for an idea of the design of the program (so you won’t get com-
pletely lost) and then dig into the details of how it’s written. To get a
good grasp of the design, ask yourself questions as you go. Why have
they split up the program this way? Why a dictionary instead of a list
here? Is there a better way to do this? How could I extend it if I
needed to do something differently? Is there a library that will help?

Bear in mind that not all the program code you find on the internet is of
production quality—some might be throwaway prototyping or proof of
concept, and some might be for older versions of Python. Asking ques-
tions will also help you avoid these sorts of pitfalls.

Here are some places where you can find code to read.

Python Standard Library
A fair chunk of the Python library itself is written in Python. By dig-
ging into it, you can find out how common Python features and librar-
ies are implemented—by the people who wrote them. Bear in mind,
though, that some of the libraries might be somewhat older and use
techniques that have been deprecated.

Python recipes
Sites like http://code.activestate.com/recipes/langs/python and http://
djangosnippets.org provide Python functions and modules that illus-
trate a particular technique or solve a specific (small) problem. They’re
useful when you know exactly what you need to do—for example,
check a book’s ISBN code or find out how to solve an anagram—but
they’re also easier to follow when you’re first starting out.

Join the Python community 385
Open source projects
Once you’ve read a few small code samples, you might want to look
into larger programs. A number of open source projects are available
on sites like SourceForge (http://sf.net) and Project Hosting on Google
Code (http://code.google.com/hosting), both of which will let you
search specifically for Python-based projects. Sites like http://ohloh.net
will also give you statistics on the age of the project, number of devel-
opers, and lines of code, so you can pick established code or smaller
projects, depending on your comfort level.

Join the Python community
Another good way to find out how to improve your programming is to
make contact with other people who know Python. Asking questions
about what they’re up to is a good way to learn more about what’s pos-
sible.

Sign up for some mailing lists
A good place to ask questions (if you’ve
searched online and haven’t found a solu-
tion, or if you’re stuck) is the Python Tutor
list. (You can subscribe at http://mail
.python.org/mailman/listinfo/tutor.) Don’t
forget to search the list archives before you
ask your question, or you might be asking a
question that has been asked a hundred
times before.

Also, don’t forget to “pay it forward”—once you find you’ve outgrown
the tutor list, stick around and help some other people learn how to use
Python. Don’t worry if there’s a question that you don’t know how to
answer; but if you can help out, jump in. The site is run by volunteers
who will be more than happy to have the help.

There are also mailing lists dedicated to other areas that you might be
interested in learning about, such as Django and Pyglet. Through the
mailing lists, you’ll not only pick up a number of techniques and learn

AH, DISCIPLE—NOW
YOU BEGIN THE
NEXT STAGE OF
YOUR TRAINING!

WHAT? NO
THANKS. I CAN
PROGRAM
PRETTY WELL
NOW.

http://mail.python.org/mailman/listinfo/tutor
http://mail.python.org/mailman/listinfo/tutor

386 CHAPTER 12 Where to from here?
about useful libraries, but also be able to read the discussions and find
out why things are written a certain way or discover limitations before
you run into them.

Find a local user group
Python meetups and user groups are an excellent
way to find Python programmers who are active
near you. They’ll often have regular meetings or
get-togethers and are a good source of advice and
new ideas. It’s one thing to read websites about
what Python can do; it’s another thing entirely to
talk to people about their projects in person.

Help out an open source project
If there’s an open source Python project that you use on a regular basis,
you might want to consider signing up for the developer mailing list,
becoming familiar with its code, and contributing patches. Most open
source projects have some sort of tracker you can use to find bugs you
think you can fix. Even verifying that a bug exists and investigating
possible causes is a good start—you don’t necessarily have to fix it all
in one go. Alternatively, add a minor feature, write documentation or a
tutorial, or add a unit test.

Scratch your own itch
The next time you have a problem or a cool idea, you can start your
own project: a website, game, todo list, or data-processing application
(don’t laugh—I know a few people who’ve used Python to manage
their fantasy football or sports betting pool, both of which are heavily
data-intensive).

Once you’re on your feet with Python, the best way to continue to
learn is by doing. Pick a project—something you’re interested in, some-
thing that annoys you and needs improvement, or something that could
be useful—and start trying to develop it. Don’t forget to begin with one
small chunk; otherwise, you’ll risk becoming overwhelmed.

WHACK!

Look at more Python libraries 387
Another option is to build on the code in this book. I’ve covered a lot of
ground, so there will be something close to what you’re trying to write,
or something you can use as a scaffold. Writing a program is a lot eas-
ier once you have a basic idea of your project and which direction to
take it.

When you’re ready to share your project with the world, there are
plenty of sites you can use to publish your code, provide documenta-
tion, and track bugs and feature requests. These include SourceForge
and Google Code, mentioned earlier, as well as GitHub (http://
github.com) and Bitbucket (http://bitbucket.org).

Look at more Python libraries
As your programs grow in scope, you’ll find that you need to be able to
do more and more things. Perhaps you’ll need to talk to other programs
over the internet, load specific data formats, or run programs more
quickly. In this book, we’ve covered several libraries that can help
extend what you can do. Here are a few others you might otherwise
miss. Some of them are included with Python; others you’ll need to
download and install separately.

Profiling code
If you’re writing code that needs to run quickly, or if it’s running a lot
slower than you thought it would, Python comes with a profiler called
cProfile, which can tell you how long the individual parts of your pro-
gram are taking to run. You can use this information to rewrite only the
parts that are slow (or cache or pre-generate them) instead of having to
guess why your program’s running slowly.

Logging
Python also has built in support for logging—writing status reports to
a file so you can tell what your program’s up to. You can log at different
levels, produce only some lines if you’ve configured your program for
debugging output, and log to several different destinations, such as a
file, printing to the screen, or syslog if you’re using Linux.

388 CHAPTER 12 Where to from here?
Subprocess and multiprocessing
Sometimes you might need to run several processes at the same time—
usually, if you’re running as a system program in the background, or if
you’re doing something processor-intensive and need to make use of all
of your system’s CPUs. The subprocess module is the standard way of
running separate processes, and you can use multiprocessing if you
need to run processes in parallel for extra speed.

Better parsing
You already used shlex (along with some cus-
tom code) when writing your adventure
game, but there are other solutions if you
need a more featured parser. Pyparsing is easy
to get started with and allows you to define
more complex types of grammar, rather than
splitting on just quotes and spaces; but many
other types of parsers are available, depend-
ing on your experience and needs.

PIL and image processing
If you’re doing any sort of image processing work in Python, the
Python Image Library (PIL) is essential. With it, you can crop and
resize images, merge them, accept binary image data over the web,
check it, and save it to disk—even generate images from scratch.

XML, ElementTree, and JSON
For XML and XHTML parsing, it’s hard to beat ElementTree. It was
added to the Python standard library in version 2.5 and has several dif-
ferent models for parsing and inspecting XML data. Python also has
xmlrpclib: handy if you need to communicate with other programs that
use XML-RPC.

If XML seems a bit heavyweight for you, there are a number of other
formats you can try. JSON is ideal if you’re working with data on a

WHAT'D YOU HIT ME
FOR?

WITHIN BAMBOO POLE
LIE ALL THE SECRETS
OF PYTHON!

SIGH.
YES, MASTER.

Summary 389
JavaScript-enabled site, but it’s broadly
useful even when storing data or transmit-
ting it between programs.

Summary
Now you know not only how to program in
Python, but also where to find help or fur-
ther inspiration if you need it. To take your
next steps on the path to mastery, you’ll
want to read code, talk to other program-
mers, look for new libraries and techniques, and, most important,
experiment and create programs of your own. You won’t even need to
be hit with a bamboo pole!

OMMMMMM …

390 CHAPTER 12 Where to from here?

 Index
Symbols
__add__ method 231
__class__ method 332
__doc__ method 74
__eq__ method 230
__getattr__ method 223
__getattribute__ method 225–227
__init__ method 185
__iter__ method 234
__lt__ method 231
__main__ method 108
__name__ method 108
__repr__ method 188
__setattr__ method 224
.center() method 117
.endswith() method 242
.groups() method 243
.isdigit() method 136
.ljust() method 117
.py() method 13
.rjust() method 117
.split() method 242
.write() method 83
.writelines() method 83
** argument 113
**kwargs 222
\n 83
+ operator 96
+= operator 126

A
abstract class 208
abstract data type 182
adventure game

adding caves 199
combat 212
inventory 193
monsters 205
movement 201
verbs and nouns 189

alpha value 316
angles

acos and asin 304
and vectors 298–301
degrees vs. radians 300

apache_log_headers 245
architecture 100
assert statement 103
attribute

access, customizing 228
missing, looking up 223
setting 223

B
backslash, creating special character with 81
Beautiful Soup 148

.contents attribute 155

.string method 155
find() method 153
parsing HTML 152
391

392 INDEX
Bitbucket 387
break statement 34, 44
bug 39

C
change monitor 97
chat server 321–325
ChatFactory 324
checksum, generating 87
choice function 38
class 182–186

__init__ method 185
__repr__ method 188
abstract class 208
customizing 223–232
designing 194
Factory 324
inheritance 206
instances of 182
methods 185
mixin class 219–222
responsibility 193
subclasses 206
syntax 185

collision detection 305
Combined Log Format 241
command, running 110–113
command-line argument 77
command-line interface, writing 77–79
commands dictionary 136
complexity, managing 6
composition vs. inheritance 209
computer, defined 3
computers are stupid 3
condition 33–34
continue statement 36
convenience function 56–57
cProfile 387
CRUD 100
csv module, DictWriter 158
CSV, writing to a file 156

D
data

corrupted 55
CRUD interface 100
CSV format 145

exchange formats 146
loading and saving 127–131
separating from display 94
structure 55

date formatting 158
debug string 46
debugging 39–40, 47–51
decision making 32
decorator 248–251
def 53
design

class inheritance vs. composition 208
level of abstraction 187
object oriented 186–189, 207
top down 100

diamond inheritance 222
dict dictionary 223
dictionary 85–86

key 85
placeholder 87
value 85

diff 97
dir() method 74
directory

checking existence of 96
comparing 89, 95–97
root 89
searching 79–81
test directories 91–93
working through with generators 239

Django 253–286, 358–382
adding users 363
admin interface 269
admin system 267

customizing 270
auth application 359
authentication 358–363
Client class 373
database 264
debugging 381
django.views.static.serve 377
django-admin 256
django-registration 362
for loops 274
forms 277–280

displaying 277
submission 278

INDEX 393
Django (coninued)
generic delete 282
generic update 282
generic views 280
get_object_or_404 370
if..else 263
installation 255
logging in 359–362
media 377–381

serving 377–379
serving from another server 379–380

model forms 280
models 265
QuerySets 272
security issues 280
setting up 255–260
settings.py 266
South application 366
template filters 274
template syntax cheat sheet 274
templates 262
TestCase class 373
testing 372–377

functional testing 373–375
response.content 375
running tests 375–377
unit testing 372–373
xUnit tests 373

updating database with SQLite
 364–367

updating interface 371–372
URLs 274–277
urls.py 259

application specific 275
using data 271
views 261
writing web-based apps with 254–260

django-admin 256
docstring 53
doctest 142

E
edge case 165
ElementTree 388
else command 33
Emacs 25

email
creating 160–162
sending 162–163

email module 159, 163
linking to attached images 162
MIME structure 159

email.parser 164
empty list 44
encapsulating a program into functions

55–62
encapsulation 51
enumerate() method 117
event handler 295
event loop 108
event-based programming 295
exception 172–179

catching 176–178
traceback module 178–179
tracebacks 173–176

exception handler 176
Exception object 177
extract_error 248

F
Factory 323
failure

dealing with breakage 166
fail loudly 168
what can go wrong? 165

file
closing 83
comparing 83–86
hash 83–85

storing in a dictionary 85–86
locating 79–81
opening 82–83
reading and writing 79–83
reading with generators 237–246
writing text into 82

file() method 82
filter function 247
Firebug 148
Firefox 148
first-class function 52
for loop 36, 44
format_exc() method 178

394 INDEX
function 35–36
** arguments 113
advantages of using 52
assigning to a variable 109
basics 51–53
convenience function 56–57
docstring 53
encapsulation 51
first-class function. See first-class

function
hiding program complexity with 51–55
input and output 52
parameters 53
passing and returning 248–251
return statement 53
shared state 54–55
side effects 247
variable scope 53–54

functional programming 246–251
decorators 248–251
side effects 247

functional testing in Django 373–375
functools 250

G
game

design 288–318
difficulty 314

and entertainment 301
experimenting with gameplay 318
feedback 318
must be fun! 318
rewarding player 316
simulation 308

generator 233–237
calling 235
next() method 235
reading files 237–246
using 237–246
working through directories 239
yield statement 235

generator expressions 236
getattr() method 191
getmail module 163
getter 228
GitHub 387

Gnome program launcher 20
gravity 301–308

calculating force 305
group of items, handling 119

H
hash

generating 83
storing in a dictionary 85–86

hashlib library 83
help() method 74
hexdigest 84
HTML, id and class attributes 152
HTTPHandler 151
HTTPRedirectHandler 151
Hunt the Wumpus

history of 29
version 1 36–40
version 2 40–68

I
IDLE 25
if statement 33–34
image processing 388
incremental programming 35
indentation 33
index 42
inheritance 206

reasons to use 207
vs. composition 209

installation
Linux 18–21
Mac 21–23
Python 18
Windows 9–17

int() function 38
integrated development environment

(IDE), choosing 25
interface 57–59
invalid data 165
is_error 248
items() method 86
iter() method 234
iterator 233–234

interface 233
next() method 234

INDEX 395
J
JSON 388

K
keys() method 86
known good file 128
Komodo 26

L
lambda keyword 250
len() function 38, 82
library 71–77

contents of 74–77
defined 71
dir() method 74–77
including everything 73
including specific functions 73
including the module 73
standard library 72
using 72–74

list 42
empty 44
index 42
number of lines 82
of lists 45
slicing 43

list comprehension 119–122
list() method 82
listiterator 234
local variable 53
log file, fields

getting 242–246
meaning 241

log_format 245
log_regexp 245
log_split 245
logging 387
logging module 220

logger, creating 221
loop 34

for loop. See for loop
while loop. See while loop

lower() method 113

M
mailbox module 163
maildir 163

manage.py 259
map function 247
mbox 163
method, common to override 232
mixin class 219–222
Model, View, Controller 254
MUD 320, 326–357

angry list 333–335
monsters 333–335
player interaction 335–340
potential extra features 356
saving 352–356
shouting 338

multiprocessing module 388

N
nesting 33
new line character 83
Newton’s first law 298
None 89
not command 34
not in command 34
Notepad 12

is limited 25
Notepad++ 25

O
object 54
object orientation 219–223
object-oriented design 186–189

tips 207
open() method 82
OpenKomodo 26
ordering results 93–95
os library 75
os.listdir() method 128
os.path.isdir() method 96
os.path.join() method 81–82
os.walk() method 79

using generators in 237
overriding methods 232

P
parsing 388
path 79–81

finding 81
separator 81

396 INDEX
pickle module 127
pickle.dump() method 129
pickle.load() method 130
PIL (Python Image Library) 388
pop 331
print statement 30
print_exc() method 178
profiling code 387
program

architecture 100
defined 29
encapsulating into functions 55–62
overview 29– 36
simplifying 62
testing 91–93

program plan 86–88
programming

and literacy 1
are you done? 164
as design 5
as exploring 6
automation 144
BASIC 2
defined 2
documentation 341
functional 246–251

decorators 248–251
side effects 247

glue code 144
incremental 35
introspection 342
is fun 2
is made of ideas 5
knowing when to stop 98
read the code 342
simplicity 107
specifications 100
state machines 347–352
using example code 341
what can I do with programs? 4

programming development 383–389
Project Hosting on Google Code 385
property 227–229

extending 230
property function 227
PuTTY 321

py.test 142
PyDev 26
Pyglet

.rotation attribute 297
aliens, evil 311–316
Batch class 311
bullets 308–311
collision detection 305–308
colors 316
displaying images 291
game design 288–318
gravity 301–305
installing 289–290
key presses 296
KeyStateHandler 310
loading resources 292
scheduler 298
sprite rotation 294
timers 310
update function 297
velocity and acceleration 299
Window object 290

pyglet module 290
pyglet.resource.image function 292
Pygletevent-based programming 295
Pyparsing 388
Python

batteries included 8
community 9, 385–386
errors

file extension, incorrect 24
installed in a different place 24
syntax error 24

finding installation location 24
installing

Linux 18–21
Mac 21–23
Windows 9–17

is a “real” language 8
is easy 7
Linux command line 20
mailing lists 385
recipes 384
running

from the Linux command line 20
from the Linux GUI 18–20

INDEX 397
Python, running (coninued)
from the Windows command line

 14–17
on Windows 12–14

user groups 386
what it can do? 8

Python Enhancement Proposal (PEP)
237

Python Image Library (PIL) 388
Python Module of the Week 72
Python Standard Library 384
Python Tutor list 385
PYTHONPATH 255

R
range function 46
raw string 243
raw_input() method 32, 137
read() method 82
readlines() method 82, 152
regression testing 114–127
regular expression 242–246

quick reference 242
render_to_response function 368
Representational State Transfer (REST)

274
results

displaying 94
ordering 93–95, 118
storing 94

return statement 53
root 89
round-trip 127
running Python

error messages 14
from the Linux command line 20
from the Linux GUI 18–20
from the Windows command line 14–17
Gnome program launcher 20
on Windows 12–14
program errors 23
setting Mac default .py app 22
updating Mac shell profile 21
using which python on Linux 24
Windows path settings 15
your first program 12

S
saving data, extra cautious 131
saving work 127–131
script, broken, dealing with 166–172
self argument 185
sendmail() method 163
setter 228
shared state 54–55
shell profile, updating 21
shlex 388
slicing lists 43
smtplib module, logging in 162
sorted() method 95
SourceForge 385
SPE 26
special character, creating with backslash

81
specification 100
Sprite 292
SQLite 365
standard library 70, 72
state machine 347–352
state, storing between function calls 233
StopIteration exception 233
string

.isdigit() method 136
ljust (left justification) 117
raw 243

subprocess module 388
super() method 221–223
syntax error 24
sys module 78–79
sys.argv 78
sys.exit 78

T
Telnet 321
tempfile module 170
temporary variable 46
testing 91–93

for bad input 134
functional testing in Django 373–375
functional tests 102
limitations of unit testing 123
manual tests 101
regression testing 114–127, 134

398 INDEX
testing (coninued)
response.content 375
running tests in Django 375–377
stress testing 169
Test Driven Development 102
unit testing in Django 372–373
unit tests 99, 102
unittest 142
user input 109–110
user interfaces 107–109
xUnit style 373

text editor, choosing 25
text input, limitations of 137
textwrap module 125
todos variable 104
traceback 173
traceback module 178–179
troubleshooting 23–24
try..except block 176
tuple 90
Twisted 320–357

API documentation 341
AuthenticatingTelnetProtocol 347
authentication 342–347
class structure 343
connectionLost 323
connectionMade 323
Deferreds 348
documentation 341
event loop 328
exploring the code 340–342
Factory 323
installing 320
lineReceived 323
protocol 321
scheduling tasks 328
StatefulTelnetProtocol 322
storing passwords 346
task.LoopingCall 328

Twistedtask.LoopingCall 328
type, emulating 229–232

U
unit test 103–107

independence 104

unit testing 102
in Django 372–373
limitations of 123

unittest 142
update() method 84
urllib2

handling HTTP redirects 151
in python 3.0 152

urllib2 module 150
urls.py 259
user groups 386
user input

asking for 32
testing 109–110

user interaction 59–60
user interface, testing 107–109
user_passes_test function 248

V
values() method 86
variable 31–32

assigning function to 109
local variable. See local variable
temporary 46
types 32

variable scope 53–54
vectors and angles 298–301
Vim 25

W
web framework 253
web page, downloading 150
while loop 34
Wing IDE 26
wrapping x and y 300
write() method 82
writelines() method 82

X
xmlrpclib 388
xUnit 373

Z
zip function 246

	Hello! Python
	Brief contents
	Contents
	Foreword
	Preface
	Acknowledgments
	About this book
	Roadmap
	Code downloads and conventions
	Author Online
	About the author

	About Hello! books
	1 Why Python?
	Learning to program
	Telling a computer what to do
	Programming is made of ideas
	Programming is design

	What makes Python so great?
	Python is easy
	Python is a real language
	Python has “batteries included”
	Python has a large community

	Setting up Python for Windows
	Installing Python
	Running Python programs on Windows
	Running Python programs from the command line

	Linux
	Installing under Linux
	Linux GUI
	Linux command line

	Macintosh
	Updating the shell profile
	Setting the default application

	Troubleshooting
	A syntax error
	An incorrect file extension (Windows)
	Python is installed in a different place (Linux)

	Text editors and IDEs
	Summary

	2 Hunt the Wumpus
	What’s a program?
	Writing to the screen
	Remembering things with variables
	Asking the player what to do
	Making decisions
	Loops
	Functions

	Your first program
	The first version of Hunt the Wumpus
	Debugging

	Experimenting with your program
	More (or fewer) caves
	A nicer wumpus
	More than one wumpus

	Making the caves
	Lists
	For loops
	Coding your caves

	Fixing a more subtle bug
	The problem
	The solution
	Coding connected caves

	Clean up your code with functions!
	Function basics
	Variable scope
	Shared state

	Fixing the wumpus
	Interacting with the caves
	Creating the caves
	Interacting with the player
	The rest of the program

	Bows and arrows
	More atmosphere
	Where to from here?
	Bats and pits
	Making the wumpus move
	Different cave structures

	Summary

	3 Interacting with the world
	“Batteries included”: Python’s libraries
	Python’s standard library
	Other libraries
	Using libraries
	What’s in a library, anyway?

	Another way to ask questions
	Using command-line arguments
	Using the sys module

	Reading and writing files
	Paths and directories (a.k.a. dude, where’s my file?)
	Paths
	File, open!

	Comparing files
	Fingerprinting a file
	Mugshots: storing your files’ fingerprints in a dictionary

	Putting it all together
	Testing your program
	Improving your script
	Putting results in order
	Comparing directories

	Where to from here?
	Summary

	4 Getting organized
	Planning: specifying your program
	How do you know your program works?
	Testing manually—boring!
	Functional testing
	Unit testing: make the computer do it
	Test-Driven Development

	Writing the program
	Making your tests pass

	Putting your program together
	Testing user interfaces
	What do you do with your input?
	Running commands
	Running your program

	Taking stock
	What to do next?
	I’m very busy and important
	List comprehensions
	Oops, a bug!

	Saving your work
	Editing and deleting
	A quick fix
	Deleting to-dos
	Editing to-dos

	Where to from here?
	A help command
	Undo
	Different interface
	Time management and estimation
	Study one of the unit-testing frameworks

	Summary

	5 Business-oriented programming
	Making programs talk to each other
	CSV to the rescue!
	Other formats

	Getting started
	Installing Beautiful Soup
	Installing Firefox and Firebug
	Examining the page

	Downloading the page with Python
	Chopping out the bit you need
	Adding extra information
	Caveats for web scraping

	Writing out to a CSV file
	Emailing the CSV file
	Email structure
	Creating an email
	Sending email
	Other email modules

	A simple script—what could possibly go wrong?
	No internet
	Invalid data
	Data you haven’t thought of
	Unable to write data
	No mail server
	You don't have to fix them

	How to deal with breaking scripts
	Communication
	Tolerance of failure
	Don’t break in the first place
	Fail early and loudly
	Belt and braces
	Stress and performance testing
	Try again later

	Exceptions
	Why use exceptions?
	What it means when your program goes “bang!”
	Catching errors
	The traceback module

	Where to from here?
	Summary

	6 Classes and object-oriented programming
	What exactly are classes?
	Classes contain data
	They’re a type of their own
	How do they work?
	Your first class

	Object-oriented design
	Player input
	First steps: verbing nouns

	Treasure!
	Where should your methods go?
	Finding the treasure
	Picking up the treasure

	Further into the caves
	Here there be monsters!
	Creating your monsters
	Some object-oriented design tips
	Tying it all together

	Danger and excitement
	Where to from here?
	Add more monsters and treasure
	Extend combat and items
	Add more adventure
	Experiment with verbs and nouns
	Investigate some more advanced features of classes

	Summary

	7 Sufficiently advanced technology…
	Object orientation
	Mixin classes
	super() and friends

	Customizing classes
	__getattr__
	__setattr__
	__getattribute__
	Properties
	Emulating other types

	Generators and iterators
	Iterators
	Generators
	Generator expressions

	Using generators
	Reading files
	Getting to grips with your log lines
	Pulling out the bits

	Functional programming
	Side effects
	Map and filter
	Passing and returning functions

	Where to from here?
	Summary

	8 Django!
	Writing web-based applications with Django
	Installing Django
	Setting up Django

	Writing your application
	The simplest possible todo list
	Using a template

	Using a model
	Setting up the database
	Creating a model
	Django’s admin module
	Adding an admin interface

	Making use of your data
	Using the model
	Setting up your URLs
	Submitting forms
	Handling individual todos

	Final polishing
	Where to from here?
	Summary

	9 Gaming with Pyglet
	Installing Pyglet
	First steps
	Starship piloting 101
	Making things happen
	Back to school: Newton’s first law (and vectors)

	Gravity
	Calculating gravity
	Watch out for that planet!

	Guns, guns, guns!
	Evil aliens
	Where to from here?
	Extending the game play
	Altering the game play
	Refactoring
	Get feedback

	Summary

	10 Twisted networking
	Installing Twisted
	Your first application
	First steps with your MUD
	Making the game more fun
	Bad monster!
	Back to the chat server

	Making your life easier
	Exploring unfamiliar code
	Putting it all together
	Write your own state machine

	Making your world permanent
	Where to from here?
	Summary

	11 Django revisited!
	Authentication
	Logging in
	Adding users

	Listing only your own todos
	Fixing your database
	Back on track...
	Covering all your bases
	Updating your interface

	Testing!
	Unit testing
	Functional testing
	Running your tests

	Images and styles
	Serving media from Django
	Serving media from another server
	Last but not least

	Where to from here?
	Summary

	12 Where to from here?
	Read some more code
	Python Standard Library
	Python recipes
	Open source projects

	Join the Python community
	Sign up for some mailing lists
	Find a local user group
	Help out an open source project

	Scratch your own itch
	Look at more Python libraries
	Profiling code
	Logging
	Subprocess and multiprocessing
	Better parsing
	PIL and image processing
	XML, ElementTree, and JSON

	Summary

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	Hello! Python-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 250
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.40000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1600 1600]
 /PageSize [612.000 792.000]
>> setpagedevice

