
Fundamentals of
Music Processing

Meinard Müller

Using Python
and Jupyter Notebooks

Second Edition

Fundamentals of Music Processing

Meinard Müller

Fundamentals of

Using Python and Jupyter Notebooks

Second Edition

Music Processing

Meinard Müller

International Audio Laboratories Erlangen

Erlangen, Germany

ISBN 978-3-030-69807-2 ISBN 978-3-030-69808-9 (eBook)

https://doi.org/10.1007/978-3-030-69808-9

© Springer Nature Switzerland AG 2015, 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,

broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology

now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or

the editors give a warranty, expressed or implied, with respect to the material contained herein or for any

errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-69808-9

To Michael Clausen and Hans-Peter Seidel

Preface to the Second Edition

When writing the first edition of this book, my motivation was to provide a textbook
on the emerging fields of music processing and music information retrieval (MIR)
with a focus on audio signal processing. Using well-established music analysis and
retrieval topics as motivating application scenarios, the book introduces fundamen-
tal techniques and algorithms relevant for general courses in various fields, including
computer science, multimedia engineering, information science, and digital human-
ities. The book is intended for Master and advanced Bachelor students in these fields
as well as any reader interested in delving into the field of music processing (and
not being frightened by some mathematics). While providing profound technolog-
ical knowledge as well as a comprehensive treatment of music processing appli-
cations, the book also includes numerous examples and illustrations to convey the
main ideas in an intuitive fashion. In recent years, suitably designed software pack-
ages and freely accessible web-based frameworks have made education in computer
science and signal processing more interactive. Such novel technology allows for
designing courses that aid students in moving from recalling and reciting theoretical
concepts towards comprehension and application.

These new developments are precisely the motivation for the second edition of
this book. It extends the first edition by providing additional material (called FMP
Notebooks), yielding an interactive foundation for teaching and learning fundamen-
tals of music processing (FMP). The FMP notebooks are built upon the Jupyter note-
book framework, which has become a standard in educational settings. This open-
source web application allows users to create documents that contain executable
code, text-based information, mathematical formulas, plots, images, sound exam-
ples, and videos. By leveraging the Jupyter framework, the FMP notebooks bridge
the gap between theory and practice by interleaving technical concepts, mathemati-
cal details, code examples, illustrations, and sound examples within a unifying set-
ting. The FMP notebooks closely follow the eight chapters of the textbook and,
as such, provide an explicit link between structured educational environments and
current professional practices, in line with current curricular recommendations for
computer science.

One primary purpose of the FMP notebooks is to provide audio-visual material
and Python code examples that implement the computational approaches step by
step. Additionally, the FMP notebooks yield an interactive framework that allows
students to experiment with their music examples, explore the effect of parameter
settings, and understand the computed results by suitable visualizations and soni-
fications. When teaching and learning music processing, it is essential to have a

vii

viii Preface to the Second Edition

Overview of various components and didactical aspects of the FMP notebooks.

holistic view of the MIR task at hand, the algorithmic approach, and its practical
implementation. Looking at all the steps of the processing pipeline sheds light on
the input data and its biases, possible violations of model assumptions, and the short-
comings of quantitative evaluation measures. Only by an interactive examination of
all these aspects will students acquire a deeper understanding of the concepts, tran-
sitioning from merely understanding concepts to applying their music processing
approaches both conceptually and in code.

The main body of the FMP notebooks consists of eight parts, structured along
with the eight chapters of this textbook. In the book’s second edition, we provide at
the end of each chapter an additional section titled FMP Notebooks. These sections
serve two purposes. First, we give a comprehensive guide by systematically describ-
ing the content and purpose of all the notebooks related to the corresponding chapter.
As a second objective, we make concrete suggestions on using the FMP notebooks
to create an enriching, interactive, and interdisciplinary supplement in the form of
experiments and advanced studies in a music processing curriculum. The textbook’s
guide can be best appreciated and understood when the FMP notebooks run in a
browser simultaneously while reading.

The FMP notebooks are publicly available under a Creative Commons license at
https://www.audiolabs-erlangen.de/FMP in the form of Jupyter note-
books as well as HTML exports, which can be accessed through a conventional web
browser. Using the static HTML version, all multimedia material, including the mu-
sic examples, audio files, video files, and images, can be directly accessed without
any specific technical requirements beyond a standard web browser. To run the FMP
notebooks’ code, one needs to install Python, Jupyter, and additional Python pack-
ages. All necessary steps for installing, running, and updating the required software

Understanding

Programming

Baselines

Research

Multimedia

Teaching

Mathematics

Theory

Music Example

Audio

Links

Annotations

Algorithms

Python Code Functions Visualization

Results

Evaluation

Sonification

https://www.audiolabs-erlangen.de/FMP

Preface to the Second Edition ix

packages are described in a separate part (called Part B) of the FMP notebooks.
This part also contains short introductions to Python programming, Jupyter note-
books, multimedia integration, as well as data annotation, visualization, and soni-
fication. Rather than being comprehensive, Part B gives instructive code examples
that become relevant in the other parts and documents how the FMP notebooks were
created.

Besides its substantial extensions through the FMP notebooks, another major
change in the second edition is the thorough revision of the sections called Sum-
mary and Further Readings (previously called Further Notes in the first edition).
These sections have been streamlined, now containing more compact and focused
summaries. Furthermore, the references and the links to literature for further read-
ings have been revised and updated. Rather than providing an extensive literature
review, we have deliberately limited ourselves to citing only selected core literature
and overview articles, where one can find further pointers to relevant and more ad-
vanced work. As in general multimedia processing, many recent advances in music
processing have been driven by techniques based on deep learning (DL). For exam-
ple, DL-based techniques have led to significant improvements for many tasks such
as music source separation, music transcription, chord recognition, melody estima-
tion, beat tracking, tempo estimation, and lyrics alignment, to name a few. In par-
ticular, major improvements could be achieved for music scenarios where sufficient
training data is available. A particular strength of DL-based approaches is their abil-
ity to extract complex features directly from raw audio data, which can then be used
to make predictions based on hidden structures and relations. Furthermore, power-
ful software packages allow for easily designing, implementing, and experimenting
with machine learning algorithms based on deep neural networks (DNNs). Cov-
ering the fast-growing and dynamic field of deep learning goes beyond the scope
of this textbook. Instead, we focus on classical signal and music processing tech-
niques, yielding fundamental insights into the problem at hand and providing ex-
plicit baseline approaches one may (and should) compare against when exploring
more powerful yet often difficult-to-interpret DNN-based learning approaches. For
further readings, we provided links to selected references that apply recent DNN-
based techniques to music processing. We hope that these references help students
and researchers transition from model-based approaches as introduced in this text-
book to the world of deep learning applied to specific music processing tasks. Our
literature choice is undoubtedly subjective, and we would like to apologize to all
those whose work we have not mentioned or adequately appreciated.

I want to thank Springer-Verlag for the opportunity afforded by the preparation of
this second edition. The initial idea of extending and complementing the textbook
by the FMP notebooks arose in 2018 during my visit to the Center for Computer
Research in Music and Acoustics (CCRMA) at Stanford University, where I was in-
vited to give a summer workshop on MIR jointly with Steve Tjoa and Brian McFee.
In particular, I started learning Python myself using the Python package librosa,
which offers advanced music and audio processing pipelines. Many thanks, Brian,
for developing this fantastic software package, which is not only extensively used
in the FMP notebooks but has also been a source of inspiration. Furthermore, I

x Preface to the Second Edition

would like to express my gratitude to Frank Zalkow, who has helped me in the last
two years with all the technical aspects related to the FMP notebooks. Frank, you
have been my patient teacher and companion when struggling through the pitfalls
of Python programming. Many more people have helped me in creating the FMP
notebooks, and I will confine myself to only mentioning their names in alphabeti-
cal order: Vlora Arifi-Müller, Stefan Balke, Rachel Bittner, Eran Egozy, Katherine
Kinnaird, Michael Krause, Patricio López-Serrano, Brian McFee, Sebastian Rosen-
zweig, Bob Sturm, Steve Tjoa, Angel Villar-Corrales, Christof Weiß, Frank Zalkow,
and Tim Zunner. Of course, in the second edition of this book, I also corrected the
errors that have come to my attention, and I express my thanks to those colleagues
and students who pointed out these errors in the first edition. I hope that this book
will continue to serve as a basis for those interested in learning music processing
and undertaking research in this, to my view, beautiful and challenging field.

Erlangen, Meinard Müller
January 2021

Preface to the First Edition

Music is a ubiquitous and vital part of the lives of billions of people worldwide.
Musical creations and performances are amongst the most complex and intricate of
our cultural artifacts, and the emotional power of music can touch us in surprising
and profound ways. Music spans an enormous range of forms and styles, from sim-
ple, unaccompanied folk songs, to popular and jazz music, to symphonies for full
orchestras. The digital revolution in music distribution and storage has simultane-
ously fueled tremendous interest in and attention to the ways that information tech-
nology can be applied to this kind of content. From browsing personal collections,
to discovering new artists, to managing and protecting the rights of music creators,
computers are now deeply involved in almost every aspect of music consumption,
not to mention their vital role in much of today’s music production.

Despite the importance of music, music processing is still a relatively young dis-
cipline compared with speech processing, a research field with a long tradition. A
research community represented by the International Society for Music Information
Retrieval (ISMIR), which systematically deals with a wide range of computer-based
music analysis, processing, and retrieval topics, was formed in the year 2000. Tradi-
tionally, computer-based music research has mostly been conducted on the basis of
symbolic representations using music notation or MIDI representations. Because of
the increasing availability of digitized audio material and an explosion of computing
power, automated processing of waveform-based audio signals is now increasingly
in the focus of research efforts.

Many of these research efforts are directed towards the development of tech-
nologies that allow users to access and explore music in all its different facets. For
example, audio fingerprinting techniques are nowadays integrated into commercial
products that help users automatically identify songs they hear. Music processing
techniques are used in extended audio players that highlight the current measures
within sheet music while playing back a recording of a symphony. On demand, ad-
ditional information about melodic and harmonic progressions or rhythm and tempo
is automatically presented to the listener. Interactive music interfaces display struc-
tural parts of the current piece of music and allow users to directly jump to any sec-
tion such as the chorus, the main musical theme, or a solo section without tedious
fast-forwarding and rewinding. Furthermore, listeners are equipped with Google-
like search engines that enable them to explore large music collections in various
ways. For example, the user may create a query by specifying a certain note con-
stellation, or some harmonic or rhythmic pattern by whistling a melody or tapping a
rhythm, or simply by selecting a short passage from an audio recording; the system

xi

xii Preface to the First Edition

then provides the user with a ranked list of available music excerpts from the collec-
tion that are musically related to the query. In music processing, one main objective
is to contribute concepts, models, algorithms, implementations, and evaluations for
tackling such types of analysis and retrieval problems.

This textbook is devoted to the emerging fields of music processing and mu-
sic information retrieval (MIR)—interdisciplinary research areas which are related
to various disciplines including signal processing, information retrieval, machine
learning, multimedia engineering, library science, musicology, and digital humani-
ties. The main goal of this book is to give an introduction to this vibrant and exciting
new research area for a wide readership. Well-established topics in music analysis
and retrieval have been selected to serve as motivating application scenarios. Within
these scenarios, fundamental techniques and algorithms that are applicable to a wide
range of analysis and retrieval problems are presented in depth.

This book is meant to be a textbook that is suitable for courses at the advanced
undergraduate and beginning master level. By mixing theory and practice, the book
provides both deep technological knowledge as well as a comprehensive treatment
of music processing applications. Furthermore, by including numerous examples,
illustrations (the book contains more than 300 figures), and exercises, I hope that
the book provides interesting material for courses in various fields such as computer
science, multimedia engineering, information science, and digital humanities.

The subsequent sections of this preface contain further information on the overall
structure of the book, the interconnections between the various topics and tech-
niques, and suggestions on how this book may be used as a basis for different
courses. We first give an overview of the book’s content by quickly going through
the individual chapters. Then, we explain various ways of reading and using the
book, each time focusing on a different aspect. We start with the view of a lecturer
who wants to use this textbook as a basis for an introductory course in music pro-
cessing or music information retrieval. Then, we show how the book may be used for
an introductory course on Fourier analysis and its applications. Finally, we assume
the view of a computer scientist who wants to teach fundamental issues on data
representations and algorithms, where music may serve as an underlying applica-
tion domain. Describing these different views, we try to work out the dependencies
between the chapters as well as the conceptual relationships between the various
music processing tasks.

Content

This textbook consists of eight chapters. The first two chapters cover fundamental
material on music representations and the Fourier transform—concepts that are re-
quired throughout the book. These two chapters make the book self-contained to a
great extent. In the subsequent chapters, concrete music processing tasks serve as
starting points for our investigations. Each of these chapters is organized in a similar
fashion. A chapter starts with a general description of the music processing scenario

Preface to the First Edition xiii

Chapter
Music
Processing
Scenario

Notions, Techniques &
Algorithms

1 Music
Representations

Music notation, MIDI, audio signal,
waveform, pitch, loudness, timbre

2 Fourier Analysis
of Signals

Discrete/analog signal, sinusoid,
exponential, Fourier transform,
Fourier representation, DFT, FFT,
STFT

3 Music
Synchronization

Chroma feature, dyamic
programming, dyamic time warping
(DTW), alignment, user interface

4 Music Structure
Analysis

Similarity matrix, repetition,
thumbnail, homogeneity, novelty,
evaluation, precision, recall, F-
measure, visualization, scape plot

5 Chord
Recognition

Harmony, music theory, chords,
scales, templates, hidden Markov
model (HMM), evaluation

6 Tempo and Beat
Tracking

Onset, novelty, tempo, tempogram,
beat, periodicity, Fourier analysis,
autocorrelation

7 Content-Based
Audio Retrieval

Identification, fingerprint, indexing,
inverted list, matching, version, cover
song

8
Musically
Informed Audio
Decomposition

Harmonic/percussive component,
signal reconstruction, instanteneous
frequency, fundamental frequency
(F0), trajectory, nonnegative matrix
factorization (NMF)

at hand and integrates the topic into a wider context. Motivated by the scenario at
hand, each chapter discusses important techniques and algorithms that are generally
applicable to a wide range of analysis, classification, and retrieval problems. All
these techniques are treated in a mathematically rigorous way. At the same time, the
techniques are immediately applied to a concrete music processing task. By mixing
theory and practice, the book’s goal is to convey both profound technological knowl-
edge as well as a solid understanding of music processing applications. Each of the
chapters ends with a section that includes links to the research literature, hints for
further reading, a list of references, and exercises. Before we discuss how this text-
book may be employed in a course or used for self-study, we first give an overview
of the individual chapters and the main topics.

xiv Preface to the First Edition

Musical information can be represented in many different ways. In Chapter 1,
we consider three widely used music representations: sheet music, symbolic, and
audio representations. This first chapter also introduces basic terminology that is
used throughout the book. In particular, we discuss musical and acoustic properties
of audio signals including aspects such as frequency, pitch, dynamics, and timbre.

Important technical terminology is covered in Chapter 2. In particular, we ap-
proach the Fourier transform—which is perhaps the most fundamental tool in signal
processing—from various perspectives. For the reader who is more interested in
the musical aspects of the book, Section 2.1 provides a summary of the most im-
portant facts on the Fourier transform. In particular, the notion of a spectrogram,
which yields a time–frequency representation of an audio signal, is introduced. The
remainder of the chapter treats the Fourier transform in greater mathematical depth
and also includes the fast Fourier transform (FFT)—an algorithm of great beauty
and high practical relevance.

As a first music processing task, we study in Chapter 3 the problem of mu-
sic synchronization. The objective is to temporally align compatible representa-
tions of the same piece of music. Considering this scenario, we explain the need
for musically informed audio features. In particular, we introduce the concept of
chroma-based music features, which capture properties that are related to harmony
and melody. Furthermore, we study an alignment technique known as dynamic
time warping (DTW), a concept that is applicable for the analysis of general time
series. For its efficient computation, we discuss an algorithm based on dynamic
programming—a widely used method for solving a complex problem by breaking
it down into a collection of simpler subproblems.

In Chapter 4, we address a central and well-researched area within MIR known
as music structure analysis. Given a music recording, the objective is to identify
important structural elements and to temporally segment the recording according to
these elements. Within this scenario, we discuss fundamental segmentation princi-
ples based on repetitions, homogeneity, and novelty—principles that also apply to
other types of multimedia beyond music. As an important technical tool, we study
in detail the concept of self-similarity matrices and discuss their structural prop-
erties. Finally, we briefly touch the topic of evaluation, introducing the notions of
precision, recall, and F-measure. These measures are used to compare the computed
results that are obtained by an automated procedure with so-called ground truth an-
notations that are typically generated manually by some domain expert.

In Chapter 5, we consider the problem of analyzing harmonic properties of a
piece of music by determining a descriptive progression of chords from a given
audio recording. We take this opportunity to first discuss some basic theory of har-
mony including concepts such as intervals, chords, and scales. Then, motivated by
the automated chord recognition scenario, we introduce template-based matching
procedures and hidden Markov models—a concept of central importance for the
analysis of temporal patterns in time-dependent data streams including speech, ges-
tures, and music.

Tempo and beat are further fundamental properties of music. In Chapter 6, we
introduce the basic ideas on how to extract tempo-related information from audio

Preface to the First Edition xv

recordings. In this scenario, a first challenge is to locate note onset information—a
task that requires methods for detecting changes in energy and spectral content. To
derive tempo and beat information, note onset candidates are then analyzed with
regard to quasiperiodic patterns. This leads us to the study of general methods for
local periodicity analysis of time series.

One important topic in information retrieval is concerned with the development
of search engines that enable users to explore music collections in a flexible and
intuitive way. In Chapter 7, we discuss audio retrieval strategies that follow the
query-by-example paradigm: given an audio query, the task is to retrieve all docu-
ments that are somehow similar or related to the query. Starting with audio iden-
tification, a technique used in many commercial applications such as Shazam, we
study various retrieval strategies to handle different degrees of similarity. Further-
more, considering efficiency issues, we discuss fundamental indexing techniques
based on inverted lists—a concept originally used in text retrieval.

In the final Chapter 8 on audio decomposition, we present a challenging research
direction that is closely related to source separation. Within this wide research area,
we consider three subproblems: harmonic–percussive separation, main melody ex-
traction, and score-informed audio decomposition. Within these scenarios, we dis-
cuss a number of key techniques including instantaneous frequency estimation, fun-
damental frequency (F0) estimation, spectrogram inversion, and nonnegative matrix
factorization (NMF). Furthermore, we encounter a number of acoustic and musical
properties of audio recordings that have been introduced and discussed in previous
chapters, which rounds off the book.

Target Readership

In the last fifteen years, music processing and music information retrieval (MIR)
have developed into a vibrant and multidisciplinary area of research. Because of
the diversity and richness of music, this area brings together researchers and stu-
dents from a multitude of fields including information science, audio engineering,
computer science, and musicology. This book’s intention is to offer interesting ma-
terial for courses in these fields. The main target groups of this book are Master
and advanced Bachelor students. Furthermore, we also hope that researchers who
are interested in delving into the field of music processing will benefit from this
textbook. The eight chapters are organized in a modular fashion, thus offering lec-
turers and readers many ways to choose, rearrange, or supplement the material. In
this way, it should be possible to easily integrate selected chapters or individual sec-
tions into courses that are related to general multimedia, information science, signal
processing, music informatics, or digital humanities.

Of course, writing a textbook requires making some choices. The topics selected
for this textbook play an important role in music processing and MIR, but they also
reflect the research areas of the author—I want to apologize to my colleagues for
having ignored many other important topics. The focus of this textbook is not to give

xvi Preface to the First Edition

a comprehensive overview of music processing, but to provide a solid understanding
of the concepts introduced within a small number of important application scenarios.
The layout, the tempo of presentation, and the pattern of figures have been kept
consistent throughout the textbook. We hope that this helps lecturers and students
to quickly get comfortable with the style of presentation and to flexibly use the
material. In particular, great care has been taken with the illustrations. One way to
approach a new topic is to first go through all figures of a section or chapter. Not
only should this hone one’s intuition, but also yield a first visual overview of the
concepts to be studied.

In the following, we describe the dependencies between the chapters and sections
by assuming different views on the book. Each view focuses on different aspects and
may serve as a basis for designing a one-semester or even two-semester course (with
two to four hours weekly per semester plus exercises). Even though the views are
presented from the perspective of a lecturer, we hope that they are also helpful for
a student or reader to gain a comprehensive overview and a better understanding of
the crosslinks between sections and chapters. A more abstract goal of describing the
different views is to highlight the general applicability of the presented techniques
and the conceptual relationships between the various music processing tasks.

View: A First Course in Music Processing

We start with the view of a lecturer who wants to use this textbook as a basis for
an introductory course in music processing or music information retrieval. To lay
the foundation for such a course and to fix important notions, we recommend to
begin with Chapter 1 on music representations. By going through Section 1.1, the
student should get an intuitive idea on the various attributes of music such as notes,
pitch, chroma, note length, dynamics, or time signature. We also hope that students
who are not familiar with Western music notation will benefit from this section
by gaining some intuitive understanding—the intricacies of music notation are not
required for the subsequent chapters. Section 1.2 contains background information
on symbolic representations. As with the sheet music section, an understanding of
all details, e.g., concerning the MIDI format or optical music recognition, is not
required. These details, however, become important when working with this kind of
data in practice. For most tasks and techniques presented in this book, the piano-roll
representation (Section 1.2.1) may serve as an intuitive substitute for sheet music or
symbolic representations.

The material on audio representations (Section 1.3) is fundamental for a music
processing course based on this book. Many notions such as waveform, sinusoid,
frequency, phase, pitch, harmonic, partial, decibel, timbre, transient, or spectrogram
are introduced in a more informal way—concepts that will be revisited in the sub-
sequent chapters in more detail.

To make this textbook self-contained and accessible to a wide audience, the re-
quired tools from signal processing have been confined to a small number of key

Preface to the First Edition xvii

Basics

Section 2.1
Fourier Transform

Section 3.1
Audio Features

Chapter 1
Music Representations

Section 3.2
Dynamic Time Warping

Music Synchronization

3 Music Structure Analysis

4 Chord Recognition

5 Tempo and Beat Tracking

6 Content-Based Audio Retrieval

7 Musically Informed
Audio Decomposition
8

View: A First Course in Music Processing

techniques. Basically all audio processing steps as presented in this book are de-
rived from standard Fourier analysis. The Fourier transform becomes our main sig-
nal processing tool, and a good understanding of this transform is indispensable. In
Section 2.1, the most important facts on Fourier analysis are introduced in a math-
ematically rigorous, yet compact fashion. Omitting the proofs, this section aims to
convey the main ideas (using many illustrations and examples), while introducing
the required technical notions. This section contains all material that is required to
understand the subsequent chapters. For a course with a focus on music processing,
we recommend to skip the remaining sections of Chapter 2 (and to come back to
them at a later stage if required). However, Section 2.1 should be covered in detail.

Motivated by the music synchronization application, Chapter 3 introduces fur-
ther basic concepts that run like a thread through this book. To make music data
comparable and algorithmically accessible, the first step in most music processing
tasks is to convert the data into suitable feature representations that capture the rel-
evant aspects while suppressing irrelevant details. In Section 3.1, we address the
issue of converting an audio signal into musically informed feature representations.
As our main example, we discuss the construction of time–chroma representations,
which are based on the equal-tempered scale. Besides music synchronization, these
features play an important role in many other applications including music struc-
ture analysis (Chapter 4), chord recognition (Chapter 5), and content-based audio
retrieval (Chapter 7).

The second important concept introduced in Chapter 3 is known as sequence
alignment—a general technique for arranging two time-dependent sequences to
identify regions of similarity. To compute an optimal alignment, there are effi-
cient algorithms that are based on dynamic programming—a general paradigm
for solving a complex problem by breaking it down into a collection of simpler
subproblems. In Section 3.2, we study an alignment technique referred to as dy-
namic time warping (DTW) as well as an efficient algorithm. In later chapters, we
encounter similar alignment techniques, e.g., in the context of audio thumbnail-
ing (Section 4.3), chord recognition (Section 5.3), beat tracking (Section 6.3), audio
matching (Section 7.2), and version identification (Section 7.3).

xviii Preface to the First Edition

While we recommend covering the fundamental material presented in Chapter 1,
Section 2.1, Section 3.1, and Section 3.2 in a course on music processing, there is
a lot of freedom on how to proceed afterwards. The remaining chapters are kept
mostly independent, excluding a few exceptions that are suitably referenced. One
possible continuation of a course is to cover the applications of music synchroniza-
tion (Section 3.3) and then to proceed with Chapter 4 on music structure analysis.
As opposed to music synchronization, where one compares two given sequences,
in music structure analysis a single sequence is compared with itself. This leads to
the notion of self-similarity matrices—a concept that is related to recurrence plots
as used for the analysis of general time series. The study of self-similarity matri-
ces yields deep insights into structural properties of music representations as well
as into the properties of the underlying feature representations. By suitably visual-
izing self-similarity matrices, these aspects can be conveyed in a nontechnical and
intuitive fashion. On the other hand, the automated extraction of musically relevant
structures from self-similarity matrices—even if they seem obvious for humans—is
anything but a trivial problem. In Chapter 4, various challenges as well as algorith-
mic approaches are presented.

As an alternative, after having introduced chroma-based audio features
(Section 3.1), one may directly jump to Chapter 5. The task of automated chord
recognition yields a natural motivation for this type of feature. The reason is that
chroma features capture a signal’s short-time tonal content, which is closely cor-
related to the harmonic progression of the underlying piece. For a more musically
oriented course, Section 5.1 provides some background material on harmony the-
ory including concepts such as intervals, chords, and scales. In a more technically
oriented course, most of this material may be skipped. One can then directly pro-
ceed with the classification approaches based on templates (Section 5.2) and hidden
Markov models (Section 5.3). In view of their great importance, Section 5.3 pro-
vides a detailed technical account on Markov chains and hidden Markov models
using chord recognition as a motivating application. In particular, the Viterbi algo-
rithm (Section 5.3.3.2) and its close relation to the DTW algorithm (Section 3.2)
can be elaborated in a lecture and in homework problems.

Being of high practical relevance and widely known by smartphone users, the
topic of audio identification (Section 7.1) is well suited to delve into the topic of
content-based audio retrieval. Only requiring the spectrogram representation as pre-
requisite, this section may be covered directly after Section 2.1. Furthermore, the
audio identification application provides a good opportunity for raising efficiency
and indexing issues—a topic that is often neglected in music processing and MIR.
The next two sections on audio matching (Section 7.2) and version identification
(Section 7.3) deal with retrieval scenarios of lower specificity, where the query and
the documents to be retrieved may reveal only a low degree of similarity. Requiring
chroma-based audio features and alignment techniques, Section 7.2 and Section 7.3
form a nice continuation of Chapter 3 and Chapter 4.

Along with Section 7.1, Chapter 6 and Chapter 8 focus more on technical as-
pects. Requiring Fourier analysis of audio signals, this material may be used after
covering Section 1.3 and Section 2.1. In Chapter 6, which deals with tempo and beat

Preface to the First Edition xix

tracking, the Fourier transform is used on two different levels. On the first level, it
is used to convert an audio signal into a novelty representation that indicates note
onset candidates (Section 6.1). On the second level, Fourier analysis is applied as
a means to detect locally periodic patterns in the novelty function. This type of pe-
riodicity analysis not only yields a tempogram representation (Section 6.2.2), but
also reveals locally periodic pulse trains that can be used for beat tracking applica-
tions (Section 6.3.1). Having a close personal relation to rhythm and dance, many
students are immediately receptive to the topic of beat and tempo tracking. There-
fore, also in my experience as a lecturer, this topic generates a lot of interest and
inspiration.

As said before, Chapter 8 is also quite independent from previous chapters and
can be studied after Section 1.3 and Section 2.1. The topic of harmonic–percussive
separation (Section 8.1) is a direct application of the spectrogram representation.
Applying some simple median filtering and binary masking techniques allows for
decomposing a music signal into a percussive component and a harmonic compo-
nent. In this context, we also cover the issue of reconstructing time-domain signals
from modified spectral representations—a topic that is fraught with unanticipated
pitfalls (Section 8.1.2). Using melody extraction as a motivating music processing
application, Section 8.2 details further important topics including fundamental and
instantaneous frequency estimation. This scenario provides the opportunity to have
a closer look at the phase information supplied by Fourier analysis—a rather techni-
cal yet important topic that is not easy to understand when studied for the first time
(Section 8.2.1).

In Section 8.3, we touch on another central research field related to source separa-
tion. Within this area, a general concept known as nonnegative matrix factorization
(NMF) has turned out to be a key technique. Among its many variants, we discuss
the most basic NMF version in Section 8.3.1. This technique is then employed for
decomposing a music signal into more elementary sound events. Doing so, one can
highlight another general strategy that is widely applied in music processing to cope
with the complexity of music signals. In order to make certain problems tractable,
current approaches often exploit musical knowledge in one way or another. In this
chapter, we study several score-informed approaches that make use of the availabil-
ity of score representations in order to support an audio processing task. This strat-
egy, in turn, requires note information aligned to the audio signal to be processed,
which brings us back to Chapter 3 on music synchronization.

View: Introduction to Fourier Analysis and Applications

As said before, the Fourier transform is one of the most important tools for a wide
range of applications in engineering and computer science. Due to a large number
of variants and the complex-valued formulation, students often have difficulties in
understanding the Fourier transform when encountering this concept for the first
time. The music domain offers a natural access to the main ideas of Fourier analy-

xx Preface to the First Edition

Mathematical
Theory

Audio
Features

Phase
Information

Spectrogram
Decomposition

Basics

Section 2.1
Fourier

Transform

Section 1.3
Audio

Representation

Section 3.1.1
Log-Frequency
Spectrogram

Section 7.1.2
Audio

Fingerprints

Section 8.1.1
Horizontal–

Vertical
Spectrogram

DecompostionSection 8.2.1
Instantaneous

Frequency
Estimation

Section 8.3.2
NMF-based
Spectrogram
Factorization

Section 6.1.1
Spectral-Based

Novelty

Section 6.1.2
Phase-Based

Novelty

Section 2.2
Signal Spaces

Section 2.3
Fourier

Transform

Section 2.4
DFT, FFT

Section 2.5
STFT

View: Introduction to Fourier Analysis and Applications

sis thanks to intuitive relations between abstract concepts and musical counterparts
such as sinusoids and musical tones, frequency and pitch, magnitude and tone in-
tensity, and so on. This textbook can be used as a basis for an introductory course
on Fourier analysis. Starting with some basics on audio representations and their
properties (Section 1.3), one can continue with Section 2.1 to introduce the most
important facts on Fourier analysis. This section contains all material that is actually
needed to understand the subsequent chapters. For an in-depth treatment of signals,
signal spaces, and Fourier analysis—including many of the mathematical proofs—
one may proceed with the remaining sections of Chapter 2. One algorithmic high-
light is definitely the fast Fourier transform (FFT), which is treated in Section 2.4.3.

As example applications of the Fourier transform and its short-time versions
(STFT, spectrogram), one can then discuss log-frequency spectrograms and their
relation to musical pitch (Section 3.1.1), spectrum-based novelty detection as used
in note onset detection (Section 6.1.2), and spectral peak fingerprints applied to au-
dio identification (Section 7.1). Using the many concrete examples and illustrations
provided by the book, these applications can be treated in a nontechnical fashion
without needing to go through all the material of the respective chapter.

Considering only the magnitude information, the phases of the complex-valued
Fourier coefficients are often neglected in many applications. With Section 6.1.3
and Section 8.2.1, the book offers material to illustrate the importance of the phase
and to approach this difficult topic. Using phase-based novelty detection and in-
stantaneous frequency estimation as motivating applications, the meaning of phase
becomes evident when considering possible phase inconsistencies over subsequent
frames. These applications also put the STFT and its properties in a different light.

To round off an introductory course on Fourier analysis, one may look into how
to decompose time–frequency representations with applications to source separa-
tion. In particular, the decomposition of audio signals into harmonic and percus-
sive components by considering horizontal and vertical time–frequency patterns is
a simple and very instructive application (Section 8.1.1). This scenario also offers
a nice motivation for discussing important topics such as binary and soft spectral

Preface to the First Edition xxi

masking (Section 8.1.1.2), as well as Fourier inversion and signal reconstruction
(Section 8.1.2). Finally, as another more advanced application, one may consider
Section 8.3 on audio decomposition using a technique known as nonnegative matrix
factorization (NMF). In this application, a music signal is decomposed into a set of
notewise audio events, where each audio event is directly associated with a note of
a given musical score.

View: Data Representations and Algorithms

We finally want to assume the view of a computer scientist who may be interested
in making his or her basic course on data representations and algorithms a bit more
“musical.” As a multimedia domain, music offers a wide range of data types and
formats including text, symbolic data, audio, image, and video. For example, as
discussed in Chapter 1, music can be represented as printed sheet music (image do-
main), encoded as MIDI or MusicXML files (symbolic domain), and played back
as audio recordings (acoustic domain). Using music as an example, one can discuss
fundamental issues of data representations including bitmap and vector graphic en-
codings for images, XML-like markup languages for symbolic music, communica-
tion protocols for electronic musical instruments such as MIDI, or audio file for-
mats including WAV or MP3. The immediate relationships between different music
representations yield a natural motivation for data conversion issues including im-
age rendering, optical character/music recognition, sound synthesis, and so on (see
Figure 1.24).

The first step in most computer-based analysis and classification applications
consists in transforming the input data into suitable feature representations, which
capture relevant information while suppressing redundancies. The spectrogram rep-
resentation (Section 2.1) and the derived audio features (Section 3.1) can be seen as
typical examples for such a transformation process. In many cases, feature extrac-
tion can be seen as a kind of dimensionality reduction. A prominent example are the
twelve-dimensional chroma features, which capture tonal information of a music
signal (Section 3.1.2).

After introducing data representations, a computer science course may continue
with the discussion of algorithms. This textbook offers a number of interesting algo-
rithms that are relevant for a wide range of applications going far beyond the music
processing scenarios considered. Many of these algorithms are based on dynamic
programming, which is a fundamental algorithmic paradigm for solving optimiza-
tion problems. This method appears—in one form or another—in the curriculum
of basically any computer science student. The idea of dynamic programming is to
break down a complex problem into smaller “overlapping” subproblems in some
recursive manner. An optimal solution of the global problem is obtained by effi-
ciently assembling optimal solutions for the subproblems. Dynamic programming
is widely used for alignment tasks as occurring in bioinformatics (e.g., to determine
the similarity of DNA sequences) or in text processing (e.g., to compute the distance

xxii Preface to the First Edition

Data Representations

Section 1.2
Symbolic Representation

Section 1.3
Audio Representation

Section 1.1
Sheet Music Representation

Section 2.1
Spectrogram Representation

Section 3.1
Feature Representation

Dynamic Programming

Section 7.2
Audio Matching

Section 7.3
Version Identification

Section 3.2
Dynamic Time Warping (DTW)

Section 6.3
Beat and Pulse Tracking

Further Algorithms

Section 5.3
Hidden Markov Model (HMM)

Section 2.4.3
Fast Fourier Transform (FFT)

Section 8.3.1
Nonnegative Matrix
Factorization (NMF)

Section 4.3
Audio Thumbnailing

Section 7.1.3
Indexing, Retrieval, Inverted

Lists

View: Data Representations and Algorithms

between text strings). In this book, we consider a variant of this technique referred
to as dynamic time warping (DTW), which allows us to temporally align feature se-
quences extracted from music representations. Motivated by a music synchroniza-
tion application, Section 3.2 covers DTW in detail including careful mathematical
modeling of the optimization problem, the algorithm based on dynamic program-
ming, and the mathematical proofs. Furthermore, numerous illustrations, examples,
and exercises are provided.

Besides DTW, further algorithms based on dynamic programming are presented
throughout the book. For example, subsequence variants of DTW are discussed in
the context of audio matching (Section 7.2) and version identification (Section 7.3).
In our audio thumbnailing application (Section 4.3), dynamic programming is used
to efficiently compute a fitness measure for audio segments. Furthermore, the well-
known Viterbi algorithm for finding an optimizing state sequence is based on dy-
namic programming—a concept that is applied in this book for estimating chord
sequences (Section 5.3). Finally, a dynamic programming approach is introduced to
derive an optimal beat sequence (Section 6.3). In all these problems, which are mo-
tivated by concrete applications, the objective is to find a sequence or an alignment
between two sequences that is optimal in one or another way. By considering var-
ious scenarios, the student should acquire a solid understanding of the underlying
principles of dynamic programming.

There are a number of other important algorithms treated in this book, which may
be integrated into a basic computer science curriculum. First of all, Section 2.4.3
covers the classic fast Fourier transform (FFT), which goes back to Carl Friedrich
Gauß (1805, published posthumously in 1866). Being a typical example for a divide-
and-conquer strategy, the basic idea of the FFT algorithm is to divide the discrete
Fourier transform (DFT) into two pieces of half the size. The FFT algorithm can
also be interpreted as a factorization of the DFT matrix into a product of sparse
matrices.

In Section 8.3, we study another matrix factorization technique known as non-
negative matrix factorization (NMF). This technique is studied within an audio de-

Acknowledgements xxiii

composition scenario. The general objective of NMF is to factorize a given real-
valued matrix with no negative elements into a product of two other matrices that
also have no negative elements. Usually, the two matrices in the product have a much
lower rank than the original matrix. In this case, the product can be thought of as a
compressed and more structured version of the original matrix. As a typical exam-
ple for how to approach nonconvex optimization problems in machine learning, we
discuss an iterative procedure for learning an NMF decomposition (Section 8.3.1).

Originally applied for speech recognition, hidden Markov models (HMMs) are
now a standard tool for applications in temporal pattern recognition. Motivated
by a chord recognition application, we introduce this mathematical concept in
Section 5.3 as a typical example for a statistical data model. A rigorous treatment
of statistical data analysis goes beyond the scope of this book. With Section 5.3.2
we provide, at least, a glimpse into this important area. Furthermore, by considering
HMMs, one can also show how alignment concepts such as DTW can be extended
using a probabilistic framework.

As a final fundamental topic that may be covered in an introductory course in
computer science, we address the issue of data indexing, where the objective is to
speed up a retrieval process. The basic procedure is similar to what we do when
using a traditional book index. When looking for a specific passage in a book, an
index allows us to directly access the page numbers where certain key words occur.
In Section 7.1, we study such techniques in the context of an audio identification ap-
plication. Here, the key words correspond to audio fingerprints (e.g., spectral peaks
or combinations thereof), while the page numbers correspond to the time positions
where these fingerprints appear.

With these comments, we hope to have convinced lecturers that music process-
ing may serve as a beautiful and instructive application scenario for teaching basic
concepts on data representations and algorithms. In my experience as a lecturer in
computer science and engineering, starting a lecture with music processing applica-
tions, in particular playing music to students, opens them up and raises their interest.
This makes it much easier to get the students engaged with the mathematical theory
and technical details. Mixing theory and practice by immediately applying algo-
rithms to concrete music processing tasks helps to develop the necessary intuition
behind the abstract concepts and awakens the student’s fascination and enthusiasm
for the topic.

Acknowledgements

This textbook reflects my experience as a researcher and lecturer over the last twelve
years. During these years, I have closely collaborated on, discussed, struggled with,
learned from, and enjoyed research with many different people. I would like to take
the opportunity to express my gratitude to all these people, without whom I would
never have been able to write this book.

xxiv Acknowledgements

I want to dedicate this book to Michael Clausen and Hans-Peter Seidel—two
people who have played a very special role in my academic career. It was Michael
Clausen who first got me interested in the research areas of music processing and
computer algebra. Doing my PhD as well as my Habilitation in his group (at the
Computer Science Department, University of Bonn), Michael Clausen gave me all
the freedom and support to pursue my own research goals. His analytic thinking,
open feedback, enthusiasm, and integrity have had a huge influence on me as a
scientist, teacher, and human being. Thank you, Michael, for all your mental, intel-
lectual, and financial support—I will try to pass down your spirit to future student
generations.

A second key person in my academic career is Hans-Peter Seidel—the head of
the Computer Graphics Department of the Max-Planck-Institut für Informatik. I was
very fortunate to join his group, working as a senior researcher within the Cluster of
Excellence on Multimodal Computing and Interaction from 2007 to 2012. Within an
open and inspiring atmosphere, I was able to independently conduct research having
my own PhD students while enjoying all the academic freedom one can dream of.
It was at this time that the idea of writing this book originated—even though it took
another two years to actually start with this endeavor. Thank you so much, Hans-
Peter, for your support, guidance, and trust over all these years.

In September 2012, I joined the International Audio Laboratories Erlangen
(AudioLabs), a joint institution of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) and the Fraunhofer Institut für Intergrierte Schaltungen IIS. Lead-
ing the research group on Semantic Audio Processing, I am proud to be part of a
team that shapes the future of audio and multimedia technologies in research areas
such as audio coding, audio signal analysis, and spatial audio processing. Being in
the vicinity of both the university and the Audio & Multimedia division of Fraun-
hofer IIS, the AudioLabs offer an excellent infrastructure that enables close scien-
tific collaborations in an ideal setting. I want to thank Heinz Gerhäuser as well as
Albert Heuberger, Bernhard Grill, and Jürgen Herre as representatives for all those
who have established this fantastic research environment. At this point, I also want
to thank all my colleagues from the AudioLabs and the university for the very pleas-
ant and productive daily cooperation: Tom Bäckström, Sascha Disch, Bernd Edler,
Emanuël Habets, Tracy Harris, Jürgen Herre, Walter Kellermann, Frederik Nagel,
Rudolf Rabenstein, Stefan Turowski, Christian Uhle, Elke Weiland, and many more.

As said, this textbook is based on results, material, and insights that have been
obtained in close collaboration with different people. I would like to express my
gratitude to my former and current PhD students, collaborators, and colleagues who
have influenced and supported me in writing this textbook. Many of these people
have also helped me with numerous discussions on the book’s content, constructive
suggestions for improvements, and various rounds of proofreading. I will confine
myself to only mentioning their names in alphabetical order: Andreas Baak, Ste-
fan Balke, Juan Bello, Rachel Bittner, David Damm, Christian Dittmar, Jonathan
Driedger, Zhiyao Duan and his students, Dan Ellis, Sebastian Ewert, Derry Fitzger-
ald, Christian Fremerey, Emilia Gómez, Masataka Goto, Harald Grohganz, Peter
Grosche, Thomas Helten, Alex Hollenbeck, Nanzhu Jiang, Anssi Klapuri, Ver-

Acknowledgements xxv

ena Konz, Verena Kriesel, Frank Kurth, Lukas Lamprecht, Cynthia Liem, Patricio
López-Serrano, Oriol Nieto, Bryan Pardo, Jouni Paulus, Thomas Prätzlich, Sanu
Pulimootil Achankunju, Gaël Richard, Tido Röder, Shigeki Sagayama, Justin Sala-
mon, Mark Sandler, Hendrik Schreiber, Joan Serrà, Jordan Smith, Timothy J. Tsai,
Avery Wang, Christof Weiß, Gordon Wichern, Frans Wiering, Geraint Wiggins,
Aaron Wishnick, Frank Wu, and Udo Zölzer. Thank you so much for your help,
support, stimulation, and encouragement.

Before and during the process of writing this textbook, I had the op-
portunity to teach most of the material as graduate courses at the Depart-
ment of Computer Science, Rheinische Friedrich-Wilhelms-Universität Bonn; at
the Department of Computer Science, Universität des Saarlandes; and at the
Department Elektrotechnik-Elektronik-Informationstechnik, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU). I want to thank the students for their com-
ments and valuable feedback. I also want to thank Ralf Gerstner and Viktoria Meyer
from Springer-Verlag for helping me in organizing, editing, and publishing this
book. Many research results that have entered this textbook were achieved within
projects funded by the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG). I want to thank the DFG for their financial support and the unbureau-
cratic help when shifting the projects from one location to another.

Last but not least, I am grateful to my family and friends for all the support
and encouragement I have received in my life. First and foremost, I want to thank
my wife Vlora from the bottom of my heart for being extremely supportive and
for standing beside me throughout my career. I also thank my wonderful children,
Hana and Zanfina, for reminding me of the really important things in life—you are
the best kids a dad could hope for. Finally, I am grateful to my parents, Irmin and
Hans-Georg Müller, for always supporting my ambitions throughout my life.

Erlangen, Meinard Müller
June 2015

Contents

1 Music Representations . 1
1.1 Sheet Music Representations . 2

1.1.1 Musical Notes and Pitches . 3
1.1.2 Western Music Notation . 5

1.2 Symbolic Representations . 10
1.2.1 Piano-Roll Representations . 11
1.2.2 MIDI Representations . 13
1.2.3 Score Representations . 15
1.2.4 Optical Music Recognition . 17

1.3 Audio Representation . 18
1.3.1 Waves and Waveforms . 19
1.3.2 Frequency and Pitch . 21
1.3.3 Dynamics, Intensity, and Loudness . 24
1.3.4 Timbre . 26

1.4 Summary and Further Readings . 30
1.5 FMP Notebooks . 32
References . 36
Exercises . 37

2 Fourier Analysis of Signals . 39
2.1 The Fourier Transform in a Nutshell . 40

2.1.1 Fourier Transform for Analog Signals 42
2.1.2 Examples . 48
2.1.3 Discrete Fourier Transform . 49
2.1.4 Short-Time Fourier Transform . 53

2.2 Signals and Signal Spaces . 57
2.2.1 Analog Signals . 58
2.2.2 Digital Signals . 60
2.2.3 Signal Spaces . 63

2.3 Fourier Transform . 69
2.3.1 Fourier Transform for Periodic CT-Signals 69

xxvii

xxviii Contents

2.3.2 Complex Formulation of the Fourier Transform 71
2.3.3 Fourier Transform for CT-Signals . 77
2.3.4 Fourier Transform for DT-Signals . 82

2.4 Discrete Fourier Transform (DFT) . 86
2.4.1 Signals of Finite Length . 86
2.4.2 Definition of the DFT. 88
2.4.3 Fast Fourier Transform (FFT) . 89
2.4.4 Interpretation of the DFT . 92

2.5 Short-Time Fourier Transform (STFT) . 93
2.5.1 Definition of the STFT . 94
2.5.2 Spectrogram Representation . 98
2.5.3 Discrete Version of the STFT . 102

2.6 Summary and Further Readings . 105
2.7 FMP Notebooks . 107
References . 112
Exercises . 113

3 Music Synchronization . 119
3.1 Audio Features . 121

3.1.1 Log-Frequency Spectrogram . 122
3.1.2 Chroma Features . 127

3.2 Dynamic Time Warping . 135
3.2.1 Basic Approach . 135
3.2.2 DTW Variants . 145

3.3 Applications . 150
3.3.1 Multimodal Music Navigation . 150
3.3.2 Tempo Curves . 155

3.4 Summary and Further Readings . 158
3.5 FMP Notebooks . 162
References . 166
Exercises . 168

4 Music Structure Analysis . 171
4.1 General Principles . 173

4.1.1 Segmentation and Structure Analysis 174
4.1.2 Musical Structure . 176
4.1.3 Musical Dimensions . 179

4.2 Self-Similarity Matrices . 182
4.2.1 Basic Definitions and Properties . 182
4.2.2 Enhancement Strategies . 188

4.3 Audio Thumbnailing . 199
4.3.1 Fitness Measure . 199
4.3.2 Scape Plot Representation . 206
4.3.3 Discussion of Properties . 207

4.4 Novelty-Based Segmentation . 211

Contents xxix

4.4.1 Novelty Detection . 212
4.4.2 Structure Features . 216

4.5 Evaluation . 219
4.5.1 Precision, Recall, F-Measure . 220
4.5.2 Structure Annotations . 221
4.5.3 Labeling Evaluation . 222
4.5.4 Boundary Evaluation . 224
4.5.5 Thumbnail Evaluation . 225

4.6 Summary and Further Readings . 228
4.7 FMP Notebooks . 232
References . 236
Exercises . 238

5 Chord Recognition . 241
5.1 Basic Theory of Harmony . 243

5.1.1 Intervals . 243
5.1.2 Chords and Scales . 247

5.2 Template-Based Chord Recognition . 257
5.2.1 Basic Approach . 258
5.2.2 Evaluation . 261
5.2.3 Ambiguities in Chord Recognition . 264
5.2.4 Enhancement Strategies . 270

5.3 HMM-Based Chord Recognition . 277
5.3.1 Markov Chains and Transition Probabilities 277
5.3.2 Hidden Markov Models . 280
5.3.3 Evaluation and Model Specification . 283
5.3.4 Application to Chord Recognition . 291

5.4 Summary and Further Readings . 297
5.5 FMP Notebooks . 301
References . 305
Exercises . 307

6 Tempo and Beat Tracking . 309
6.1 Onset Detection . 311

6.1.1 Energy-Based Novelty . 312
6.1.2 Spectral-Based Novelty . 315
6.1.3 Phase-Based Novelty . 319
6.1.4 Complex-Domain Novelty . 321

6.2 Tempo Analysis . 322
6.2.1 Tempogram Representations . 323
6.2.2 Fourier Tempogram . 325
6.2.3 Autocorrelation Tempogram . 327
6.2.4 Cyclic Tempogram . 331

6.3 Beat and Pulse Tracking . 334
6.3.1 Predominant Local Pulse . 335

xxx Contents

6.3.2 Beat Tracking by Dynamic Programming 339
6.3.3 Adaptive Windowing . 344

6.4 Summary and Further Readings . 347
6.5 FMP Notebooks . 351
References . 356
Exercises . 358

7 Content-Based Audio Retrieval . 361
7.1 Audio Identification . 363

7.1.1 General Requirements . 364
7.1.2 Audio Fingerprints Based on Spectral Peaks 366
7.1.3 Indexing, Retrieval, Inverted Lists . 370
7.1.4 Index-Based Audio Identification . 373

7.2 Audio Matching . 377
7.2.1 General Requirements and Feature Design 377
7.2.2 Diagonal Matching . 382
7.2.3 DTW-Based Matching . 385

7.3 Version Identification . 390
7.3.1 Versions in Music . 391
7.3.2 Identification Procedure . 395
7.3.3 Evaluation Measures . 400

7.4 Summary and Further Readings . 405
7.5 FMP Notebooks . 411
References . 416
Exercises . 418

8 Musically Informed Audio Decomposition . 421
8.1 Harmonic–Percussive Separation . 423

8.1.1 Horizontal–Vertical Spectrogram Decomposition 426
8.1.2 Signal Reconstruction . 431
8.1.3 Applications . 435

8.2 Melody Extraction . 437
8.2.1 Instantaneous Frequency Estimation . 440
8.2.2 Salience Representation . 445
8.2.3 Informed Fundamental Frequency Tracking 450

8.3 NMF-Based Audio Decomposition . 456
8.3.1 Nonnegative Matrix Factorization . 458
8.3.2 Spectrogram Factorization . 465
8.3.3 Audio Decomposition . 470

8.4 Summary and Further Readings . 474
8.5 FMP Notebooks . 478
References . 484
Exercises . 487

Index . 489

Basic Symbols and Notions

The following basic symbols and notions are used throughout this book:

N= {1,2,3 . . .} natural numbers
N0 = N∪{0} whole numbers
Z= {. . . ,−2,−1,0,1,2, . . .} integers
[a : b] := {a,a+1, . . . ,b} ⊂ Z integers from a to b for a,b ∈ Z
Q rational numbers
R real numbers
R>0 = {a ∈ R | a > 0} positive real numbers
R≥0 = {a ∈ R | a≥ 0} nonnegative real numbers
[a,b] := {r ∈ R | a≤ r ≤ b} ⊂ R interval of real numbers from a to b for a,b ∈ R
C complex numbers
i :=
√
−1 imaginary unit

|a| absolute value of a number a ∈ R (or a ∈ C)

RN real coordinate space of dimension N ∈ N
CN complex coordinate space of dimension N ∈ N
||x|| norm of a vector x ∈ RN (or x ∈ CN)
〈x|y〉 inner product of two vectors x,y ∈ RN (or x,y ∈ CN)

x> transpose of a vector x
A> transpose of a matrix A

xxxi

Chapter 1
Music Representations

Music can be represented in many different ways and formats. For example, a
composer may write down a composition in the form of a musical score. In a score,
musical symbols are used to visually encode notes and how these notes are to be
played by a musician. The printed form of a musical score is also referred to as
sheet music. The original medium of this representation is paper, although it is now
also accessible on computer screens through digital images. For electronic instru-
ments and computers, music may be communicated by means of standard proto-
cols such as the widely used Musical Instrument Digital Interface (MIDI) protocol,
where event messages specify pitches, velocities, and other parameters to generate
the intended sounds. In this book, we use the term symbolic to refer to any machine-
readable data format that explicitly represents musical entities. These musical en-
tities may range from timed note events, as is the case of MIDI files, to graphical
shapes with attached musical meaning, as is the case of music engraving systems.
Unlike symbolic representations, audio representations such as WAV or MP3 files
do not explicitly specify musical events. These files encode acoustic waves, which
are generated when a source (e.g., an instrument) creates a sound that travels to the
human ear as air pressure oscillations.

In this book, we distinguish between three main classes of music representations:
sheet music, symbolic, and audio. To put it simply, the term sheet music stands for
visual representations of a score given in printed form or in the form of digitized im-
ages. The term symbolic comprises any kind of score representation with an explicit
encoding of notes or other musical events. Finally, the term audio refers to repre-
sentations of acoustic sound waves. Each of these representations reflects certain
aspects of a musical object, but no single representation encompasses all its proper-
ties. In this sense, each representation can be considered a projection or a realization
of what we generally refer to as a piece of music. In this introductory chapter, we
discuss some basic properties of music by means of these different music represen-
tations. We start by describing basic elements of Western music notation as used in

1© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_1

https://doi.org/10.1007/978-3-030-69808-9_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_1&domain=pdf

2 1 Music Representations

Fig. 1.1 Sheet music rep-
resentation of the first five
measures of Symphony No. 5
by Ludwig van Beethoven in
a piano reduced version.

sheet music representations (Section 1.1). Even though the exact specifications of
music notation are not essential in this book, we require basic notions of the pitch,
duration, and onset time of musical notes. Then, we summarize basic properties
of symbolic representations with a specific focus on MIDI, which is the prevailing
standard for controlling music synthesizers (Section 1.2). Finally, we discuss audio
representations, which are at the heart of this book. In particular, we deal with as-
pects concerning the properties of sound waves including frequency, dynamics, and
timbre (Section 1.3).

1.1 Sheet Music Representations

Sheet music, also referred to as musical score, provides a visual representation
of what we commonly refer to—in particular for Western classical music—as the
“piece of music.” Sheet music describes a musical work using a formal language
based on musical symbols and letters, which are depicted in a graphical–textual
form. Reading sheet music, a musician can create a performance by following the
given instructions. Performing a piece from sheet music, however, not only requires
a special form of literacy, i.e., the ability to understand the music notation, but also
involves a creative process. A musical score is rarely played mechanically. Musi-
cians may shape the flow of the music by varying the tempo, dynamics, and articu-
lation, thus resulting in a personal interpretation of the given musical score. In this
sense, rather than giving rigid specifications, sheet music can be considered as a
guide for performing a piece of music leaving room for different interpretations.

As a first example, let us consider Symphony No. 5 in C minor by Ludwig van
Beethoven, which is one of the most popular and best-known compositions in clas-
sical music. It begins with a short musical idea, the famous “short-short-short-long”
motif, which is commonly referred to as the “fate motif” of Beethoven’s Fifth.
Figure 1.1 shows a sheet music representation of the first five measures in a piano
reduced version. In the following sections, we explain the meaning of the musical
symbols in more detail while introducing some music notations used throughout this
book. The Beethoven piece will serve as our running example.

1.1 Sheet Music Representations 3

1.1.1 Musical Notes and Pitches

In music, the term note is often used in a rather loose way and may refer to both
a musical symbol (when talking about score representations) as well as a pitched
sound (when talking about audio representations). In this section, we employ the
term to refer to musical symbols used in Western music notation. Each note has
several attributes that determine the relative duration and the pitch of a sound to be
performed by a musician. For example, in the case of a piano, the pitch of a note
tells a musician which key is to be pressed on the keyboard, and the duration of the
note determines how long this key is to be held. The notion of pitch is not strict and
refers to a perceptual property that allows a listener to order a sound on a frequency-
related scale. As we will discuss in Section 1.3 in more detail, playing a note on
an instrument results in a (more or less) periodic sound of a certain fundamental
frequency. This fundamental frequency is closely related to what is meant by the
pitch of a note. In the following discussion, we use the term “pitch” in an intuitive
way. It allows us to order pitched sounds from “lower” to “higher”—similarly to the
keys of a piano keyboard ordered from left to right.

Two notes with fundamental frequencies in a ratio equal to any power of two
(e.g., half, twice, or four times) are perceived as very similar. Because of that, all
notes with this kind of relation can be grouped under the same pitch class. This
observation also leads to the fundamental notion of an octave, which is defined
to be the interval between one musical note and another with half or double its
fundamental frequency. Using this definition, a pitch class is a set of all pitches or
notes that are an integer number of octaves apart.

In order to describe music using a finite number of symbols, one needs to dis-
cretize the space of all possible pitches. This leads to the notion of a musical scale,
which can be thought of as a finite set of representative pitches. Because of the close
octave relationship of pitches, scales are generally considered to span a single oc-
tave, with higher or lower octaves simply repeating the pattern. A musical scale can
then be specified by a division of the octave space into a certain number of scale
steps. The elements of a scale are often simply referred to as the notes of the scale
and are ordered according to their respective pitches.

In music history, many different scales have been suggested and used, and there
have been fierce discussions about the suitability of specific scales. The appropri-
ateness of a scale very much depends on the kind of music to be described, the
instruments used, the musical genre, or the cultural background. A scale that is
suited for representing Western piano music may not be suited for representing In-
dian sitar music. A scale used for Gregorian chant of the 10th century may not be
a good choice for describing experimental music of the 20th century. There is no
universally valid musical scale, and the choice of a musical scale necessarily goes
along with simplifications typically imposed by practical considerations.

In this book, we only consider the case of the twelve-tone equal-tempered scale,
where an octave is subdivided into twelve scale steps. The fundamental frequencies
of these steps are equally spaced on a logarithmic frequency axis (see Section 1.3.2).

4 1 Music Representations

(a)

(b)

C3

C♯3

D3

D♯3

E3 F3

F♯3

G3

G♯3

A3

A♯3

B3

D♭3 E♭3 G♭3 A♭3 B♭3

C4 D4 E4 F4 G4 A4 B4 C5

C♯4 D♯4 F♯4 G♯4 A♯4
D♭4 E♭4 G♭4 A♭4 B♭4

Fig. 1.2 (a) Section of piano keyboard with keys ranging from C3 to C5. (b) Corresponding notes
using Western music notation.

The difference between the fundamental frequencies of two subsequent scale steps
is also called a semitone, which is the smallest possible interval in this scale.

In the twelve-tone equal-tempered scale, there are twelve pitch classes. In West-
ern music notation, these pitch classes are denoted by combining a letter-name and
accidentals. Seven of the pitch classes (corresponding to C major) are denoted by
the letters C, D, E, F, G, A, B. These pitch classes correspond to the white keys of a
piano keyboard (see Figure 1.2). The remaining five pitch classes correspond to the
black keys of a piano keyboard and are denoted by a combination of a letter and an
accidental (], [). A sharp (]) raises a note by a semitone, and a flat ([) lowers it by
a semitone. The accidentals are written after the note name. For example, D] repre-
sents D-sharp and D[represents D-flat. In the equal-tempered scale, the remaining
five pitches can be either denoted by C], D], F], G], A] or by D[, E[, G[, A[, B[.
For example, C] and D[represent the same pitch class,1 even though from a musical
point of view one distinguishes between these two concepts.

To name the notes of the twelve-tone equal-tempered scale, in addition to indi-
cating the pitch class, one needs to provide an identifier for the octave. Following
the Scientific Pitch Notation, each note is specified by the pitch class name, fol-
lowed by a number that indicates the octave. The note A4 is determined to have a
fundamental frequency of 440 Hz and serves as a reference. The octave number
increases by one upon an ascension from a note with pitch class B to one with pitch
class C. For example, the note B4 is followed by the note C5. Similarly, the octave
number decreases by 1 upon a descent from a C to a B. The lowest note C0 in this
notation has a fundamental frequency in the region of 16 Hz, which is already below
what a human can acoustically perceive. Figure 1.2 shows the notes from C3 to C5
along with the corresponding keys of a piano keyboard.

Ordering all notes of the equal-tempered scale according to their pitches, one
obtains an equal-tempered chromatic scale, where all notes of the scale are equally
spaced. The term chromatic is derived from the Greek word chroma, meaning
color. In the music context, the term “chroma” closely relates to the twelve different

1 This phenomenon is also known as enharmonic equivalence.

1.1 Sheet Music Representations 5

A
C C♯

D

EFG

B

G♯

A♯

D♯

F♯

A2

A3

D♯3

D♯4

C
C♯/D♭

D

E

FG

A

B

D♯/E♭

F♯/G♭

G♯/A♭

A♯/B♭

(a) (b) Tone height

Fig. 1.3 (a) Chromatic circle. (b) Shepard’s helix of pitch [23].

Lines Spaces

1
2
3
4
5

G4
F3

(a) (b) (c)

MusicRepr_Score_Clef

Fig. 1.4 (a) Staff. (b) Staff with G-clef. (c) Staff with F-clef.

pitch classes. For example, the notes C2 and C5 both have the same chroma value C.
In other words, all notes that have the same chroma value belong to the same pitch
class. Recall that notes that belong to the same pitch class (or have the same chroma
value) are perceived as similar in a certain way. In contrast, notes that belong to
different pitch classes (or have different chroma values) are perceived as dissimilar.
This justifies the usage of the term “chroma” in the sense that notes with different
chroma values have a different “sound color.” The cyclic nature of chroma values is
illustrated by the chromatic circle as shown in Figure 1.3a. Extending this notion,
Shepard’s helix of pitch represents the linear pitch space as a helix wrapped around
a cylinder so that octave-related pitches lie along a single vertical line [23]. The
projection of the cylinder onto the horizontal plane yields the chromatic circle. The
factorization of a pitch into a chroma value and an octave number will play an
important role in this book. The chroma components of pitches can be used to yield
mid-level representations, which turn out to be a powerful tool for various music
analysis and retrieval applications.

1.1.2 Western Music Notation

Generally speaking, music notation refers to a system for graphically representing
music through symbols. The standard Western music notation is based on a staff,
which is a set of five horizontal lines and four spaces each representing a different

6 1 Music Representations

Fig. 1.5 (a) Musical score
of a C-major scale starting
with C4 and ending with C5.
(b) Key signature consisting
of three flats converting the
notes into a C-minor scale.

(a)

(b)

E♭ A♭ B♭ C5C4 D4 F4 G4

E4 A4 B4 C5C4 D4 F4 G4

4 4 4

musical pitch (see Figure 1.4a). Appropriate music symbols, depending upon the
intended effect, are placed on the staff according to their corresponding pitch or
function. Pitch is shown by placement of note symbols on the staff—sometimes
modified by accidentals. The higher the placement within a given staff, the higher
the pitch of the corresponding note. Furthermore, the duration is indicated by the
shapes of the note symbols as well as additional symbols such as dots and ties.

Notation is read from left to right. A staff generally begins with a clef symbol,
which indicates the position of one particular note on the staff. For example, by
convention, the treble clef (), also known as the G-clef, indicates that the second
line is the pitch G4 (see Figure 1.4b). Similarly, the bass clef (), also known as the
F-clef, indicates that the fourth line is the pitch F3 (see Figure 1.4c). There are also
further clef symbols and clef positions. The details are not important in this book.
However, one should keep in mind that the clef symbol, along with its position,
serves as a reference in relation to which the meaning of the notes positioned on
any line or space of the staff can be determined. Notes representing a pitch outside
the scope of the five-line staff can be described using ledger lines, which provide a
single note with additional lines and spaces (see, e.g., the C4 in Figure 1.5).

Following the clef, the key signature on a staff indicates the key of the piece by
specifying that certain notes are flat or sharp throughout the piece, unless otherwise
specified. For example, the notes shown in Figure 1.5a are C4, D4, E4, F4, G4, A4,
B4, C5 thus forming a C-major scale. Using the key signature consisting of three
flats as shown in Figure 1.5b, the notes become C4, D4, E[4, F4, G4, A[4, B[4, C5
thus forming a (natural) C-minor scale.

Music is typically organized into temporal units, referred to as beats. Repeating
sequences of stressed and unstressed beats, in turn, form higher temporal patterns,
which are related to what is called the rhythm of music and is expressed in terms
of the musical meter. A measure (or bar) is a segment of time defined by a given
number of beats. Dividing music into measures not only reflects it rhythmic nature,
but also provides regular reference points within it. In music notation, the temporal
structure of a piece is indicated by the time signature, which appears in a staff after
the key signature. Typically, a time signature consists of two numerals, one stacked
above the other. The lower numeral indicates the note duration that represents one
beat (given as a fraction with regard to a whole note), while the upper numeral
indicates how many such beats are in a measure. For example, the time signature

shown in Figure 1.6b indicates that a measure consists of six beats, where a beat
has the duration of an eighth note. In sheet music, two subsequent measures are

1.1 Sheet Music Representations 7

Fig. 1.6 Notation of time
signature. (a) Four quarter
notes per measure with up-
beat. (b) Six eighth notes per
measure.

(a)

(b)

measure (bar)

bar lines

Whole
note

Half
note

Quarter
note

Eighth
note

Sixteenth
note

(a) (b)

(c)

Flag

Note head

Whole
rest

Half
rest

Quarter
rest

Eighth
rest

Sixteenth
rest

Beam

Stem

Fig. 1.7 (a) Parts of a note. (b) Notation for different durations of notes. (c) Notation for different
durations of rests.

separated by a vertical line drawn through the staff, which are referred to as bar
lines.

After specifying the clef, the key signature, and the time signature, which all
reflect global characteristics of the piece and hold for the entire staff (if not redefined
explicitly), the actual notes are specified. As illustrated by Figure 1.7a, each note is
represented by a symbol that consists of a note head and possibly a stem and a flag.
Sometimes several notes are combined by a beam. As discussed above, a note’s
pitch is indicated by its placement on the staff and possibly by an accidental, where
the clef symbol serves as a reference pitch. The duration of a note is defined in a
relative fashion by means of its note value, which is indicated by the color or shape
of the note head, the presence or absence of a stem, and the presence or absence of
flags (see Figure 1.7b). The whole note is the reference value, and the other notes
are named in accordance. For example, a half note has half the length of a whole
note, a quarter note has a quarter the length of a whole note, and so on. For each
note value, there also exists a rest symbol of equivalent duration, which expresses
an interval of silence in a piece of music (see Figure 1.7c).

The musical onset times of the notes are specified in a relative fashion and fol-
low from the horizontal formation of the note symbols. Notes that are to be played
at the same time are given by vertically aligned musical symbols. In this case, dif-
ferent notes may share the same stem and flag as illustrated by Figure 1.1. Once the
physical duration of a beat is known, the physical onset times of the notes can be
derived from the relative timing. The duration of a beat is given by the tempo indica-
tion specified in beats per minute (BPM). For example, a specification of 120 BPM

8 1 Music Representations

Fig. 1.8 (a) Staff system
(grand staff) as used for piano.
(b) Staff system as used for
strings.

(a) (b)

Violin

Viola

Violoncello

crescendo diminuendo piano forte

legato staccato lyrics

Fig. 1.9 Musical score with various symbols used for indicating dynamics and articulation.

means that 120 beats are to be played within one minute. In the case that a beat
corresponds to a quarter note, 120 BPM implies that the duration of a quarter note
is half a second. Composers often suggest a tempo notated above the first staff line
of the piece. For example, in Figure 1.1, the suggested tempo is 108 BPM with a
beat being a half note (). However, when performing a piece, musicians often
significantly deviate from the suggested tempo.

To notate music that is played on a piano or is played by different musicians
on various instruments, one often uses several staves to notate the various musical
voices. A single vertical line drawn to the left of multiple staves creates a staff sys-
tem, which indicates that the music on all the staves is to be played simultaneously.
A bracket is an additional vertically aligned symbol joining staves. This symbol
shows groupings of instruments that function as a unit, such as the string section
of an orchestra (see Figure 1.8b). When music notated across different staves is in-
tended to be played at once by a single performer (usually a keyboard instrument or
the harp), a grand staff is created by joining the two staves by a brace. For example,
in the case of piano music, one has two staves, where the upper staff uses a treble
clef and the lower staff uses a bass clef (see Figure 1.8a). When playing the piano,
the upper staff is normally played with the right hand and the lower staff with the
left hand. This is the case with our Beethoven example shown in Figure 1.1.

Besides the aforementioned attributes, music notation may contain many more
instructions to the musician regarding matters such as tempo, dynamics, and ex-
pression. For example, the overall tempo and style of the piece may be specified by
textual notations such as Allegro con brio (fast with vigor and spirit) or Andante
con moto (moderate tempo with motion). Other directions such as accelerando
(gradually becoming faster) or ritardando (gradually becoming slower) refer to
local tempo deviations. Similarly, dynamics, which refers to the volume of a sound
or note, may be described by terms such as forte (loud), piano (soft), crescendo
(gradually becoming louder), or diminuendo (gradually becoming softer). For vo-

1.1 Sheet Music Representations 9

Fig. 1.10 Sheet music representation of the full orchestral score of the beginning of Beethoven’s
Fifth Symphony (from Breitkopf & Härtel, Leipzig, 1862).

cal music, lyrics may be written above or below staff lines. Other symbols such as
articulation marks are used to indicate how certain notes are to be played. For ex-
ample, a staccato mark (a dot placed above or below a note) signifies that a note is
to be played with shortened duration detached from the subsequent note, whereas a
legato mark (a curved line placed above or below a group of notes) indicates that
musical notes are played smoothly and connected (see Figure 1.9).

We close this section by coming back to our Beethoven example. In the piano
reduced version shown in Figure 1.1, the score shows a system with two staves,
where the upper staff for the right hand starts with a G-clef and the lower staff
for the left hand with an F-clef . Both staves are equipped with a key signature
(three flats [) and a time signature (two quarter-note beats per measure). The score
reveals that the first five measures consist of two “short-short-short-long” patterns,
where the second fate motif is played lower than the first fate motif. Further in-
structions are given in the form of additional symbols and textual notations. For
example, a fermata sign () indicates that the respective note duration should be

10 1 Music Representations

prolonged. The pedaling information () tells the musician to hold the sustain
pedal, which can have a significant impact on the sound. The overall tempo is in-
dicated by “Allegro con brio” and a metronome specification (108 half notes per
minute) (see Exercise 1.1). Finally, the symbol stands for “fortissimo” or “very
loud” and indicates the dynamics.

Let us now have a look at Figure 1.10, which shows the full orchestral score of
the beginning of Beethoven’s Fifth as used by conductors to direct rehearsals and
performances. The shown excerpt is the scanned version of an edition published
by Breitkop & Härtel in the year 1862. The various staves of the system specify
the music according to the different instruments lined up in a fixed order. From top
to bottom, the voices for the woodwinds (flute, oboe, clarinet, bassoon), the brass
(French horn, trumpet) and percussion (timpani), and the strings (violin, viola, cello,
double bass) are listed. For certain instruments such as the violin, there may be more
than one musical voice to be played, each specified by a separate staff (e.g., violin I
and violin II).

In this section, we have only scratched the surface of Western music notation.
Rather than giving a comprehensive overview, our goal was to build up some in-
tuition while introducing some basic terminology. Furthermore, we wanted to indi-
cate that music notation is far from being comprehensive. Many of the symbols only
give a vague description of how the notes should be played leaving room for artistic
freedom and creativity. Furthermore, as indicated by the full score and the piano
transcript of Beethoven’s Fifth, there may exist different score versions of the same
piece of music. For most parts of this book, it suffices to have a rough understanding
of musical concepts examined in this chapter. The aspects of pitch and timing will
be picked up again when discussing various kinds of derived music representations.

1.2 Symbolic Representations

As discussed at the beginning of this chapter, symbolic representations describe mu-
sic by means of entities that have an explicit musical meaning and, given in some
digital format, can be parsed by a computer. Any kind of digital data format may be
regarded as “symbolic” since it is based on a finite alphabet of letters or symbols.
For example, the pixels in a digital image file or the samples in a digital audio file
may be regarded as symbols or basic entities. However, considering these entities
individually, no musical meaning can be inferred. Therefore, neither scanned im-
ages nor digitized music recordings are regarded as being symbolic music formats.
Similarly, graphical shapes in vector graphics representations are not considered to
be musical entities as long as no musically meaningful specification of the shapes is
given. Still, there is a wide range of what may be considered as symbolic music. In
this section, we discuss some examples including piano-roll representations, MIDI
representations, and other symbolic formats that encode sheet music. Furthermore,
we touch on optical music recognition (OMR), which is the process of converting
digital scans of printed sheet music into symbolic representations.

1.2 Symbolic Representations 11

(a) (b)

Fig. 1.11 (a) Player piano. (b) Piano roll. (Reprinted by kind permission of the Institut für Musik-
wissenschaft der Goethe-Universität Frankfurt)

1.2.1 Piano-Roll Representations

We start with a symbolic representation having a history of more than one hun-
dred years. In the late 19th and early 20th century, self-playing pianos, so-called
player pianos (see Figure 1.11a), became quite popular with a peak in 1924, be-
fore being replaced by phonograph recordings. Player pianos contained pneumatic
mechanisms to automatically operate the key and pedal movements according to
the instructions specified by a prestored piano-roll medium. A piano roll is a con-
tinuous roll of paper with perforations (holes) punched into it. The perforations
represent note control data (see Figure 1.11b). The roll moves over a reading sys-
tem known as a tracker bar, and the playing cycle for each musical note is triggered
when a perforation crosses the bar and is read. Rolls for player pianos were gen-
erally made from recorded performances of musicians. This way, the playing of
many famous pianists and composers including Gustav Mahler, Edvard Grieg, Scott
Joplin, or George Gershwin is preserved on piano rolls. Typically, a pianist would sit
at a specially designed player piano, and the pitch and duration of any notes played
would be perforated into a blank roll, together with the duration of the sustain and
soft pedal. Player pianos can also recreate the dynamics of a pianist’s performance
by means of specially encoded control perforations placed towards the edges of a
music roll.

In the following, a piano-roll representation is understood to be a geometric
visualization of the note information as specified by a piano roll. The horizontal
axis of this two-dimensional representation encodes time, whereas the vertical axis
encodes pitch. Every note is described by an axis-parallel rectangle coding three
parameters. The first parameter is the onset time, given by the leftmost horizontal
coordinate of the rectangle, and the second is the pitch, given by the lower vertical
coordinate of the rectangle. Finally, the third parameter is the duration of the note,
encoded by the width of the rectangle.

12 1 Music Representations

Time

P
itc

h
(a)

(b)

Fig. 1.12 (a) Sheet music representation and (b) piano-roll representation of the beginning of
Fugue BWV 846 in C major by Johann Sebastian Bach. The four occurrences of the theme are
highlighted.

Figure 1.12b shows a piano-roll representation of the beginning of Fugue
BWV 846 in C major by Johann Sebastian Bach. For comparison, Figure 1.12a
shows the corresponding part in a sheet music representation. Generally, a fugue
is a compositional technique using two or more musical voices, built on a musical
theme (or subject) that is introduced at the beginning by one voice and then repeated
at different pitches in the other voices. Fugue BWV 846 consists of four voices. Al-
though played on a keyboard instrument, the four voices are referred to as soprano
(highest voice), alto (second highest voice), tenor (third highest voice), and bass
(lowest voice). The fugue starts with the main theme in the alto, which is then re-
peated in the soprano, the tenor, and finally in the bass. As shown by Figure 1.12, the
four occurrences of the theme are hard to detect in the sheet music representation,
but can be easily seen in the piano-roll representation, where each one corresponds
to a pattern shifted in the time–pitch plane.

While they are a considerable simplification of what is notated in sheet music,
piano-roll representations visually describe the most important attributes of musical
notes in an easy-to-understand way. Therefore, we will often use piano-roll repre-
sentations when describing and talking about symbolic music. Furthermore, as we
will see in later chapters, one can also derive similar representations from other mu-
sic encodings including MIDI and audio. In this sense, piano rolls can be seen as a
kind of mid-level representation on the basis of which semantic relations can be
established across various manifestations of music.

1.2 Symbolic Representations 13

1.2.2 MIDI Representations

The next symbolic representation we want to discuss is based on the MIDI stan-
dard, which stands for Musical Instrument Digital Interface. Although MIDI was
not originally developed to be used as a symbolic music format and imposes many
limitations on what can actually be represented, the importance of MIDI is due to
its widespread usage over the last three decades, and the abundance of MIDI data
freely available on the web. From a music encoding point of view, one needs to keep
in mind that the quality of available MIDI data is sometimes questionable.

MIDI was originally developed as an industry standard to get digital electronic
musical instruments from different manufacturers to work and play together. It was
the advent of MIDI in 1981–1983 that caused a rapid growth of the electronic musi-
cal instrument market. MIDI allows a musician to remotely and automatically con-
trol an electronic instrument or a digital synthesizer in real time. As an example,
let us consider a digital piano, where a musician pushes down a key of the piano
keyboard to start a sound. The intensity of the sound is controlled by the velocity
of the keystroke. Releasing the key stops the sound. Instead of physically pushing
and releasing the piano key, the musician may also trigger the instrument to produce
the same sound by transmitting suitable MIDI messages, which encode the note-on,
the velocity, the note-off, and other information. These MIDI messages may be au-
tomatically generated by some other electronic instrument or may be provided by
a computer. It is an important fact that MIDI does not represent musical sound di-
rectly, but only represents performance information encoding the instructions about
how an instrument has been played or how music is to be produced.

The original MIDI standard was later augmented to include the Standard MIDI
File (SMF) specification, which describes how MIDI data should be stored on a
computer. In the following, we denote SMF files simply as MIDI files or MIDI rep-
resentations. The SMF file format allows users to exchange MIDI data regardless
of the computer operating system and has provided a basis for an efficient internet-
wide distribution of music data, including numerous websites devoted to the sale
and exchange of music. A MIDI file contains a list of MIDI messages together with
timestamps, which are required to determine the timing of the messages. Further in-
formation (called meta messages) is relevant to software that processes MIDI files.

For our purposes, the most important MIDI messages are the note-on and the
note-off commands, which correspond to the start and the end of a note, respectively.
Each note-on and note-off message is, among others, equipped with a MIDI note
number, a value for the key velocity, a channel specification, as well as a timestamp.
The MIDI note number is an integer between 0 and 127 and encodes a note’s
pitch. Here, MIDI pitches are based on the equal-tempered scale as discussed in
Section 1.1.1. Similarly to an acoustic piano, where the 88 keys of the keyboard
correspond to the musical pitches A0 to C8, the MIDI note numbers encode, in
increasing order, the musical pitches C0 to G]9. For example, note C4 has the MIDI
note number 60, whereas the concert pitch A4 has the MIDI note number 69.

The key velocity is again an integer between 0 and 127, which controls the inten-
sity of the sound—in the case of a note-on event it determines the volume, whereas

14 1 Music Representations

Fig. 1.13 Various symbolic music representations of the first twelve notes of Beethoven’s Fifth.
(a) Sheet music representation. (b) MIDI representation (in a simplified, tabular form). (c) Piano-
roll representation.

in the case of a note-off event it controls the decay during the release phase of the
tone. The exact interpretation of the key velocity, however, depends on the respec-
tive instrument or synthesizer. The MIDI channel is an integer between 0 and 15.
Intuitively speaking, this number prompts the synthesizer to use the instrument that
has been previously assigned to the respective channel number. Note that each chan-
nel, in turn, supports polyphony, i.e., multiple simultaneous notes. Finally, the time
stamp is an integer value that represents how many clock pulses or ticks to wait
before the respective note-on or note-off command is executed. Before we comment
in more detail on the timing concept employed by MIDI, we illustrate the MIDI rep-
resentation by means of our Beethoven example. Figure 1.13b shows a (simplified
and tabular) MIDI encoding of the first fate motif corresponding to the twelve notes
of the score in Figure 1.13a. In this example, the notes of the right hand are assigned
to channel 1 and the notes of the left hand to channel 2. The notes specified by cor-
responding note-on and note-off events in the MIDI file can also be visualized by
a piano-roll representation (see Figure 1.13c). In case we are only interested in the
note events (and not the channel and velocity information), this is how we represent
MIDI information.

An important feature of the MIDI format is that it can handle musical as well as
physical onset times and note durations. Similarly to sheet music representations,
MIDI can express timing information in terms of musical entities rather than using
absolute time units such as microseconds. To this end, MIDI subdivides a quarter
note into basic time units referred to as clock pulses or ticks. The number of pulses
per quarter note (PPQN) is to be specified at the beginning, in the so-called header
of a MIDI file, and refers to all subsequent MIDI messages. A common value is

Time
(Ticks)

Message Channel Note
Number

Velocity

60 NOTE ON 1 67 100
0 NOTE ON 1 55 100
0 NOTE ON 2 43 100

55 NOTE OFF 1 67 0
0 NOTE OFF 1 55 0
0 NOTE OFF 2 43 0
5 NOTE ON 1 67 100
0 NOTE ON 1 55 100
0 NOTE ON 2 43 100

55 NOTE OFF 1 67 0
0 NOTE OFF 1 55 0
0 NOTE OFF 2 43 0
5 NOTE ON 1 67 100
0 NOTE ON 1 55 100
0 NOTE ON 2 43 100

55 NOTE OFF 1 67 0
0 NOTE OFF 1 55 0
0 NOTE OFF 2 43 0
5 NOTE ON 1 63 100
0 NOTE ON 2 51 100
0 NOTE ON 2 39 100

240 NOTE OFF 1 63 0
0 NOTE OFF 2 51 0
0 NOTE OFF 2 39 0

71/B4

67/G4

60/C4

55/G3

48/C3

43/G2

36/C2

(a) (b) (c)

0 240 480
Time (ticks)

1.2 Symbolic Representations 15

120 PPQN, which determines the resolution of the time stamps associated to note
events. As mentioned above, a time stamp indicates how many ticks to wait before
a certain MIDI message is executed, relative to the previous MIDI message. For
example, the first note-on message with MIDI note number 67 is executed after 60
ticks, corresponding to the eighth rest at the beginning of Beethoven’s Fifth. The
second and third note-on messages are executed at the same time as the first one,
encoded by the tick value zero. Then, after 55 ticks, MIDI note 67 is switched off
by the note-off message and so on.

Like the sheet music representation, MIDI also allows for encoding and storing
absolute timing information, however, at a much finer resolution level and in a more
flexible way. To this end, one can include additional tempo messages that specify
the number of microseconds per quarter note. From the tempo message, one can
compute the absolute duration of a tick. For example, having 600000 µs per quarter
note and 120 PPQN, each tick corresponds to 5000 µs. Furthermore, one can derive
from the tempo message the number of quarter notes played in a minute, which
yields the tempo measured in beats per minute (BPM). For example, the 600000 µs
per quarter note correspond to 100 BPM. While the number of pulses per quarter
note is fixed throughout a MIDI file, the absolute tempo information may be changed
by inserting a tempo message between any two note-on or other MIDI messages.
This makes it possible to account not only for global tempo information but also for
local tempo changes such as accelerandi, ritardandi, or fermate.

In this section, we have briefly touched on MIDI and its functionality. As noted
above, MIDI was originally designed to solve problems in electronic music per-
formance and is limited in terms of the musical aspects it represents. For example,
MIDI is not capable of distinguishing between a D]4 and an E[4, both of which have
the MIDI note number 63. Also, information on the representation of beams, stem
directions, or clefs is not encoded by MIDI. Furthermore, MIDI does not define a
note element explicitly; rather, notes are bounded by note-on and note-off events (or
note-on events with velocity 0). Rests are not represented at all and must be inferred
from the absence of notes.

1.2.3 Score Representations

Within the class of symbolic music representations, we want to distinguish one sub-
class we refer to as score representations. A representation from this subclass is
defined to yield explicit information about musical symbols such as the staff system,
clefs, time signatures, notes, rests, accidentals, and dynamics. In this sense, score
representations are, compared with MIDI representations, much closer to what is
actually shown in sheet music. For example, in a score representation, the notes D]4
and E[4 would be distinguishable, and the musical onset times are specified. How-
ever, a score representation may not contain a description of the final layout and
the particular shape of the musical symbols. The process of generating or render-
ing visually pleasing sheet music representations from score representations is an

16 1 Music Representations

Fig. 1.14 Different sheet music representations corresponding to the same score representation
of the beginning of Prelude BWV 846 (C major) by Johann Sebastian Bach. From top left to
bottom right, a computer-generated, a handwritten, and two traditionally engraved representations
are shown.

art in itself. In former days, the art of drawing high-quality music notation for me-
chanical reproduction was called music engraving. Nowadays, computer software
or scorewriters have been designed for the purpose of writing, editing, and printing
music, though only a few produce results comparable to high-quality traditional en-
graving. Figure 1.14 illustrates this by showing different sheet music representations
corresponding to the same score.

In this book, we do not give an overview of existing symbolic score formats.
Instead, as an example, we discuss some aspects of MusicXML, which has been
developed to serve as a universal format for storing music files and sharing them
between different music notation applications. Following the general XML (Exten-
sible Markup Language) paradigm, MusicXML is a textual data format that defines
a set of rules for encoding documents in a way that is both human and machine
readable. For example, Figure 1.15 shows how a note E[4 is encoded. In the Mu-
sicXML encoding of the half note E[4, the tags <note> and </note> mark the
beginning and the end of a MusicXML note element. The pitch element, delimited
by the tags <pitch> and </pitch>, consists of a pitch class element E (denot-
ing the letter name of the pitch), the alter element -1 (changing E to E flat), and
the octave element 4 (fixing the octave). Thus, the resulting note is an E[4. The ele-
ment <duration>2</duration> encodes the duration of the note measured in
quarter notes. Finally, the element <type>half</type> tells us how this note
is actually depicted in the rendered sheet music.

There are various ways to generate digital score representations. For example,
one could manually input the score information in a format such as MusicXML.
This, however, is a tedious and error-prone procedure. Music notation software or
scorewriters support users in the task of writing and editing digitized sheet music.
Such software allows a user to conveniently input and modify note objects by stan-
dard computer input devices or electronic keyboards. In the next section, we discuss
another way for generating score representations from scanned images of printed
sheet music, which is, in a sense, the inverse of a rendering process.

1.2 Symbolic Representations 17

Fig. 1.15 Textual description
in the MusicXML format of
a half note E[4. The clef, key
signature, and time signature
are defined at the beginning
of the MusicXML file.

1.2.4 Optical Music Recognition

Sheet music is widely available, and many people are trained to use music nota-
tion for studying and playing music. For centuries, music has been documented,
transmitted, and distributed in the form of printed sheet music. Music libraries and
archives possess huge collections comprising millions of sheet music books, which
are now successively being transferred into the digital domain using scanning de-
vices. A digital image resulting from such a scanning process consists of a number
of rows and columns of pixels, each pixel encoding the color at a specific point of
the scanned page. In other words, a digital image of a sheet music page is by itself
a mere accumulation of colored (often black and white) pixels without expressing
any deeper musical meaning.

The process of converting digital images of sheet music into symbolic music
representations such as MIDI or MusicXML is commonly referred to as optical
music recognition (OMR).2 During this process, the image pixels have to be suit-
ably grouped and interpreted in terms of musical symbols. This process is not easy,
because of the many ways musical symbols may be engraved into sheet music. As
discussed in the last section and illustrated by Figure 1.14, there may be substantial
variations in the layout of the symbols and the staff system. Symbols do not always
look exactly the same across different editions and may also be degraded in quality
by artifacts of the printing or scanning process. Furthermore, musical symbols often
intersect with staff lines, and several symbols may be stacked and combined (e.g.,
several notes sharing the same stem or combined with a beam). As a result, musical
scores and the interrelations between musical symbols can become quite complex.

Correctly recognizing and interpreting the meaning of all the musical symbols is
easy for a trained human, but hard for a computer. Figure 1.16a shows some exam-
ples of typical errors produced by automated OMR procedures. Some of these errors
such as missing notes, flags or beams are of local nature, while other errors, such as
an incorrectly detected key signature, affect all notes of a staff line. Even worse is
the presence of a transposing instrument, whose music is notated at a pitch differ-
ent from the pitch that is actually played (see Figure 1.16c). For example, a clarinet
in B[is a transposed instrument, where a C in a score sounds like a B[. Missing this
information, which is encoded in textual form in front of a staff line, leads to a mis-

2 The equivalent in the text domain is known as optical character recognition (OCR) with the
goal of converting scanned images of printed text into machine-encoded text.

18 1 Music Representations

Fig. 1.16 (a) Examples of typical OMR errors (top: original score; bottom: OMR result). (b) Jump
directives and repeats often not detected by OMR. (c) Transposed instruments often not interpreted
correctly by OMR.

representation of all the notes’ pitches. A score may also contain repeat signs with
alternative endings or textual jump directives as shown in Figure 1.16b. This infor-
mation is required to derive the correct sequence of measures to be performed by a
musician. Consequently, an error in detecting jump directives may lead to structural
misinterpretations of the score. Another problem is that even small artifacts in the
scan may lead to confusion with musical symbols, e.g., a small dot being mixed up
with a staccato mark. Even though current OMR software is reported to yield highly
accurate results, manual postprocessing still seems necessary to obtain high-quality
symbolic representation.

1.3 Audio Representation

Music is much more than a symbolic description of the notes to be played. Music
is about making, creating, and shaping sounds. When musicians start delving into
the music, the playing instructions recede into the background. The musical meter
turns into a rhythmic flow, the different note objects melt into harmonic sounds and
smooth melody lines, and the instruments communicate with each other. Musicians
get emotionally involved with their music and react to it by continuously adapting
tempo, dynamics, and articulation. Instead of playing mechanically, they speed up at
some points and slow down at others in order to shape a piece of music. Similarly,

1.3 Audio Representation 19

they continuously change the sound intensity and stress certain notes. All of this
results in a unique performance or an interpretation of the piece of music.

From a physical point of view, performing music results in sounds or acoustic
waves, which are transmitted through the air as pressure oscillations. The term au-
dio is used to refer to the transmission, reception, or reproduction of sounds that lie
within the limits of human hearing. An audio signal is a representation of sound. As
opposed to sheet music and symbolic representations, an audio representation en-
codes all information needed to reproduce an acoustic realization of a piece of mu-
sic. This includes the temporal, dynamic, and tonal microdeviations that make up the
specific performance style of a musician. However, in an audio representation, note
parameters such as onset times, pitches or note durations are not given explicitly.
This makes the analysis and comparison of music signals a difficult task, in partic-
ular with regard to polyphonic music, where different instruments and voices are
superimposed upon each other. Furthermore, the perception of sounds does not only
depend on objective properties of the acoustic wave, but also on subjective criteria
as a result of the complex processing a sound undergoes by both the human ear and
the brain. The study of subjective human sound perception is called psychoacous-
tics—for further details see [5, 17]. In this section, after having a look at waves and
waveforms, we summarize the most important properties of audio representations:
frequency and pitch, dynamics, intensity and loudness, as well as timbre.

1.3.1 Waves and Waveforms

A sound is generated by a vibrating object such as the vocal cords of a singer, the
string and soundboard of a violin, the diaphragm of a kettledrum, or the prongs of a
tuning fork. These vibrations cause displacements and oscillations of air molecules,
resulting in local regions of compression and rarefaction. The alternating pressure
travels through the air as a wave, from its source to a listener or a microphone. At
its destination, it can then be perceived as sound by the human or converted into an
electrical signal by a microphone (see Figure 1.17). In the case of a listener, the outer
part of the ear captures the sound wave and passes it to the eardrum, which in turn
starts vibrating according to the pressure oscillations. After further processing in the
middle and inner ear, the sound wave is transformed into nerve impulses, which are
finally sent to and interpreted by the brain. Graphically, the change in air pressure
at a certain location can be represented by a pressure–time plot, also referred to as
the waveform of the sound. The waveform shows the deviation of the air pressure
from the average air pressure. Figure 1.18 shows a waveform representation of a
recording of Beethoven’s Fifth Symphony.

In general terms, a (mechanical) wave can be described as an oscillation that
travels through space, where energy is transferred from one point to another. When
a wave travels through some medium, the substance of this medium is temporarily
deformed. As described above, sound waves propagate via air molecules colliding
with their neighbors. After air molecules collide, they bounce away from each other

20 1 Music Representations

Compression Rarefaction

Pressure–time plot at a specific location

Rarefaction

Average
air pressure

Time

A
ir

pr
es

su
re

de
vi

at
io

n

Compression

Fig. 1.17 Vibrating tuning fork resulting in a back and forth vibration of the surrounding air
particles. The pressure oscillation propagates as a longitudinal wave through the air. The waveform
shows the deviation over time of the air pressure from the average air pressure at a specific location
(as indicated by the microphone).

Time (seconds)

Time (seconds)

A
m

pl
itu

de
A

m
pl

itu
de

(a)

(b)

Fig. 1.18 (a) Waveform of the first eight seconds of a recording of the first five measures of
Beethoven’s Fifth as indicated by Figure 1.1. (b) Enlargement of the section between 7.3 and 7.8
seconds.

(a restoring force). This keeps the molecules from continuing to travel in the direc-
tion of the wave. Instead, they oscillate around almost fixed locations. A general
wave can be transverse or longitudinal, depending on the direction of its oscilla-
tion. Transverse waves occur when a disturbance creates oscillations perpendicular
(at right angles) to the propagation (the direction of energy transfer). Longitudinal
waves occur when the oscillations are parallel to the direction of propagation. Ac-
cording to this definition, a vibration in a string is an example of a transverse wave,
whereas a sound wave has the form of a longitudinal wave. A transverse wave can

1.3 Audio Representation 21

A
ir

pr
es

su
re

de
vi

at
io

n

Time (seconds)

PeriodAmplitude

Average air
pressure0.25 0.5 0.75 10

Fig. 1.19 Waveform of a sinusoid with a frequency of 4 Hz.

in fact generate a longitudinal wave and visa versa. An instrument’s vibrating string,
which oscillates between the two fixed end points, gradually emits its energy to the
air, generating a longitudinal sound wave. If this wave, in turn, hits an eardrum,
again a transverse wave is generated.

1.3.2 Frequency and Pitch

We have seen that a sound wave can be visually represented by a waveform. If the
points of high and low air pressure repeat in an alternating and regular fashion, the
resulting waveform is called periodic. In this case, the period of the wave is defined
as the time required to complete a cycle. The frequency, measured in Hertz (Hz),
is the reciprocal of the period. Figure 1.19 shows a sinusoid, which is the simplest
type of periodic waveform. In this example, the waveform has a period of a quarter
second and hence a frequency of 4 Hz. A sinusoid is completely specified by its
frequency, its amplitude (the peak deviation of the sinusoid from its mean), and
its phase (determining where in its cycle the sinusoid is at time zero). These three
attributes of a sinusoid will become important when analyzing general audio signals
(see Section 2.3).

The higher the frequency of a sinusoidal wave, the higher it sounds. The audible
frequency range for humans is between about 20 Hz and 20,000 Hz (20 kHz). Other
species have different hearing ranges. For example, the top end of a dog’s hearing
range is about 45 kHz, a cat’s is 64 kHz, while bats can even detect frequencies
beyond 100 kHz. This is why one can use a dog whistle, which emits ultrasonic
sound beyond the human hearing capability, to train and to command animals with-
out disturbing nearby people.

The sinusoid can be considered the prototype of an acoustic realization of a musi-
cal note. Sometimes the sound resulting from a sinusoid is called a harmonic sound
or pure tone. As indicated in Section 1.1.1, the notion of frequency is closely related
to what determines the pitch of a sound. In general, pitch is a subjective attribute
of sound. In the case of complex sound mixtures its relation to frequency can be
especially ambiguous. In the case of pure tones, however, the relation between fre-
quency and pitch is clear. For example, a sinusoid having a frequency of 440 Hz
corresponds to the pitch A4. This particular pitch is known as concert pitch, and

22 1 Music Representations

it is used as the reference pitch to which a group of musical instruments are tuned
for a performance. Since a slight change in frequency does not necessarily lead to a
perceived change, one usually associates an entire range of frequencies with a single
pitch.

As mentioned in Section 1.1.1, two frequencies are perceived as similar if they
differ by a power of two, which has motivated the notion of an octave. For example,
the pitches A3 (220 Hz), A4 (440 Hz), and A5 (880 Hz) sound similar. Furthermore,
the perceived distance between the pitches A3 and A4 is the same as the perceived
distance between the pitches A4 and A5. In other words, the human perception
of pitch is logarithmic in nature. This perceptual property has already been used
in Section 1.1.1 when defining the equal-tempered scale that subdivides an octave
into twelve semitones based on a logarithmic frequency axis. More formally, using
the MIDI note numbers introduced in Section 1.2.2, we can associate to each pitch
p ∈ [0 : 127] a center frequency Fpitch(p) (measured in Hz) by

Fpitch(p) = 2(p−69)/12 ·440. (1.1)

Indeed, this formula yields the frequency Fpitch(p) = 440 for the reference pitch
p = 69 (A4). Increasing the pitch number by 12 (an octave) leads to an increase by
a factor of two, i.e., Fpitch(p+ 12) = 2 ·Fpitch(p). Similarly, it is easy to show that
the frequency ratio

Fpitch(p+1)/Fpitch(p) = 21/12 ≈ 1.059463 (1.2)

of two subsequent pitches p+1 and p is constant (see Exercise 1.6). In other words,
multiplying the center frequency of an arbitrary pitch by this constant, the pitch
is raised by a semitone. Generalizing the notion of semitones, the cent denotes a
logarithmic unit of measure used for musical intervals. By definition, an octave is
divided into 1200 cents, so that each semitone corresponds to 100 cents. Again the
ratio of frequencies one cent apart is constant, yielding the value

21/1200 ≈ 1.0005777895. (1.3)

The difference in cents between two frequencies, say ω1 and ω2, is given by

log2

(
ω1

ω2

)
·1200. (1.4)

The interval of one cent is much too small to be heard between successive notes.
The threshold of what is perceptible, also called the just noticeable difference,
varies from person to person and depends on other aspects such as the timbre
(Section 1.3.4) and the musical context. As a rule of thumb, normal adults are able
to recognize pitch differences as small as 25 cents very reliably, with differences of
10 cents being recognizable only by trained listeners.

Real-world sounds are far from being a simple pure tone with a well-defined fre-
quency. Playing a single note on an instrument may result in a complex sound that

1.3 Audio Representation 23

contains a mixture of different frequencies changing over time. Intuitively, such a
musical tone can be described as a superposition of pure tones or sinusoids, each
with its own frequency of vibration, amplitude, and phase. A partial is any of the
sinusoids by which a musical tone is described. The frequency of the lowest partial
present is called the fundamental frequency of the sound. The pitch of a musical
tone is usually determined by the fundamental frequency, which is the one cre-
ated by vibration over the full length of a string or air column of an instrument.
A harmonic (or a harmonic partial) is a partial that is an integer multiple of the
fundamental frequency. Partials, as well as harmonics, are counted upwards along
the frequency axis. This convention implies that the fundamental frequency is the
first partial, as well as the first harmonic of a musical tone. The term inharmonic-
ity is used to denote a measure of the deviation of a partial from the closest ideal
harmonic, typically measured in cents for each partial. Finally, another term that
is often used in music theory is the overtone, which is any partial except the low-
est. This can lead to numbering confusion when comparing overtones with partials,
since the first overtone is the second partial.

Most pitched instruments are designed to have partials that are close to being
harmonics, with very low inharmonicity. Thus, for simplicity, one often speaks of
the partials in those instruments’ sounds as harmonics, even if they have some inhar-
monicity. Other pitched instruments, especially certain percussion instruments, such
as the marimba, vibraphone, bells, and kettledrums (timpani), contain nonharmonic
partials, yet give the ear a good sense of pitch. Nonpitched, or indefinite-pitched,
instruments, such as cymbals, gongs, or tam-tams, make sounds rich in inharmonic
partials. As an example of a harmonic sound, Figure 1.18 shows in its lower part
an enlargement of the waveform of the section between 7.3 and 7.8 seconds, which
reveals the almost periodic nature of the sound signal. The waveform within these
500 ms corresponds to the sound of a decaying D, which is played by the orchestra
in unison in the fourth and fifth measure (see Figure 1.1). Indeed, one counts 37 pe-
riods within this section, corresponding to a frequency of 74 Hz—the fundamental
frequency of D2.

We close this section on frequency and pitch by looking at harmonics in terms
of musical pitches. Let ω denote the center frequency of a musical note, e.g.,
ω = 65.4 Hz for C2 (having MIDI note number p = 36). The harmonic series is
an arithmetic series ω , 2ω , 3ω , 4ω , . . ., where the difference between consecutive
harmonics is constant and equal to the fundamental. Since our perception of pitch
is logarithmic in frequency, we perceive higher harmonics as “closer together” than
lower ones. On the other hand, the octave series is a geometric progression ω , 2ω ,
4ω , 8ω , . . ., and we hear these distances as “the same” in the sense of musical in-
terval. Consequently, in terms of what we hear, each octave in the harmonic series
is divided into increasingly “smaller” and more numerous intervals. In our example,
the second harmonic (2ω) sounds like a C3 (one octave higher), the third harmonic
(3ω) like a G3 (a so-called perfect fifth above C3), and the fourth harmonic (4ω)
like a C4 (two octaves higher). Starting with a C2, Figure 1.20 shows for each of
the first 16 harmonics the musical note that is closest in terms of the difference be-
tween the harmonic’s frequency and the center frequency of the note as specified

24 1 Music Representations

1 2 3 4 5 6 7 8 9 1110 1612 151413
F♯C2 C3 G3 C4 E4 G4 C5 D5 5E5 C6G5 B5B♭4 A♭5 B♭5

0 0 +2 0 -14 +2 -31 0 +4 -49-14 0+2 -12-31+41

Fig. 1.20 Illustration of the harmonic series in music notation. Starting with the note C2, for each
of the first 16 harmonics the closest musical note is shown. On top, the difference (in cents) between
a harmonic’s frequency and the center frequency of the closest note is shown.

in (1.1) (see also Exercise 1.9). For example, the frequency of the third harmonic is
just 2 cents above the center frequency of G3, which is much smaller than the just
noticeable difference. In contrast, the frequency of the 11th harmonic is 49 cents be-
low the center frequency of the note F]5, which is nearly half a semitone and clearly
audible. If the harmonics are transposed into the span of one octave (by suitably
multiplying or dividing the frequencies by a power of two), they approximate cer-
tain notes of the twelve-tone equal-tempered scale. Some of the twelve scale steps
are approximated well such as the ones for C (1st harmonic), G (3rd harmonic), or D
(9th harmonic), whereas others are problematic such as F] (11th harmonic), A[(13th

harmonic), or B[(7th harmonic).

1.3.3 Dynamics, Intensity, and Loudness

As mentioned in Section 1.1.2, a further important property of music concerns the
dynamics, a general term that is used to refer to the volume of a sound as well
as to the musical symbols that indicate the volume. For example, a piano (notated
as) indicates that notes are to be played softly, whereas a forte (notated as)
indicates that notes are to be played loudly. There are many more indicators for de-
scribing the dynamics of notes in sheet music. On the audio side, dynamics correlate
with a perceptual property called loudness, by which sounds can be ordered on a
scale extending from quiet to loud. Similarly to the relation between pitch and fre-
quency, loudness is a subjective measure which correlates to objective measures of
sound intensity and sound power. However, loudness also depends on other sound
characteristics such as duration or frequency. We will come back to some of these
subjective phenomena after having a closer look at the objective measures.

From a physical point of view, it is not easy to strictly define the intensity or
power of a sound. In the following, we only give some intuitive explanations. In gen-
eral, power is the rate at which energy is transferred, used, or transformed. Power
is measured in units of watt (W), which is defined as one joule per second. For ex-
ample, the rate at which a light bulb transforms electrical energy into heat and light
is measured in watts—the more wattage, the more power, or equivalently the more
electrical energy is used per unit time. Similarly, sound power expresses how much

1.3 Audio Representation 25

Table 1.1 Typical intensity
values given in W/m2 (in-
tensity), in decibels (intensity
level), and by a factor com-
pared with the TOH.

Source Intensity Intensity level × TOH
Threshold of hearing (TOH) 10-12 0 dB 1
Whisper 10-10 20 dB 102

Pianissimo 10-8 40 dB 104

Normal conversation 10-6 60 dB 106

Fortissimo 10-2 100 dB 1010

Threshold of pain 10 130 dB 1013

Jet take-off 102 140 dB 1014

Instant perforation of eardrum 104 160 dB 1016

energy per unit time is emitted by a sound source passing in all directions through
the air. The term sound intensity is then used to denote the sound power per unit
area.

In practice, sound power and sound intensity can show extremely small values
that are still relevant for human listeners. For example, the threshold of hearing
(TOH), which is the minimum sound intensity of a pure tone a human can hear, is
as small as

ITOH := 10−12 W/m2. (1.5)

Furthermore, the range of intensities a human can perceive is extremely large with
ITOP := 10 W/m2 being the threshold of pain (TOP). For practical reasons, one
switches to a logarithmic scale to express power and intensity. More precisely, one
uses a decibel (dB) scale, which is a logarithmic unit expressing the ratio between
two values. Typically, one of the values serves as a reference, such as ITOH in the
case of sound intensity. Then the intensity measured in dB is defined as

dB(I) := 10 · log10

(
I

ITOH

)
. (1.6)

From this definition, one obtains dB(ITOH) = 0, and a doubling of the intensity
results in an increase of roughly 3 dB:

dB(2 · I) = 10 · log10(2)+dB(I)≈ 3+dB(I). (1.7)

When specifying intensity values in terms of decibels, one also speaks of intensity
levels. Table 1.1 shows some typical intensity values given in W/m2 as well as in
decibels for some sound sources and dynamics indicators. For example, notes being
played pianissimo (“very softly”) typically result in intensity levels around 40 dB,
whereas notes being played fortissimo (“very loudly”) can reach levels up to 100 dB.

We now come back to the concept of loudness, which is the perceptual correlate
to sound intensity [6, 17]. As said before, the loudness is affected by a number of
factors. First of all, the same sound may be perceived to have different loudness de-
pending on the individual. In particular, age is one factor that affects the human ear’s
response to a sound. Also, the duration of the sound influences perception, since the
human auditory system averages the effect of sound intensity over an interval up
to a second. Therefore, a human has the feeling that a sound lasting for 200 ms

26 1 Music Representations

Fig. 1.21 Equal loudness
contours (see [6, 17]).

In
te

ns
ity

 (d
B

)

Frequency (Hz)
20 100 1000 10000

20

0

40

60

80

100

120

0 phon

20 phon

40 phon

60 phon

80 phon

100 phon

Threshold of hearing

Threshold of pain

120 phon

is louder than a similar sound only lasting 50 ms. Furthermore, two sounds with
the same intensity but different frequencies are generally not perceived to have the
same loudness. Humans with normal hearing are most sensitive to sounds around 2
to 4 kHz, with sensitivity declining for lower as well as higher frequencies. Based
on psychoacoustic experiments, the perceived loudness of pure tones depending on
the frequency has been determined and expressed by the unit phon. Figure 1.21
shows equal loudness contours. Each contour line specifies for a fixed loudness
given in phons the sound intensities over a (logarithmically spaced) frequency axis.
The unit of a phon is normalized with respect to the frequency of 1,000 Hz, where
a phon value equals the intensity level in dB. The contour for 0 phon shows how the
threshold of hearing depends on frequency.

1.3.4 Timbre

Besides pitch, loudness, and duration, there is another fundamental aspect of sound
referred to as timbre or tone color. Timbre allows a listener to distinguish the mu-
sical tone of a violin, an oboe, or a trumpet even if the tone is played at the same
pitch and with the same loudness. As with pitch and loudness, timbre is a percep-
tual property of sound [22]. However, timbre is very hard to grasp, and because of its
vagueness, it is often described in an indirect way: timbre is the attribute whereby
a listener can judge two sounds as dissimilar using any criterion other than pitch,
loudness, and duration. For example, timbre information allows us to tell apart the
sounds produced by the oboe and the violin, even when the pitch and loudness of the
sounds are identical [19]. The sound of a musical instrument may be described with
such words as bright, dark, warm, harsh, and other terms. Researchers have tried to
approach timbre by looking at correlations to more objective sound characteristics
such as the temporal and spectral evolution, the absence or presence of tonal and

1.3 Audio Representation 27

(a) (b)

A D S R

Key pressed Key released

A
m

pl
itu

de

Lower envelope

Upper envelope

Time

A
m

pl
itu

de

Fig. 1.22 (a) Envelope of a signal. (b) Schematic view of an ADSR envelope.

noise-like components, or the energy distribution across the partials of a tone. In the
following, we take a closer look at some of these characteristics.

When striking a piano key, the resulting sound is much more than a superposition
of pure sinusoids that correspond to the fundamental frequency and its overtones.
Playing a single note already produces a complex sound mixture with characteristics
that may constantly change over time, containing periodic as well as nonperiodic
components. At the beginning of a musical tone, there is often a sudden increase
of energy. In this short phase, the attack phase of the tone, the sound builds up. It
contains a high degree of nonperiodic components that are spread over the entire
range of frequencies, a property that is also inherent to noise. In acoustics, such a
noise-like short-duration sound of high amplitude occurring at the beginning of a
waveform is also called a transient. In the case of a piano, striking a key triggers an
entire chain of mechanical actions before a hammer hits one or several strings. All
these actions, starting with the finger touching the key and ending with the hammer
hitting the strings, produce mechanical noise that merges with the acoustic effects of
the strings’ excitation. After the attack phase, the sound of a musical tone stabilizes
(decay phase) and reaches a steady phase with a (more or less) periodic pattern.
This third phase, which is also called the sustain phase, makes up most of the du-
ration of a musical tone, where the energy remains more or less constant or slightly
decreases as is the case with a piano sound. In the final phase of a musical tone, also
called the release phase, the musical tone fades away. For a piano, this phase starts
as soon as the finger leaves the key and the damper stops the strings’ vibrations.

Intuitively, the envelope of a waveform can be regarded to be a smooth curve
outlining its extremes in amplitude (see Figure 1.22a). The different phases as de-
scribed above have a strong influence on the shape of the envelope of a musical tone.
In sound synthesis, the envelope of a signal to be generated is often described by
a model called ADSR, which consists of an attack (A), decay (D), sustain (S), and
release (R) phase (see Figure 1.22b). The relative durations and the amplitudes of
the four phases have a significant impact on how the synthesized tone will sound.

The ADSR model is a strong simplification and only yields a meaningful approx-
imation for amplitude envelopes of tones that are generated by certain instruments.
For example, the musical tone shown in Figure 1.23a, which is the note C4 played
on a piano, has an envelope that is similar to the one suggested by the ADSR model.

28 1 Music Representations

(a) (b)

Time (seconds) Time (seconds)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

A D S R A S R

Fig. 1.23 Waveform, amplitude envelope, and spectrogram representation for different instruments
playing the same note C4 (261.6 Hz). (a) Piano. (b) Violin.

After a sharp attack (when the hammer hits the string) and a stabilizing decay, the
tone continuously fades out. In the case of a piano sound, the decrease in sound in-
tensity is very slow as long as the damper does not touch the string. Therefore, one
can regard this phase as a kind of sustain phase. When the piano key is released and
the damper stops the string’s vibration, the sound quickly comes to an end. For other
instruments, however, the amplitude may evolve in a completely different fashion.
This is illustrated by Figure 1.23b, which shows an envelope for the note C4 played
on a violin. First of all, since the tone is played softly with a gradual increase in
volume, the attack phase is spread out in time. Furthermore, there does not seem
to be any decay phase and the subsequent sustain phase is not steady; instead, the
amplitude envelope oscillates in a regular fashion. The release phase starts when the
violinist stops exciting the string with the bow. The sound then quickly fades out.

For our violin example, one can observe periodic variations in amplitude. This
phenomenon, known as tremolo, is generated by certain playing styles used for
string or wind instruments. The effect of tremolo often goes along with vibrato,
which is a musical effect consisting of a regular, pulsating change of frequency.
Besides string music, vibrato is mainly used by human singers to add expression.
In technical terms, tremolo corresponds to an amplitude modulation, whereas vi-
brato corresponds to a frequency modulation. Both tremolo and vibrato depend on
two parameters: the extent of the variation and the rate at which the amplitude or
frequency is varied. Even though tremolo and vibrato are simply local changes in
intensity and frequency, they do not necessarily evoke a perceived change in loud-

1.3 Audio Representation 29

ness or pitch of the overall musical tone. Rather, they are features that influence the
timbre of a musical tone.

Perhaps the most important and well-known property for characterizing timbre
is the existence of certain partials and their relative strengths [19]. Recall from
Section 1.3.2 that partials are the dominant frequencies of a musical tone with the
lowest partial being the fundamental frequency. The inharmonicity expresses the
extent to which a partial deviates from the closest ideal harmonic. For harmonic
sounds such as a musical tone with a clearly perceivable pitch, most of the partials
are close to being harmonics. However, not all partials need to occur with the same
strength, as we will see in a moment.

The composition of a sound in terms of its partials can be visualized by a so-
called spectrogram, which shows the intensity of the occurring frequencies over
time. For a detailed introduction on such time–frequency representations refer to
Section 2.5. Figure 1.23a shows at the bottom a spectrogram for the note C4 played
on a piano, where the intensity is reflected by the shade of gray (the darker the
more intense). Both the fundamental frequency of the note (261.6 Hz) as well as its
harmonics (integer multiples of 261.6 Hz) are visible as horizontal lines. The decay
of the musical tone is reflected by a corresponding decay in each of the partials.
Most of the tone’s energy is contained in the lower partials, and the energy tends to
be lower for the higher partials. Such a distribution is typical for many instruments.

For string instruments, sounds tend to have a rich spectrum of partials, where
lots of energy may also be contained in the upper harmonics (see Figure 1.23b).
This figure also reveals the vibrato as a regular oscillation in the time–frequency
plane. Certain classes of wind instruments including the clarinet (so-called closed-
pipe wind instruments) produce a very characteristic spectrum of partials. For a
cylindrical wind instrument that is open at one end, but closed at the other (at the
mouthpiece), one can show that the even harmonics do not show up. In other words,
most energy is contained in the odd harmonics ω0, 3ω0, 5ω0, . . ., with ω0 denoting
the fundamental frequency. For a musical tone played on a bassoon, the fundamental
frequency often contains much less energy compared with the higher partials. In
contrast, for a tuning fork, most energy is contained in the fundamental frequency,
resulting in a sound that is close to a synthesized sinusoid. Instruments such as bells
have a very complex spectrum with lots of inharmonicities, which often evokes in
the listener the feeling of a bell being out-of-tune. For stringed instruments, one
can often measure substantial deviations between higher partials and the theoretical
harmonics. The less elastic a string is (that is, the shorter, thicker, higher tension or
stiffer it is), the more inharmonicity it may exhibit. This particularly holds for the
piano, where such inharmonicities have a crucial influence on the timbre.

With this discussion, we want to indicate that timbre is a multidimensional phe-
nomenon that is hard to measure. It is the irregularities and variations that make a
musical tone sound interesting and that give it a particular and natural quality.

30 1 Music Representations

Audio
Representations

Symbolic
Representations

Sheet Music
Representations

Acoustic Domain Visual Domain

Transcription

Synthesis
Performance

Rendering

OMR

Musical TimePhysical Time

Fig. 1.24 Illustration of three classes of music representation and their relations.

1.4 Summary and Further Readings

In this chapter, we looked at three different classes of music representations while
introducing some musical and technical terminology that is used throughout this
book. We use the term sheet music to refer to visual representations of a musical
score either given in printed form or encoded digitally in some image format. The
term symbolic stands for any kind of symbolic representation where the entities
have an explicit musical meaning. Finally, the term audio is used to denote music
recordings given in the form of acoustic waveforms. The boundaries between these
classes are not clear. In particular, as illustrated by Figure 1.24, symbolic represen-
tations may be close to both sheet music as well as audio representations [24]. On
the one hand, symbolic representations such as MusicXML are used for rendering
sheet music, where the shape of the note objects and their arrangement on a page
are determined. As we have seen, optical music recognition (OMR) is the inverse
process with the goal of transforming sheet music into a symbolic representation.
On the other hand, symbolic representations such as MIDI are used for synthesizing
audio, where the note objects are transformed into musical tones and real sounds.
The inverse process is known as music transcription, where the objective is to
extract note events, key signature, time signature, instrumentation, and other score
parameters from a given music recording [2, 13].

In a sense, symbolic representations can be regarded as the link between the
visual (or graphical) domain accommodating sheet music representations and the
acoustic (or physical) domain accommodating audio representations [24]. In the
first case, timing is specified in terms of the shape and the relative arrangement of
the musical symbols and is typically given in musical units such as measures or
beats. In the latter case, timing is specified in physical units such as seconds. For
music recordings, there are often no sharp note onsets or offsets (think of a soft
onset for a note played on a violin or a gradual fade-out) and the specification of
the beginning and the end of musical events becomes an ill-defined problem. For a
general discussion of alignment procedures to bridge the gap between sheet music
and audio representations, we refer to [24].

Of course, any kind of categorization of music representations goes along with
an oversimplification. Our categorization is far from being comprehensive. We have
seen that, when describing musical attributes such as pitch, loudness, and timbre,

1.4 Summary and Further Readings 31

human perception is a crucial factor. Therefore, besides the acoustic and visual
domain, Babbitt [1] considers an additional auditory domain. In his taxonomy, a
graphemic note (the blob on the page) corresponds in meaning with the (auditory)
percept of the note. From a philosophical point of view, as argued by Wiggins et
al. [25], music is actually something abstract and intangible which does not have
real existence in itself. In this sense, all of the domain-specific representations are
aspects of music, but none of them is music, individually. Mazzola [15] considers
music to be the universe of all different perspectives one may assume. For a psy-
chologically based approach to music along with the expectations and emotions it
evokes, we refer to the book by Huron [12]. Running the risk of oversimplification,
we adopt in this book a more technically oriented view of music processing and
leave out perhaps the most important aspect of music: the human mind.

Sheet music has a history of hundreds of years, and the basic concepts we have
presented can be found in introductory textbooks on music notation [9], and we also
refer to Wikipedia as a rich source of useful information on this topic. Because of
significant digitization efforts, sheet music is now widely available in digital for-
mats. In particular for Western classical music, scanned versions of musical edi-
tions out of copyright are now freely accessible on the world wide web. One promi-
nent example is the Petrucci Music Library, which is a virtual library of public-
domain music scores organized and created by the International Music Score Li-
brary Project (IMSLP).3 For symbolic music, many formats have been suggested in
the literature to represent sheet music in a digital, machine-readable form. A com-
prehensive account on MIDI4 and its use with electronic instruments and sequencers
can be found in [11]. Extensions and challenges of the MIDI format are summarized
in [14]. In the book edited by Selfridge-Field [21], one not only finds an introduc-
tion to the MIDI format but also a detailed overview and description of symbolic
formats up to the year 1997. Since then, many new formats have been proposed and
developed, including both open and well-documented formats, as well as proprietary
formats that are bound to specific software packages. The MusicXML5 format [8]
and the MEI6 format developed by the community-driven Music Encoding Initia-
tive [10], are only two prominent examples. Similarly, a multitude of commercial
and noncommercial OMR software systems have been developed. While many of
these systems only work for printed sheet music, others also address the much harder
problem of recognizing handwritten scores. In recent decades, significant research
efforts have been directed towards improving, comparing, and evaluating OMR sys-
tems [3]. Even though substantial improvements could be achieved, also thanks to
recent data-driven techniques based on deep learning, OMR can still not be regarded
as a solved problem. For a comprehensive overview of OMR literature, we refer to
the Bibliography on Optical Music Recognition.7

3 http://imslp.org
4 http://www.midi.org
5 http://www.musicxml.com
6 https://music-encoding.org/
7 https://omr-research.github.io/

http://imslp.org
http://www.midi.org
http://www.musicxml.com
https://music-encoding.org/
https://omr-research.github.io/

32 1 Music Representations

There are many excellent books on the foundations of the acoustical properties of
music and audio signals. For example, the classic book by Fletcher and Rossing [7]
gives a detailed account on musical sound waves and the physics behind their gener-
ation by musical instruments. The book by Fastl and Zwicker [5] as well as the one
by Moore [17] give deeper insights into the field of auditory perception and psycho-
acoustics for general audio signals. A source of inspiration for this chapter has been
the book by Sethares [22] on tuning, timbre, spectrum, and scale, which provides in-
teresting insights (along with sound examples) on how these concepts are related. A
signal-processing-oriented approach to the concepts of timbre and instrumentation
can be found in [19].

We finally want to remark that deep learning techniques have opened up new
avenues for various tasks related to processing, converting, and linking music
representations. For example, this holds for the task of OMR when a sufficient
amount of well-annotated training data is available [3]. Similarly, major progress
could be achieved in music transcription using deep learning techniques [2]. Data-
driven techniques are also increasingly used for cross-modal retrieval and alignment
tasks [4, 18]. However, music turns out to be a hard domain due to the complexity
and diversity of music, which would require vast amounts of data to efficiently cover
all these aspects. For example, OMR is still a hard problem for handwritten music
or sheet music with a dense and complex layout. Similarly, while automated meth-
ods for music transcription work well for piano recordings of high acoustic quality
(where one has a lot of training data), the automatic conversion of complex orches-
tral or choir performances into score notation—a task Mozart was capable of after
listening to a polyphonic choral piece only once—is still a largely open problem
despite decades of research.

1.5 FMP Notebooks

In this chapter, we have seen that musical information can be represented in many
different ways, including sheet music, symbolic, and audio representations. In Part
1 of the FMP notebooks [20], which is closely associated with this first chapter, we
offer visual and acoustic material as well as Python code examples to study musical
and acoustic properties of music. We now briefly go through the FMP notebooks of
Part 1 one by one while indicating how these can be used for possible experiments
and exercises.

We start with the FMP Notebook Sheet Music Representations, where we take
up the example of Beethoven’s Fifth Symphony. Besides the piano reduced ver-
sion (see Figure 1.1) and a full orchestral score (see Figure 1.10), we also show a
computer-generated sheet music representation. The comparison of these versions
is instructive, since it demonstrates the huge differences one may have between dif-
ferent layouts, also indicating that the generation of visually pleasing sheet music
representations from score representations is an art in itself. Besides the visual data,
the notebook also provides different recordings of this passage, including a synthe-

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_SheetMusic.html

1.5 FMP Notebooks 33

sized orchestral version created from a full score and a recording by the Vienna
Philharmonic orchestra conducted by Herbert von Karajan (1946). The comparison
between the mechanical and performed versions shows that one requires additional
knowledge not directly specified in the sheet music to make the music come alive.
In the data folder of Part 1 (data/C1), one finds additional representations of our
Beethoven example including Sibelius files8 of a piano, orchestral, and string quar-
tet version. These files, in turn, have been exported in symbolic formats (.mid,
.sib, .xml), image formats (.png), and audio formats (.wav, .mp3). Such sys-
tematically generated data is well suited for hands-on exercises that allow teachers
and students to experiment within a controlled setting. This is also one reason why
we will take up the Beethoven (and other) examples again and again throughout the
FMP notebooks.

In the FMP Notebook Musical Notes and Pitches, we deepen the concepts as
introduced in Section 1.1.1. We show how to generate musical sounds using a sim-
ple sinusoidal model, which can then be used to obtain acoustic representations of
concepts such as octaves, pitch classes, and musical scales. In the FMP Notebook
Chroma and Shepard Tones, we generate Shepard tones, which are weighted super-
positions of sine waves separated by octaves. These tones can be used to sonify the
chromatic circle and Shepard’s helix of pitch (see Figure 1.3). Extending the notion
of the twelve-tone discrete chromatic circle, one can generate a pitch-continuous
version, where the Shepard tones ascend (or descend) continuously. Originally cre-
ated by the French composer Jean-Claude Risset, this continuous version is also
known as the Shepard–Risset glissando. To implement such a glissando, one re-
quires a chirp function with an exponential (rather than a linear) frequency increase.
Experimenting with Shepard tones and glissandi not only leads to interesting sound
effects that may be used even for musical compositions, but also deepens the un-
derstanding of concepts such as frequency, pitch, and the role of overtones. The
concept of Shepard tones can also be used to obtain a sonification of chroma fea-
tures as introduced in Section 3.1.2 (see also the FMP Notebook Sonification of
Part B).

In the subsequent FMP notebooks, we discuss Python code for parsing, convert-
ing, and visualizing various symbolic music formats. In particular, for students who
are not familiar with Western music notation, the piano-roll representation yields
an easy-to-understand geometric encoding of symbolic music. Motivated by tra-
ditional piano rolls, the horizontal axis of this two-dimensional representation en-
codes time, whereas the vertical axis encodes pitch. The notes are visualized as
axis-parallel rectangles, where the color of the rectangles can be used to encode ad-
ditional note parameters such as velocity or instrumentation. A piano-roll represen-
tation can be easily stored in a comma-separated values (.csv) file, where each line
encodes a note event specified by parameters such as start, duration, pitch,
velocity, and an additional label (e.g., encoding the instrumentation). This
slim and explicit format, even though representing symbolic music in a simplified
way, is used throughout most parts of the FMP notebooks, where the focus is on

8 These files have a .sib extension and are generated by the Sibelius music notation software
application.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_MusicalNotesPitches.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_ChromaShepard.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S1_ChromaShepard.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://www.avid.com/sibelius

34 1 Music Representations

Fig. 1.25 Visualization of a piano-roll representation generated by the FMP Notebook Symbolic
Format: CSV. The figure shows the beginning of the four-voice Fugue BWV 846 in C major by
Johann Sebastian Bach.

the processing of waveform-based audio signals. In the FMP Notebook Symbolic
Format: CSV, we introduce the Python library pandas, which provides easy-to-
use data structures and data analysis tools for parsing and modifying text files [16].
Furthermore, we introduce a function for visualizing a piano-roll representation as
shown in Figure 1.25. The implementation of such visualization functions is an in-
structive exercise for students to get familiar with fundamental musical concepts as
well as to gain experience in standard concepts of Python programming.

As discussed in Section 1.2 , there are numerous formats for encoding symbolic
music. Describing and handling these formats goes beyond this textbook. The good
news is that there are various Python software tools for parsing, manipulating, syn-
thesizing, and storing music files. In the FMP Notebook Symbolic Format: MIDI,
we introduce the Python package PrettyMIDI for handling MIDI files. This pack-
age allows for transforming the (often cryptic) MIDI messages into a list of easy-
to-understand note events, which may then be stored using simple CSV files. Sim-
ilarly, in the FMP Notebook Symbolic Format: MusicXML, we indicate how the
Python package music21 can be used for parsing and handling symbolic music
given as a MusicXML file. This package is a toolkit for computer-aided musicol-
ogy which allows users to study large datasets of symbolically encoded music, to
generate musical examples, to teach fundamentals of music theory, to edit musical
notation, to study music and the brain, and to compose music. Finally, in the FMP
Notebook Symbolic Format: Rendering, we discuss some software tools for ren-
dering sheet music from a given symbolic music representation. By mentioning a
few open-source tools, our FMP notebooks only scratch the surface on symbolic
music processing and are intended to yield entry points to this area.

The next FMP notebooks cover aspects of audio representations and their prop-
erties (Section 1.3). In the FMP Notebook Waves and Waveforms, we provide
functions for simulating transverse and longitudinal waves as well as combinations
thereof. Furthermore, one finds Python code for generating videos of these sim-
ulations, thus indicating how the FMP notebooks can be used for generating ed-
ucational material (see Figure 1.26). In the FMP Notebook Frequency and Pitch,

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_CSV.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_CSV.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_CSV.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_CSV.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_MIDI.html
https://github.com/craffel/pretty-midi
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_MusicXML.html
http://web.mit.edu/music21/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_SymbolicRendering.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_SymbolicRendering.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Waveform.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_FrequencyPitch.html

1.5 FMP Notebooks 35

Fig. 1.26 Videos generated
by the FMP Notebook Waves
and Waveforms to illustrate
the concepts of transverse,
longitudinal, and combined
waves.

we discuss some experiments on the audible frequency range and the just-noticeable
difference in pitch perception. In the FMP Notebook Harmonic Series, one finds an
acoustic comparison of the musical scale based on harmonics with the twelve-tone
equal-tempered scale (see Figure 1.20). Similarly, the FMP Notebook Pythagorean
Tuning considers the Pythagorean scale (see Exercise 1.10). In both of these note-
books, we again use simple sinusoidal models for the sonification. The FMP Note-
book Dynamics, Intensity, and Loudness yields an implementation for visualiz-
ing the sound power level over time for our Beethoven example. Furthermore, we
present an experiment using a chirp signal to illustrate the relation between signal
power and perceived loudness (see Figure 1.21). In the FMP Notebook Timbre,
we introduce simple yet instructive experiments that are also suitable as program-
ming exercises. First, we give an example on how one may compute an envelope
of a waveform by applying a windowed maximum filter (see Figure 1.22a). Then,
we provide some implementations for generating synthetic sinusoidal signals with
vibrato (frequency modulations) and tremolo (amplitude modulations). Finally, we
demonstrate that the perception of the perceived pitch depends not only on the fun-
damental frequency but also on its higher harmonics and their relationships. In par-
ticular, we show that a human may perceive the pitch of a tone even if the funda-
mental frequency associated to this pitch is completely missing.

In summary, in the FMP notebooks of Part 1, we provide basic Python code ex-
amples for parsing and visualizing various music representations. Furthermore, we
consider tangible music examples and suggest various experiments for deepening
understanding of musical and acoustic properties of audio signals including aspects
such as frequency, pitch, dynamics, and timbre. At the same time, the material is
also intended for developing Python programming skills as required in subsequent
FMP notebooks.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Waveform.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Waveform.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_HarmonicSeries.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1E10_PythagoreanTuning.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1E10_PythagoreanTuning.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Dynamics.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Dynamics.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Timbre.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html

36 1 Music Representations

References

1. M. BABBITT, The use of computers in musicological research, Perspectives of New Music, 3
(1965), pp. 74–83.

2. E. BENETOS, S. DIXON, Z. DUAN, AND S. EWERT, Automatic music transcription: An
overview, IEEE Signal Processing Magazine, 36 (2019), pp. 20–30.

3. J. CALVO-ZARAGOZA, J. HAJIČ JR., AND A. PACHA, Understanding optical music recog-
nition, ACM Computing Surveys, 53 (2020).

4. M. DORFER, J. HAJIČ JR., A. ARZT, H. FROSTEL, AND G. WIDMER, Learning audio-sheet
music correspondences for cross-modal retrieval and piece identification, Transactions of the
International Society for Music Information (TISMIR), 1 (2018), pp. 22–31.

5. H. FASTL AND E. ZWICKER, Psychoacoustics: Facts and Models, Springer, 3rd ed., 2007.
6. H. FLETCHER AND W. A. MUNSON, Loudness, its definition, measurement and calculation,

Journal of the Acoustic Society of America, 5 (1933), pp. 82–108.
7. N. H. FLETCHER AND T. D. ROSSING, The Physics of Musical Instruments, Springer, 1991.
8. M. GOOD, Lessons from the adoption of MusicXML as an interchange standard, in Proceed-

ings of XML, Boston, Massachusetts, USA, 2006.
9. E. GOULD, Behind Bars: The Definitive Guide to Music Notation, Alfred Music, 2011.

10. A. HANKINSON, P. ROLAND, AND I. FUJINAGA, The music encoding initiative as a
document-encoding framework, in Proceedings of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), Miami, Florida, USA, October 2011, pp. 293–298.

11. D. M. HUBER, The MIDI Manual, Focal Press, 3rd ed., 2006.
12. D. B. HURON, Sweet Anticipation: Music and the Psychology of Expectation, The MIT Press,

2006.
13. A. P. KLAPURI AND M. DAVY, eds., Signal Processing Methods for Music Transcription,

Springer, New York, 2006.
14. P. D. LEHRMAN, MIDI 2.0: Promises and challenges, in Proceedings of Music Encoding

Conference (MEC), Tufts University, USA, 2020.
15. G. MAZZOLA, The Topos of Music, Birkhäuser, 2002.
16. W. MCKINNEY, Data structures for statistical computing in python, in Proceedings Python

in Science Conference, S. van der Walt and J. Millman, eds., 2010, pp. 56–61.
17. B. C. MOORE, An Introduction to the Psychology of Hearing, Brill Academic Publisher,

6th ed., 2013.
18. M. MÜLLER, A. ARZT, S. BALKE, M. DORFER, AND G. WIDMER, Cross-modal music

retrieval and applications: An overview of key methodologies, IEEE Signal Processing Maga-
zine, 36 (2019), pp. 52–62.

19. M. MÜLLER AND A. KLAPURI, Music signal processing, in Image, Video Processing and
Analysis, Hardware, Audio, Acoustic and Speech Processing, vol. 4 of Library in Signal Pro-
cessing, Academic Press, 2013, ch. 27, pp. 713–756.

20. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

21. E. SELFRIDGE-FIELD, ed., Beyond MIDI: The Handbook of Musical Codes, MIT Press, Cam-
bridge, Massachusetts, USA, 1997.

22. W. A. SETHARES, Tuning, Timbre, Spectrum, Scale, Springer, London, 1998.
23. R. N. SHEPARD, Circularity in judgments of relative pitch, Journal of the Acoustic Society of

America, 36 (1964), pp. 2346–2353.
24. V. THOMAS, C. FREMEREY, M. MÜLLER, AND M. CLAUSEN, Linking sheet music and au-

dio – challenges and new approaches, in Multimodal Music Processing, M. Müller, M. Goto,
and M. Schedl, eds., vol. 3 of Dagstuhl Follow-Ups, Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2012, pp. 1–22.

25. G. WIGGINS, D. MÜLLENSIEFEN, AND M. PEARCE, On the non-existence of music: Why
music theory is a figment of the imagination, Musicae Scientiae, 5 (2010), pp. 231–255.

Exercises 37

Exercises

Exercise 1.1. Assume that a pianist exactly follows the specifications given in the Beethoven ex-
ample from Figure 1.1. Determine the duration (in milliseconds) of a quarter note and a measure,
respectively.

Exercise 1.2. Specify the MIDI representation (in tabular form) and sketch the piano-roll rep-
resentation (similar to Figure 1.13) of the following sheet music representations. Assume that a
quarter note corresponds to 120 ticks. Set the velocity to a value of 100 for all active note events.
Furthermore, assign the notes of the G-clef to channel 1 and the notes of the F-clef to channel 2.

(a) (b)

[Hint: In this exercise, we assume that the reader has some basic knowledge of Western music
notation.]

Exercise 1.3. In this exercise, a melody is regarded as a linear succession of musical notes. A
transposition of a given melody moves all notes up or down in pitch by a constant interval. Fur-
thermore, an inversion of a melody turns all the intervals upside-down. For instance, if the original
melody rises by three semitones, the inverted melody falls by three semitones. Finally, the retro-
grade of a melody is the reverse, where the notes are played from back to front. Let us consider
the following two melodies given in piano-roll representation:

(a)

71/B4

67/G4

69/A4

(b)

71/B4

67/G4

69/A4

Specify for each of the two melodies the piano-roll representation of the transposition by two
semitones upwards, the inversion (keeping the first note fixed), the retrograde, and the retrograde
of the inversion. Furthermore, regarding melodies only up to pitch classes (by ignoring octave
information), determine the number of different melodies that can be generated by successively
applying an arbitrary number of transpositions, inversions, and retrogrades.

Exercise 1.4. The speed of sound is the distance traveled per unit of time by a sound wave prop-
agating through an elastic medium. Look up the speed of sound in air. Assume that a concert hall
has a length of 50 meters. How long does it take for a sound wave to travel from the front to the
back of the hall?

Exercise 1.5. Using (1.1), compute the center frequencies for all notes of the C-major scale C4,
D4, E4, F4, G4, A4, B4, C5 and for all notes of the C-minor scale C4, D4, E[4, F4, G4, A[4, B[4,
C5 (see also Figure 1.5).

Exercise 1.6. Using (1.1), compute the frequency ratio Fpitch(p+ 1)/Fpitch(p) of two subsequent
pitches p+ 1 and p (see (1.2)). How does the frequency Fpitch(p+ k) for some k ∈ Z relate to
Fpitch(p)? Furthermore, derive a formula for the distance (in semitones) for two arbitrary frequen-
cies ω1 and ω2.

38 1 Music Representations

Exercise 1.7. Let us have a look at Figure 1.18b, which shows a waveform obtained from a record-
ing of Beethoven’s Fifth. Estimate the fundamental frequency of the sound played by counting the
number of oscillation cycles in the section between 7.3 and 7.8 seconds. Furthermore, determine
the musical note that has a center frequency closest to the estimated fundamental frequency. Com-
pare the result with the sheet music representation of Figure 1.1.

Exercise 1.8. Assume an equal-tempered scale that consists of 17 tones per octave and a reference
pitch p = 100 having a center frequency of 1000 Hz. Specify a formula similar to (1.1), which
yields the center frequencies for the pitches p ∈ [0 : 255]. In particular, determine the center fre-
quency for the pitches p = 83, p = 66, and p = 49 in this scale. What is the difference (in cents)
between two subsequent pitches in this scale?

Exercise 1.9. Write a small computer program to calculate the differences (in cents) between the
first 16 harmonics of the note C2 and the center frequencies of the closest notes of the twelve-tone
equal-tempered scale (see Figure 1.20). What are the corresponding differences when considering
the harmonics of another note such as B[4?

Exercise 1.10. Pythagorean tuning (named after the ancient Greek mathematician and philoso-
pher Pythagoras) is a system of musical tuning in which the frequency ratios of all intervals are
based on the ratio 3 : 2 as found in the harmonic series. This ratio is also known as the perfect
fifth. A Pythagorean scale is a scale constructed from only pure perfect fifths (3 : 2) and octaves
(2 : 1). To obtain such a scale, start with the center frequency of the note C2, successively multiply
the frequency value by a factor of 3/2, and if necessary, divide it by two such that all frequency
values lie between C2 and C3. Repeat this procedure to produce 13 frequency values (including
the one for C2). As in Exercise 1.9, determine for each such frequency value the closest note of
the equal-tempered scale (along with the difference in cents). The last of the produced frequency
values is closest to the fundamental frequency of the note C3. The difference between the produced
frequency and the center frequency of C3 is known as the Pythagorean comma, which indicates
the degree of inconsistency when trying to define a twelve-tone scale using only perfect fifths.

Exercise 1.11. Investigate the typical frequency range as well as pitch range of musical instru-
ments (including the human voice) and graphically display this information as indicated by the
following figure. For example, consider the ranges of standard instruments as used in Western or-
chestras including the piano, human voice (bass, tenor, alto, soprano), double bass, cello, viola,
violin, bass guitar, guitar, trumpet. Similarly, consider instruments you are familiar with.

C0 C1 C2 C3 C4 C5 C6 C7 C8

Human voice

Piano

Bass

Tenor

Alto

Soprano

Double bass

Viola

Cello

Violin

Bass guitar

Guitar

Trumpet

20 30 44 70 100 150 200 300 440 700 1000 1500 2000 3000 4400 Hz

Exercise 1.12. Suppose that the intensity of a sound has been increased by 17 dB as defined in
(1.6). Determine the factor by which the sound intensity has been increased.

Chapter 2
Fourier Analysis of Signals

As we have seen in the last chapter, music signals are generally complex sound
mixtures that consist of a multitude of different sound components. Because of this
complexity, the extraction of musically relevant information from a waveform con-
stitutes a difficult problem. A first step in better understanding a given signal is to
decompose it into building blocks that are more accessible for the subsequent pro-
cessing steps. In the case that these building blocks consist of sinusoidal functions,
such a process is also called Fourier analysis. Sinusoidal functions are special in
the sense that they possess an explicit physical meaning in terms of frequency. As
a consequence, the resulting decomposition unfolds the frequency spectrum of the
signal—similar to a prism that can be used to break light up into its constituent
spectral colors. The Fourier transform converts a signal that depends on time into
a representation that depends on frequency. Being one of the most important tools
in signal processing, we will encounter the Fourier transform in a variety of music
processing tasks.

In Section 2.1, we introduce the main ideas of the Fourier transform and sum-
marize the most important facts that are needed for understanding the subsequent
chapters of the book. Furthermore, we introduce the required mathematical notions.
A good understanding of Section 2.1 is essential for the various music processing
tasks to be discussed. In Section 2.2 to Section 2.5, we cover the Fourier transform
in greater mathematical depth. The reader who is mainly interested in the music
processing applications may skip these more technical sections on a first reading.

In Section 2.2, we take a closer look at signals and discuss their properties from
a more abstract perspective. In particular, we consider two classes of signals: ana-
log signals that give us the right physical interpretation and digital signals that
are needed for actual digital processing by computers. The different signal classes
lead to different versions of the Fourier transform, which we introduce with math-

39© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_2

https://doi.org/10.1007/978-3-030-69808-9_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_2&domain=pdf

40 2 Fourier Analysis of Signals

ematical rigor along with intuitive explanations and numerous illustrating exam-
ples (Section 2.3). In particular, we explain how the different versions are interre-
lated and how they can be approximated by means of the discrete Fourier transform
(DFT). The DFT can be computed efficiently by means of the fast Fourier transform
(FFT), which will be discussed in Section 2.4. Finally, we introduce the short-time
Fourier transform (STFT), which is a local variant of the Fourier transform yielding
a time–frequency representation of a signal (Section 2.5). By presenting this mate-
rial from a different perspective as typically encountered in an engineering course,
we hope to refine and sharpen the understanding of these important and beautiful
concepts.

2.1 The Fourier Transform in a Nutshell

Let us start with an audio signal that represents the sound of some music. For ex-
ample, let us analyze the sound of a single note played on a piano (see Figure 2.1a).
How can we find out which note has actually been played? Recall from Section 1.3.2
that the pitch of a musical tone is closely related to its fundamental frequency, the
frequency of the lowest partial of the sound. Therefore, we need to determine the
frequency content, the main periodic oscillations of the signal. Let us zoom into
the signal considering only a 10-ms section (see Figure 2.1b). The figure shows that
the signal behaves in a nearly periodic way within this section. In particular, one
can observe three main crests of a sinusoidal-like oscillation (see also Figure 2.1c).
Having approximately three oscillation cycles within a 10-ms section means that the
signal contains a frequency component of roughly 300 Hz.

The main idea of Fourier analysis is to compare the signal with sinusoids of
various1 frequencies ω ∈R (measured in Hz). Each such sinusoid or pure tone may
be thought of as a prototype oscillation. As a result, we obtain for each considered
frequency parameter ω ∈ R a magnitude coefficient dω ∈ R≥0 (along with a phase
coefficient ϕω ∈ R, the role of which is explained later). In the case that the coef-
ficient dω is large, there is a high similarity between the signal and the sinusoid of
frequency ω , and the signal contains a periodic oscillation at that frequency (see
Figure 2.1c). In the case that dω is small, the signal does not contain a periodic
component at that frequency (see Figure 2.1d).

Let us plot the coefficients dω over the various frequency parameters ω ∈R. This
yields a graph as shown in Figure 2.1f. In this graph, the highest value is assumed for
the frequency parameter ω = 262 Hz. By (1.1), this is roughly the center frequency
of the pitch p = 60 or the note C4. Indeed, this is exactly the note played in our
piano example. Furthermore, as illustrated by Figure 2.1e, one can also observe a

1 In the following, we also consider negative frequencies for mathematical reasons without explain-
ing this concept in more detail. In our musical context, negative frequencies are redundant (having
the same interpretation as positive frequencies), but simplify the mathematical formulation of the
Fourier transform.

2.1 The Fourier Transform in a Nutshell 41

Time (seconds)

(f)

Time (seconds)
Frequency (Hz)

M
ag

ni
tu

de
(a) (b)

(c)

(d)

(e)

Time (seconds)

(c)

(e)

(d)

Fig. 2.1 (a) Waveform of a note C4 (261.6 Hz) played on a piano. (b) Zoom into a 10-ms section
starting at time position t = 1 sec. (c–e) Comparison of the waveform with sinusoids of various
frequencies ω . (f) Magnitude coefficients dω in dependence on the frequency ω .

high similarity between the signal and the sinusoid of frequency ω = 523 Hz. This
is roughly the frequency for the second partial of the tone C4.

With this example, we have already seen the main idea behind the Fourier trans-
form. The Fourier transform breaks up a signal into its frequency components. For
each frequency ω ∈ R, the Fourier transforms yields a coefficient dω (and a phase
ϕω) that tells us to which extent the given signal matches a sinusoidal prototype
oscillation of that frequency.

One important property of the Fourier transform is that the original signal can be
reconstructed from the coefficients dω (along with the coefficients ϕω). To this end,
one basically superimposes the sinusoids of all possible frequencies, each weighted
by the respective coefficient dω (and shifted by ϕω). This weighted superposition is
also called the Fourier representation of the original signal. The original signal and
the Fourier transform contain the same amount of information. This information,
however, is represented in different ways. While the signal displays the information
across time, the Fourier transform displays the information across frequency. As
put by Hubbard [9], the signal tells us when certain notes are played in time, but
hides the information about frequencies. In contrast, the Fourier transform of music
displays which notes (frequencies) are played, but hides the information about when
the notes are played.

In the following sections, we take a more detailed look at the Fourier transform
and some of its main properties.

42 2 Fourier Analysis of Signals

2.1.1 Fourier Transform for Analog Signals

In Section 1.3.1, we saw that a signal or sound wave yields a function that assigns
to each point in time the deviation of the air pressure from the average air pressure
at a specific location. Let us consider the case of an analog signal, where both the
time as well as the amplitude (or deviation) are continuous, real-valued parameters.
In this case, a signal can be modeled as a function f : R→R, which assigns to each
time point t ∈R an amplitude value f (t) ∈R. Plotting the amplitude over time, one
obtains a graph of this function that corresponds to the waveform of the signal (see
Figure 1.17).

The term function may need some explanation. In mathematics, a function yields
a relation between a set of input elements and a set of output elements, where each
input element is related to exactly one output element. For example, a function can
be a polynomial f : R→ R that assigns for each input element t ∈ R an output
element f (t) = t2 ∈ R. At this point, we want to emphasize that one needs to dif-
ferentiate between a function f and its output element f (t) (also referred to as the
value) at a particular input element t (also referred to as the argument). In other
words, mathematicians think of a function f in an abstract way, where the symbol
or physical meaning of the argument does not matter. As opposed to this, engineers
often like to emphasize the meaning of the input argument and loosely speak of a
function f (t), even though this is strictly speaking an output value. In this book, we
assume the viewpoint of a mathematician.

2.1.1.1 The Role of the Phase

After this side note, let us turn towards the spectral analysis of a given analog signal
f : R→R. As explained in our introductory example, we compare the signal f with
prototype oscillations that are given in the form of sinusoids. In Section 1.3.2 and
Figure 1.19, we have already encountered such sinusoidal signals. Mathematically,
a sinusoid is a function g : R→ R defined by

g(t) := Asin(2π(ωt−ϕ)) (2.1)

for t ∈ R. The parameter A corresponds to the amplitude, the parameter ω to the
frequency (measured in Hz), and the parameter ϕ to the phase (measured in nor-
malized radians with 1 corresponding to an angle of 360◦). In Fourier analysis, we
consider prototype oscillations that are normalized with regard to their power (av-
erage energy) by setting A =

√
2. Thus for each frequency parameter ω and phase

parameter ϕ we obtain a sinusoid cosω,ϕ : R→ R given by

cosω,ϕ(t) :=
√

2cos(2π(ωt−ϕ)) (2.2)

2.1 The Fourier Transform in a Nutshell 43

(a)

Time (seconds)

(b)

(c)

(d)

(e)

Phase

M
ag

ni
tu

de (c)

(d)

(b)

0

0.5

025

-0.5

-0.25

0 10.50.25 0.75

(a)

Fig. 2.2 (a–d) Waveform and different sinusoids of a fixed frequency ω = 262 Hz but different
phases ϕ ∈ {0.05,0.24,0.45,0.6}. (e) Values that express the degree of similarity between the
waveform and the four different sinusoids.

for t ∈ R. Since the cosine function is periodic, the parameters ϕ and ϕ + k for
integers k ∈ Z yield the same function. Therefore, the phase parameter only needs
to be considered for ϕ ∈ [0,1).

When measuring how well the given signal coincides with a sinusoid of fre-
quency ω , we have the freedom of shifting the sinusoid in time. This degree of
freedom is expressed by the phase parameter ϕ . As illustrated by Figure 2.2, the
degree of similarity between the signal and the sinusoid of fixed frequency crucially
depends on the phase. What have we done with the phase when computing the coef-
ficients dω as illustrated by Figure 2.1? The procedure outlined in the introduction
was only half the story. When comparing the signal f with a sinusoid cosω ,ϕ of
frequency ω , we have implicitly used the phase ϕω that yields the maximal possi-
ble similarity. To understand this better, we first need to explain how we actually
compare the signal and a sinusoid or, more generally, how we compare two given
functions.

2.1.1.2 Computing Similarity with Integrals

Let us assume that we are given two functions of time f : R→ R and g : R→ R.
What does it mean for f and g to be similar? Intuitively, one may agree that f and g
are similar if they show a similar behavior over time: if f assumes positive values,
then so should g, and if f becomes negative, the same should happen to g. The joint
behavior of these functions can be captured by forming the integral of the product
of the two functions: ∫

t∈R
f (t) ·g(t)dt. (2.3)

44 2 Fourier Analysis of Signals

(a) (b)

Time (seconds) Time (seconds)

Fig. 2.3 Measuring the similarity of two functions f (top) and g (middle) by computing the
integral of the product (bottom). (a) Two functions having high similarity. (b) Two functions having
low similarity.

The integral measures the area delimited by the graph of the product f ·g, where the
negative area (below the horizontal axis) is subtracted from the positive area (above
the horizontal axis) (see Figure 2.3). In the case that f and g are either both posi-
tive or both negative at most time instances, the product is positive for most of the
time and the integral becomes large (see Figure 2.3a). However, if the two functions
are dissimilar, then the overall positive and the overall negative areas cancel out,
yielding a small overall integral (see Figure 2.3b). Further examples are discussed
in Exercise 2.1.

There are many more ways for comparing two given signals. For example, the
integral of the absolute difference between the functions also yields a notion of how
similar the signals are. In the formulation of the Fourier transform, however, one
encounters the measure as considered in (2.3), which generalizes the inner product
known from linear algebra (see 2.37). We continue this discussion in Section 2.2.3.

2.1.1.3 First Definition of the Fourier Transform

Based on the similarity measure (2.3), we compare the original signal f with sinu-
soids g = cosω,ϕ as defined in (2.2). For a fixed frequency ω ∈ R, we define

dω := max
ϕ∈[0,1)

(∫
t∈R

f (t)cosω,ϕ(t)dt
)
, (2.4)

ϕω := argmax
ϕ∈[0,1)

(∫
t∈R

f (t)cosω,ϕ(t)dt
)
. (2.5)

As previously discussed, the magnitude coefficient dω expresses the intensity of
frequency ω within the signal f . Additionally, the phase coefficient ϕω ∈ [0,1) tells

2.1 The Fourier Transform in a Nutshell 45

Re

Im

(b)

Re

Im

(a)

Fig. 2.4 (a) Polar coordinate representation of a complex number c = a+ ib. (b) Definition of the
exponential function.

us how the sinusoid of frequency ω needs to be displaced in time to best fit the signal
f . The Fourier transform of a function f : R→ R is defined to be the “collection”
of all coefficients dω and ϕω for ω ∈ R. Shortly, we will state this definition in a
more formal way.

The computation of dω and ϕω feels a bit awkward, since it involves an opti-
mization step. The good news is that there is a simple solution to this optimization
problem, which results from the existence of certain trigonometric identities that
relate phases and amplitudes of certain sinusoidal functions. Using the concept of
complex numbers, these trigonometric identities become simple and lead to an ele-
gant formulation of the Fourier transform. We discuss such issues in more detail in
Section 2.3. In the following, we introduce the standard complex-valued formula-
tion of the Fourier transform without giving any proofs.

2.1.1.4 Complex Numbers

Let us first review the concept of complex numbers. The complex numbers extend
the real numbers by introducing the imaginary number i :=

√
−1 with the property

i2 =−1. Each complex number can be written as c = a+ ib, where a ∈R is the real
part and b ∈ R the imaginary part of c. The set of all complex numbers is written as
C, which can be thought of as a two-dimensional plane: the horizontal dimension
corresponds to the real part, and the vertical dimension to the imaginary part. In
this plane, the number c = a+ ib is specified by the Cartesian coordinates (a,b). As
illustrated by Figure 2.4a, there is another way of representing a complex number,
which is known as the polar coordinate representation. In this case, a complex
number c is described by its absolute value |c| (distance from the origin) and the
angle γ between the positive horizontal axis and the line from the origin and c. The
polar coordinates |c| ∈ R≥0 and γ ∈ [0,2π) (given in radians) can be derived from
the coordinates (a,b) via the following formulas:

46 2 Fourier Analysis of Signals

|c| :=
√

a2 +b2, (2.6)
γ := atan2(b,a). (2.7)

Further details on polar coordinates and the function atan2, which is a variant of
the inverse of the tangent function, are explained in Section 2.3.2.2. To regain the
complex number c from its polar coordinates, one uses the exponential function,
which maps an angle γ ∈ R (given in radians) to a complex number defined by

exp(iγ) := cos(γ)+ isin(γ) (2.8)

(see also Figure 2.4b). The values of this function turn around the unit circle of the
complex plane with a period of 2π (see Section 2.3.2.1). From this, we obtain the
following polar coordinate representation for a complex number c:

c = |c| · exp(iγ). (2.9)

2.1.1.5 Complex Definition of the Fourier Transform

What have we gained by bringing complex numbers into play? Recall that we
have obtained a positive coefficient dω ∈ R≥0 from (2.4) and a phase coefficient
ϕω ∈ [0,1) from (2.5). The basic idea is to use these coefficients as polar coordi-
nates and to encode both coefficients by a single complex number. Because of some
technical reasons (a normalization issue that becomes clearer when discussing the
mathematical details), one introduces some additional factors and a sign in the phase
to yield the complex coefficient

cω :=
dω√

2
· exp(2πi(−ϕω)). (2.10)

This complex formulation directly leads us to the Fourier transform of a real-valued
function f : R→ R. For each frequency ω ∈ R, we obtain a complex-valued coef-
ficient cω ∈ C as defined by (2.4), (2.5), and (2.10). This collection of coefficients
can be encoded by a complex-valued function f̂ : R→ C (called “ f hat”), which
assigns to each frequency parameter the coefficient cω :

f̂ (ω) := cω . (2.11)

The function f̂ is referred to as the Fourier transform of f , and its values f̂ (ω) =
cω are called the Fourier coefficients. One main result in Fourier analysis is that
the Fourier transform can be computed via the following compact formula:

f̂ (ω) =
∫

t∈R
f (t)exp(−2πiωt)dt (2.12)

=
∫

t∈R
f (t)cos(−2πωt)dt + i

∫
t∈R

f (t)sin(−2πωt)dt. (2.13)

2.1 The Fourier Transform in a Nutshell 47

In other words, the real part of the complex coefficient f̂ (ω) is obtained by compar-
ing the original signal f with a cosine function of frequency ω , and the imaginary
part is obtained by comparing with a sine function of frequency ω . The absolute
value | f̂ (ω)| is also called the magnitude of the Fourier coefficient. Similarly, the
real-valued function | f̂ | : R→ R, which assigns to each frequency parameter ω the
magnitude | f̂ (ω)|, is called the magnitude Fourier transform of f .

In the standard literature on signal processing, the formula (2.12) is often used to
define the Fourier transform f̂ and, then, the physical interpretation of the Fourier
coefficients is discussed. In particular, the real-valued coefficients dω in (2.4) and
ϕω in (2.5) can be derived from f̂ (ω). Using (2.10), one obtains

dω =
√

2| f̂ (ω)|, (2.14)

ϕω = − γω

2π
, (2.15)

where | f̂ (ω)| and γω are the polar coordinates of f̂ (ω).

2.1.1.6 Fourier Representation

As mentioned above, the original signal f can be reconstructed from its Fourier
transform. In principle, the reconstruction is straightforward: one superimposes the
sinusoids of all possible frequency parameters ω ∈R, each weighted by the respec-
tive coefficient dω and shifted by ϕω . Both kinds of information are encoded in the
complex Fourier coefficient cω . In the analog case considered so far, we are deal-
ing with a continuum of frequency parameters, where the superposition becomes an
integration over the parameter space. The reconstruction is given by the formulas

f (t) =
∫

ω∈R≥0

dω

√
2cos(2π(ωt−ϕω))dω (2.16)

=
∫

ω∈R
cω exp(2πiωt)dω, (2.17)

first given in the real-valued formulation, and then given in the complex-valued
formulation with cω = f̂ (ω). As said before, the representation of a signal in terms
of a weighted superposition of sinusoidal prototype oscillations is also called the
Fourier representation of the signal. Notice that the formula (2.12) for the Fourier
transform and the formula (2.17) for the Fourier representation are nearly identical.
The main difference is that the roles of the time parameter t and frequency parameter
ω are interchanged. The beautiful relationship between these two formulas will be
further discussed in later sections of this chapter.

48 2 Fourier Analysis of Signals

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

(d)

Fig. 2.5 Waveform and magnitude Fourier transform of a tone C4 (261.6 Hz) played by different
instruments (see also Figure 1.23). (a) Piano. (b) Trumpet. (c) Violin. (d) Flute.

2.1.2 Examples

Let us consider some examples including the one introduced in Figure 2.1.
Figure 2.5 shows the waveform and the magnitude Fourier transform for some audio
signals, where a single note C4 is played on different instruments: a piano, a trum-
pet, a violin, and a flute. We have already encountered this example in Figure 1.23
of Section 1.3.4, where we discussed the aspect of timbre. Recall that the existence
of certain partials and their relative strengths have a crucial influence on the timbre
of a musical tone. In the case of the piano tone (Figure 2.5a), the Fourier transform
has a sharp peak at 262 Hz, which reveals that most of the signal’s energy is con-
tained in the first partial or the fundamental frequency of the note C4. Further peaks
(also beyond the shown frequency range from 0 to 1000 Hz) can be found at integer
multiples of the fundamental frequency corresponding to the higher partials.

Figure 2.5b shows that the same note played on a trumpet results in a similar
frequency spectrum, where the peaks appear again at integer multiples of the fun-
damental frequency. However, most of the energy is now contained in the third par-
tial, and the relative heights of the peaks are different compared with the piano.
This is one reason why a trumpet sounds different from a piano. For a violin, as
shown by Figure 2.5c, most energy is again contained in the first partial. Observe
that the peaks are blurred in frequency, which is the result of the vibrato (see also
Figure 1.23b). The time-dependent frequency modulations of the vibrato are aver-

2.1 The Fourier Transform in a Nutshell 49

Frequency (Hz)Time (seconds)

(a)

(b)

Fig. 2.6 Missing time information of the Fourier transform illustrated by two different signals and
their magnitude Fourier transforms. (a) Two subsequent sinusoids of frequency 1 Hz and 5 Hz.
(b) Superposition of the same sinusoids.

aged by the Fourier transform. This yields a single coefficient for each frequency
independent of spectro-temporal fluctuations. A similar explanation holds for the
flute tone shown in Figure 2.5d.

We have seen that the magnitude of the Fourier transform tells us about the sig-
nal’s overall frequency content, but it does not tell us at which time the frequency
content occurs. Figure 2.6 illustrates this fact, showing the waveform and the mag-
nitude Fourier transform for two signals. The first signal consists of two parts with
a sinusoid of ω = 1 Hz and amplitude A = 1 in the first part and a sinusoid of
ω = 5 Hz and amplitude A = 0.7 in the second part. Furthermore, the signal is zero
outside the interval [0,10]. In contrast, the second signal is a superposition of these
two sinusoids, being zero outside the interval [0,5]. Even though the two signals
are different in nature, the resulting magnitude Fourier transforms are more or less
the same. This demonstrates the drawbacks of the Fourier transform when analyz-
ing signals with changing characteristics over time. In Section 2.1.4 and Section 2.5
we discuss a short-time version of the Fourier transform, where time information
is recovered at least to some degree. Besides the two peaks, one can observe in
Figure 2.6 a large number of small “ripples.” Such phenomena as well as further
properties of the Fourier transform are discussed in Section 2.3.3.

2.1.3 Discrete Fourier Transform

When using digital technology, only a finite number of parameters can be stored
and processed. To this end, analog signals need to be converted into finite
representations—a process commonly referred to as digitization. One step that is
often applied in an analog-to-digital conversion is known as equidistant sampling.
Given an analog signal f : R→ R and a positive real number T > 0, one defines a
function x : Z→ R by setting

50 2 Fourier Analysis of Signals

Fig. 2.7 Illustration of the
sampling process using a
sampling rate of Fs = 32. The
waveforms of the analog sig-
nals are shown as curves and
the sampled versions as stem
plots. (a) Signal f . (b) Sinu-
soid cosω,ϕ with ω = 2 and
ϕ = 0. (c) Product f · cosω,ϕ

and its area. (d) Approxi-
mation of the integral by a
Riemann sum obtained from
the sampled version.

(a)

(b)

(c)

Time (seconds)

(d)

x(n) := f (n ·T). (2.18)

Since x is only defined on a discrete set of time points, it is also referred to as a
discrete-time (DT) signal (see Section 2.2.2.1). The value x(n) is called a sample
taken at time t = n ·T of the original analog signal f . This procedure is also known
as T -sampling, where the number T is referred to as the sampling period. The
inverse

Fs := 1/T (2.19)

of the sampling period is also called the sampling rate of the process. It specifies
the number of samples per second and is measured in Hertz (Hz). Figure 2.7a shows
an example of sampling an analog signal using Fs = 32 Hz.

In general, one loses information in the sampling process. The famous sampling
theorem says that the original analog signal f can be reconstructed perfectly from
its sampled version x, if f does not contain any frequencies higher than

Ω := Fs/2 = 1/(2T) Hz. (2.20)

In this case, we also say that f is an Ω -bandlimited signal, where the frequency Ω

is known as the Nyquist frequency. In the case that f contains higher frequencies,
sampling may cause artifacts referred to as aliasing (see Section 2.2.2 for details).
The sampling theorem will be further discussed in Exercise 2.28.

In the following, we assume that the analog signal f satisfies suitable require-
ments so that the sampled signal x does not contain major artifacts. Now, having a
discrete number of samples to represent our signal, how do we calculate the Fourier
transform? Recall that the idea of the Fourier transform is to compare the signal
with a sinusoidal prototype oscillation by computing the integral over the point-

2.1 The Fourier Transform in a Nutshell 51

wise product (see (2.12)). Therefore, in the digital domain, it seems reasonable to
sample the sinusoidal prototype oscillation in the same fashion as the signal (see
Figure 2.7b). By multiplying the two sampled functions in a pointwise fashion, we
obtain a sampled product (see Figure 2.7c). Finally, integration in the analog case
becomes summation in the discrete case, where the summands need to be weighted
by the sampling period T . As a result, one obtains the following approximation:

∑
n∈Z

T f (nT)exp(−2πiωnT)≈ f̂ (ω). (2.21)

In mathematical terms, the sum can be interpreted as the overall area of rectangular
shapes that approximates the area corresponding to the integral (see Figure 2.7d).
Such an approximation is also known as a Riemann sum. As we will show in
Section 2.3.4, the quality of the approximation is good for “well-behaved” signals
f and “small” frequency parameters ω .

One defines a discrete version of the Fourier transform for a given DT-signal
x : Z→ R by setting

x̂(ω) := ∑
n∈Z

x(n)exp(−2πiωn). (2.22)

In this definition, where a simple 1-sampling (i.e., T -sampling with T = 1) of the
exponential function is used, one does not assume that one knows the relation be-
tween x and the original signal f . If one is interested in recovering the relation to
the Fourier transform f̂ , one needs to know the sampling period T . Based on (2.21),
an easy calculation shows that

x̂(ω)≈ 1
T

f̂
(

ω

T

)
. (2.23)

In this approximation, the frequency parameter ω used for x̂ corresponds to the fre-
quency ω/T for f̂ . In particular, ω = 1/2 for x̂ corresponds to the Nyquist frequency
Ω = 1/(2T) of the sampling process. Therefore, assuming that f is bandlimited by
Ω = 1/(2T), one needs to consider only the frequencies with 0≤ ω ≤ 1/2 for x̂. In
the digital case, all other frequency parameters are redundant and yield meaningless
approximations.

For doing computations on digital machines, we still have some problems. One
problem is that the sum in (2.22) involves an infinite number of summands. Another
problem is that the frequency parameter ω is a continuous parameter. For both prob-
lems, there are some pragmatic solutions. Regarding the first problem, we assume
that most of the relevant information of f is limited to a certain duration in time.2

For example, a music recording of a song hardly lasts for more than ten minutes.
Having a finite duration means that the analog signal f is assumed to be zero outside
a compact interval. By possibly shifting the signal, we may assume that this interval
starts at time t = 0. This means that we only need to consider a finite number of

2 Strictly speaking, this assumption is problematic since it conflicts with the requirement of f
being bandlimited. A mathematical fact states that there are no functions that are both limited in
frequency (bandlimited) and limited in time (having finite duration).

52 2 Fourier Analysis of Signals

samples x(0),x(1), . . . ,x(N− 1) for some suitable number N ∈ N. As a result, the
sum in (2.22) becomes finite.

Regarding the second problem, one computes the Fourier transform only for a
finite number of frequencies. Similar to the sampling of the time axis, one typi-
cally samples the frequency axis by considering the frequencies ω = k/M for some
suitable M ∈ N and k ∈ [0 : M−1]. In practice, one often couples the number N
of samples and the number M that determines the frequency resolution by setting
N = M. Note that the two numbers N and M refer to different aspects. However,
the coupling is convenient. It not only makes the resulting transform invertible, but
also leads to a computationally efficient algorithm, as we will see in Section 2.4.3.
Setting X(k) := x̂(k/N) and assuming that x(0),x(1), . . . ,x(N− 1) are the relevant
samples (all others being zero), we obtain from (2.22) the formula

X(k) = x̂(k/N) =
N−1

∑
n=0

x(n)exp(−2πikn/N) (2.24)

for integers k ∈ [0 : M−1] = [0 : N−1]. This transform is also known as the dis-
crete Fourier transform (DFT), which is covered in Section 2.4.

Next, let us have a look at the frequency information supplied by the Fourier co-
efficient X(k). By (2.23) the frequency ω of x̂ corresponds to ω/T of f̂ . Therefore,
the index k of X(k) corresponds to the physical frequency

Fcoef(k) :=
k

N ·T
=

k ·Fs

N
(2.25)

given in Hertz. As we will discuss in Section 2.4.4, the coefficients X(k) need to be
taken with care. First, the approximation quality in (2.23) may be rather poor, in par-
ticular for frequencies close to the Nyquist frequency. Second, for a real-valued sig-
nal x, the Fourier transform fulfills certain symmetry properties (see Exercise 2.24).
As a result, the upper half of the Fourier coefficients are redundant, and one only
needs to consider the coefficients X(k) for k ∈ [0 : bN/2c]. Note that, in the case of
an even number N, the index k = N/2 corresponds to Fcoef(k) = Fs/2, which is the
Nyquist frequency of the sampling process.

Finally, we consider some efficiency issues when computing the DFT. To com-
pute a single Fourier coefficient X(k), one requires a number of multiplications and
additions linear in N. Therefore, to compute all coefficients X(k) for k ∈ [0 : N/2]
one after another, one requires a number of operations on the order of N2. Despite
being a finite number of operations, such a computational approach is too slow for
many practical applications, in particular when N is large.

The number of operations can be reduced drastically by using an efficient algo-
rithm known as the fast Fourier transform (FFT). The FFT algorithm, which was
discovered by Gauss and Fourier two hundred years ago, has changed whole indus-
tries and is now being used in billions of telecommunication and other devices. The
FFT exploits redundancies across sinusoids of different frequencies to jointly com-
pute all Fourier coefficients by a recursion. This recursion works particularly well in
the case that N is a power of two. As a result, the FFT reduces the overall number of

2.1 The Fourier Transform in a Nutshell 53

operations from the order of N2 to the order of N log2 N. The savings are enormous.
For example, using N = 210 = 1024, the FFT requires roughly N log2 N = 10240 in-
stead of N2 = 1048576 operations in the naive approach—a savings factor of about
100. In the case of N = 220, the savings amount to a factor of about 50000 (see
Exercise 2.6). In Section 2.4.3, we discuss the algorithmic details of the FFT.

2.1.4 Short-Time Fourier Transform

The Fourier transform yields frequency information that is averaged over the entire
time domain. However, the information on when these frequencies occur is hidden
in the transform. We have already seen this phenomenon in Figure 2.6a, where the
change in frequency is not revealed when looking at the magnitude of the Fourier
transform. To recover the hidden time information, Dennis Gabor introduced in the
year 1946 the short-time Fourier transform (STFT). Instead of considering the
entire signal, the main idea of the STFT is to consider only a small section of the
signal. To this end, one fixes a so-called window function, which is a function that
is nonzero for only a short period of time (defining the considered section). The
original signal is then multiplied with the window function to yield a windowed
signal. To obtain frequency information at different time instances, one shifts the
window function across time and computes a Fourier transform for each of the re-
sulting windowed signals.

This idea is illustrated by Figure 2.8, which continues our example from
Figure 2.6a. To obtain local sections of the original signal, one multiplies the sig-
nal with suitably shifted rectangular window functions. In Figure 2.8b, the resulting
local section only contains frequency content at 1 Hz, which leads to a single main
peak in the Fourier transform at ω = 1. Further shifting the time window to the right,
the resulting section contains 1 Hz as well as 5 Hz components (see Figure 2.8c).
These components are reflected by the two peaks at ω = 1 and ω = 5. Finally, the
section shown in Figure 2.8d only contains frequency content at 5 Hz.

Already at this point, we want to emphasize that the STFT reflects not only the
properties of the original signal but also those of the window function. First of all,
the STFT depends on the length of the window, which determines the size of the
section. Then, the STFT is influenced by the shape of the window function. For
example, the sharp edges of the rectangular window typically introduce “ripple”
artifacts. In Section 2.5.1, we discuss such issues in more detail. In particular, we
introduce more suitable, bell-shaped window functions, which typically reduce such
artifacts.

In Section 2.5, one finds a detailed treatment of the analog and discrete versions
of the STFT and their relationship. In the following, we only consider the discrete
case and specify the most important mathematical formulas as needed in practi-
cal applications. Let x : Z→ R be a real-valued DT-signal obtained by equidistant
sampling with respect to a fixed sampling rate Fs given in Hertz. Furthermore, let
w : [0 : N−1]→ R be a sampled window function of length N ∈ N. For example,

54 2 Fourier Analysis of Signals

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

(d)

Fig. 2.8 Signal and Fourier transform consisting of two subsequent sinusoids of frequency 1 Hz
and 5 Hz (see Figure 2.6a). (a) Original signal. (b) Windowed signal centered at t = 3. (c) Win-
dowed signal centered at t = 5. (d) Windowed signal centered at t = 7.

in the case of a rectangular window one has w(n) = 1 for n ∈ [0 : N−1]. Implicitly,
one assumes that w(n) = 0 for all other time parameters n ∈ Z \ [0 : N−1] outside
this window. The length parameter N determines the duration of the considered sec-
tions, which amounts to N/Fs seconds. One also introduces an additional parameter
H ∈ N, which is referred to as the hop size. The hop size parameter is specified in
samples and determines the step size in which the window is to be shifted across the
signal.

With regard to these parameters, the discrete STFT X of the signal x is given by

X (m,k) :=
N−1

∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (2.26)

with m ∈ Z and k ∈ [0 : K]. The number K = N/2 (assuming that N is even) is
the frequency index corresponding to the Nyquist frequency. The complex number
X (m,k) denotes the kth Fourier coefficient for the mth time frame. Note that for
each fixed time frame m, one obtains a spectral vector of size K + 1 given by the
coefficients X (m,k) for k ∈ [0 : K]. The computation of each such spectral vector
amounts to a DFT of size N as in (2.24), which can be done efficiently using the
FFT.

2.1 The Fourier Transform in a Nutshell 55

What have we actually computed in (2.26) in relation to the original analog signal
f ? As for the temporal dimension, each Fourier coefficient X (m,k) is associated
with the physical time position

Tcoef(m) :=
m ·H

Fs
(2.27)

given in seconds. For example, for the smallest possible hop size H = 1, one obtains
Tcoef(m) = m/Fs = m · T sec. In this case, one obtains a spectral vector for each
sample of the DT-signal x, which results in a huge increase in data volume. Further-
more, considering sections that are only shifted by one sample generally yields very
similar spectral vectors. To reduce this type of redundancy, one typically relates the
hop size to the length N of the window. For example, one often chooses H = N/2,
which constitutes a good trade-off between a reasonable temporal resolution and
the data volume comprising all generated spectral coefficients. As for the frequency
dimension, we have seen in (2.25) that the index k of X (m,k) corresponds to the
physical frequency

Fcoef(k) :=
k ·Fs

N
(2.28)

given in Hertz.
Before we look at some concrete examples, we first introduce the concept of a

spectrogram, which we denote by Y . The spectrogram is a two-dimensional repre-
sentation of the squared magnitude of the STFT:

Y(m,k) := |X (m,k)|2. (2.29)

It can be visualized by means of a two-dimensional image, where the horizontal
axis represents time and the vertical axis represents frequency. In this image, the
spectrogram value Y(m,k) is represented by the intensity or color in the image at
the coordinate (m,k). Note that in the discrete case, the time axis is indexed by the
frame indices m and the frequency axis is indexed by the frequency indices k.

Continuing our running example from Figure 2.8, we now consider a sampled
version of the analog signal using a sampling rate of Fs = 32 Hz. Having a physical
duration of 10 sec, this results in 320 samples (see Figure 2.9a). Using a window
length of N = 64 samples and a hop size of H = 8 samples, we obtain the spectro-
gram as shown in Figure 2.9b. In the image, the shade of gray encodes the magnitude
of a spectral coefficient, where darker colors correspond to larger values. By (2.27),
the mth frame corresponds to the physical time Tcoef(m) = m/4 sec. In other words,
the STFT has a time resolution of four frames per second. Furthermore, by (2.28),
the kth Fourier coefficient corresponds to the physical frequency Fcoef(k) := k/2 Hz.
In other words, one obtains a frequency resolution of two coefficients per Hertz.
The plots of the waveform and the spectrogram with the physically correct time and
frequency axes are shown in Figure 2.9c and Figure 2.9d, respectively.

Let us consider some typical settings as encountered when processing music
signals. For example, in the case of CD recordings one has a sampling rate of
Fs = 44100 Hz. Using a window length of N = 4096 and a hop size of H = N/2,

56 2 Fourier Analysis of Signals

Time (seconds)

Time (seconds)

Index (frames)

Index (samples)

Fr
eq

ue
nc

y
(H

z)

In
de

x
(fr

eq
ue

nc
y)

(a)

(b)

(c)

(d)

Fig. 2.9 DT-signal sampled with Fs = 32 Hz and spectrogram using a window length of N = 64
and a hop size of H = 8. (a) DT-signal with time axis given in samples. (b) Spectrogram with time
axis given in frames and frequency axis given in indices. (c) DT-signal with time axis given in
seconds. (d) Spectrogram with time axis given in seconds and frequency axis given in Hertz.

this results in a time resolution of H/Fs ≈ 46.4 ms by (2.27) and a frequency res-
olution of Fs/N ≈ 10.8 Hz by (2.28). To obtain a better frequency resolution, one
may increase the window length N. This, however, leads to a poorer localization in
time so that the resulting STFT loses its capability of capturing local phenomena
in the signal. This kind of trade-off is further discussed in Section 2.5.2 and in the
exercises.

We close this section with a further example shown in Figure 2.10, which is
a recording of a C-major scale played on a piano. The first note of this scale is
C4, which we have already considered in Figure 2.1. In Figure 2.10c, the spectro-
gram representation of the recording is shown, where the time and frequency axes
are labeled in a physically meaningful way. The spectrogram reveals the frequency
information of the played notes over time. For each note, one can observe hori-
zontal lines that are stacked on top of each other. As discussed in Section 1.3.4,
these equally spaced lines correspond to the partials, the integer multiples of the
fundamental frequency of a note. Obviously, the higher partials contain less and
less of the signal’s energy. Furthermore, the decay of each note over time is re-
flected by the fading out of the horizontal lines. To enhance small sound compo-
nents that may still be perceptually relevant, one often uses a logarithmic dB scale
(see Section 1.3.3). Figure 2.10d illustrates the effect when applying the dB scale to
the values of the spectrogram. Besides an enhancement of the higher partials, one
can now observe vertical structures at the notes’ onset positions. These structures
correspond to the noise-like transients that occur in the attack phase of the piano
sound (see Section 1.3.4).

This concludes our “nutshell section” covering the most important definitions
and properties of the Fourier transform as needed for the subsequent chapters of this
book. In particular, the formula (2.26) of the discrete STFT as well as the physical
interpretation of the time parameter (2.27) and the frequency parameter (2.28) are

2.2 Signals and Signal Spaces 57

(b)

(c)

(d)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

(a)

Fig. 2.10 Waveform and spectrogram of a music recording of a C-major scale played on a piano.
(a) The recording’s underlying musical score. (b) Waveform. (c) Spectrogram. (d) Spectrogram
with the magnitudes given in dB.

of central importance for most music processing applications to be discussed. As
said in the introduction, we provide in the subsequent sections of this chapter some
deeper insights into the mathematics underlying the Fourier transform. In particular,
we explain in more detail the connection between the various kinds of signals and
associated Fourier transforms.

2.2 Signals and Signal Spaces

In technical fields such as engineering or computer science, a signal is a function
that conveys information about the state or behavior of a physical system. For ex-
ample, a signal may describe the time-varying sound pressure at some place, the
motion of a particle through some space, the distribution of light on a screen rep-
resenting an image, or the sequence of images as in the case of a video signal. In
the following, we consider the case of audio signals as discussed in Section 1.3. We
have seen that such a signal can be graphically represented by its waveform, which

58 2 Fourier Analysis of Signals

Time (seconds) Time (seconds)

Time (seconds) Time (seconds)

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

(a) (b)

(c) (d)

Fig. 2.11 The sinusoid f (t) = Asin(2π(ωt−ϕ)) displayed for t ∈ [0,2] and for various values
of A, ω , and ϕ . (a) A = 1, ω = 1,ϕ = 0. (b) A = 1, ω = 3, ϕ = 0. (c) A = 1.4, ω = 1, ϕ = 0.25.
(d) A = 0.8, ω = 3, ϕ = 0.5.

depicts the amplitude of the air pressure over time. In the following, we introduce
the mathematical notation that is necessary to formally model such a signal. Doing
so, we distinguish between two different types of signals: analog signals as occur
around us in the real world and digital signals as are processed by computers. We
show how signals can be modified and combined to yield new signals by applying
mathematical operations. Some operations can be applied only if the involved sig-
nals satisfy certain properties. This leads us to the concept of signal spaces, a kind
of universe that comprises signals that share a certain property.

2.2.1 Analog Signals

As already defined in Section 2.1.1, an analog signal is a function f : R→R, which
assigns an amplitude value f (t)∈R to each time point t ∈R. In the analog case, both
the time domain as well as the range of the amplitude values are represented by the
set R of real numbers, which is a continuous range of values. This makes it possible
to model infinitesimally small changes in both time and amplitude. In the case of
having a continuous time axis (given by R), one also speaks of continuous-time
(CT) signals. A signal f is called periodic with period λ ∈ R>0 if f (t) = f (t +λ)
holds for all t ∈ R. If there exists a least positive constant with this property, it is
called the prime period of the signal (see Exercise 2.7 and Exercise 2.8).

In Section 1.3.2 and Section 2.1.1.1, we have already encountered an entire class
of analog signals: the sinusoids. Recall from (2.1) that a sinusoid is a periodic func-
tion f defined by f (t) := Asin(2π(ωt−ϕ)), t ∈ R. The parameter A describes the
amplitude, the parameter ω the frequency, and the parameter ϕ the phase. The

2.2 Signals and Signal Spaces 59

Time (seconds)

+
Time (seconds)

Fig. 2.12 Superposition of three analog signals.

frequency parameter ω determines the period of the sinusoid, which is λ = 1/ω .
In other words, a sinusoid of frequency ω repeats every λ = 1/ω unit times. In the
following, we use seconds as the units of time if not specified otherwise. Figure 2.11
shows various sinusoids resulting from different parameter settings.

Besides having a compact description, sinusoids also have an explicit physical
meaning with a perceptual correspondence: the amplitude A corresponds to the loud-
ness and the frequency ω to the pitch of a sinusoidal sound. Only the phase ϕ , which
indicates the relative position of an oscillation within its cycle, does not have a di-
rect perceptual correspondence. Note that, because of the periodicity of a sinusoid,
a phase shift by ϕ + 1 has the same effect as a phase shift by ϕ . In other words,
integer shifts leave a sinusoid unaltered and the parameter ϕ needs to be considered
only in the interval [0,1).

Regarding a signal as a mathematical function is convenient, since this allows us
to express modifications of signals in terms of mathematical operations. For exam-
ple, the superposition of two signals f and g can be expressed by the sum f + g
defined as pointwise addition

(f +g)(t) := f (t)+g(t) (2.30)

for t ∈R. Similarly, the scaling of a signal f by a real factor a is the scalar multiple
a f , which is also defined pointwise by

(a f)(t) := a · f (t). (2.31)

Figure 2.12 shows an example of a superposition of three signals. We have seen in
Section 2.1 that the Fourier transform can be regarded as a kind of inverse operation,
where a given signal is decomposed into a weighted superposition of elementary
signals.

60 2 Fourier Analysis of Signals

2.2.2 Digital Signals

Analog signals have a continuous range of values in both time and amplitude, which
generally leads to an infinite number of values. Since a computer can only store and
process a finite number of values, one has to convert the waveform into some dis-
crete representation—a process commonly referred to as digitization. Some analog
signals such as sinusoids are already characterized by a small number of parameters,
which can be used to represent the signal, but for general analog signals one needs
other ways for deriving a model that can be described by a finite number of param-
eters. Furthermore, it should be possible to perform signal manipulations directly
in the parameter domain such that computations become feasible and efficient. The
most common approach for digitizing audio signals consists of two steps called
sampling and quantization (see Figure 2.13 for an illustration). We now explain
these two steps in more detail.

2.2.2.1 Sampling

In signal processing, the term sampling refers to the process of reducing a
continuous-time (CT) signal to a discrete-time (DT) signal, which is defined only
on a discrete subset of the time axis. By means of a suitable encoding, one often
assumes that this discrete set is a subset I of the set Z of integers. Then a DT-signal
is defined to be a function x : I → R, where the domain I corresponds to points in
time. Since one can extend any DT-signal from the domain I to the domain Z simply
by setting all values to zeros for points in Z \ I, we may assume I = Z. The most
common sampling procedure to transform a CT-signal f : R→ R into a DT-signal
x : Z→ R is known as equidistant sampling. For convenience, we repeat the defi-
nitions from Section 2.1.3. Fixing a positive real number T > 0, the DT-signal x is
obtained by setting

x(n) := f (n ·T) (2.32)

for n ∈ Z. The value x(n) is called the sample taken at time t = n ·T of the original
analog signal f . In short, this procedure is also called T -sampling. The number T is
referred to as the sampling period and the inverse Fs := 1/T as the sampling rate.
The sampling rate specifies the number of samples per second and is measured in
Hertz (Hz).

Figure 2.13 shows an illustrative example, where the DT-signal x is represented
by the red stem plot. In this example, one has 13 samples in the first two seconds.
Thus, the sampling rate is roughly 6.5 Hz and the sampling period 0.154 seconds.
In practical applications, typical sampling rates are 8 kHz (8,000 Hz) for telephony,
32 kHz for digital radio, 44.1 kHz for CD recordings, and 48 kHz up to 96 kHz for
professional studio technology.

In general, sampling is a lossy operation in the sense that information is lost in
this process and that the original analog signal cannot be recovered from its sampled
version. Only if the analog signal has additional properties in terms of its frequency

2.2 Signals and Signal Spaces 61

Time (seconds)

Time (seconds)

(a)

(b)

A
m

pl
itu

de
A

m
pl

itu
de

Sampling period

Quantization
step size

Fig. 2.13 Two steps of a digitization process to transform an analog signal (solid curve) into a
digital signal (stem plot). (a) Sampling. (b) Quantization.

spectrum is a perfect reconstruction possible. This is the assertion of the famous
sampling theorem, which we discuss in Exercise 2.28 in more detail. Without such
additional properties, sampling may cause an effect known as aliasing, where cer-
tain frequency components of the signal become indistinguishable. This effect is
illustrated by Figure 2.14, which shows an analog signal that is the superposition of
two sinusoids. Using a high sampling rate as in Figure 2.14a, the analog signal can
be reconstructed with high accuracy. However, when decreasing the sampling rate,
the higher-frequency component is not captured well and only a coarse approxima-
tion of the original signal remains (see Figure 2.14c).

2.2.2.2 Quantization

We have seen how sampling transforms a continuous time axis (encoded by R)
into a discrete time axis (encoded by Z). This is only the first step in an analog-to-
digital conversion of a signal. In the second step, one needs to replace the continuous
range of possible amplitudes (again encoded by R) by a discrete range of possible
values (encoded by a discrete set Γ ⊂ R). This process is commonly known as
quantization. Such a quantization can be modeled by a function Q :R→Γ , referred
to as the quantizer, which assigns to each amplitude value a ∈R a value Q(a) ∈ Γ .
Many of the quantizers used simply round off or truncate the analog value to some
units of precision. For example, a typical uniform quantizer with a quantization
step size equal to some value ∆ can be defined by

Q(a) := sgn(a) ·∆ ·
⌊
|a|
∆

+
1
2

⌋
(2.33)

62 2 Fourier Analysis of Signals

Time (seconds)

(a)

A
m

pl
itu

de

Time (seconds)

(b)

A
m

pl
itu

de

Time (seconds)

(c)

A
m

pl
itu

de

Fig. 2.14 Illustration of the aliasing effect when reducing the sampling rate. The figures show the
original analog signal (solid curve), the sampled version (stem plot), and the reconstructed analog
signal (dotted curve) for sampling rates of (a) 12 Hz, (b) 6 Hz, and (b) 3 Hz.

for a∈R, were sgn(·) is the signum function that yields the sign of a real number and
the brackets b·c truncate a real number to yield the largest integer below this number.
Note that, in the case of ∆ = 1, the quantizer Q is simple rounding to the nearest
integer. Like sampling, quantization is generally a lossy operation, because different
analog values may be mapped to the same digital value. The difference between
the actual analog value and the quantized value is called the quantization error
(see Exercise 2.9). Reducing the quantization step size ∆ typically leads to smaller
quantization errors. However, at the same time, the number of quantized values
(and therefore also the number of bits needed to encode these values) increases.
Figure 2.13b shows the result after sampling and quantizing an analog signal. In
this example, the quantization step size ∆ = 1/3 is used, resulting in 8 different
quantization values for the given signal. Hence, a 3-bit coding scheme may be used
to represent the quantized values. For CD recordings, a 16-bit coding scheme is
used, which allows representation of 65536 possible values.

In summary, after using an analog-to-digital conversion based on sampling and
quantization, it is generally not possible to reconstruct the original waveform from
the digital representation. Aliasing and quantization may introduce audible sound
artifacts such as harsh buzzing sounds or noise. For digital representations as used
for CDs, however, the sampling rate as well as the quantization resolution are chosen

2.2 Signals and Signal Spaces 63

in such ways that the degradation of the waveform is not noticeable by the human
ear.

2.2.3 Signal Spaces

In the previous sections, we considered analog and digital signals, which were mod-
eled as CT-signals f : R→ R and as DT-signals x : Z→ R, respectively. In the fol-
lowing discussion, we use the symbols f and g to denote CT-signals and the symbols
x and y to denote DT-signals. For the time parameter, we typically use the parameter
t in the CT case and the parameter n in the DT case.

2.2.3.1 Complex Numbers

In view of the complex-valued formulation of the Fourier transform one needs to ex-
tend the range R of real numbers to the range C of complex numbers. Recall from
Section 2.1.1.4 that each complex number c∈C can be regarded as a pair (a,b)∈R2

of real numbers, where a = Re(c) denotes the real part and b = Im(c) the imaginary
part of c. One also often writes c = a+ ib, where i is the imaginary unit. The com-
plex number field C possesses a multiplication that extends the multiplication of the
real number field R. Given two complex numbers c1 = a1 + ib1,c2 = a2 + ib2 ∈ C,
the product is defined by

c1 · c2 = a1a2−b1b2 + i(a1b2 +a2b1). (2.34)

Furthermore, the complex conjugate c of a complex number c = a + ib ∈ C is
defined as

c = a− ib. (2.35)

Various computation rules for complex numbers are discussed in Exercise 2.12. Ex-
tending the notion of real-valued signals, a complex-valued CT-signal is a function
f : R→ C and a complex-valued DT-signal a function x : Z→ C. As is the case
with complex numbers, each complex-valued signal can be considered as a pair of
two real-valued signals. Furthermore, each real-valued signal can be regarded as a
complex-valued signal simply by defining the imaginary part to be zero. In the fol-
lowing, we therefore only consider the more general complex-valued case, which
includes the real-valued case.

2.2.3.2 Vector Spaces

A general principle in mathematics is to form suitable spaces that comprise all ob-
jects under consideration. These spaces can then be equipped with additional struc-
tures that can be used to manipulate and organize the objects. For example, for a

64 2 Fourier Analysis of Signals

given natural number N ∈ N, one may consider the space RN consisting of all real-
valued N-tuples. This space can be equipped with an addition and a scalar multipli-
cation such that RN becomes a vector space over R. Similarly, one can define the
space CN , which consists of all complex-valued N-tuples. In our case, the objects
under consideration are complex-valued CT- and DT-signals. The resulting signal
spaces are defined as

CR := { f | f : R→ C} and CZ := {x|x : Z→ C}, (2.36)

for the CT and DT case, respectively. We have already seen in (2.30) and (2.31)
how one can define an addition of two signals and a scalar multiplication of a real
factor and a signal. These definitions directly carry over to the case of complex-
valued signals using complex summation and multiplication, which makes CR a
vector space over C. Similarly, one can define addition and scalar multiplication in
the DT case, making CZ a vector space over C.

One may need to get used to the fact that elements (the “points”) of a space such
as CR or CZ can be entire signals. As opposed to the case CN , which defines a
vector space of (complex) dimension N, the vector spaces CR and CZ have infinite
dimension. Still, many of the geometric structures known for the finite-dimensional
space CN can be transferred to suitably defined infinite-dimensional subspaces of
CR and CZ. This is what we show next.

2.2.3.3 Inner Products

We start by reviewing some concepts from linear algebra. Usually, an element
x ∈ CN is thought of as a column vector of size N. The transposed vector, which
we denote by x>, is then the corresponding row vector. The vector space CN can
be equipped with an additional structure called an inner product. This additional
structure associates to each pair of vectors a scalar quantity which is called the inner
product of the two vectors. Mathematically, the inner product of CN is a mapping
〈·|·〉 : CN ×CN → C defined by

〈x|y〉 :=
N−1

∑
n=0

x(n)y(n) (2.37)

for x = (x(0),x(1), . . . ,x(N−1))> ∈ CN and y = (y(0),y(1), . . . ,y(N−1))> ∈ CN .
The inner product satisfies three mathematical properties, which are also used for
an axiomatic definition of general inner products. First, it is positive definite; i.e.,
〈x|x〉 ≥ 0 and 〈x|x〉= 0 if and only if x is the all-zero vector. Second, it is conjugate
symmetric; i.e., 〈x|y〉 = 〈y|x〉. And third, it is C-linear in the first argument; i.e.,
〈x1 + x2|y〉= 〈x1|y〉+ 〈x2|y〉 and 〈cx|y〉= c〈x|y〉 for any x1,x2,x,y ∈ CN and c ∈ C.

The importance of inner products is that they allow the introduction of intuitive
geometrical notions such as the length of a vector, the angle between two vectors,
and orthogonality between vectors (see Figure 2.15 for an illustration). More pre-

2.2 Signals and Signal Spaces 65

•

(a) (b) (c)

Fig. 2.15 Geometrical notions defined in terms of the inner product. (a) Length of a vector. (b) An-
gle between two vectors. (b) Orthogonality of two vectors.

cisely, the inner product induces a norm on CN via

||x|| :=
√
〈x|x〉. (2.38)

In general, a norm satisfies ||x|| = 0 if and only if x = 0, ||ax|| = |a|||x|| for any
a∈C (positive scalability), and ||x+ y|| ≤ ||x||+ ||y|| for any vectors x and y (triangle
inequality). The positive number ||x− y|| is also called the distance between the
vectors x and y. The relation between the inner product and the angle ϕ between
two vectors x and y is given by

cos(ϕ) =
|〈x|y〉|
||x|| · ||y||

. (2.39)

In other words, the angle ϕ is determined by the inner product: it is given by taking
the inverse of the cosine of the absolute value of the inner product of the normalized
vectors. The basis for this relation is the Cauchy–Schwarz inequality

|〈x|y〉| ≤ ||x|| · ||y||, (2.40)

which is an indispensable mathematical tool for many estimations. Finally, two vec-
tors x,y∈CN are said to be orthogonal if 〈x|y〉= 0 (see Figure 2.15c). This concept
can then be used to define orthogonal subspaces, orthogonal complements, projec-
tion operators, and so on.

2.2.3.4 The Space `2(Z)

Given an arbitrary vector space, one can introduce the same geometric concepts
once one has an inner product. It turns out that the signal spaces CR or CZ are too
general. One strategy is to only consider signals with certain properties by passing
over to suitable signal subspaces. We make this point clearer by first considering the
space CZ of DT-signals. One idea for defining an inner product on this space is to
simply extend the definition of (2.37) for CN . However, in contrast to CN , there may
be an infinite number of nonzero summands in the case of CZ, with the consequence

66 2 Fourier Analysis of Signals

that the sum may be infinite. This leads to the following definitions: First, we define
the energy E(x) of a signal x ∈ CZ to be

E(x) := ∑
n∈Z
|x(n)|2. (2.41)

Then the space `2(Z)⊂CZ is defined to be the set of all signals having finite energy:

`2(Z) := {x : Z→ C | E(x)< ∞}. (2.42)

In mathematical terms, `2(Z) is also referred to as the space of square-summable
sequences. Obviously, there are many DT-signals that do not have finite energy.
For example, the sampled sinusoid x given by x(n) = sin(πn/16) is not square-
summable since it assumes the value 1 for infinitely many n. On the other hand, any
DT-signal with a finite number of nonzero entries obviously has finite energy. The
space CN for arbitrary N ∈N can be regarded as a subspace of `2(Z) by extending a
vector x = (x(0),x(1), . . . ,x(N−1))> ∈CN to a sequence by setting x(n) = 0 for all
n < 0 and n≥N. Furthermore, it is not hard to show that `2(Z) is a vector space (see
Exercise 2.13). For the restricted space `2(Z)⊂ CZ, it is now possible to introduce
an inner product that extends the one for CN . Indeed, one can show that

〈x|y〉 := ∑
n∈Z

x(n)y(n) (2.43)

is finite and hence well defined for any two signals x,y ∈ `2(Z) (see again
Exercise 2.13). From this point on, everything works as in the finite-dimensional
case CN . The inner product satisfies the Cauchy–Schwarz inequality (2.40), one can
define an angle as in (2.39), one can talk about signals being orthogonal, and so on.

2.2.3.5 The Space L2(R)

For the space CR of CT-signals, an inner product is defined in a similar fashion.
However, technically, the definitions become more sophisticated in the continuous
case, where summation becomes integration. In order to define an integral for a
signal f ∈ CR, it needs to fulfill certain integrability conditions, which in turn de-
pend on the notion of integration to be used. For example, the notion of the well-
known Riemann integral turns out to be too weak for many mathematical construc-
tions. The technical deficiencies in Riemann integration can be remedied with the
Lebesgue integral, which can be defined for a class of signals called measurable.
At this point, since we may assume that basically all signals that we encounter are
measurable, we do not want to go further into this issue. Similarly to the case of
DT-signals, the energy E(f) of a measurable signal f ∈ CR is defined by

E(f) :=
∫

t∈R
| f (t)|2dt. (2.44)

2.2 Signals and Signal Spaces 67

Furthermore, the space L2(R) ⊂ CR is defined to be the set of all signals of finite
energy:

L2(R) := { f : R→ C | f measurable and E(f)< ∞}. (2.45)

In mathematical terms, L2(R) is also referred to as the Lebesgue space3 of square-
integrable functions. Again, there are many CT-signals that do not have finite energy.
For example, any nonzero sinusoid has infinite energy. As with the DT case, it is not
hard to show that L2(R) is a vector space. In the CT case, the inner product is defined
by

〈 f |g〉 :=
∫

t∈R
f (t)g(t)dt (2.46)

for any f ,g ∈ L2(R). Again this makes it possible to introduce the geometric con-
cepts known from linear algebra.

2.2.3.6 The Space L2([0,1))

Finally, we want to consider another class of CT-signals of fundamental impor-
tance: the class of periodic signals. As already mentioned above, nonzero periodic
functions4 are not contained in L2(R). However, also for periodic functions one
can define a suitable signal subspace of CR that possesses an inner product. Re-
call from Section 2.2.1 that a signal f : R→ C is periodic with period λ ∈ R>0 if
f (t) = f (t +λ) holds for all t ∈R. A λ -periodic signal f can be transformed into a
1-periodic signal t 7→ f (λ ·t) by applying the linear transform t 7→ λ ·t. Hence, in the
following discussion, we only consider the case λ = 1. Obviously, any 1-periodic
function f is already known when restricted to the interval [0,1). In contrast, any
function g : [0,1)→ C can be extended in an obvious fashion to a 1-periodic func-
tion f : R→ C. In other words, there is a one-to-one correspondence between the
1-periodic functions in CR and the signal space C[0,1) := { f : [0,1)→ C}. Similar
to the nonperiodic case, one can define the energy E[0,1)(f) by

E[0,1)(f) :=
∫

t∈[0,1)
| f (t)|2dt (2.47)

and the space L2([0,1))⊂ C[0,1) by

L2([0,1)) := { f : [0,1)→ C | f measurable and E[0,1)(f)< ∞}. (2.48)

Furthermore, one can show that the inner product

〈 f |g〉 :=
∫

t∈[0,1)
f (t)g(t)dt (2.49)

3 From a strict technical point of view, L2(R) is defined as a quotient space, where all functions
that are zero almost everywhere are identified.
4 Strictly speaking, we mean here periodic functions that are not zero almost everywhere.

68 2 Fourier Analysis of Signals

is well defined for any f ,g ∈ L2([0,1)). Generalizing these definitions, one can in-
troduce a space L2([a,b)) with an inner product for any a,b ∈ R, a < b, which
consists of λ -periodic signals with λ = b−a.

2.2.3.7 Hilbert Spaces

In summary, we have introduced the signal spaces `2(Z), L2(R), and L2([0,1)),
which all possess an inner product similar to the one of the finite-dimensional vec-
tor space CN . All of these spaces are special cases of what is known as Hilbert
space. By definition, a Hilbert space is a vector space H equipped with an inner
product 〈·|·〉 : H×H→ C satisfying the three axiomatic conditions mentioned in
Section 2.2.3. Furthermore, one requires that a Hilbert space is complete in the
sense that every Cauchy sequence5 inH converges inH. Intuitively, a space is com-
plete if no points are missing from it. For example, the set of rational numbers is not
complete, because there are numbers such as

√
2 missing from it, even though one

can construct Cauchy sequences of rational numbers that converge to such irrational
numbers. As one can show, this nontrivial completeness condition is satisfied for the
signal spaces `2(Z), L2(R), and L2([0,1)). As we will see in the next sections, the
geometric concepts provided by the inner product help to develop our intuition and
to simplify the formulation of the Fourier transform.

A particularly important concept that generalizes from the finite-dimensional
space CN to arbitrary Hilbert spaces is the existence of orthonormal bases. Let I
be a countable set, then a subset (xi)i∈I of H is called an orthonormal basis (ON-
basis) if the following three conditions hold:

〈xi|x j〉= 0 for i, j ∈ I, i 6= j, (2.50)

||xi||2 = 1 for i ∈ I, (2.51)
x = ∑

i∈I
〈x|xi〉xi for x ∈ X . (2.52)

The first condition means that any two distinct elements xi and x j are orthogonal,
and the second one that each of the elements xi has unit energy. The third condition,
also referred to as the completeness condition, requires that any element of x ∈
H can be represented as a weighted superposition of the basis vectors xi, i ∈ I.
Intuitively, completeness means that everything in H can be captured by the basis
vectors. Furthermore, the weights are given by the inner products 〈x|xi〉. One can
show that for a Hilbert space there always exists an ON-basis and, in general, even
a very large number of different ON-bases. As we will see, the Fourier transforms
for DT-signals and periodic CT-signals are based on very specific choices of such
ON-bases.

5 A Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the
sequence progresses. More precisely, given any small positive distance, all but a finite number of
elements of the sequence are less than that given distance from each other.

2.3 Fourier Transform 69

2.3 Fourier Transform

The Fourier transform is the most important mathematical tool in audio signal
processing. As discussed in Section 2.1, the Fourier transform converts a time-
dependent signal into a frequency-dependent function. The inverse process is re-
alized by the Fourier representation, which represents a signal as a weighted su-
perposition of independent elementary functions. Each of the weights expresses the
extent to which the corresponding elementary function contributes to the original
signal, thus revealing a certain aspect of the signal. Because of their explicit physical
interpretation in terms of frequency, sinusoids are particularly suited to serve as el-
ementary functions. Each of the weights is then associated to a frequency value and
expresses the degree to which the signal contains a periodic oscillation of that fre-
quency. The Fourier transform can be regarded as a way to compute the frequency-
dependent weights.

In the following, depending on the underlying signal space, we introduce sev-
eral variants of the Fourier transform and its inverse, the Fourier representation.
We start with the signal space L2([0,1)) consisting of 1-periodic finite-energy CT-
signals (Section 2.3.1). We continue by showing how the formulation of the Fourier
transform in terms of complex-valued exponential functions (instead of real-valued
sinusoids) makes the mathematical handling much more convenient (Section 2.3.2).
We then discuss the Fourier transform for the signal space L2(R) (Section 2.3.3)
as well as for the signal space `2(Z) (Section 2.3.4). It is important to note that
each of these signal spaces possesses its own Fourier transform and the mathemati-
cal concepts needed to prove the existence and properties of the respective Fourier
transform are different for the variants. While giving mathematically rigorous defi-
nitions of the various Fourier transforms, we do not provide the proofs. In particular
for the analog case, the proofs require results from measure and integration theory,
which are outside the scope of this book. Instead, we will try to give some intuitive
explanations while highlighting the meaning and the interrelations of the various
variants.

2.3.1 Fourier Transform for Periodic CT-Signals

We start our discussion by considering the case of all real-valued signals in
L2([0,1)). Let us denote this subspace by L2

R([0,1)) ⊂ L2([0,1)). Note that any
constant as well as any (1/k)-periodic function for an integer k ∈ N is 1-periodic
too. The sinusoid t 7→

√
2cos(2πkt) may be regarded as the archetype of a (1/k)-

periodic function, which represents a pure tone of k Hz. The factor
√

2 is introduced
to normalize the sinusoid to have unit energy or, equivalently, to have norm one (see
Exercise 2.14). Of course, also the sinusoid t 7→

√
2sin(2πkt) or all phase-shifted

versions t 7→
√

2cos(2π(kt−ϕ)) have the same interpretation. One important the-
orem in Fourier analysis is that any real-valued signal f ∈ L2

R([0,1)) can be written
as a superposition

70 2 Fourier Analysis of Signals

P
ha

se
M

ag
ni

tu
de

Time (seconds)

Time (seconds)

Frequency (Hz)
1 2 3 4 5 6 7 8

1

0.5

0
0

(a) (b) (c)

Frequency (Hz)
1 2 3 4 5 6 7 8

1

0.5

0
0

Fig. 2.16 (a) Analog 1-periodic signal. (b) Decomposition of the signal into three sinusoids.
(c) Magnitude and phase coefficients of the Fourier transform.

f (t) = d0 + ∑
k∈N

dk
√

2cos(2π(kt−ϕk)) (2.53)

of 1-periodic sinusoids with suitable amplitudes dk ∈ R≥0 and phases ϕk ∈ [0,1).
The superposition exhibits the frequency content of f as follows: the coefficient dk,
also referred to as the magnitude, reflects the contribution of the sinusoid of k Hz,
whereas the coefficient ϕk, also referred to as the phase, shows how the sinusoid has
to be shifted to best “explain” or “match” the original signal. Note that the phase co-
efficients are determined only up to an integer and can therefore be assumed to lie in
the interval [0,1). Figure 2.16 shows an example of a 1-periodic signal and the re-
sulting magnitude and phase coefficients. The superposition in (2.53) is the Fourier
representation of the signal f , whereas the magnitude and phase coefficients are
called the Fourier coefficients.

In our first reformulation, we exploit the fact that any sinusoid with arbitrary
phase can be represented as a weighted sum of two specific sinusoids of the same
frequency having fixed phases. Indeed, using the trigonometric identity cos(α −
β) = cos(α)cos(β)+ sin(α)sin(β) for arbitrary angles α and β , one obtains

cos(2π(kt−ϕ)) = cos(2πkt)cos(2πϕ)+ sin(2πkt)sin(2πϕ) (2.54)

when setting α = 2πkt and β = 2πϕ . Let cosk,sink ∈ L2
R([0,1)) be the two specific

sinusoids defined by

cosk(t) :=
√

2cos(2πkt), (2.55)

sink(t) :=
√

2sin(2πkt), (2.56)

for k ∈ N. Then plugging (2.54) into (2.53), one obtains the following Fourier rep-
resentation, which is also known as the Fourier series:

f (t) = a0 + ∑
k∈N

akcosk(t)+ ∑
k∈N

bksink(t). (2.57)

2.3 Fourier Transform 71

It readily follows that the Fourier coefficients a0, ak, and bk are given by

a0 = d0, (2.58)
ak = cos(2πϕk)dk, (2.59)
bk = sin(2πϕk)dk (2.60)

for k ∈ N. Vice versa, the magnitudes and phases can be computed from the ak and
bk via

dk =
√

a2
k +b2

k , (2.61)

ϕk =
1

2π
atan2(bk,ak). (2.62)

The atan2 function, which is a variant of the inverse of the tangent function, will be
explained in Section 2.3.2.2. A nice property of the Fourier representation in (2.57)
is that its Fourier coefficients can be easily computed using Hilbert space theory. To
this end, one needs to show that the set

{1,cosk,sink|k ∈ N} , (2.63)

is an ON-basis of the Hilbert space L2
R([0,1)), where 1 denotes the all-one signal

(i.e., 1(t) = 1 for t ∈ [0,1)). The two conditions specified in (2.50) and (2.51) follow
from trigonometric identities (see Exercise 2.14). Only the completeness condition
specified in (2.52) is harder to show and requires some more involved mathematical
tools that are outside the scope of this book. From (2.52), one not only recovers the
Fourier series in (2.57), but also a formula for how to compute the Fourier coeffi-
cients as inner products of the signal f with the basis functions of the ON-basis:

a0 = 〈 f |1〉=
∫

t∈[0,1)
f (t)dt, (2.64)

ak = 〈 f |cosk〉=
√

2
∫

t∈[0,1)
f (t)cos(2πkt)dt, (2.65)

bk = 〈 f |sink〉=
√

2
∫

t∈[0,1)
f (t)sin(2πkt)dt. (2.66)

2.3.2 Complex Formulation of the Fourier Transform

As often in mathematics, the transfer of a problem from the real into the complex
world can lead to significant simplifications. A famous example is the problem of
finding solutions of polynomial equations. The equation z2 − 1 = 0 has the two
solutions z = +1 and z = −1, however the equation z2 + 1 = 0 does not have any
solution when only considering real numbers. Extending R to C, however, one also
finds for the second equation two solutions given by z = +i and z = −i, where

72 2 Fourier Analysis of Signals

Re

Im

Re

Im

Re

Im

(a) (b) (c)

Fig. 2.17 Illustration of the complex exponential function.

i denotes the complex unit. Considering polynomial equations over C makes the
problem much easier to understand. In general, an extension of the real numbers
to the complex numbers not only gives a broader view but also provides additional
tools and structures. For example, the complex multiplication as defined by (2.34),
which extends the usual multiplication of real numbers, yields such a powerful tool.
Also, the trigonometric identities are considerably simplified when using a complex
formulation.

2.3.2.1 Exponential Function

Converting the Fourier transform from the real into the complex domain has several
advantages. First, the concept of Fourier series can be naturally generalized from
real-valued to complex-valued signals. Second, one obtains compact and elegant
formulas, where the magnitude and phase are naturally expressed by a single com-
plex Fourier coefficient. Recall from Section 2.1.1.4 that the exponential function
combines the two real-valued sinusoids given by the cosine and sine into a single
complex-valued function:

exp(iγ) = cos(γ)+ isin(γ). (2.67)

This equation, which can be used as a defining relation, is also known as Euler’s for-
mula. However, there are many other ways in which the exponential function may
be characterized, e.g., in terms of a power series expansion or by means of a differ-
ential equation. The exponential function has some important properties, which are
also illustrated by Figure 2.17:

exp(iγ) = exp(i(γ +2π)), (2.68)
|exp(iγ)| = 1, (2.69)

exp(iγ) = exp(−iγ), (2.70)
exp(i(γ1 + γ2)) = exp(iγ1)exp(iγ2) (2.71)

2.3 Fourier Transform 73

for γ,γ1,γ2 ∈R. For a proof of these properties, we refer to Exercise 2.15. The prop-
erty (2.68) means that the exponential function is 2π-periodic. The property (2.69)
implies that all values of this function live on the unit circle of C. By successively in-
creasing the angle γ starting with γ = 0 and ending with γ = 2π , one travels exactly
once along the unit circle in a counterclockwise fashion. The property (2.70) shows
that complex conjugation results in changing the direction of this travel. Finally, the
property (2.71) is the complex formulation of the real-valued trigonometric identi-
ties that hold for the cosine and sine functions (see also Exercise 2.15).

2.3.2.2 Polar Coordinates

A complex number c = a+ ib ∈ C is specified by its Cartesian coordinates (a,b) ∈
R2 in the two-dimensional plane. The complex exponential function makes it pos-
sible to represent a complex number in the form of polar coordinates, which we
discussed in Section 2.1.1.4. In the polar coordinate system, the point c = a+ ib
is determined by the distance |c| from the origin and the angle γ (in radians) be-
tween the positive horizontal axis and the point given by the coordinates (a,b) (see
Figure 2.4). Repeating the formulas from (2.6) and (2.7), we obtain the following
relations between Cartesian and polar coordinates:

|c| =
√

a2 +b2, (2.72)
γ = atan2(b,a), (2.73)
a = |c| Re(exp(iγ)) = |c| cos(γ), (2.74)
b = |c| Im(exp(iγ)) = |c| sin(γ). (2.75)

The atan2 function is a generalization of the arctangent function (denoted as
arctan), which is the inverse of the principal branch of the tangent function (see
Figure 2.18b). The arctan function requires a real-valued argument v ∈ R and com-
putes an angle arctan(v) ∈ (−π/2,π/2) (given in radians), which is called the prin-
cipal value. As opposed to the arctan function, the atan2 function has two real-
valued arguments. This makes it possible to capture the quadrant of the computed
angle, which is not possible for the single-argument arctan function. In terms of the
standard arctan function, the atan2 function is given by

atan2(b,a) :=

arctan(b/a), a > 0,
arctan(b/a)+π, b≥ 0, a < 0,
arctan(b/a)−π, b < 0, a < 0,
+π/2, b > 0, a = 0,
−π/2, b < 0, a = 0,
undefined b = 0, a = 0

(2.76)

for (a,b) ∈R2 (see Figure 2.18c). The angle computed by the atan2 function is pos-
itive for complex numbers c = a+ ib with positive imaginary part b > 0 (upper half-
plane) and negative for those with negative imaginary part b < 0 (lower half-plane).

74 2 Fourier Analysis of Signals

/2 /2

/2

/2

(a)

(b)

(c)

atan2 1,0 /2

Re

Im

atan2 1,0 /2

atan2 0,1 0atan2 0, 1

atan2 ,
Limit of atan2 from
this side is

Limit of atan2 from
this side is

Fig. 2.18 (a) Tangent function with different branches. (b) Arctangent function inverting the prin-
cipal branch of the tangent function. (c) Illustration of the values assumed by the atan2 function.

The range (−π,π] of angles can be mapped to [0,2π) by adding 2π to negative
values. Further properties of the atan2 function are discussed in Exercise 2.17.

2.3.2.3 Complex Fourier Series

We are now ready for the complex formulation of the Fourier series. To this end,
we replace in (2.57) the real-valued sinusoids cosk and sink defined for k ∈N by the
complex-valued exponential functions expk : [0,1)→ C defined by

expk(t) := exp(2πikt). (2.77)

Obviously, expk is a (1/k)-periodic signal for k 6= 0 and expk is the all-one signal 1
for k = 0. Furthermore, as in (2.63), it can be shown that the set

{expk | k ∈ Z} (2.78)

is an ON-basis of the (complex) Hilbert space L2[0,1). The properties ||expk|| = 1
for k ∈Z and 〈expk|exp`〉= 0 for k 6= `, k, `∈Z, are shown in Exercise 2.16. Again,

2.3 Fourier Transform 75

as in the real-valued case, the completeness property is more difficult to prove and
is not discussed in this book. The resulting expansion of a signal f ∈ L2([0,1)) with
respect to this ON-basis leads to the equality6

f (t) = ∑
k∈Z

ckexpk(t) = ∑
k∈Z

ck exp(2πikt), (2.79)

which is also referred to as the (complex) Fourier series. The corresponding (com-
plex) Fourier coefficients ck ∈ C are given by

ck = 〈 f |expk〉=
∫

t∈[0,1)
f (t)exp(2πikt)dt =

∫
t∈[0,1)

f (t)exp(−2πikt)dt, (2.80)

where we used (2.70) in the last equation. As in (2.11), the function

f̂ : Z→ C, f̂ (k) := ck (2.81)

is called the Fourier transform of f ∈ L2([0,1)). Note that, in this case, a 1-periodic
continuous-time signal f is mapped to a discrete-time signal f̂ . Furthermore, one can
show that the Fourier transform is energy preserving in the sense that the energy of
f̂ is the same as the energy of f :

|| f ||L2([0,1)) = || f̂ ||`2(Z). (2.82)

At this point, using the signal spaces as subscripts of the norms, we want to em-
phasize that the energy of f̂ is measured in the space `2(Z) and the energy of f
is measured in L2([0,1)). Mathematically, such an energy-preserving map between
Hilbert spaces is also called an isometry. As a consequence, the inverse mapping
f̂ 7→ f given by the Fourier series (2.79) is again an isometry. We will see that the
Fourier transforms for the other finite-energy signal spaces have similar properties.

2.3.2.4 Relation Between Complex and Real Fourier Series

Note that the complex Fourier series can be used to represent complex-valued sig-
nals, thus extending the Fourier series of (2.57) for real-valued signals. Being a
special case of a complex-valued function, a real-valued signal f ∈ L2

R([0,1)) ⊂
L2([0,1)) can also be represented using a complex Fourier series. In this case, each
signal value f (t) coincides with its complex conjugate f (t). Using the computation
rules for complex numbers (see Exercise 2.12) and (2.70), one obtains

∑
k∈Z

ckexpk(t) = f (t) = f (t) = ∑
k∈Z

ckexpk(t) = ∑
k∈Z

ckexp−k(t). (2.83)

6 Strictly speaking, this equality only holds for almost all t ∈ [0,1). In the following, even though
a bit sloppy in a strict mathematical sense, we do not further mention such issues.

76 2 Fourier Analysis of Signals

This implies c−k = ck for k ∈ Z. In other words, for real-valued signals, the coeffi-
cients with negative indices are redundant. Furthermore, the complex coefficients ck
of a real-valued signal relate to the real coefficients ak and bk of the Fourier series
in (2.57) in the following way:

a0 = c0, (2.84)
ak =

√
2Re(ck), (2.85)

bk = −
√

2Im(ck) (2.86)

for k ∈ N. To see this, one needs to use c−k = ck and the definitions (2.77) of expk,
(2.55) of cosk, and (2.56) of sink. Since the proof is an instructive example of how
to compute with complex numbers, we conduct the calculation in detail:

f (t) = ∑
k∈Z

ckexpk(t)

= c0 +
∞

∑
k=1

ckexpk(t)+
∞

∑
k=1

c−kexp−k(t)

= c0 +
∞

∑
k=1

(
ckexpk(t)+ ckexpk(t)

)
(2.87)

= c0 +
∞

∑
k=1

2Re
(
ckexpk(t)

)
= c0 +

∞

∑
k=1

(
2Re(ck)cos(2πkt)−2Im(ck)sin(2πkt)

)
= c0 +

∞

∑
k=1

√
2Re(ck)cosk(t)+

∞

∑
k=1

(
−
√

2Im(ck)
)
sink(t).

Comparing coefficients with (2.57) yields the assertion.
Finally, let us come back to our first version of the Fourier series in (2.53), where

we introduced the magnitude coefficients dk and phase coefficients ϕk. How are
these coefficients related to the complex Fourier coefficients ck in the case of real-
valued signals? This question can be easily answered when using (2.61) and (2.62)
in combination with the polar coordinate representation ck = |ck|exp(iγk) and the
above identities:

dk =
√

a2
k +b2

k =
√

2Re(ck)2 +2Im(ck)2 =
√

2 |ck|, (2.88)

ϕk =
1

2π
atan2(bk,ak) =

1
2π

atan2(−
√

2Im(ck),
√

2Re(ck))

=
1

2π
atan2(−Im(ck),Re(ck)) =−

γk

2π
. (2.89)

In the last equations, we used the fact that atan2 is invariant under scaling with a
nonzero constant and assumes the negative angle for the conjugate of a complex
number (see Exercise 2.17). These identities correspond to (2.14) and (2.15).

2.3 Fourier Transform 77

2.3.3 Fourier Transform for CT-Signals

The general idea of the Fourier transform carries over from the case of periodic
to the case of nonperiodic signals in L2(R). In the nonperiodic case, however, the
exponential functions expk of integer frequency k ∈ Z do not suffice to “describe” a
signal. Instead, one needs exponential functions

expω : R→ C, expω(t) := exp(2πiωt) (2.90)

for all frequencies ω ∈R. Then, replacing summation by integration one obtains the
following nonperiodic analog of the Fourier representation:

f (t) =
∫

ω∈R
cω expω(t)dω =

∫
ω∈R

cω exp(2πiωt)dω (2.91)

for t ∈R. The coefficients cω have the same interpretation as the Fourier coefficients
ck. The frequency-dependent function f̂ : R→ C defined by

f̂ (ω) := cω =
∫

t∈R
f (t)expω(t)dt =

∫
t∈R

f (t)exp(−2πiωt)dt (2.92)

is called the Fourier transform of f . Again, it can be shown that the Fourier
transform is energy preserving. In other words, if f ∈ L2(R), then f̂ ∈ L2(R) and
|| f ||L2(R) = || f̂ ||L2(R).

Strictly speaking, there are some mathematical issues that need to be considered
for the nonperiodic case. Recall that, in the periodic case, the elementary func-
tions expk have finite energy over the interval [0,1) and are therefore elements
of L2([0,1)). This is the reason why the Fourier transform and the Fourier repre-
sentation can be expressed by means of inner products. Unfortunately, this is no
longer the case for the nonperiodic case, since the elementary functions expω do
not have finite energy over the real time axis R and are therefore not elements in
the space L2(R). As a consequence, the inner product is not defined between a sig-
nal f ∈ L2(R) and expω . Furthermore, the integrals in (2.91) and (2.92) need to be
defined as limits over increasing finite integration domains. For example,

f̂ (ω) := lim
N→∞

∫
t∈[−N,N]

f (t)exp(−2πiωt)dt. (2.93)

Similarly, one has to define the Fourier representation. However, these technical
issues will not play any further role in this book. Furthermore, most of the signals we
consider in this book have compact support; i.e., they are zero outside an interval
of finite length. For such signals, no problems occur in the integrals even from a
strict mathematical point of view.

The Fourier representation in (2.91) yields a quite surprising result. It states that
every nonperiodic function of finite energy can be represented as a weighted (in-
finitesimal) superposition of periodic elementary frequency functions expω that
continue out to infinity without decaying. For example, even noise-like short-

78 2 Fourier Analysis of Signals

Time (seconds)

(a) (b)

Time (seconds)

Fig. 2.19 Interference of two sinusoids of similar frequency. (a) Constructive interference. (b) De-
structive interference.

duration sounds such as transients, which often occur in the attack phase of a tone,
can be represented by ceaselessly oscillating sinusoids.

2.3.3.1 Interference

In Section 2.1.2, we have already discussed some real as well as synthetic signals
to illustrate important properties of the Fourier transform. In the following, we take
a closer look at some of the encountered phenomena. Let us start with the example
from Figure 2.6b. Besides the two peaks, we could observe in the magnitude Fourier
transform | f̂ | a number of “ripples” of decreasing amplitude. Where do these rip-
ples come from? In the figure, the analog signal f is shown only for the time interval
[0,5] and is (implicitly) assumed to be zero outside this compact interval. The rip-
ples in the spectrum come from a phenomenon known as destructive interference,
where many different frequency components are involved for generating the com-
pact support of f .

In general, interference occurs when a wave is superimposed with another wave
of similar frequency. When a crest of one wave meets a crest of the other wave
at some point, then the individual magnitudes add up for a certain period of time,
which is known as constructive interference (see Figure 2.19a). Vice versa, when
a crest of one wave meets a trough of the other wave, then the magnitudes cancel
out for a certain period of time, which is known as destructive interference (see
Figure 2.19b).

Coming back to Figure 2.6b, one needs the sinusoids of frequency ω = 1 Hz and
ω = 5 Hz to generate the main components of the signal f within the interval [0,5].
Note that these two sinusoids also oscillate outside the visualized interval [0,5],
where the signal is assumed to be zero. Therefore, to cancel out these oscillations

2.3 Fourier Transform 79

Frequency (Hz) Time (seconds)

(a)

(b)

Fig. 2.20 (a) Gaussian function (left) and its Fourier transform (right). (b) Dirac sequence (left)
with corresponding Fourier transforms (right).

outside [0,5] by destructive interference, one needs to add many more sinusoids
of different frequencies and weights. These additional sinusoidal components are
reflected by the ripples. Interference effects are further discussed in Exercise 2.19
and in the subsequent examples.

2.3.3.2 Fourier Transform for Impulses

The synthetic signals shown in Figure 2.20 illustrate further properties of the Fourier
transform. First of all, the Gaussian function defined by the formula

f (t) = (2π)−
1
2 π
− 1

4 exp(−πt2) (2.94)

has the remarkable property that it coincides with its Fourier transform (see
Figure 2.20a). In particular, its Fourier transform is real-valued and positive. There-
fore, it agrees with its magnitude Fourier transform. The Fourier representation
(2.91) tells us that the Gaussian function is obtained as an (infinitesimal) weighted
superposition of periodic sine waves, where the weights are again given by the Gaus-
sian function. The next question we consider is how the Fourier transform behaves,
if we start to make the Gaussian function somewhat narrower (see Figure 2.20b).
This leads to the notion of a Dirac sequence, which is a sequence of functions
(fn)n∈N of norm || fn|| = 1 such that for increasing n the functions fn “concentrate”
more and more around the point t = 0. The limit of this sequence is the Dirac
delta function or impulse function (often denoted by the symbol δ), which can
be thought of as a function that is zero everywhere except for t = 0. At t = 0, it
has an infinitely narrow spike of infinite height, which integrates to a value of one.
Strictly speaking, this impulse is not a function, but a so-called distribution. As
illustrated by Figure 2.20b, the magnitude Fourier transform of a Dirac sequence
becomes broader and broader. This scaling property of the Fourier transform is
shown in Exercise 2.20. In the limit case, the Fourier transform approaches a con-

80 2 Fourier Analysis of Signals

Frequency (Hz)Time (seconds)

(a)

(b)

Fig. 2.21 Waveform and its magnitude Fourier transform for (a) a clapping sound and (b) white
noise.

stant function, where the magnitudes of all frequency components have the same,
yet infinitesimally small value.

The interpretation of this property is important in view of practical applications.
It says that impulse-like sounds such as a drum hit or a transient as occurring in the
attack phase of a musical tone (see Section 1.3.4) lead to a flat magnitude Fourier
transform with many small, yet nonzero Fourier coefficients. In other words, for
a sudden sharp sound, the signal’s energy is spread across the entire spectrum of
frequencies. This is also illustrated by Figure 2.21a, which shows the waveform and
its magnitude Fourier transform for a real clapping sound. Another type of sound
that results in an energy spread across the entire frequency spectrum are noise-like
signals. Generally speaking, random signals such as white noise also remain random
when transformed into the Fourier domain. For example, Figure 2.21b shows white
Gaussian noise and its magnitude Fourier transform, which also looks like noise that
is equally spread over the entire frequency range.

2.3.3.3 Translation and Modulation

As a final example, which is shown in Figure 2.22, we consider the rectangular
function

f (t) :=
{

1, if −0.5≤ t ≤ 0.5,
0, otherwise. (2.95)

Its Fourier transform is the sinc function, which is defined by

sinc(t) :=
{ sinπt

πt , if t 6= 0,
1, if t = 0.

(2.96)

For the proof of this fact, we refer to Exercise 2.21. The rectangular and the sinc
function play an important role in the sampling theorem (see Exercise 2.28). In the
case that the rectangular function is centered around t = 0, its Fourier transform is

2.3 Fourier Transform 81

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

Frequency (Hz) Frequency (Hz)

Fig. 2.22 Behavior of Fourier transform under translations. From left to right, the signal as well as
the magnitude, real part, and imaginary part of the Fourier transform are shown. (a) Rectangular
function. (b) Translation by one second. (c) Translation by five seconds.

a real-valued function (see Figure 2.22a). However, this is no longer the case if we
start to shift the rectangle in time. For example, translating the rectangular function
one second to the right, as illustrated by Figure 2.22b, leaves the magnitude of the
Fourier transform unchanged. However, the translation has a significant impact on
the phase as well as on the real and imaginary parts of the Fourier transform. This
again demonstrates that time information is not revealed by the magnitude, but that
it is encoded in the phase of the Fourier transform. Let us have a more general look
at this phenomenon. Let f ∈ L2(R) be a signal, then the function ft0 defined by

ft0(t) := f (t− t0) (2.97)

is called the translation of f by t0 ∈ R, and the function f ω0 defined by

f ω0(t) := exp(2πiω0t) f (t) (2.98)

is called the modulation of f by ω0 ∈ R. It is not hard to show (Exercise 2.22) that
for the Fourier transform one obtains

f̂t0(ω) = exp(−2πiωt0) f̂ (ω) (2.99)

and
f̂ ω0(ω) = f̂ (ω +ω0). (2.100)

In other words, a translation of the signal in the time domain leads to a modulation
in the Fourier domain, and vice versa.

82 2 Fourier Analysis of Signals

2.3.4 Fourier Transform for DT-Signals

We finally introduce the Fourier transform for the signal space `2(Z), which consists
of the finite-energy DT-signals. Recall from (2.32) that the most common discretiza-
tion procedure to transform a CT-signal f : R→ R into a DT-signal x : Z→ R is
equidistant sampling, where the samples are defined by x(n) = f (n ·T), n ∈ Z, for a
given sampling rate Fs = 1/T and sampling period T > 0.

Let x ∈ `2(Z) be an arbitrary DT-signal of finite energy, then the Fourier repre-
sentation of x is

x(n) =
∫

ω∈[0,1)
cω expω(n)dω =

∫
ω∈[0,1)

cω exp(2πiωn)dω (2.101)

for n ∈ Z. Furthermore, the coefficients cω are given by the frequency-dependent
function x̂ : [0,1)→ C defined by

cω = x̂(ω) := ∑
n∈Z

x(n)expω(n) = ∑
n∈Z

x(n)exp(−2πiωn), (2.102)

which is called the Fourier transform of x. Both the Fourier representation as well
as the Fourier transform are nontrivial facts that require mathematical proofs. Al-
though similar in nature, the Fourier transform for DT-signals cannot be directly
derived from the Fourier transform for CT-signals. However, as we will see, the
case of DT-signals can be regarded to be dual to the case of periodic CT-signals.
Also, the Fourier transform of a sampled analog signal can be regarded as a kind of
approximation of the Fourier transform of the analog signal.

2.3.4.1 Periodicity and Aliasing

The Fourier representation (2.101) says that the signal x can be represented as an in-
finitesimal superposition of the elementary frequency functions expω sampled with
T = 1 (see (2.32)). In this case, only the frequencies ω ∈ [0,1) are needed. Intu-
itively, the restriction of the frequency parameters to the set [0,1) can be explained
as follows: For an integer frequency parameter k ∈ Z and sampling points n ∈ Z one
has exp(2πikn) = 1. Therefore,

expω+k(n) = exp(2πi(ω + k)n) = exp(2πiωn)exp(2πikn) = expω(n). (2.103)

In other words, two exponential functions with an integer difference in their fre-
quency parameter coincide on the set of sampling points n ∈ Z. Consequently, they
cannot be distinguished when considered as 1-sampled DT-signals. We have en-
countered this aliasing phenomenon already in Figure 2.14 of Section 2.2.2. Using
a sampling rate of 1 Hz, the Nyquist frequency is ω = 0.5 Hz. All oscillations
with a frequency above this rate are not captured by 1-sampling and lead to the

2.3 Fourier Transform 83

Fig. 2.23 Sinusoids of differ-
ent frequencies ω sampled at
a rate of Fs = 1 Hz. (a) ω =
0.3 Hz. (b) ω = 0.5 Hz.
(c) ω = 0.7 Hz.

Time (seconds)

(a)

(b)

(c)

same samples as oscillations of lower frequencies. This fact is also illustrated by
Figure 2.23.

Next, let us have a closer look at the Fourier transform (2.102). Note that (2.103)
implies that the function ω 7→ exp(−2πiωn) is 1-periodic for all n ∈ Z. Being a
superposition of 1-periodic functions, also the Fourier transform x̂ is 1-periodic.
Furthermore, one can show that the Fourier transform is energy preserving, i.e.,
||x||`2(Z) = ||x̂||L2([0,1)). Note that this is exactly the reverse of the situation we have
seen for 1-periodic signals f ∈ L2([0,1)), where the Fourier transform was a DT-
signal f̂ ∈ `2(Z). Replacing the frequency parameter ω by the time parameter t,
the formula (2.102) for the Fourier transform of `2(Z) becomes (up to a sign in the
exponential function) the formula (2.79) for the Fourier representation of L2([0,1)).
A similar relation holds between the Fourier representation (2.101) for `2(Z) and
the Fourier transform (2.80) for L2([0,1)). From this it also follows that the Fourier
transform for `2(Z) applied to the Fourier transform f̂ of a signal f ∈ L2([0,1)) gives
back the 1-periodic signal f up to a sign, i.e., ˆ̂f (t) = f (−t). In mathematics, the
close relation between the spaces `2(Z) and L2([0,1)) and their Fourier transforms
is also referred to as duality.

2.3.4.2 Riemann Approximation

Let us now investigate the relation between the Fourier transform of L2([0,1)) and
the one of `2(Z). Starting with a CT-signal f ∈ L2(R), let x be its T -sampled version.
Then one obtains

84 2 Fourier Analysis of Signals

Fig. 2.24 Approximation
of the integral of an analog
signal by a Riemann sum
obtained from a 1-sampling.
(a) Integral. (b) Riemann
sum.

Time (seconds)
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

(a)

(b)

x̂(ω) = ∑
n∈Z

x(n) exp(−2πiωn)

= ∑
n∈Z

f (nT) exp(−2πiωn)

≈
∫

t∈R
f (tT)exp(−2πiωt)dt (2.104)

=
1
T

∫
t∈R

f (t)exp
(
−2πiωt

T

)
dt

=
1
T

f̂
(

ω

T

)
,

where we have used the substitution rule for indefinite integrals to replace tT by t.
The approximation sign expresses that the value x̂(ω) obtained by a sum has roughly
the same size as the value f̂ (ω/T)/T obtained by an integral. This is a special case
of the Riemann sum approximation, which we explain next.

Recall that the integral of a function is the (weighted) area determined by the
function’s graph and the time axis. In case of a complex-valued function, the
complex-valued integral is defined by the integral of the real part and of the imag-
inary part of the function. For many functions, the integral can be approximated
by partitioning the time axis into small intervals, picking the function value at the
mid-point of each interval, and then summing up the interval lengths weighted by
the respective value (see Figure 2.24). The resulting sum is also called the Riemann
sum for the integral. The accuracy of the approximation very much depends on the
resolution of the partition (the finer, the better the approximation) and the properties
of the integrand (the slower it oscillates, the better the approximation).

In our case, the intervals of the partitioning have length one. Furthermore, the
integrand is the function h : R→ C defined by h(t) := f (tT)exp(−2πiωt), which
basically is the product of the signal and an exponential function. Because of alias-
ing effects, in particular arising from the factor exp(−2πiωt), the Riemann sum
does not yield a meaningful approximation for ω ∈R\

[
− 1

2 ,
1
2

]
. In particular, while

x̂ is 1-periodic, the function ω 7→ f̂ (ω/T)/T is nonperiodic and approaches zero for
ω→±∞. Within the interval

[
− 1

2 ,
1
2

]
, however, in particular when approaching the

2.3 Fourier Transform 85

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

(d)

Fig. 2.25 Relation between the Fourier transform of a CT-signal and that of the DT-signal ob-
tained by 1-sampling. Each row shows a signal (left) and its magnitude Fourier transform (right).
(a) Analog chirp signal with λ = 0.003 and (b) its 1-sampled version. (c) Analog chirp signal
with λ = 0.004 and (d) its 1-sampled version showing strong aliasing artifacts around the Nyquist
frequency.

frequency ω = 0, the Riemann sum x̂(ω) approximates the value f̂ (ω/T)/T with
increasing accuracy.

2.3.4.3 Chirp Signal Example

To further illustrate the relation between CT- and DT-signals and their Fourier trans-
forms, we consider a signal in which the frequency increases with time. Such a sig-
nal is also called a chirp signal or sweep signal. In particular, for a given positive
constant λ > 0, the function

f (t) :=
{

sin(λ ·πt2), for t ≥ 0,
0, for t < 0, (2.105)

defines a linear chirp, which is a sinusoidal wave that increases in frequency lin-
early over time. It can be shown that the instantaneous frequency at time t = t0
is ω0 = λ t0, which is the derivative of the phase divided by 2π . Figure 2.25 shows
two chirp signals for different values of λ . In the first case (Figure 2.25a), the main
frequencies are below ω ≤ 0.4, which is also shown by the magnitude Fourier trans-
form. As a result, there is little aliasing when 1-sampling the signal (Figure 2.25b).

86 2 Fourier Analysis of Signals

The Fourier transform x̂ of the resulting DT-signal x yields a good approximation
of the Fourier transform f̂ in the range [0,0.5). Note that x̂ is 1-periodic whereas
f̂ is not. Now, increasing the constant λ results in a chirp signal with frequency
components above the Nyquist frequency of 0.5 (Figure 2.25c). Therefore, when
1-sampling the signal, there are aliasing artifacts where frequencies 0.5 + ω are
identified with frequencies 0.5−ω (see Figure 2.25d). In this case, the Riemann
sum (2.104) yields a poor approximation of the actual integral.

2.4 Discrete Fourier Transform (DFT)

Computing the Fourier transform of signals involves the evaluation of integrals or in-
finite sums, which is, in general, computationally infeasible. In practice, as we have
already discussed in Section 2.1.3, one typically approximates the Fourier transform
by finite sums. Furthermore, the Fourier transform is evaluated only for a finite num-
ber of frequencies. In this section, we show how the finite sums and the Fourier co-
efficients must be chosen to obtain a linear transform known as the discrete Fourier
transform (DFT). The important point is that the DFT can be computed efficiently
by means of an algorithm, the famous fast Fourier transform (FFT). The FFT is
considered one of the most important algorithms, being widely used for many ap-
plications in engineering and mathematics. In the following, we introduce the case
of finite-length signals and their Fourier transform, which can then be formulated
in terms of the DFT. We then describe in detail the FFT algorithm and discuss its
computational complexity.

2.4.1 Signals of Finite Length

To derive the DFT, we start to reinvestigate the Fourier transform for a DT-signal
x ∈ `2(Z). We assume that the energy of x is concentrated in the interval [0 : N−1],
i.e., x(n)≈ 0 for n ∈ Z\ [0 : N−1]. Then we obtain from (2.102)

x̂(ω) = ∑
n∈Z

x(n)expω(n)≈
N−1

∑
n=0

x(n)expω(n) (2.106)

for a frequency parameter ω . Recall that since x̂ is 1-periodic only the frequencies
ω ∈ [0,1) need to be considered. In practice, one often computes the Fourier trans-
form only for a finite subset of frequencies. In particular, fixing a number K ∈ N,
one considers the frequencies ω = k/K for k ∈ [0 : K−1], which corresponds to a
1/K-sampling of the frequency space [0,1). Even though the number N of points
in time and the number K of frequencies are not related at all, it is convenient to
assume N = K. This assumption, as we will see, leads to a compact matrix-theoretic

2.4 Discrete Fourier Transform (DFT) 87

formulation of the Fourier transform along with an efficient algorithm for computing
the transform.

In the following, we assume N = K. Furthermore, let x ∈ `2(Z) be a sig-
nal that is zero outside the interval [0 : N−1] so that one obtains equality in
(2.106). Such DT-signals are also referred to as finite-length signals, where N
is the length of the signal. Each such signal x can be identified with a vector
x := (x(0),x(1), . . . ,x(N−1))> ∈CN . This way, we can regard CN as a subspace of
`2(Z), where the inner product (2.43) of `2(Z) reduces to the inner product (2.37)
of CN . Not all frequencies ω ∈ [0,1) are needed to characterize a signal of length N.
Indeed, only the frequencies k/N for k ∈ [0 : N−1] suffice to represent such signals.
To see this, we define a vector uk ∈ CN for each k ∈ [0 : N−1] by setting

uk(n) := expk/N(n) = exp(2πikn/N), (2.107)

n ∈ [0 : N−1]. In other words, the vector uk consists of the first N samples of the
exponential function expk/N . Then (2.106) can be expressed as

x̂(k/N) =
N−1

∑
n=0

x(n)expk/N(n) = x>uk = 〈x|uk〉. (2.108)

Thus, the Fourier transform of a signal of length N can be obtained by inner prod-
ucts with the sampled and truncated exponential functions uk. We now show that
these exponential functions (after rescaling) form an ON-basis of the Hilbert space
CN . First, we define the number ρN := exp(2πi/N). Obviously, ρN

N = 1 and ρk
N 6= 1

for k ∈ [1 : N−1]. Such a number is also called a primitive Nth root of unity (see
also Exercise 2.23). Using the properties (2.70) and (2.71) of the exponential func-
tion, one obtains

〈uk|u`〉 =
N−1

∑
n=0

exp(2πikn/N)exp(2πi`n/N) (2.109)

=
N−1

∑
n=0

exp(2πi(k− `)n/N) =
N−1

∑
n=0

ρ
(k−`)n
N . (2.110)

for k, ` ∈ [0 : N−1]. In the case k = `, this implies ||uk||2 = 〈uk|uk〉= N. In the case
k 6= `, one has ρ

(k−`)
N 6= 1. Therefore, one can apply the sum formula

N−1

∑
n=0

an = (1−aN)/(1−a) (2.111)

for geometric series, which holds for any complex number a 6= 1 (see Exercise 2.18).
Setting a = ρ

(k−`)
N , one obtains

〈uk|u`〉=
1−ρ

N(k−`)
N

1−ρ
(k−`)
N

= 0. (2.112)

88 2 Fourier Analysis of Signals

This shows that
{uk/
√

N|k ∈ [0 : N−1]} (2.113)

is an ON-basis of the complex Hilbert space CN . In particular, from (2.52), one
obtains the Fourier representation

x =
1
N

N−1

∑
k=0
〈x|uk〉uk. (2.114)

In other words, a finite-length signal can be represented as a weighted superposi-
tion of sampled and truncated exponential functions uk, where the weights are the
Fourier coefficients given by (2.108). Next, we show how the Fourier transform and
Fourier representation for finite-length signals relate to the discrete Fourier trans-
form (DFT).

2.4.2 Definition of the DFT

Recall from (2.108) that the Fourier coefficients of a signal x of finite length N are
given by

X(k) := 〈x|uk〉=
N−1

∑
n=0

x(n)exp(−2πikn/N) (2.115)

for k ∈ [0 : N−1]. Let X := (X(0),X(1), . . . ,X(N − 1))> ∈ CN denote the vector
of Fourier coefficients. By definition, the discrete Fourier transform (DFT) is the
mapping CN→CN that maps the input vector x to the output vector X. From (2.115)
it is clear that this is a linear mapping, which can be described by the (N×N) matrix
DFTN given by

DFTN(n,k) = exp(−2πikn/N). (2.116)

One crucial observation is that there are many relations between the num-
bers exp(2πikn/N) for k,n ∈ [0,N − 1]. Using the primitive Nth root of unity
ρN = exp(2πi/N) as well as the relations ρkn

N = exp(2πikn/N) and σN := ρN =
exp(−2πi/N), one obtains DFTN(n,k) = σ kn

N . This yields the famous matrix

DFTN =

1 1 1 · · · 1
1 σN σ2

N · · · σ
N−1
N

1 σ2
N σ4

N · · · σ
2(N−1)
N

...
...

...
. . .

...
1 σ

N−1
N σ

2(N−1)
N · · · σ

(N−1)(N−1)
N

 . (2.117)

Obviously, DFTN is a symmetric matrix. Its columns are given by uk and its rows
by uk

>. In summary, we have seen that the Fourier transform x̂ of a DT-signal x of
finite length N can be computed for frequencies ω = k/N, k ∈ [0 : N−1] by a single
matrix–vector product X = DFTN ·x.

2.4 Discrete Fourier Transform (DFT) 89

The Fourier representation given by (2.114) is the inverse of the Fourier trans-
form. For a spectral vector X, it outputs the original signal x. Again, being a linear
mapping CN → CN , the Fourier representation is given by a matrix, the inverse of
the matrix DFTN . From (2.113) it directly follows that

DFT−1
N =

1
N

DFTN
>
=

1
N

1 1 1 · · · 1
1 ρN ρ2

N · · · ρ
N−1
N

1 ρ2
N ρ4

N · · · ρ
2(N−1)
N

...
...

...
. . .

...
1 ρ

N−1
N ρ

2(N−1)
N · · · ρ

(N−1)(N−1)
N

 . (2.118)

In other words, the inverse essentially coincides with the DFT matrix up to some
normalizing factor and complex conjugation.

2.4.3 Fast Fourier Transform (FFT)

Note that the usual computation of the matrix–vector product X = DFTN ·x requires
O(N2) multiplications and additions, which is too many for most applications. For
example, having a signal with one thousand samples (N = 103) would require al-
ready a number of operations on the order of a million (N2 = 106). In many cases
one has to deal with much larger N � 105, which makes a naive computation of a
DFT infeasible. The good news is that the DFT matrix is highly structured, which
can be exploited when computing a matrix–vector product. The main idea lies in a
factorization of the DFT matrix into a product of O(logN) sparse matrices, each of
which can be evaluated with O(N) operations. This leads to an efficient algorithm,
the so-called fast Fourier transform (FFT), which only requires O(N logN) multi-
plications and additions. The FFT algorithm was originally found by Gauss in about
1805 and then rediscovered by Cooley and Tukey in 1965.

The FFT algorithm is based on the observation that applying a DFT of even
size N = 2M can be expressed in terms of applying two DFTs of half the size
M. Let σN = exp(−2πi/N) be the primitive root of unity used in DFTN so that
DFTN(n,k) = σ kn

N for n,k ∈ [0 : N−1]. Similarly, we define σM = exp(−2πi/M)
so that DFTM(n,k) = σ kn

M for n,k ∈ [0 : M−1]. Obviously, σM = σ2
N . Let x ∈ CN

be an input vector and X = DFTN · x as before. Then for the first M entries X(k),
k ∈ [0 : M−1] one has

90 2 Fourier Analysis of Signals

X(k) =
N−1

∑
n=0

x(n)σ kn
N (2.119)

=
M−1

∑
n=0

x(2n)σ k2n
N +

M−1

∑
n=0

x(2n+1)σ k(2n+1)
N (2.120)

=
M−1

∑
n=0

x(2n)σ kn
M +σ

k
N

M−1

∑
n=0

x(2n+1)σ kn
M . (2.121)

In other words, the first M entries of X are obtained by first applying a DFTM on
the even-indexed entries of x as well as a DFTM on the odd-indexed entries of x.
The final result is then obtained by adding up the two output vectors, where the
second one is adjusted by the factors σ k

N , which are also known as twiddle factors.
Similarly, for the last M entries X(M+ k), k ∈ [M−1] one has

X(M+ k) =
N−1

∑
n=0

x(n)σ (M+k)n
N (2.122)

=
M−1

∑
n=0

x(2n)σ (M+k)2n
N +

M−1

∑
n=0

x(2n+1)σ (M+k)(2n+1)
N (2.123)

=
M−1

∑
n=0

x(2n)σ kn
M −σ

k
N

M−1

∑
n=0

x(2n+1)σ kn
M , (2.124)

where we have used σ
M(2n+1)
N = −1. This shows that the last M entries of X are

obtained by the same computation scheme as the first M ones, except for using the
twiddle factors −σ k

N instead of σ k
N . The following matrix factorization summarizes

this result:

DFTN ·

x(0)
x(1)

...
x(N−1)

=

(
idM ∆M
idM −∆M

)(
DFTM 0

0 DFTM

)

x(0)
x(2)

...
x(N−2)

x(1)
x(3)

...
x(N−1)

. (2.125)

The matrix idM = diag(1,1, . . . ,1) denotes the (M×M) identity matrix and ∆M =
diag(1,σN , . . . ,σ

M−1
N) the (M×M) diagonal matrix containing the twiddle factors.

The rearrangement of the input vector into components with an even and compo-
nents with an odd index can be expressed by an additional permutation matrix. Al-
together, this leads to a factorization of the DFTN matrix into a product of sparse
matrices (having only few nonzero coefficients) and DFTM matrices of half the size.

2.4 Discrete Fourier Transform (DFT) 91

Algorithm: FFT

Input: The length N = 2L with N being a power of two
The vector (x(0), . . . ,x(N−1))> ∈ CN

Output: The vector (X(0), . . . ,X(N−1))> = DFTN · (x(0), . . . ,x(N−1))>

Procedure: Let (X(0), . . . ,X(N−1)) = FFT(N,x(0), . . . ,x(N−1)) denote the general form
of the FFT algorithm.
If N = 1 then

X(0) = x(0).
Otherwise compute recursively:

(A(0), . . . ,A(N/2−1)) = FFT(N/2,x(0),x(2),x(4) . . . ,x(N−2)),

(B(0), . . . ,B(N/2−1)) = FFT(N/2,x(1),x(3),x(5), . . . ,x(N−1)),

C(k) = σ k
N ·B(k) for k ∈ [0 : N/2−1] with σN = exp(−2πi/N),

X(k) = A(k)+C(k) for k ∈ [0 : N/2−1],

X(N/2+ k) = A(k)−C(k) for k ∈ [0 : N/2−1].

Table 2.1 Recursive version of the FFT algorithm.

The FFT algorithm is again summarized by the compact recursive version shown in
Table 2.1.

What have we gained when evaluating the DFTN by means of this procedure?
Let µ(N) be the number of multiplications and additions7 needed to compute the
matrix–vector product DFTN · x. By (2.125), one needs to evaluate two DFTM ,
which takes 2µ(M) operations. Furthermore, at first sight, one seems to require
2M = N multiplications for the twiddle factors and 2M = N additions to sum up the
output vectors from the DFTM step. A closer look shows that one can do even better.
First note that the first twiddle factor (k = 0) is σ k

N = 1, thus causing no multiplica-
tion cost. Furthermore, multiplication with the other twiddle factors (k ∈ [1 : M−1])
needs to be done only once, but can be used twice (see C(k) in Table 2.1, where it
is used once in X(k) = A(k)+C(k) and once in X(N/2+ k) = A(k)−C(k)). As a
result, one requires only M− 1 multiplications for the twiddle factors (instead of
2M = N). Altogether, one obtains the estimate

µ(N)≤ 2µ(N/2)+1.5N. (2.126)

Now, this procedure unfolds its full effect when applied recursively. To this end, one
assumes that N = 2L is a power of two. Obviously µ(1) = 0, since in the case N = 1
nothing has to be done. This leads to the following overall estimate:

7 In the following, subtractions are counted as additions.

92 2 Fourier Analysis of Signals

µ(N) ≤ 2 ·µ(N/2)+1.5N (2.127)
≤ 4 ·µ(N/4)+1.5N +1.5N (2.128)
≤ . . . (2.129)
≤ 2L ·µ(1)+1.5N +1.5N + . . .+1.5N︸ ︷︷ ︸

L=log2(N) times

(2.130)

= 1.5N log2(N). (2.131)

This equation can also be formally shown by a simple induction (see Exercise 2.26).
The savings obtained from the FFT algorithm are huge, in particular for large N. For
example, in the case N = 103, the FFT algorithm requires 2 ·104 operations instead
of 106 as needed for the naive approach, which is a reduction of operations by a
factor of 50. For N = 105, this factor is already 3,000, and for N = 106, it reaches
25,000. In this case, if the FFT requires a second of computing time, the naive
approach would require 7 hours.

2.4.4 Interpretation of the DFT

Let us summarize the results obtained so far. We started with a CT-signal f ∈ L2(R)
and derived a DT-signal x by T -sampling. Fixing a number N ∈ N of samples, we
computed X = DFTN ·x for x = (x(0), . . . ,x(N−1))>. What is the meaning of the
Fourier coefficients X = (X(0), . . . ,X(N − 1))> in relation to the original analog
signal f ? To answer this question, we need to combine the results induced by the
DFT approximation (2.106) and the Riemann approximation (2.104):

X(k)≈ x̂
(

k
N

)
≈ 1

T
f̂
(

k
N
· 1

T

)
. (2.132)

In other words, to obtain the “correct” physical interpretation of the coefficient X(k)
one needs to know the window size N and the sampling rate 1/T . First, X(k) needs
to be scaled by the factor T . Second, the index k corresponds to the frequency ω =
k/(NT). In other words, the DFT computes the frequencies only on a linear grid of
frequencies with a resolution of 1/(NT) Hz.

However, the approximations in (2.132) need to be taken with care. The first ap-
proximation is only good if the samples of x(n) are close to zero outside the interval
[0 : N− 1]. Obviously, this is the case if the analog signal f is close to zero out-
side the interval [0,(N− 1)/T]. Furthermore, recall that the second approximation
is only good if f does not contain frequency components above the Nyquist fre-
quency 1/(2T) Hz. Also, the approximation becomes poor for large k correspond-
ing to high frequencies of the exponential functions. Assuming that f is real-valued,
one can easily check that f̂ (ω) = f̂ (−ω), x̂(ω) = x̂(−ω), and X(k) = X(N− k)
(see (2.83) and Exercise 2.24). Therefore, the coefficients X(k) are redundant for

2.5 Short-Time Fourier Transform (STFT) 93

IndexIndex

(a)

(b)

(c)

Frequency (Hz)Time (seconds)

IndexIndex

Fig. 2.26 DFT approximation of the Fourier transform. (a) Analog chirp signal and its Fourier
transform. (b) Sampled signal using T = 1/32 and DFT coefficients using N = 64. (c) Interpolation
of sampled signal and of DFT coefficients.

k = bN
2 c+ 1, . . . ,N − 1, and one only needs to consider the coefficients X(k) for

k = 0,1, . . . ,bN
2 c.

As an example, let us consider the analog chirp signal shown in Figure 2.26a,
where we assume that the signal is zero outside the shown interval [0,2]. The
Fourier transform is shown for frequencies ω ∈ [0,15]. Next, we sample the chirp
signal using a sampling rate of Fs = 32 Hz and obtain a finite-length signal x of
length N = 64. Applying a DFTN results in a complex-valued vector X = DFTN ·x,
the magnitude values of which are shown in Figure 2.26b. By (2.132), we obtain
X(k)/32 ≈ f̂ (k/2). For example, the index k = 30 corresponds to the frequency
ω = 15 (see Figure 2.26c). The resulting frequency resolution is 0.5 Hz.

2.5 Short-Time Fourier Transform (STFT)

The Fourier transform f̂ of a signal f ∈ L2(R) describes the frequency content of the
signal. Comparing the signal with a periodic exponential function t 7→ exp(2πiωt)
results in a coefficient f̂ (ω) that exhibits the overall intensity of oscillations at ω Hz
occurring in the signal. However, because of the nonlocal nature of the analysis
function, the frequency information is always averaged over the entire time domain.
Sudden changes and local variations of the signal such as the beginning and the
end of events cannot be detected well by the Fourier transform. Local phenomena
of the signal become global phenomena in the Fourier transform. In contrast, small

94 2 Fourier Analysis of Signals

changes in the phase of the Fourier transform can have considerable effects in the
time domain.

To remedy the drawbacks of the Fourier transform, as we have already discussed
in Section 2.1.4, Dennis Gabor introduced in the year 1946 the modified Fourier
transform, now known as the short-time Fourier transform (STFT). This trans-
form is a compromise between a time- and a frequency-based representation, deter-
mining the sinusoidal frequency and phase content of local sections of a signal as it
changes over time. In this way, the STFT does not only tell which frequencies are
“contained” in the signal but also at which points of times or, to be more precise,
in which time intervals these frequencies appear. In the following, we start by in-
troducing the STFT for the case of analog signals. From the STFT one can derive a
spectrogram, which visually represents the time–frequency content of a signal. Fi-
nally, we introduce a discrete version of the STFT as it is typically used in practice.
This is the version of the STFT we have already encountered in Section 2.1.4.

2.5.1 Definition of the STFT

For a given signal, we want to find a transform that exhibits the frequency content
of f in a neighborhood of each point in time t. The basic idea is to consider only a
small section of the signal around a point t, where the influence of a point within the
section decreases with increasing distance from t. Mathematically, this weighting is
modeled by multiplying the signal with a window function, which can be thought of
as a weighting (often bell-shaped) function that localizes around t. Instead of using
a different window function for each point t, one uses a single window function
that localizes around the point t = 0. This function is then shifted across time. If
f ∈ L2(R) is a signal and g : R→ R is such a window function, then the function
fg,t localized at point t is defined by

fg,t(u) := f (u)g(u− t). (2.133)

Figure 2.27 shows a chirp signal f as well as the resulting localized signals fg,t
when using a bell-like window function g centered at zero for the shift parameters
t = 0.5, t = 1, and t = 1.5, respectively.

In view of a general mathematical formulation, one often admits complex-valued
window functions g : R→C and requires g ∈ L2(R) as well as ||g||2 6= 0. Extending
(2.133), the function fg,t is defined by

fg,t(u) := f (u)g(u− t). (2.134)

Note that the complex conjugate does not play any role in case of a real-valued win-
dow g, which will always be the case in this book. Also, note that from a technical
point of view, g does not need to have a particular shape.

Given a signal f ∈ L2(R) as well as a window function g ∈ L2(R), the
(continuous-time) short-time Fourier transform (STFT) is a function f̃g :R×R→

2.5 Short-Time Fourier Transform (STFT) 95

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

(d)

Fig. 2.27 Chirp signal and windowed versions along with their magnitude Fourier transforms.
(a) Original signal. (b) Window centered at t = 0.5. (c) Window centered at t = 1.0. (d) Window
centered at t = 1.5.

C defined by

f̃g(t,ω) := f̂g,t(ω) =
∫

u∈R
f (u)g(u− t)exp(−2πiωu)du. (2.135)

In other words, f̃g(t, ·) coincides with the Fourier transform of the localized signal
fg,t for a fixed time instance t ∈ R.

As an illustration, let us continue with the example of Figure 2.27, which shows
the chirp signal f (t) = sin(20 · πt2) for t ∈ [0,2]. As we mentioned after (2.105),
the instantaneous frequency at time t is ω = 20t. Therefore, when considering the
localized signal fg,t one may expect frequencies around ω = 20t Hz. Indeed, the
Fourier transform f̂g,t reveals a peak at 10 Hz for t = 0.5 (Figure 2.27b), a peak at
20 Hz for t = 1 (Figure 2.27c), and a peak at 30 Hz for t = 1.5 (Figure 2.27d).

2.5.1.1 Alternative Definition of the STFT

When considering the short-time Fourier transform, one can assume a different
viewpoint, which leads to a sightly different definition. In the above definition,
we first windowed the original signal f with the time-shifted window gt to obtain
the localized signal fg,t , which was then compared against the exponential func-

96 2 Fourier Analysis of Signals

Fig. 2.28 Illustration of four
different “musical notes” gt,ω
located in the time–frequency
plane: (t,ω) = (1,4), (t,ω) =
(2,12), (t,ω) = (4,8), and
(t,ω) = (6,4).

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

4

8

12

1 2 3 4 5 6
0

0

tions expω . A different viewpoint is to construct localized elementary functions
gt,ω : R→ C by defining

gt,ω(u) := exp(2πiω(u− t))g(u− t), (2.136)

u ∈ R. In other words, gt,ω is obtained by first modulating the window g by ω Hz,
which is a frequency shift in the Fourier domain (see (2.100)). The resulting mod-
ulated window is then shifted in time by t sec (see (2.97)). Intuitively, gt,ω may be
thought of as a “musical note” of frequency ω that is active in a neighborhood of
t. The parameters t and ω allow for shifting the musical note in the time–frequency
plane (see Figure 2.28).

It is not hard to see that ||gt,ω || = ||g|| for a window function g ∈ L2(R) (see
Exercise 2.22). Therefore, as opposed to the exponential functions expω , which do
not have finite energy, one has gt,ω ∈ L2(R). Therefore, we can define a function
f̃ g : R×R→ C by setting

f̃ g(t,ω) = 〈 f |gt,ω〉=
∫

u∈R
f (u)g(u− t)exp(−2πiω(u− t))du. (2.137)

The inner product 〈 f |gt,ω〉measures the similarity between the signal f and the mu-
sical note gt,ω . If f and gt,ω oscillate with the same frequency within the window,
the inner product 〈 f |gt,ω〉 has a large absolute value. Vice versa, if f has no fre-
quency components around ω , the inner product is close to zero and f and gt,ω are
more or less orthogonal. The signal

u 7→ 〈 f |gt,ω〉gt,ω(u) (2.138)

can be considered as the “projection” of the signal f in the direction of the musical
note gt,ω (see Figure 2.15).

The original STFT f̃g defined by (2.135) and the version f̃ g defined by (2.137)
coincide up to some time-dependent modulation factor:

f̃g(t,ω) = f̃ g(t,ω)exp(2πiωt). (2.139)

In the first version only the window is shifted, whereas in the second version also the
exponential function is shifted along with the window. Often f̃g is used for the ana-

2.5 Short-Time Fourier Transform (STFT) 97

Fig. 2.29 Window func-
tions and their Fourier trans-
forms. (a) Rectangular win-
dow. (b) Triangular window.
(c) Hann window.

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

log case, whereas f̃ g corresponds to what is used for the discrete Fourier transform
(see for example (2.26)). We will come back to this issues in Section 2.5.3.

2.5.1.2 Role of the Window Function

We now discuss the role of the window function g, which plays an important role
from a signal processing point of view. Typically, a window function is chosen to
be zero-valued outside of some chosen section, so that when a signal is multiplied
by the window function, the product is also zero-valued outside the section. The
finite-length signal that is left can be regarded as a “view through the window.” The
definition (2.135) shows that the STFT depends on both the signal as well as the
window function, although one is typically interested only in the signal’s properties.
The design of suitable window functions and their influence is a science by itself,
which is outside the scope of this book. In the following, we discuss some examples
that illustrate how the window may affect the spectral estimate computed by the
STFT.

The seemingly simplest way to obtain a local view on the signal f is to leave it
unaltered within the desired section and to set all values to zero outside the section.
Such a localization is realized by a rectangular window as defined in (2.95) and
again shown in Figure 2.29a. However, using the rectangular window has major
drawbacks, since it generally leads to discontinuities at the section’s boundaries in
the localized signal fg,t . As we have discussed before, such abrupt changes lead to
artifacts due to interferences which are spread over the entire frequency spectrum.
Rather than being part of the original signal f , these frequency components come
from the properties of the rectangular window (see Figure 2.29a). Recall that the
Fourier transform of the rectangular window is the sinc function defined in (2.96),
which shows slowly decaying ripples across the entire spectrum. These ripples also
become visible in the STFT of a chirp signal as demonstrated by Figure 2.30a.

98 2 Fourier Analysis of Signals

Frequency (Hz)Time (seconds)

(a)

(b)

(c)

Fig. 2.30 Windowed chirp signal and its magnitude Fourier transform using different window
functions. (a) Rectangular window. (b) Triangular window. (c) Hann window.

To attenuate the boundary effects, one often uses windows that are nonnegative
within the desired section and continuously fall to zero towards the section’s bound-
aries. One such example is the triangular window (Figure 2.29b), which leads to
much smaller ripple artifacts (Figure 2.30b). A window often used in signal process-
ing is the Hann window (also known as the Hanning window) named after Julius
von Hann. The Hann window g is a raised cosine window defined by

g(u) :=
{
(1+ cos(πu))/2 if −0.5≤ u≤ 0.5

0 otherwise (2.140)

(see Figure 2.29c). Dropping smoothly to zero at the section boundaries, the above-
mentioned artifacts in the Fourier transform of the windowed signal are softened.
This is also illustrated by Figure 2.30c. However, on the downside, the Hann win-
dow introduces some smearing of frequencies. As a result, the Fourier transform of
a signal’s windowed section may look smoother than the signal’s properties sug-
gest. In other words, the reduction of ripple artifacts introduced by the window is
achieved at the expense of a poorer spectral localization. Similarly, as we will see in
the next section, the size of the window crucially affects the STFT.

2.5.2 Spectrogram Representation

The STFT of a signal f yields for each point in time t and frequency ω a complex
number f̃g(t,ω). This information is often visualized by means of a spectrogram,
which is a two-dimensional representation of the squared magnitude:

2.5 Short-Time Fourier Transform (STFT) 99

Spec(t,ω) = | f̃g(t,ω)|2 = | f̃ g(t,ω)|2. (2.141)

For the definition of the spectrogram, the version of the STFT in (2.139) does not
matter, since the modulation factor has a magnitude of one. When generating an
image of a spectrogram, the horizontal axis represents time, the vertical axis is
frequency, and the dimension indicating the spectrogram value of a particular fre-
quency at a particular time is represented by the intensity or color in the image.
There are many variations in visualizing a spectrogram. Sometimes the vertical and
horizontal axes are switched, so time runs up and down. Sometimes the amplitude is
represented as the height of a 3D surface instead of color or intensity. To emphasize
musical or tonal relationships, the frequency axis is often plotted in a logarithmic
fashion, which yields a log-frequency representation as we will encounter in the
subsequent chapters. A logarithmic frequency axis also accounts for the fact that
human perception of pitch is logarithmic in nature (see Section 1.3.2). Finally, in
the case of audio signals, the amplitude values are also often visualized using a log-
arithmic scale, for example, by using a decibel scale. In this way, small intensity
values of perceptual relevance become visible in the image. In the following, if not
specified otherwise, we use in our visualizations a linear frequency axis and a log-
arithmic scale to represent amplitudes. The specific scale is not of importance, but
only serves the purpose of enhancing the qualitative properties of the visualization.

In our first example, we again consider a chirp signal f defined by f (t) =
sin(400πt2) for t ∈ [0,1], which is smoothly faded out towards t = 1 (see
Figure 2.31a). For this chirp, the instantaneous frequency linearly raises from ω =
0 Hz at t = 0 to ω = 400 Hz at t = 1. For computing the STFT, we use a Hann win-
dow having a size of 62.5 ms. The resulting spectrogram is shown in Figure 2.31b.
The logarithmic amplitude values are encoded by different gray levels, which are
lighter for small values and darker for large values. Note that each column of the
spectrogram corresponds to a plot of a Fourier transform as, for example, shown in
Figure 2.30c.

The image of the spectrogram shows a strong diagonal stripe starting at the time–
frequency point (t,ω) = (0,0) and ending at (t,ω) = (1,400), which reveals the
linear frequency increase of the chirp signal. This diagonal stripe has a substantial
width (roughly 40 Hz), which can be explained as follows: First, recall that at a
given point t the STFT exhibits the frequency content of an entire neighborhood
(a windowed section of the signal) around t, and the STFT averages the frequency
information across this section. Second, as discussed in Section 2.5.1, the window
introduces some additional smearing of frequencies in the Fourier domain. The ar-
tifacts introduced by the window function also explain the weaker diagonal stripes
that run below and above the strong diagonal stripe. These weaker stripes corre-
spond to the ripples occurring in the Fourier transform of the window function. As
opposed to Figure 2.30c, where no such ripples can be seen for the Hann window,
the ripples become visible in the visualization of the spectrogram only because we
have used a logarithmic magnitude scale. We have already seen in Figure 2.30a that
the ripple artifacts become much stronger when using a rectangular window instead
of a Hann window. This phenomenon is illustrated by Figure 2.31c, which shows

100 2 Fourier Analysis of Signals

(a)

(b)

(c)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

Time (seconds)

Fig. 2.31 Spectrogram of a chirp signal using two different window types. (a) Signal. (b) Spec-
trogram with Hann window of size 62.5 ms. (c) Spectrogram with rectangular window of size
62.5 ms.

a corresponding spectrogram. This visualization demonstrates the importance of
choosing a suitable window function. In general, it is not easy to distinguish the
characteristics of the signal and the effects introduced by the window function.

With the next example, we discuss the role of the size of the window function g.
To this end, we consider the signal f shown in Figure 2.32a, which is defined by

f (t) = sin(800πt)+ sin(900πt)+δ (t−0.45)+δ (t−0.5) (2.142)

for t ∈ [0,1]. In this interval, f is a superposition of two sinusoids of frequency 400
and 450 Hz, respectively. Furthermore, two impulses are added at the points t = 0.45
and t = 0.5 sec. Again we assume that f is zero outside the shown interval [0,1].
This signal is interesting since it contains two components that are close in time (the
two impulses that are 50 ms apart) and two components that are close in frequency
(the two sinusoids that are 50 Hz apart). Figure 2.32b shows the spectrogram when
using a Hann window of size 32 ms. The image contains a horizontal stripe in the
region between 375 and 475 Hz, which corresponds to the sinusoids, as well as two
vertical stripes at t = 0.45 and t = 0.5 sec, which correspond to the impulses. As
illustrated by Figure 2.20b, each of the impulses results in many nonzero Fourier

2.5 Short-Time Fourier Transform (STFT) 101

(a)

(b)

(c)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

Fig. 2.32 Spectrogram using different window sizes. (a) Signal. (b) Spectrogram with short Hann
window (32 ms). (c) Spectrogram with long Hann window (128 ms).

coefficients spread across the entire spectrum, which explains the vertical stripes.
Since the window size of 32 ms implies that in each window there is at most one
of the impulses, the two impulses can be clearly separated by the STFT. However,
the STFT is not able to separate the two frequency components at ω = 400 Hz and
ω = 450 Hz. The reason is that the chosen window introduces frequency smearing.
The scaling property of the Fourier transform (Exercise 2.20) says that reducing the
size by temporally compressing the window leads to a broadening of its Fourier
transform. This, in turn, implies that the frequency smearing becomes more severe.
Therefore, to separate the two frequency components, one strategy is to increase
the window size, thus reducing the frequency smearing. Indeed, using a Hann win-
dow of size 128 ms results in a clear separation as shown by the two horizontal
stripes (see Figure 2.32c). However, increasing the window size goes along with an
increased smearing in the time domain. As a result, the two impulses are not sep-
arated any longer. As a side remark, we want to point to the two vertical stripes
showing up at t = 0 and t = 1. An explanation is to be given in Exercise 2.27.

In summary, using a large window size results in a good localization in frequency,
but a poor localization in time, whereas using a small window size has the opposite
effect. Increasing the window size leads to an STFT which averages the frequencies
of the signal over a greater time interval, resulting in a loss of time information. In

102 2 Fourier Analysis of Signals

the limit case of an “infinite window size” one ends up with the usual Fourier trans-
form, which averages the frequencies over the entire time domain R. Vice versa,
successively decreasing the window size results in a Dirac sequence, where, in the
limit case of g being an impulse, the STFT gives back the original signal: perfect
time localization, no frequency localization.

The time localization property of the STFT depends on the temporal spread of
the window function g, whereas the frequency localization property of the STFT
depends on the spectral spread of the Fourier transform ĝ. We want to mention
that one cannot have both properties at the same time. A variant of the Heisenberg
uncertainty principle says that there is no window function that simultaneously
localizes in time and frequency with arbitrary precision.

2.5.3 Discrete Version of the STFT

So far, we have discussed the STFT and spectrogram in the case of analog signals.
In practice, one uses sampled signals and computes the STFT only on a finite time–
frequency grid. Because of efficiency issues, one typically employs DFTs which
can be computed by means of the FFT algorithm. As before, let x be a DT-signal
obtained from a CT-signal f by T -sampling. Furthermore, let w be a sampled version
of an analog window function g. In the discrete case, the window can be shifted only
in a sample-wise fashion. Because of efficiency issues, one often shifts the window
in even larger steps, which are specified by some hop size parameter H ∈N (given in
samples). Following the alternative definition (2.137) in the analog case, we define
the (discrete-time) STFT x̃w of the DT-signal x with respect to the window function
w by

x̃w(m,ω) := ∑
n∈Z

x(n)w(n−mH)exp(−2πiω(n−mH)) (2.143)

= ∑
n∈Z

x(n+mH)w(n)exp(−2πiωn) (2.144)

for m ∈ Z and ω ∈ [0,1). Now, if the sampled window function w is a finite signal,
the sum in (2.144) becomes finite, and we can apply the DFT to compute the discrete
STFT for certain frequencies.

In the analog case, we assumed that the window function g was centered at time
zero. To simplify the formulas in the discrete case, we assume that the support of
the window function is contained only in the positive part of the time axis centered
at half the window length (i.e., the window is shifted by half a window length to the
right compared with the zero-centered case). The zero-centered case can be easily
restored by also shifting the original signal by half a window length.

Having said this, we assume that the nonzero samples of the discrete window
w are w(n) for n ∈ [0 : N− 1]. For each frame index m ∈ Z, we define the vector
xm = (xm(0), . . . ,xm(N−1))> ∈ CN with

2.5 Short-Time Fourier Transform (STFT) 103

xm(n) = x(n+mH)w(n) (2.145)

for n ∈ [0 : N−1] and compute the vector Xm = (Xm(0), . . . ,Xm(N−1))> ∈ CN via
a DFT of size N:

Xm = DFTN ·xm. (2.146)

Then one obtains

x̃w(m,k/N) =
N−1

∑
n=0

x(n+mH)w(n)exp(−2πikn/N)

=
N−1

∑
n=0

xm(n)exp(−2πikn/N) (2.147)

= Xm(k)

for k ∈ [0 : N− 1]. Thus, we have shown that, for each time frame m ∈ Z, one can
compute the discrete STFT at frequencies ω = k/N for k ∈ [0 : N−1] by means of
a DFTN . In the case that N is a power of two, this can be done efficiently using the
FFT.

2.5.3.1 Summary

Altogether, we have reached exactly the version of the discrete STFT already in-
troduced in Section 2.1.4. Let us again summarize the main results. Let x be a DT-
signal obtained by T -sampling. Furthermore, let w be a discrete window of finite
length N with coefficients w(n) for n ∈ [0 : N−1]. Then

X (m,k) = x̃w(m,k/N) =
N−1

∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (2.148)

is the discrete STFT or simply the STFT of x (see also (2.26)). Each spectral vector
for some time frame m ∈ Z can be computed by using a DFTN , which can be eval-
uated efficiently by using an FFT if N is a power of two. The coefficients X (m,k)
have a similar interpretation as discussed in Section 2.4.4. First recall that the up-
per half of the frequency coefficients are redundant if x and w are real-valued. In
this case, one only considers the coefficients k ∈ [0 : N/2]. By (2.132), the index k
corresponds to the frequency

Fcoef(k) :=
k ·Fs

N
(2.149)

(see also (2.28)). In particular, the index k = N/2 corresponds to the Nyquist fre-
quency ω = 1/(2T).

Next, we discuss how the index m is to be interpreted. The interpretation is not
straightforward since m refers to an entire windowed section of the signal rather than
a specific point in time. In signal processing, such a windowed section is also called

104 2 Fourier Analysis of Signals

Time (seconds)

Time (seconds)

Time (seconds)

Index (frames)

Index (frames)

Index (samples)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

In
de

x
(fr

eq
ue

nc
y)

In
de

x
(fr

eq
ue

nc
y)

(a)

(b)

(c)

Fig. 2.33 Spectrogram representation of Discrete STFT. Shown are the original indices (left) and
their physical interpretation (right). (a) Signal using 1/T = 1000 Hz. (b) Spectrogram using N = 32
and H = 16. (c) Spectrogram using N = 256 and H = 128.

a frame and m is called the frame index. The physical duration of a frame is NT
seconds. There are no strict conventions for associating a physical time position to a
frame. When assuming that the window is centered at zero, as we did in the case of
the continuous-time version of the STFT, one should take the center of the frame as
a physical reference point. When assuming that the window starts at time position
zero centered at half the window length, one may take the start of the frame as a
physical reference point. As said before, the second convention can be transferred
into the first one by shifting the original signal by half a window length. In the
following, we want to adapt the second convention such that the frame index m is
associated to the physical time position

Tcoef(m) :=
m ·H

Fs
(2.150)

(see also (2.27)). Using this convention, the index m = 0 is associated with t = 0.

2.5.3.2 Examples

In Figure 2.9 we have already seen an example of how to interpret the frame and
frequency indices in terms of physical units such as seconds and Hertz. Let us
consider a second example to illustrate the effect of different parameter settings.

2.6 Summary and Further Readings 105

Figure 2.33a shows a DT-signal based on a sampling rate of Fs = 1/T = 1000 Hz.
To compute the spectrogram of Figure 2.33b, a window length of N = 32 and a
hop size of H = 16 were used. This yields a frame size of NT = 32 ms and the
frame index m corresponds to time Tcoef(m) = mT H = m · 16 ms, which is also
the time resolution of the STFT. In particular, frame index m = 62 corresponds to
Tcoef(m) = 0.992 ≈ 1 sec. Furthermore, the frequency index k corresponds to fre-
quency Fcoef(k) = k/(NT) = k ·31.25 Hz. In particular k = 16 yields the Nyquist fre-
quency Fcoef(16) = 500 Hz. A second parameter setting using N = 256 and H = 128
is shown in Figure 2.33c.

2.6 Summary and Further Readings

In this chapter, we studied fundamental techniques for analyzing signals by means
of elementary sinusoidal functions, which possess an explicit physical meaning in
terms of frequency. We considered various types of signals including analog or
CT-signals as well as DT-signals or more general digital signals, which were ob-
tained by sampling and quantization. Generally speaking, the CT-domain gives the
“right” interpretation of physical phenomena, whereas the DT-domain is used to do
the actual computations. Being the most important tool for processing audio sig-
nals, we introduced different variants of the Fourier transform for the CT- as well
as for the DT-domain. The Fourier transform converts a time-dependent signal
into frequency-dependent coefficients, each of which indicates the strength (and a
strength-optimizing phase) of the respective elementary exponential function. The
process of decomposing a signal into frequency components is also called Fourier
analysis. In contrast, we have seen that the Fourier representation rebuilds a signal
from the elementary functions, a process also called Fourier synthesis.

The Fourier transform and the Fourier representation are closely related, leading
to very similar formulas (see Table 2.2 for an overview). Many of these formulas
can be expressed by inner products—notions that make it possible to use the same
geometric language one knows from finite-dimensional Euclidean spaces [15, 16].
The basic definitions and main properties of the Fourier transform are covered in
most introductory books on signal processing. As example references, we want to
mention the classical textbook on Signals and Systems by Oppenheim et al. [12] or
the book on Digital Signal Processsing by Proakis and Manolakis [13].

In this chapter, we used clear mathematical modeling, which is necessary when
one wants to understand the relation between the CT- and DT-domain. While we
used the notion of Lebesgue spaces, we did not introduce them with rigor. In par-
ticular in the case of CT-signals, the definition of Lebesgue spaces becomes a bit
tricky, since one needs the notion of measurability of the functions in order for the
integrals to be defined. For a mathematically rigorous treatment of measure and
Lebesgue theory, we refer to the book Real Analysis by Folland [5]. As we have al-
ready indicated before, the spaces L2(R) and L2([0,1)) are actually quotient spaces
where two functions f and g are considered to coincide if || f −g||2 = 0 (i.e., if they

106 2 Fourier Analysis of Signals

Signal space L2(R) L2([0,1)) `2(Z)

Inner product 〈 f |g〉=
∫

t∈R
f (t)g(t)dt 〈 f |g〉=

∫
t∈[0,1)

f (t)g(t)dt 〈x|y〉= ∑
n∈Z

x(n)y(n)

Norm || f ||2 =
√
〈 f | f 〉 || f ||2 =

√
〈 f | f 〉 ||x||2 =

√
〈x|x〉

Definition
L2(R) :=

{ f : R→ C | || f ||2 < ∞}
L2([0,1)) :=

{ f : [0,1)→ C | || f ||2 < ∞}
`2(Z) :=

{ f : Z→ C | ||x||2 < ∞}
Elementary
frequency
function

R→ C
t 7→ exp(2πiωt)

[0,1)→ C
t 7→ exp(2πikt)

Z→ C
n 7→ exp(2πiωn)

Frequency
parameter ω ∈ R k ∈ Z ω ∈ [0,1)

Fourier
representation

f (t) =∫
ω∈R

cω exp(2πiωt)dω

f (t) =

∑
k∈Z

ck exp(2πikt)

x(n) =∫
ω∈[0,1)

cω exp(2πiωn)dω

Fourier
transform

f̂ : R→ C

f̂ (ω) = cω =∫
t∈R

f (t)exp(−2πiωt)dt

f̂ : Z→ C

f̂ (k) = ck =∫
t∈[0,1)

f (t)exp(−2πikt)dt

x̂ : [0,1)→ C

x̂(ω) = cω =

∑
n∈Z

x(n)exp(−2πiωn)

Table 2.2 Overview of the signal spaces L2(R), L2([0,1)), and `2(Z) and their respective Fourier
representation and Fourier transform.

differ only up to a null set). The equality in the Fourier representation and in the
Fourier transform is just an equality in the L2-sense, which is a weaker notion than
pointwise equality. We have also mentioned before that the integral in the defini-
tion (2.92) of the Fourier transform of a signal f ∈ L2(R) does not exist in general.
Instead, one needs to define the integral by some limit process (2.93). The existence
of the limit is based on the so-called Hahn–Banach theorem [5]. One main problem
in the CT case is that the exponential functions expω : R→ C are not contained
in L2(R). Therefore, the integral in (2.92) cannot be written as an inner product as
is possible for the Fourier coefficients (2.80). The proofs for the existence and cor-
rectness of the considered Fourier transforms and Fourier representations, which are
outside the scope of this book, can be found in the book by Folland [5].

Furthermore, we have only scratched the topics of sampling and aliasing, which
are of crucial importance for digital signal processing. The famous sampling theo-
rem says that an Ω -bandlimited signal f ∈ L2(R) (i.e., a signal where the Fourier
transform f̂ vanishes for |ω|>Ω for a real number Ω > 0) can be reconstructed per-
fectly from the T -sampling of f with T := 1/(2Ω) (see [12, 13]). In Exercise 2.28,
we cover this important result in more detail. The sampling theorem is often asso-
ciated with the names Harry Nyquist and Claude Shannon. It is interesting to note
that the theorem was also discovered independently by Edmund Taylor Whittaker,
Vladimir Kotelnikov, and others (see [1, 8] for an overview and historical notes).

2.7 FMP Notebooks 107

There exists a vast literature on the discrete Fourier transform (DFT) and associ-
ated fast Fourier transform (FFT) algorithms. In the original article by Cooley and
Tukey [3], the authors describe an FFT algorithm that works in case that the length
N of the DFT is an integral power of two. By applying several tricky modifications
of the FFT, this result can be extended to an algorithm for evaluating a DFT of ar-
bitrary length N ∈ N with time complexity of O(N logN). A detailed description
of this result can be found in the book Fast Fourier Transforms by Clausen and
Baum [2], which treats this topic from an algebraic point of view.

The short-time Fourier transform (STFT), which is also often referred to as the
windowed Fourier transform, was pioneered in the year 1946 by Dennis Gabor
for use in communication theory [6]. We have seen that the STFT is a compromise
between a time- and a frequency-based representation of the signal. For a detailed
discussion of the role of the window function used in the STFT calculation, we
refer to [7]. One main drawback of the STFT is that the window function g im-
plies a kind of rigid time–frequency resolution. As a result, properties of a signal
that are much shorter than the window size are “synthesized” in the frequency do-
main, whereas properties of the signal that are much longer than the window size
are “synthesized” in the time domain. In both cases, many of the “notes” gω,t (see
Figure 2.28) are needed to represent the phenomena of the signal. To remedy this
problem, numerous alternatives have been suggested, including time–frequency rep-
resentations based on wavelets. For further readings and links on this topic, we refer
to [4, 10, 14, 15]. Parts of Section 2.5, including the notation and the association of
gω,t to “musical notes,” were inspired by [10, Chapter 2]. An entertaining and non-
technical introduction to the main ideas of time–frequency analysis can be found in
the book The World According to Wavelets by Hubbard [9].

2.7 FMP Notebooks

The Fourier transform serves as the main signal processing tool throughout this text-
book. In Part 2 of the FMP notebooks [11], we approach Fourier analysis from a
practical perspective with a focus on the discrete Fourier transform (DFT). In par-
ticular, we cover the entire computational pipeline in a bottom-up fashion by pro-
viding Python code examples for deepening the understanding of complex numbers,
exponential functions, the DFT, the FFT, and the STFT. In this context, we address
practical issues such as digitization, padding, and axis conventions—issues that are
often neglected in theory. Assuming that the reader has opened the FMP notebooks
of Part 2 (e.g., available as a static HTML version), we now briefly comment on the
FMP notebooks in the order in which they appear.

We start with the FMP Notebook Complex Numbers, where we review basic
properties of complex numbers. In particular, we provide Python code for visualiz-
ing complex numbers using either Cartesian coordinates or polar coordinates. Such
visualizations help students gain a geometric understanding of complex numbers
and the effect of their algebraic operations. Subsequently, we consider in the FMP

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_ComplexNumbers.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_ExponentialFunction.html

108 2 Fourier Analysis of Signals

Fig. 2.34 The matrix DFTN and a visualization of its real and imaginary parts for the case N = 32.

Notebook Exponential Function the complex version of the exponential function.
Many students are familiar with the real version of this function, which is often
introduced by its power series exp(a) = ∑

∞
n=0 an/n! for a ∈ R. This definition can

be extended by replacing the real variable a ∈ R by a complex one c ∈ C. Study-
ing the approximation quality of the power series (and other limit definitions of
the exponential function) is instructive and can be combined well with small pro-
gramming exercises. One important property of the complex exponential function,
which is also central for the Fourier transform, is expressed by Euler’s formula
exp(iγ) = cos(γ)+ isin(γ) for γ ∈R. We provide a visualization that illustrates how
the exponential function restricted to the unit circle relates to the real sine and cosine
functions. Furthermore, we discuss the notion of roots of unity, which are the central
building blocks that relate the exponential function to the DFT matrix. The study of
these roots can be supported by small programming exercises, which may also cover
mathematical concepts such as complex polynomials and the fundamental theorem
of algebra.

In the FMP Notebook Discrete Fourier Transform, we approach the DFT in
various ways. Recall from (2.24) that, given x = (x(0),x(1), . . . ,x(N− 1))> ∈ RN ,
the DFT is defined by X(k) := ∑

N−1
n=0 x(n)exp(−2πikn/N) for k ∈ [0 : N− 1]. The

vector X ∈ CN can be interpreted as a frequency representation of the time-domain
signal x. The real (imaginary) part of a Fourier coefficient X(k) can be interpreted
as the inner product of the input signal x and a sampled version of the cosine (sine)
function of frequency Fcoef(k) (see (2.28)). In the notebook, we provide a concrete
example that illustrates how this inner product can be interpreted as the correlation
between a signal x and the cosine (sine) function. We recommend that students ex-
periment with different signals and frequency parameters k to deepen the intuition
of these correlations. From a computational view, the vector X can be expressed by
the product of the matrix DFTN with the vector x. Defining the complex number
σN := exp(−2πi/N) (which is a specific root of unity), one can express the DFT
matrix in a very compact form given by DFTN(n,k) = σnk

N for n,k ∈ [0 : N − 1].
Visualizing the real and imaginary parts of the DFT matrix reveals its structural
properties (see Figure 2.34). In particular, one can observe that the rows of the DFT
matrix correspond to sampled cosine (real part) and sine (imaginary part) functions.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_ExponentialFunction.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_DFT-FFT.html

2.7 FMP Notebooks 109

Fig. 2.35 (a) Time-domain signal (Fs = 256) and magnitude Fourier transform. (b) STFT (N =
512,H = 128) without padding. (c) STFT (N = 512,H = 128) with zero-padding.

The specific structure of the matrix DFTN (with its relation to DFTM for M = N/2)
can be exploited in a recursive fashion, yielding the famous fast Fourier transform
(FFT). In our notebook, we provide an explicit implementation of the FFT algorithm
and present some experiments, where we compare the running time of a naive imple-
mentation with the FFT-based one. We think that implementing and experimenting
with the FFT—an algorithm of great beauty and high practical relevance—is a com-
putational eye opener and a must in every signal processing curriculum. Computing
a DFT results in complex-valued Fourier coefficients, where each such coefficient
can be represented by a magnitude and a phase component. In the FMP Notebook
DFT: Phase, we provide a Python code example that highlights the optimality prop-
erty of the phase (similar to Figure 2.2). Studying this property is the core of under-
standing the role of the phase—a concept that is often difficult to access for students
new to the field.

As another central topic of this chapter, we discussed in Section 2.5 various ver-
sions of the short-time Fourier transform (STFT). In the FMP Notebook Discrete
Short-Time Fourier Transform (STFT), we implement a discrete version of the
STFT from scratch and discuss various options for visualizing the resulting spectro-
gram. While the main idea of the STFT (i.e., applying a sliding window technique
and computing for each windowed section a DFT) seems simple, computing the dis-
crete STFT in practice can be tricky. In an applied signal processing course, it is es-
sential to make students aware of the different parameters and conventions when ap-
plying windowing. Our notebooks provide Python implementations (applied to syn-
thetic signals and real music recordings) that allow students to experiment with the
STFT and to gain an understanding on how to physically interpret discrete objects
such as samples, frames, and spectral coefficients. In the FMP Notebook STFT:
Influence of Window Function, we explore the role of the window type and win-

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_DFT-Phase.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_DFT-Phase.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Basic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Basic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Window.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Window.html

110 2 Fourier Analysis of Signals

dow size. Furthermore, in the FMP Notebook STFT: Padding, we discuss various
padding conventions that become crucial to correctly interpret and visualize feature
representations. This important topic, which is a typical source of inaccuracies and
errors in music processing pipelines, is illustrated by simple examples as a basis for
further exploration (see also Figure 2.35).

One main limitation of the discrete STFT is the linear frequency grid whose res-
olution is determined by the signal’s sampling rate and the STFT window size. In
the FMP Notebook STFT: Frequency Grid Density, we deepen the understand-
ing on the connection between the different parameters involved. In particular, we
discuss how to make the frequency grid denser by suitably padding the windowed
sections in the STFT computation. Often, one loosely says that this procedure in-
creases the frequency resolution. This, however, is not true in a qualitative sense, as
is explained in the notebook. As an alternative, we discuss in the FMP Notebook
STFT: Frequency Interpolation another common procedure to adjust the frequency
resolution. On the way, we give a quick introduction to interpolation and show how
the Python package scipy can be applied for this task. Beside refining the fre-
quency grid, we then show how interpolation techniques can be used for a nonlinear
deformation of the frequency grid, resulting in a log-frequency spectrogram. This
topic goes beyond the scope of the current chapter, but plays an important role in
Section 3.1.1.

We have seen in (2.118) that the matrix DFTN is invertible, and that its inverse
DFT−1

N coincides with the DFT matrix up to some normalizing factor and complex
conjugation. This algebraic property can be proven using the properties of the roots
of unity. In the FMP Notebook STFT: Inverse, we show that the two matrices
are indeed inverse to each other—up to some numerical issues due to rounding in
floating-point arithmetic. While inverting the DFT is straightforward, the inversion
of the discrete STFT is less obvious, since one needs to compensate for effects in-
troduced by the sliding window technique. While we cover this important topic in
Section 8.1.2.1, we provide some basic Python implementation of the inverse STFT
in this notebook, since it sheds another light on the sliding window concept and
its effects. Furthermore, we discuss numerical issues as well as typical errors that
may creep into one’s source code when losing sight of windowing and padding con-
ventions. At this point, we want to emphasize again that the STFT is one of the
most important tools in music and audio processing. Common software packages
for audio processing offer STFT implementations, which include convenient pre-
sets and provide information on how to physically interpret time, frequency, and
magnitude parameters. From a teaching perspective, we find it crucial to exactly
understand the role of the STFT parameters and the conventions made implicitly
in black-box implementations. In the FMP Notebook STFT: Conventions and Im-
plementations, we summarize various variants for computing and interpreting a dis-
crete STFT, while fixing the conventions used throughout the FMP notebooks (if not
specified otherwise explicitly).

The FMP notebooks of Part 2 close with some experiments related to the dig-
itization of waveforms and its effects (see Section 2.2.2). In the FMP Notebook
Digital Signals: Sampling, we implement the concept of equidistant sampling and

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Padding.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-FreqGridDensity.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-FreqGridInterpol.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-FreqGridInterpol.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Inverse.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Conventions.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Conventions.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S2_DigitalSignalSampling.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S2_DigitalSignalSampling.html

2.7 FMP Notebooks 111

Fig. 2.36 Uniform and
nonuniform quantization us-
ing λ = 6 quantization levels.

apply it to a synthetic example. We then reconstruct the signal from its samples (us-
ing the sinc interpolation of the sampling theorem as discussed in Exercise 2.28)
and compare the result with the original signal. Based on the provided functions,
one simple yet instructive experiment is to successively decrease the sampling rate
and to look at the properties of the reconstructed signal (similar to Figure 2.14).
Similarly, starting with a real music recording (e.g., we use a C-major scale played
on a piano similar to the one shown in Figure 2.10), students may acoustically ex-
plore and understand aliasing effects. We continue with the FMP Notebook Digital
Signals: Quantization, where we have a closer look at the effects resulting from
quantization (see Section 2.2.2.2). We provide a function for uniform quantization,
which is then applied to a synthetic example and visually explored using differ-
ent quantization parameters. Furthermore, using again the C-major scale recording,
we reconstruct an analog signal from the quantized version, which allows for under-
standing the distortions introduced by quantization (also referred to as quantization
noise). Going beyond the scope of this textbook, we finally introduce an approach
for nonuniform quantization, where quantization levels are spaced in a logarith-
mic fashion. Besides theoretical explanations, we provide Python code that allows
students to experiment, compare, and explore the various quantization strategies
and their properties (see Figure 2.36). In the subsequent FMP Notebook Interfer-
ence and Beating, we pick up the topic of interference, which occurs when a wave
is superimposed with another wave of similar frequency (see Section 2.3.3.1). We
provide code that allows for reproducing the effects as shown in Figure 2.19. Fur-
thermore, we present several experiments using sinusoidal as well as chirp functions
to visually and acoustically study the related effect of beating.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S2_DigitalSignalQuantization.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S2_DigitalSignalQuantization.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S3_InterferenceBeating.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2S3_InterferenceBeating.html

112 2 Fourier Analysis of Signals

References

1. P. L. BUTZER, W. SPLETTSTÖSSER, AND R. L. STENS, The sampling theorem and lin-
ear prediction in signal analysis, Jahresbericht der Deutschen Mathematiker-Vereinigung, 90
(1988), pp. 1–70.

2. M. CLAUSEN AND U. BAUM, Fast Fourier Transforms, BI Wissenschaftsverlag, 1993.
3. J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex

Fourier series, Mathematics of Computation, 19 (1965), pp. 297–301.
4. I. DAUBECHIES, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics

(SIAM), 1992.
5. G. B. FOLLAND, Real Analysis, John Wiley & Sons, 1984.
6. D. GABOR, Theory of communication, Journal of the Institution of Electrical Engineers (IEE),

93 (1946), pp. 429–457.
7. F. J. HARRIS, On the use of windows for harmonic analysis with the discrete Fourier trans-

form, Proceedings of the IEEE, 66 (1978), pp. 51–83.
8. J. R. HIGGINS, Five short stories about the cardinal series, Bulletin of the American Mathe-

matical Society, 12 (1985), pp. 45–89.
9. B. B. HUBBARD, The World According to Wavelets, AK Peters, Wellesley, Massachusetts,

1996.
10. G. KAISER, A Friendly Guide to Wavelets, Modern Birkhäuser Classics, 2011.
11. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and

learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

12. A. V. OPPENHEIM, A. S. WILLSKY, AND H. NAWAB, Signals and Systems, Prentice Hall,
1996.

13. J. G. PROAKIS AND D. G. MANOLAKIS, Digital Signal Processing, Prentice Hall, 1996.
14. G. STRANG AND T. NGUYEN, Wavelets and Filter Banks, Wellesley-Cambridge Press,

2nd ed., 1996.
15. M. VETTERLI, J. KOVACEVIC, AND V. K. GOYAL, Fourier and Wavelet Signal Processing,

Cambridge University Press, http://fourierandwavelets.org/, 1st ed., 2013.
16. , Foundations of Signal Processing, Cambridge University Press, http://

fourierandwavelets.org/, 3rd ed., 2014.

http://fourierandwavelets.org/
http://fourierandwavelets.org/
http://fourierandwavelets.org/

Exercises 113

Exercises

Exercise 2.1. Let 〈 f |g〉 :=
∫

t∈R f (t) ·g(t)dt be the similarity measure for two functions f : R→R
and g : R→ R as defined in (2.3). Consider the following six functions fn : R→ R for n ∈ [1 : 6],
which are defined to be zero outside the shown interval:

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

-1 -0.5 0 0.5 1

1

-1

0

1 2 3

4 5 6

Determine the similarity values 〈 fn| fm〉 for all pairs (n,m) ∈ [1 : 6]× [1 : 6].

Exercise 2.2. Sketch the magnitude Fourier transform of the following signals assuming that the
signals are zero outside the shown intervals (see Figure 2.6 for similar examples):

(a)

(b)

(c)

Time (seconds)

Exercise 2.3. Based on (2.27) and (2.28), compute the time resolution (in ms) and frequency res-
olution (in Hz) of a discrete STFT based on the following parameter settings:

(a) Fs = 22050, N = 1024, H = 512
(b) Fs = 48000, N = 1024, H = 256
(c) Fs = 4000, N = 4096, H = 1024

What are the respective Nyquist frequencies?

Exercise 2.4. Let Fs = 44100, N = 2048, and H = 1024 be the parameter settings of a dis-
crete STFT X as defined in (2.26). What is the physical meaning of the Fourier coefficients
X (1000,1000), X (17,0), and X (56,1024), respectively? Why is the coefficient X (56,1024)
problematic?

114 2 Fourier Analysis of Signals

Exercise 2.5. Sketch the spectrogram (as in Figure 2.9) for each of the three signals shown in
Exercise 2.2. Assume a window length that corresponds to a physical duration of about one second.

Exercise 2.6. The naive approach for computing a DFT requires about N2 operations, while the
FFT requires about N log2 N operations. Compute the factor for the savings when using the FFT
for various N. In particular, consider N = 2n for n = 5,10,15,20,25,30.

Exercise 2.7. Let f1 and f2 be two periodic analog signals with integer periods λ1 ∈N and λ2 ∈N,
respectively. Show that g = f1 + f2 is periodic with periods that are integer multiples of λ1 as
well as λ2. In general, g may have additional periods not necessarily being integer multiples of λ1
and λ2. As an example, specify two signals f1 and f2 with prime period λ1 = λ2 = 2 such that
g = f1 + f2 is periodic with prime period λ = 1.

Exercise 2.8. In this exercise, we show that there are periodic functions that do not have a prime
period (i.e., that do not have a least positive constant being a period). The easiest example of such
a function is a constant function. Show that the function f : R→ R defined by

f (t) :=
{

1, for t ∈Q,
0, for t ∈ R\Q

is also periodic without having a prime period.
[Hint: In this exercise, we assume that the reader is familiar with the properties of rational numbers
(Q) and irrational numbers (R\Q).]

Exercise 2.9. Sketch the graph of the quantization function Q : R→ R defined by

Q(a) := sgn(a) ·∆ ·
⌊
|a|
∆

+
1
2

⌋
for a ∈ R and some fixed quantization step size ∆ > 0 (see (2.33)). Furthermore, sketch the graph
of the absolute quantization error.

Exercise 2.10. In mathematics, the term “operator” is used to denote a mapping from one vector
space to another. Let V and W be two vector spaces over R. An operator M : V →W is called
linear if M[a1v1 + a2v2] = a1M[v1]+ a2M[v2] for any v1,v2 ∈ V and a1,a2 ∈ R. Show that V :=
{ f | f : R→ R} and W := {x | x : Z→ R} are vector spaces. Fixing a sampling period T > 0,
consider the operator M that maps a CT-signal f ∈V to the DT-signal M[f] := x ∈W obtained by
T -sampling as defined in (2.32). Show that this defines a linear operator.

Exercise 2.11. Show that the quantization operator Q :R→R as defined in Exercise 2.9 and (2.33)
is not a linear operator.

Exercise 2.12. In this exercise we discuss various computation rules for complex numbers and
their conjugates. The complex multiplication is defined by c1 · c2 = a1a2− b1b2 + i(a1b2 + a2b1)
for two complex numbers c1 = a1 + ib1,c2 = a2 + ib2 ∈ C (see (2.34)). Furthermore, complex
conjugation is defined by c = a− ib for a complex number c = a+ ib ∈C (see (2.35)). Finally, the
absolute value of a complex number c is defined by |c|=

√
a2 +b2. Prove the following identities:

(a) Re(c) = (c+ c)/2
(b) Im(c) = (c− c)/(2i)
(c) c1 + c2 = c1 + c2

(d) c1 · c2 = c1 · c2

(e) cc = a2 +b2 = |c|2
(f) 1/c = c/(cc) = c/(a2 +b2) = c/(|c|2)

Exercises 115

Exercise 2.13. We have seen in Section 2.2.3.2 that the set CZ = {x|x : Z→C} of complex-valued
DT-signals defines a vector space. Show that the subset `2(Z)⊂ CZ of DT-signals of finite energy
is a linear subspace. To this end, you need to show that x+ y ∈ `2(Z) and ax ∈ `2(Z) for any
x,y ∈ `2(Z) and a ∈ C.

Exercise 2.14. In Section 2.3.1, we defined the set {1,sink,cosk | k ∈ N} ⊂ L2
R([0,1)). Prove that

this set is an orthonormal set in L2
R([0,1)), i.e., that it satisfies (2.50) and (2.51).

[Hint: Use the following trigonometric identities:

(a) cos(α)2 + sin(α)2 = 1
(b) cos(α)cos(β) = (cos(α +β)+ cos(α−β))/2
(c) sin(α)sin(β) = (cos(α−β)− cos(α +β))/2
(d) sin(α)cos(β) = (sin(α +β)+ sin(α−β))/2

To show (2.51), use (a) and the fact that cos2
k and sin2

k have the same area over a full period. The
proof of (2.50) is a bit cumbersome, but not difficult when using (b), (c), and (d).]

Exercise 2.15. Let exp(iγ) := cos(γ) + isin(γ), γ ∈ R, be the complex exponential function as
defined in (2.67). Prove the following properties (see (2.68) to (2.71)):

(a) exp(iγ) = exp(i(γ +2π))

(b) |exp(iγ)|= 1
(c) exp(iγ) = exp(−iγ)
(d) exp(i(γ1 + γ2)) = exp(iγ1)exp(iγ2)

(e)
d exp(iγ)

dγ
= iexp(iγ)

[Hint: To prove (d), you need the trigonometric identities cos(α + β) = cos(α)cos(β) −
sin(α)sin(β) and sin(α + β) = cos(α)sin(β)+ sin(α)cos(β). In (e), note that the real (imagi-
nary) part of a derivative of a complex-valued function is obtained by computing the derivative of
the real (imaginary) part of the function.]

Exercise 2.16. In (2.77), we defined for each k∈Z the complex-valued exponential function expk :
[0,1)→ C by expk(t) := cos(2πkt) + isin(2πkt), t ∈ R. As in Exercise 2.14, show that the set
{expk | k ∈ Z} ⊂ L2([0,1)) is an orthonormal set, i.e., ||expk||2 = 1 for k ∈ Z (see (2.51)) and
〈expk|exp`〉= 0 for k 6= `, k, ` ∈ Z (see (2.50)).
[Hint: Use the properties of the exponential function introduced in Exercise 2.15. Furthermore,
note that the real (imaginary) part of an integral of a complex-valued function is obtained by
integrating the real (imaginary) part of the function.]

Exercise 2.17. Let atan2 be the function as defined in (2.76). For a complex number c= a+ ib∈C,
we set atan2(c) := atan2(b,a). Show that atan2(λ ·c) = atan2(c) for any positive constant λ ∈R>0.
Furthermore, show that atan2(c) =−atan2(c).
[Hint: Use the fact that the arctan function is an odd function, i.e., arctan(−v) = −arctan(v) for
v ∈ R.]

Exercise 2.18. In this exercise, we consider the geometric series for compex numbers, which is
needed in (2.112). Prove that ∑

N−1
n=0 an = (1−aN)/(1−a) for any complex number a 6= 1.

[Hint: For the proof, use mathematical induction on N.]

Exercise 2.19. We have seen that two sinusoids of similar frequency may add up (constructive
interference) or cancel out (destructive interference); see Figure 2.19. Let f1(t) = sin(2πω1t) and
f2(t) = sin(2πω2t) be two such sinusoids with distinct but nearby frequencies ω1 ≈ ω2. In the
following figure, for example, ω1 = 1 and ω2 = 1.1 is used.

116 2 Fourier Analysis of Signals

Time (seconds)

Beating period

The figure also shows that the superposition f1 + f2 of these two sinusoids results in a function
that looks like a single sine wave with a slowly varying amplitude, a phenomenon also known as
beating. Determine the rate (reciprocal of the period) of the beating in dependency on ω1 and ω2.
Compare this result with the plot of f1 + f2 in the figure.
[Hint: Use the trigonometric identity sin(α)+ sin(β) = 2cos

(
α−β

2

)
sin
(

α+β

2

)
for α,β ∈ R.]

Exercise 2.20. Let f ∈ L2(R) be a signal of unit energy || f ||2 = 1. Show that the scaled signal g
defined by g(t) := s1/2 f (s · t) also has unit energy for a positive real scaling factor s > 0. Further-
more show that ĝ(ω) = s−1/2 f̂ (ω/s) for ω ∈ R. Discuss this result. Describe how one can obtain
a Dirac sequence by changing the parameter s (see Section 2.3.3.2).

Exercise 2.21. Show that the Fourier transform of the rectangular function in (2.95) is the sinc
function in (2.96). Also prove that the sinc function is continuous at t = 0.
[Hint: Use the fact that the derivative of t 7→ exp(−2πiωt) is given by t 7→ −2πiω exp(−2πiωt);
see Exercise 2.15. From this, one can derive the indefinite integral of the exponential function. To
prove the continuity at t = 0, look at the first terms of the Taylor series of the sine function.]

Exercise 2.22. For a signal f ∈ L2(R), consider the translation ft0 defined by ft0 (t) := f (t − t0)
for t ∈R (see (2.97)) and the modulation f ω0 defined by f ω0 (t) := exp(2πiω0t) f (t) for t ∈R (see
(2.98)). Show that || f ||= || ft0 ||= || f ω0 ||. Furthermore, prove the properties (2.99) and (2.100):

f̂t0 (ω) = exp(−2πiωt0) f̂ (ω) and f̂ ω0 (ω) = f̂ (ω +ω0)

for ω ∈ R.

Exercise 2.23. Any complex number c ∈ C with cN = 1 for a given N ∈ N is called an Nth root
of unity. If in addition ck 6= 1 for 1 < k < N, the root c is called primitive. Show that σN :=
exp(−2πi/N) defines a primitive Nth root of unity. Furthermore, describe all Nth roots of unity.
Which of these roots are primitive? Determine for N ∈ {4,7,12} all primitive Nth roots of unity.
[Hint: In this exercise, one needs to know that a (nonzero) polynomial of degree N has at most N
different roots, where a root of a function is an input value that produces an output of zero.]

Exercise 2.24. Let x = (x(0), . . . ,x(N−1))> be a real-valued vector consisting of samples x(n) ∈
R for n ∈ [0 : N−1]. Show that

X = DFTN ·x
with X = (X(0), . . . ,X(N − 1))> fulfills the symmetry property X(k) = X(N− k) for all k ∈
[1 : N−1] and X(0)∈R. This shows that the upper half of the frequency coefficients are redundant

Exercises 117

if x is real-valued. Furthermore, show the converse. Given a spectral vector X with X(0) ∈ R and
X(k) = X(N− k) for all k ∈ [1 : N−1], then

x = DFT−1
N ·X

is a real-valued vector (see (2.118)).
[Hint: Use the computation rules for complex numbers from Exercise 2.12.]

Exercise 2.25. Specify the DFTN matrix explicitly for N ∈ {1,2,4}. Count the number of multi-
plications and additions when performing the usual matrix–vector product DFT4 · x for a vector
x = (x1,x2,x3,x4)

>. Then conduct all steps of the FFT algorithm (two recursions are needed) and
again count the overall number of multiplications and additions needed to compute DFT4 ·x.

Exercise 2.26. Let N = 2n be a power of two. In (2.127), we derived the estimate µ(N) ≤
2µ(N/2)+ 1.5N for the number of multiplications and additions needed to compute the matrix–
vector product DFTN ·x. Using µ(1) = 0 (the case n = 0), show by a mathematical induction on n
that this implies µ(N)≤ 1.5N log2(N).

Exercise 2.27. In the spectrograms shown in Figure 2.32 one can notice vertical stripes at t = 0
and t = 1. Why?

Exercise 2.28. In this exercise, we prove the sampling theorem. A CT-signal f ∈ L2(R) is called
Ω -bandlimited if the Fourier transform f̂ vanishes for |ω| > Ω , i.e., f̂ (ω) = 0 for |ω| > Ω . Let
f ∈ L2(R) be an Ω -bandlimited function and let x be the T -sampled version of f with T := 1/(2Ω),
i.e., x(n) = f (nT), n ∈ Z. Then f can be reconstructed from x by

f (t) = ∑
n∈Z

x(n)sinc
(

t−nT
T

)
= ∑

n∈Z
f
(n

2Ω

)
sinc(2Ω t−n) ,

where the sinc function is defined in (2.96). In other words, the CT-signal f can be perfectly re-
constructed from the DT-signal obtained by equidistant sampling if the bandlimit is no greater than
half the sampling rate.
[Hint: Note that one may assume Ω = 1/2 (and T = 1) by considering the scaled function
t 7→ f (t/Ω). In this case, f is 1/2-bandlimited and can be extended to a 1-periodic function g.
Represent g by its Fourier series (2.79) and compute the Fourier coefficients cn = 〈g|expn〉, n ∈ Z.
Compare these coefficients with the Fourier representation (2.91) of f evaluated at t = n for n ∈ Z
(again using the fact that f is 1/2-bandlimited). As a result, one obtains cn = f (−n). Finally,
reconstruct f from the Fourier series of g. To this end, you need the result of Exercise 2.21.]

Chapter 3
Music Synchronization

Music can be described and represented in many different ways including sheet
music, symbolic representations, and audio recordings. For each of these represen-
tations, there may exist different versions that correspond to the same musical work.
For example, for Beethoven’s Fifth Symphony one can find a large number of mu-
sic recordings performed by different orchestras and conductors. The general goal
of music synchronization is to automatically link the various data streams, thus
interrelating the multiple information sets related to a given musical work. More
precisely, synchronization is taken to mean a procedure which, for a given position
in one representation of a piece of music, determines the corresponding position
within another representation.

As a motivating example, let us consider Figure 3.1, which shows a sheet music,
an audio, and a piano-roll representation of the beginning of a piano piece. Recall
that the sheet music representation gives an explicit specification of notes in terms
of pitch and duration. However, sheet music typically leaves room for interpreting
aspects such as tempo or dynamics, thus resulting in different performances of the
same piece of music. These performances may be recorded and stored in the form of
audio or MIDI files. In case of audio or symbolic representations there exists a time
line, which may be specified in physical units such as seconds or in musical units
such as measures or beats. Synchronization of such time-dependent data streams
is the process of assigning each time position in one version to a musically corre-
sponding time position in the other version. In Figure 3.1, each such assignment is
visualized by a red bidirectional arrow. For other representations such as digitized
images of sheet music, one has spatial positions rather than time positions, where
note events may be located by bounding boxes given in pixel coordinates. Then
the synchronization between, e.g., a sheet music and an audio representation is an

119© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_3

https://doi.org/10.1007/978-3-030-69808-9_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_3&domain=pdf

120 3 Music Synchronization

Fig. 3.1 First four measures of Op. 100, No. 2 by Friedrich Burgmüller in a sheet music, audio,
and piano-roll representation. The red bidirectional arrows indicate the aligned time positions of
corresponding note events in the different representations.

assignment of spatial positions (in 2D pixel coordinates) in the image file to time
positions in the audio file.

Such synchronization results form the basis for novel interfaces that allow users
to access, search, and browse musical content in a convenient way. For example,
Figure 3.22 shows an interface for a time-synchronous display of the score position
in sheet music during the playback of an audio recording of the same piece of music.
A simple click on a measure within the sheet music representation allows a user to
directly jump to the corresponding position in a music recording. The Interpretation
Switcher shown in Figure 3.21 makes use of synchronization techniques for afford-
ing efficient and convenient access to several recordings of the same piece of music.
This interface allows a user to listen to a specific recording and then, at any time
during playback, seamlessly switch to any of the other versions. In Section 3.3, we
will discuss a number of applications and interfaces that are built on music synchro-
nization techniques.

In this chapter we study fundamental techniques for analyzing, comparing, and
synchronizing different music representations that belong to the same piece of mu-
sic. Given two different music representations, typical synchronization approaches
proceed in two steps (see Figure 3.2). In the first step, the two representations are
transformed into sequences of suitable features. In general, such feature represen-
tations need to find a compromise between two conflicting goals. On the one hand,
features should show a large degree of robustness to variations that are to be left un-
considered for the task at hand. On the other hand, features should capture enough
characteristic information to accomplish the given task. In Section 3.1, we introduce
chroma-based features, which have turned out to be a powerful tool for analyzing
music whose pitches can be meaningfully categorized (often into 12 categories) and
whose tuning approximates to the equal-tempered scale. As we will see, such fea-

3.1 Audio Features 121

Music
Representations

Feature
Representations

Synchronization
Result

Extraction DTW

Fig. 3.2 Overview of the processing pipeline of a typical music synchronization procedure.

tures capture harmonic and melodic characteristics of music, while being robust to
changes in timbre and instrumentation. In the second step, the derived feature se-
quences have to be brought into temporal correspondence. In Section 3.2, we discuss
a technique known as dynamic time warping (DTW), which computes an optimal
alignment between two given feature sequences. This alignment constitutes our syn-
chronization result. Intuitively, the alignment can be thought of as a linking structure
as indicated by the red bidirectional arrows shown in Figure 3.1. In Section 3.3, we
indicate how music synchronization techniques can be applied for supporting users
in experiencing and exploring music.

We want to emphasize that the task of music synchronization mainly serves as
motivation for the techniques treated in this chapter. Both chroma-based music fea-
tures as well as DTW-like alignment techniques play an important role also in other
music processing tasks as demonstrated in subsequent chapters.

3.1 Audio Features

To make music data comparable and algorithmically accessible, the first step in ba-
sically all music processing tasks is to extract suitable features that capture relevant
key aspects while suppressing irrelevant details. Obviously, the notion of similar-
ity is of crucial importance in the design of music features. In some tasks such as
music synchronization, one may be interested in characterizing an audio recording
irrespective of certain details concerning the interpretation or instrumentation. Con-
versely, other applications may be concerned with measuring just the subtleties that
relate to a musician’s individual articulation or emotional expressiveness.

In this section, we introduce audio features and mid-level representations that
are particularly useful in the music synchronization context and related tasks (see
Figure 3.3 for a first impression). Assuming that we are dealing with music whose
pitches can be meaningfully categorized according to the equal-tempered scale,
we show how an audio recording can be transformed into a feature representa-
tion that reveals the distribution of the signal’s energy across the different pitches
(Section 3.1.1). Technically, these features are obtained from a spectrogram by con-
verting the linear frequency axis (measured in Hertz) into a logarithmic axis (mea-

122 3 Music Synchronization

sured in pitches). From this log-frequency spectrogram, we then derive a time–
chroma representation by suitably combining pitch bands that correspond to the
same pitch class or chroma (Section 3.1.2). The resulting chroma features show a
high degree of robustness to variations in timbre and instrumentation. Finally, we
discuss various pre- and postprocessing steps modifying spectral, temporal, and dy-
namical aspects. This leads to a number of chroma feature variants, which may show
a quite different behavior in the context of a specific music analysis scenario.

3.1.1 Log-Frequency Spectrogram

The Fourier transform and, in particular, the discrete STFT serve as a front-end
transform, the first computing step, for deriving a large number of musically rel-
evant audio features. We quickly recall the definition of the discrete STFT from
Section 2.5.3 to fix the notation. Let x be a real-valued discrete signal obtained by
equidistant sampling with respect to a fixed sampling rate Fs given in Hertz. Further-
more, let w be a real-valued discrete-time window such that w(`) for ` ∈ [0 : N−1]
are the nonzero samples of w for some N ∈N, and let H ∈N be the hop size param-
eter. Then, by (2.26), the STFT X of x is given by

X (n,k) :=
N−1

∑
`=0

x(`+nH)w(`)exp(−2πik`/N) (3.1)

with n ∈ Z and k ∈ [0 : K], where K = N/2 is the frequency index corresponding to
the Nyquist frequency. The complex number X (n,k) denotes the kth Fourier coeffi-
cient for the nth time frame. Recall from Section 2.5.3 that each Fourier coefficient
X (n,k) is associated with the physical time position Tcoef(n) = nH/Fs given in sec-
onds (see (2.27)) and with the physical frequency Fcoef(k) = kFs/N given in Hertz
(see (2.28)).

In Section 1.3.2 we discussed the equal-tempered scale, where each octave is
split up into twelve logarithmically spaced units. Recall that, in MIDI notation, the
pitches of the equal-tempered scale are serially numbered, where the pitch A4 cor-
responds to the MIDI pitch p = 69. In the following, we do not distinguish between
the different notations and often simply speak of a note while meaning a pitch. We
have seen that the notes of the equal-tempered scale depend on their center fre-
quencies in a logarithmic fashion. By (1.1), the center frequency Fpitch(p) of a pitch
p ∈ [0 : 127] is

Fpitch(p) = 2(p−69)/12 ·440 (3.2)

(see also Table 3.1). As an illustration, we consider a chromatic scale played on a
piano starting with the note A0 (p = 21) and ending with C8 (p = 108). The result-
ing spectrogram, as shown in Figure 3.3b, reveals the exponential dependency of
the fundamental frequency on the pitches of the played notes. Also, as already dis-
cussed in the example of Figure 1.23a, the harmonics and the notes’ onset positions

3.1 Audio Features 123

Time (seconds)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(p
itc

h)

(c)

(d)

(a)

(b)

C1
24

C2
36

C3
48

C4
60

C5
72

C6
84

C7
96

C8
108

Fig. 3.3 Various representations for a recording of the chromatic scale played on a real piano.
The scale ranges from A0 (p = 21) to C8 (p = 108). (a) Piano keys representing the chromatic
scale. (b) Magnitude spectrogram. (c) Pitch-based log-frequency spectrogram. (d) Chromagram.
For visualization purposes the values are encoded by shades of gray using a logarithmic scale. The
C3 (p = 48) played at time t = 30 sec is highlighted by rectangular frames.

124 3 Music Synchronization

Note p Fpitch(p) Fpitch(p−0.5) Fpitch(p+0.5) BW(p)
C4 60 261.63 254.18 269.29 15.11

C]4 61 277.18 269.29 285.30 16.01
D4 62 293.66 285.30 302.27 16.97

D]4 63 311.13 302.27 320.24 17.97
E4 64 329.63 320.24 339.29 19.04
F4 65 349.23 339.29 359.46 20.18

F]4 66 369.99 359.46 380.84 21.37
G4 67 392.00 380.84 403.48 22.65

G]4 68 415.30 403.48 427.47 23.99
A4 69 440.00 427.47 452.89 25.41

A]4 70 466.16 452.89 479.82 26.93
B4 71 493.88 479.82 508.36 28.53
C5 72 523.25 508.36 538.58 30.23

Table 3.1 Various notes and their MIDI note number p, center frequency Fpitch(p), cutoff frequen-
cies Fpitch(p−0.5) and Fpitch(p+0.5), and bandwidth BW(p).

(vertical structures) are clearly visible. In the following, the chromatic scale will
serve as one of our running examples.

The logarithmic perception of frequency motivates the use of a time–frequency
representation with a logarithmic frequency axis labeled by the pitches of the equal-
tempered scale. To derive such a representation from a given spectrogram represen-
tation, the basic idea is to assign each spectral coefficient X (n,k) to the pitch with
center frequency that is closest to the frequency Fcoef(k). More precisely, we define
for each pitch p ∈ [0 : 127] the set

P(p) := {k : Fpitch(p−0.5)≤ Fcoef(k)< Fpitch(p+0.5)}. (3.3)

From this, we obtain a log-frequency spectrogram YLF : Z× [0 : 127] defined by

YLF(n, p) := ∑
k∈P(p)

|X (n,k)|2. (3.4)

Let us have a look at this pooling procedure by means of the small example
shown in Figure 3.4. As before, we assume a sampling rate of Fs = 44100 Hz and a
window length of N = 4096. By (2.28), we obtain the frequencies associated to the
Fourier coefficients of the STFT. For example, one obtains Fcoef(40) ≈ 430.7 Hz,
Fcoef(41) ≈ 441.4 Hz, and so on. To compute a coefficient YLF(n, p) for some
pitch p, we consider the cutoff frequencies Fpitch(p−0.5) and Fpitch(p+0.5) (see
Table 3.1). The set P(p) consists of all Fourier coefficients whose frequencies lie
within these bounds. For example, we obtain P(p) = {40,41,42} for p = 69 (see
Figure 3.4). The pitch coefficient YLF(n,69) for some time frame n is obtained by
summing up the squared magnitudes of the three coefficients X (n,40), X (n,41),
and X (n,42). Similarly, one obtains YLF(n,68) by considering the coefficients for
k = 38 and k = 39, and so on.

By this procedure, the frequency axis is partitioned logarithmically and labeled
linearly according to MIDI pitches. Figure 3.3c shows the resulting log-frequency

3.1 Audio Features 125

p = 67

p = 68

p = 69

p = 70

Frames

Fpitch (69.5) = 452.9

Fpitch (68.5) = 427.5

Fpitch (67.5) = 403.5

Fcoef (42) = 452.2

Fcoef (41) = 441.4

Fcoef (43) = 463.0

Fcoef (40) = 430.7

Fcoef (39) = 419.9

Fcoef (38) = 409.1

Fcoef (37) = 398.4

Frames

Fig. 3.4 Illustration of the pooling procedure for deriving a log-frequency spectrogram. In this
example, a sampling rate of Fs = 44100 Hz and a window length of N = 4096 are assumed.

spectrogram, where the played notes of the chromatic scale now appear in a lin-
early increasing fashion. This figure again illustrates that playing a single note on
a real instrument may already result in a complex mixture of different frequencies.
As a general trend, the sounds for higher notes possess a cleaner harmonic spec-
trum than the ones for lower notes. For lower notes, the signal’s energy is often
contained in the higher harmonics, while the listener may still have the perception
of a low-pitched sound. Furthermore, the frequency content of a sound depends on
the microphone’s frequency response. For example, the microphone may capture
only frequencies above a certain threshold as in the case of the audio example used
for Figure 3.3. This also explains why there is virtually no energy visible in the
fundamental frequencies for the notes A0 (p = 21) to B0 (p = 32).

Besides acoustic properties, there is another reason for the rather poor represen-
tation of low pitches when using the pooling strategy based on a discrete STFT as
described in (3.4). First note that the discrete STFT introduces a linear sampling of
the frequency axis, as shown by (2.27). In contrast, the frequency range in (3.3) con-
sidered for each pitch p depends on the frequency in a logarithmic fashion. More
precisely, we define the bandwidth BW(p) of pitch p by

BW(p) := Fpitch(p+0.5)−Fpitch(p−0.5), (3.5)

which becomes smaller for decreasing pitches (see Table 3.1). For example, for
MIDI pitch p = 66 one has a bandwidth of roughly 21.4 Hz, whereas for p = 54
the bandwidth falls below 10.7 Hz. Now, using for example a sampling rate of
Fs = 44100 Hz and a window length of N = 4096, the resulting STFT has a fre-
quency resolution of 10.8 Hz by (2.27). In this case, the frequency resolution of the
spectrogram does not suffice to separate the center frequencies of adjacent MIDI
pitches below p = 54. As a result, the set P(p) as defined in (3.3) may contain only
very few spectral coefficients or may even be empty (see Exercise 3.2). This is one
main reason for having a poor log-frequency representation in the lower pitch range.

As we discussed in Section 2.5.3 (see Figure 2.32 and Figure 2.33), the fre-
quency resolution can be increased by enlarging the window length N, which, how-
ever, results in a decreased temporal resolution. As a consequence one may lose

126 3 Music Synchronization

important short-time information such as note onsets. One alternative to using a sin-
gle spectrogram is to use several spectrograms based on different sampling rates
and window sizes. One crucial observation is that sudden sound events such as note
onsets become prominent in particular in the high-frequency range of the spectrum,
which necessitates a good time resolution in this range. Therefore, for high pitches,
one often uses a large sampling rate and a short window (short with respect to the
physical duration given in seconds) to obtain a good temporal resolution. For high
pitches, the resulting poor frequency resolution is tolerable because of the expo-
nential spread of the fundamental frequencies. Vice versa, for the analysis of low
pitches, frequency resolution becomes more important. Therefore, in this case, one
often uses a smaller sampling rate and a (physically) longer window at the cost
of losing temporal resolution. In practice, one may process the highest octave to
be considered with an STFT-based method based on a large sampling rate. For the
next lowest octave, the sampling rate can be reduced by a factor of two and then
processed by the same STFT-based method (which leads to an increase in physical
duration of the window by a factor of two). This multiresolution approach may be
repeated for as many octaves as desired.

As an illustration, we continue with the Burgmüller example from Figure 3.1.
The log-frequency spectrogram shown in Figure 3.5 has been computed using a
multiresolution approach as outlined above based on a window size that corresponds
to roughly 10 ms. The time axis has been converted from frame indices to seconds,
and only the frequency information corresponding to the pitches p = 55 to p = 92
is shown. For visualization purposes, as in Section 2.5.2, the values are encoded by
shades of gray using a logarithmic scale (otherwise the low-energy values would
not been visible in the plot). In the lower staff of the score (left hand), one can
see that the chord consisting of the three notes A3 (p = 57), C4 (p = 60), and
E4 (p = 64) is played every quarter beat, altogether eight times over the first four
measures. These chords are also clearly visible in the time–pitch representation of
the log-frequency spectrogram. In particular, one can observe some energy in the
subbands corresponding to the pitches p = 57, p = 60, and p = 64. Further energy
can be seen in the upper pitch bands that correspond to harmonics. For example,
even though the note A4 (p = 69) only appears in the right hand of the score in
the third and fourth measure, there is significant energy in this subband at the eight
time positions corresponding to the quarter beat. This is due to the fact that the note
A4 corresponds to the second harmonic of the note A3 (p = 57) played by the left
hand. Interestingly, for this note there is more energy in the second harmonic than in
the fundamental frequency, a phenomenon that often occurs for low-pitched notes.
Furthermore, the two sixteenth-note phrases shown in the upper staff of the score
(right hand) can be seen in the time–pitch representation. For example, the note B4
(p = 71) is played three times by the right hand, which is clearly revealed in the
log-frequency spectrogram. It also becomes evident that some of the signal’s energy
is spread over large parts of the spectrum. The main reason for the energy spread is
due to the inharmonicities of the piano sound caused by the keystroke (mechanical
noise) as well as transient and resonance effects (see Section 1.3.4). Another general
reason is the imperfection of the Fourier analysis also known as spectral leakage,

3.1 Audio Features 127

Fr
eq

ue
nc

y
(p

itc
h)

Time (seconds)

(c)

(a)

(b)

Fig. 3.5 Various representations for the Burgmüller example from Figure 3.1. (a) Sheet music
representation. (b) Pitch-based log-frequency spectrogram. (c) Chromagram. Correspondences be-
tween selected notes and parts of the spectrogram are highlighted by rectangular and oval frames.
For visualization purposes the values are encoded by shades of gray using a logarithmic scale.

which is the result of the frequency smearing introduced by the window function
(see Section 2.5.2). However, in the present example, the leakage effect only causes
marginal artifacts compared with those introduced by the inharmonicities.

3.1.2 Chroma Features

Recall from Section 1.1.1 that human perception of pitch is periodic in the sense that
two pitches are perceived as similar in “color” (playing a similar harmonic role) if
they differ by an octave. Based on this observation, a pitch can be separated into
two components, which are referred to as tone height and chroma. The tone height
refers to the octave number and the chroma to the respective pitch spelling attribute
contained in the set {C,C],D, . . . ,B}. Enumerating the chroma values, we identify
this set with [0 : 11] where 0 refers to chroma C, 1 to C], and so on. A pitch class is
defined as the set of all pitches that share the same chroma. For example, the pitch

128 3 Music Synchronization

class corresponding to the chroma C is the set {. . . , C0,C1,C2,C3, . . .} consisting
of all pitches separated by an integer number of octaves. For simplicity, we use the
terms chroma and pitch class interchangeably.

The main idea of chroma features is to aggregate all spectral information that
relates to a given pitch class into a single coefficient. Given a pitch-based log-
frequency spectrogram YLF : Z× [0 : 127]→R≥0 as defined in (3.4), a chroma rep-
resentation or chromagram Z× [0 : 11]→ R≥0 can be derived by summing up all
pitch coefficients that belong to the same chroma:

C(n,c) := ∑
{p∈[0:127] : pmod12=c}

YLF(n, p) (3.6)

for c ∈ [0 : 11]. As a first example, Figure 3.3d shows the chromagram of the chro-
matic scale, where the cyclic nature of chroma features becomes evident. Because
of the octave equivalence, the increasing notes of the chromatic scale are “wrapped
around” the chroma axis. As with the log-frequency spectrogram, the resulting chro-
magram of the considered audio example is rather noisy, in particular for the lower
notes. Furthermore, because of the presence of higher harmonics, the energy is typi-
cally spread across various chroma bands even when playing a single note at a time.
For example, playing the note C3, the third harmonic corresponds to G4 and the
fifth harmonic to E5. Therefore, when playing the note C3 on the piano, not only
the chroma band C, but also the chroma bands G and E contain a substantial portion
of the signal’s energy.

Next, let us have a look at the chromagram for our Burgmüller example (see
Figure 3.5c). The chords consisting of the three notes A3 (p = 57), C4 (p = 60),
and E4 (p = 64) of the lower staff are clearly visible in the chromagram, where
most of the signal’s energy is contained in the chroma bands A, C, and E. The
smaller amount of energy seen in band G comes from G5, which is the third har-
monic of C4. Similarly, there is some energy in the band B coming from B5, which
is the third harmonic of E4. The information contained in the 128 pitch bands of the
log-frequency spectrogram is collapsed into the twelve chroma bands. As a result, a
lot of information is irrecoverably lost. For example, in the chromagram, the notes
A5 of the upper staff cannot be distinguished from the notes A4 in the lower staff.
However, for certain applications, this loss in information is desired since it intro-
duces a high degree of robustness to variations in timbre. To see this, recall from
Section 1.3.4 that the timbre of a sound strongly relates to the energy distribution in
the harmonics. Now, the 1st, 2nd, 4th, 8th, . . . harmonics differ by octaves and their
energy is gathered in the same chroma band. Similarly, the 3rd, 6th, 12th, . . . har-
monics share the same chroma. As a result, a lot of information that is relevant to
distinguish the timbre of different instruments falls into the same chroma bands.

To get a better feeling for chroma features, let us consider some further examples.
We continue with the example from Figure 1.23, where the note C4 is played by dif-
ferent instruments. The resulting chroma representations are shown in Figure 3.6a.
In the case of the piano, most energy is contained in the chroma band C with a
strong decay in amplitude. We have already seen in the spectrogram representations

3.1 Audio Features 129

Fig. 3.6 Various chroma
representations for the note
C4 played by different in-
struments (see Figure 1.23).
(a) Chromagram. (b) Chro-
magram after logarithmic
compression. (c) Normalized
chromagram obtained from
(b).

Time (seconds) Time (seconds)

Piano Violin

(b)

(a)

(c)

of Figure 1.23 that the violin has a much richer spectrum of partials. As a result, the
energy is spread more evenly over the harmonics, which explains the energy con-
tained in the chroma bands G and E. This effect becomes more clearly visible when
using a logarithmic scale, which we also have employed already in previous figures.
The motivation for using such a scale is that the perception of a sound’s intensity is
logarithmic in nature (see Section 1.3.3). In other words, even sound components of
very low energy may still bear perceptually important information.

3.1.2.1 Logarithmic Compression

In audio processing, one often applies a step referred to as logarithmic compres-
sion. This step, which can be seen as an alternative to using a decibel scale, works
as follows: Let γ ∈ R>0 be a positive constant and Γγ : R>0 → R>0 the function
defined by

Γγ(v) := log(1+ γ · v) (3.7)

for some positive value v ∈ R>0 (see Figure 3.7a). Hence, as opposed to the dB
function in (1.6), the function Γγ yields a positive value Γγ(v) for any positive value
v ∈ R>0. Now, for a representation with positive values such as a spectrogram, log-
frequency spectrogram or chromagram, one obtains a compressed version by apply-
ing the function Γγ to each of the values. For example, for the chromagram C, the
compressed version is the concatenation Γγ ◦C defined by

(Γγ ◦C)(n,c) := log(1+ γ · C(n,c)). (3.8)

130 3 Music Synchronization

γ = 1
Identity

γ = 100
γ = 10

(a) (c)

(e)

(b)

(d)

C
om

pr
es

se
d

va
lu

es

Original values

Fig. 3.7 (a) Compression function Γγ for different constants γ . (b) Original image showing a chro-
magram for the note C4 (similar to Figure 3.6). (c) Compressed image using γ = 1. (d) Compressed
image using γ = 100. (e) Compressed image using γ = 100000.

Why is this operation called “compression,” and what is the role of the constant
γ ∈ R>0? The problem with representations such as a spectrogram is that its values
possess a large dynamic range. As a result, small, but still relevant values may be
dominated or obscured by large values. Therefore, the idea of compression is to bal-
ance out this discrepancy by reducing the difference between large and small values
with the effect of enhancing the small values. This exactly is done by the function
Γγ , where the degree of compression can be adjusted by the constant γ . The larger
γ , the larger the resulting compression (see Figure 3.7). A suitable choice of γ very
much depends on the data characteristics and the application in mind. In particu-
lar, in the presence of noise one needs to find a good balance between enhancing
the weak but relevant signal components while not amplifying the undesired noise
components too much.

Let us come back to our example with the note C4. Figure 3.6b shows the com-
pressed versions of the chromagrams using the constant γ = 100. As can be seen,
the two chromagrams of the piano and the violin look more or less the same, even
though they sound quite different. This illustrates that chroma features are invari-
ant to differences in timbre—at least to a certain degree. To make the chromagrams
also invariant to changes in dynamics, one can normalize the features with respect
to some suitable norm ||·|| (see Section 2.2.3). To this end, each of the twelve-
dimensional chroma vectors x= C(n, ·)∈R12 for a frame index n∈Z (nth column of
C) is replaced by the vector x/||x||. In the following, we only consider the Euclidean
norm, which we have already encoutered in (2.38). Recall that this norm is defined
by

||x|| :=
(11

∑
i=0
|x(i)|2

)1/2
(3.9)

3.1 Audio Features 131

for a given chroma vector x= (x(0),x(1), . . . ,x(11))>. The normalization procedure
is only possible if ||x||> 0. Also for very small values ||x|| that may occur in passages
of silence before the actual start of the recording or during long pauses, normaliza-
tion would lead to more or less random and therefore meaningless chroma value
distributions. Therefore, if ||x|| falls below a certain threshold, the vector x may be
replaced by a uniform vector of norm one instead of dividing by ||x||.

Mathematically, this normalization procedure can be described as follows: Let
S11 ⊂ R12 be the unit sphere containing all 12-dimensional vectors of norm one.
Then, for a given threshold ε > 0, we define a projection operator πε : R12 → S11

by

π
ε(x) :=

{
x/||x|| if ||x||> ε ,

(1,1, . . . ,1)>/
√

12 if ||x|| ≤ ε .
(3.10)

Based on this operator, each chroma vector x is replaced by πε(x). The threshold ε is
a parameter that needs to be chosen with care. A suitable choice will depend on the
requirements of the application in mind. Recall from Section 1.3.3 that the human
ear is very sensitive so that sound components of even very low energy may still be
relevant. Therefore, the threshold ε is generally chosen several orders of magnitude
smaller (often a factor between 104 to 106) than the average sound level.

Figure 3.6c illustrates the effect when applying a frame-wise normalization to
the chroma representations. In particular for the piano example, the strong decay
in amplitude in the chroma band C has been compensated by the normalization.
As another interesting fact, this example also shows that the relative energy decay
in the chroma band G is stronger than in the chroma band C. In other words, the
energy decay may not be proportional over the harmonics. This property is one of
the characteristics that influence the timbre of a specific sound (see Section 1.3.4).

The effect of logarithmic compression and normalization also becomes evident
in our next example shown in Figure 3.8, which is based on a C-major scale played
on a piano. With this example, we also want to discuss some further issues that
are related to using the twelve-tone equal-tempered scale as an underlying model
for the chroma computation. Often, when playing a note on a real instrument, the
fundamental frequency of the sound may deviate substantially from the note’s theo-
retical center frequency. These deviations may be due to effects such as vibrato (fre-
quency modulations) or to portamento, a musical term that describes continuous
pitch sliding to smoothly connect subsequent notes. Furthermore, global frequency
deviations may be the result of instruments that are tuned lower or higher than
the expected reference pitch A4 with center frequency 440 Hz (see Section 1.3.2).
For example, many modern orchestras are using a tuning frequency slightly above
440 Hz, whereas ensembles that play Baroque music are often tuned lower than
concert pitch. As an extreme example, Figure 3.8d shows a chromagram in the case
that the C-major scale is played on a piano tuned 40 cents upwards. As a result, the
energy of the respective notes is no longer captured by individual chroma bands, but
smeared across neighboring bands. To compensate for tuning effects, one therefore
needs to perform an additional tuning estimation step to adjust the center frequen-
cies of the MIDI pitches in (3.2) as well as the logarithmic partitioning in (3.3) for

132 3 Music Synchronization

Time (seconds)

(c)

(a)

(b)

(d)

(e)

Fig. 3.8 Various chroma representations for a C-major scale played on a piano. (a) Sheet music
representation. (b) Chromagram. (c) Chromagram after logarithmic compression and normaliza-
tion. (d) Chromagram based on a piano tuned 40 cents upwards. (e) Chromagram after applying a
cyclic shift of four semitones upwards.

computing the pitch-based log-frequency spectrogram. These issues will be further
discussed in the exercises (see Exercise 3.5 and Exercise 3.6).

3.1.2.2 Transpositions

Next, we want to discuss a property of chroma features by which one can simulate a
transposition, a concept used in music to shift a melody or an entire piece of music
to another key. Such modifications are often applied to adapt the pitch range of a
given piece to a different instrument or singer. For example, a song originally written
for a soprano voice (highest female voice type) may be transposed seven semitones
downwards to better fit a contralto voice (lowest female voice type). Technically
speaking, a transposition refers to the process of moving a collection of notes up or

3.1 Audio Features 133

down in pitch by a constant interval (see Exercise 1.3). To understand the effect on
the chroma level, recall that the twelve chroma values, which we identified with the
set [0 : 11], are used to index a chroma vector x = (x(0),x(1), . . . ,x(10),x(11))> ∈
R12. As illustrated by Figure 1.3, the chroma values are cyclically ordered. This
motivates the definition of the cyclic shift operator ρ : R12→ R12 given by

ρ(x) := (x(11),x(0),x(1), . . . ,x(10))>. (3.11)

In other words, the chroma band C in x becomes the chroma band C] in ρ(x), the
band C] becomes D, and so on, and the last band B becomes C. The cyclic shift
operator can be applied successively obtaining ρ i := ρ ◦ρ i−1 for i ∈ N, which de-
fines a cyclic shift of i semitones upwards. Obviously, ρ12(x) = x, which means
that, by cyclically shifting a chroma vector twelve semitones (one octave) upwards,
one recovers the original vector. Applying the cyclic shift operator to all frames of
a chromagram simultaneously leads to a cyclical shift of the entire chromagram in
the vertical direction. This is illustrated by Figure 3.8e, where the original chroma-
gram of the C-major scale has been shifted four semitones upwards. This results in
a chromagram that looks like the one of an E-major scale, a transposition of four
semitones.

3.1.2.3 Concluding Example

There are many ways of converting music recordings into chroma-based represen-
tations. In this section, we have only discussed the most basic version based on a
spectrogram. By applying suitable pre- and postprocessing steps, the properties of
chroma features can be changed significantly. For example, we have seen that one
can increase the robustness to variations in timbre or sound intensity by performing
additional compression and normalization steps. To illustrate the effect of other en-
hancement strategies, we consider two different performances of Beethoven’s Fifth
Symphony: an orchestral version conducted by Karajan and a piano version played
by Glenn Gould (see Figure 3.9). Even though these two interpretations exhibit sig-
nificant variations in articulation and instrumentation, the two compressed chroma-
grams shown in Figure 3.9b and Figure 3.9c, respectively, already show a similar
progression of the chroma distribution over time. For certain applications such as
the music synchronization task, these two chromagrams may be too detailed, and
it is desirable to further increase the similarity between the two chromagrams. This
can be achieved, for example, by applying additional quantization and smoothing
procedures. Such a procedure will be discussed in more detail in Section 7.2.1. Fur-
ther reducing the feature rate, one obtains the two enhanced chromagrams shown
in Figure 3.9d and Figure 3.9e. As the figures demonstrate, the additional process-
ing steps have not only reduced the noise level significantly, but also have further
worked out the common characteristic chroma patterns of the two recordings. In the
next section, we show how to account for the differences between the chromagrams
that result from different tempi in the two recordings.

134 3 Music Synchronization

(c)

(a)

(b)

(e)

(d)

Time (seconds)

Fig. 3.9 Chroma representations for two different performances of Beethoven’s Fifth Symphony.
(a) Sheet music representation (in a piano reduced version). (b) Compressed and normalized chro-
magram for an orchestra performance. (c) Compressed and normalized chromagram for a piano
performance. (d) Enhanced chromagram for an orchestra performance. (e) Enhanced chromagram
for a piano performance.

In conclusion, we have seen that chroma features are a suitable representation
for harmonic music with a broad class of pitch and tuning characteristics. Chroma
representations closely correlate to the aspect of harmony, while showing a high
degree of robustness to changes in timbre and dynamics. One important message
of this section is that there are many ways of computing and enhancing chroma
features resulting in a large number of chroma variants with different properties.
We will see that there is no “best” chroma variant that performs equally well for
all applications in mind. Therefore, in order to be successful, one needs to have a
good understanding of both the feature design step as well as the requirements of
the given application scenario.

3.2 Dynamic Time Warping 135

3.2 Dynamic Time Warping

We have seen how different music representations can be made comparable by con-
verting them into suitable feature representations. Next, we study how these feature
representations can be aligned or synchronized to bring them into temporal cor-
respondence. To this end, we introduce an important technique that is known as
dynamic time warping (DTW).

The objective of DTW is to compare two given sequences. In our music synchro-
nization scenario, these two sequences are, for example, chroma representations of
two different versions of the same piece of music. Let us denote the first sequence
by X = (x1,x2, . . . ,xN) with N ∈ N being the length of the sequence and the second
sequence by Y = (y1,y2, . . . ,yM) having length M ∈N, where the elements xn and ym
of the two sequences are chroma vectors. For example, X may be a chroma vector se-
quence obtained from an orchestral version of Beethoven’s Fifth (as in Figure 3.9d)
and Y a sequence obtained from a piano version (Figure 3.9e). Since the orchestral
performance underlying the sequence X is played faster than the piano performance
underlying the sequence Y , the two sequences do not have the same length even
though they musically correspond to each other. In our example, as illustrated by
Figure 3.10, the sequence X has length N = 12, whereas the sequence Y has length
M = 15. The goal of DTW is to compensate for differences in tempo by finding a
possibly nonlinear alignment between the elements of the two sequences. Intuitively
speaking, this can be achieved by either skipping certain elements of a sequence or
by using certain elements more than once. For example, in the alignment shown in
Figure 3.10, the element x3 is assigned to the two elements y3 and y4. Similarly, the
elements x5 and x12 are used twice in the overall alignment.

The general goal of DTW is to find an optimal alignment between two given
(time-dependent) sequences under certain restrictions. Based on this alignment, the
sequences can be warped in a nonlinear fashion to match each other. Originally,
DTW was used to compare different speech patterns in automatic speech recogni-
tion. Closely related to concepts such as the edit distance or longest common sub-
sequence, DTW-like procedures are now widely used in various fields such as data
mining, information retrieval, and bioinformatics.

In this section, we introduce the main ideas of classical DTW as well as an effi-
cient algorithm based on dynamic programming to compute an optimal alignment
(Section 3.2.1). Then, we discuss several modifications to DTW which make it pos-
sible to influence certain local and global properties of the alignment and to further
speed up the DTW computation (Section 3.2.2). A number of related algorithms and
DTW variants are also discussed in the exercises and in subsequent chapters.

3.2.1 Basic Approach

As said above, the objective of DTW is to compare two sequences X :=
(x1,x2, . . . ,xN) of length N ∈ N and Y := (y1,y2, . . . ,yM) of length M ∈ N. Going

136 3 Music Synchronization

Fig. 3.10 Time alignment
of two time-dependent or
indexed sequences of feature
vectors. Aligned points or
frames are indicated by the
arrows.

Sequence X

Sequence Y

Time / frame index

Time / frame index

beyond the music synchronization scenario, these sequences may be discrete sig-
nals, feature sequences, sequences of characters, or any kind of time series. Often
the indices of the sequences correspond to successive points in time that are spaced
at uniform time intervals. In the following, we fix a feature space denoted by F
and assume xn,ym ∈ F for n ∈ [1 : N] and m ∈ [1 : M]. To compare two different
features x,y ∈ F , one needs a local cost measure, sometimes also referred to as a
local distance measure, which is defined to be a function

c : F ×F → R. (3.12)

Typically, c(x,y) is small (low cost) if x and y are similar to each other, and other-
wise c(x,y) is large (high cost). Evaluating the local cost measure for each pair of
elements of the sequences X and Y , one obtains a cost matrix C ∈ RN×M defined
by

C(n,m) := c(xn,ym) (3.13)

for n ∈ [1 : N] and m ∈ [1 : M]. In the following, a tuple (n,m) representing an entry
of the matrix C will be referred to as a cell of the matrix.

Let us come back to our example from Figure 3.10. Using a sequence of twelve-
dimensional chroma vectors, the feature space is F = R12. There are many ways
to define a distance between two elements x,y ∈ F . Maybe the most well-known
distance is the Euclidean distance defined by ||x− y|| using the Euclidean norm of
R12. Another distance is referred to as the cosine distance, which we use as the
local cost measure c in the subsequent examples. The cosine distance between two
nonzero vectors x,y ∈ F is defined by

c(x,y) := 1− 〈x|y〉
||x|| · ||y||

, (3.14)

and c(x,y) := 0 if either x or y is zero. Recall from (2.39) that the quotient of the
inner product and the product of the norms is simply the cosine of the angle between
the two vectors x and y. Therefore, c(x,y) ∈ [0,1], c(x,y) = 0 in the case that x and
y point in the same direction, and c(x,y) = 1 in the case that x and y are orthogonal.
Note that, as opposed to the Euclidean distance, the cosine distance does not depend
on the actual length of the vectors. Therefore, when comparing chroma vectors, the
measure only considers the energy distributions across the twelve chroma bands and

3.2 Dynamic Time Warping 137

Time (indices)

Ti
m

e
(in

di
ce

s)

(a)

(b)

Fig. 3.11 (a) Cost matrix of the two chroma sequences X (vertical axis) and Y (horizontal axis)
using the cosine distance (3.14) as the local cost measure c. Regions of low cost are indicated by
dark colors, and regions of high cost are indicated by light colors. (b) 3D surface plot of the cost
matrix.

disregards the actual local energy. In our music synchronization application, this
property is desirable when the two versions to be compared may differ significantly
in dynamics (which, for example, may be the case when comparing an orchestral
and piano version of a piece of music). Furthermore, there is another practical reason
why the cosine distance is beneficial: the computation of an entire cost matrix based
on the cosine distance can be done efficiently using a simple matrix multiplication
(see Exercise 3.16).

The cost matrix C obtained from our example is shown in Figure 3.11a. In this
visualization, cells of low cost are depicted in dark colors and cells of high cost in
light colors. Since the two sequences show a similar overall progression, except for

138 3 Music Synchronization

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

(a)

Sequence Y

S
eq

ue
nc

e
X Sequence X

Sequence Y

x1 x2 x3 x4 x5 x6 x7 x8 x9

y1 y2 y3 y4 y5 y6 y7

(b)

Fig. 3.12 (a) Illustration of a warping path and (b) its interpretation for some sequence X of length
N = 9 and some sequence Y of length M = 7. Each cell (n,m) belonging to the warping path is
indicated by a red dot and corresponds to an alignment between the elements xn and ym indicated
by a red bidirectional arrow.

a global difference in tempo, the cost matrix has low values along the diagonal of the
matrix. For example, the cell (n,m) = (5,6), which indicates the distance between
the vectors x5 and y6, has a small cost value. Now, the goal is to find an alignment
between X and Y having minimal overall cost. Intuitively, such an optimal alignment
runs along a “valley” of low cost within the cost matrix C (see Figure 3.11b for an
illustration). Next, we formalize the notion of an alignment.

3.2.1.1 Warping Path

Given two sequences X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM), we have seen
that a correspondence between two elements xn and ym can be modeled by the index
pair or cell (n,m). In Figure 3.10, such a correspondence was indicated by a red
bidirectional arrow. Therefore, to model a global alignment between the elements of
the sequences X and Y , the idea is to consider a sequence of index pairs that fulfills
certain constraints. This leads to the following definition: An (N,M)-warping path
of length L ∈ N is a sequence

P = (p1, . . . , pL) (3.15)

with p` = (n`,m`) ∈ [1 : N]× [1 : M] for ` ∈ [1 : L] satisfying the following three
conditions:

Boundary condition: p1 = (1,1) and pL = (N,M). (3.16)
Monotonicity condition: n1 ≤ n2 ≤ . . .≤ nL and m1 ≤ m2 ≤ . . .≤ mL. (3.17)
Step size condition: p`+1− p` ∈ {(1,0),(0,1),(1,1)} for ` ∈ [1 : L−1]. (3.18)

An (N,M)-warping path P = (p1, . . . , pL) defines an alignment between two se-
quences X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) by assigning the element xn`

3.2 Dynamic Time Warping 139

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

(a) (b) (c)

Fig. 3.13 Illustration of violations of the warping path conditions. (a) Violation of boundary con-
dition. (b) Violation of monotonicity condition. (c) Violation of step size condition.

of X to the element ym`
of Y (see Figure 3.12 for an illustration). The boundary con-

dition enforces that the first elements of X and Y as well as the last elements of X
and Y are aligned to each other. In other words, the alignment refers to the entire
sequences X and Y . The monotonicity condition reflects the requirement of faithful
timing: if an element in X precedes a second element in X , then this should also hold
for the corresponding elements in Y , and vice versa. Finally, the step size condition
with respect to the set

Σ := {(1,0),(0,1),(1,1)} (3.19)

expresses a kind of continuity condition: no element in X and Y can be omitted, and
there are no replications in the alignment (in the sense that all index pairs contained
in a warping path P are pairwise distinct). Note that the step size condition (3.18)
implies the monotonicity condition (3.17), which nevertheless has been quoted ex-
plicitly for the sake of clarity. Figure 3.13 illustrates the conditions by some exam-
ples where the conditions are violated. In the following, if N and M are clear from
the context, we simply speak of a warping path instead of an (N,M)-warping path.

3.2.1.2 Optimal Warping Path and DTW Distance

So far, in the definition of a warping path, the cost matrix does not play any role.
A warping path simply encodes how to run through certain cells of a matrix with
N rows and M columns starting with cell (1,1) and ending with cell (N,M), while
satisfying some monotonicity and step size conditions. Next, we introduce a notion
that tells us something about the quality of a warping path. The total cost cP(X ,Y)
of a warping path P between two sequences X and Y with respect to the local cost
measure c is defined as

cP(X ,Y) :=
L

∑
`=1

c(xn` ,ym`
) =

L

∑
`=1

C(n`,m`). (3.20)

The intuition of this definition is that the warping path accumulates the cost of all
cells it runs through. A warping path is “good” if its total cost is low, and it is “bad”

140 3 Music Synchronization

Time (indices)

Ti
m

e
(in

di
ce

s)

Fig. 3.14 Cost matrix from Figure 3.11 with an optimal warping path.

if its total cost is high. Now, we are interested in an optimal warping path between
X and Y , which is defined to be a warping path P∗ that has minimal total cost among
all possible warping paths. Such an optimal warping path is shown in Figure 3.14
continuing the example of Figure 3.11. The cells of this warping path encode an
overall optimal alignment between the chroma vectors of the two sequences, where
the warping path conditions ensure that each element of sequence X is assigned to
at least one element of Y and vice versa.

This leads us to the definition of the DTW distance denoted as DTW(X ,Y) be-
tween the two sequences X of length N and Y of length M, which is defined as the
total cost of an optimal (N,M)-warping path P∗:

DTW(X ,Y) := cP∗(X ,Y) (3.21)
= min{cP(X ,Y) | P is an (N,M)-warping path}.

Note that in general there may exist more than one optimal warping path. For ex-
ample, in the case that the cost matrix C is an all-zero matrix, every warping path is
optimal, having a total cost of zero. Nevertheless, the DTW distance is well defined
since all optimal warping paths obviously have the same total cost.

The number DTW(X ,Y) defined in (3.21) is commonly referred to as the “DTW
distance” between the sequences X and Y . However, from a mathematical point
of view, the term “distance” is misused in this case. In mathematics, a distance is
required to satisfy certain conditions, being symmetric, positive definite, and sat-
isfying the triangle inequality. It is not hard to see that the DTW distance is sym-
metric, i.e., DTW(X ,Y) = DTW(Y,X), in case that the local cost measure c is sym-

3.2 Dynamic Time Warping 141

metric (see Exercise 3.7). However, the DTW distance is in general not positive
definite, where one requires that the distance between two elements is zero if and
only if the elements are the same. For example, one obtains DTW(X ,Y) = 0 for
the two different sequences X := (x1,x2) and Y := (x1,x1,x2,x2,x2) in the case that
c(x1,x1) = c(x2,x2) = 0. Intuitively, this property means that warping can be done
without causing any cost. Even more surprising is the fact that the DTW distance
generally does not satisfy the triangle inequality even if this holds for c. This fact
will be illustrated by an example in Exercise 3.11.

3.2.1.3 Dynamic Programming Algorithm

To determine an optimal warping path P∗ for two sequences X and Y , one could
compute the total cost of all possible (N,M)-warping paths and then take the mini-
mal cost. However, the number of different (N,M)-warping paths is exponential in
N and M (see Exercise 3.9). Therefore, such a naive approach is computationally
infeasible for large N and M. We now introduce an O(NM) algorithm that is based
on dynamic programming. The general idea behind dynamic programming is to
break down a given problem into simpler subproblems and then to combine the solu-
tions of the subproblems to reach an overall solution. In the case of DTW, the idea is
to derive an optimal warping path for the original sequences from optimal warping
paths for truncated subsequences. This idea can then be applied recursively. To for-
malize this idea, we define the prefix sequences X(1:n) := (x1, . . . ,xn) for n∈ [1 : N]
and Y (1:m) := (y1, . . . ,ym) for m ∈ [1 : M] and set

D(n,m) := DTW(X(1:n),Y (1:m)). (3.22)

The values D(n,m) define an (N×M) matrix D, which is also referred to as the ac-
cumulated cost matrix. Each value D(n,m) specifies the total (or accumulated) cost
of an optimal warping path starting at cell (1,1) and ending at cell (n,m). Obviously,
one has D(N,M) =DTW(X ,Y). The next equations show how the accumulated cost
matrix D can be computed recursively (see Figure 3.15 for an illustration):

D(n,1) =
n

∑
k=1

C(k,1) for n ∈ [1 : N], (3.23)

D(1,m) =
m

∑
k=1

C(1,k) for m ∈ [1 : M], (3.24)

D(n,m) = C(n,m)+min

D(n−1,m−1)
D(n−1,m)
D(n,m−1)

(3.25)

for n ∈ [2 : N] and m ∈ [2 : M].
We now give a formal proof of these equations. First, let m = 1 and n∈ [1 : N]. In

this case, there is only one possible warping path, which assigns the single element

142 3 Music Synchronization

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

m = 10

n = 6
D(n,m)

D(N,M) = DTW(X,Y)

D(n,m-1)

D(n-1,m-1) D(n-1,m)

10 11

7

D(1,m)

D(n,1)

12 13 14 15

8

Fig. 3.15 Illustration of the recursive computation of the DTW distance. The blue cells indicate the
entries D(n,1) and D(1,m) initialized by (3.23) and (3.24), respectively. The black cell indicates
the final result D(N,M). The red cell indicates the current entry D(n,m) being computed by (3.25).

y1 of Y (1 : 1) to all elements of X(1 : n). Being the only possible warping path,
this path is optimal. The cost of the path is obviously ∑

n
k=1 C(k,1), which proves

(3.23). Similarly, one obtains (3.24) for the case n = 1 and m ∈ [1 : M]. Now, let
n > 1 and m > 1 and let q = (q1, . . . ,qL−1,qL) denote an optimal warping path for
X(1 : n) and Y (1 : m). We now show how this path can be obtained by extending a
previously constructed optimal warping path. First note that the boundary condition
(3.16) implies qL = (n,m). Setting (a,b) := qL−1, the step size condition (3.18)
implies (a,b) ∈ {(n−1,m−1),(n−1,m),(n,m−1)}. Furthermore, it follows that
(q1, . . . ,qL−1) must be an optimal warping path for X(1 :a) and Y (1 :b) (otherwise,
q would not be optimal for X(1:n) and Y (1:m)). Since

D(n,m) = c(q1,...,qL−1)(X(1:a),Y (1:b))+C(n,m), (3.26)

the optimality of q implies the assertion of (3.25). This finishes the proof.
The equations (3.23) and (3.24) yield the initialization of a recursive procedure

for computing D. The values D(n,m) for n > 1 and m > 1 can then be computed
via (3.25). The computation of D needs to be done by successively increasing n or
m starting with the bottom left corner (1,1) and ending with the upper right corner
(N,M). This final cell (N,M) yields the DTW distance DTW(X ,Y) = D(N,M) (see
Figure 3.15). The entries D(n,m) can be computed in different orders as long as
n and m are increased monotonically. For example, one may proceed in a colum-
nwise fashion, where the computation of the m-th column requires the values of
the (m− 1)-th column. This implies that, if one is only interested in the value
DTW(X ,Y) = D(N,M), the storage requirement is O(N). Similarly, one can pro-
ceed in a rowwise fashion, leading to a storage requirement of O(M). However, in
any case, the recursive step (3.25) is called (N−1) · (M−1) times. Since each step
requires the minimization over three numbers as well as an addition, the overall
complexity for computing D from a given cost matrix C is O(NM).

3.2 Dynamic Time Warping 143

Algorithm: DTW

Input: Cost matrix C of size N×M
Output: Accumulated cost matrix D

Optimal warping path P∗

Procedure: Initialize (N ×M) matrix D by D(n,1) = ∑
n
k=1 C(k,1) for n ∈ [1 : N] and

D(1,m) = ∑
m
k=1 C(1,k) for m ∈ [1 : M]. Then compute in a nested loop for n = 2, . . . ,N and

m = 2, . . . ,M:

D(n,m) = C(n,m)+min{D(n−1,m−1),D(n−1,m),D(n,m−1)}.

Set `= 1 and q` = (N,M). Then repeat the following steps until q` = (1,1):

Increase ` by one and let (n,m) = q`−1.
If n = 1, then q` = (1,m−1),
else if m = 1, then q` = (n−1,m),
else q` = argmin{D(n−1,m−1),D(n−1,m),D(n,m−1)}.

(If ‘argmin’ is not unique, take lexicographically smallest cell.)

Set L = ` and return P∗ = (qL,qL−1, . . . ,q1) as well as D.

Table 3.2 DTW algorithm based on dynamic programming.

So far, we have computed the DTW distance, but we do not know how an optimal
warping path looks. To determine such a path, one needs to recover the information
about the minimizing cells in the recursion (3.25). Applying a backtracking pro-
cedure, the optimal warping path can be constructed incrementally in reverse order
starting with the cell q1 = (N,M). Suppose q` = (n,m) has been computed. In case
(n,m) = (1,1), we are done and set L = `. The path P∗ = (qL,qL−1, . . . ,q1) then
defines an optimal warping path. Otherwise,

q`+1 = (1,m−1) if n = 1, (3.27)
q`+1 = (n−1,m) if m = 1, (3.28)

q`+1 = argmin

D(n−1,m−1),
D(n−1,m),
D(n,m−1)

(3.29)

if n∈ [2 : N] and m∈ [2 : M], where ‘argmin’ yields the cell leading to the minimum
of the three values. Note that ‘argmin’ does not need to be unique, thus opening up
the possibility of having more than one optimal warping path. To obtain a uniquely
determined path, one may take, for example, the lexicographically smallest cell in
case ‘argmin’ is not unique. Table 3.2 summarizes the entire procedure for comput-
ing the DTW distance as well as an optimal warping path.

We now look at a small example to illustrate how the algorithm in Table 3.2
is applied. To this end, we consider the feature space F = R and the local mea-
sure c : F × F → R≥0 defined by c(x,y) = |x− y|, x,y ∈ R. Furthermore, let
X = (1,3,3,8,1) and Y = (2,0,0,8,7,2). Figure 3.16a shows the resulting cost

144 3 Music Synchronization

1 1 1 7 6 1

6 8 8 0 1 6

1 3 3 5 4 1

1 3 3 5 4 1

1 1 1 7 6 1

2 0 0 8 7 2

10 10 11 14 13 9

9 11 13 7 8 14

3 5 7 10 12 13

2 4 5 8 12 13

1 2 3 10 16 17 2 0 0 8 7 2

1 3 3 8 1

2 0 0 8 7 2

(a) (b) (c)

1
8

3
3

1

1
8

3
3

1

Fig. 3.16 (a) Cost matrix C for the two sequences X = (1,3,3,8,1) and Y = (2,0,0,8,7,2) over
F = R using the absolute differences as the local cost measure. (b) Accumulated cost matrix D
with an optimal warping path. (c) Resulting alignment.

matrix C, where we have indexed the rows from bottom to top and the columns
from left to right (as opposed to the usual convention according to which matri-
ces are visualized, since we think of the two dimensions being two time axes).
Figure 3.16b shows the accumulated cost matrix D along with the optimal warping
path P∗ = ((1,1),(2,2),(3,3),(4,4),(4,5),(5,6)). This path is obtained by starting
with the cell q1 = (N,M) = (5,6) of the upper right corner. Applying backtracking,
one looks at all cells from which (N,M) can be reached by applying a valid step
from Σ , which are the cells (N−1,M), (N,M−1), and (N−1,M−1). From these
cells, the predecessor cell q2 is obtained by looking at the cell with minimal accu-
mulated cost. In our example, this is the cell qL−1 = (N−1,M−1) = (4,5), which
has an accumulated cost of D(4,5) = 8. The procedure is repeated until one reaches
the cell qL = (1,1). Since in each backtracking step of our example there is only one
choice for ‘argmin’ in (3.29), there is only one optimal warping path. The induced
alignment of this path is shown in Figure 3.16c. At this point we want to emphasize
that the backtracking in D is essential to find an optimal warping path. Such a path
cannot be found by, for example, starting with the cell (1,1) and then proceeding
in a greedy fashion in the forward direction. One can check that such a forward
approach would yield the path ((1,1),(1,2),(1,3),(2,3),(3,3),(4,4),(4,5),(5,6)),
which is not optimal.

Note that for the backtracking the entire accumulated cost matrix D may be
needed. Therefore, as opposed to the case where one is only interested in computing
DTW(X ,Y), the storage requirement is O(NM) when an optimal warping path is to
be computed.

Finally, we introduce a small trick for simplifying the initialization (3.23) and
(3.24). To this end, we extend the matrix D with an additional row and column
(indexed by 0) by formally setting D(n,0) := ∞ for n∈ [1 : N], D(0,m) := ∞ for m∈
[1 : M], and D(0,0) := 0. Then the recursion of (3.25) can be applied for n ∈ [1 : N]
and m∈ [1 : M], yielding exactly the same values for D as before (see Exercise 3.13).
This trick will be helpful when considering modifications and variants of dynamic
time warping as discussed next.

3.2 Dynamic Time Warping 145

3.2.2 DTW Variants

Various modifications have been proposed in order to speed up DTW computations
as well as to better control the overall course of the warping paths. In the following,
we discuss some of these DTW variants.

3.2.2.1 Step Size Condition

Recall that the step size condition (3.18) expressed by the set Σ =
{(1,0),(0,1),(1,1)} is a kind of local continuity condition, ensuring that a warp-
ing path aligns each element of the sequence X = (x1,x2, . . . ,xN) to an element of
Y = (y1,y2, . . . ,yM) and vice versa. One drawback of this condition is that a sin-
gle element of one sequence may be assigned to many consecutive elements of the
other sequence, which leads to vertical and horizontal sections in the warping path
(see Figure 3.17a). Intuitively, in such cases the warping path is stuck at some po-
sition in one of the sequences, while moving on in the other sequence. In terms of
physical time, this situation corresponds to a strong temporal deformation in the
alignment of the two time series. To avoid such degenerations, one can modify the
step size condition by constraining the slope of the admissible warping paths, which
can be done by replacing the set Σ . For example, instead of using the original set
Σ = {(1,0),(0,1),(1,1)}, one can use the set

Σ = {(2,1),(1,2),(1,1)}. (3.30)

This leads to warping paths having a local slope within the bounds 1/2 and 2 (see
Figure 3.17b). The resulting accumulated cost matrix D can then be computed by
the recursion

D(n,m) = C(n,m)+min

D(n−1,m−1),
D(n−2,m−1),
D(n−1,m−2)

(3.31)

for n∈ [1 : N] and m∈ [1 : N] with (n,m) 6=(1,1). For the initialization, we again use
the trick of extending D, this time by two additional rows and columns (indexed by
−1 and 0) and set D(1,1) := C(1,1), D(n,−1) := D(n,0) := ∞ for n∈ [−1 : N], and
D(−1,m) := D(0,m) := ∞ for m ∈ [−1 : M]. Note that, with respect to the modified
step size condition, there is a warping path of finite total cost between two sequences
X and Y if and only if the lengths N and M differ by less than a factor of two (see
Exercise 3.14). Furthermore, note that not all elements of X need to be assigned to
some element of Y and vice versa. This is illustrated by Figure 3.17b, where x1 is
assigned to y1, x3 is assigned to y2, but x2 is not assigned to any element of Y . In
other words, x2 is omitted and does not cause any cost at all.

Figure 3.17c gives a second example of a step size condition which avoids such
omissions while imposing constraints on the slope of the warping path. The recur-
sion of the resulting accumulated cost matrix D is given by

146 3 Music Synchronization

(a) (b) (c)

Fig. 3.17 Illustration of three different step size conditions (top), which express different local
constraints on the admissible warping paths, along with some typical examples (bottom). The
original step size condition based on the set Σ = {(1,0),(0,1),(1,1)} is shown in (a).

D(n,m) = min

D(n−1,m−1)+C(n,m)
D(n−2,m−1)+C(n−1,m)+C(n,m)
D(n−1,m−2)+C(n,m−1)+C(n,m)
D(n−3,m−1)+C(n−2,m)+C(n−1,m)+C(n,m)
D(n−1,m−3)+C(n,m−2)+C(n,m−1)+C(n,m)

(3.32)

for (n,m)∈ [1 : N]× [1 : M]\{(1,1)}. For the initialization, we extend the matrix by
three additional rows and columns indexed by −2, −1, and 0. The initial values are
set to D(1,1) :=C(1,1), D(n,−2) :=D(n,−1) :=D(n,0) :=∞ for n∈ [−2 : N], and
D(−2,m) := D(−1,m) := D(0,m) := ∞ for m ∈ [−2 : M]. The global average slope
of a resulting warping path lies between the values 1/3 and 3. Note that this step size
condition enforces that all elements of X are aligned to some element of Y and vice
versa. In other words, in the recursion (3.32) all elements of X and Y generate some
cost in the accumulated cost matrix D—as opposed to the recursion (3.31). The
examples in Figure 3.17 illustrate the differences of the resulting optimal warping
paths computed with respect to different step size conditions.

3.2.2.2 Local Weights

To favor the vertical, horizontal, or diagonal direction in the alignment, one can
introduce additional local weights wd,wh,wv ∈R. To compute the accumulated cost
matrix D, one uses the following initialization and recursion:

3.2 Dynamic Time Warping 147

D(1,1) := C(1,1) (3.33)

D(n,1) =
n

∑
k=1

wh ·C(k,1) for n ∈ [2 : N] (3.34)

D(1,m) =
m

∑
k=1

wv ·C(1,k) for m ∈ [2 : M] (3.35)

D(n,m) = min

D(n−1,m−1)+wd ·C(n,m)
D(n−1,m)+wv ·C(n,m)
D(n,m−1)+wh ·C(n,m)

(3.36)

for n∈ [2 : N] and m∈ [2 : M]. The case wd =wh =wv = 1 reduces to classical DTW.
Note that in the classical case one has a preference for the diagonal alignment di-
rection, since one diagonal step (cost of one cell) corresponds to the combination
of one horizontal and one vertical step (cost of two cells). To balance out this pref-
erence, one often chooses wd = 2 and wh = wv = 1. Similarly, one can introduce
weights for other step size conditions.

3.2.2.3 Global Constraints

One common DTW variant is to impose global constraints on the admissible warp-
ing paths. Such constraints not only speed up DTW computations but also prevent
“pathological” alignments by globally controlling the overall course of a warping
path. More precisely, let R⊆ [1 : N]× [1 : M] be a subset referred to as a global con-
straint region. Then a warping path relative to R is a warping path that entirely
runs within the region R. The optimal warping path relative to R, denoted by P∗R ,
is the cost-minimizing warping path among all warping paths relative to R.

Two well-known global constraint regions are the Sakoe–Chiba band and the
Itakura parallelogram, as indicated by Figure 3.18. Alignments of cells can be se-
lected only from the respective shaded region. The Sakoe–Chiba band runs along
the main diagonal and has a fixed width (see Figure 3.18a). The Itakura parallel-
ogram describes a region that constrains the slope of a warping path. More pre-
cisely, for a fixed S ∈ R>1, the Itakura parallelogram consists of all cells that lie
within a global slope between the values 1/S and S (see Figure 3.18b). Note that
a local step size condition may induce some global constraints. For example, using
Σ = {(2,1),(1,2),(1,1)} actually leads to warping paths that are contained in an
Itakura parallelogram with S = 2. However, local step size conditions are stronger
than global constraints, which do not enforce any local slope conditions on the warp-
ing paths.

For a general constraint region R, the path P∗R can be computed similarly to
the unconstrained case by formally setting C(n,m) := ∞ for all (n,m) ∈ [1 : N]×
[1 : M]\R. Therefore, in the computation of P∗R only the cells that lie in R need to be
evaluated. This may significantly speed up the DTW computation. For example, in

148 3 Music Synchronization

(a) (b) (c)

Fig. 3.18 - (a) Sakoe–Chiba band. (b) Itakura parallelogram . (c) Unconstraint optimal warping
path P∗ (red line) which does not run within the given constraint region.

case of a Sakoe–Chiba band of fixed width ∆ , only O(∆ ·max(N,M)) computations
need to be performed instead of O(NM) as required in classical DTW. The sav-
ings can be substantial in particular in the case that ∆ �M and ∆ � N. However,
the usage of global constraint regions is also problematic, since the unconstrained
optimal warping path P∗ may traverse cells outside the specified constraint region.
In this case, the constrained optimal warping path P∗R does not coincide with P∗

(see Figure 3.18c). Therefore, using a constraint region that is too strict may lead
to undesirable or even completely useless alignment results. Only if the optimal un-
constrained warping path P∗ lies within R (which is of course not known in advance)
does one obtain P∗ = P∗R (see Exercise 3.17).

3.2.2.4 Multiscale DTW

We have seen that, when using the concept of global constraint regions, one needs to
make sure that the optimal warping path to be computed actually lies within this re-
gion. Since this path is not known a priori, it is often difficult to find a good trade-off
between choosing the constraint region as small as possible (to speed up computa-
tions) but large enough to contain the desired path. One possible strategy to increase
the probability of finding the “right” path is to use data-dependent constraint regions
instead of a data-independent, fixed constraint region. This idea can be realized by a
multiscale approach to DTW, where the general strategy is to recursively project an
optimal warping path computed at a coarse resolution level to the next highest level
and then to refine the projected path. In the following, we summarize the main steps
of such an approach (see Figure 3.19 for an overview).

Let X1 := X and Y1 := Y be two sequences having length N1 := N and M1 := M,
respectively. These two sequences represent the data at the highest resolution level,
which we also refer to as level 1. The objective is to compute an optimal warping
path P∗ between X1 and Y1. The first step of multiscale DTW is to reduce the lengths
of the sequences. This can be done, for example, by suitably coarsening X1 and Y1
and then reducing the feature sampling rate. Let us assume that we have a coarsen-
ing and downsampling procedure at hand that reduces the lengths by a factor f2 ∈N.

3.2 Dynamic Time Warping 149

(a) (b) (c)

Fig. 3.19 (a) Optimal warping path P∗2 at level 2. (b) Optimal warping path P∗R with respect to
the constraint region R obtained by projecting path P∗2 to level 1. In this example, P∗R does not
coincide with the (unconstrained) optimal warping path P∗. (c) Optimal warping path P∗

Rδ
using an

increased constraint region Rδ ⊃ R with δ = 2.

Furthermore, let us assume that f2 divides N1 and M1, which can be achieved by suit-
ably padding X1 and Y1. Let X2 and Y2 by the resulting feature sequences of length
N2 := N1/ f2 and M2 := M1/ f2, respectively. Next, one computes an optimal warp-
ing path P∗2 of length L2 between X2 and Y2 at the resulting resolution level, which
we also call level 2. This path is projected onto level 1 to define a constraint region
R, which consists of L2× (f2)

2 cells. Finally, an optimal warping path P∗R relative
to R is computed. We say that this procedure is successful if P∗ = P∗R . The overall
number of cells to be computed in this procedure is N2M2+L2(f2)

2, which is gener-
ally much smaller than the total number N1M1 of cells at level 1. This procedure can
be recursively applied by introducing further levels of decreasing resolution. For a
complexity analysis, we refer to Exercise 3.18.

One important issue with the multiscale approach is that the coarsened features
at the different resolution levels need to be specified with great care. If the features
are too coarse and the resolution too low, relevant information may be smoothed out
or even lost. This may result in a poor warping path which does not lead to a mean-
ingful constraint region for the next level. Note that a violation of the assumption
P∗R = P∗ at any level of the multiscale approach leads to irrecoverable errors of the
overall procedure. Therefore, in practice, the recursion has to be stopped at a cer-
tain resolution level, where a full DTW needs to be computed. Also, to alleviate the
problem that P∗R may not coincide with P∗, one should increase the constraint region
R—at the expense of efficiency—by a suitable neighborhood. This can be done, for
example, by extending R to a constraint region Rδ , where, in addition to all cells in
R, also the δ cells to the left, right, top, and bottom of all cells in R are included (see
Figure 3.19c).

150 3 Music Synchronization

3.3 Applications

In the previous sections, we discussed an overall pipeline and the necessary tech-
niques for synchronizing different music representations of the same underlying
musical work. Assuming the equal-tempered scale, we converted the music repre-
sentations into chroma sequences. These features show a high degree of robustness
to variations in timbre and dynamics—aspects that are to be left unconsidered in the
alignment. On the other hand, chroma features capture information related to the
pitch distribution of sounds and are therefore well suited to characterize the melodic
and harmonic progression of music. In a second step, we then applied dynamic time
warping (DTW) to find optimal temporal correspondences between the elements of
two given chroma sequences. These correspondences establish a musically mean-
ingful linking structure between the given music representations.

In this section, we discuss different application scenarios, where automated syn-
chronization methods play an important role for supporting the user in experienc-
ing and exploring music. In a first scenario (Section 3.3.1), we describe user inter-
faces for multimodal (audiovisual) music presentation and navigation. In particular,
such interfaces allow a user to listen to an audio recording while displaying the
corresponding measures within a sheet music representation. In a second scenario
(Section 3.3.2), we show how synchronization techniques can be used for extract-
ing temporal information from music recordings in a fully automated fashion. This
information is given in the form of tempo curves that are derived from measuring
relative tempo differences between actual performances and reference representa-
tions of the given musical work.

3.3.1 Multimodal Music Navigation

Significant digitization efforts have resulted in large music collections, which com-
prise music-related documents of various types and formats including text, symbolic
data, audio, image, and video expressing musical content at different semantic lev-
els. Modern digital music libraries contain textual data including lyrics and libretti,
symbolic data, visual data such as scanned sheet music or CD album covers, as
well as music and video recordings of performances (see Figure 3.20). Therefore,
beyond the mere recording and digitization of musical data, a key challenge in a
real-life library application scenario is to integrate techniques and interfaces to or-
ganize, understand, and search musical content in a robust, efficient, and intelligent
manner. In this context, music synchronization techniques are one way to automate
the generation of cross-links, which can then be used for making musical data better
accessible to the user.

3.3 Applications 151

Music
Library

Freude, schoener Götterfunken,
Tochter aus Elysium,
Wir betreten feuertrunken,
Himmlische dein Heiligtum.
Deine Zauber binden wieder,
Was die Mode streng geteilt;
Alle Menschen werden Brueder,
Wo dein sanfter Flügel weilt.

Wem der grosse Wurf gelungen,
Eines Freundes Freund zu sein,
Wer ein holdes Weib errungen,
Mische seine Jubel ein!

Fig. 3.20 Different document types typically available in a music library.

3.3.1.1 Interpretation Switcher Interface

As a first scenario, let us consider the case of having many different audio recordings
for the same musical work. For example, for Beethoven’s Fifth Symphony, a dig-
ital music library may contain interpretations by Karajan and Bernstein, historical
recordings by Furtwängler and Toscanini, Liszt’s piano transcription of Beethoven’s
Fifth played by Scherbakov and Glenn Gould, and some synthesized version gener-
ated from a MIDI file. We have seen how one can automatically link the various au-
dio recordings by aligning musically corresponding time positions. We now describe
an interface referred to as the Interpretation Switcher, which makes use of these
alignments to enable efficient and convenient audio browsing (see Figure 3.21). This
interface allows a user to select several recordings of the same piece of music, which
have previously been synchronized using the techniques presented in the previous
sections. Each of the recordings is represented by a slider bar indicating the current
playback position with respect to the recording’s particular timeline. Each timeline
encodes absolute timing, where the length of a particular slider bar is proportional
to the duration of the respective version. The user may listen to a specific recording
by activating a slider bar and then, at any time during playback, seamlessly switch
to any of the other versions. This kind of navigation between different documents is
also referred to as interdocument navigation. As an example, in Figure 3.21, the
user has selected four of the nine available recordings. As can be seen by the length
of the respective slider bars, the Bernstein version has the slowest and the MIDI
version the fastest tempo. At the current playback position indicated by the marker,
the Bernstein recording is at time position 60 seconds, whereas the MIDI version is
at position 44, the Sawallisch at 58, and the Scherbakov version at 52 seconds.

152 3 Music Synchronization

Interpretation Switcher

MIDI

Bernstein

Furtwängler

Gould

Karajan

Sawallisch

Scherbakov

Tosacanini

Masur

Beethoven, Op. 67MIDI

Bernstein

Sawallisch

Scherbakov

00:44.18

01:00.64

00:58.35

00:52.45

Fig. 3.21 User interface that facilitates navigation across different performances. The four sliders
correspond to four different recordings of the exposition (first part) of Beethoven’s Fifth Sym-
phony. The color-coded blocks correspond to the first theme (blue), the second theme (red), and
the end section (green) of the exposition.

In addition to the switching functionality, the Interpretation Switcher can be ex-
tended to also indicate available version-dependent annotations below each individ-
ual slider bar, where labeled segments are represented by color-coded blocks. Such
annotations may encode chord labels generated manually or obtained by some auto-
mated chord recognition procedure (Chapter 5) or may correspond to the repetitive
structure or the musical structure, which may have been extracted from the respec-
tive recording using automated structure analysis procedures (Chapter 4). Based on
these annotations, the Interpretation Switcher may also facilitate navigation within
a given document, where the user can directly jump to the beginning of any struc-
tural element simply by clicking on the corresponding block. This kind of navi-
gation is also called intradocument navigation. For example, in Figure 3.21, the
four slider bars represent the first part (the exposition) of Beethoven’s Fifth Sym-
phony. This part is further partitioned into three sections that correspond to the first
theme (blue), the second theme (red), and the end section (green) of the exposition.
In combination, inter- and intradocument navigation allow a user to conveniently
browse through the different performances of a given musical work and to easily
locate, playback, and compare musically interesting passages. As a further applica-
tion, as we will discuss in Chapter 5, the Interpretation Switcher also opens up new
possibilities for viewing, comparing, interacting with, and evaluating music analysis
results, thus bridging the gap between signal processing and music sciences.

3.3 Applications 153

3.3.1.2 Score Viewer Interface

As a second scenario, let us consider a more multimodal setting dealing with audio-
visual music data. We have seen that sheet music and audio recordings represent
and describe music at different levels of abstraction. Sheet music specifies high-level
parameters such as notes, keys, measures, or repetitions in a visual form. Because of
its explicitness and compactness, Western music is often discussed and analyzed on
the basis of sheet music. In contrast, most people enjoy music by listening to audio
recordings, which represent music in an acoustic form. In particular, the nuances
and subtleties of musical performances, which are generally not written down in the
score, make the music come alive.

Let us assume that we are given scanned images of sheet music as well as an au-
dio recording of a musical work. Then, as discussed in the introduction of this chap-
ter, the synchronization task is to link regions (given as pixel coordinates) within
the scanned images to semantically corresponding physical time positions within
an audio recording. To accomplish this task, one may proceed as follows: First,
using optical music recognition (OMR), the scanned images are converted into a
piano-roll-like symbolic representation (see Section 1.2.4). Along with actual note
information, also layout information is required, which may be specified in the form
of a mapping between the musical objects given by the symbolic representation and
the 2D coordinates of their depicted counterparts in the image representation. Note
that a piano-roll representation has basically the same format as a log-frequency
spectrogram, where the vertical axis corresponds to the 128 pitches of the equal-
tempered scale (see Section 3.1.1). Therefore, the symbolic representation can be
directly converted into a chroma representation as in (3.6). Furthermore, converting
the audio recording into a chroma representation, the two resulting chroma feature
sequences can be aligned as before. Using the synchronization result and the above
mapping between the musical objects and 2D pixel coordinates, a correspondence
between spatial regions in the sheet music and temporal regions in the audio record-
ing can be derived. The quality of the resulting synchronization depends on several
factors. In particular, differences between the audio and score representation may
have a crucial impact on the final synchronization result. Such differences may be
due to extraction errors in the OMR step, or the actual interpretation may deviate
from the notated score.

Having computed the links between the images and the audio, one can realize
novel ways of browsing through and experiencing music. As an example, let us
discuss a Score Viewer interface for presenting sheet music while playing back
associated audio recordings (see Figure 3.22). The main visualization mode is il-
lustrated for two scanned pages of Beethoven’s Piano Sonata Op. 13 (Pathétique).
When starting audio playback, corresponding measures within the sheet music are
synchronously highlighted based on the linking information generated by the syn-
chronization procedure. In Figure 3.22a, a region in the center of the right page,
corresponding to the eighth measure of the 3rd movement (Rondo), is currently
highlighted by a surrounding rectangular frame. When reaching the end of an odd-
numbered page during playback, pages are turned over automatically. Additional

154 3 Music Synchronization

(a)

(b) (c)

Ludwig van Beethoven
Sonata No. 8 in c minor, Op. 13

III. Rondo: Allegro
Score
Viewer

Fig. 3.22 Score Viewer interface for multimodal music presentation and navigation (from [22]).
(a) Synchronously to audio playback, corresponding musical measures within the sheet music are
highlighted. (b) A page view allows the user to conveniently navigate through the currently selected
musical work in a page-wise fashion. (c) Interpretation Switcher for seamless crossfade from one
interpretation to another.

control elements allow the user to switch between measures of the currently se-
lected musical work. By clicking on a measure, the playback position is changed
and the audio recording is resumed at the appropriate time position. As indicated
by Figure 3.22b, additional views such as a page view may be made available. Dis-
playing all pages around the current playback position, the user can conveniently
navigate through the entire piece of music in a page-wise fashion. In addition, if
more than one music recording is available for the currently selected musical work,
the Score Viewer interface may be combined with an Interpretation Switcher, as
shown in Figure 3.22c. In summary, the described Score Viewer interface is a con-
venient way to enjoy a musical work in a multimodal way. On the one hand, the
user can see the sheet music along with the currently played measure highlighted

3.3 Applications 155

while listening to the musical work. On the other hand, the navigation within the
sheet music representation yields an intuitive way to search for specific parts and to
change the playback position in the audio representation.

3.3.2 Tempo Curves

In the previous application scenario, we showed how music synchronization tech-
niques are of fundamental importance for realizing interfaces that allow users to
browse, compare, or simply enjoy music in its various manifestations. We now in-
dicate how synchronization results can also be used for automatically extracting
temporal performance attributes from expressive music recordings. The motivation
for such a task is that musicians give a piece of music their personal touch by contin-
uously varying tempo, dynamics, and articulation. Instead of playing mechanically,
they speed up at some places and slow down at others in order to shape a piece of
music. Similarly, they continuously change the sound intensity and stress certain
notes. Such performance issues are of fundamental importance for the understand-
ing and perception of music.

The automated analysis of different interpretations, also referred to as perfor-
mance analysis, has become an active field of research. Generally speaking, one
may distinguish between two complementary goals. The first goal is to find com-
monalities between different interpretations, which allow for the derivation of gen-
eral performance rules. For example, such a rule could be that most musicians tend
to gradually slow down towards the end of a piece of music, thus closing off the
composition. A second, even harder goal is to capture what exactly is characteristic
for the style of a particular interpreter. For example, what makes Karajan so special?
And how do his performances differ from recordings by other conductors? Before
analyzing a specific performance, one requires the information about when and how
the notes of the underlying piece of music are actually played. Therefore, as the
first step of performance analysis, one has to annotate the performance by means of
suitable attributes that make the exact timing and intensity of the various note events
explicit. The extraction of such performance attributes from audio recordings con-
stitutes a challenging problem.

Many researchers manually annotate the audio material by marking salient data
points in the audio stream. However, being very labor-intensive, such a manual pro-
cess is prohibitive in view of large audio collections. On the other hand, the auto-
mated extraction of performance aspects such as the precise timing of beat positions
and tempo directly from a given music recording turns out to be an extremely hard
problem, in particular for performed music with local tempo deviations. We will dis-
cuss the problem of tempo estimation, beat tracking, and related issues in Chapter 6.

Instead of trying to derive the tempo information only on the basis of a given
music recording, we now present an alternative approach for deriving tempo-related
information using synchronization techniques. Many pieces from the Western clas-
sical music literature are based on a musical score. The basic idea is to use this score

156 3 Music Synchronization

1 2 3 4 5
0

1

2

3

4

0

Ti
m

e
(s

ec
on

ds
)

Time (beats)

(a) (b)

1 2 3 4 50
Time (beats)

Te
m

po
 (B

P
M

)

60

120

180

0

240
P

er
fo

rm
ed

ve
rs

io
n

Reference version Reference version

P
er

fo
rm

ed
ve

rs
io

n

Fig. 3.23 Schematic illustration of (a) a warping path between a reference and a performed version
and (b) the derived tempo curve.

as a reference version against which the performed version can be compared. In the
reference version, the musical onset times as well as the pitch information of all
occurring note events are known explicitly. In particular, the time axis is specified
in beats per minute or BPM (see Section 1.1.2). In the first step, the score is con-
verted into a kind of “neutral” piano-roll representation, where the notes are played
with a known constant tempo in a purely mechanical way. Using music synchro-
nization techniques, one can then temporally align the note events of the reference
with their corresponding physical occurrences in the performed audio version. Now,
the crucial observation is that the resulting warping path reveals the relative tempo
differences between the actual performance and the neutral reference version (see
Figure 3.23a). Knowing the absolute tempo of the reference version, one can then
derive the tempo of the performed version at a certain position from the slope of
the alignment path. More precisely, to derive a tempo value one needs to “observe”
the performed version over a certain period of time. To this end, we fix a suitable
time window. For example, let us fix a window on the reference time axis having
a duration of one beat. From the alignment path one can read off the correspond-
ing physical duration (given in seconds) of the performed version. In Figure 3.23a,
the first beat of the reference version is aligned to a section of the performed ver-
sion lasting two seconds. In other words, the performed version has in this section
an average tempo of one beat every two seconds, resulting in 30 BPM. Similarly,
the second beat lasts one second corresponding to 60 BPM, the third beat lasts 0.4
seconds corresponding to 150 BPM, and the fourth and fifth beats last 0.3 seconds
corresponding to 200 BPM. This yields a tempo curve for the performed version
specified for each beat interval of the reference version (see Figure 3.23b).

As an illustration, Figure 3.24 shows the tempo curves for three performances
of the first eight measures of the “Träumerei” by Robert Schumann. Despite the
significant differences in the overall tempo, there are also noticeable similarities
in the relative shaping of the curves. For example, at the beginning of the second
measure (region marked by the rectangular frame), all three pianists slow down.
The musical reason is that there is a climax of the ascending melodic line in the first

3.3 Applications 157

1 2 3 4 5 6 7
40

80

120

160

8

1 2 3 4 5 6 7 8

Time (measures)

Te
m

po
 (B

P
M

)

Fig. 3.24 Tempo curves for three different performances of Schumann’s “Träumerei.” The tempo
is given in beats per minutes (BPM).

measure culminating in the marked subdominant chord (in B[major). This climax
is further highlighted by a preceding ritardando. After the climax, the tension is
released, and one can notice a considerable speed up in all three performances to
return to the original tempo. As mentioned before, deriving such general rules is
one of the goals of performance analysis.

We close this section with a more philosophical and critical discussion on the lim-
itations of automated tempo extraction approaches. Generally speaking, the feeling
of pulse and rhythm is one of the central components of music, closely related to
what one commonly refers to as tempo. In order to define some notion of tempo,
one requires a proper reference to measure against. Western music, for example, is
often structured in terms of measures and beats, which allows for organizing and
sectioning musical events over time. Based on a fixed time signature, one can then
define the tempo as the number of beats per minute. Obviously, this definition re-
quires a regular and steady musical beat or pulse over a certain period of time. Also,
measurement itself is not as obvious as one may think. Which musical entities char-
acterize a pulse? Are these only note onsets? How precisely can these entities be
measured before getting drowned in noise? How many pulses or beats are needed
to obtain a meaningful tempo estimation? With these questions, we want to indicate
that the notion of tempo is far from being evident. Furthermore, due to discretization
and synchronization errors, one needs numerically robust procedures to extract the
tempo information by using average values over suitable time windows. Here, the
window size constitutes a delicate trade-off between susceptibility to synchroniza-
tion errors and sensibility towards timing nuances of the performance. In practice,
it becomes a difficult problem to determine whether a given change in the tempo
curve is caused by synchronization errors or whether it is the result of an actual
tempo change in the performance.

158 3 Music Synchronization

3.4 Summary and Further Readings

In this chapter, we considered the task of music synchronization with the goal of
identifying and linking semantically corresponding events present in different ver-
sions of the same underlying musical work. Using this task as a motivating sce-
nario, we studied two problems that are of fundamental importance to music pro-
cessing: feature extraction and sequence alignment. As for the first problem, we
discussed how different music representations can be converted into common mid-
level feature representations that capture relevant characteristics of the data while
being invariant to aspects irrelevant for the given task. To this end, we introduced
in Section 3.1 pitch- and chroma-based audio features, which capture melodic and
harmonic properties of music. Then, closely following [25, Chapter 4], we studied
in Section 3.2 the technique of dynamic time warping (DTW), which finds a cost-
minimizing global alignment between two given sequences. Applied to sequences
of chroma features, this alignment was used to account for the relative tempo differ-
ences that occur in the underlying music representations. In subsequent chapters of
this book, we will encounter many more feature extraction and matching problems
that are related to the techniques we have learned in this chapter.

Audio Features

As an important signal processing technique, we discussed log-frequency spectro-
grams based on the equal-tempered scale. In some way, such feature representations
simulate the human pitch perception, which approximates to the pitch categoriza-
tion underlying the equal-tempered scale. We refer to [21] for a detailed account on
cognitive aspects of musical pitch. Identifying pitches that differ by one or several
octaves, we then derived chroma-based audio features—sometimes also referred to
as pitch class profiles [15]. As illustrated by Figure 3.25, there are many ways for
computing and enhancing chroma features. In this chapter, we presented a simple
strategy based on short-time Fourier transforms in combination with pooling strate-
gies. To obtain better frequency resolutions, one popular alternative to using a single
spectrogram is to construct a bank of bandpass filters, each corresponding to a pitch
with an appropriately tuned bandwidth [25, Section 3.1]. Admittedly, this leads to
the loss of the famed computational efficiency of the fast Fourier transform. How-
ever, some of this efficiency may be regained by processing the highest octave with a
given frequency analysis method, then downsampling by a factor of two, and repeat-
ing for as many octaves as are desired [3]. This results in different sampling rates for
each octave of the analysis, which decreases the overall computational complexity.
A toolkit for such an analysis, also referred to as the constant-Q transform, has been
created by Schörkhuber and Klapuri [33]. Further pre- and postprocessing steps are
frequently applied to adjust the features’ properties that concern spectral, temporal,
and dynamical aspects. For an overview, we refer to [15, 27]. For example, pre-
processing steps in the chroma computation based on logarithmic compression or
related spectral whitening techniques are important to give small, yet relevant coef-

3.4 Summary and Further Readings 159

Audio
representation

Time–frequency
representation

Variants for
chroma representations

Tuning
estimation

▪ Log-frequency STFT
▪ Constant-Q filterbank

▪ Smoothing
▪ Logarithmic
compression
▪ Whitening

▪ Normalization
▪ Quantization
▪ F0 estimation
▪ Peak picking

Fig. 3.25 Overview of feature extraction pipeline and chroma variants.

ficients a larger weight. Other techniques such as the estimation of the instantaneous
frequency [11] (see also Section 8.2.1) or peak picking of the spectrum’s local max-
ima often reduce the noise level significantly [15]. Generalized chroma representa-
tions with 24, 36, or even more dimensions (instead of the usual 12 dimensions) al-
low for dealing with tuning issues and operating with music beyond the twelve-tone
equal-tempered scale [15]. Adding a further degree of abstraction by considering
short-time statistics over energy distributions within the chroma bands, one obtains
an entire family of scalable and robust audio features [29] (see also Section 7.2.1).
To boost the degree of timbre invariance, a family of chroma-based audio features
has been introduced where timbre-related information similar to that expressed by
certain mel-frequency cepstral coefficients (MFCCs) has been discarded [26]. The
idea of cyclically shifting chroma features to simulate transpositions has been for-
mulated in [16] (see also Section 4.2.2.3). In recent years, deep learning techniques
have been increasingly used to learn and adapt feature representations from training
examples [20]. In conclusion, as we have mentioned already in Section 3.1.2, one
should keep in mind that there is no “best” chroma variant and that the results of a
specific music analysis task may crucially depend on the chroma type used. Besides
music synchronization and alignment, we will encounter in subsequent chapters
of this book various chroma variants for applications including chord recognition
(Chapter 5), music structure analysis (Chapter 4), and content-based audio retrieval
such as cover song and version identification (Chapter 8).

Dynamic Time Warping

In Section 3.2 on DTW, we closely followed the explanations from [25, Chapter 4].
Originating from speech processing, DTW has become a well-established method to
account for temporal variations in the comparison of related time series. A classical
and comprehensive account on DTW and related pattern recognition techniques is
given by Rabiner and Juang [32] in the context of speech recognition. Furthermore,
DTW has found numerous applications in a wide range of fields including data min-

160 3 Music Synchronization

ing, information retrieval, bioinformatics, chemical engineering, signal processing,
robotics, or computer graphics. Basically any data that can be transformed into a
(linear) sequence of features can be analyzed with DTW, which includes data types
such as text, video, audio, or general time series. Extensive research has been per-
formed on how to accelerate DTW computations. For example, Keogh has suggested
in the last two decades various indexing methods that make retrieval of time-warped
time series feasible even for large datasets (see [19] for an early account and subse-
quent work). Closely related to DTW is the edit distance (see Exercise 3.19), which
is sometimes also referred to as the Levenshtein distance [24]. The edit distance
is used to compute a distance between strings, i.e., one-dimensional sequences con-
sisting of discrete symbols (rather than sequences consisting of continuous features).
The edit distance is used in fields such as text retrieval (spell checkers, plagiarism
detection) or molecular biology to compute a distance between DNA sequences (see
Exercise 3.20). For a detailed account on the edit distance with its applications to
bioinformatics, we refer to standard textbooks such as [2]. A variant of the edit dis-
tance that is more robust to noise and outliers is known as the longest common
subsequence (LCS) [6]. The computation of DTW, edit, as well as LCS distances
can be done efficiently by means of dynamic programming—a widely used pro-
gramming paradigm in computer science [6].

Music Synchronization

Music synchronization and related alignment tasks have been studied extensively
within the field of music information retrieval. For an overview and pointers to
the literature, we refer to [1, 8, 25]. Depending upon the respective types of mu-
sic representations, one can distinguish between various synchronization scenarios.
For example, audio–audio synchronization refers to the task of temporally aligning
two different audio recordings of a piece of music. Similarly, the goal of score–
audio and MIDI–audio synchronization is to align note and MIDI events with au-
dio data. The task of automatically aligning scanned images of sheet music with
audio or MIDI data was first tackled in [23]. Significant progress for cross-modal
music matching and alignment could be achieved using deep learning techniques to
learn joint feature representations [10]. Another cross-modal synchronization task
is to align given lyrics to an audio recording of the underlying song [14], which
turns out to be a hard problem. Again major progress could be achieved using deep
learning with a loss function that involves some alignment strategy [34].

In the synchronization scenarios discussed in this chapter, the two data streams to
be aligned are assumed to be known prior to the actual alignment. This assumption
is exploited by DTW, which yields an optimal warping path by considering the two
entire data streams. As opposed to such an offline scenario, one often has to deal
with scenarios where the data streams are to be processed online. One prominent
online scenario is known as score following, where a musician is performing a piece
according to a given musical score. The goal is then to identify the currently played
musical events depicted in the score with high accuracy and low latency [1, 5]. As

3.4 Summary and Further Readings 161

Performance

S
co

re

D

A B C

A
B

C

D

(a) (b)

Fig. 3.26 (a) Schematic representation of a score with structural blocks ABCD. (b) Performance
of the score as ABCBD (where the musician follows the repetition instructions). The resulting
alignment path between the score and the performance is not monotonic and reveals sudden jumps.

opposed to classical DTW, such an online synchronization procedure inherently has
a running time that is linear in the duration of the performed version. However, as
a main disadvantage, an online strategy is very sensitive to local tempo variations
and deviations from the score—once the procedure is out of sync, it is very hard to
recover and return to the right track. In [1] a comprehensive music tracking system
is described, which combines an online score-following strategy with music match-
ing techniques for recovery. A further online synchronization problem is known as
automatic accompaniment, where the task of the computer is to accompany a solo
musician [8].

There are many more issues that need to be considered in the music synchroniza-
tion context, including robustness, accuracy, and efficiency. Regarding efficiency,
Dixon et al. [9] describe a linear-time DTW approach to audio synchronization
based on forward path estimation. Even though the proposed algorithm is very ef-
ficient, the risk of missing the optimal alignment path is still relatively high. As
an offline alternative, Prätzlich et al. [31] propose an efficient but robust music
synchronization approach employing a multiscale strategy. Regarding the robust-
ness and accuracy of the alignment, the choice of features is of crucial importance,
and several feature modifications have been proposed to improve the overall syn-
chronization quality [12, 18]. To obtain high temporal accuracy while keeping the
robustness of the overall procedure, Ewert et al. [12] describe a hierarchical syn-
chronization approach combining chroma-based features with features that capture
note onset information. A further challenge is that the assumption of having a global
correspondence between the sequences to be aligned is often violated. For example,
recordings of the same piece of music may have a different number of stanzas, rep-
etitions notated in the score may be omitted, or additional parts such as a solo may
be added by the performer (see Figure 3.26 for an example). Various strategies have
been proposed to handle such structural variations (see, e.g., [1, 13]).

162 3 Music Synchronization

Applications

As a first application of music synchronization, we described possible user inter-
faces that facilitate novel ways of accessing, listening to, viewing, comparing, and
simply enjoying music in its various forms. An entire system for managing heteroge-
neous music collections, which also includes a variety of interfaces for multimodal
music access and browsing, is described in [7]. For a more comprehensive overview
of user interfaces, we refer to [17]. As a second application, we discussed how to
derive tempo curves from audio recordings by aligning and comparing the perfor-
mance with a score-like reference representation. Such a procedure is described
in [28], where one also finds a discussion on how the tempo curves depend on the
size of the analysis window and on the presence of synchronization inaccuracies.
When it comes to expressive performances, there are many more parameters (in-
cluding tempo, timing, dynamics, intonation, and articulation) that are shaped by
a performer to bring out emotional and dramatic qualities of a piece of music [4].
Estimating, analyzing, and understanding such parameters in a systematic and quan-
titative way as well as automatically generating expressive performances have been
long-standing research questions [35] which have experienced a renaissance in re-
cent years thanks to data-driven deep learning techniques [4].

3.5 FMP Notebooks

In Part 3 of the FMP notebooks [30], we provide and discuss Python code exam-
ples of all the components that are required to realize a basic music synchronization
pipeline. In the first notebooks, we consider fundamental feature design techniques
such as frequency binning, logarithmic compression, feature normalization, feature
smoothing, tuning, and transposition. Then, we provide an implementation of the
basic DTW procedure and introduce several experiments for exploring this tech-
nique in further depth. Finally, we close Part 3 with a more comprehensive exper-
iment on extracting tempo curves from music recordings, which nicely illustrates
the many design choices, their impact, and the pitfalls one faces when dealing with
a complex audio processing task.

We start with the FMP Notebook Log-Frequency Spectrogram and Chro-
magram, which provides a step-by-step implementation for computing the log-
frequency spectrogram as described in Section 3.1.1. Even though logarithmic fre-
quency pooling as used in this approach has some drawbacks, it is instructive from
an educational point of view. By studying the pitch-dependent sets P(p) from (3.3),
students gain a better understanding on how to interpret the frequency grid intro-
duced by a discrete STFT. In particular, the pooling strategy reveals the problems
associated with the insufficient frequency resolution for low pitches. In the note-
book we make this problem explicit by considering a log-frequency spectrogram
with empty pitch bins, leading to horizontal artifacts in our chromatic scale exam-
ple. In the next step, we convert a log-frequency spectrogram into a chromagram by

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_SpecLogFreq-Chromagram.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_SpecLogFreq-Chromagram.html

3.5 FMP Notebooks 163

identifying pitches that share the same chroma. In a music processing course, it is
an excellent exercise to let students compute and analyze the properties of chroma-
grams for music recordings of their own choice. This exploration can be done either
visually, as demonstrated by our Burgmüller example, or acoustically using suitable
sonification procedures as provided by the FMP Notebook Sonification of Part B.
We close the notebook by discussing alternative variants of log-frequency spectro-
grams and chromagrams. In the subsequent notebooks, we often employ more elab-
orate chromagram implementations as provided by the Python package librosa.

Using spectrograms and chromagrams as instructive examples, we explore in
the subsequent notebooks the effect of standard feature processing techniques. In
the FMP Notebook Logarithmic Compression, the discrepancy between large and
small magnitude values is reduced by applying a suitable logarithmic function. To
understand the effects of logarithmic compression, it is instructive to experiment
with sound mixtures that contain several sources at different sound levels (e.g.,
a strong drum sound superimposed with a soft violin sound). In the FMP Note-
book Feature Normalization, we introduce different strategies for normalizing a
feature representation including the Euclidean norm (`2), the Manhattan norm (`1),
the maximum norm (`max), and the standard score (using mean and variance). Fur-
thermore, similar to (3.10), we discuss different strategies for how one may handle
small values (close to zero) in the normalization. This notebook is also well suited
for practicing the transition from mathematical formulas to implementations. While
logarithmic compression and normalization increase the robustness to variations in
timbre or sound intensity, we study in the FMP Notebook Temporal Smoothing
and Downsampling postprocessing techniques that can be used for making a fea-
ture sequence more robust to variations in aspects such as local tempo, articulation,
and note execution. We consider two feature smoothing techniques, one based on
local averaging and the other on median filtering. Using chroma representations of
different recordings of Beethoven’s Fifth Symphony (one of our favorite examples),
we study smoothing effects and the role of the filter length (see also Figure 3.9).
Finally, we introduce downsampling as a simple means to decimate the feature rate
of a smoothed representation.

The FMP Notebook Transposition and Tuning covers central aspects of great
musical and practical importance. As we discussed in Section 3.1.2.2, a musical
transposition of one or several semitones can be simulated on the chroma level by
a simple cyclic shift. We demonstrate this in the notebook using a C-major scale
played on a piano (see also Figure 3.8). While transpositions are pitch shifts on the
semitone level, we next discuss global frequency deviations on the sub-semitone
level. Such deviations may be the result of instruments that are tuned lower or higher
than the expected reference pitch A4 with center frequency 440 Hz. In the case that
the tuning deviation is known, one can use this information to adjust the center and
cutoff frequencies of the MIDI pitches for computing the log-frequency spectrogram
and the chromagram (see Exercise 3.6). Estimating the tuning deviation, however,
can be quite tricky. One way to introduce this topic in a music processing class
is to let students perform, record, and analyze their own music. What is the effect
when detuning a guitar or violin? How does strong vibrato affect the perception of

https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_LogCompression.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_FeatureNormalization.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_FeatureNormalization.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_FeatureSmoothing.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_FeatureSmoothing.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_TranspositionTuning.html

164 3 Music Synchronization

Fig. 3.27 Illustration of tuning procedure using a comb-filter approach. Left: Similarity function
with maximizing tuning parameter at 13 cents. Right: Frequency distribution (with logarithmic
frequency axis) and maximizing comb template (shown as red vertical lines).

pitch and tuning? What happens if the tuning changes throughout the performance?
Having such issues in mind, developing and implementing a tuning estimation sys-
tem can be part of an exciting and instructive student project. In this notebook,
we present such a system that outputs a single number θ between −50 and +50
yielding the global frequency deviation (given in cents) on the sub-semitone level.
In our approach, as illustrated by Figure 3.27, we first compute a frequency dis-
tribution from the given music recording, where we use different techniques such
as the STFT, logarithmic compression, interpolation, local average subtraction, and
rectification. The resulting distribution is then compared with comb-like template
vectors, each representing a specific tuning. The template vector that maximizes the
similarity to the distribution yields the tuning estimate. Furthermore, we conduct in
the notebook various experiments that illustrate the benefits and limitations of our
approach, while confronting the student with the various challenges one encounters
when dealing with real music data.

In the next notebooks, we cover the second main topic of the chapter, deal-
ing with alignment techniques (see Section 3.2). In the FMP Notebook Dynamic
Time Warping (DTW), we provide an implementation of the basic DTW algorithm,
closely following the description as presented in Table 3.2. This is a good oppor-
tunity for pointing out an issue one often faces in programming. In mathematics
and some programming languages (e.g., MATLAB), one uses the convention that
indexing starts with the index 1. In other programming languages such as Python,
however, indexing starts with the index 0. Neither convention is good or bad. In
practice, one needs to make adjustments in order to comply with the respective
convention. Implementing the DTW algorithm is a good exercise to make students
aware of this issue, which is often a source of programming errors. The FMP Note-
book DTW Variants investigates the role of the step size condition, local weights,
and global constraints (see Section 3.2.2). Rather than implementing all these vari-
ants from scratch, we employ a function from the Python package librosa and
discuss various parameter settings. Finally, in the FMP Notebook Music Synchro-
nization, we apply the DTW algorithm in the context of our music synchronization
scenario. Considering two performances of the beginning of Beethoven’s Fifth Sym-
phony (first 20 measures), we first convert the music recordings into chromagrams,

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S2_DTWbasic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S2_DTWbasic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S2_DTWvariants.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S2_DTWvariants.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3_MusicSynchronization.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3_MusicSynchronization.html

3.5 FMP Notebooks 165

Fig. 3.28 Music synchroniza-
tion result obtained for two
input chromagrams.

which are then used as input to the DTW algorithm. The resulting warping path
constitutes our synchronization result, as shown in Figure 3.28

Concluding Part 3 of the FMP notebooks, we provide additional material for the
applications described in Section 3.3. In the FMP Notebook Application: Music
Navigation, one finds two videos that illustrate the main functionalities of the In-
terpretation Switcher and Score Viewer Interface. Then, in the FMP Notebook Ap-
plication: Tempo Curves, we present an extensive experiment for extracting tempo
information from a given music recording, following the overall ideas described in
Section 3.3.2. Besides the recorded performance, one requires a score-based refer-
ence version, which we think of as a piano-roll representation with a musical time
axis (given in measures and beats). On the basis of chroma representations, we ap-
ply DTW to compute a warping path between the performance and the score. Then,
the idea is to compute the slope of the warping path and to take its reciprocal to
derive the local tempo. In practice, however, this becomes problematic when the
warping path runs horizontally (slope is zero) or vertically (slope is infinite). In
the notebook, we solve this issue by thinning out the warping path to enforce strict
monotonicity in both dimensions and then continue as indicated before. To make
the overall procedure more robust, we also apply a local smoothing strategy in the
processing pipeline. Our overall processing pipeline not only involves many steps
with a multitude of parameters, but is also questionable from a musical point of
view. Using the famous romantic piano piece “Träumerei” by Robert Schumann as
a concrete real-world example, we discuss two conflicting goals. On the one hand,
the tempo estimation procedure should be robust to local outliers that are the result
of computational artifacts (e.g., inaccuracies of the DTW alginment). On the other
hand, the procedure should be able to adapt to continuous tempo fluctuations and
sudden tempo changes, being characteristic features of expressive performances.
Through studying tempo curves and the way they are computed, one can learn a lot
about the music as well as computational approaches. Also, this topic leads students
to challenging and interdisciplinary research problems.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S3_MusicAppNav.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S3_MusicAppNav.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S3_MusicAppTempoCurve.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S3_MusicAppTempoCurve.html

166 3 Music Synchronization

References

1. A. ARZT, Flexible and Robust Music Tracking, PhD thesis, Universität Linz, 2016.
2. H.-J. BÖCKENHAUER AND D. BONGARTZ, Algorithmische Grundlagen der Bioinformatik:

Modelle, Methoden und Komplexität, Teubner, 2003.
3. J. C. BROWN AND M. S. PUCKETTE, An efficient algorithm for the calculation of a constant

Q transform, Journal of the Acoustic Society of America (JASA), 92 (1992), pp. 2698–2701.
4. C. E. C. CHACÓN, M. GRACHTEN, W. GOEBL, AND G. WIDMER, Computational mod-

els of expressive music performance: A comprehensive and critical review, Frontiers Digit.
Humanit., 5 (2018), p. 25.

5. A. CONT, A coupled duration-focused architecture for real-time music-to-score alignment,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (2010), pp. 974–987.

6. T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Algo-
rithms, McGraw-Hill Higher Education, 2001.

7. D. DAMM, C. FREMEREY, V. THOMAS, M. CLAUSEN, F. KURTH, AND M. MÜLLER, A
digital library framework for heterogeneous music collections: from document acquisition to
cross-modal interaction, International Journal on Digital Libraries: Special Issue on Music
Digital Libraries, 12 (2012), pp. 53–71.

8. R. B. DANNENBERG AND C. RAPHAEL, Music score alignment and computer accompani-
ment, Communications of the ACM, Special Issue: Music Information Retrieval, 49 (2006),
pp. 38–43.

9. S. DIXON AND G. WIDMER, MATCH: A music alignment tool chest, in Proceedings of the In-
ternational Society for Music Information Retrieval Conference (ISMIR), London, UK, 2005,
pp. 492–497.

10. M. DORFER, J. HAJIČ JR., A. ARZT, H. FROSTEL, AND G. WIDMER, Learning audio-sheet
music correspondences for cross-modal retrieval and piece identification, Transactions of the
International Society for Music Information (TISMIR), 1 (2018), pp. 22–31.

11. D. P. ELLIS AND G. E. POLINER, Identifying ‘cover songs’ with chroma features and dy-
namic programming beat tracking, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Honolulu, Hawaii, USA, 2007,
pp. 1429–1432.

12. S. EWERT, M. MÜLLER, AND P. GROSCHE, High resolution audio synchronization us-
ing chroma onset features, in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Taipei, Taiwan, Apr. 2009, pp. 1869–1872.

13. C. FREMEREY, M. MÜLLER, AND M. CLAUSEN, Handling repeats and jumps in score-
performance synchronization, in Proceedings of the International Society for Music Informa-
tion Retrieval Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 243–248.

14. H. FUJIHARA AND M. GOTO, Lyrics-to-audio alignment and its application, in Multimodal
Music Processing, M. Müller, M. Goto, and M. Schedl, eds., vol. 3 of Dagstuhl Follow-Ups,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2012, pp. 23–36.

15. E. GÓMEZ, Tonal Description of Music Audio Signals, PhD thesis, Universitat Pompeu Fabra,
Barcelona, Spain, 2006.

16. M. GOTO, A chorus-section detecting method for musical audio signals, in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong
Kong, China, 2003, pp. 437–440.

17. M. GOTO AND R. B. DANNENBERG, Music interfaces based on automatic music signal anal-
ysis: New ways to create and listen to music, IEEE Signal Processing Magazine, 36 (2019),
pp. 74–81.

18. C. JODER, S. ESSID, AND G. RICHARD, Optimizing the mapping from a symbolic to an
audio representation for music-to-score alignment, in Proceedings of the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA,
2011, pp. 121–124.

19. E. KEOGH, Exact indexing of dynamic time warping, in Proceedings of the VLDB Confer-
ence, Hong Kong, 2002, pp. 406–417.

References 167

20. F. KORZENIOWSKI AND G. WIDMER, Feature learning for chord recognition: The deep
chroma extractor, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), New York City, USA, 2016, pp. 37–43.

21. C. L. KRUMHANSL, Cognitive Foundations of Musical Pitch, Oxford University Press, Ox-
ford, UK, 1990.

22. F. KURTH, D. DAMM, C. FREMEREY, M. MÜLLER, AND M. CLAUSEN, A framework for
managing multimodal digitized music collections, in ECDL, 2008, pp. 334–345.

23. F. KURTH, M. MÜLLER, C. FREMEREY, Y. CHANG, AND M. CLAUSEN, Automated syn-
chronization of scanned sheet music with audio recordings, in Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), Vienna, Austria, 2007, pp. 261–
266.

24. V. I. LEVENSHTEIN, Binary codes capable of correcting deletions, insertions, and reversals,
Soviet Physics Doklady, 10 (1966), pp. 707–710.

25. M. MÜLLER, Information Retrieval for Music and Motion, Springer Verlag, 2007.
26. M. MÜLLER AND S. EWERT, Towards timbre-invariant audio features for harmony-based

music, IEEE Transactions on Audio, Speech, and Language Processing, 18 (2010), pp. 649–
662.

27. , Chroma Toolbox: MATLAB implementations for extracting variants of chroma-based
audio features, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Miami, Florida, USA, 2011, pp. 215–220.

28. M. MÜLLER, V. KONZ, A. SCHARFSTEIN, S. EWERT, AND M. CLAUSEN, Towards auto-
mated extraction of tempo parameters from expressive music recordings, in Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan, Oct.
2009, pp. 69–74.

29. M. MÜLLER, F. KURTH, AND M. CLAUSEN, Chroma-based statistical audio features for
audio matching, in Proceedings of the IEEE Workshop on Applications of Signal Processing
(WASPAA), New Paltz, NY, USA, Oct. 2005, pp. 275–278.

30. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

31. T. PRÄTZLICH, J. DRIEDGER, AND M. MÜLLER, Memory-restricted multiscale dynamic
time warping, in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Shanghai, China, March 2016, pp. 569–573.

32. L. RABINER AND B.-H. JUANG, Fundamentals of Speech Recognition, Prentice Hall Signal
Processing Series, 1993.

33. C. SCHÖRKHUBER AND A. P. KLAPURI, Constant-Q transform toolbox for music processing,
in Proceedings of the Sound and Music Computing Conference (SMC), Barcelona, Spain,
2010.

34. D. STOLLER, S. DURAND, AND S. EWERT, End-to-end lyrics alignment for polyphonic mu-
sic using an audio-to-character recognition model, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, 2019,
pp. 181–185.

35. G. WIDMER, S. DIXON, W. GOEBL, E. PAMPALK, AND A. TOBUDIC, In search of the
Horowitz factor, AI Magazine, 24 (2003), pp. 111–130.

168 3 Music Synchronization

Exercises

Exercise 3.1. In Section 3.1.1, we computed a log-frequency spectrogram based on a semitone res-
olution using (3.3) and (3.4). In this exercise, we want to specify a log-frequency spectrogram with
a resolution of half a semitone (resulting in 24 bands per octave). Write a small computer program
that calculates the corresponding center frequencies, the cutoff frequencies, and the bandwidths for
the various log-frequency bands, each corresponding to a half semitone (as in Table 3.1). Output
all numbers for the resulting 25 bands between C4 and C5. Then, do the same for a log-frequency
spectrogram with a resolution of a third semitone (resulting in 36 bands per octave). Again, output
all numbers for the resulting 37 bands between C4 and C5.

Exercise 3.2. Assuming a sampling rate of Fs = 44100 Hz and a window length of N = 4096,
determine the largest pitch p for which the set P(p) defined in (3.3) is empty. What are the center
frequency, the cutoff frequencies, and the bandwidth of the corresponding log-frequency band?

Exercise 3.3. Let BW(p)=Fpitch(p+0.5)−Fpitch(p−0.5) be the bandwith for a pitch p as defined
in (3.5). What is the relation between the bandwidths BW(p+12) and BW(p) of two pitches that
are one octave apart? Give a mathematical proof for your claim. Similarly, determine the relation
between the bandwidths BW(p+1) and BW(p) of two neighboring pitches.

Exercise 3.4. Given an audio signal at a sampling rate of Fs = 22050 Hz, we want to compute a
log-frequency spectrogram as in (3.4). As a requirement, all sets P(p) (as defined in (3.3)) for all
pitches corresponding to the notes C2 (p = 36) to C3 (p = 48) should contain at least four Fourier
coefficients. To meet this requirement, what is the minimal window length N (assuming that N
is a power of two) to be used in the STFT? For this N, determine the elements of the set P(36)
explicitly.

Exercise 3.5. The tuning of musical instruments is usually based on a fixed reference pitch. In
Western music, one typically uses the concert pitch A4 having a frequency of 440 Hz (see
Section 1.3.2). To estimate the deviation from this ideal reference, a musician is asked to play the
note A4 on his or her instrument over the duration of four seconds. Describe a simple FFT-based
procedure for estimating the tuning deviation of the instrument used. How would you choose the
parameters (sampling rate, window size) to obtain an accuracy of at least 1 Hz in this estimation?

Exercise 3.6. Assume that an orchestra is tuned 20 cents upwards compared with the standard
tuning. What is the center frequency of the tone A4 in this tuning? How can a chroma representation
be adjusted to compensate for this tuning difference?

Exercise 3.7. Show that the DTW distance as defined in (3.21) is symmetric (i.e., DTW(X ,Y) =
DTW(Y,X) for any two given sequences X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM)) in the case
that the local cost measure c is symmetric.

Exercise 3.8. Let P = (p1, p2, . . . , pL) be an arbitrary (N,M)-warping path. Specify the smallest
possible lower bound as well as the largest possible upper bound for the length L of P in terms of
N and M.

Exercise 3.9. In this exercise, we show that there is a large number of theoretically possible
warping paths. Let µ(N,M) be the number of possible (N,M)-warping paths for some given N
and M. Obviously, in the case N = 1 or M = 1, there is only one possible warping path, i.e.,
µ(1,M) = µ(N,1) = 1. Show that µ(2,2) = 3, µ(2,3) = 5, and µ(3,3) = 13. Derive a general re-
cursive formula for µ(N,M) for N > 1 and M > 1. Compute µ(N,M) for (N,M) ∈ [1 : 6]× [1 : 6].

Exercise 3.10. Let F = R be a feature space and c : F ×F → R≥0 a local cost measure defined
by c(x,y) = |x−y| for x,y ∈R. Compute DTW(X ,Y) for the following sequences X and Y as well
as all optimal warping paths. Also specify the cost matrix C and the accumulated cost matrix D.

Exercises 169

(a) X = (1,7,4,4,6) and Y = (1,2,2,7).
(b) X = (1,2,2,1) and Y = (1,0,0,1).

Exercise 3.11. In this excercise, we show that the DTW distance generally does not satisfy the
triangle inequality. Let F := {α,β ,γ} be an abstract feature space consisting of three different
elements. Define a cost measure c : F ×F → {0,1} by setting c(x,y) := 1− δxy for x,y ∈ F .
In other words, c(x,y) := 0 if x = y and c(x,y) := 1 if x 6= y for x,y ∈ F . Note that c defines a
metric on F and, in particular, satisfies the triangle inequality. Now, consider the three sequences
X := (α,γ,γ), Y := (α ,β ,γ), and Z := (α,β ,β ,γ) over F . Compute DTW(X ,Y), DTW(Y,Z), and
DTW(X ,Z). Furthermore, show that the triangle inequality does not hold in this example.

Exercise 3.12. Let F = {α,β ,γ} and c : F ×F → {0,1} be as in Exercise 3.11. Specify the
DTW distances DTW(X ,Y), DTW(X ,Z), and DTW(Y,Z) for the sequences X = (γ,α,β), Y =
(α,α,γ,α), and Z = (α,β ,γ,α,β ,γ). Instead of using the dynamic programming approach, try
to “guess” the DTW distances by specifying suitable warping paths. Then, argue that the specified
warping paths are indeed optimal.

Exercise 3.13. Extend the accumulated cost matrix D from Section 3.2.1.3 by an additional row
and column indexed by 0. Define D(n,0) := ∞ for n ∈ [1 : N], D(0,m) := ∞ for m ∈ [1 : M], and
D(0,0) := 0. Show that one obtains the original accumulated cost matrix when applying the recur-
sion of (3.25) for n ∈ [1 : N] and m ∈ [1 : M].
[Hint: When computing with the value ∞, we assume that the sum of the value ∞ with a finite
value is defined to be ∞. Furthermore, the minimum over a set containing finite values as well as
the value ∞ is defined to be the minimum over the finite values.]

Exercise 3.14. In this exercise, we consider DTW with the step size condition Σ =
{(2,1),(1,2),(1,1)} (see (3.30)). As in Exercise 3.13, we extend the accumulated cost matrix D,
this time by two additional rows and columns indexed by−1 and 0. Then we set D(1,1) :=C(1,1),
D(n,−1) := D(n,0) := ∞ for n ∈ [−1 : N], and D(−1,m) := D(0,m) := ∞ for m ∈ [−1 : M]. D
is then computed using the recursion of (3.31) for n ∈ [1 : N] and m ∈ [1 : M]. Specify the cells
(n,m)∈ [−1 : N]× [−1 : M] for which one obtains D(n,m)=∞. Furthermore, describe some mean-
ingful constraints for the lengths N and M in this alignment scenario.

Exercise 3.15. Let F = R be a feature space and c : F ×F → R≥0 a local cost measure defined
by c(x,y) = |x− y| for x,y ∈ R (see Exercise 3.10). Compute DTW(X ,Y) for the sequences X =
(1,7,4,4,6) and Y = (1,2,2,7) as well as all optimal warping paths using the step size condition
Σ = {(2,1),(1,2),(1,1)} from (3.30). Also specify the cost matrix C and the accumulated cost
matrix D using two additional rows and columns initialized with ∞ (see Exercise 3.14).

Exercise 3.16. In software such as MATLAB, an operation expressed as a matrix product can
often be computed more efficiently than, e.g., using nested loops over the matrix indices. This
motivates the following exercise. Let c : F ×F → R be the cosine distance for F = R12 \ {0}
(see (3.14)). Given two feature sequences X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) over F , let
C(n,m) := c(xn,ym) be the resulting cost matrix for n ∈ [1 : N] and m ∈ [1 : M] (see (3.13)). Show
how C can be computed using matrix products (instead of a nested loop over the indices n and m
to compute the individual entries C(n,m)).

Exercise 3.17. Assume that, for two given sequences X = (x1, . . . ,xN) and Y = (y1, . . . ,yM), there
is exactly one optimal (N,M)-warping path denoted by P∗. Furthermore, let R ⊆ [1 : N]× [1 : M]
be a global constraint region (see Section 3.2.2.3). Show that the constrained optimal warping path
P∗R coincides with P∗ if and only if P∗ is contained in R.

Exercise 3.18. In this exercise, we analyze the multiscale approach to DTW (MsDTW) as out-
lined in Section 3.2.2.4. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be sequences of length
N and M, respectively. For simplicity, we assume that N = M = 2K for a natural number K ∈ N.

170 3 Music Synchronization

Let ADTW(N) = N2 denote the number of evaluations of the local cost measure that are required in
the classical DTW algorithm. Furthermore, we assume that we have a coarsening and downsam-
pling procedure for computing the coarsened sequences X1,X2, . . . ,XK and Y1,Y2, . . . ,YK , where
the sampling rates are successively reduced by factors f1 = f2 = . . . = fK = 2. In the subsequent
analysis, we neglect the operations required for the coarsening and downsampling procedure. Let
AMsDTW(N) denote the number of evaluations of the local cost measure that are required in the
MsDTW algorithm. Specify a recursive equation for AMsDTW(N). Derive from this equation an
upper bound for AMsDTW(N).
[Hint: Look at an upper bound for the length of a warping path at level k, 1≤ k ≤ K.]

Exercise 3.19. In computer science, the edit distance (sometimes also referred to as the Lev-
enshtein distance) is a string metric for measuring the difference between two sequences X =
(x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) over an alphabet F . The sequences are also often called
words, and the elements of the alphabet are called characters. The edit distance Edit(X ,Y) be-
tween X and Y is defined to be the minimum number of single-character edits required to change
one sequence into the other. One allows three kinds of single-character edits referred to as inser-
tion (including an additional character), deletion (omitting a character of a word), and substitution
(replacing a character of a word by another character). Develop an algorithm based on dynamic
programming (as in Table 3.2) that computes the edit distance between two given sequences X and
Y .
[Hint: Define an accumulated cost matrix using (3.22). Let ε denote the empty word of length
zero. Use this empty word as a recursion start to compute the accumulated cost matrix. For an
example application, see Exercise 3.20.]

Exercise 3.20. The edit distance as introduced in Exercise 3.19 finds applications in biochemistry
to compare the primary structures of biological molecules. In this exercise, we consider the case of
deoxyribonucleic acid or DNA, which is a molecule that encodes the genetic instructions used in
the development and functioning of living organisms. The primary structure of DNA can be spec-
ified by a sequence of simpler units called nucleotides, which are associated to base components
referred to as adenine (A), cytosine (C), guanine (G), and thymine (T). Therefore, the primary struc-
ture of a DNA molecule can be specified by a sequence over the alphabet F := Σ := {A,C,G,T}.
In evolutionary biology, homology is the similarity between attributes of organisms (e.g., genes)
that results from their shared ancestry. In genetics, homology is measured by comparing DNA se-
quences. A high sequence similarity between two DNA sequences is an indicator for a high proba-
bility of being homologous (e.g., sharing a common ancestor). Typical differences of homologous
sequences caused by mutation are substitutions (e.g., TGAT GGAT), insertions (e.g., TGAT
TĊGAT), and deletions (e.g., TGAT T=GAT). This illustrates why the edit distance is suitable for
comparing the distance (or similarity) of DNA sequences.

By applying Exercise 3.19, compute the edit distance, the accumulated cost matrix, as well as
the sequence of edits for the two sequences X = TGAT and Y = CGAGT.

Exercise 3.21. Another problem related to DTW and the edit distance is known as the longest
common subsequence (LCS) problem. Given two sequences X = (x1,x2, . . . ,xN) and Y =
(y1,y2, . . . ,yM) over an alphabet F , the goal is to find a longest subsequence common to both
sequences. For example, the sequences X = (b,a,b,c,b) and Y = (a,b,b,c,c,b) over the alphabet
F = {a,b,c} have the longest common subsequence (a,b,c,b). Develop an algorithm based on
dynamic programming (as in Table 3.2) for determining the length LCS(X ,Y) of a longest com-
mon subsequence of X and Y . Then, determine a longest common subsequence via backtracking.
Finally, apply the algorithm to the two sequences X = (b,a,b,c,b) and Y = (a,b,b,c,c,b).
[Hint: Define an accumulated similarity matrix as in (3.22). Let ε denote the empty sequence of
length zero. Use this empty sequence as a recursion start for computing the accumulated similarity
matrix.]

Chapter 4
Music Structure Analysis

One of the attributes distinguishing music from random sound sources is the hi-
erarchical structure in which music is organized. At the lowest level, one has events
such as individual notes, which are characterized by the way they sound, their tim-
bre, pitch, and duration. Combining various sound events, one obtains larger struc-
tures such as motifs, phrases, and sections, and these structures again form larger
constructs that determine the overall layout of the composition. This higher struc-
tural level is also referred to as the musical structure of the piece, which is specified
in terms of musical parts and their mutual relations. For example, in popular music
such parts can be the intro, the chorus, and the verse sections of the song. Or in
classical music, they can be the exposition, the development, and the recapitulation
of a movement. The general goal of music structure analysis is to divide a given
music representation into temporal segments that correspond to musical parts and
to group these segments into musically meaningful categories.

Let us consider a concrete example. Figure 4.1a shows a sheet music represen-
tation of the Mazurka Op. 6, No. 4 by the Polish composer Frédéric Chopin. This
piano piece can be subdivided into five sections, where the third and fifth sections
are repetitions of the first section. Therefore, these sections belong to the same cat-
egory denoted by the symbol A. Similarly, the fourth section is a repetition of the
second one. These two sections belong to another group labeled by the symbol B.
Hence, at an abstract level, the overall musical structure can be described by the
sequence A1B1A2B2A3 (see Figure 4.1d). Instead of using the musical score, one
typical scenario is to derive structural information from a given audio recording

171© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_4

https://doi.org/10.1007/978-3-030-69808-9_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_4&domain=pdf

172 4 Music Structure Analysis

(c)

(a)

(b)

(d) A1 B1 A2 B2 A3

A1

B1

A2

B2

A3

Fig. 4.1 Musical structure of the Mazurka Op. 6, No. 4 by Chopin. (a) Sheet music representation.
(b) Waveform of an audio recording. (c) Chroma representation derived from (b). (d) Manually
annotated segmentation of the audio recording.

(see Figure 4.1b). To this end, one needs to convert the waveform into a suitable
feature representation that captures musical properties relevant for the structure of
interest. In our example, as shown by Figure 4.1c, the repetition-based structure can
be seen in a chroma representation that captures harmonic information.

As demonstrated by the previous example, the musical structure is often related
to recurring patterns such as repeating sections. In general, however, there are many
more criteria for segmenting and structuring music. For example, certain musical
sections may be characterized by some homogeneity property such as a consistent
timbre, the presence of a specific instrument, or the usage of certain harmonies.
Furthermore, segment boundaries may go along with sudden changes in musical
properties such as tempo, dynamics, or the musical key. These various segmenta-
tion principles require different methods, which may be loosely categorized into
repetition-based, homogeneity-based, and novelty-based approaches.

In this chapter, we study general techniques for deriving structural information
from a given music recording. In Section 4.1, we start by giving an overview of dif-
ferent segmentation principles, while introducing a working definition of the struc-
ture analysis problem as used in the subsequent sections. Furthermore, we discuss
some feature representations that account for different musical dimensions. The con-

4.1 General Principles 173

cept of self-similarity matrices, which we study in Section 4.2, is of fundamental im-
portance in computational music structure. In particular, we show how the various
segmentation principles are reflected in such matrices and how this can be exploited
for deriving structural information. As a first application of self-similarity matrices,
we discuss in Section 4.3 a subproblem of music structure analysis known as audio
thumbnailing. The goal of this problem is to determine the audio segment that best
represents a given music recording. Providing a compact preview, such audio seg-
ments are useful for music navigation applications similar to visual thumbnails that
help in organizing and accessing large photo collections. While we apply repetition-
based principles for audio thumbnailing, we discuss in Section 4.4 some segmen-
tation procedures that rely on novelty-based principles. The objective of such pro-
cedures is to specify points within a given audio recording where a human listener
would recognize a change, a sudden event, or the transition between two contrast-
ing parts. Finally, in Section 4.5, we address the issue of evaluating analysis results,
which itself constitutes a nontrivial problem.

4.1 General Principles

Music structure analysis is a multifaceted and often ill-defined problem that de-
pends on many different aspects. First of all, the complexity of the problem depends
on the kind of music representation to be analyzed. For example, while it is compar-
atively easy to detect certain structures such as repeating melodies in sheet music,
it is often much harder to automatically identify such structures in audio represen-
tations. Second, there are various principles including homogeneity, repetition, and
novelty that a segmentation may be based on. While the musical structure of the
piano piece shown in Figure 4.1 is based on repetition, musical parts in other mu-
sic may be characterized by a certain instrumentation or tempo. Third, one also has
to account for different musical dimensions, such as melody, harmony, rhythm, or
timbre. For example, in Beethoven’s Fifth Symphony the “fate motif” is repeated in
various ways—sometimes the motif is shifted in pitch; sometimes only the rhyth-
mic pattern is preserved. Finally, the segmentation and structure largely depend on
the musical context and the temporal hierarchy to be considered. For example, the
recapitulation of a sonata may be considered a kind of repetition of the exposition
on a coarse temporal level even though there may be significant modifications in
melody and harmony on a finer temporal level. Figure 4.2 gives an overview of var-
ious aspects that need to be considered when dealing with musical structures. In the
following, we discuss these aspects in more detail. In particular, our goal is to raise
the awareness that computational procedures as described in the subsequent sections
are often based on simplifying model assumptions that only reflect certain aspects
of the complex structural properties of music.

174 4 Music Structure Analysis

Temporal and
Hierarchical Context

Representations

Segmentation
Principles

Musical
Aspects

Structure
Analysis

Homogeneity
NoveltyRepetition

Timbre

Tempo &
Rhythm

Harmony

Audio
MIDIScore

Fig. 4.2 Overview of various segmentation and structure principles.

4.1.1 Segmentation and Structure Analysis

The tasks of segmenting and structuring multimedia documents are of fundamental
importance not only for the processing of music signals but also for general audio-
visual content. Segmentation typically refers to the process of partitioning a given
document into multiple segments with the goal of simplifying the representation into
something that is more meaningful and easier to analyze than the original document.
For example, in image processing the goal is to partition a given image into a set of
regions such that each region is similar with respect to some characteristic such as
color, intensity, or texture (see Figure 4.3 for an illustration). Region boundaries can
often be described by contour lines or edges at which the image brightness or other
properties change sharply and reveal discontinuities. In music, the segmentation
task is to decompose a given audio stream into acoustically meaningful sections
each corresponding to a continuous time interval that is specified by a start and end
boundary. At a fine level, the segmentation may aim to find the boundaries between
individual notes or to find the beat intervals specified by beat positions. At a coarser
level, the goal may be to detect changes in instrumentation or harmony or to find
the boundaries between verse and chorus sections. Also, discriminating between
silence, speech, and music, finding the actual beginning of a music recording, or
separating the applause at the end of a performance are typical segmentation tasks.

Going beyond mere segmentation, the goal of structure analysis is to also find
and understand the relationships between the segments. For example, certain seg-
ments may be characterized by the instrumentation. There may be sections played
only by strings. Sections played by the full orchestra may be followed by solo sec-
tions. The verse sections with a singing voice may be alternated with purely in-
strumental sections. Or a soft and slow introductory section may precede the main
theme played in a much faster tempo. Furthermore, sections are often repeated. Most

4.1 General Principles 175

(a) (b) (c)

Fig. 4.3 Examples for segmentation results for image and 3D data. (a) Novelty-based image
segmentation using edge detection. (b) Homogeneity-based texture segmentation. (c) Repetition-
based segmentation of 3D geometry (from [35]).

events of musical relevance are repeated in a musical work in one way or another.
However, repetitions are rarely identical copies of the original section, but undergo
modifications in aspects such as the lyrics, the instrumentation, or the melody. One
main task of structure analysis is to not only segment the given music recording, but
to also group the segments into musically meaningful categories (e.g., intro, chorus,
verse, outro).

The challenge in computational music structure analysis is that structure in mu-
sic arises from many different kinds of relationships including repetition, contrast,
variation, and homogeneity [27]. As we have already noted, repetitions play a par-
ticularly important role in music, where sounds or sequences of notes are often
repeated [19]. Recurrent patterns can be of rhythmic, harmonic, or melodic nature.
On the other hand, contrast is the difference between successive musical sections of
different character. For example, a quiet passage may be contrasted by a loud one,
a slow section by a rapid one, or an orchestral part by a solo. A further principle
is that of variation, where motifs and parts are picked up again in a modified or
transformed form. Finally, a section is often characterized by some sort of inherent
homogeneity; for example, the instrumentation, the tempo, or the harmonic mate-
rial may be similar within the section. All these principles need to be considered in
the temporal context. Music happens in time (as opposed to, say, a painting), and
it is the temporal order of events that is essential for building up musically and
perceptually meaningful entities such as melodies or harmonic progressions [3].

In view of the various principles that crucially influence the musical structure,
a large number of different approaches to music structure analysis have been de-
veloped. In this chapter, we want to roughly distinguish three different classes of

176 4 Music Structure Analysis

methods. First, repetition-based methods are used to identify recurring patterns.
Second, novelty-based methods are employed to detect transitions between con-
trasting parts. Third, homogeneity-based methods are used to determine passages
that are consistent with respect to some musical property. Note that novelty-based
and homogeneity-based approaches are two sides of a coin: novelty detection is
based on observing some surprising event or change after a more homogeneous
segment. While the aim of novelty detection is to locate the changes’ time posi-
tions, the focus of homogeneity analysis lies in the identification of longer passages
that are coherent with respect to some musical property. In the following section,
we will study various procedures for structure analysis following one or several of
these paradigms.

4.1.2 Musical Structure

As already mentioned in the introduction of this chapter, our focus is to analyze a
given music recording on a rather coarse structural level. This level corresponds to
what is often referred to as the musical structure, which describes the overall struc-
tural layout of a piece of music. In particular for Western classical music, one also
encounters the term musical form, which refers to specific structural categories ex-
ploiting the principles of contrast and variety in one way or another. In this chapter,
we use the term “musical structure” loosely, including with it the concept of musical
form.

To specify musical structures, we now introduce some terminology as used in
the remainder of this book. First of all, we want to distinguish between a piece of
music (in an abstract sense) and a particular audio recording (an actual performance)
of the piece. The term part is used in the context of the abstract music domain,
whereas the term segment is used for the audio domain. Furthermore, we use the
term section in a rather vague way for both domains to denote either a segment or a
part. Musical parts are typically denoted by the capital letters A,B,C, . . . in the order
of their first occurrence, where numbers (often written as subscripts) indicate the
order of repeated occurrences. For example, the sequence A1B1A2B2A3 describes
the musical structure of the piano piece shown in Figure 4.1, which consists of three
repeating A-parts and two repeating B-parts. Hence, given a recording of this piece
of music, the goal of the structure analysis problem (as considered in this chapter)
is to find the segments within the recording that correspond to the A- and B-parts.

In Western music, the musical structure often follows certain structural patterns
(see Figure 4.4). The simplest of these patterns is the strophic form, which basi-
cally consists of a sequence of a part being repeated over and over again. The form
A1A2A3A4 . . . is, for example, used in folk songs or nursery rhymes, where the A-
parts correspond to the stanzas of the underlying poem. Another structural pattern
is referred to as chain form, which is simply a sequence of self-contained and unre-
lated parts (ABCD . . .), sometimes with repeats (A1A2B1B2C1C2D1D2 . . .). This form
is often used in a composition that consists of a concatenation of favorite tunes from

4.1 General Principles 177

(a)

(b)

(c)

(d)

(e)

(f)

A1 A2 A3 A4 A5 A6

A1 A2 B1 B2 C1 C2 D1 D2

A1 B A2 C A3 D A4

I E1 E2 D R C

I C1 V1 C2 V2 C3 B C4 O

I V1 V2 B1 V3 B2 V4 O

Fig. 4.4 Examples for musical structures as encountered in Western music. (a) Strophic form.
(b) Chain form with repetitions. (c) Rondo form. (d) Sonata form. (e) Beatles song “Tell Me Why.”
(f) Beatles song “Yesterday.”

popular songs, dances, or operettas. Examples are medleys or potpourris, which
are pieces composed from parts of existing pieces that are simply juxtaposed with
no strong connection or relationship. Another form is the rondo form, where a re-
curring theme alternates with contrasting sections, yielding the musical structure
A1BA2CA3DA4

In Western classical music, one of the most important musical structures is known
as the sonata form, which is a large-scale musical structure typically used in the first
movements of sonatas and symphonies. The basic sonata form consists of an expo-
sition (E), a development (D), and a recapitulation (R), where the exposition is
repeated once. Sometimes, one can find an additional introduction (I) and a clos-
ing coda (C), thus yielding the form IE1E2DRC. In particular, the exposition and the
recapitulation stand in close relation to each other, both containing two subsequent
contrasting subject groups (often simply referred to as the first and second theme)
connected by some transition. As previously noted, at least at a coarse level, the
recapitulation can be regarded as a kind of repetition of the exposition. However, at
a finer level, there are significant differences. For example, the subject groups and
transition in the recapitulation are musically altered and can be quite different from
their corresponding occurrences in the exposition. Finally, we want to discuss some
typical structural elements one finds in popular music. As with the sonata form, one
sometimes uses generic names to denote the musical parts instead of using capital
letters. The most important parts of a pop song are the verse (V) and the chorus (C)
sections. Each verse usually employs the same melody (possibly with slight modifi-
cations), while the lyrics change for each verse. The chorus (sometimes also called
the refrain) typically consists of a melodic and lyrical phrase which is repeated.
Sometimes, pop songs may start with an intro (I) and close with an outro (O).
Finally, verse and chorus sections may be connected by an additional part called
a bridge (B). The verse and chorus are usually repeated throughout a song, while
the intro and the outro appear only once. Some pop songs may have a solo section,
where one or more instruments play a melodic line, typically following the melody
previously introduced by the singer.

We have presented only a small selection of musical structures. In practice, there
are many more structures as well as variations and deviations from standard forms as
illustrated by the last two examples of Figure 4.4. A musical structure can be rather
vague, and even music experts may argue about the construction of a given compo-

178 4 Music Structure Analysis

A1

B1
B2

B3
B4

A2

C

A3

D

Fig. 4.5 Sheet music representation and musical structure of the Hungarian Dance No. 5 by Jo-
hannes Brahms. Only the voice for the violin of an arrangement for full orchestra is shown.

sition. In particular, what we call a repetition of a musical section is often far from
being an exact copy. Segments that are considered to correspond to the same musi-
cal part may differ in instrumentation and tempo, or a segment may be transposed to
another key, the melody may be changed while only the underlying harmonic pro-
gression is kept, and so on. Furthermore, musical structure is typically ordered in
hierarchies, and it is often not clear which level should be considered when specify-
ing the musical structure. For example, in the piece shown in Figure 4.1, the A-part
can be further subdivided into substructures consisting of two or even four subparts.
Similarly, the B-part can be regarded as a repetition of two subparts. These repeating
substructures also become visible in the chroma representation derived from the mu-
sic recording (see Figure 4.1c). In music notation, such subparts are often indicated
using small letters a,b,c,

As a final example, we want to consider the Hungarian Dance No. 5 by Johannes
Brahms, which will also serve as our running example in the next sections. This
piece is part of a set of 21 dance tunes composed by Brahms up to 1869 and based
mostly on traditional Hungarian themes. Each dance has been arranged for a wide
variety of instruments and ensembles, ranging from piano versions to versions for

4.1 General Principles 179

full orchestra. Figure 4.5 shows a sheet music representation for the violin voice of
an arrangement for full orchestra. The musical structure as indicated in the figure
is A1A2B1B2CA3B3B4D, which consists of three repeating A-parts, four repeating
B-parts, as well as a C-part and a short closing D-part. The A-part has a substructure
consisting of two more or less repeating subparts. Furthermore, as becomes apparent
when looking at the musical score, the middle C-part may be further subdivided into
a substructure that may be described by d1d2e1e2e3e4 (see Figure 4.28).

The overall musical structure of this piece can be explained in terms of repeat-
ing elements. However, there are also many other musical cues that reinforce the
musical structure. For example, the C-part stands in contrast to the remaining parts.
First, there is a change of the musical key in the C-part (changing from G minor to
G major). Then, there is a change in the notated tempo (changing from ‘Allegro’
to ‘Vivace’). While the A- and B-parts have catchy tunes, there is no such melody
in the C-part. Instead, the entire C-part is rather homogeneous with regard to har-
mony. However, this does not hold for other musical properties such as dynamics
and tempo. For example, while the d-part segments are played in forte, the e-part
segments are played in piano. Also there are many sudden tempo changes within the
C-part. Therefore, in this case, a novelty-based segmentation procedure using tempo
cues may be used to reveal the substructures of the C-part, whereas a homogeneity-
based segmentation procedure using harmonic properties may be suited to distin-
guish the C-part from the other parts. We further develop this example in the next
sections.

4.1.3 Musical Dimensions

We have already seen that the applicability of the different segmentation principles
very much depends on the musical and acoustic properties of the audio signal to be
analyzed. Since the sampled waveform of an audio signal is relatively uninformative
by itself, the first step in automated structure analysis is to transform the given music
recording into a suitable feature representation. As explained in the music synchro-
nization scenario (Section 3.1), finding such a representation constitutes a delicate
trade-off between robustness and expressiveness. Also, it is often unclear which mu-
sical properties are actually relevant for the given music signal and the considered
segmentation scenario. For example, structural boundaries may be based on changes
in harmony, timbre, or tempo. One major task in music processing is to transform a
given audio signal into feature representations that correlate to the various musical
aspects. In the following, we discuss this issue in more detail by considering three
conceptually different feature representations (see Figure 4.6 for an overview).

As a first representation, we consider chroma features as introduced in
Section 3.1.2. Recall that a normalized chroma vector describes the signal’s local
energy distribution over an analysis window (frame) across the twelve pitch classes
of the equal-tempered scale (ignoring octave information). Capturing pitched con-
tent, a chroma-based feature sequence relates to harmonic and melodic properties

180 4 Music Structure Analysis

(b)

(c)

(d)

(e)

Time (seconds)

(a)

A1 A2 B1 B2 C A3 B3 B4

Fig. 4.6 Feature representations for a recording of the Hungarian Dance No. 5 by Johannes
Brahms. (a) Waveform. (b) Chroma-based features. (c) MFCC-based features. (d) Tempo-based
features. (e) Manually generated annotation.

of the music recording. Figure 4.6b shows a chroma representation derived from
a recorded performance of our Brahms example, the Hungarian Dance No. 5. The
patterns visible in the chromagram reveal important structural information. For ex-
ample, the four repeating B-part segments are clearly visible as four similar char-
acteristic subsequences in the chromagram. Furthermore, the C-part segment stands
out in the chromagram by showing a high degree of homogeneity throughout the
entire section. Indeed, for all chroma features of this segment, most of the signal’s
energy is contained in the G-, B-, and D-bands (which is not surprising since the
C-part is in G major). In contrast, as for the A-part segments, many chroma vectors
have dominant entries in the G-, B[-, and D-bands (which nicely reflects that this
part is in G minor).

Besides melody and harmony, the instrumentation and timbral characteristics are
of great importance for the human perception of music structure. As we have dis-
cussed in Section 1.3.4, timbre is a rather vaguely defined perceptual property of
sound, which is hard to describe and to extract from a music recording. For exam-
ple, the automated recognition of musical instruments within polyphonic music sig-
nals is an extremely difficult problem. In applications such as structure analysis, it is
often unnecessary to determine such information explicitly. Instead, mid-level rep-
resentations that somehow correlate to aspects such as instrumentation and timbre

4.1 General Principles 181

may be sufficient. In the context of timbre-based structure analysis, one often uses
mel-frequency cepstral coefficients (MFCCs), which were originally developed
for automated speech recognition. Parametrizing the rough shape of the spectral en-
velope, MFCC-based features capture timbral properties of the signal. At this point,
we do not want to give a technical description on how these features are computed.
Instead, let us have a look at Figure 4.6c, which shows an MFCC-based feature rep-
resentation for our Brahms example. One can recognize that MFCC features within
the A-part segments are different from the ones in the B-part and C-part segments.
For many music recordings such as pop songs, where sections with singing voice
alternate with purely instrumental or percussive sections, MFCC-based feature rep-
resentations are well suited for novelty-based and homogeneity-based segmentation.

As a third musical dimension, we consider properties that are related to beat,
tempo, and rhythmic information. Estimation of the tempo and beat positions is
one of the central topics in music processing, which we cover in Chapter 6. In
the music segmentation context, such techniques are often applied to derive beat-
synchronous feature representations, where the time axis is segmented according
to musically meaningful beat positions. Such beat-synchronous representations are
very useful to compensate for tempo changes in repeating parts. On the downside,
beat tracking errors introduced by automated procedures may have negative conse-
quences for the subsequent music processing tasks to be solved (see Section 6.3.3
for more details).

In music structure analysis, tempo and beat information may also be used in
combination with homogeneity-based segmentation approaches. Instead of extract-
ing such information explicitly, a mid-level feature representation that correlates to
tempo and rhythm may suffice for deriving a meaningful segmentation at a higher
structural level. As an example, Figure 4.6d shows such a mid-level representation,
a tempogram, which encodes local tempo information. More precisely, a cyclic
variant of a tempogram is shown, where tempi differing by a power of two are
identified—similar to cyclic chroma features, where pitches differing by octaves are
identified. Technical details on how to compute such tempograms can be found in
Section 6.2.4. Having a look at Figure 4.6d, one can notice that the different musical
parts are played in different tempi (even though the representation does not reveal
the exact tempi). Furthermore, there are sections where the tempogram features do
not have any dominating entries, which may indicate that there is no clear notion
of a tempo in the recording. This kind of information is also important and can be
used for segmentation purposes. As this example indicates, a tempogram may yield
information that is complementary to the information obtained by chroma-based or
MFCC-based feature representations.

Besides the various musical dimensions, there is another aspect one should keep
in mind when looking for suitable feature representations: the temporal dimension.
In all of the above-mentioned feature representations, an analysis window is shifted
over the music signal. As we have already seen for the STFT in Section 2.5.2, the
length of the analysis window as well as the hop size parameter have a crucial in-
fluence on the quality of the feature representation. For example, long window sizes
and large hop sizes may be beneficial for smoothing out irrelevant local variations,

182 4 Music Structure Analysis

which is often a desired property in homogeneity-based segmentation. On the down-
side, the temporal resolution decreases and important details may get lost, which can
lead to problems when locating the exact segmentation boundaries.

In summary, a suitable choice of feature representations and parameter settings
very much depends on the application context. Humans constantly and often un-
consciously adapt themselves to the musical and acoustic characteristics of what
they listen to. The richness and variety of musical structures make computational
structure analysis a challenging problem.

4.2 Self-Similarity Matrices

We have seen that the principles of repetition, homogeneity, and novelty are funda-
mental for partitioning a given audio recording into musically meaningful structural
elements. To study musical structures and their mutual relations, one general idea is
to convert the music signal into a suitable feature sequence and then to compare each
element of the feature sequence with all other elements of the sequence. This results
in a self-similarity matrix (SSM), a tool which is of fundamental importance not
only for music structure analysis but also for the analysis of many kinds of time se-
ries. In this section, we look at these matrices in detail. As we will see, one crucial
property of self-similarity matrices is that repetitions typically yield path-like struc-
tures, whereas homogeneous regions yield block-like structures. These structural
elements are exploited by most algorithms for visualizing, analyzing, and comput-
ing musical structures in one way or another. In Section 4.2.1, we introduce the
concept of self-similarity matrices and discuss their basic structural properties. For
applications, the improvement of these properties at an early state of the processing
pipeline is of great importance, which is the topic of Section 4.2.2.

4.2.1 Basic Definitions and Properties

As said before, the concept of self-similarity matrices is fundamental for capturing
structural properties of music recordings. Generally, one starts with a feature space
F containing the elements of the feature sequence under consideration as well as
with a similarity measure

s : F ×F → R (4.1)

that makes it possible to compare these elements. Typically, the value s(x,y) is high
in case the elements x,y ∈ F are similar and small otherwise. Given a feature se-
quence X = (x1,x2, . . . ,xN), the idea is to compare all elements of the sequence with
each other. This results in an N-square self-similarity matrix S ∈RN×N defined by

S(n,m) := s(xn,xm), (4.2)

4.2 Self-Similarity Matrices 183

where xn,xm ∈ F , n,m ∈ [1 : N]. In the following, a tuple (n,m) ∈ [1 : N]× [1 : N]
is also called a cell of S, and the value S(n,m) is referred to as the score of the cell
(n,m).

Obviously, the concept of self-similarity matrices is closely related to the concept
of cost matrices, which we have already encountered in Section 3.2.1. However,
instead of a cost measure c as in (3.12), we now use a similarity measure s. And
instead of comparing two sequences X and Y with each other, we now compare a
single sequence X with itself. Depending on the application context and notion that
is used to compare the data, there are many related concepts known under different
names such as recurrence plot or self-distance matrix just to name a few. In this
chapter, we only consider self-similarity matrices, but the techniques to be explained
can easily be transferred to other types of matrices.

In the following discussion, we assume that the feature space is a Euclidean space
F =RD of some dimension D ∈N. For simplicity and illustration purposes, we use
as similarity measure s the inner product defined by

s(x,y) := 〈x|y〉 (4.3)

for two vectors x,y∈F (see (2.37)). With this similarity measure, the score between
two orthogonal feature vectors is zero and otherwise it is nonzero. In the case that
the feature vectors are normalized with respect to the Euclidean norm, the similarity
values s(x,y) lie in the interval [−1,1]. Obviously, there are many more possibili-
ties to define a similarity measure (see Exercise 4.1). The suitability of a similarity
measure depends on the properties of the considered features and vice versa.

Given a feature sequence X = (x1,x2, . . . ,xN), it seems reasonable to require that
an element xn should be maximally similar to itself. Using normalized features and
the similarity measure from (4.3), the similarity measure assumes its maximal value
s(xn,xn) = 1 for all n ∈ [1 : N]. Therefore, the resulting SSM has a diagonal with
large values. More generally, recurring patterns of the given feature sequence be-
come visible in the SSM in the form of structures with large similarity values. The
two most prominent structures induced by such patterns are often referred to as
blocks and paths (see Figure 4.7a for an illustration). First, if the feature sequence
captures musical properties that stay somewhat constant over the duration of an
entire musical part, each of the feature vectors is similar to all other feature vec-
tors within this segment. As a result, an entire block of large values appears in the
SSM. In other words, homogeneity properties correspond to block-like structures.
Second, if the feature sequence contains two repeating subsequences (e.g., two seg-
ments corresponding to the same musical part), the corresponding elements of the
two subsequences are similar to each other. As a result, a path (or stripe) of high
similarity running parallel to the main diagonal becomes visible in the SSM. In other
words, repetitive properties correspond to path-like structures.

Before we further formalize these properties, let us have a look at Figure 4.7,
which shows different self-similarity matrices for our Brahms example. Figure 4.7a
shows an idealized SSM. For example, assuming that the three repeating A-part
segments are homogeneous, the SSM has a quadratic block relating the segment

184 4 Music Structure Analysis

(b)(a)

(d)(c)

Fig. 4.7 Self-similarity matrices for the Hungarian Dance No. 5 by Johannes Brahms derived from
various feature representations shown in Figure 4.6. (a) Idealized SSM. (b) SSM using chroma-
based features. (c) SSM using MFCC-based features. (d) SSM using tempo-based features.

corresponding to A1A2 to itself and another quadratic block relating the A3-part
segment to itself. Furthermore, there are two rectangular blocks, one relating the
A1A2-part segment to the A3-part segment and the other relating the A3-part segment
to the A1A2-part segment. In case that the three repeating A-part segments are not
homogeneous, the SSM reveals path structures that run (more or less) parallel to the
main diagonal. For example, there is a path with large similarity values relating A1
with A2 and one relating A1 with A3.

How are such structures reflected in the case of “real” SSMs? Besides the ideal-
ized SSM, Figure 4.7 shows different self-similarity matrices for our Brahms exam-
ple obtained from the three conceptually different feature sequences of Figure 4.6.
In the visualization, large values of S are indicated by dark gray and small values by
light gray. First, one can notice that properties of a self-similarity matrix crucially
depend on the respective feature type. The SSM in Figure 4.7b, which is obtained

4.2 Self-Similarity Matrices 185

from chroma-based features, resembles the idealized SSM to a large extent. The
block-like structures corresponding to A-part segments indicate that these segments
are quite homogeneous with respect to harmony. The same holds for the C-part seg-
ment. Furthermore, the small similarity values outside the C-part block (i.e., all cells
relating the C-part frames to frames of other segments) show that the C-part segment
is harmonically more or less unrelated to all other parts. For the B-part segments,
there are path-like structures and no block-like structures. This shows that the B-
part segments share the same harmonic progression (i.e., are repetitions with regard
to harmony), but are not homogeneous with respect to harmony. An interesting ob-
servation is that, even though repeating, the B-part segments are played in different
tempi and therefore have different lengths. For example, the shorter B2-section is
played faster than the B1-section. As a result, the corresponding path does not run
exactly parallel to the main diagonal. The gradient of the path indicates the relative
tempo difference between the two related segments. Recall that we have discussed
a similar issue already in the music synchronization context, where we derived a
tempo curve from a warping path (see Section 3.3.2).

Looking at the other two self-similarity matrices the structures are not so clear.
The SSM of Figure 4.7c, which results from MFCC-based features, mainly pos-
sesses block-like structures. In particular, the C-part segment has a low similarity to
all other segments, which indicates a difference in timbre or instrumentation. Now,
let us have a look at the tempogram-based SSM shown in Figure 4.7d. Again the
C-part segment stands out, thus emphasizing its contrasting role. Furthermore, the
SSM indicates the many tempo changes occurring in this music recording. In sum-
mary, the musical structure of the Brahms example can be best explained by the
repetitive structure of the chroma-based SSM. Since this is the case with many mu-
sical works, in particular for melodic and harmonic Western music, we will mainly
focus on this type of SSM in the subsequent sections.

We now formalize the concept of paths and blocks (see Figure 4.8). Let X =
(x1,x2, . . . ,xN) be a feature sequence and S the resulting self-similarity matrix. We
formally define a segment to be a set α = [s : t] ⊆ [1 : N] specified by its starting
point s and its end point t (given in terms of feature indices). Let

|α| := t− s+1 (4.4)

denote the length of α . Next, a path over α of length L is a sequence

P = ((n1,m1), . . . ,(nL,mL)) (4.5)

of cells (n`,m`)∈ [1 : N]2, `∈ [1 : L], satisfying m1 = s and mL = t (boundary condi-
tion) and (n`+1,m`+1)− (n`,m`) ∈ Σ (step size condition), where Σ denotes a set of
admissible step sizes. Note that this definition is very similar to the one of a warp-
ing path (see Section 3.2.1.1). In the case of Σ = {(1,1)}, one obtains paths that are
strictly diagonal. In the following, we typically use the set

Σ = {(2,1),(1,2),(1,1)}, (4.6)

186 4 Music Structure Analysis

s tα

π1(p)

= π2(p)

1 50 100
1

50

100

s tα

π1(b)

= π2(b)

1 50 100
1

50

100

(b)(a)

Fig. 4.8 Schematic view of self-similarity matrix with (a) a path and (b) a block.

which is the step size condition introduced in (3.30). For a path P, one can associate
two segments defined by the projections

π1(P) := [n1 : nL] and π2(P) := [m1 : mL], (4.7)

respectively (see Figure 4.8a). The boundary condition enforces π2(P) = α . The
other segment π1(P) is referred to as the induced segment. The score σ(P) of P is
defined as

σ(P) :=
L

∑
`=1

S(n`,m`). (4.8)

Note that each path over the segment α encodes a relation between α and an induced
segment, where the score σ(P) yields a quality measure for this relation.

For blocks, we also introduce corresponding notions. A block over a segment
α = [s : t] is a subset

B = α
′×α ⊆ [1 : N]× [1 : N] (4.9)

for some segment α ′ = [s′ : t ′]. Similar as for a path, we define the two projections
π1(B) = α ′ and π2(B) = α for the block B and call α ′ the induced segment (see
Figure 4.8b). Furthermore, we define the score of block B by

σ(B) = ∑
(n,m)∈B

S(n,m). (4.10)

Based on paths and blocks, we can now consider different kinds of similarity
relations between segments. We say that a segment α1 is path-similar to a segment
α2, if there is a path P of high score with π1(P) = α1 and π2(P) = α2. Similarly,
α1 is block-similar to α2, if there is a block B of high score with π1(B) = α1 and
π2(B) = α2. Obviously, in case that the similarity measure s is symmetric, both the
self-similarity matrix S and the above-defined similarity relations between segments
are symmetric as well. Another important property of a similarity relation is tran-
sitivity, i.e., if a segment α1 is similar to a segment α2 and segment α2 is similar

4.2 Self-Similarity Matrices 187

to a segment α3, then α1 should also be similar to α3 (at least to a certain degree).
Also this property holds for path- and block-similarity in case that the similarity
measure s has this property. As a consequence, path and block structures often ap-
pear in groups that fulfill certain symmetry and transitivity properties—at least in
the ideal case. For example, if there is a block B = α ′×α of high score, then the
symmetry property implies that there is also a block α×α ′ of high score. Further-
more, if every frame belonging to α is similar to every other frame of α ′, then also
the frames within the segments α and α ′ are similar to each other. This leads to
additional blocks α ×α and α ′×α ′ (see Figure 4.8b). Figure 4.7 shows that such
groups of similarity relations also appear in “real” SSMs.

Most computational approaches to music structure analysis exploit path- and
block-like structures of SSMs in one way or another, and the overall algorithmic
pipelines typically contain the following general steps:

1. The music signal is transformed into a suitable feature sequence.
2. A self-similarity matrix is computed from the feature sequence based on a simi-

larity measure.
3. Blocks and paths of high overall score are derived from the SSM. Each block or

path defines a pair of similar segments.
4. Entire groups of mutually similar segments are formed from the pairwise rela-

tions by applying a clustering step.

The last step can be considered as forming a kind of transitive closure of the pairwise
segment relations induced by block and path structures. For example, in the case
of Brahms’ Hungarian Dance No. 5 (see Figure 4.7), the objective of the last step
would be to find one group that contains all A-part segments and another group that
contains all B-part segments.

In practice, this general processing pipeline leaves a lot of freedom and needs to
be adjusted to account for particular properties of the underlying type of music and
the requirements of the intended application. Furthermore, as mentioned before, ma-
jor challenges arise from the fact that musical parts are rarely repeated in precisely
the same way. Instead, audio segments that are considered as repetitions may differ
significantly in aspects such as dynamics, orchestration, articulation, tempo, har-
mony, melody, or any combination of these. As a result, structure analysis becomes
a hard and often ill-posed task. In particular, musical and acoustic variations may
cause significant deteriorations in the path and block structures and their induced re-
lations. This makes both steps, i.e., the block and path extraction step as well as the
grouping step, error-prone and fragile. In the following, we discuss various strate-
gies to cope with such challenges, e.g., by enhancing structural properties of SSMs
(Section 4.2.2) or by jointly performing the two error-prone steps of path extraction
and grouping within a joint optimization scheme (Section 4.3).

188 4 Music Structure Analysis

Audio
representation

Feature computation
▪ Spectral features
▪ Chroma features
▪ MFCC-based features
▪ Tempo-based features

Matrix computation
▪ Local similarity

measure
▪ Pairwise comparison

of feature vectors

Enhancement strategies
▪ Resolution
▪ Smoothing
▪ Transposition invariance
▪ Thresholding

Feature
representation

Similarity
matrix

Enhanced
matrix

Fig. 4.9 Overview of the similarity matrix computation.

4.2.2 Enhancement Strategies

In this section, we describe various strategies for enhancing structural properties
of self-similarity matrices (see Figure 4.9 for an overview). In particular, we focus
on augmenting path-like structures, which play a central role in repetition-based
structure analysis. Even though all the enhancement strategies are described for self-
similarity matrices, similar strategies can be applied for more general similarity or
cost matrices.

4.2.2.1 Feature Representation

In the first step, the given waveform-based audio recording is transformed into a
suitable feature representation, which captures specific acoustic and musical prop-
erties. As we have already discussed in Section 4.2.1 and as illustrated by Figure 4.7,
the structural properties of an SSM decisively depend on the feature type used. For
example, MFCC-based and related spectral-based features may be suitable to cap-
ture aspects such as instrumentation and timbre. Other features based on onset infor-
mation or tempograms are used to capture beat, tempo, and rhythmic information.
In the following, we only consider the case of chroma-based audio features, which
relate to harmonic and melodic properties as discussed in Section 3.1.2.

By considering a family of modified chroma representations similar to the ones
used in Figure 3.9, we now demonstrate the influence of different parameter settings
on the properties of the resulting SSM. Starting with a chroma representation of a
given feature rate, this family comes along with two parameters: a length parameter
` ∈ N (given in frames), which is used to smooth or average the feature values over
` consecutive frames, as well as a downsampling parameter d, which reduces the
feature rate by a factor of d. For a more detailed description of such a procedure, we
refer to Section 7.2.1 and Figure 7.10.

4.2 Self-Similarity Matrices 189

(a) (b)

Time (samples) Time (samples)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Time (samples) Time (samples)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

(c) (d)

Fig. 4.10 Various chroma representations and resulting SSMs for the Hungarian Dance No. 5 by
Johannes Brahms. (a) Usage of original normalized chroma features (10 Hz). (b) Applying `= 40
and d = 10 (1 Hz). (c) Applying ` = 160 and d = 20 (0.5 Hz). (d) Applying ` = 480 and d = 50
(0.2 Hz).

As an example, we start with normalized chroma features with a feature rate of
10 Hz. Figure 4.10a shows the resulting SSM, which yields a very detailed descrip-
tion of repetitive structures. Even though the path structures that correspond to the
repeating A-part and B-part segments are visible, the SSM looks quite noisy and
many of the shown details are irrelevant when only the overall musical structure is
of interest.

Using a smoothing length of ` = 40 (corresponding to four seconds of audio)
and a downsampling by d = 10 (resulting in a feature rate of 1 Hz), one obtains the
SSM shown in Figure 4.10b. Many of the details have been smoothed out, and some
of the structurally relevant path and block structures have become more prominent.

190 4 Music Structure Analysis

In particular, this holds for the paths that relate to the B-part segments. Moreover,
reducing the feature rate improves the computational efficiency for subsequent pro-
cessing steps.

Further increasing the smoothing length and reducing the feature rate results in
an emphasis of the rough harmonic content. In particular, neighboring elements
in the feature sequence come closer together, which leads to an enhancement of
block-like structures. For example, Figure 4.10c shows the SSM when using `= 160
(16 seconds) and d = 20 (feature rate of 0.5 Hz) and Figure 4.10d the SSM using
` = 480 (48 seconds) and d = 50 (feature rate of 0.2 Hz). Using large smoothing
windows, relevant path structures may be smeared out and lost for the subsequent
steps. For other applications such as homogeneity-based structure analysis, however,
averaging over large windows may be beneficial.

In summary, this example shows the importance not only of the feature type but
also of the size of the analysis window and the feature rate. Knowing the temporal
level of the music processing task is of great help for choosing suitable parame-
ters. For example, for tasks such as extracting the musical structure from a given
audio recording, smoothing and downsampling already on the feature level can lead
to substantial improvements, not to speak of computational benefits in subsequent
analysis steps. In particular, running time and memory requirements are important
issues when employing concepts such as SSMs, which are quadratic in the length of
the input feature sequence. As already mentioned in Section 4.1.3, another impor-
tant strategy for adjusting and reducing the feature rate is based on adaptive win-
dowing, where the analysis windows are determined by previously extracted onset
and beat positions. This strategy will be discussed in more detail in Section 6.3.3.

4.2.2.2 Path Smoothing

We have seen that important structural elements of similarity matrices are paths of
high similarity that run parallel to the main diagonal. Even though it is often easy for
humans to recognize these structures, the automated extraction of paths constitutes
a difficult problem due to significant distortions that are caused by variations in
parameters such as dynamics, timbre, execution of note groups (e.g., grace notes,
trills, arpeggios), modulation, articulation, or tempo progression. As an example, let
us have a look at Figure 4.11a, which shows the SSM of a recording of the Waltz
No. 2 from Dimitri Shostakovich’s Suite for Variety Orchestra No. 1. This piece has
the (rough) musical structure A1A2BC1C2A3A4D, where the theme, represented by
the A-part, appears four times. However, there are significant variations in the four
A-parts concerning instrumentation, articulation, as well as dynamics. For example,
in A1 the theme is played by a clarinet, in A2 by strings, in A3 by a trombone,
and in A4 by the full orchestra. As is illustrated by Figure 4.11a, these variations
result in a rather poor and fragmented path structure. This makes it hard to identify
the musically similar segments α1 = [4 : 40], α2 = [43 : 78], α3 = [145 : 179], and
α4 = [182 : 217] corresponding to A1, A2, A3, and A4, respectively. In particular, as

4.2 Self-Similarity Matrices 191

(a) (b)

(c) (d)

Fig. 4.11 Variants of SSMs for a recording of the Waltz No. 2 from Dimitri Shostakovich’s Suite
for Variety Orchestra No. 1. (a) Original SSM using chroma features (resolution of 1 Hz). (b) En-
largement of the submatrix indicated by the rectangular frame in (a). The path corresponding to
segments α1 (part A1) and α3 (part A3) is highlighted by the oval. (c) SSM after applying diagonal
smoothing. (d) Enlargement of the submatrix indicated by the rectangular frame in (c).

can be seen in the enlargement shown in Figure 4.11b, the path corresponding to the
segments α1 and α3 is quite problematic.

To some extent, as we have seen above, structural properties of the SSM may be
augmented by using longer analysis windows in the feature computation step. This,
however, may also smooth out important details. As an alternative, we now show
how to enhance the path structure of an SSM by applying image processing tech-
niques. Recall that the relevant paths run along the direction of the main diagonal
in the case that repeating parts are played in the same tempo. Therefore, in order
to augment such paths, the general idea is to apply an averaging filter (or low-pass
filter) in the direction of the main diagonal, which results in an emphasis of diagonal
information and a softening of other, nondiagonal structures.

We now give a mathematical description of this procedure. Let S be an SSM
of size N×N and let L ∈ N be a length parameter. Then we define the smoothed
self-similarity matrix SL by setting

192 4 Music Structure Analysis

(a) (b)

(c) (d)

Time (samples) Time (samples)

Time (samples) Time (samples)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Fig. 4.12 Variants of SSMs for the Hungarian Dance No. 5 by Johannes Brahms. The path cor-
responding to the B1-part and B2-part segments is highlighted. (a) Original SSM using chroma
features (resolution of 2 Hz). (b) SSM after applying diagonal smoothing. (c) SSM after applying
tempo-invariant smoothing. (d) SSM after applying forward–backward smoothing.

SL(n,m) :=
1
L

L−1

∑
`=0

S(n+ `,m+ `) (4.11)

for n,m∈ [1 : N−L+1]. In other words, the value SL(n,m) is obtained by averaging
the similarity values of two subsequences of length L, one starting at index n and
the other at index m. By suitably extending S (e.g., by zero-padding where zero
columns and rows are added), we may assume in the following that SL(n,m) is
defined for n,m ∈ [1 : N].

The averaging procedure results in a smoothing effect along the main di-
agonal, which is also illustrated by our Shostakovich example of Figure 4.11.
Using the length parameter L = 10, the resulting self-similarity matrix S10
(Figure 4.11c) reveals the desired path structure much better than the original ma-
trix S (Figure 4.11a). For example, the enhanced path highlighted in Figure 4.11d
reveals the relation between the segments α1 and α3 much better than before (see
Figure 4.11b).

4.2 Self-Similarity Matrices 193

A simple filtering along the main diagonal only works well if there are no relative
tempo differences between the segments to be compared. However, this assumption
is violated when a part is repeated with a faster or slower tempo. We have seen such a
case in our Brahms example from Figure 4.7, where the shorter B2-section is played
much faster than the B1-section. It is only the beginning of the B2-section that is
played much faster than the beginning of the B1-section, whereas the two sections
have roughly the same tempo towards the end of the part. This results in a path that
does not run exactly parallel to the main diagonal (in particular at the beginning), so
that applying an averaging filter in the direction of the main diagonal destroys some
of the path structure (see Figure 4.12b). To deal with such relative tempo differ-
ences, one idea is to apply a multiple filtering approach, where the SSM is smoothed
along various directions that lie in a neighborhood of the direction defined by the
main diagonal. Each such direction corresponds to a tempo difference and results in
a separate filtered matrix. The final self-similarity matrix is obtained by taking the
cell-wise maximum over all these matrices. In this way, the path structure is also
enhanced in the presence of local tempo variations as illustrated in Figure 4.12c.

To better understand the details of this procedure, first assume that we have two
repeating segments α1 and α2 played at the same tempo. Then the direction of the
resulting path is given by the gradient (1,1). Next, assume that the second segment
α2 is played at half the tempo compared with α1. Then the direction of the resulting
path is given by the gradient (1,2). In general, if the tempo difference between
the two segments is given by a real number θ > 0 (the second segment played θ

times slower than the first one), the resulting gradient is (1,θ). We define the self-
similarity matrix smoothed in the direction of (1,θ) by

SL,θ (n,m) :=
1
L

L−1

∑
`=0

S(n+ `,m+[` ·θ]), (4.12)

where [` ·θ] denotes the integer closest to the real number ` ·θ . Again, by suitably
zero-padding the matrix S, we may assume that SL,θ is defined for n,m ∈ [1 : N].
Now, in practice, one does not know the local tempo difference that may occur in
a given music recording. Also, the relative tempo difference between two repeating
sections may change over time (as is the case with our Brahms example). Therefore,
the idea is to consider a (finite) set Θ consisting of tempo parameters θ ∈ Θ for
different relative tempo differences. Then, we compute for each such θ a matrix
SL,θ and obtain a final matrix SL,Θ by a cell-wise maximization over all θ ∈Θ :

SL,Θ (n,m) := max
θ∈Θ

SL,θ (n,m). (4.13)

In practice, one can use prior information on the expected relative tempo differ-
ences to determine the set Θ . For example, it rarely happens that the relative
tempo difference between repeating segments is larger than 50 percent, so that Θ

can be chosen to cover tempo variations of roughly −50 to +50 percent. Further-
more, in practice, the tempo range can be covered well by considering only a rel-
atively small number of tempo parameters. For example, a typical choice could be

194 4 Music Structure Analysis

Θ = {0.66,0.81,1.00,1.22,1.50} (see Exercise 4.4). Note that choosing Θ = {1}
reduces to the case SL,Θ = SL.

This smoothing procedure works in the forward direction, which results in a fad-
ing out of the paths, particularly when using a large length parameter. To avoid
this fading out, one idea is to additionally apply the averaging filter in a back-
ward direction. The final self-similarity matrix is then obtained by taking the cell-
wise maximum over the forward-smoothed and backward-smoothed matrices (see
Exercise 4.2). The effect is illustrated in Figure 4.12d by means of the Brahms ex-
ample.

4.2.2.3 Transposition Invariance

It is often the case that certain musical parts are repeated in a transposed form, where
the melody is moved up or down in pitch by a constant interval. As an example,
let us consider the song “In the Year 2525” by Zager and Evans, which has the
musical structure IV1V2V3V4V5V6V7BV8O. The song starts with a slow intro, which
is represented by the I-part. The verse of the song, which is represented by the
V -part, is repeated eight times. While the first four verse sections are in the same
musical key, V5 and V6 are transposed by one semitone upwards, and V7 and V8 are
transposed by two semitones upwards. Figure 4.13b shows a path-enhanced version
of the resulting self-similarity matrix based on some chroma feature representation.
This matrix shows path structures that relate the first four V -sections with each
other as well as V5 with V6 and V7 with V8. Because of the transpositions, however,
the relation between the first four sections and the last four sections is not reflected
in the SSM.

In the following, we show how repetitive structures can be made visible in
the SSM even in the presence of key transpositions. We have already seen in
Section 3.1.2 that such transpositions can be simulated by cyclically shifting chroma
features. Mathematically, we modeled such shifts by the cyclic shift operator ρ :
R12 → R12 defined in (3.11). Now, let X = (x1,x2, . . . ,xN) be the chroma feature
sequence. We then define the i-transposed self-similarity matrix ρ i(S) by

ρ
i(S)(n,m) := s(ρ i(xn),xm) (4.14)

for n,m ∈ [1 : N] and i ∈ Z. Obviously, one has ρ12(S) = S. Intuitively, ρ i(S) de-
scribes the similarity relations between the original music recording (represented
by X = (x1,x2, . . . ,xN)) and the music recording transposed by i semitones up-
wards (represented by ρ i(X) = (ρ i(x1),ρ

i(x2), . . . ,ρ
i(xN))). Since one does not

know in general the kind of transpositions occurring in the music recording, we
apply a similar strategy as before when dealing with relative tempo deviations. Tak-
ing a cell-wise maximum over the twelve different cyclic shifts, we obtain a single
transposition-invariant self-similarity matrix STI defined by

STI(n,m) := max
i∈[0:11]

ρ
i(S)(n,m). (4.15)

4.2 Self-Similarity Matrices 195

(a) (b)

(c) (d)

(e) (f)

Fig. 4.13 Variants of SSMs for the song “In the Year 2525” by Zager and Evans. (a) Original
SSM using chroma features (resolution of 1 Hz). (b) Path-enhanced SSM. (c) 1-transposed SSM.
(d) 2-transposed SSM. (e) Transposition-invariant SSM. (f) Transposition index matrix.

Furthermore, we store the maximizing shift indices in an additional N-square matrix
I, which we refer to as the transposition index matrix:

I(n,m) := argmax
i∈[0:11]

ρ
i(S)(n,m). (4.16)

196 4 Music Structure Analysis

We illustrate the definitions by continuing the example shown in Figure 4.13 (see
Exercise 4.3). Recall from above that shifting the sections V1 to V4 by one semitone
upwards makes them similar to the original sections V5 and V6. This fact is revealed
by the 1-transposed self-similarity matrix shown in Figure 4.13c. Similarly, shifting
the sections V1 to V4 by two semitones upwards makes them similar to the origi-
nal sections V7 and V8 (see Figure 4.13d). Putting together the information of all
i-transposed self-similarity matrices by the maximization in (4.15), one obtains the
transposition-invariant self-similarity matrix STI shown in Figure 4.13e, where all
pairwise similarity relations between the eight V -part segments become visible.

The resulting transposition index matrix is shown in Figure 4.13f in a color-coded
form. We first discuss the case that the matrix I assumes the value i = 0 (white color
in Figure 4.13f). The value i= 0 for a cell (n,m) indicates that s(ρ i(xn),xm) assumes
a maximal value for i = 0. In other words, the chroma vector xm is closer to xn than
to any other shifted version of xn. Note, however, that this does not necessarily
mean that xm is close to xn in absolute terms. As may be expected, the maximizing
index is i = 0 at all positions where the conventional self-similarity matrix shown in
Figure 4.13b reveals paths of low cost. Next, we consider the case that the matrix I
assumes the value i= 1 (black color in Figure 4.13f). The value i= 1 for a cell (n,m)
indicates that xn becomes most similar to xm when shifted one semitone upwards.
Thus the strong path relations shown in Figure 4.13c correspond to cells assuming
the value i = 1, and so on.

At this point, we want to note that introducing transposition invariance by cell-
wise maximization over several matrices may increase the noise level in the resulting
similarity matrix. Therefore, the transposition-invariant matrix should be computed
on the basis of smoothed matrices, since the smoothing typically goes along with
a suppression of unwanted noise. The definitions in (4.14) and (4.15) can be easily
combined with the averaging approaches described by (4.11) and (4.12) to yield
matrices ρ i

L,Θ (S) and STI
L,Θ . Such matrices are shown in Figure 4.13.

4.2.2.4 Thresholding

In many music analysis applications, self-similarity matrices are further processed
by suppressing all values that fall below a given threshold. On the one hand, such
a step often leads to a substantial reduction of unwanted noise-like components
while leaving only the most significant structures. On the other hand, weaker but
still relevant information may be lost. The thresholding strategy used may have a
significant impact on the final result and has to be carefully chosen in the context of
the considered application. Figure 4.14 shows some examples obtained by different
thresholding settings as explained below.

The simplest strategy is to apply global thresholding, where all values S(n,m)
of a similarity matrix S below a given threshold parameter τ > 0 are set to zero:

Sτ(n,m) :=
{

S(n,m) if S(n,m)≥ τ ,
0, otherwise. (4.17)

4.2 Self-Similarity Matrices 197

(a) (b)

(c) (d)

Time (samples) Time (samples)

Time (samples) Time (samples)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Fig. 4.14 Thresholding strategies applied to an SSM for the Hungarian Dance No. 5 by Johannes
Brahms. (a) SSM from Figure 4.12d. (b) SSM after thresholding and binarization (τ = 0.75).
(c) SSM after thresholding and scaling (ρ = 0.2). (d) SSM after thresholding and scaling (ρ =
0.05).

Also, binarization of the similarity matrix can be applied by setting all values above
or equal to the threshold to one and all others to zero. Instead of binarization, one
may perform a scaling where the range [τ,µ] is linearly scaled to [0,1] in the case
that µ := maxn,m{S(n,m)} > τ , otherwise all entries are set to zero. Sometimes it
may be beneficial to introduce an additional penalty parameter δ ≤ 0, setting all
original values below the threshold to the value δ (see Section 4.3 for an application
of this variant).

The global threshold τ can also be chosen in a relative fashion by keeping ρ ·
100% of the cells with the highest values using a relative threshold parameter ρ ∈
[0,1]. Finally, thresholding can also be performed using a more local strategy by
thresholding in a column- and rowwise fashion. To this end, for each cell (n,m), the
value S(n,m) is kept if it is among the ρ ·100% of the largest cells in row n and at
the same time among the ρ ·100% of the largest cells in column m, all other values
being set to zero (see Exercise 4.5). As said before, the suitability of a thresholding
setting depends on the respective music material and the application in mind. Often,
suitable thresholds are learned and optimized using supervised learning procedures.

198 4 Music Structure Analysis

(a) (b) (c)

Time (samples) Time (samples) Time (samples)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

(d) (e) (f)

Time (samples) Time (samples) Time (samples)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Ti
m

e
(s

am
pl

es
)

Fig. 4.15 Variants of similarity matrices for the same audio recording. (a) Original SSM using
chroma features of 2 Hz resolution. (b) SSM after applying diagonal smoothing. (c) SSM af-
ter applying tempo-invariant and forward–backward smoothing. (d) Transposition-invariant SSM.
(e) Transposition index matrix. (f) SSM after thresholding with penalty and scaling (ρ = 0.2,
δ =−2).

To conclude this section, Figure 4.15 summarizes the various enhancement and
processing steps applied to a music recording having the musical structure A1A2BA3.
In this example, A2 is a modulation of A1 transposed by one semitone upwards,
whereas A3 is a repetition of A1, however played much faster. Figure 4.15 shows
a typical processing pipeline for computing an SSM as used in structure analysis
applications. First, the music recording is converted into a sequence of normal-
ized and smoothed chroma features as in Figure 3.9. Then, based on the similar-
ity measure (4.3), an enhanced transposition-invariant self-similarity matrix STI

L,Θ is
computed (see Figure 4.15d). In the next step, global thresholding is applied using
a threshold parameter τ and a penalty parameter δ . Furthermore, the range [τ,1]
is linearly scaled to [0,1]. As a result, the relevant path structure tends to lie in
the positive part of the resulting SSM, whereas all other cells are given a negative
score. Finally, setting S(n,n) = 1 for n ∈ [1 : N], one can introduce a normalization
property, which may have been lost in the smoothing process due to boundary ef-
fects. The SSM shown in Figure 4.15f is obtained in this way using a feature rate
of 2 Hz. Settings for the enhancement are L = 20 for the length parameter and
Θ = {0.50,0.63,0.79,1.26,1.59,2.00} for the set of relative tempo differences (see
Exercise 4.4). In this example, the threshold is chosen in a relative fashion by using
the relative threshold ρ = 0.2 and the penalty parameter is set to δ =−2.

4.3 Audio Thumbnailing 199

4.3 Audio Thumbnailing

In this section, we deal with a prominent subproblem of music structure analysis
commonly known as audio thumbnailing. Given a music recording, the objective
is to automatically determine the most representative section, which may serve as a
kind of “preview” giving a listener a first impression of the song or piece of music.
Based on such previews, the user should be able to quickly decide if he or she would
like to listen to the song or to move on to the next recording. Thus, audio thumbnails
are an important browsing and navigation aid for finding interesting pieces in large
music collections.

Often sections such as the chorus or the main theme of a song are good candidates
for audio thumbnails. Such parts are typically repeated several times throughout the
recording. Therefore, to determine a thumbnail automatically, most procedures try
to identify a section that has on the one hand a certain minimal duration and on the
other many (approximate) repetitions. As we have seen before, one challenge is that
such repeating sections may show significant acoustic and musical differences in
aspects that concern dynamics, instrumentation, articulation, and tempo.

We now describe a typical thumbnailing procedure for extracting the most repet-
itive segment from a given music recording. In particular, we show how enhanced
self-similarity matrices as well as time warping techniques are applied for dealing
with multiple variabilities. As the main technical tool, we introduce in Section 4.3.1
a fitness measure that assigns a fitness value to each audio segment. This measure
simultaneously captures two aspects. First, it indicates how well a given segment
explains other related segments, and second, it indicates how much of the overall
music recording is covered by all these related segments. The audio thumbnail is
then defined to be the segment of maximal fitness. In the computation of the fitness
measure, one important concept is to avoid hard decisions and error-prone steps in
an early stage of the algorithmic pipeline. To this end, an optimization scheme is
applied for jointly performing path extraction and grouping—two error-prone steps
that are often performed successively. Furthermore, we also have a look at an effi-
cient algorithm based on dynamic programming for computing the fitness measure.
In Section 4.3.2, we then introduce the concept of a scape plot representation that
shows the fitness values over all possible audio segments. A visualization of this fit-
ness scape plot yields a compact high-level view on the structural properties of the
entire music recording. Finally, in Section 4.3.3, we discuss several explicit exam-
ples to indicate the potential as well as the limitations of the presented thumbnailing
approach.

4.3.1 Fitness Measure

The idea of the fitness measure to be introduced is to simultaneously establish
all relations between a given segment and its repetitions. To this end, a self-
similarity matrix is required as described at the end of Section 4.2.2 and illustrated

200 4 Music Structure Analysis

(a) (b)

(c) (d)

Time (seconds) Time (seconds)

Ti
m

e
(s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

Fig. 4.16 SSM of our Brahms example with various paths over the segment α = [50 : 100]. The
induced segments are indicated on the vertical axis. (a) SSM. (b) Paths forming a path family.
(c) Paths not forming a path family (induced segments overlap). (d) Paths forming an optimal path
family.

by Figure 4.15f. Our Brahms example (see Figure 4.16) will serve as a running ex-
ample for the subsequent steps. The following description of the fitness measure
is generic in the sense that it works with general self-similarity matrices that only
fulfill some basic normalization properties. From a technical point of view, only the
properties

S(n,m)≤ 1 (4.18)

for all n,m ∈ [1 : N] and
S(n,n) = 1 (4.19)

for all n ∈ [1 : N] are required.

4.3 Audio Thumbnailing 201

4.3.1.1 Path Family

Recall from Section 4.2.1 that a path P over a given segment α = [s : t] ⊆ [1 : N]
encodes a relation between α = π2(P) and the induced segment π1(P). The score
σ(P) defined in (4.8) yields a quality measure for this relation. Extending the notion
of a path, we now introduce the concept of a path family, which allows us to capture
relations between α and several other segments in the music recording. To this end,
we first define a segment family of size K to be a set

A := {α1,α2, . . . ,αK} (4.20)

of pairwise disjoint segments, i.e., αk ∩α j = /0 for all k, j ∈ [1 : K] with k 6= j. Let

γ(A) :=
K

∑
k=1
|αk| (4.21)

be the coverage of A (see (4.4)). A path family over α is defined to be a set

P := {P1,P2, . . . ,PK} (4.22)

of size K, consisting of paths Pk over α for k ∈ [1 : K]. Furthermore, as an addi-
tional condition, we require that the induced segments are pairwise disjoint. In other
words, the set {π1(P1), . . . ,π1(PK)} is required to be a segment family. This defi-
nition is illustrated by Figure 4.16b, which shows a path family over the segment
α = [50 : 100] consisting of K = 3 paths P1, P2, and P3. The induced segments are
π1(P1) = [10 : 35], π1(P2) = [50 : 100], and π1(P3) = [136 : 174], which are pairwise
disjoint. In contrast, the example shown in Figure 4.16c does not yield a path family,
since the disjointness condition of the induced segments is violated. Extending the
definition in (4.8), the score σ(P) of the path family P is defined as

σ(P) :=
K

∑
k=1

σ(Pk). (4.23)

As indicated by Figure 4.16, there are in general a large number of possible path
families over α . Among these path families, let

P∗ := argmax
P

σ(P) (4.24)

denote an optimal path family of maximal score (see Figure 4.16d for an example).
In the following, the family consisting of the segments induced by the paths of P∗
will be referred to as the induced segment family (of P∗ or of α). Intuitively, the
induced segment family contains the (nonoverlapping) repetitions of the segment α .
Next, we show how an optimal path family P∗ can be computed efficiently using
dynamic programming and then explain how the fitness measure is derived from the
score σ(P∗) and the induced segment family of P∗.

202 4 Music Structure Analysis

4.3.1.2 Optimization Scheme

We now describe an efficient algorithm for computing an optimal path family for
a given segment in a running time that is linear in the product of the length of
the segment and the length of the entire music recording. The algorithm is based
on a modification of dynamic time warping (DTW) as discussed in Section 3.2.
Recall that, given two sequences, say X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM),
the objective of DTW is to compute an optimal path that globally aligns X and Y ,
where the first elements as well as the last elements of the two sequences are to be
aligned. The step size condition as specified by the set Σ constrains the slope of the
path. In particular, using Σ = {(2,1),(1,2),(1,1)}, as specified in (3.30) and (4.6),
each element of X is aligned to at most one element of Y (and vice versa).

Now, when computing an optimal path family over a given segment α = [s : t]⊆
[1 : N], the role of Y is taken over by the segment α , and the conditions change
compared with classical DTW. In particular, α can be simultaneously aligned to
several (nonoverlapping) subsequences of X . However, for each such subsequence,
the entire segment α is to be aligned. Furthermore, certain sections of X may be
left completely unconsidered in the alignment. Finally, instead of finding a cost-
minimizing warping path, we are now looking for a score-maximizing path family.
To account for the new constraints, we need to introduce additional steps that allow
us to skip certain sections of X and to jump from the end to the beginning of the
given segment α . The following procedure is also illustrated by Figure 4.17.

First, considering paths over the segment α = [s : t] with M := |α|, we only con-
sider the N ×M submatrix Sα , which consists of the columns s to t of the self-
similarity matrix S. Next, we specify an accumulated score matrix D ∈RN,M+1 by a
recursive procedure (similar to (3.25) for the accumulated cost matrix). The rows of
D are indexed by [1 : N], and the columns are indexed by [0 : M], where the role of
the column indexed by m = 0 is explained later. For a given cell (n,m), we consider
a set of predecessors denoted by Φ(n,m), which contains all cells that may precede
(n,m) in a valid path family. For n ∈ [2 : N] and m ∈ [2 : M] this set is given by

Φ(n,m) = {(n− i,m− j) | (i, j) ∈ Σ}∩ [1 : N]×[1 : M], (4.25)

and the accumulated score matrix is defined by

D(n,m) = Sα(n,m)+max{D(i, j) | (i, j) ∈Φ(n,m)}. (4.26)

So far, this is similar to the recursion of the DTW algorithm summarized in
Table 3.2. The constraint conditions and additional steps are realized by the defini-
tion of the values of D for the remaining index pairs (n,m) with n = 1 or m ∈ {0,1}.

As said before, the first column of D indexed by m = 0 plays a special role. We
define this first column recursively by D(1,0) = 0 and

D(n,0) = max{D(n−1,0),D(n−1,M)} (4.27)

4.3 Audio Thumbnailing 203

0 1 2 … M

1

2

3

…
N

N-1

α
0 1 M50 100

α
50 100

αα

(a) (b) (c) (d)

Fig. 4.17 (a) Illustration of the various predecessors in computing the accumulated score matrix.
(b) Submatrix Sα with α = [50 : 100] of the SSM shown in Figure 4.16a. (c) Accumulated score
matrix D. (d) Optimal path family.

for n ∈ [2 : N]. The first term D(n− 1,0) enables the algorithm to move upwards
without accumulating any (possibly negative) score, thus realizing the condition
that sections of X may be skipped without penalty (negative score). The second
term D(n−1,M) closes up a path (ensuring that the entire segment α is aligned to a
subsequence of X), while ensuring that the next possible segment does not overlap
with the previous segment. Intuitively, the column indexed by m= 0 may be thought
of as a kind of “elevator” column that makes it possible to skip arbitrary sections of
X and to initialize new path components.

Next, we define the second column of D indexed by m = 1 by

D(n,1) = D(n,0)+Sα(n,1) (4.28)

for n ∈ [1 : N]. This definition makes it possible to start a new path component at
cell (n,1) coming from any position of the “elevator” column. Finally, to complete
the initialization, we set D(1,m) = −∞ for m ∈ [2 : M]. This forces the first path to
come from the elevator column, thus starting with the first element of α . The score
of an optimal path family is then given by

σ(P∗) = max{D(N,0),D(N,M)}. (4.29)

The first term D(N,0) reflects the case that the final section of X may be skipped,
and the second term D(N,M) ensures that in the other case the entire segment α is
aligned to a suffix of X . The associated optimal path family P∗ can be constructed
from D using a backtracking algorithm as in the DTW algorithm (see Table 3.2). As
the only modification, the cells of Sα that belong to the first auxiliary column (in-

204 4 Music Structure Analysis

dexed by m = 0) are to be omitted to obtain the final path family. In Exercise 4.6, we
show that the recursive procedure for computing D has a computational complexity
(in terms of memory requirements and running time) of O(MN).

4.3.1.3 Definition of Fitness Measure

We have seen how to efficiently compute for a given segment α an optimal path
family P∗ = {P1, . . . ,PK}, which reveals the repetition relations of α . In view of
our intended fitness measure, one first idea is to simply use the total score σ(P∗) as
defined in (4.23) as the fitness value for α . However, this measure does not yet have
the desired properties, since it not only depends on the lengths of α and the paths,
but also captures trivial self-explanations. For example, the segment α = [1 : N]
explains the entire sequence X perfectly, which is a trivial fact. More generally, each
segment α explains itself perfectly, information that is encoded by the main diagonal
of a self-similarity matrix. Therefore, one idea in defining the fitness measure is
to disregard such trivial self-explanations. Assuming the normalization properties
(4.18) and (4.19) of the underlying self-similarity matrix S, this step can be done by
simply subtracting the length |α| from the score σ(P∗). For example, in the case
α = [1 : N] this leads to the value zero. Furthermore, we normalize the score with
regard to the lengths Lk := |Pk| of the paths Pk contained in the optimal path family
P∗. This yields the normalized score σ̄(α) defined by

σ̄(α) :=
σ(P∗)−|α|

∑
K
k=1 Lk

. (4.30)

From the assumption S(n,n) = 1, we obtain σ̄(α) ≥ 0 (see Exercise 4.7). Further-
more, note that, when using Σ = {(1,2),(2,1),(1,1)}, we get ∑k Lk ≤ N. This to-
gether with S(n,m) ≤ 1 implies the property σ̄(α) ≤ 1− |α|/N. Intuitively, the
value σ̄(α) expresses the average score of the optimal path family P∗ (minus a
proportion for the self-explanation).

The normalized score indicates how well a given segment explains other seg-
ments, where the normalization eliminates the influence of segment lengths. This
makes the normalized score a fair measure when comparing segments of differ-
ent lengths. Besides repetitiveness, another issue is how much of the underlying
music recording is covered by the thumbnail and its related segments. To cap-
ture this property, we define a coverage measure for a given α . To this end, let
A∗ := {π1(P1), . . . ,π1(PK)} be the segment family induced by the optimal path fam-
ily P∗, and let γ(A∗) be its coverage as defined in (4.21). Similar to the normalized
score, we define the normalized coverage γ̄(α) by

γ̄(α) :=
γ(A∗)−|α|

N
. (4.31)

As above, the length |α| is subtracted to compensate for trivial coverage. Obviously,
one has γ̄(α) ≤ 1− |α|/N. In other words, the value γ̄(α) expresses the ratio be-

4.3 Audio Thumbnailing 205

α

(a)

A2

A1

A3

A4

A5

A6

A1 A2 A3 A4 A5 A6

α

(b)

A2

A1

A3

A4

A5

A6

A1 A2 A3 A4 A5 A6

α

(c)

A2

A1

A3

A4

A5

A6

A1 A2 A3 A4 A5 A6

Fig. 4.18 Idealized SSM corresponding to the musical structure A1A2 . . .A6 with optimal path
families for various segments α corresponding to (a) A1, (b) A1A2, and (c) A1A2A3.

tween the union of the induced segments of α and the total length of the original
recording (minus a proportion for the self-explanation).

Having a high average score and a high coverage are both desirable properties for
defining a thumbnail segment. However, these two properties are sometimes hard to
satisfy at the same time. Shorter segments often have a higher average score, but a
lower coverage, whereas longer segments tend to have a lower average score, but a
higher coverage. To balance out these two trends, we combine the score and cov-
erage measure by taking a suitable average. There are many ways for combining
two values including the arithmetic, the geometric, and the harmonic mean. In the
following, we use the harmonic mean, which (compared with the arithmetic mean)
tends towards the smaller element and mitigates the impact of large differences be-
tween the two numbers to be averaged (see Exercise 4.8). We define the fitness
ϕ(α) of the segment α to be the harmonic mean

ϕ(α) := 2 · σ̄(α) · γ̄(α)

σ̄(α)+ γ̄(α)
(4.32)

between the normalized score and normalized coverage. The fitness measure inher-
its the property ϕ(α) ≤ 1− |α|/N from σ̄(α) and γ̄(α). The effect of combining
score and coverage is illustrated by Figure 4.21 and will be further discussed in
Section 4.3.2.

As an example, Figure 4.18 shows an idealized SSM of a piece having the mu-
sical structure A1A2 . . .A6, where we assume that each part is played in exactly the
same way. Furthermore, we assume that the SSM has the value one on the indicated
paths and otherwise the value zero. Let us first consider the segment α correspond-
ing to A1. The optimal path family consists of six paths over α (see Figure 4.18a).
Since trivial self-explanations are left unconsidered, one obtains a normalized score
of σ̄(α) = 5/6 and a normalized coverage of γ̄(α) = 5/6, which results in a fitness
of ϕ(α) = 5/6. Similarly, one obtains ϕ(α) = 2/3 for the segment α corresponding
to A1A2 (Figure 4.18b), and ϕ(α)= 1/2 for the segment α corresponding to A1A2A3
(Figure 4.18c). Obviously, the fitness is ϕ(α) = 0 in case α corresponds to the entire
music recording. In conclusion, the fitness measure allows for comparing segments

206 4 Music Structure Analysis

of different length while slightly favoring shorter segments (since self-explanations
are neglected). Further examples are discussed in Section 4.3.3 (see Exercise 4.9).

4.3.1.4 Thumbnail Selection

Based on the fitness measure, we define the audio thumbnail to be the segment of
maximal fitness:

α
∗ := argmax

α

ϕ(α). (4.33)

By construction of the fitness measure, this segment has nonoverlapping repetitions
that cover a possibly large portion of the audio recording. Furthermore, these repe-
titions are given by the induced segments obtained by the optimal path family of α∗

yielding a segmentation of the audio recording into pairwise disjoint segments.
To account for prior knowledge and to remove spurious estimates, one can im-

pose additional requirements on the thumbnail solution. In particular, introducing a
lower bound θ for the minimal possible thumbnail length allows us to reduce the ef-
fect of noise scattered in the underlying self-similarity matrix. Extending the above
definition, we define

α
∗
θ := argmax

α,|α|≥θ

ϕ(α). (4.34)

In the next sections, we discuss and illustrate the properties of the fitness measure
and the thumbnailing procedure in more detail.

4.3.2 Scape Plot Representation

The fitness measure assigns to each possible segment a fitness value that expresses
a certain property. We now introduce a representation by which this segment-
dependent property can be visualized in a compact and hierarchical way. Recall
that a segment α = [s : t]⊆ [1 : N] is uniquely determined by its starting point s and
its end point t. Since any two numbers s, t ∈ [1 : N] with s≤ t define a segment, there
are (N+1)N/2 different segments (see Exercise 4.10). Now, instead of considering
start and end points, each segment can also be uniquely described by its center

c(α) := (s+ t)/2 (4.35)

and its length |α|. Using the center to parameterize a horizontal axis and the length
to parameterize the height, each segment can be represented by a point in a triangular
representation (see Figure 4.19). This way, the set of segments are ordered from
bottom to top in a hierarchical way according to their length. In particular, the top of
this triangle corresponds to the unique segment of maximal length N and the bottom
points of the triangle correspond to the N segments of length one (where the start
point coincides with the end point). Furthermore, all segments α ′ ⊆ α contained in

4.3 Audio Thumbnailing 207

Segment center

S
eg

m
en

t l
en

gt
h

Segment length

Segment center

(a) (b)

Fig. 4.19 Definition of scape plot representation. (a) Schematic SSM with segment. (b) Schematic
scape plot with segment.

a given segment α correspond to points in the triangular representation that lie in a
subtriangle below the point given by α (see Figure 4.19b and Exercise 4.12).

The triangular representation can be used as a grid for indicating the fitness val-
ues of all segments, which we also refer to as a scape plot representation of the
fitness measure. More precisely, we define a scape plot ∆ by setting

∆(c(α), |α|) := ϕ(α) (4.36)

for segment α . For our Brahms example, Figure 4.20 shows a scape plot represen-
tation in a color-coded form. Note that the maximal entry of ∆ corresponds to the
maximal fitness value, thus defining the thumbnail α∗.

4.3.3 Discussion of Properties

We now discuss some examples to illustrate the properties of the introduced fit-
ness measure, the scape plot representation, and the induced segmentation. In our
first example, we continue with our Brahms example. Recall that this piece has
the musical structure A1A2B1B2CA3B3B4D (see Figure 4.5). Figure 4.16a shows a
self-similarity matrix obtained from a given audio recording of this piece. Based
on this SSM, the fitness measure is evaluated for all segments. The resulting fit-
ness scape plot, which is shown in Figure 4.20a, reflects the musical structure in a
hierarchical way. First note that the fitness-maximizing segment is α∗ = [68 : 89].
The coordinates in the scape plot are specified by the center c(α) = 78.5 and the
length |α| = 22. Musically, this segment corresponds to the B2-part, which is in-
deed the most repetitive part. The induced segment family consists of the four B-

208 4 Music Structure Analysis

Segment center (seconds)

S
eg

m
en

t l
en

gt
h

(s
ec

on
ds

)

Fi
tn

es
s

(a)

(c) (d)(b)(e)

(c)

(d) (e)

(b)

Time (seconds) Time (seconds)

Ti
m

e
(s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

Time (seconds) Time (seconds)

Ti
m

e
(s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

Fig. 4.20 Scape plot representation of fitness measure as well as different optimal path families
and induced segment families over different segments α for our Brahms example. (a) Fitness scape
plot. (b) α = α∗ = [68 : 89] (the thumbnail segment of maximal fitness corresponding to B2).
(c) α = [41 : 67] (corresponding to B1). (d) α = [131 : 150] (corresponding to A3). (e) α = [21 : 89]
(corresponding to A1B1B2).

4.3 Audio Thumbnailing 209

(a) (b)

(c) (d)

Segment center (seconds)

S
eg

m
en

t l
en

gt
h

(s
ec

on
ds

)

Segment center (seconds)

Segment center (seconds)

Segment center (seconds)

S
eg

m
en

t l
en

gt
h

(s
ec

on
ds

)

S
eg

m
en

t l
en

gt
h

(s
ec

on
ds

)
S

eg
m

en
t l

en
gt

h
(s

ec
on

ds
)

Fig. 4.21 Various scape plot representations. (a) Score. (b) Normalized score. (c) Normalized
coverage. (d) Fitness measure (harmonic mean of (b) and (c)).

part segments (see Figure 4.20b). Note that all four B-part segments have almost
the same fitness and lead to more or less the same segment family. For example,
Figure 4.20c shows the induced segment family obtained from the B1-part segment.
This reflects the fact that each of the B-part segments may serve equally well as the
thumbnail.

Recall that the introduced fitness measure slightly favors shorter segments (see
Exercise 4.9). Therefore, since in this recording the B2-part is played faster than the
B1-part, the fitness measure favors the B2-part segment over the B1-part segment.
The scape plot also reveals other local maxima of musical relevance. For example,
the local maximum corresponding to segment α = [131 : 150] (c(α) = 140.5, |α|=
20) corresponds to the A3-part, and the induced segment family reveals the three
A-parts (see Figure 4.20d). Furthermore, the local maximum assumed for segment
α = [21 : 89] (c(α) = 55, |α| = 69) corresponds to A2B1B2, which is repeated as
A3B3B4 (see Figure 4.20e). Again, note that, because of the normalization where
self-explanations are disregarded, the fitness of the rather long segment α = [21 : 89]
is well below that of the thumbnail α∗ = [68 : 89].

210 4 Music Structure Analysis

(b)

(c) (d)

(a)

Time (seconds) Time (seconds)

Ti
m

e
(s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

Time (seconds)

Ti
m

e
(s

ec
on

ds
)

S
eg

m
en

t l
en

gt
h

(s
ec

on
ds

)

Segment center (seconds)

(d) (b)(c)

Fig. 4.22 Various optimal path families and induced segment families over different segments α

for the Beatles song “Twist and Shout” having the musical structure IV1V2B1V3B2O. (a) Fitness
scape plot. (b) α = α∗ = [127 : 130]. (c) α = α∗

θ
= [38 : 65] using θ = 10 (corresponding to V2).

(d) α = α∗
θ
= [97 : 145] using θ = 40 (corresponding to V3B2).

Next, we illustrate that in the definition (4.32) of the fitness measure the combi-
nation of the normalized score (4.30) and coverage (4.31) is of crucial importance.
Figure 4.21b shows the scape plot when only using the normalized score. Since this
measure expresses the average score of a path family without expressing how much
of the audio material is actually covered, many of the small segments have a rel-
atively high score. Using such a measure would typically result in false-positive
segments of small length. In contrast, using only the normalized coverage would
typically favor longer segments (see Figure 4.21c). The corresponding path fami-
lies often contain components of rather low overall score (just above zero), which
may result in rather weak repetitions. By combining score and coverage, the fit-
ness measure balances out the two conflicting principles of having strong repetitions
(high score) and of explaining possibly large portions of the recording (high cov-
erage). Finally, we illustrate the importance of the normalization step by looking at
the score σ(P∗) of the optimizing path family P∗ over a segment α (see (4.23)).
Figure 4.21d shows the resulting scape plot representation. Without normalization,

4.4 Novelty-Based Segmentation 211

longer segments typically dominate the shorter segments, with the entire recording
having maximal score.

As a second example, Figure 4.22 shows the scape plot and various induced seg-
ment families for the Beatles song “Twist and Shout.” This song has the musical
structure IV1V2B1V3B2O consisting of a short intro (I-part), three verses (V -part),
two bridges (B-part), and an outro (O-part). Interestingly, the fitness-maximizing
segment α∗ = [127 : 130] is very short and leads to a large number of spurious in-
duced segments (see Figure 4.22b). The reason is that the song contains a short
harmonic phrase, a so-called riff, which is repeated over and over again. As a con-
sequence, the self-similarity matrix contains many repeated spurious path fragments
which, as a whole family, lead to a high score as well as to a high coverage. To cir-
cumvent such problems, one can consider the segment α∗

θ
as defined in (4.34) to

enforce a minimal length for the thumbnail. In our example, setting θ = 10 (given
in seconds) one obtains the segment α∗

θ
= [38 : 65], which corresponds to the verse

V2 (see Figure 4.22c). This indeed yields a musically meaningful thumbnail. By fur-
ther increasing the lower bound, one obtains superordinate repeating parts such as
α∗

θ
= [97 : 145] corresponding to V3B2 (when using θ = 40) (see Figure 4.22d).

4.4 Novelty-Based Segmentation

While the audio thumbnailing approach described in the previous section was based
on the principle of repetition, we now discuss some segmentation procedures that are
based on the principle of novelty. Recall from Section 4.1.1 that segment boundaries
are often accompanied by a change in instrumentation, dynamics, harmony, tempo,
or some other characteristics. It is the objective of novelty-based structure analysis
to locate points in time where such musical changes occur, thus marking the tran-
sition between two subsequent structural parts. There are numerous approaches for
novelty detection described in the literature. In the following, we present the main
ideas of two of these approaches while introducing some general concepts that are
also useful for the analysis of general time series. We start with a classical procedure
where local changes are detected by correlating a checkerboard-like kernel along
the main diagonal of a self-similarity matrix (Section 4.4.1). This procedure works
particularly well when the underlying SSM has block-like structures. Then we in-
troduce an approach for novelty detection that is based on structure features that
encapsulate both local and global properties of the audio recording (Section 4.4.2).
This procedure also highlights how various segmentation principles can be applied
jointly within a single segmentation framework.

212 4 Music Structure Analysis

(b)

(c) (d)

(a)

Fig. 4.23 Checkerboard kernel functions of size M = 21 (L = 10). (a,b) Box-like checkerboard
kernel and 3D plot. (c,d) Gaussian checkerboard kernel and 3D plot.

4.4.1 Novelty Detection

As we have seen in Section 4.2.1, a self-similarity matrix reveals block-like struc-
tures in the case that the underlying feature sequence stays somewhat constant over
the duration of an entire section. Often such a homogeneous segment is followed
by another homogeneous segment that stands in contrast to the previous one. For
example, a section played by strings may be followed by a section played by brass.
Or there may be two contrasting sections each being homogeneous with respect to
harmony, where the boundary between these sections is characterized by a change
in the musical key. We have encountered such a case in our Brahms example, where
one has homogeneous A-part segments in G minor and homogeneous C-part seg-
ments in G major (Figure 4.5).

One idea in novelty detection is to identify the boundary between two homoge-
neous but contrasting segments by correlating a checkerboard-like kernel function
along the main diagonal of the SSM. This yields a novelty function. The peaks in
this function indicate instances where significant changes occur in the audio signal.
For example, using MFCCs, these peaks are good indicators for changes in timbre
or instrumentation. Similarly, using chroma-based features, one obtains indicators
for changes in harmony.

We now explain this procedure in more detail. As before, let X = (x1,x2, . . . ,xN)
be a feature sequence and S a self-similarity matrix of size N ×N derived from
X . Let us first consider an audio recording that consists of two homogeneous but
contrasting sections. When visualized, the resulting SSM looks like a 2×2 checker-

4.4 Novelty-Based Segmentation 213

board as shown in Figure 4.23a. The two dark blocks on the main diagonal corre-
spond to the regions of high similarity within the two sections. In contrast, the light
regions outside these blocks express that there is a low cross-similarity between the
sections. Thus, to find the boundary between the two sections one needs to identify
the crux of the checkerboard. This can be done by correlating S with a kernel that
itself looks like a checkerboard. The simplest such kernel is the (2×2)-unit kernel
defined by

K =

[
−1 1

1 −1

]
=

[
0 1
1 0

]
−
[

1 0
0 1

]
. (4.37)

This kernel can be written as the difference between a “coherence” and an “anti-
coherence” kernel. The first kernel measures the self-similarity on either side of the
center point and will be high when each of the two regions is homogeneous. The
second kernel measures the cross-similarity between the two regions and will be
high when there is little difference across the center point. The difference between
the two values estimates the novelty of the feature sequence at the center point. The
novelty is high when the two regions are self-similar but different from each other.

In audio structure analysis, where one is typically interested in changes on a
larger time scale, kernels of larger size are used. Furthermore, since in this book we
adopt a centered view (where a physical time position is associated to the center of a
window or kernel), we assume that the size of the kernel is odd given by M = 2L+1
for some L ∈ N. A box-like checkerboard kernel KBox of size M is an (M×M)
matrix, which is indexed by [−L : L]× [−L : L]. The matrix is defined by

KBox = sgn(k) · sgn(`), (4.38)

where k, ` ∈ [−L : L] and “sgn” is the sign function (being−1 for negative numbers,
0 for zero, and 1 for positive numbers). For example, in the case L = 2, one obtains

KBox =

−1 −1 0 1 1
−1 −1 0 1 1

0 0 0 0 0
1 1 0 −1 −1
1 1 0 −1 −1

 (4.39)

(see Figure 4.23a). Note that the zero row and the zero column in the middle have
been introduced more for theoretical reasons to ensure the symmetry of the kernel
matrix. The checkerboard kernel can be smoothed to avoid edge effects using win-
dows that taper towards zero at the edges. For this purpose, one may use a radially
symmetric Gaussian function φ : R2→ R defined by

φ(s, t) = exp(−ε
2(s2 + t2)), (4.40)

where the parameter ε > 0 allows for adjusting the degree of tapering. Then the
kernel KGauss tapered by the Gaussian function is given by pointwise multiplication:

KGauss(k, `) = φ(k, `) ·KBox(k, `), (4.41)

214 4 Music Structure Analysis

Fig. 4.24 Novelty func-
tion obtained by correlating
an SSM with a Gaussian
checkerboard kernel for a
recording of the Hungarian
Dance No. 5 by Johannes
Brahms. (a) SSM similar
to the one of Figure 4.10c.
(b) Manually generated anno-
tation of the musical structure.
(c) Novelty function.

(a)

(b)

(c)

Time (seconds)

k, ` ∈ [−L : L] (see Figure 4.23c). Finally, to compensate for the influence of the
actual kernel size and of the tapering, one may normalize the kernel. This can be
done by dividing the kernel by the sum over the absolute values of the kernel matrix:

KNorm(k, `) =
KGauss(k, `)

∑k,`∈[−L:L] |KGauss(k, `)|
. (4.42)

The normalization becomes important when combining and fusing novelty informa-
tion that is obtained from kernels of different size.

Now, to detect 2D corner points between adjoining blocks, the idea is to locally
compare the SSM with a suitable checkerboard kernel. To this end, we slide a suit-
able checkerboard kernel K along the main diagonal of the SSM and sum up the
element-wise product of K and S:

∆Kernel(n) := ∑
k,`∈[−L:L]

K(k, `)S(n+ k,n+ `) (4.43)

for n ∈ [L+1 : N−L]. Extending the matrix S on the boundaries by zero-padding
(i.e., by setting S(k, `) = 0 for (k, `) ∈ Z×Z \ [1 : N]× [1 : N]), one may assume
n ∈ [1 : N]. This defines a function ∆Kernel : [1 : N]→ R, also referred to as the nov-
elty function, which specifies for each index n ∈ [1 : N] of the feature sequence a
measure of novelty ∆Kernel(n). When the kernel K is positioned within a relatively
uniform region of S, the positive and negative values of the product tend to sum
to zero and ∆Kernel(n) becomes small. Conversely, when the kernel K is positioned
exactly at the crux of a checkerboard-like structure of S, the values of the product
are all positive and sum up to a large value ∆Kernel(n). Figure 4.24c shows a novelty
function for our Brahms example using a chroma-based self-similarity matrix. The
local maxima of the novelty function nicely indicate changes of harmony, which

4.4 Novelty-Based Segmentation 215

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Time (seconds) Time (seconds)

Fig. 4.25 Dependency of novelty functions on the feature representation and the kernel size.
(a) SSM from Figure 4.7d using tempo-based features. (b–d) Novelty functions derived from (a)
using a kernel of small/medium/large size. (e) SSM from Figure 4.7b using chroma-based features.
(f–h) Novelty functions derived from (e) using a kernel of small/medium/large size.

particularly occur at boundaries between segments corresponding to different musi-
cal parts.

The size of the kernel has a significant impact on the properties of the novelty
function. A small kernel may be suitable for detecting novelty on a short time scale,
whereas a large kernel is suited for detecting boundaries and transitions between
coarse structural sections. The suitability of a given kernel very much depends on
the respective application and also on the properties of the underlying self-similarity
matrix. This fact is illustrated by Figure 4.25, which shows novelty functions using
different sizes and SSMs based on different features. Using a small kernel size may
lead to a rather noisy novelty function with many spurious peaks. This particularly
holds when the underlying SSM contains not only blocks but also path-like struc-
tures as is the case with the SSM shown in Figure 4.25e. Using a larger kernel
averages out local fluctuations and results in a smoother novelty function. Note that
a similar effect may be achieved by smoothing the SSM, which often leads to an en-
hancement of the block and an attenuation of the path structure. This effect becomes
evident when comparing Figure 4.24 and Figure 4.25e.

In conclusion, the local maxima or peaks of a novelty function correspond to
changes in the audio recording. These points often serve as good candidates for
boundaries of neighboring segments that correspond to contrasting musical parts. In

216 4 Music Structure Analysis

practice, there are many ways for computing novelty functions and for finding the
relevant peaks. Besides the size of the kernel, a novelty function crucially depends
on the characteristics of the underlying self-similarity matrix. In particular, the pro-
posed novelty detection approach is only meaningful when the SSM has block-like
structures, which are important in homogeneity-based structure analysis. Moreover,
the peak selection strategy is also a delicate step that may have a substantial influ-
ence on the quality of the final result. Often, adaptive thresholding strategies where
a peak is only selected when its value exceeds a local average of the novelty func-
tion are applied. To further reduce the number of spurious peaks, another strategy
is to impose a constraint on the minimal distance between two subsequent peak
positions.

In the following section, we describe a different approach for novelty detection,
which makes it possible to identify structural changes as occurring in repetition-
based structure analysis.

4.4.2 Structure Features

Most approaches for novelty detection are performed on the basis of features that
capture local characteristics of the given music signal. For example, MFCC-based
or chroma-based features capture local characteristics related to timbre or harmony,
respectively. Then, a measure of novelty is computed by applying a local kernel
or a type of derivative operator based on such feature representations. Computing
local differences based on localized features makes such approaches vulnerable to
more or less random noise-like fluctuations. We now describe a novelty detection
procedure that incorporates global structural properties that go beyond local musical
aspects such as harmony or timbre. To this end, we introduce structure features on
the basis of which various structure analysis principles can be integrated within a
unifying framework. The idea behind structure features is to jointly consider local
and global aspects by measuring for each frame of a given feature sequence the
relations to all other frames of the same feature sequence. This yields a frame-wise,
i.e., local, feature representation that captures global structural characteristics of a
feature sequence. The resulting structure features can then be used in combination
with standard novelty detection procedures.

We start by introducing the concept of time-lag matrices, which is the main tech-
nical ingredient for defining the structure features. Let S be a self-similarity matrix
derived from a feature sequence X = (x1,x2, . . . ,xN). Recall that two repeating seg-
ments, say α1 = [s1 : t1] and α2 = [s2 : t2], are revealed by a path of high similarity
in S starting at (s1,s2) and ending at (t1, t2). Furthermore, if there is no relative
tempo difference between the two segments, then the path runs exactly parallel to
the main diagonal. One may also express this property by saying that segment α1
is repeated after some time lag corresponding to ` = s2− s1 frames. This observa-
tion leads us to the notion of a time-lag representation of an SSM, where one time
axis is replaced by a lag axis. To simplify notation, we assume in the following that

4.4 Novelty-Based Segmentation 217

A1 B1 A2 B2 B3 A3

B1

A1

A2

B2

B3

A3

A1 B1 A2 B2 B3 A3

Time

Time

Ti
m

e

La
g

(p
os

iti
ve

)

(a) (b)

A1 B1 A2 B2 B3 A3

Time

La
g Lag

(c)

La
g

(n
eg

at
iv

e)

Fig. 4.26 (a) Self-similarity matrix S. (b) Time-lag representation L. (c) Cyclic time-lag repre-
sentation of L◦.

the frames are indexed starting with the index n = 0. Thus, X = (x0,x1, . . . ,xN−1)
and the self-similarity matrix S is indexed by [0 : N−1]× [0 : N−1]. The time-lag
representation of S is defined by

L(`,n) = S(n+ `,n) (4.44)

for n ∈ [0 : N−1] and ` ∈ [−n : N−1−n]. Note that the range for the lag parameter
` depends on the time parameter n. The lag index must be chosen in such a way that
the sum n+` lies in the range [0 : N−1]. For example, for time index n = 0 one can
only look into the future with ` ∈ [0 : N−1], whereas for time index n = N−1 one
can only look into the past with `∈ [−N +1 : 0]. As an example, Figure 4.26a shows
a self-similarity matrix S and Figure 4.26b its time-lag representation L, which is
obtained by shearing the original matrix parallel to the horizontal axis. As a result,
lines that are parallel to the main diagonal in S become horizontal lines in L. In other
words, diagonal structures are transformed into horizontal structures. To simplify
notation, we also introduce the circular time-lag representation L◦ by defining

L◦(`,n) = S((n+ `) mod N,n) (4.45)

218 4 Music Structure Analysis

for n ∈ [0 : N−1] and ` ∈ [0 : N−1]. As also illustrated by Figure 4.26c, a negative
time-lag parameter ` ∈ [−n :−1] as used in L is identified with `+N in L◦. Doing
so, the time-lag representation L◦ again becomes a matrix indexed by [0 : N−1]×
[0 : N−1] as for the matrix S.

What have we gained by considering a time-lag representation of a self-similarity
matrix? In the following, let S[n] denote the nth column of S for a given time frame
n ∈ [0 : N−1]. Recall that the vector S[n] ∈ RN reveals the kind of relations that
exist for time frame n. In the case that S[n](m) is large for some m ∈ [0 : N−1], then
time frame n is related to time frame m. In the case that the value is small, the two
frames are unrelated. In other words, S[n] reveals the global structural relations of
frame n. The same interpretation holds for the nth column of the time-lag matrix
L◦[n]. However, there is a crucial difference between S and L◦. In the case that two
subsequent frames n and n+ 1 have the same structural properties, the two vectors
S[n] and S[n+1] are cyclically shifted versions of each other, whereas the two vectors
L◦[n] and L◦[n+1] are identical.

Based on this observation, we define the structure features to be the columns
yn := L◦[n] ∈RN for L◦, n ∈ [0 : N−1]. By this process, we have converted the origi-
nal sequence X = (x0,x1, . . . ,xN−1) of features xn that capture local (acoustic, musi-
cal) characteristics into a sequence Y = (y0,y1, . . . ,yN−1) of features yn that capture
global (structural) characteristics. As a result, boundaries of the global structural
parts can be identified by looking for local changes in the feature sequence Y . There
are many ways to capture such local changes. A simple strategy is to compute the
difference between successive structure features based on a suitable distance func-
tion. For example, using the Euclidean norm of RN (see (2.38)), one obtains a nov-
elty function

∆Structure(n) := ||yn+1− yn||= ||L◦[n+1]−L◦[n]|| (4.46)

for n ∈ [0 : N−2]. Again, by zero-padding one may assume n ∈ [0 : N−1]. The
positions of local maxima or peaks of this function yield candidates for structural
boundaries. The overall procedure depends on many design choices and parameter
settings including the feature type used for the original sequence X or the way S
is computed. Also, in practice, one often uses more involved derivative operators
and applies suitable preprocessing steps (e.g., further enhancing the matrix L◦) and
postprocessing steps (e.g., normalizing the novelty function ∆Structure). Finally, as
already mentioned in Section 4.4.1, the peak selection strategy may have a crucial
influence on the final result.

We close this section by considering the example shown in Figure 4.27, which
illustrates the overall procedure for structure-based novelty detection. The underly-
ing piece of music is the Mazurka Op. 24, No. 1 by Frédéric Chopin, which has the
musical structure A1A2B1B2A3A4B3B4CA5A6. Figure 4.27a shows a path-enhanced
and binarized SSM computed from a chroma-based feature representation of an
audio recording. The resulting circular time-lag representation L◦ and novelty func-
tion ∆Structure are shown in Figure 4.27b and Figure 4.27c, respectively. Note that
the peak positions of ∆Structure coincide well with the (joint) start and end positions
of path components, which in turn concur with boundaries of the musical sections.

4.5 Evaluation 219

Time (seconds)

Ti
m

e

La
g

Time

(a) (b)

(c)

Fig. 4.27 Novelty-based segmentation using structure features for a recording of the Mazurka
Op. 24, No. 1 by Frédéric Chopin. (a) Path-enhanced and binarized self-similarity matrix S. (b) Cir-
cular time-lag representation L◦. (c) Novelty function ∆Structure.

The structure features work particularly well in this example because of two reasons.
First, there are many repeating parts, resulting in a rich path structure. Second, the
various repeating musical parts occur in different chronological orders, resulting in
characteristic path discontinuations that are captured well by the structure features;
That is, structure-based novelty detection does not work for a piece with musical
structure A1A2A3A4 or A1B1A2B2, but works well for a piece with musical structure
A1B1A2A3 or A1A2B1B2 (see Exercise 4.14).

4.5 Evaluation

We have described various procedures for extracting structural information from a
given music recording. However, we have not yet discussed the issue of measuring
how well a given procedure performs the task at hand. In this section, we address
the problem of automatically evaluating structure analysis algorithms and explain
why the evaluation itself constitutes a nontrivial task.

A general evaluation approach in structure analysis is to compare an estimated
result obtained by some automated procedure against some reference result. To re-
alize such a general approach, one needs to find answers to the following questions:
How is a structure analysis result actually modeled? How should the estimated re-
sult be compared against the reference result? Where does the reference result come
from and is it reliable? In particular the last question easily leads to philosophical

220 4 Music Structure Analysis

Fig. 4.28 Structure annota-
tion on various scales of the
Hungarian Dance No. 5 by
Johannes Brahms. A1 A2 B1 B2 C A3 B3 B4

a a a a b c b c d d e e e e a a b c b c

G minor G major G minor

considerations on the nature and meaning of musical structures. As we have already
discussed in Section 4.1 and illustrated by Figure 4.2, music structure analysis is
an ill-posed problem that depends on many different factors, not to mention the
musical and acoustic variations that occur in real-world music recordings. Since a
structure analysis result largely depends on the musical context and the considered
temporal level, even two human experts may disagree in their analysis of a given
piece of music. In the case of our Brahms example, as we have already discussed in
Section 4.1.2 and as illustrated by Figure 4.28, one expert may annotate the struc-
ture on a larger scale resulting in the musical structure A1A2B1B2CA3B3B4D, while
another expert may consider a smaller scale, where the parts are further subdivided.

For the moment, we do not dwell on the latter issue any further. Instead, we as-
sume that a valid reference structure annotation has been provided by a human ex-
pert, even though this is a simplistic and sometimes problematic assumption. Such
an annotation is also often referred to as ground truth. The objective of the au-
tomated procedure is to estimate a structure annotation that is as close to the ref-
erence as possible. After introducing some general notions (Section 4.5.1), we dis-
cuss some evaluation metrics often used for comparing structure analysis results
(Section 4.5.2).

4.5.1 Precision, Recall, F-Measure

Many evaluation measures are based on some notion of precision, recall, and F-
measure—a concept that has been borrowed from the fields of information retrieval
and pattern recognition. We now introduce this general concept in the context of
binary classification (see Figure 4.29 for an overview). First, let I be a finite set of
so-called items. For this set, one has a reference annotation that is the result of a
binary classification. Each item i ∈ I is assigned either a label ‘+’ (item is positive
or relevant) or a label ‘−’ (item is negative or not relevant). Let IRef

+ be the set
of positive items, and IRef

− be the set of negative items. Furthermore, one has an
automated procedure that estimates the annotation for each item. Let IEst

+ be the set
of items being estimated as positive, and IEst

− be the set of items being estimated
as negative. An item i ∈ IEst

+ estimated as positive is called a true positive (TP) if
it belongs to IRef

+ , i.e., if i ∈ IEst
+ ∩IRef

+ . Otherwise, if i ∈ IEst
+ ∩IRef

− , it is called a
false positive (FP). Similarly, an item i ∈ IEst

− estimated as negative is called a false
negative (FN) if it belongs to IRef

+ , and true negative (TN) otherwise.

4.5 Evaluation 221

Reference annotation
(“Ground truth”)

Positive Negative

Estimated
annotation

(“Algorithm”)

Positive True positive
(TP)

False positive
(FP) P

#TP
#TP	 	#FP

Negative False negative
(FN)

True negative
(TN)

R
#TP

#TP	 	#FN F
2PR
P	 	R

Fig. 4.29 Definition of precision, recall, and F-measure.

The precision P of the estimation is defined as the number of true positives di-
vided by the total number of items estimated as positive:

P =
|IEst

+ ∩IRef
+ |

|IEst
+ |

=
#TP

#TP+#FP
. (4.47)

In contrast, the recall R is defined as the number of true positives divided by the
total number of positive items:

R =
|IEst

+ ∩IRef
+ |

|IRef
+ |

=
#TP

#TP+#FN
. (4.48)

Note that both precision and recall have values in the interval [0,1]. A perfect pre-
cision P = 1 means that every item estimated as positive is indeed positive. In this
case, there is no false positive, but there may exist some false negatives. In contrast,
a perfect recall R = 1 means that every positive item was also estimated as positive.
In this case, there is no false negative, but there may exist some false positives. Only
in the case P = 1 and R = 1 does the estimated annotation coincide with the refer-
ence annotation. Precision and recall are often combined by taking their harmonic
mean to form a single measure, often referred to as the F-measure:

F =
2 ·P ·R
P+R

. (4.49)

The harmonic mean is further discussed in Exercise 4.8. One main property is that
F ∈ [0,1] with F = 1 if and only if P = 1 and R = 1.

4.5.2 Structure Annotations

With these formal definitions at hand, let us come back to the structure analysis
scenario. Since there are many different analysis tasks and aspects to be consid-

222 4 Music Structure Analysis

ered, it is not at all clear how a mathematical model for the analysis result has to be
specified. Let us start with the general task of deriving the musical structure from a
given audio recording. In the following, we consider the discrete-time case, where
the sampled time axis is indexed by [1 : N]. We call the result of a structure analysis
a structure annotation, which consists of a segmentation of the time axis together
with a labeling of the segments. The segmentation is modeled by a segment family
A= {α1,α2, . . . ,αK} of some size K as introduced in (4.20). Note that at this stage
we make the assumption that segments are disjoint. On the one hand, this is a conve-
nient restriction, which simplifies the comparison of different structure annotations.
On the other hand, this assumption may not always be appropriate. For example, it
does not allow to capture hierarchical and nested structures. For the labeling, let Λ

be a set of possible labels. For example, Λ may be the set {A,B,C, . . . ,a,b,c, . . .},
it may consist of a set of suitable strings such as {Chorus,Verse,Bridge, . . .}, or it
may simply be a subset of N. Then the labeling can be modeled by assigning to
each segment αk a label λk ∈ Λ , k ∈ [1 : K]. To simplify notation, we additionally
assume that the segment family covers the entire time axis (i.e.,

⋃K
k=1 αk = [1 : N])

so that each frame index [1 : N] is assigned to exactly one label. In Exercise 4.15,
we show that this assumption does not lead to any loss of generality.

There are many ways to compare an estimated structure annotation with a ref-
erence annotation and for deriving some kind of “success” measure. In its strictest
form, one could simply say that either the two annotations are identical (“success”)
or not (“fail”). In practice, however, such a binary measure is not very meaningful.
Instead, one requires measures that indicate the degree of similarity of two given
annotations and that is insensitive towards small differences in the annotations. For
example, such differences may be due to small shifts in segment boundaries or local
deviations in the labeling. Furthermore, even though two annotations may be based
on the same segmentation and the same grouping of segments, they may differ in
the naming of the labels. For example, in the reference annotation, segments may be
labeled by strings such as “verse” or “chorus” whereas in the estimated annotation
corresponding parts may be labeled by letters such as A or B. In many applications,
such a mismatch in the label naming is not considered to be a failure of the algo-
rithm. Having these issues in mind, we now discuss some evaluation measures in
more detail.

4.5.3 Labeling Evaluation

We start with some purely frame-based evaluation measures, which are referred
to as pairwise precision, recall, and F-measure. In these measures, the segment
boundaries are left unconsidered and only the labeling information is used. For a
given structure annotation, we define a label function ϕ : [1 : N]→Λ by setting

ϕ(n) := λk (4.50)

4.5 Evaluation 223

(a) (b) (c)

TP

FN

FP

m

n

Fig. 4.30 Illustration of pairwise precision, recall, and F-measure. (a) Positive items (indicated by
gray boxes) with regard to the reference annotation. (b) Positive items (indicated by gray boxes)
with regard to the estimated annotation. (c) True positive (TP), false positive (FP), and false nega-
tive (FN) items.

for n ∈ αk (assuming that the segment family covers the entire time axis). Let ϕRef

and ϕEst be the label functions for the reference and estimated structure annotation,
respectively. In order to become independent of the actual label naming, the main
idea is to not directly look at the labels, but to look for label co-occurrences. To this
end, we consider pairs of frames that are assigned to the same label. More precisely,
we define the set

I = {(n,m) ∈ [1 : N]× [1 : N] | m < n}, (4.51)

which serves as a set of items as described in Section 4.5.1. For the reference and
estimated annotations, we define the positive items by

IRef
+ = {(n,m) ∈ I | ϕRef(n) = ϕ

Ref(m)}, (4.52)

IEst
+ = {(n,m) ∈ I | ϕEst(n) = ϕ

Est(m)}, (4.53)

whereas IRef
− = I \IRef

+ and IEst
− = I \IEst

+ . In other words, an item (n,m) is con-
sidered to be positive with regard to an annotation if the frames n and m have the
same label. Now, the pairwise precision is defined to be the precision of this binary
classification scheme. Similarly, the pairwise recall is the recall and the pairwise
F-measure is the F-measure of this scheme.

The definitions are illustrated by Figure 4.30, where the sampled time interval
[1 : N] consists of N = 10 samples. The reference structure annotation consists of
three segments labeled with A, B, and A, respectively. As shown by Figure 4.30a, 24
out of the 45 items are positive with regard to the reference annotation. Similarly,
Figure 4.30b shows an estimated structure annotation and the resulting 13 positive
items. In Figure 4.30c, the true positives (#TP = 10), false positives (#FP = 3), and
false negatives (#FN = 14) are indicated. From this, one obtains

224 4 Music Structure Analysis

P = #TP/(#TP+#FP) = 10/13≈ 0.769, (4.54)
R = #TP/(#TP+#FN) = 10/24≈ 0.417, (4.55)
F = 2PR/(P+R)≈ 0.541. (4.56)

In this example, the precision of nearly 77% is relatively high, whereas the recall
of 42% is relatively low. The F-measure is between these two values with a bias
towards the smaller one. Further examples are discussed in the exercises.

4.5.4 Boundary Evaluation

The pairwise precision, recall, and F-measure are solely based on label information,
whereas segment boundaries are treated implicitly by the presence of label changes.
For other structure analysis tasks such as novelty-based segmentation, the precise
detection of boundaries is the focus. To evaluate such procedures, one measures
the deviation of the estimated segment boundaries from the boundaries of a refer-
ence annotation. To mathematically model this scenario, we introduce the notion of
a boundary annotation, which is given by a sequence B = (b1,b2, . . . ,bK) of in-
creasing indices bk ∈ [1 : N], k ∈ [1 : K]. For example, such a boundary annotation
may be derived from a structure annotation by taking the start and possibly the end
indices of the annotated segments. In the following, let BRef be the reference bound-
ary annotation and BEst the estimated boundary annotation. There are many ways to
compare BEst against BRef. For example, using I = [1 : N] as a set of items, one can
define IRef

+ := BRef and IEst
+ := BEst. From this, the precision, recall, and F-measure

can be computed in the usual way. In this case, an estimated boundary is considered
correct only if it agrees with a reference boundary.

For certain applications small deviations in the boundary positions are accept-
able. Therefore, one generalizes the previous measures by introducing a tolerance
parameter τ ≥ 0 for the maximal acceptable deviation. An estimated boundary
bEst ∈ BEst is then considered correct if it lies within the τ-neighborhood of a refer-
ence boundary bRef ∈ BRef:

|bEst−bRef| ≤ τ. (4.57)

In this case, the sets IRef
+ and IEst

+ can no longer be used for defining precision
and recall. Instead, we generalize the notions of true positives, false positives, and
false negatives. The true positives (TP) are defined to be the items bEst ∈ BEst that
are correct, and the false positives (FP) are the items bEst ∈ BEst that are not correct.
Furthermore, the false negatives (FN) are defined to be the items bRef ∈BRef with no
estimated item in a τ-neighborhood. Based on these definitions, one can compute
precision, recall, and F-measure from #TP, #FP, and #FN using the formulas of
Figure 4.29.

However, this generalization needs to be taken with care. Because of the tol-
erance parameter τ , several estimated boundaries may be contained in the τ-
neighborhood of a single reference boundary. Conversely, a single estimated bound-

4.5 Evaluation 225

TP

FN

FP

Positive

Tolerance

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4.31 Illustration of boundary evaluation. (a) Reference boundary annotation. (b) Estimated
boundary annotation. (c) Evaluation of (b) with regard to (a). (d) τ-Neighborhood of (a) using the
tolerance parameter τ = 1. (e) Evaluation of (b) with regard to (d). (f) τ-Neighborhood of (a) using
the tolerance parameter τ = 2. (g) Evaluation of (b) with regard to (f).

ary may be contained in the τ-neighborhood of several reference boundaries. As a
result, one may obtain a perfect F-measure even in the case that the sets BEst and BRef

contain a different number of boundaries. From a semantic point of view, this is not
meaningful. To avoid such anomalies, one may introduce an additional assumption
in the definition of a boundary annotation by requiring

|bk+1−bk|> 2τ (4.58)

for k ∈ [1 : N−1]. This is also a meaningful requirement from a musical point of
view: a musical section (determined by two subsequent boundaries) should be much
longer than the size of the tolerance parameter.

Figure 4.31 illustrates the boundary evaluation measures by means of a simple
example. Using the tolerance parameter τ = 0, one obtains #TP = 1, #FP = 3 , and
#FN = 2 (see Figure 4.31c). This yields P = 1/4, R = 1/3, and F = 2/7. In the
case τ = 1, one obtains #TP = 2, #FP = 2 , and #FN = 1, which results in P = 1/2,
R = 2/3, and F = 4/7 (see Figure 4.31e). Finally, when using τ = 2, one obtains
a perfect F-measure. However, in this case the condition (4.58) is violated and the
meaning of the evaluation measure is questionable.

4.5.5 Thumbnail Evaluation

As a third scenario, we now discuss some evaluation measures for audio thumbnail-
ing, which is a prominent subtask of general music structure analysis. In Section 4.3,
we introduced an automated procedure for identifying the most representative sec-
tion from a given audio recording. Mathematically, this section and its repetitions

226 4 Music Structure Analysis

Fig. 4.32 Thumbnail evalua-
tion. (a) Reference structure
annotation. (b) Reference
thumbnail family. (c) Esti-
mated thumbnail. (d) Result-
ing segment family.

I V1 C1 V2 C2 V3 O

V1 V2 V3

(a)

(b)

(c)

(d)

are modeled by a segment familyA= {α1,α2, . . . ,αK} of some size K (see (4.20)).
Each of the segments of this family may serve equally well as the thumbnail.

In the thumbnailing scenario, one does not need an entire structure annotation,
but only the label and the associated segment family that represents the thumbnail
and its repetitions. For example, for a popular song, the thumbnail may be the verse
part of the song so that the associated segment family would consist of all verse sec-
tions of the recording (see Figure 4.32b). As in the previous evaluation scenarios,
we assume that a suitable reference annotation is available. This annotation is given
in the form of a segment family of the audio thumbnail, which is denoted by ARef

and also referred to as the reference thumbnail family. Furthermore, let αEst be
the estimated thumbnail segment. Since every segment ARef can serve equally well
as the reference thumbnail, we consider the estimated thumbnail αEst to be correct
if it agrees (at least to a large degree) with one of these segments. Therefore, to mea-
sure how well the estimated thumbnail αEst corresponds to the reference thumbnail
family, we compute

Pα =
|αEst∩α|
|αEst|

, (4.59)

Rα =
|αEst∩α|
|α|

, (4.60)

Fα =
2Pα Rα

Pα +Rα
(4.61)

for each α ∈ ARef and define the thumbnail F-measure by

FThumb = max
{

Fα | α ∈ ARef}. (4.62)

In other words, the thumbnail F-measure expresses to what extent αEst maximally
agrees with one of the reference thumbnails contained in ARef.

As an example, Figure 4.32 shows a song having the musical structure
IV1C1V2C2V3O, where the verse part is considered to be the thumbnail. Hence, the
reference thumbnail family consists of the three segments corresponding to V1, V2,
and V3 (see Figure 4.32b). Figure 4.32c shows the estimated thumbnail segment
αEst. Since αEst has no overlap with the V1-part and V2-part segments, the corre-
sponding F-measures are zero. However, the F-measure between αEst and the V3-
part segment α is Fα = 0.8, thus FThumb = 0.8 follows. Even though not needed
for the evaluation, Figure 4.32d shows the segment family of the estimated thumb-

4.5 Evaluation 227

Fig. 4.33 Illustration of typ-
ical error sources in thumb-
nailing and music structure
analysis (see Figure 4.32 for
an explanation of the annota-
tions). (a) Confusion problem
for Beatles song “Martha
My Dear.” (b) Substructure
(oversegmentation) prob-
lem for Beatles song “While
My Guitar Gently Weeps.”
(c) Superordinate structure
(undersegmentation) problem
for Beatles song “For No
One.”

I V1 B1 B2 V2 B3 V3 O

V1 V2 C1 V3 V4 C3 V5 V6 C3 O

V1 V2 V3 V4 V5 V6

(a)

(b)

(c)

B1 B2 B3

I V1 B1 V2 V3 B2 V4 O

V1 V2 V3 V4

nail segment αEst, which is obtained when using the fitness-based thumbnailing
approach from Section 4.3. This family, which reveals all estimated repetitions of
αEst, contains four segments. In this example, it turns out that the intro (the section
labeled as I) is harmonically very similar to the three verse sections (labeled as V1,
V2, and V3).

We close this section by discussing some typical error sources in audio thumb-
nailing. As a first example, let us consider the Beatles song “Martha My Dear”
shown in Figure 4.33a. The annotated bridge segments were chosen as reference
thumbnail family, whereas the estimated thumbnail corresponds to a verse segment
(which is actually quite similar to the intro). For this song, the V -part and B-part
segments both appear three times and have roughly the same duration. As a result,
it is hard to decide whether to use the verse or the bridge for defining the reference
segment family.

A second problem occurs when the thumbnail has a substructure. For example, in
the Beatles song “While My Guitar Gently Weeps,” the verse has a substructure ba-
sically consisting of two repeating subparts (see Figure 4.33b). Therefore, a segment
that corresponds to the first or second half of the V -part may also serve as a mean-
ingful thumbnail. Such a segment was chosen by the automated procedure as the
estimated thumbnail. This is a typical example of a problem generally referred to as
oversegmentation, where meaningful annotations exist on various scales. We have
encountered this phenomenon already in our Brahms example shown in Figure 4.28.

Finally, as illustrated by the Beatles song “For No One” in Figure 4.33c, superor-
dinate repeating parts may also have a high fitness, thus being selected as estimated
thumbnails. In this example, the automated procedure identified the superordinate
structure VVC (consisting of two verses and a chorus section) as thumbnail. This
problem is generally referred to as undersegmentation, which is the counterpart to
oversegmentation.

These three examples are typical for the kind of problems one has to face when
dealing with ill-posed tasks such as music structure analysis. An automated proce-

228 4 Music Structure Analysis

dure may yield a result that does not coincide with a reference annotation, but is still
meaningful from a musical point of view. In such cases, it is less that the procedure
has failed and more that the problem is ambiguous.

4.6 Summary and Further Readings

In this chapter, we studied various related research problems commonly subsumed
under the name of music structure analysis. The general objective is to segment
an audio recording with regard to various musical aspects, for example, identify-
ing recurrent themes or detecting temporal boundaries between contrasting musical
parts. Being organized in a hierarchical way, structure in music arises from various
relationships between its basic constituent elements. The principles used to cre-
ate such relationships include repetition, contrast, variation, and homogeneity. As
a consequence, many different approaches to derive musical structures have been
developed (see [5, 25, 27] for an overview and further references). Following [27],
we distinguished between three different classes of methods. First, we looked at
repetition-based methods, which are used to identify recurring patterns. As an im-
portant application, we applied such methods in Section 4.3 for audio thumbnailing.
Second, we discussed novelty-based methods, which aim at detecting transitions and
points of novelty. In Section 4.4, we studied two such approaches for finding struc-
tural boundaries between musical parts. Third, we considered homogeneity-based
methods, which are used to determine passages that are consistent with respect to
some musical property. In all three cases, one has to account for different musical
dimensions such as melody, harmony, rhythm, or timbre [11].

In particular, the importance of repetitions in music has been emphasized in the
literature [15]. Repetition is closely related to notions of coherence, intelligibility,
and enjoyment in its perception, and studies show that, for a large variety of music,
more than 90% of all musical passages longer than a few seconds in duration are
repeated in some way or another at some point in the work [10]. One main challenge
in structure analysis is that the notion of repetition can be quite ambiguous. What
we refer to as repeating musical sections may include significant variations in the
musical content. The principle of variation, where motifs and parts are picked up
again in a modified or transformed form [13], is a central aspect of music. In this
chapter, we only scratched the surface of the kind of structures that exist in music—
not to speak of our bias towards Western music. From a computational perspective,
using music structure analysis as a motivating scenario, we introduced basic notions
and general techniques that may also be applicable for studying structural properties
of other types of sequential data and time series.

4.6 Summary and Further Readings 229

Self-Similarity Matrices

As one essential tool, we discussed the concept of self-similarity matrices [5, 27].
These matrices are of great importance for the analysis of music signals and also
general time series. For example, such matrices have been employed under the name
“recurrence plot” for the analysis of dynamical systems [16, 32]. We have already
encountered the related concept of cost matrices in the context of music synchro-
nization in Chapter 3. Such matrices will also play an important role in Chapter 7 in
the context of content-based music retrieval and version identification.

The first step for computing an SSM is to convert the given audio recording
into a suitable feature representation. We saw that the properties of the resulting
SSM crucially depend on the respective feature type [11, 27]. As one example, we
considered MFCC-based features that correlate to the aspect of timbre [1]. Other
features referred to as tempogram, rhythmogram, or beat spectrogram are used to
capture beat, tempo, and rhythmic information—a topic that will be addressed in
Chapter 6. In particular, we considered chroma-based audio features (as introduced
in Section 3.1.2), which are particularly suited for analyzing the structure of repeat-
ing melodies and harmonies.

One important property of similarity matrices is the appearance of block- and
path-like structures of high similarity. In Section 4.2.2, we studied several strate-
gies to enhance such structural properties. To augment path-like structures, most
enhancement procedures apply some kind of smoothing filter along the direction of
the main diagonal [2, 23, 28, 32]. Such a filtering process is closely related to the
concept of time-delay embedding, which has been previously used for the anal-
ysis of dynamical systems [16, 32]. The multiple filtering approach to deal with
relative tempo differences between repeating parts was originally suggested in [23].
Also, morphological operations used in image processing to enhance contours and
edges [6] can be applied for augmenting path-like structures. Relative and local
thresholding is another essential concept for reducing the noise level in SSMs [32],
which makes subsequent processing steps (e.g., path extraction) easier.

Besides the feature type, the window size and the temporal resolution used for
feature extraction also crucially determine whether blocks or stripes are formed in an
SSM. Block-enhanced SSMs have been used for structure analysis based on matrix
factorization [12], a technique that we will encounter in Section 8.3 in a different
context. In [9, 17], procedures for converting path structures into block structures
are proposed. Such conversions make it possible for algorithms previously designed
for homogeneity-based structure analysis to be applied to repetition-based structure
analysis. Finally, we discussed that a musical part might be repeated in another key.
Using chroma features, Goto [8] has suggested simulating transpositions by cyclic
chroma shifts. Based on this idea, transposition-invariant SSMs were originally in-
troduced in [20].

230 4 Music Structure Analysis

Audio Thumbnailing

Finding the repetitive structure of a music recording is a widely studied subtask
within music structure analysis (see the overview articles [5, 27] and the references
therein). One application of repetition-based structure analysis is audio thumbnail-
ing, where the objective is to find the most representative and repetitive segment
of a given music recording (see, e.g., [2, 4, 22]). To identify repetitions, most ap-
proaches extract the path structure from an SSM and apply a clustering step to the
pairwise relations obtained from the paths to derive entire groups of mutually sim-
ilar segments. Because of noisy and fragmented path structures due to variations,
both steps—path extraction as well as grouping—are error-prone and fragile. In [8],
a grouping process is described that balances out inconsistencies in the path re-
lations by exploiting a constant tempo assumption. However, when dealing with
varying tempo, the grouping process constitutes a challenging research problem. In
the approach [22], which we discussed in Section 4.3, one main idea is to jointly
perform the path extraction and grouping steps. This idea is realized by assigning
a fitness value to a given segment in such a way that all existing relations within
the entire recording are simultaneously accounted for. Instead of extracting indi-
vidual paths, entire groups of paths (encoded by the concept of path families) are
extracted, whereby the construction automatically enforces consistency properties
within a group.

Cooper and Foote [4] have already formulated the general idea of assigning a
fitness value to each segment of the audio recording. In this early work, the authors
calculate the fitness of a given segment as the normalized sum of the self-similarity
between the segment and the entire recording (however, the fitness measure does not
take any specific path relations into account). In [28], Peeters introduced a fitness
measure based on a binary-valued diagonal path structure extracted from an SSM.
For visualizing the fitness values in a compact and hierarchical way, we have pre-
sented in Section 4.3.2 the concept of scape plots. In the music context, these plots
were initially used by Sapp [30] to represent harmony in musical scores hierarchi-
cally. In [21], a refinement of the fitness scape plot is described, where some suitable
color encoding indicates the relations between different segments. The frontispiece
of this chapter shows such a refined scape plot representation for our Brahms exam-
ple.

Segmentation Approaches

In Section 4.4 we addressed the topic of novelty-based segmentation, where the
goal was to find boundaries between subsequent musical parts. The kernel-based
approach (see Section 4.4.1) was originally described in the classical paper by
Foote [7]. There are many other approaches for boundary detection. For exam-
ple, Tzanetakis and Cook [36] calculate a Mahalanobis distance between successive
frames to yield a novelty function. Using an optimization approach, Jensen [11] per-
forms the boundary detection by minimizing the average distance within blocks (de-

4.6 Summary and Further Readings 231

fined by neighboring segment boundaries), while keeping the number of segments
small. More recent approaches based on deep learning aim at learning a novelty
function (or activation function) from example snippets of input spectrograms with
annotated segment boundaries (see, e.g., [37]). For further references on boundary
detection and other structure analysis methods, we refer to [25].

In Section 4.4.2, we introduced the concept of structure features as a basis for
novelty detection [31]. For computing these features, one idea was to transform an
SSM into a time-lag representation, a concept that has been used in various struc-
ture analysis approaches [8, 28]. A critical aspect of the approach in [31] is that it
integrates different structure analysis principles within a unifying framework: the
structure features capture (global) repetition-based information, which is then ana-
lyzed using a (local) novelty-based procedure. However, to obtain a full structure
annotation, the grouping needs to be done in a separate postprocessing step. The ap-
proach by Paulus and Klapuri [26] also combines different segmentation principles
by introducing a cost function for structure annotations that considers block-like as
well as path-like structures. The final structure annotation is obtained by minimiz-
ing the cost function over all possible annotations. However, this approach requires
solving a combinatorial optimization task that is computationally prohibitive. To
make the computations feasible, the number of candidate annotations is reduced
drastically by applying a novelty-based boundary detection procedure in a separate
preprocessing step.

Evaluation

In Section 4.5, we addressed the topic of evaluating automated structure analysis
procedures. Many evaluation measures involve some kind of precision and recall
rate. As typical examples, we adapted such metrics for several structure analysis
scenarios. An overview of further evaluation measures can be found in [14]. For
an implementation of the most common metrics used in general MIR research, we
refer to the open-source Python library mir eval [29]. To account for the fact
that music exhibits structure at multiple scales, McFee et al. [18] introduced an
evaluation metric which can compare hierarchical descriptions of musical structure.

Even though music is highly structured and obeys some general rules, what is
interesting about any individual piece of music tends to be how it expands or breaks
these rules. As a consequence, evaluating the performance of automated procedures
is not as easy as one may think. Even so-called reference annotations made by dif-
ferent human experts may differ significantly [26, 33]. Therefore, to better reflect
the ambiguity and richness of musical structures, the evaluation should be based on
several annotations which have been generated by several human experts and are
provided on different temporal scales [33]. An automated procedure could then be
treated just as another “expert,” and the estimated results could be compared against
the entire pool of different reference annotations (instead of using only a single ref-
erence annotation). Rather than automatically extracting a structure annotation from
scratch, another exciting research direction is to develop automated procedures that

232 4 Music Structure Analysis

somehow explain an existing annotation. A procedure in this direction is described
in [34], where the relevance of various features is determined in relation to a given
annotation.

4.7 FMP Notebooks

We have seen that, due to the many different principles for musical relationships,
music structure analysis constitutes a research area that offers a bouquet of fasci-
nating and challenging subtasks. In Part 4 of the FMP notebooks [24], we deepen
some of the chapter’s core concepts and algorithms, which are applicable beyond
the music domain. In particular, we have a detailed look at the properties and vari-
ants of self-similarity matrices (SSMs). Then, considering some more specific music
structure analysis tasks, we provide and discuss implementations of—as we think—
some beautiful and instructive approaches for repetition and novelty detection. Us-
ing real-world music examples, we draw attention to the algorithms’ strengths and
weaknesses, while indicating the problems that typically arise from violations of the
underlying model assumptions. We close Part 4 by implementing and discussing
evaluation metrics, which we take up again in other chapters of the book.

We start with the FMP Notebook Music Structure Analysis: General Princi-
ples, where we create the general context of the subsequent notebooks of this part.
In particular, we introduce our primary example used throughout these notebooks:
Brahms’ famous Hungarian Dance No. 5. Based on this example, we introduce im-
plementations for parsing, adapting, and visualizing reference annotations for musi-
cal structures. Furthermore, we provide some Python code examples for converting
music recordings into MFCC-, tempo-, and chroma-based feature representations
(see also Figure 4.6). In a music processing course, we consider it essential to make
students aware that such representations crucially depend on parameter settings and
design choices. This fact can be made evident by suitably visualizing the represen-
tations. In the FMP notebooks in general, we attach great importance to a visual
representation of results, which sharpens one’s intuition and provides a powerful
tool for questioning the results’ plausibility.

One general idea to study musical structures and their mutual relations is to con-
vert the music signal into a suitable feature sequence and compare each element
of the feature sequence with all other sequence elements. This results in an SSM,
a tool that is of fundamental importance not only for music structure analysis but
also for analyzing many kinds of time series. Closely following Section 4.2, we
cover this fundamental topic in the subsequent notebooks. The FMP Notebook
Self-Similarity Matrix (SSM) explains the general ideas of SSMs and discusses
basic notions such as paths and blocks. Furthermore, continuing our Brahms exam-
ple, we provide Python code examples for computing and visualizing SSMs using
different feature representations. It is an excellent exercise to turn the tables and
to start with a structural description of a piece of music and then to transform this
description into an SSM representation. This is what we do in the FMP Notebook

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S1_MusicStructureGeneral.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S1_MusicStructureGeneral.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-Synthetic.html

4.7 FMP Notebooks 233

Fig. 4.34 (a) Structure annotation for our Brahms example given as a CSV file. (b) Visualization
of structure annotation (time axis given in seconds). (c) Visualization of converted structure anno-
tation (time axis given in frames). (d),(e) Different SSMs generated synthetically from the structure
annotation.

SSM: Synthetic Generation, where we provide a function for converting a reference
annotation of a music recording into an SSM. In this function, one can specify if the
structural parts fulfill path-like (being repetitive) or block-like (being homogeneous)
relations. Further parameters allow for modifying the SSM by applying a Gaussian
smoothing filter or adding Gaussian noise (see Figure 4.34 for examples). Synthet-
ically generating and visualizing SSMs is a very instructive way to gain a deeper
understanding of these matrices’ structural properties and their relation to musical
annotations. Furthermore, synthetic SSMs are useful for debugging and testing au-
tomated procedures for music structure analysis. However, synthetic SSMs should
not replace evaluation based on real music examples. In practice, SSMs computed
from music and audio representations are typically far from being ideal—a painful
experience that every student should have.

In Section 4.2.2, we described various strategies for enhancing the structural
properties of SSMs. The notebooks implement these techniques step by step. In
the FMP Notebook SSM: Feature Smoothing, we study how feature smoothing
affects the structural properties of an SSM, using our Brahms example as an illus-
tration (see Figure 4.10). For example, starting with a chroma representation and
increasing the smoothing length, one may observe an increase in homogeneity re-
flecting the rough harmonic content. As an alternative to average filtering, we also
discussed median filtering. In the FMP Notebook SSM: Path Enhancement, we
discuss a strategy for enhancing path structures in SSMs. We show that simple fil-
tering along the main diagonal works well if there are no relative tempo differences
between the segments to be compared. Rather than directly implementing the equa-
tion (4.11) using nested loops, we provide a much faster matrix-based implemen-
tation, which exploits efficient array computing concepts provided by the Python

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-Synthetic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-FeatureSmoothing.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-PathEnhancement.html

234 4 Music Structure Analysis

package numpy. In a music processing course, this is an excellent opportunity for
discussing efficiency and implementation issues. In this context, one may also dis-
cuss Python packages such as numba that translate specific Python code into fast
machine code. After this little excursion on efficiency, we come back to our Brahms
example, where the shorter B2-section is played much faster than the B1-section,
leading to nondiagonal path structures. Here, diagonal smoothing fails, and we in-
troduce a multiple filtering approach that preserves specific nondiagonal structures.
Again, rather than implementing the equation (4.12) directly, we employ a matrix-
based implementation using a tricky resampling strategy. Finally, we introduce a
forward–backward smoothing approach that attenuates fading artifacts in particular
at the end of path structures.

In Section 4.2.2.3, looking at the song “In the Year 2525“ by Zager and Evans,
we saw that certain musical parts may be repeated in a transposed form. In the
FMP Notebook SSM: Transposition Invariance, we provide an implementation
for computing a transposition-invariant SSM. In particular, we show how the re-
sulting transposition index matrix can be visualized (see Figure 4.12f). Such visual-
izations are—as we think—esthetically beautiful and say a lot about the harmonic
relationships within a song. We close our studies on SSMs with the FMP Note-
book SSM: Thresholding, where we discuss global and local thresholding strate-
gies, which are applicable to a wide range of matrix representations. The effect of
different thresholding techniques can be nicely illustrated by small toy examples,
which can also be integrated well into a music processing course in the form of
small handwritten and programming exercises.

We now turn our attention to more concrete subtasks of music structure analysis.
In the comprehensive FMP Notebook Audio Thumbnailing, we provide a step-by-
step implementation of the procedure described in Section 4.3. This is more of a
notebook for advanced students who want to see how the mathematically rigorous
description of an algorithm is put into practice. By interleaving theory, implemen-
tation details, and immediate application to a specific example, we hope that this
notebook gives a positive example of making a complex algorithm more accessible.
As the result of our audio thumbailing approach, we obtain a fitness measure that as-
signs to each possible segment a fitness value. The FMP Notebook Scape Plot Rep-
resentation introduces a concept for visualizing the fitness values of all segments
using a triangular image. This concept is an esthetically pleasing and powerful way
to visualize segment properties in a compact and hierarchical form. Applied to our
fitness measure, we deepen the understanding of our thumbnailing procedure by
providing scape plot representations for the various measures involved (e.g., score,
noramlized score, coverage, normlized coverate, and fitness; see also Figure 4.21).
From a programming perspective, this notebook also demonstrates how to create
elaborate illustrations using the Python library matplotlib—a task on which
one can spend a lot of time.

Next, following Section 4.4, we deal with the music structure analysis subtask
often referred to as novelty detection. In the FMP Notebook Novelty-Based Seg-
mentation, we cover the classical and widely used approach originally suggested
by Foote [7]. We provide Python code examples for generating box-like and Gaus-

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-TranspositionInvariance.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-Thresholding.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S2_SSM-Thresholding.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S3_AudioThumbnailing.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S3_ScapePlot.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S3_ScapePlot.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S4_NoveltySegmentation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S4_NoveltySegmentation.html

4.7 FMP Notebooks 235

sian checkerboard kernels, which are then shifted along the main diagonal of an
SSM to detect 2D corner points. We strongly recommend that this simple, beau-
tiful, explicit, and instructive approach be used as a baseline for any research in
novelty-based segmentation before applying more intricate approaches. Of course,
as we also demonstrate in the notebook, the procedure crucially depends on design
choices and parameters such as the underlying SSM and the kernel size.

While most approaches for novelty detection use features that capture local char-
acteristics, we consider in the FMP Notebook Structure Feature the concept of
structure features that capture global structural properties. These features are basi-
cally the columns of an SSM’s cyclic time–lag representation. In the notebook, we
provide an implementation for converting an SSM into a time–lag representation.
We also offer Python code examples that students can use to explore this conver-
sion by experimenting with explicit toy examples. Again it is crucial to also apply
the techniques to real-world music recordings, which behave completely differently
than synthetic examples. In practice, one often obtains significant improvements by
applying median filtering to remove undesired outliers or by applying smoothing
filters to make differentiation less vulnerable to small deviations.1

We close Part 4 with the FMP Notebook Evaluation, where we discuss standard
metrics based on precision, recall, and F-measure. Even though there are Python li-
braries such as mir eval [29] that provide a multitude of metrics commonly used
in MIR research, it is essential to exactly understand how these metrics are de-
fined. Furthermore, requiring knowledge in basic data structures and data handling,
students may improve their programming skills when implementing, adapting, and
applying some of these metrics. In our notebook, one finds Python code examples
for the standard precision, recall, and F-measure as well as adaptions of these mea-
sures for labeling and boundary evaluation. Again, we recommend using suitable
toy examples and visualizations to get a feel for what the metrics actually express.

1 Even though recent deep learning approaches try to circumvent such explicit processing steps,
the “good old engineering” is at least instructive, yielding valuable insights into the task, the algo-
rithm’s potential, and the data at hand.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S4_StructureFeature.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S5_Evaluation.html

236 4 Music Structure Analysis

References

1. J.-J. AUCOUTURIER AND F. PACHET, Improving timbre similarity: How high’s the sky, Jour-
nal of Negative Results in Speech and Audio Sciences, 1 (2004).

2. M. A. BARTSCH AND G. H. WAKEFIELD, Audio thumbnailing of popular music using
chroma-based representations, IEEE Transactions on Multimedia, 7 (2005), pp. 96–104.

3. M. A. CASEY AND M. SLANEY, The importance of sequences in musical similarity, in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Toulouse, France, 2006.

4. M. COOPER AND J. FOOTE, Automatic music summarization via similarity analysis, in Pro-
ceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Paris, France, 2002, pp. 81–85.

5. R. B. DANNENBERG AND M. GOTO, Music structure analysis from acoustic signals, in
Handbook of Signal Processing in Acoustics, D. Havelock, S. Kuwano, and M. Vorländer,
eds., vol. 1, Springer, New York, NY, USA, 2008, pp. 305–331.

6. E. R. DOUGHERTY, An Introduction to Morphological Image Processing, SPIE Optical En-
gineering Press, Bellingham, WA, USA, 1992.

7. J. FOOTE, Automatic audio segmentation using a measure of audio novelty, in Proceedings of
the IEEE International Conference on Multimedia and Expo (ICME), New York, NY, USA,
2000, pp. 452–455.

8. M. GOTO, A chorus section detection method for musical audio signals and its application to
a music listening station, IEEE Transactions on Audio, Speech, and Language Processing, 14
(2006), pp. 1783–1794.

9. H. GROHGANZ, M. CLAUSEN, N. JIANG, AND M. MÜLLER, Converting path structures into
block structures using eigenvalue decompositions of self-similarity matrices, in Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR), Curitiba,
Brazil, 2013, pp. 209–214.

10. D. B. HURON, Sweet Anticipation: Music and the Psychology of Expectation, The MIT Press,
2006.

11. K. JENSEN, Multiple scale music segmentation using rhythm, timbre, and harmony, EURASIP
Journal on Advances in Signal Processing, (2007).

12. F. KAISER AND T. SIKORA, Music structure discovery in popular music using non-negative
matrix factorization, in Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 429–434.

13. F. LERDAHL AND R. JACKENDOFF, A Generative Theory of Tonal Music, MIT Press, 1983.
14. H. LUKASHEVICH, Towards quantitative measures of evaluating song segmentation, in Pro-

ceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Philadelphia, USA, 2008, pp. 375–380.

15. E. H. MARGULIS, On Repeat: How Music Plays the Mind, Oxford University Press, 2014.
16. N. MARWAN, M. C. ROMANO, M. THIEL, AND J. KURTHS, Recurrence plots for the anal-

ysis of complex systems, Physics Reports, 438 (2007), pp. 237–329.
17. B. MCFEE AND D. ELLIS, Analyzing song structure with spectral clustering, in Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR), Taipei, Tai-
wan, 2014, pp. 405–410.

18. B. MCFEE, O. NIETO, M. M. FARBOOD, AND J. P. BELLO, Evaluating hierarchical struc-
ture in music annotations, Frontiers in Psychology, 8 (2017).

19. R. MIDDLETON, Form, in Key Terms in Popular Music and Culture, B. Horner and T. Swiss,
eds., Wiley-Blackwell, 1999, pp. 141–155.

20. M. MÜLLER AND M. CLAUSEN, Transposition-invariant self-similarity matrices, in Pro-
ceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Vienna, Austria, Sept. 2007, pp. 47–50.

21. M. MÜLLER AND N. JIANG, A scape plot representation for visualizing repetitive structures
of music recordings, in Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), Porto, Portugal, 2012, pp. 97–102.

References 237

22. M. MÜLLER, N. JIANG, AND P. GROSCHE, A robust fitness measure for capturing repetitions
in music recordings with applications to audio thumbnailing, IEEE Transactions on Audio,
Speech, and Language Processing, 21 (2013), pp. 531–543.

23. M. MÜLLER AND F. KURTH, Enhancing similarity matrices for music audio analysis, in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Toulouse, France, May 2006, pp. 437–440.

24. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

25. O. NIETO AND J. P. BELLO, Systematic exploration of computational music structure re-
search, in Proceedings of the International Society for Music Information Retrieval Confer-
ence (ISMIR), New York City, USA, 2016, pp. 547–553.

26. J. PAULUS AND A. P. KLAPURI, Music structure analysis using a probabilistic fitness mea-
sure and a greedy search algorithm, IEEE Transactions on Audio, Speech, and Language
Processing, 17 (2009), pp. 1159–1170.

27. J. PAULUS, M. MÜLLER, AND A. KLAPURI, Audio-based music structure analysis, in Pro-
ceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Utrecht, The Netherlands, 2010, pp. 625–636.

28. G. PEETERS, Sequence representation of music structure using higher-order similarity ma-
trix and maximum-likelihood approach, in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), Vienna, Austria, 2007, pp. 35–40.

29. C. RAFFEL, B. MCFEE, E. J. HUMPHREY, J. SALAMON, O. NIETO, D. LIANG, AND
D. P. W. ELLIS, MIR EVAL: A transparent implementation of common MIR metrics, in Pro-
ceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Taipei, Taiwan, 2014, pp. 367–372.

30. C. S. SAPP, Harmonic visualizations of tonal music, in Proceedings of the International Com-
puter Music Conference (ICMC), La Habana, Cuba, 2001, pp. 423–430.

31. J. SERRÀ, M. MÜLLER, P. GROSCHE, AND J. L. ARCOS, Unsupervised music structure
annotation by time series structure features and segment similarity, IEEE Transactions on
Multimedia, 16 (2014), pp. 1229–1240.

32. J. SERRÀ, X. SERRA, AND R. G. ANDRZEJAK, Cross recurrence quantification for cover
song identification, New Journal of Physics, 11 (2009).

33. J. B. L. SMITH, J. A. BURGOYNE, I. FUJINAGA, D. D. ROURE, AND J. S. DOWNIE, De-
sign and creation of a large-scale database of structural annotations, in Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), Miami, Florida,
USA, 2011, pp. 555–560.

34. J. B. L. SMITH AND E. CHEW, Using quadratic programming to estimate feature relevance
in structural analyses of music, in Proceedings of the ACM International Conference on Mul-
timedia, 2013, pp. 113–122.

35. M. SUNKEL, S. JANSEN, M. WAND, E. EISEMANN, AND H.-P. SEIDEL, Learning line
features in 3D geometry, Computer Graphics Forum, 30 (2011), pp. 267–276.

36. G. TZANETAKIS AND P. COOK, Multifeature audio segmentation for browsing and annota-
tion, in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), New Paltz, NY, USA, 1999, pp. 103–106.

37. K. ULLRICH, J. SCHLÜTER, AND T. GRILL, Boundary detection in music structure analysis
using convolutional neural networks, in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), Taipei, Taiwan, 2014, pp. 417–422.

238 4 Music Structure Analysis

Exercises

Exercise 4.1. Let F = RD be the real vector space of dimension D ∈ N. Typical similarity mea-
sures are based on the Euclidean norm (also referred to as the `2-norm) defined by

||x||2 :=
(
∑

D
i=1 |x(i)|2

)1/2

for a vector x = (x(1),x(2), . . . ,x(D))>. From this norm, one can derive the similarity measures
sa,b : F ×F → R for constants a ∈ R and b ∈ N by setting

sa,b(x,y) = a−||x− y||b2

for x,y ∈ F . In the following, we consider the case a = 2 and b = 2. Furthermore, assume that x
and y are normalized with respect to the `2-norm. Show that, in this case, the measure sa,b is simply
twice the inner product 〈x|y〉, which measures the cosine of the angle between x and y.

Exercise 4.2. In (4.11), we have introduced a forward smoothing procedure. This procedure re-
sults in a fading out of the paths, in particular when using a large length parameter. To avoid this
fading out, one idea is to additionally apply the averaging filter in backward direction. The final
self-similarity matrix is then obtained by taking the cell-wise maximum over the forward-smoothed
and backward-smoothed matrices. Formalize this procedure by giving a mathematical description.
Furthermore, show how the backward smoothing can be realized by forward smoothing consider-
ing the time-reversed feature sequence.
[Hint: To avoid boundary considerations, assume that S is suitably zero-padded. The effect of the
forward–backward smoothing procedure is illustrated by Figure 4.12d. Another example is shown
in Figure 4.15c.]

Exercise 4.3. Let F =RD as in Exercise 4.1 and s : F×F →R be the similarity measure defined
by s(x,y) := |〈x|y〉| for x,y ∈ F (see (4.3)). Show that the transposition-invariant self-similarity
matrix STI (see (4.15)) is symmetric. Is the transposition index matrix I (see (4.16)) symmetric?
Describe the relation between the matrix I and its transposed matrix I>.

Exercise 4.4. For computing the matrix SL,Θ in (4.13), a set Θ of relative tempo differences needs
to be specified. Assume that θmin is a lower bound and θmax is an upper bound for the expected
relative tempo differences. For a given number K ∈ N, determine a set

Θ = {θ1 = θmin,θ2, . . . ,θK−1,θK = θmax}

consisting of increasing tempo values that are logarithmically spaced. Write a small computer
program for computing this set for the parameters θmin = 0.66, θmax = 1.5, and K = 5, as well as
for θmin = 0.5, θmax = 2, and K = 7.
[Hint: Convert the tempo bounds θmin and θmax into the log domain by applying a logarithm.
Then, linearly sample the resulting interval using K samples and apply an exponential function to
the samples.]

Exercise 4.5. In this exercise, we look at the various thresholding strategies introduced in
Section 4.2.2.4. Given the matrix

S =

1 1 2 2
4 3 4 3
1 1 2 2
5 6 6 5

 ,
compute the matrices that are obtained by applying the following thresholding operations:

Exercises 239

(a) Global thresholding using τ = 4
(b) Global thresholding using τ = 4 as in (a) with subsequent linear scaling of the range [τ,µ] to

[0,1] using µ := max{S(n,m) | n,m ∈ [1 : 4]}
(c) Global thresholding with subsequent linear scaling as in (b) and applying the penalty parameter

δ =−1
(d) Relative thresholding using the relative threshold parameter ρ = 0.5
(e) Local thresholding in a column- and rowwise fashion using ρ = 0.5

Exercise 4.6. Let X = (x1,x2, . . . ,xN) be a sequence and α = [s : t] ⊆ [1 : N] a segment of length
M := |α|. Show that the optimization procedure for computing an optimal path family over α (as
described in Section 4.3.1.2) has a complexity of O(MN) regarding the memory requirements as
well as the running time.

Exercise 4.7. Let X = (x1, . . . ,xN) be a feature sequence and S the resulting SSM satisfying the
normalization properties (4.18) and (4.19). Let P∗ be an optimal path family over a given segment
α . Show that |α| ≤ σ(P∗)≤ N. In particular, this shows that σ(P∗) = N for α = [1 : N].

Exercise 4.8. For two given real numbers a,b∈R, the arithmetic mean is defined by A(a,b)= (a+
b)/2, the geometric mean by G(a,b) =

√
ab, and the harmonic mean by H(a,b) = 2ab/(a+ b).

Show that H(a,b)≤ G(a,b)≤ A(a,b), i.e., the geometric mean always lies between the harmonic
mean and the arithmetic mean. Furthermore, compute A(a,b), G(a,b), and H(a,b) for the numbers
a = 1 and b ∈ {1,2,3,4}.

Exercise 4.9. (a) Let us consider a piece of music having the musical structure A1B1B2A2A3, where
we assume that corresponding parts are repeated in exactly the same way. Furthermore, assume that
the A-part and B-part segments are completely unrelated to each other and that a B-part segment
has exactly twice the length of an A-part segment. Sketch an idealized SSM for this piece (as in
Figure 4.18). Furthermore, determine the fitness values of the segments corresponding to A1 and
B1, respectively.
(b) Next, consider a piece having the musical structure A1A2A3A4, where the four parts are repeated
with increasing tempo. Assume that A1 lasts 20 seconds, A2 lasts 15 seconds, A3 lasts 10 seconds,
and A4 lasts 5 seconds. Again sketch an idealized SSM and determine the fitness values of the four
segments corresponding to the four parts.

Exercise 4.10. Let [1 : N] be a sampled time axis. Show that the number of different segments
α = [s : t] with s, t ∈ [1 : N] and s≤ t is (N +1)N/2.

Exercise 4.11. Determine the overall computational complexity of calculating the fitness scape
plot as introduced in Section 4.3.2 for a feature sequence X = (x1,x2, . . . ,xN) of length N.
[Hint: Use Exercise 4.6 and Exercise 4.10.]

Exercise 4.12. Given a triangular representation of all segments within [1 : N] as in Figure 4.19b,
visually indicate the following sets of segments:

(a) All segments having a minimal length above a given threshold θ ≥ 0
(b) All segments that contain a given segment α

(c) All segments that are disjoint to a given segment α

(d) All segments that contain the center c(α) of a given segment α

Exercise 4.13. Sketch the similarity matrix S and the circular time-lag matrix L◦ as in Figure 4.26c
for pieces with the following musical structure:

(a) AB1B2B3, where all segments have the same length
(b) AB1B2, where the A-part and B1-part segments have the same length and the B2-part segment

has twice the length (played with half the tempo of B1)

240 4 Music Structure Analysis

Exercise 4.14. Sketch the similarity matrix S, the circular time-lag matrix L◦, and the resulting nov-
elty function ∆Structure for pieces with the following musical structure (assuming that all segments
corresponding to a musical part have the same length and that the kernel size used for computing
the novelty function is much smaller than this length):

(a) A1A2A3A4

(b) A1B1A2B2

(c) A1B1A2A3

(d) A1A2B1B2

Exercise 4.15. Let A = {α1,α2, . . . ,αK} be a segment family together with a labeling λk ∈ Λ ,
k ∈ [1 : K]. Let µ(A) :=

⋃K
k=1 αk be the union of all segments. Show that one may assume µ(A) =

[1 : N] by suitably extending the segment family, the label set Λ , and the labeling.

Exercise 4.16. In (4.51), we defined the set I = {(n,m) ∈ [1 : N]× [1 : N] | n < m} to serve as a
set of items for defining the pairwise evaluation measure. Determine the size of I. Furthermore,
let ϕ : [1 : N]→ Λ be a label function, and let IRef

+ = {(n,m) ∈ I | ϕ(n) = ϕ(m)} be the set of
positive items with regard to ϕ . Derive a general formula for the size of IRef

+ .
[Hint: Note that the size of IRef

+ does not depend on the original order of the frames. Given a
specific label, consider the number of frames assigned to that label. To derive a formula for the
size of IRef

+ , one needs to consider all possible labels assumed by ϕ .]

Exercise 4.17. In this exercise, we investigate how the pairwise labeling evaluation behaves with
respect to under- and oversegmentation. To this end, let us consider the following structure anno-
tations of a piece of music (similar to our Brahms example shown in Figure 4.28):

a a a a b c b c d d e e e e a a b c b c

A1 A2 B1 B2 C A3 B3 B4

G minor G major G minor

(a)

(b)

(c)

Compute the size |I+| for each of the three annotations. Then, assume that (a) is the reference anno-
tation. Compute the pairwise precision, recall, and F-measure for the case that (b) is the estimated
annotation (“oversegmentation”) and for the case that (c) is the estimated annotation (“underseg-
mentation”).
[Hint: Use the results of Exercise 4.16.]

Exercise 4.18. Let [1 : N] be a sampled time axis with N = 50. Furthermore, let BRef =
{7,13,19,28,40,44} be a reference boundary annotation and BEst = {6,12,21,29,42} be an es-
timated boundary annotation. Compute the boundary evaluation measures (precision, recall, F-
measure) as in Section 4.5.4 for the tolerance parameter τ = 0, τ = 1, and τ = 2, respectively. Why
is the case τ = 2 problematic for this example?

Exercise 4.19. Let [1 : N] be a sampled time axis with N = 100. Furthermore, let ARef =
{[16 : 26], [40 : 49], [50 : 60], [75 : 84]} be a reference thumbnail family. Compute the thumbnail
F-measure as introduced in Section 4.5.5 for the following estimated thumbnail segments:

(a) αEst = [18 : 27]
(b) αEst = [45 : 54]
(c) αEst = [60 : 75]

Chapter 5
Chord Recognition

C

FG

In music, harmony refers to the simultaneous sound of different notes that form
a cohesive entity in the mind of the listener. The main constituent components of
harmony, at least in the Western music tradition, are chords, which are musical
constructs that typically consist of three or more notes. Harmony analysis may be
thought of as the study of the construction, interaction, and progression of chords.
The progression of chords over time closely relates to what is often referred to as the
harmonic content of a piece of music. These progressions are of musical importance
for composing, describing, and understanding Western tonal music including popu-
lar, jazz, and classical music. Therefore, features that capture the harmonic content
are widely applied for music processing tasks including music structure analysis
(Chapter 4) and music retrieval (Chapter 7).

In the analysis of harmony, there are many aspects that need to be examined,
including the type of music representation, the temporal resolution, the level of ab-
straction, and the chords to be considered in the analysis. Harmony is a rather vague
concept. Harmonic entities are formed by the human brain, which integrates sounds
that may even come from notes played in succession rather than simultaneously. The
musical context, as well as the listener’s knowledge and expectation, have a crucial
influence on how a specific harmony or chord is actually perceived and interpreted.
The concept of harmony and chords is enriched by the existence of nonharmonic
tones, which are notes that are not part of the implied chord within the harmonic
framework. Such tones are used as a combining element to create smooth melody
lines, as a passing element to prepare the transition from one chord to the next one,
or as a dissonant element to create musical tension, thus adding some “spice” to
the music. In other words, not all sounding notes need to be part of the underlying
chord, which considerably complicates the harmonic analysis of music.

241© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_ 5

https://doi.org/10.1007/978-3-030-69808-9_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_5&domain=pdf

242 5 Chord Recognition

Fig. 5.1 Chord recognition
task illustrated by the first
measures of the Beatles song
“Let It Be.” (a) Score of the
first four measures. (b) Wave-
form of an audio recording of
these measures. (c) Chroma
representation. (d) Chord
recognition result.

C G Am F C G F C

C G Am F C G

(a)

(b)

(c)

(d)

F C

In this chapter, we discuss computational approaches for the harmonic analysis
of music. Rather than giving an overview of this wide area of research, we study
a subproblem referred to as chord recognition, where we consider only a small
number of the most important chords as occurring in Western music. Furthermore,
we assume that the piece of music is given in the form of an audio recording. The
resulting chord recognition task consists in splitting up the recording into segments
and assigning a chord label to each segment. The segmentation specifies the start
and end time of a chord, and the chord label specifies which chord is played during
this time period.

As an example, let us have a look at the Beatles song “Let It Be” of Figure 5.1.
The musical score as well as the manually annotated chord labels are shown in
Figure 5.1a. In our scenario, we start with a waveform of the recorded song as indi-
cated by Figure 5.1b. Most of the chord recognition procedures encountered in the
literature proceed in two main steps. In the first step, the recording is converted into
a sequence of audio features that capture harmony-related information. In particular,
chroma-based features as introduced in Section 3.1.2 have proven to be a suitable
representation (see Figure 5.1c). In the second step, pattern matching techniques are
applied to map the audio features to chord labels, which yields the final recognition
result (see Figure 5.1d).

In Section 5.1, we start with a short tutorial on intervals, chords, and scales as
used in Western tonal music. Since the main focus of this book is on computational
rather than musicological aspects, we adopt a rather simplistic approach by focus-
ing on the major and minor triads as chords. The technically oriented reader, who is
not interested in the musical background, should at least have a look at Figure 5.6
and may then skip most parts of this section. In Section 5.2, we discuss a basic
procedure for chord recognition, where chroma features are compared with fixed
templates that correspond to the chords to be considered. This simple procedure is
very instructive, since it not only yields a baseline for more complex chord recog-
nizers, but also highlights the role of the feature computation step. In particular,
we give examples of how the recognition results can be influenced by modifying
the audio features, by applying temporal smoothing techniques, and by adapting

5.1 Basic Theory of Harmony 243

the underlying chord templates. One important idea on which many modern chord
recognition systems are based is to jointly perform the pattern matching and tempo-
ral filtering steps within one optimization procedure. In this context, hidden Markov
models (HMMs), which were originally developed for automatic speech recognition
and are now widely used for a variety of music processing tasks, have proven to be a
powerful tool. We introduce the main ideas of HMMs in Section 5.3 and then apply
this concept for chord recognition.

5.1 Basic Theory of Harmony

In this section, we introduce some important concepts from music theory. Most of
these notions are not needed for understanding the technical details presented in later
sections, where (in technical terms) a chord may simply be thought of as a specific
chroma distribution that has some musical meaning. However, a good understanding
of the musical concepts becomes important when actually designing and evaluating
chord recognition systems. In the following, we first discuss the notion of intervals
(Section 5.1.1) and then introduce the more complex musical constructs of chords
and scales (Section 5.1.2). Some of the material presented in this section has been
inspired by Wikipedia articles and textbooks on harmony theory [8, 15, 28], where
one can find further explanations and examples.

5.1.1 Intervals

In music, an interval may be loosely defined as the difference between two pitches.
This definition is problematic in the sense that the underlying notion of pitch is al-
ready a rather vague one. Recall from Section 1.1.1 that pitch is a perceptual prop-
erty that allows the ordering of sounds on a frequency-related logarithmic scale.
When playing a note of a certain pitch on an instrument, the resulting musical tone
is dominated by certain frequencies referred to as partials (Section 1.3.2). The fre-
quency of the lowest partial is called the fundamental frequency, which is the fre-
quency typically associated to the pitch. For harmonic sounds, the partials are (close
to) integer multiples, the harmonics, of the fundamental frequency.

The most basic interval in music is the octave, which is defined as the distance
between a pitch and another one with half or double its fundamental frequency.
Starting with this basic interval, one can define notions of other intervals by con-
sidering frequency relations of harmonics (physical approach), geometric relations
(mathematical approach), or note relations (musical approach). These approaches
lead to slightly different notions of intervals, which are however referred to by the
same interval names. In the following, we will discuss some of these notions and
the resulting inconsistencies.

244 5 Chord Recognition

Perfect
unison

Minor
second

Major
second

Minor
third

Major
third

Perfect
fourth

Minor
sixth

Perfect
fifth

Major
sixth

Minor
seventh

Major
seventh

Tritone

Perfect
octave

Primus
First

Secundus
Second

Tertius
Third

Quartus
Fourth

Quintus
Fifth

Sextus
Sixth

Septimus
Seventh

Octavus
Eighth

(a)

(b)

C4 D4 E4 F4 G4 A4 B4 C5

Augmented
unison

Augmented
second

Diminished
fifth

Augmented
fifth

Augmented
sixth

∆ = 0 ∆ = 1 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 3 ∆ = 4 ∆ = 5 ∆ = 6

∆ = 6 ∆ = 7 ∆ = 8 ∆ = 8 ∆ = 9 ∆ = 10 ∆ = 10 ∆ = 11 ∆ = 12

Fig. 5.2 (a) C major scale and enumeration of its constituent notes using ordinal numbers (in Latin
and English). (b) Score representation of various intervals. Because of enharmonic equivalence,
there may be musically different intervals having the same distance ∆ (given in semitones).

5.1.1.1 Semitone Differences

Let us start with the musical approach as used for Western music, where one as-
sumes a twelve-tone equal-tempered scale. Recall from Section 1.1.1 that, in this
model, an octave is subdivided into twelve scale steps that are equally spaced on a
logarithmic frequency axis. The smallest possible interval in this scale is called a
semitone, which is the difference between two subsequent scale steps. In terms of
frequencies, a semitone describes a ratio (rather than a difference) (see (1.2)).

Based on the notion of a semitone, one can now specify other intervals that are
used in Western music theory. The naming conventions for these intervals are based
on historical practice. In particular, an interval name may not only describe the dif-
ference in semitones between the lower and upper notes, but also how the interval is
specified in score notation. As we have already seen in Section 1.1.1, different note
symbols may refer to the same note, which is known as enharmonic equivalence.

Similarly, there exists enharmonic equivalence between musically different in-
tervals (referred to by different interval names) that correspond to the same distance
when measured in semitones (assuming the equal-tempered scale). For example, the
two intervals named “augmented unison” and “minor second” both express the dif-
ference of one semitone, while specified differently when using score notation (see
Figure 5.2b). In the following, even though being an oversimplification, we think
of an interval in terms of a distance between pitches (given in semitones) while
disregarding their music notation.

Figure 5.3 shows the most common interval names and their meaning in terms
of semitone differences. For example, an interval consisting of two identical pitches
is called a unison. In this case, the difference in semitones is zero. We have already
seen the octave, which refers to a difference of twelve semitones and a frequency
ratio of 1 : 2. The fifth denotes an interval that encodes the difference of seven semi-
tones. To understand this naming convention, one needs to know that intervals are

5.1 Basic Theory of Harmony 245

Fig. 5.3 Names of intervals.
The columns from left to right
indicate the difference given
in semitones (∆), the name
of the interval, the interval
assuming C4 as the root note,
the ratios with respect to
just intonation (JI), and the
Pythagorean ratios.

∆ Interval
name

Interval JI
ratio

Pyt.
ratio

0 (Perfect) unison C4 – C4 1:1 1:1

1 Minor second C4 – D♭4 15:16 35:28

2 Major second C4 – D4 8:9 23:32

3 Minor third C4 – E♭4 5:6 33:25

4 Major third C4 – E4 4:5 26:34

5 (Perfect) fourth C4 – F4 3:4 3:22

6 Tritone C4 – F♯4 32:45 29:36 or 36:210

7 (Perfect) fifth C4 – G4 2:3 2:3

8 Minor sixth C4 – A♭4 5:8 34:27

9 Major sixth C4 – A4 3:5 24:33

10 Minor seventh C4 – B♭4 5:9 32:24

11 Major seventh C4 – B4 8:15 27:35

12 (Perfect) octave C4 – C5 1:2 1:2

traditionally named on the basis of a major scale, which consists of seven notes and
an eighth note one octave apart from the first one (see Section 5.1.2.3). As an ex-
ample, we consider the C major scale, which is shown in Figure 5.2a. Enumerating
the notes of the major scale using ordinal numbers, the first and fifth note are a fifth
interval (seven semitones) apart. Other intervals have names such as major third or
minor third. Among these two third intervals, the term “major” refers to the larger
interval spanning four semitones and the term “minor” to the smaller interval span-
ning three semitones. The tritone interval plays a special role in the sense that it
divides the octave into two equal parts, each consisting of six semitones.

5.1.1.2 Frequency Ratios

As mentioned above, the concept of intervals can also be approached from a physical
point of view by considering frequency relations that naturally occur in the harmonic
partials of a pitched sound. Recall from Section 1.3.2 that the harmonics are the
integer multiples of a fundamental frequency forming the harmonic series of a
tone. As illustrated by Figure 1.20, the notes of the equal-tempered scale can be
associated to partials contained in this series. However, there is a slight deviation
between the fundamental frequencies of the notes and the frequency of the partials.
In the physical approach, one derives the intervals from frequency relations between
partials that occur within the same harmonic series. This is illustrated by Figure 5.4,
which shows the harmonic series of the note C2. For example, the octave occurs
as an interval between the first two harmonics, the fifth as an interval between the
second and third partial, the fourth as an interval between the third and fourth partial,
and so on. This observation leads to a definition of intervals that is based on ratios

246 5 Chord Recognition

1 2 3 4 5 6 7 8 9 1110 1612 151413Harmonic

Octave
Fifth

Fourth

Major
third

Minor
third

Major
second

Major sixth Major seventh

Minor
second

Minor seventh

Intervals

Minor sixth

Fig. 5.4 Harmonic series in music notation starting with the root note C2 (see also Figure 1.20).
The various intervals can be determined by the frequency ratios of suitable partials.

of small whole numbers. Any interval defined in this way is also called a pure or
just interval. Similarly, the musical tuning based on harmonics is known as pure
or just intonation. The frequency ratios of the various intervals with regard to just
intonation are indicated in Figure 5.3. The definition of intervals based on these
ratios leads to slightly different interval sizes compared with the equal-tempered
case (see Exercise 5.4).

Besides just intonation, there are many more tuning systems that may be used
for defining intervals in terms of frequency ratios. The oldest known tuning system
was introduced by the Greek philosopher and mathematician Pythagoras (sixth cen-
tury BC). The geometrically motivated Pythagorean tuning is based only on the
frequency ratio 1 : 2 of the octave and the ratio 2 : 3 of the fifth. All other intervals
are derived from these ratios by suitably adding and subtracting fifths and octaves.
This results in intervals that can be expressed by frequency ratios that involve only
powers of two or powers of three (see Figure 5.3). Further details on this tuning
system are discussed in Exercise 1.10.

5.1.1.3 Consonance and Dissonance

Using the just intonation based on harmonic partials, we have seen that certain inter-
vals can be described by ratios of small integers such as 1 : 1 (unison), 1 : 2 (octave),
2 : 3 (fifth), or 3 : 4 (fourth). Such intervals, which appear in the lower part of the
harmonic series in a natural way, are usually perceived as coherent and pleasant.
Used more generally, the term consonance refers to a combination of notes that
sound pleasant to most people when being played simultaneously. In contrast, the
term dissonance is used to refer to a combination of notes that sound harsh or un-
pleasant. Consonant sounds are considered to be stable (being at rest), as opposed to
dissonant sounds that are considered to be unstable (having a transitional character).

There are various definitions of consonance and dissonance based on musi-
cal, physical, and perceptual criteria. As for intervals, the unisons, octaves, fifths
and fourths are usually considered to be in perfect consonance. Therefore, these
intervals are sometimes also called the perfect intervals. The major and minor
thirds, as well as major and minor sixths, are still perceived as somehow conso-

5.1 Basic Theory of Harmony 247

nant (imperfect consonance)—however, to a lower degree. The other intervals are
typically considered as dissonant. This particularly holds for the tritone interval, the
most dissonant interval. As shown by Figure 5.3, the frequency ratio of the tritone
in just intonation involves the largest integers. Also, the tritone is the only interval
that does not appear in the lower part of the harmonic series of Figure 5.4. When
playing notes simultaneously, the degree of consonance relates to how many of the
harmonics of the played notes coincide. From this perspective, consonance does not
only depend on the size of the interval between two notes, but also on the combined
spectral distribution of the resulting sound (see Exercise 5.5).

5.1.2 Chords and Scales

Based on musical notes and intervals, we now come to more complex musical con-
structs known as chords and scales. As already mentioned in the introduction, a
chord can be loosely defined as a group of several notes that sound simultaneously.
While most researchers agree that a chord should contain at least three notes, oth-
ers also regard a combination of two notes as a chord. Depending on the number
of distinct notes contained in a chord, one also speaks of a dyad (two notes, cor-
responding to intervals), a triad (three notes), a tetrad (four notes), and so on. In
harmony analysis, notes that are one or several octaves apart are often considered
to belong to the same “sound quality.” Therefore, when defining the concept of a
chord, it may be more precise to speak of distinct pitch classes (see Section 1.1.1),
rather than distinct notes. For example, even though the chord shown in Figure 5.7d
consists of five different notes, it is usually regarded as a triad consisting of the pitch
classes C, E, and G.

5.1.2.1 Triads

Despite being an oversimplification, we restrict our considerations in the following
to a small selection of chords. In Western music, the most important triads consist
of three notes that can be stacked in thirds. When stacked in thirds, the lowest note
is referred to as the root note. Since there are minor thirds (three semitones) and
major thirds (four semitones), one can distinguish between four types of such triads
(see Figure 5.5).

The first type is referred to as a major triad, where the interval between the root
note and the second note is a major third, and the interval between the second note
and the third note is a minor third (Figure 5.5a). As a result, the interval between
the root note and the third note is a perfect fifth. The second type is the minor
triad, where a minor third is followed by a major third (Figure 5.5b). Again the
interval between the root note and the third note is a perfect fifth. The third type is
called a diminished triad, which consists of two minor thirds (Figure 5.5c). Now,
the interval between the root note and the third note consists of six semitones, a

248 5 Chord Recognition

Fig. 5.5 Various types of
triads over the root note C4.
(a) Major triad. (b) Minor
triad. (c) Diminished triad.
(d) Augmented triad.

Major third

Minor third

Root note

Root note

Fifth

Fifth

Major

Minor

(a)

(b)

(d)

(d)

Minor thirdRoot note Dimished fifthDiminished

Major thirdRoot note Augmented fifthAugmented

tritone (up to enharmonic equivalence) according to Figure 5.3. In the context of a
diminished chord, the same interval is correctly referred to as a diminished fifth,
since it is obtained by reducing the size of a perfect fifth. The fourth type is the
augmented triad, which consists of two major thirds (Figure 5.5d). In this case,
the interval between the root note and the third note consists of eight semitones,
a minor sixth according (up to enharmonic equivalence) to Figure 5.3. The same
interval is correctly referred to as an augmented fifth, since it can be obtained by
increasing the size of a perfect fifth. These definitions again illustrate the complexity
and ambiguity when speaking of intervals in a musical context.

Each of the chord types can be played based on different root notes. Regardless
of the given root note, the four triad types have a different quality in how they are
perceived by a listener. Consisting of a major third and a perfect fifth, the major
triads comprise consonant intervals. Furthermore, there is a high agreement among
the partials of the three constituent notes. As a result, the sound of a major triad is
often described as being coherent, pleasant, and happy. By reducing the pitch of the
second note by one semitone, a major triad transforms into a minor triad. Still re-
garded as consonant and coherent, minor chords are often perceived as sad, gloomy,
or somber. For the diminished and augmented triads, there is little overlap in the
partials of the constituent notes, and these triads are typically perceived as dissonant
and unstable. Often, diminished and augmented triads are used in transitional pas-
sages to move between more stable harmonies based on major and minor chords.
Finally, we want to note that all of the discussed triads also appear as subsets of
more complex chords consisting of four, five or even more notes. For example, a
major triad together with a minor seventh forms a tetrad known as a dominant sev-
enth chord. Since they are beyond the scope of this book, we do not further discuss
such more complex chords and their musical relations, but refer to the literature on
music theory [8, 15, 28].

5.1 Basic Theory of Harmony 249

Fig. 5.6 Overview of all
major chords (top) and all
minor chords (bottom) up
to enharmonic equivalence.
One possible score notation
is given for each chord, as
well as a chroma pattern
encoding the respective three-
element subset (indicated by
the colored cells).

B

A

G

F
E

D

C

G♯/A♭

D♯/E♭

C♯/D♭

A♯/B♭

F♯/G♭

C D♭ D E♭ E F G♭ G A♭ A B♭ B

Cm C♯m Dm E♭m Em Fm F♯m Gm G♯m Am B♭m Bm

B

A

G

F
E

D

C

G♯/A♭

D♯/E♭

C♯/D♭

A♯/B♭

F♯/G♭

5.1.2.2 Major and Minor Chords

Let us have a closer look at the major and minor triads. Since there are twelve differ-
ent root notes (up to enharmonic equivalence and octave shifts), one can basically
form twelve major and twelve minor triads. Figure 5.6 shows a score representation
of these 24 triads, where the lowest note of each chord is the root note. A major
chord is usually denoted with the same symbol used for the pitch class of its root
note. In the following, we use bold characters to distinguish the concept of a chord
from the concept of a pitch class. For example, the major chord with the root C
is denoted by C. This chord, which is also called the C major chord, consists of
three notes belonging to the pitch classes C, E, and G. For the minor chords, we
use the same notation as for major chords except for adding a letter “m” that refers
to “minor.” For example, the C minor chord denoted by Cm consists of the three
notes with pitch classes C, E[, and G. Assuming the equal-tempered scale as for the
case of pitch classes, we do not distinguish between chords such as C] and D[or
G]m and A[m, even though these chords play a different role from a music theory
perspective.

250 5 Chord Recognition

Fig. 5.7 Variants of the C ma-
jor chord. (a) Root position.
(b) First inversion. (c) Sec-
ond inversion. (d) Octave
doubling. (e) Broken chord.

(a) (b) (c) (d) (e)

As one may have noticed from the above considerations, chords can be seen
from different perspectives. In this book, we adopt a rather simplistic view, where
a major or minor chord is determined by the pitch classes or chroma values of its
constituent notes. From a mathematical point of view, each of the triads can then
be regarded as a three-element subset of the set {C,C],D, . . .B} that consists of the
twelve chroma attributes. Equivalently, a three-element subset can be regarded as a
binary chroma vector with three entries of value 1 at the chroma positions encoded
by the subset. The resulting chroma patterns of the 24 major and minor triads are
shown in Figure 5.6. Based on this mathematical model, the twelve major chords
can be obtained by cyclically shifting the major triad C in twelve different ways
(see Section 3.1.2.2). Similarly, one obtains the twelve minor chords from Cm. Note
that each of the 24 major and minor triads leads to a different three-element subset.
In other words, on the pitch-class level, the major and minor triads are uniquely
defined.

On the note level, there are generally many alternatives for realizing a given
chord. As an example, Figure 5.7 shows some variants of the C major chord. When
a chord’s lowest note (the bass note) is its root, the chord is said to be in root po-
sition or in normal form (see Figure 5.7a). When the root is not the lowest note
played in a chord, it is said to be inverted. The first inversion of the C major chord
is shown in Figure 5.7b, and the second inversion in Figure 5.7c. Besides various
types of inversions, the chord’s notes may be further rearranged into different oc-
taves. Additionally, notes of the same pitch class may be added (octave doubling)
(see Figure 5.7d). Finally, the notes of a chord may be played one after another,
resulting in what is referred to as a broken chord (see Figure 5.7e). As an entity
that spans a certain period of time, such a group of notes may still be perceived as a
single chord.

5.1.2.3 Musical Scales

Besides intervals and chords, we now consider another important musical construct
that is referred to as a musical scale. Again, adopting a rather simplistic view, a
scale can be regarded as a set of notes, where the elements are typically ordered by
ascending pitch. While a chord may be thought of as a vertical structure, scales are
usually associated to horizontal structures. Assuming the principle of octave equiv-
alence, scales typically span a single octave, with higher or lower octaves simply
repeating the pattern. In this way, a musical scale can be regarded as a division of
the octave space into a certain number of scale steps, where each scale step is an
interval between two successive notes.

5.1 Basic Theory of Harmony 251

Fig. 5.8 Two different
spellings and score nota-
tions for the chromatic scale.

C D♭ D E♭ E F G♭ G A♭ A B♭ B C

C C♯ D D♯ E F F♯ G G♯ A A♯ B C

So far, we have already encountered a number of different scales. For example, in
Section 1.1.1, we considered the twelve-tone equal-tempered scale, also referred to
as the chromatic scale, where an octave is subdivided into twelve scale steps. In this
case, all scale steps correspond to the same interval having a size of one semitone
(or 100 cents). Due to enharmonic equivalence, there are various spellings and score
notations to represent a chromatic scale; two of them are shown in Figure 5.8.

In the following, we only consider scales that are subsets of the chromatic scale,
where the scale steps can be specified in semitones. In the context of scales, the
minor second (one semitone) is also referred to as a half step and the major second
(two semitones) as a whole step.

As with chords, there are two scale types that are of particular importance in
Western music theory. The first scale type is known as a major scale, which is
made up of seven notes and a repeated octave. The first note of a major scale is
called the key note of the scale. Starting with the key note, the sequence of intervals
between the successive notes of a major scale is

whole, whole, half, whole, whole, whole, half. (5.1)

The chroma name of the key note also determines the name of the scale. For exam-
ple, the major scale starting with a C is called C major (see Figure 5.9a). Sometimes,
the symbol C, as used for chords, is also used as an abbreviation to refer to the scale.
The other major scales are then obtained by cyclically shifting the C major scale.
The notes of a major scale are given names, also known as scale degrees, to specify
their positions relative to the key note. The key note is also called the tonic, which
is the main note of the scale. The fourth note of the scale is called the subdominant
and the fifth note the dominant. The remaining names are indicated in Figure 5.9b.

The second scale type we consider is known as the (natural) minor scale. Similar
to a major scale, a minor scale consists of seven notes and a repeated octave. This
time, however, the sequence of intervals between the notes is

whole, half, whole, whole, half ,whole, whole. (5.2)

Again, there are twelve minor scales with naming conventions similar to those of
the major chords. As an example, Figure 5.9c shows the notes of a C minor scale.

Both major and minor scales can be subsumed under the general term diatonic
scale, which is (by definition) a seven-pitch scale with five whole steps and two
half steps for each octave. There are many more scales used in Western music and
beyond. For example, besides the minor scale introduced above (also referred to as

252 5 Chord Recognition

Fig. 5.9 Diatonic scales.
(a) C major scale. (b) Names
of scale degrees as used for
major and minor chords.
(c) C minor scale.

Tonic

Supertonic

Mediant

Subdominant

Dominant

Submediant

Leading tone

Whole Whole Whole Whole WholeHalf Half

Whole Whole WholeWholeHalf Whole Half

(a)

(b)

(c)

the natural minor), there are other types of minor scales called the harmonic mi-
nor and melodic minor. The notes of the harmonic minor scale are the same as the
natural minor except that the seventh degree is raised by one semitone, making an
augmented second between the sixth and seventh degrees. In this case, the sequence
of intervals between the notes becomes

whole, half, whole, whole, half, whole-and-a-half, half. (5.3)

We have already mentioned the chromatic scale, which involves twelve pitches.
There are other scales such as the pentatonic scale, consisting of five pitches, or the
whole tone scale, consisting of six pitches. A discussion of general musical scales
and their relations is beyond the scope of this book, and we refer to the literature on
music theory [8, 15, 28].

5.1.2.4 Circle of Fifths

One characteristic property of diatonic scales is that they can be obtained from a
chain of six successive perfect fifths. For example, the C major scale is obtained
from an ascending chain of six perfect fifths starting with F:

F−C−G−D−A−E−B. (5.4)

Being the most consonant nonoctave interval, the fifth interval plays a particularly
important role when relating notes, chords, and scales. The property (5.4) means
that all notes of a diatonic scale are related by fifths, which gives the scale a degree
of coherence and balance.

Furthermore, considering fifth relationships also makes it possible to relate en-
tire musical scales. This leads us to the famous circle of fifths shown in Figure 5.10.
The circle of fifths is a visual representation of the relationships among the twelve
tones of the chromatic scale and the associated major and minor scales. More pre-
cisely, the circle of fifths represents the relations between musical keys—a concept

5.1 Basic Theory of Harmony 253

Fig. 5.10 Circle of fifths and
fourths.

G

D

E

BD♭

E♭

F

A

G♭ F♯

A♭

B♭

E♭m D♯m
B♭m

Fm

Cm

Gm

Dm

G♯m

C♯m

F♯m

Bm

Em
Am

C

♭ ♯

Circle of fifthsCircle of fourths

that is closely connected to major and minor scales. A piece’s musical key usually
identifies the tonic note as well as the major or minor triad that represents the har-
monic center (giving a subjective sense of arrival and rest) of the piece. In general,
the notes of a major (minor) scale constitute the basic material for the major (minor)
key sharing the same name. Although many musicians confuse key with scale, as
mentioned in [1], a scale is an ordered set of notes typically used in a key, while
the key is the center of gravity, established by particular chord progressions. In this
book, the distinction of these two concepts will not play an important role, and we
may be a bit sloppy when using these terms.

After these remarks, let us come back to the circle of fifths. At the top of the
circle, there is the C major key. The notes of the corresponding scale are C, D, E,
F, G, A, and B, the so-called natural notes. These notes, which correspond to the
white keys of a piano keyboard, do not require any accidental (], [) when encoded in
Western music notation (see Section 1.1.1). As a result, the key signature of C major
has no flats or sharps. Similarly, the A minor key, whose corresponding scale also
consists of the seven natural notes, shares the same key signature with C major.
In general, for each major key there is a minor key whose corresponding scales
share the same notes. This relationship is referred to as a relative relationship. For
example, the A minor key is denoted as the relative minor of the C major key and
vice versa. In the circle of fifths shown in Figure 5.10, the major keys are noted
outside the circle, whereas the corresponding relative minor keys are noted inside
the circle.

Starting with C major at the top of the circle, one obtains the other keys proceed-
ing clockwise by ascending fifths. The next key is the G major key. We have already
seen that the key notes C and G are closely related by sharing many partials. What
is more, the entire scales are closely related. First, the last four notes of the C major

254 5 Chord Recognition

scale coincide with the first four notes of the G major scale. Then, the two scales
share six out of seven notes; only the F in C major becomes an F] in G major. This
introduces a sharp in the key signature for G major. The same kind of relations hold
between any two subsequent keys or scales along the circle of fifths. Proceeding one
fifth upwards changes one note of the scale and introduces one additional sharp in
the key signature. Repeating this process twelve times in the equal-tempered case,
one returns to the original C major, thus closing the circle.

Similarly, one can travel along the circle in a counterclockwise fashion by de-
scending perfect fifths. Because of octave equivalence, this amounts to ascending
perfect fourths, resulting in a circle of fourths (see Exercise 5.2). Proceeding one
step in this reverse direction again changes one note of the scale. This time, however,
an additional flat is introduced in the resulting key signature. For example, C major
becomes F major, where the note B becomes a B[.

The circle of fifths reflects the degree of “musical” similarity between different
scales; the closer two scales are located on the circle, the more they share in terms
of tonal material. In music, modulations are used to move from one scale or mu-
sical key to another. Since six out of seven notes are shared by adjacent scales, a
modulation by a perfect fifth can be accomplished in a very smooth fashion by only
changing one note by a semitone. Intuitively, the chromatic scale may be regarded
as a “global world” that contains all available tonal material. The major and minor
scales can then be regarded as “local regions” of this world, each having its own
“harmonic” flavor. The circle of fifths provides an orientation guide for the music to
smoothly travel (if desired) from one region to another region.

5.1.2.5 Functional Relation of Chords

Many of the chords used in Western tonal music find a natural home within the sys-
tem of diatonic scales. Recall that the positions of the notes of a given scale relative
to the key note can be expressed in terms of scale degrees (see Figure 5.9). Similarly,
one can consider the relative positions of chords in the context of a given diatonic
scale. This leads us to the study of what is referred to as functional harmony theory,
which tries to explain the principles of harmonic relationships evolving around the
main scale degrees of the tonic, dominant, and subdominant. We now look again at
the major and minor chords (Section 5.1.2.2) from a functional point of view.

Let us start with the C major scale, which consists of the seven notes C, D, E,
F, G, A, and B. Using each of these notes as a root note, we can construct seven
different triads that only consist of notes from the given scale. The resulting chords
are shown in Figure 5.11a. For example, the triad over the key note C of the scale
consists of the notes C, E, and G, which is the C major chord C. Or, the triad over
the second note D consists of the notes D, F, and A, which is the D minor chord Dm.
It turns out that the triads over the first, fourth, and fifth note of the C major scale are
major chords, and the triads over the second, third, and sixth note are minor chords.
Only the triad over the seventh note B is a diminished chord, denoted by Bo. All of
the major and minor chords that appear in this way in the C major scale are closely

5.1 Basic Theory of Harmony 255

Fig. 5.11 Roman numerals
for the chords within a major
scale. (a) C major scale.
(b) G major scale. (c) D major
scale.

(a)

(b)

C Dm Em F G Am Bo

I IIm IIIm IV V VIm VIIo

G Am Bm C D Em F♯o

I IIm IIIm IV V VIm VIIo

(c)

D Em F♯m G A Bm C♯o

I IIm IIIm IV V VIm VIIo

related, which is also reflected by their immediate proximity in the circle of fifths
(see Figure 5.10).

Since chord types are defined in terms of intervals (semitone differences), they
do not change when applying the same semitone shift to all notes. For example,
a major chord remains a major chord when shifting all notes by seven semitones.
The triad C becomes G, the triad F becomes C, the triad G becomes D, and so on.
Therefore, the sequence of chord types is the same for all of the twelve major scales.
This is also demonstrated by Figure 5.11b, which shows the triads over the G major
scale, and by Figure 5.11c, which shows the triads over the D major scale. In other
words, the relationships between the chords of a given major scale do not change
when moving to another major scale.

The objective of functional harmony theory is to represent chords and to study
their relationships independently of the selected scale or key. To this end, the chords
appearing in a scale are represented in terms of the scale degrees as introduced
in Section 5.1.2.3. Recall that we used the scale degrees to refer to note positions
within a scale relative to the key note of the scale. Besides the names as specified
in Figure 5.9b, Roman numerals (I, II, III, IV, . . .) are often used to denote chords
on scale degrees.1 Furthermore, in the case of minor chords, a suffix m is added
to the numeral. For example, I denotes the major chord over the key note, IIm the
minor chord over the second note of the scale, and so on. Furthermore, the names
of the scale degrees are also used to refer to the corresponding chord. For example,
one speaks of the tonic meaning I, the subdominant meaning IV, and the dominant
meaning V.

These conventions are illustrated by Figure 5.11, which shows the chords for the
C major, G major, and D major scales. Note that, in functional harmony theory,
the meaning of a chord depends on the context specified by the given scale. For
example, the chord C is the tonic (I) within C major, but the subdominant (IV)
within G major. Or the chord G is the dominant (V) within C major, but the tonic
(I) within G major, and the subdominant (IV) within D major.

1 This kind of scale-based chord analysis is also referred to as Roman numeral analysis. Another
theory emphasizing functional chord names traces back to Hugo Riemann and is mainly used in
the German music tradition. In this book, the differences between these theories are negligible.

256 5 Chord Recognition

Fig. 5.12 Curve of suspense
(exemplarily for major keys)
and its elements as often
encountered in music.

Tonic and
related chords

Stability Departure Tension Stability

I, IIIm, VIm

Subdominant and
related chords

IV, IIm

Dominant and
related chords

V, VIIo

Tonic and
related chords

I, IIIm, VIm

5.1.2.6 Chord Progressions

Music is rarely static, but rather moves along. It transports a message and aims for
a goal. Musicians use their intuition and experience to generate a harmonic flow
by suitably arranging and combining chords. Such an arrangement of chords over
time is also referred to as a chord progression. Functional harmony theory yields a
language for analyzing and describing such progressions.

Even though there seems to be an endless number of possible chords and chord
progressions, there are often simple rules that govern typical combinations for cer-
tain types of music. One general principle, which is applied not only in music but
also in literature or films, is based on the interplay between tension and release. For
example, starting with a harmonically stable passage, the music departs from this
feeling, creates tension, and then finally returns to the original feeling of stability
(see Figure 5.12). Within a given scale, certain chords provide stability, while other
chords generate a tension requiring some kind of resolution. In particular, the tonic
chord (I) is considered as stable, whereas the dominant chord (V) and its variants
cause the feeling of tension. Of course, these are only very coarse tendencies; the
perception of such qualities also very much depends on the listener’s experience and
expectation, as well as on the musical context.

The progression of chords provides the harmonic foundation for many types of
music. The Roman numerals as introduced in Figure 5.11 can be used to specify
chord progressions in a generic form. Being independent of the underlying musi-
cal key, such descriptions emphasize the chords’ function rather than their specific
realization. For example, jazz musicians are used to Roman numeral notation and
can realize the notated chords in any given musical scale. The essence of a song
or piece of music can often be described by a characteristic chord progression. For
example, many songs use only three chords based on the progression I− IV−V.
Another well-known progression is the 12-bar Blues scheme, which (in its basic)
form can be represented as: I− I− I− I− IV− IV− I− I−V− IV− I− I. This
scheme is used in Blues music and related styles, where this basic progression is
typically enriched by the use of seventh chords.

To conclude this short tutorial on music theory, we want to emphasize that har-
mony is one of the fundamental characteristics of music, along with other aspects in-
cluding rhythm, melody, bass lines, instruments, dynamics, articulation, and lyrics.
In the following sections of this chapter, we do not assume a detailed knowledge of

5.2 Template-Based Chord Recognition 257

C G

Audio
representation

Prefiltering
▪ Compression
▪ Overtones
▪ Smoothing

▪ Smoothing
▪ Transition
▪ HMM

Chroma
representation

Pattern
matching

Recognition
result

Postfiltering

Major
triads

Minor
triads

Fig. 5.13 Overview of the components of a typical processing pipeline for automated chord recog-
nition.

harmony theory. However, the reader should keep in mind that harmony is closely
related to chords and their relationships. Chords can be described in various ways
including chroma-like patterns or in terms of functional properties. In particular, we
have seen that the meaning and perception of a chord critically depend on the mu-
sical context. Also, for a given musical genre, there are certain chord progressions
that are more likely to occur than others. For example, a C major chord C will most
likely be followed by G or Am, rather than by C] or Gm. As we will see, this fact
can be exploited for automated chord recognition by modeling a chord not as an
isolated event, but as an element of an entire chord progression.

5.2 Template-Based Chord Recognition

As mentioned in the introduction, a typical chord recognition system consists of two
main steps. This is again illustrated by Figure 5.13. In the first step, the given audio
recording is cut into frames, and each frame is transformed into an appropriate fea-
ture vector. Most recognition systems rely on chroma-based audio features, which
correlate to the underlying tonal information contained in the audio signal. In the
second step, pattern matching techniques are used to map each feature vector to a
set of predefined chord models. The best fit determines the chord label assigned to
the given frame. To improve the chord recognition results, additional enhancement
techniques are applied either before the pattern matching step (referred to as pre-
filtering) or after/within the pattern matching step (referred to as postfiltering) (see
[4, 11]).

In Section 5.2.1, we introduce a first chord recognition procedure that employs
a simple template-based matching strategy. Using suitable evaluation measures
(Section 5.2.2), we then discuss some typical problems one has to cope with in
audio-based chord recognition (Section 5.2.3). Finally, in Section 5.2.4, we describe

258 5 Chord Recognition

how some of these problems can be alleviated by applying enhancement and pre-
filtering techniques. Later, in Section 5.3, we introduce a more involved postfiltering
approach based on hidden Markov models, which reduces the number of performed
chord changes by incorporating contextual information.

5.2.1 Basic Approach

Given an audio recording of a piece of music, the goal of our chord recognition task
is to find out which chords are played at which time. The first step is to transform the
recording into a sequence X = (x1,x2, . . . ,xN) of feature vectors xn ∈ F , n ∈ [1 : N],
where F denotes a suitable feature space. Then, each feature vector xn is to be
mapped to a chord label λn ∈Λ , where Λ denotes a set of possible chord labels. For
example, one may consider the set

Λ = {C,C], . . . ,B,Cm,C]m, . . . ,Bm} (5.5)

consisting of the twelve major and minor triads. In this case, each frame n ∈ [1 : N]
is assigned to a major chord or a minor chord specified by λn. There are many ways
for transforming the music recording into a feature sequence and for performing the
pattern matching step. Let us start with the most basic procedure.

For the feature extraction step, basically every chord recognition procedure re-
lies on some type of chroma features. This is because chroma-based features cap-
ture a signal’s short-time tonal content, which is closely correlated to the harmonic
progression of the underlying piece. Recall from Section 3.1.2 that, assuming the
equal-tempered scale, the chroma values correspond to the set {C,C],D, . . . ,B}.
This set consists of twelve chroma attributes, which are determined up to enhar-
monic equivalence. As in Section 3.1.2, we identify this set with the set [0 : 11]
by enumerating the chroma attributes such that 0 corresponds to C, 1 to C],
and so on. A chroma feature can then be expressed as a 12-dimensional vector
x = (x(0),x(1), . . . ,x(11))> ∈ F with F = R12. In the following, we start with a
simple chroma variant as defined in (3.6) of Section 3.1.2. Furthermore, in our ex-
amples, we use a window size that corresponds to 200 ms and a hop size of half the
window length. As a result, our feature sequence X = (x1,x2, . . . ,xN) has a feature
rate of 10 Hz. Later in this section, we introduce various feature enhancement strate-
gies and smoothing steps and discuss their influence on the final chord recognition
results.

For the pattern matching step, let us start with a simple template-based chord
recognition strategy (see Figure 5.14). The idea is to precompute a set T ⊂F =R12

of templates denoted by t
λ
∈ T , λ ∈ Λ . Intuitively, each template can be thought

of as a prototypical chroma vector that represents a specific musical chord. Fur-
thermore, we fix a similarity measure s : F ×F → R that allows for comparing
different chroma vectors. Then, the template-based procedure consists in assigning
the chord label that maximizes the similarity between the corresponding template

5.2 Template-Based Chord Recognition 259

Assign to each frame the chord label
of the template that maximizes the

similarity to the chroma vector

B

A

G

F

E

D

C

G♯

D♯

C♯

A♯

F♯

C C♯ D … Cm C♯m Dm

0 0 0 … 0 0 0 …

0 0 0 … 0 0 0 …

0 0 1 … 0 0 1 …

0 1 0 … 0 1 0 …

1 0 0 … 1 0 0 …

0 0 1 … 0 0 0 …

0 1 0 … 0 0 1 …

1 0 0 … 0 1 0 …

0 0 0 … 1 0 0 …

0 0 1 … 0 0 1 …

0 1 0 … 0 1 0 …

1 0 0 … 1 0 0 …

…

(a) (b)

Chroma vector
for each audio frame

24 chord templates
(12 major, 12 minor)

Compute for each frame the
similarity of the chroma vector

to the 24 templates

Fig. 5.14 (a) Overview of a template-based chord recognition procedure. (b) Binary chord tem-
plates for major and minor triads.

and the given feature vector xn:

λn := argmax
λ∈Λ

s(t
λ
,xn). (5.6)

In this procedure, there are many design choices that crucially influence the perfor-
mance of a chord recognizer. Which chords should be considered in T ? How are
the chord templates defined? What is a suitable similarity measure to compare the
feature vectors with the chord templates?

For the chord label set Λ , we choose the twelve major and minor triads as in
(5.5). We will see that the restriction to these 24 chord classes is often problematic
from a musical point of view. However, since this choice is simple, convenient, and
instructive, it is often made in the chord recognition literature. We have already
seen in Figure 5.6 how one may define chord templates. Considering chords up
to enharmonic equivalence and up to octave shifts, each chord is specified by a
subset of the set {C,C],D, . . . ,B} or, equivalently, of the set [0 : 11]. For example, a
C major chord C corresponds to the three-element subset {C,E,G} or to the subset
{0,4,7}. Each subset, in turn, can be identified with a binary twelve-dimensional
chroma vector x = (x(0),x(1), . . . ,x(11))>, where x(i) = 1 if and only if the chroma
value i ∈ [0 : 11] is contained in the chord. For example, in the case of the C major
chord C, the resulting chroma vector is

tC := x = (1,0,0,0,1,0,0,1,0,0,0,0)> (5.7)

(see Figure 5.14b). Recall from Section 5.1.2.2 that, when using a chroma-based
encoding, the twelve major chords and twelve minor chords can be obtained by
cyclically shifting the binary vectors for the C major and the C minor triads, respec-
tively.

260 5 Chord Recognition

(a)

(b)

(c)

C
ho

rd
C

ho
rd

C
hr

om
a

(e)

Time (seconds)

C G Am F C G F C(d)

C
hr

om
a

Fig. 5.15 Template-based chord recognition using binary templates for the 24 major and minor
triads. The audio recording consists of the first four measures of the Beatles song “Let It Be”
(see Figure 5.1). (a) Chroma representation. (b) Similarity values between the chroma vectors and
the 24 chord templates. (c) Chord recognition result. (d) Manually specified chord annotations.
(e) Normalized binary templates of the chord recognition result.

5.2 Template-Based Chord Recognition 261

Furthermore, there are many ways for comparing chroma features and chord tem-
plates. Because of its simplicity, we use the inner product of normalized vectors as
a similarity measure s (see (2.37)). This measure has already been used in Chapter 4
for the task of music structure analysis. For convenience, we repeat its definition:

s(x,y) =
〈x|y〉
||x|| · ||y||

(5.8)

for x,y ∈ F \{0}. In the case ||x|| = 0 or ||y|| = 0, we set s(x,y) = 0. Note that this
measure always yields a value s(x,y) ∈ [−1,1]. In the case that the vectors x and y
only have positive entries, one has s(x,y) ∈ [0,1].

To obtain a better understanding of this procedure, we continue our Beatles ex-
ample (the beginning of the song “Let It Be”) from Figure 5.1. In the feature extrac-
tion step, the audio recording is converted into the chroma representation shown in
Figure 5.15a. In the next step, each chroma vector is compared with each of the 24
binary chord templates, which yields 24 similarity values per frame. These similarity
values are visualized in Figure 5.15b in the form of a time–chord representation.
For example, this visualization shows that the chroma vectors at the beginning of
the song are most similar to the template for the C major chord C. Furthermore,
there is also a higher degree of similarity to the templates for Cm, Em, and Am. We
analyze this phenomenon in more detail later in Section 5.2.2 (see Figure 5.17).

According to (5.6), we select for each frame the chord label λn of the template
that maximizes the similarity value over all 24 chord templates. This yields our final
chord recognition result (see Figure 5.15c). Comparing this result with a reference
annotation generated by a music expert (Figure 5.15d), one can observe that the
result obtained from the automated procedure agrees with the reference labels for
most of the frames. Finally, the similarity-maximizing chord templates, which have
been normalized with respect to the Euclidean norm as used in (5.8), are shown in
Figure 5.15e. In a way, this sequence of chord templates may be thought of as a mu-
sically informed quantization of the original chroma representation of Figure 5.15a.

5.2.2 Evaluation

In order to evaluate the quality of a chord recognition procedure, a general approach
is to compare the computed result against a reference annotation. We have already
seen in the context of music structure analysis (Section 4.5) that such an evaluation
often gives rise to various questions. How should the agreement between the com-
puted result and the reference annotation be quantified? Is the reference annotation
well defined? Is it reliable? Are the model assumptions in the formalization of the
chord recognition task appropriate? To what extent do violations of these assump-
tions influence the final result? For all these questions there are no definite answers,
and evaluation results need to be taken with care. Still, quantitative evaluations are
useful indicators. They generally reflect the overall performance of automated pro-

262 5 Chord Recognition

C G Am F C G F C
Am7 C Dm7C G Am C G F CFmaj7 F6C G Am C G C

Time (seconds)

Fig. 5.16 Evaluation of a chord recognition result for the first four measures of the Beatles song
“Let It Be”. The top shows a score representation along with two different chord annotations pro-
vided by music experts. One annotation is specified on the half-measure level (every two quarter
notes) and the other annotation on a finer temporal level. The bottom shows the chord recognition
result from Figure 5.15c evaluated on the basis of the half-measure annotation.

cedures and give valuable insights into the characteristics of the underlying music
data.

In the following, we introduce a typical evaluation approach while discussing
various challenges one has to cope with in the modeling, annotation, evaluation, and
computation stage. As in Section 4.5, we assume that there exists a reference anno-
tation, which is also called ground truth. The objective of the automated procedure
is to estimate a chord recognition result that is as close to the reference annotation
as possible.

5.2.2.1 Manual Annotation

The reference annotation is usually generated by music experts, who often perform
harmony analysis on a piece of music, based on a score representation. The expert
partitions the score into sections and assigns to each section a chord label that de-
scribes the predominant harmony. The sections may have different lengths ranging
from a quarter note or even a shorter duration, up to several measures. Depending
on the temporal granularity, the suggested annotations may differ significantly.

As an example, Figure 5.16 shows two annotations of the first four measures of
the Beatles song “Let It Be.” The first annotation has been specified on the half-

5.2 Template-Based Chord Recognition 263

measure level (every two quarter notes) and reflects the rough harmonic progression
of the piece. On this level, an annotated section may contain notes that, strictly
speaking, do not belong to the selected chord. These notes may serve as passing
notes to prepare the transition to the next chord or as suspended notes to intensify
the tension that is to be resolved in the following chords. The second annotation
shown in Figure 5.16 provides chord labels on a finer temporal level, which cor-
responds to a more detailed analysis. For example, on the coarse level, the fourth
half-measure may be regarded as an F major section, even though it contains notes
beyond the triad such as the E or the D. On the finer level, more advanced chord
models are employed to precisely describe the harmonies in this section.

While manually generated annotations are often based on a musical score, the
automated chord recognition procedure to be evaluated may work on the basis of
an audio recording of the piece. In this case, one requires methods for converting
chord annotations specified on the score’s musical time axis into annotations spec-
ified on the physical time axis of the given recording. This process is often done
manually—a tedious and time-consuming task. Instead, one may also employ mu-
sic synchronization techniques as described in Chapter 3 (see also Figure 3.1). Such
automated transfer, however, may bear the risk of introducing additional synchro-
nization errors.

Most audio-based chord recognition procedures work in a frame-wise fashion. To
match the reference annotation to the frame windows used in the feature extraction
step, one needs an additional quantization step. Furthermore, the chord models used
for the manual annotation may disagree with the chord models used in the automated
procedure. In this case, one needs a way to make the chord models comparable, e.g.,
by transforming all chords to the 24 major and minor triads. As also illustrated by
Figure 5.16, such a reduction is problematic due to oversimplifications, and often
introduces additional ambiguities.

In summary, we have seen that the generation and usage of so-called ground-
truth annotations involves several issues. First of all, there is—in general—no well-
defined ground truth, and even music experts may disagree on how to annotate a
given piece of music. Second, the annotations may depend on the employed tem-
poral granularity. Third, one needs to adapt the manual annotations to make them
comparable with the computed results.

5.2.2.2 Precision, Recall, F-measure

Following Section 4.5.1, we now introduce evaluation measures for comparing es-
timated results computed by a chord recognition procedure with manually gener-
ated reference annotations (even though these annotations and measures are to be
treated with caution as discussed before). While considering a frame-wise chord
recognition scenario, we do not want to assume that every frame needs to be anno-
tated. For example, the recording may start with silence or end with applause. In
these cases, there is no meaningful chord annotation, and the corresponding frames
should be left unconsidered in the evaluation. To model this, we extend our label

264 5 Chord Recognition

set Λ by an additional symbol N, which we refer to as nonchord label. In the fol-
lowing, we assume that we have for each frame n ∈ [1 : N] an estimated chord label
λn ∈ Λ ∪{N} and a reference chord label λRef

n ∈ Λ ∪{N} . Adapting the notions
from Section 4.5.1, we define the set of items to be I = [1 : N]×Λ . Note that, when
using this definition, the nonchord label N is left unconsidered. Then,

IRef
+ := {(n,λn) ∈ I | n ∈ [1 : N]} (5.9)

are the positive items (or relevant items) and

IEst
+ := {(n,λRef

n) ∈ I | n ∈ [1 : N]}, (5.10)

are the items estimated as positive. From this, following Section 4.5.1, one can
derive the notions of true positive (TP), false positive (FP), and false negative (FN)
items as well as the precision (P), recall (R), and F-measure (F).

Let us have a closer look at the chord recognition result from Figure 5.15, whose
evaluation is illustrated by Figure 5.16. Using a feature rate of 10 Hz we obtain
N = 130 frames. As reference, the annotations on the half-measure level are used.
These annotations are transferred to the physical time axis of the recording and
further quantized to match the audio frames. Note that some frames may be left
unannotated. For the evaluation measures, we obtain P = 0.84, R = 0.79, and F =
0.82. In other words, most of the computed chord labels agree with the reference
labels. However, there are also some deviations. In particular, these deviations occur
for frames with chord ambiguities due to additional passing or suspended notes.
This becomes clear when looking at the annotation of the finer level. For example,
the chord Am7 in the second measure consists of the four chroma A, C, E, and G.
Although musically close to Am, three of the four chroma also occur in the chord
C. As a result, the automated procedure erroneously labeled most of these frames
as C. A second source for deviations are transition regions between chords, where
the ending sound of one chord may be present in the same analysis window as the
beginning sound of the next chord. For example, one encounters some misclassified
frames in the transition from the chord C to the next chord G in the first measure.

5.2.3 Ambiguities in Chord Recognition

Let us delve into more detail and try to get a better understanding of the various
kinds of ambiguities one encounters in chord recognition.

5.2.3.1 Chord Ambiguities

First of all, as the discussion of the previous example showed, different chords may
be closely related by sharing some of their notes. This fact is again illustrated by
Figure 5.17. For example, as shown by Figure 5.17a, the C major chord shares two

5.2 Template-Based Chord Recognition 265

Fig. 5.17 Ambiguity of
chords. (a) Among the 24
major and minor triads, the
chord C shares two notes with
the chords Am, Cm, and Em,
respectively. (b) The chord
Cmaj7, which consists of the
four notes C, E, G, and B,
includes the chords C and
Em.

A

Cm

Em

Am

C

C

E G

E♭

B

E G

Em

C

B

C
Cmaj7

(a) (b)

of its three notes with the triads Am, Cm, and Em. Therefore, the degree of simi-
larity between C and these three chords is relatively high and may cause confusion
in the classification stage, particularly in the presence of additional notes. This is
also demonstrated by Figure 5.17b. The shown chord Cmaj7 consists of four notes
C, E, G, and B, thus containing the two triads C and Em. When using the similarity
measure s as defined in (5.8), one obtains the following equality of similarity values:

s(tCmaj7, tC) = s(tCmaj7, tEm). (5.11)

In other words, when only considering the 24 major and minor triads, a chroma
vector corresponding to Cmaj7 may be mapped either to the major chord C or to
the minor chord Em. Most of the misclassifications in Figure 5.16 stem from such
chord ambiguities due to an oversimplification of the chord models. This problem
may be mitigated by extending the chord label set. For example, besides the major
and minor triads, one may also introduce chord templates that correspond to major
seventh chords. However, on the downside, increasing the number of possible chords
also increases the confusion probability in the classification stage.

5.2.3.2 Acoustic Ambiguities

In our chord recognition scenario, we start with an audio representation of a given
musical work rather than with a score representation. Therefore, besides chord am-
biguities due to musical reasons, one also has to deal with ambiguities that are in-
troduced by acoustic properties of the recorded music. In particular, the presence of
partials may have a significant influence on the results of a chord recognizer. Re-
call from Section 1.3.2 that playing even a single note on an instrument produces a
complex sound mixture. The main frequency components are the fundamental fre-
quency and its harmonics, the integer multiples of the fundamental frequency. As
illustrated by Figure 1.20 and Figure 5.4, the first harmonic of a harmonic series can
be approximated by the notes of the equal-tempered scale. For example, in the case
of the note C2, the first eight harmonics correspond to the notes

C2,C3,G3,C4,E4,G4,B[4,C5. (5.12)

266 5 Chord Recognition

On the chroma level, these harmonics cover the chroma C, E, G, and B[. In other
words, because of harmonics, the musical tone of the note C2 may possess sub-
stantial energy not only in the chroma band C, but also in the chroma bands G,
E, and possibly B[(among others). Since the energy usually decreases with higher
harmonics, most of it is typically contained in the C and G bands.

What does this observation imply for our template-based chord recognition pro-
cedure based on binary chord templates for the 24 major and minor triads? When
comparing the chroma pattern of a musical tone for a single note C2 with the binary
chord templates, the template for the chord C will yield the highest similarity. From
a musical point of view, this is not a meaningful or desirable property, since the note
C2 may serve different purposes. For example, it could also be the root note of the
chord Cm or the dominant of the chord F.

Now, when playing an entire chord, one obtains a superposition of the harmonics
of all involved notes. The above effects become quite complex and confusing. For
example, let us consider the minor chord Cm, which consists of the chroma C, E[,
and G. Besides having energy in these three chroma bands, the acoustic sound of
this chord may also have substantial frequency components in the chroma band E
(coming from the fifth harmonic of C). When comparing the resulting chroma vector
with the binary major and minor chord templates, the energy in the E-band as well
as in the E[-band may cause some confusion between the chords Cm and C. This
kind of problem, which is also known as major–minor confusion, often occurs in
automated chord recognition. The effect is further aggravated by the fact that the
notes of a chord may be played with different intensities. In particular, when the
third of a minor chord is played weaker, the resulting sound may be classified as a
major chord.

The effect of harmonics is also illustrated by Figure 5.18, which shows the sim-
ilarity values between various chroma patterns and the binary chord templates for
the 24 triads (see (5.5)). In Figure 5.18a, we start with chroma patterns that are ob-
tained by simply considering normalized binary chord templates. In this case, the
similarity values shown in Figure 5.18c reflect the number of notes that are shared
by the respective chroma patterns and chord templates. In Figure 5.18b, the chroma
patterns were modified by considering the first eight harmonics for each involved
note. Contrary to the previous scenario, the energy is now spread over more chroma
bands with a bias to certain bands. For example, in the pattern for C (first column),
the chroma band G contains most of the energy. This is because G appears not only
as one of the three notes in the chord, but also as the third harmonic of the root note
C. As shown by Figure 5.18d, the modified chroma pattern for C is now closer to
the binary template for G than to the template for C.

5.2.3.3 Tuning

Often, a music recording is not tuned as specified by the center frequencies of the
equal-tempered scale (see (1.1) of Section 1.3.2). For example, as we have already
mentioned in Section 3.1.2.1, orchestras are sometimes deliberately tuned with a

5.2 Template-Based Chord Recognition 267

(a)

C
ho

rd
la

be
l

C
hr

om
a

Chord label
… …

… …

… …

……
Chord label

… …

… …

(b)

C
ho

rd
la

lb
el

C
hr

om
a

Chord label
… …

… …

… …

……
Chord label

… …

… …

(c) (d)

Fig. 5.18 Similarity values between chroma patterns and binary chord templates considering the
24 triads (indexed by chord labels) of (5.5). The marked entries in the figure are discussed in
the text. (a) Normalized binary chroma patterns. (b) Normalized chroma patterns considering the
first eight harmonics for each note involved. (c) Similarity values between the chroma patterns of
(a) (horizontal axis) and binary chord templates (vertical axis). (d) Similarity values between the
chroma patterns of (b) (horizontal axis) and binary chord templates (vertical axis).

tuning frequency that lies above or below the usual 440 Hz. Furthermore, the tuning
may differ from the expected values due to a modification of the playback speed or
the application of other postprocessing operations. In Figure 3.8 we have seen that
a deviation from the assumed center frequencies may introduce severe degradations
in the quality of musically informed audio features such as chroma-based features.

In chord recognition, tuning issues can lead to fatal errors. Such an example
is shown in Figure 5.19, where the audio recording has been modified by shifting
the frequencies half a semitone (50 cents) upwards. In the resulting chromagram
(Figure 5.19a), one can observe that the notes’ energy is spread across neighboring
chroma bands. This leads to chroma patterns that do not fit well within the binary
chord templates. While some of the computed chord labels correspond to the ex-
pected chord labels up to a semitone shift, most of the classification results are
somewhat chaotic.

The compensation of tuning effects is of great importance in audio analysis tasks
such as chord recognition. In Section 3.1.2.1 and Exercise 3.5, we discussed how to

268 5 Chord Recognition

Fig. 5.19 Chord recognition
result for the Beatles example
from Figure 5.16, where the
audio recording has been
tuned half a semitone (50
cents) upwards. (a) Chroma
representation. (b) Chord
recognition result.

Time (seconds)

(a)

C
ho

rd
C

hr
om

a

(b)

approach such tuning issues by adjusting the frequency binning used in the compu-
tation of the pitch-based log-frequency spectrogram.

5.2.3.4 Segmentation Ambiguities

Besides ambiguities in the chroma patterns and oversimplification issues introduced
by the chord models, one also has to deal with ambiguities in the temporal dimen-
sion. To illustrate this problem, let us start with an example: the famous C major
prelude by Johann Sebastian Bach. The first four measures, along with their chord
annotations, are shown in Figure 5.20a. As demonstrated by Figure 5.20b, our chord
recognizer exhibits many classification errors, in particular in the second and third
measure. Let us analyze the reasons for this behavior.

In this example, each half-measure starts with a bass note. Then the other notes
join in and gradually build up the sound of an entire chord. We have already en-
countered such broken chords in Figure 5.7e. Even though the notes are not played
simultaneously, a broken chord as a whole may be perceived as a single harmonic
unit.

In our basic chord recognition procedure, we have chopped up the signal into
short frames and classified each frame separately. For example, in Figure 5.20b, we
have used an analysis window with a duration of 200 ms (and a hop size corre-
sponding to 100 ms, which yields a feature resolution of 10 Hz). In other words, the
recognized chord label of a frame only represents the harmonic content of a 200 ms
section of the music recording.

Let us come back to our Bach example. In the recording, a whole measure has a
duration of about 2400 ms. Thus we have 600 ms per quarter note and 150 ms per

5.2 Template-Based Chord Recognition 269

C Dm G C

Time (seconds)

(a)

(b)

(c)

Fig. 5.20 Evaluation of a chord recognition result for the first four measures of the Prelude
BWV 846 in C major by Johann Sebastian Bach. (a) Musical score and reference annotations.
(b) Chord recognition result using a frame length of 200 ms and a hop size of half the window
length (yielding a feature rate of 10 Hz). (c) Chord recognition result after applying prefiltering
using 20 frames.

sixteenth note. Therefore, in each analysis frame of 200 ms, one finds the onsets of
at most one note. Even though the sound of each note may last much longer than
the notated duration, the harmonic content of each frame is dominated by only one
or two notes. This explains the many misclassifications and chord label changes
in the recognition result of Figure 5.20b. Interestingly, these errors only occur in
the second and third measures, while the first and fourth measures are classified
correctly (see Exercise 5.6).

An obvious strategy for improving the chord recognition result in our Bach exam-
ple is to use larger frame sizes that better correspond to the half-measure or measure
level of the annotations. Alternatively, one may merge or smooth over the analysis
frames by applying a filter prior to the pattern matching step. For example, applying
a smoothing procedure (similar to Figure 3.9) to merge the information over 20 con-
secutive frames (covering in total roughly 2 sec of the audio), one can significantly
improve the classification result (see Figure 5.20c). We discuss this strategy in more
detail in Section 5.2.4.4.

270 5 Chord Recognition

5.2.4 Enhancement Strategies

We have seen that the challenges in automated chord recognition arise from a mul-
titude of factors that concern musical, acoustic, and temporal aspects. Due to the
vagueness of the chord recognition task, even humans may disagree and argue about
how to harmonically interpret certain musical phenomena. Therefore, automated
methods alone will never be enough to “solve” chord recognition. However, there
are certain strategies for “improving” automated methods in the sense that they come
closer to what humans may have agreed on. In the following, we discuss some of
these strategies.

5.2.4.1 Templates with Harmonics

As a first strategy, the overall procedure may be improved by refining the chord tem-
plates that are used in the pattern matching step. So far, as illustrated by Figure 5.14,
we have used idealized binary chord templates that indicate the presence or absence
of notes in the given chord. For real music recordings, however, the presence of har-
monics and other sound components leads to chroma features where the energy is
spread over the chroma bands in a more unstructured, nonbinary fashion. This mo-
tivates the modification of the chord templates by introducing a model that accounts
for harmonics.

Let us have a look at a typical construction. As in Section 5.2.3.2, we consider
the first eight harmonics and their note correspondences. In the case of a note with
chroma C, we have seen in (5.12) that the first eight harmonics correspond to the
chroma values

C,C,G,C,E,G,B[,C. (5.13)

Often, the energy in the harmonics decays in an exponential fashion. This can be
modeled by assuming that the energy of the kth partial is αk−1 for some α ∈ [0,1],
k ∈ N0. Form this, one can define a template with harmonics for the chroma C by
setting

th
C = (1+α +α

3 +α
7,0,0,0,α4,0,0,α2 +α

5,0,0,α6,0)>. (5.14)

A chord template with harmonics for the major chord C is obtained by summing up
the templates over the chord’s chroma classes:

th
C = th

C + th
E + th

G. (5.15)

Similarly, one obtains chord templates for the other major and minor triads. The
chroma patterns shown in Figure 5.18b have been computed this way using the pa-
rameter α = 0.9. The chord template in (5.15) can be further refined by introducing
additional parameters that weight the notes of a given chord in different ways (see
Exercise 5.8).

5.2 Template-Based Chord Recognition 271

5.2.4.2 Templates from Examples

Instead of explicitly modeling the harmonics, a conceptually different approach is
to “learn” chroma patterns for the chord templates from labeled training data. The
input of such a learning procedure, which is also known as supervised learning,
consists of a set of training examples. Each example, in turn, is a pair consisting
of an input object and an output value. In our case, the input objects are chroma
vectors and the output values are chord labels. The objective of supervised learning
is to infer a classification scheme that correctly determines the chord labels for a
number of unknown chroma vectors, thus generalizing from the training data to
unseen situations in a reasonable way.

In the chord recognition context, the simplest way to incorporate knowledge from
labeled chroma vectors into the recognition pipeline is to replace the chord tem-
plates by averages. To this end, we assume that we have for each λ ∈Λ a set Tλ of
chroma vectors labeled with λ . Then, we define the average template ta

λ
by taking

the entrywise average:

ta
λ
(i) :=

1
|Tλ | ∑

x∈Tλ

x(i) (5.16)

for i ∈ [0 : 11], where |Tλ | denotes the number of elements contained in the set Tλ .
The main advantage of such a data-driven approach is that the learned chord tem-

plates naturally inherit the musical and acoustic properties from the training vectors
(see Figure 5.21c). In other words, the models automatically adapt to the underlying
data. On the downside, supervised learning requires suitably labeled training data,
which should accurately represent the properties of the unseen data to be classified.
In particular, one needs for each possible output value a sufficient amount of training
material. Such labeled data are often hard to come by.

In the chord recognition context, one can alleviate this problem by exploiting the
close relationships within the major and minor triads. Recall that the chroma pat-
terns of the twelve major triads are related by cyclic shifts (see Section 5.1.2.2). This
also holds for the twelve minor triads. Therefore, instead of learning 24 chord tem-
plates, it suffices to learn the chord templates only for the C major and the C minor
chords. The other templates can then be derived from these two prototype patterns
via cyclic shifts. A similar trick can be used to increase the training material for
learning the C major and the C minor patterns. To this end, all training chroma
vectors labeled with a major chord are cyclically shifted to correspond to C major,
while the chroma vectors labeled with a minor chord are transformed into a C minor
pattern.

Taking the average templates is a simple way to adapt a template-based chord
recognizer to given training data. More involved approaches are often based on
statistical models that capture not only the averages but also the variances in the
training data. In such approaches, the templates are replaced by chord models that
are specified by, e.g., Gaussian distributions given in terms of a mean vector and
a covariance matrix. The similarity of a given chroma vector to a chord model is
then expressed by a Gaussian probability value and the assigned label is determined

272 5 Chord Recognition

Fig. 5.21 Various types of
enhanced chroma features.
All chroma vectors are nor-
malized with respect to the
Euclidean norm and have a
10 Hz resolution. (a) Mu-
sical score and reference
annotations. (b) Binary chord
templates (corresponding
to reference annotations).
(c) Average chord templates
obtained from training data
(corresponding to reference
annotations). (d) Original
chroma features obtained
from an audio recording.
(e) Chroma features from (d)
after applying logarithmic
compression (using γ = 10).
(f) Chroma features from (e)
after applying smoothing (us-
ing L = 20).

Time (seconds)

C Dm G C

(b)

(c)

(d)

(e)

(a)

(f)

by the probability-maximizing chord model. The discussion of such statistical ap-
proaches is beyond the scope of this book, and we refer the reader to the literature
such as [4].

In practice, training and evaluation are often performed on the basis of the same
manually annotated dataset. One typically splits up the available dataset into disjoint
subsets called the training set and validation set (sometimes also called the testing
set). In a first stage, the training set is used to learn the chord templates. Then, in the
second stage, the validation set is used to evaluate the resulting chord recognition
procedure (see Section 5.2.2). The goal of such a cross-validation approach is to
obtain insights into how well the procedure generalizes when applied to unseen
data.

To reduce the dependency of the overall procedure on the partitioning of the
dataset, one often performs multiple rounds of cross-validation. One way is to ran-
domly partition the dataset into K subsets of equal size. One of the subsets is used as
the validation set, whereas the union of the other K−1 subsets is used as the training
set. The cross-validation is repeated K times (the so-called folds) with each of the K
subsets serving exactly once as the validation set. The K results are then combined,
e.g., by taking the average of the considered evaluation measure, to form a single
estimate. This approach, which is commonly known as K-fold cross-validation, is

5.2 Template-Based Chord Recognition 273

frequently used to evaluate chord recognition procedures that involve some kind of
training.

As an illustrative example, let us consider a concrete scenario. A dataset widely
used in automated chord recognition consists of a collection of 180 Beatles songs
along with publicly available reference chord annotations [7, 16]. The original an-
notations, which go beyond the 24 major and minor triads, need to be reduced to
the 24 chord labels. This may be done by considering only the first two intervals of
each chord, where augmented chords are mapped to major chords and diminished
chords to minor chords. In the case that no meaningful reduction is possible or that
no meaningful chord information exists, the label N is used (see Section 5.2.2.2).

Although this dataset is limited to only one rock band, the results still show cer-
tain tendencies of the chord recognition accuracies. Let us denote this collection by
D. In a 3-fold cross-validation, one randomly partitions D into three subcollections
Dk, k ∈ {1,2,3}, each consisting of 60 recordings. Then, two of the three subcol-
lections are used to train the recognizer, which is then tested on the remaining one.
In each of the three folds, we obtain an evaluation measure. For example, using the
F-measure as introduced in Section 5.2.2.2, one may obtain F = 0.61 in the first
fold, F = 0.66 in the second fold, and F = 0.65 in the third fold. On average, this
yields F = 0.64, which is the result of the cross-validation. We will come back to
this experimental setup in the following sections.

5.2.4.3 Spectral Enhancement

Besides refining and adapting the chord templates, another general strategy is to
modify and enhance the chroma features extracted from the audio recordings to be
analyzed. We have already seen in Section 3.1.2 that there are many chroma variants
with quite different properties. The chroma type used has a strong influence on the
chord recognition results, as has been demonstrated by [4, 11, 17]. In the following,
we consider two typical enhancement strategies.

As a first strategy, we apply logarithmic compression as introduced in
Section 3.1.2.1. Recall that this strategy makes the signal’s chroma distribution more
uniform, thus giving smaller components a larger weight relative to the stronger
components. Starting with the original chromagram C, the logarithmically com-
pressed chromagram is defined by

Cγ := Γγ ◦C (5.17)

(see (3.8)). The constant γ ∈ R>0 determines the degree of compression. The effect
of logarithmic compression has already been demonstrated by Figure 3.7. Similar
effects become visible in Figure 5.21e, which shows the compressed chromagram
using γ = 10 for our Bach example.

To illustrate the kind of dependencies of the chord recognition result on the un-
derlying feature type, we now conduct a small experiment based on the Beatles
dataset introduced in Section 5.2.4.2. Besides the template-based approach using

274 5 Chord Recognition

Fig. 5.22 Dependency of the
chord recognition accuracy
on the compression parameter
γ used in the chroma feature
Cγ . The figure shows the
average F-measures obtained
from a 3-fold cross-validation
conducted on the Beatles
dataset. The results are shown
for three different chord
recognizers based on binary
templates, average templates,
and HMMs.

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35
1 10 100 1000 10000

Chroma type

F-
m

ea
su

re

binary
average

HMM

binary as well as average templates, we also test a third recognizer that employs
hidden Markov models (HMMs). We will discuss this more advanced approach,
which incorporates some temporal context in the classification stage, in Section 5.3.
For each classification strategy, we build chord recognizers that are based on differ-
ent chroma types by changing the constant γ in the logarithmic compression. Then,
each of the recognizers is evaluated by performing a 3-fold cross-validation using
the F-measure as explained in Section 5.2.4.2. The results are shown in Figure 5.22.

Let us discuss the results in more detail, first considering the case of a template-
based chord recognizer using binary templates. Figure 5.22 shows the chord recog-
nition accuracy for C (no compression) and Cγ for γ ∈ {1,10,100,1000,10000}.
Starting with an F-measure of F = 0.46 for C, the recognition rate first increases,
reaching a maximum of F = 0.55 for C100, before it drops again when further in-
creasing γ . This tendency becomes even more distinct when using the chord recog-
nizer based on average templates, where the F-measure rises from F = 0.42 for C to
F = 0.61 for C1000, before it drops again. In the HMM-based approach, which also
involves a training step, one can recognize the same trend.

One reason for the increased chord recognition accuracy is that weak spectral
components, which are often perceptually relevant, are enhanced by the compres-
sion. For very large compression factors, however, the chroma patterns become less
characteristic. The amplification of irrelevant noise-like components may outweigh
the effect of balancing out the harmonically relevant components, thus leading to
a decrease in the overall chord recognition accuracy. In the case of binary chord
templates, the templates are independent of the chroma feature type used. In partic-
ular, higher harmonics are not taken into account by the idealized binary templates.
This may be one of the reasons why the strategy based on binary templates does not
benefit from logarithmic compression to the same extent as the other methods do,
where the templates and chord models are adapted to the underlying chroma type in
the training stage.

Rather than optimizing a given chord recognition procedure, we wanted to
demonstrate how small modifications at the feature extraction stage may have a
significant influence on the chord recognition quality—independently of the classi-

5.2 Template-Based Chord Recognition 275

fication strategy used. In particular, our experiments showed that logarithmic com-
pression is an important step in most chord recognition procedures.

5.2.4.4 Prefiltering

Logarithmic compression can also be thought of as a type of spectral smoothing.
As a second feature enhancement strategy, we now introduce temporal smoothing.
As discussed in Section 3.1.2.3, such smoothing operations can be beneficial for
reducing the effect of irrelevant local variations.

We start with a chromagram given by some sequence X = (x1,x2, . . . ,xN), which
consists of chroma features xn = (xn(0),xn(1), . . . ,xn(11))> ∈ R12, n ∈ [1 : N]. The
easiest smoothing strategy is to apply an averaging filter on each of the twelve com-
ponents of the sequence. To this end, we fix a number L ∈ N that determines the
length of the averaging filter. We then define

xL
n(i) :=

1
L

L−1

∑
`=0

xn+`−b(L−1)/2c(i) (5.18)

for each component i ∈ [0 : 11] and each frame n ∈ [1 : N]. To avoid boundary
problems in (5.18), we assume that xn is defined for n ∈ Z by setting xn := 0 for
n ∈ Z \ [1 : N]. This procedure is often referred to as zero-padding. Furthermore,
note that we apply in (5.18) the averaging in a “centered” way. This preserves the
correspondence between the frame index and the physical time position (given in
seconds) in the audio recording.

As a result of this procedure, we obtain a sequence XL = (xL
1 ,x

L
2 , . . . ,x

L
N), which

is a smoothed version of the original sequence X . The parameter L determines the
degree of smoothing applied in this procedure. The case L = 1 yields the original
sequence X . The effect of smoothing is illustrated by Figure 5.21f, which shows
the chromagram after applying an averaging filter of length L = 20 (measured in
frames). Having used a feature rate of 10 Hz, the length of the smoothing window
corresponds to two seconds of the original audio recording. Note that in our Bach
example, this window roughly corresponds to the duration of a measure, thus nicely
covering all notes of a broken chord. However, in the transitions between two sub-
sequent measures, the note information from two different chords is merged into a
single smoothing window.

We now investigate the effect of temporal smoothing on the chord recognition ac-
curacy by conducting the same kind of experiment as in Section 5.2.4.3. This time,
however, we use the fixed chroma type C10 and then apply smoothing for different
choices of the parameter L. Since smoothing is applied before the pattern matching
step, this step is also referred to as prefiltering. Figure 5.23 shows the resulting F-
measures for a 3-fold cross-validation using three different classification strategies
(binary, average, HMM) and L ∈ {1,2, . . . ,26}. For the chord recognizer based on
binary templates, the F-measure is F = 0.54 for L = 1. The recognition rates first
improve with increasing L and reach a maximum of F = 0.64 for L between 17 and

276 5 Chord Recognition

Fig. 5.23 Dependency of the
chord recognition accuracy
on the smoothing length used
in the prefiltering (based on a
fixed chroma type). The figure
shows the average F-measures
obtained from a 3-fold cross-
validation conducted on the
Beatles dataset. The results
are shown for three different
chord recognizers based on
binary templates, average
templates, and HMMs.

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

Smoothing length

F-
m

ea
su

re

binary
average

HMM

1 5 9 13 17 21 25

23. Then, the rates decrease again when further increasing L. A similar trend can
be observed for the chord recognizer based on average templates. For both strate-
gies, smoothing removes temporal fluctuations and local outliers in the features,
thus improving the frame-wise classification result. Also, the smoothing integrates
nonsynchronous notes that musically belong to the same chord—an effect we have
seen in Figure 5.21f for the broken chords. On the other hand, smoothing reduces
the temporal resolution and may prevent a recognizer from detecting chords of short
duration. For the particular Beatles dataset, a smoothing window corresponding to
roughly two seconds of the audio turns out to be the best trade-off between increased
robustness to outliers and decreased temporal resolution. This trade-off, however, is
highly dependent on the chord change rate of the underlying audio material used for
the evaluation.

In the case of the HMM-based recognizer, temporal smoothing of the features
has a less significant effect on the chord recognition accuracy. This recognizer, as
we discuss in Section 5.3, already incorporates context-aware smoothing within the
classification stage. Therefore, additional smoothing prior to the classification does
not further improve the overall recognition result.

In summary, one can say that temporal feature smoothing is an easy way to im-
prove the overall evaluation measure of chord recognizers that work in a purely
frame-wise fashion. However, the “optimal” smoothing length very much depends
on the data distribution. Rather than using an averaging filter of fixed length, an
alternative approach is to employ musically informed adaptive segmentation tech-
niques. For example, chord changes often go along with beat positions. Therefore,
filtering could be performed in a beat-synchronous fashion, where each analysis
window is determined by two consecutive beat positions (see Section 6.3.3). How-
ever, finding beat positions by automated methods, as will be seen in Chapter 6, is
a challenging task by itself. Instead of modifying the features prior to the classifica-
tion stage, another general approach is to perform some kind of filtering within the
pattern matching step (see Figure 5.13). This leads us to context-aware classification
schemes as discussed in the next section.

5.3 HMM-Based Chord Recognition 277

5.3 HMM-Based Chord Recognition

So far, our template-based chord recognizer worked in a purely frame-wise fashion:
each frame was classified separately without regarding the previous or future frames.
In music, however, chord progressions are not arbitrary, but follow certain rules.
Some harmonic progressions are more probable than others. For example, as illus-
trated in Figure 5.12, one often encounters the harmonic progression I−IV−V−I,
where tension is built up by traveling from the tonic via the subdominant to the dom-
inant, which resolves again to the tonic. Starting with the C major chord C (tonic),
it is more likely to find F (subdominant) or G (dominant) rather than come across
harmonically unrelated chords such as Fm or D[. Furthermore, one often finds the
tendency to stay within the same harmonic context for a certain duration. In other
words, chord changes are relatively rare events given the high temporal resolution
typically used in the feature extraction step.

We have seen that some of these issues can be alleviated by applying a prefiltering
step, which basically removes local outliers and effectively increases the analysis
window. On the downside, prefiltering introduces a fixed time grid and washes out
characteristic information, thus resulting in a loss of flexibility. As an alternative, we
now study a more refined strategy that performs the filtering in a context-sensitive
fashion. The main idea is to introduce a transition model that expresses the likeli-
hood of passing over from one chord to another. This leads us to a concept known as
the hidden Markov model (HMM). The concept of HMMs has been widely used
in applications such as speech recognition [25] and also constitutes the de facto
standard method in most automated procedures for chord recognition [29]. In the
following, we discuss the basic ideas behind HMMs and their application to chord
recognition.

5.3.1 Markov Chains and Transition Probabilities

As said before, certain transitions from one chord to another are more likely than
others. To capture such likelihoods, we now introduce the concept of Markov chains,
closely following the tutorial by Rabiner [25]. Abstracting from our chord recogni-
tion scenario, we assume that the chords to be considered are represented by a set

A := {α1,α2, . . . ,αI} (5.19)

of size I ∈ N consisting of distinct elements αi for i ∈ [1 : I]. The elements αi are
also referred to as states. A progression of chords is realized by a system that can
be described at any time instance n = 1,2,3, . . . as being in one of the states sn ∈A.
The change from one state to another is specified according to a set of probabilities
associated with each state. In general, a probabilistic description of such a system
can be quite complex. To simplify the model, one often makes the assumption that
the probability of a change from the current state sn to the next state sn+1 only

278 5 Chord Recognition

depends on the current state, and not on the events that preceded it. In terms of
conditional probabilities, this property is expressed by

P[sn+1 = α j | sn = αi,sn−1 = αk, . . .] = P[sn+1 = α j | sn = αi]. (5.20)

At this point, we have used the notion of conditional probability without giving a
proper definition. An introduction to the required concepts from probability theory
is beyond the scope of this book, and we need to refer to a standard textbook such
as [6]. Intuitively, a conditional probability expresses the probability of an event
given that another event has occurred. If the events are denoted by E1 and E2, re-
spectively, the conditional probability is commonly denoted by P[E1 | E2] and called
“the probability of E1 given E2.” For example, in the case P[sn+1 = α j | sn = αi] (see
(5.20)), the event E2 expresses that the system is in state αi at the current time point
n. Furthermore, E1 means that the system is in state α j at the next time point n+1.
In the following, we will use similar terms without further explanations.

Let us come back to the property expressed by the conditional probabilities of
(5.20), which make the system “memoryless” with regard to events that took place
before the current time point n. Besides this property, we also assume that the sys-
tem is invariant under time shifts. By definition, the following coefficients become
independent of the index n:

ai j := P[sn+1 = α j | sn = αi] ∈ [0,1] (5.21)

for i, j ∈ [1 : I]. These coefficients, which are also called state transition probabil-
ities, obey the standard stochastic constraint

I

∑
j=1

ai j = 1 (5.22)

for i ∈ [1 : I]. These coefficients can be expressed by an (I× I) matrix, which we
denote by A. A system that satisfies these properties is also called a (discrete-time)
Markov chain. The specific kind of “amnesia” introduced in (5.20) is called the
Markov property.

To illustrate these definitions, let us consider Figure 5.24. In this example, the
Markov chain consists of I = 3 states α1, α2, and α3, which correspond to the ma-
jor chords C, G, and F, respectively. In the graph representation of Figure 5.24a,
the states correspond to the nodes, the transitions to the edges, and the transition
probabilities to the labels attached to the edges. For example, the transition proba-
bility to remain in the state α1 = C is a11 = 0.8, whereas the transition probability
of changing from α1 = C to α2 = G is a12 = 0.1. The transition probability ma-
trix A is shown in Figure 5.24b. Note that each row of this matrix sums up to one,
which is the stochastic constraint (5.22). However, this property need not hold for
the columns of A.

The model expresses the probability of all possible chord changes. To compute
the probability of a given chord progression, we also need the information on how
the model gets started. This information is specified by additional model param-

5.3 HMM-Based Chord Recognition 279

C

FG

0.8

0.60.7

0.2

0.1

0.3

0.10.1

0.1

(a) (b)

α1 = C α2 = G α3 = F

α1 = C a11 = 0.8 a12 = 0.1 a13 = 0.1

α2 = G a21 = 0.2 a22 = 0.7 a23 = 0.1

α3 = F a31 = 0.1 a32 = 0.3 a33 = 0.6

Fig. 5.24 Illustration of a Markov chain with three states. (a) Graph representation of the Markov
chain. (b) Transition probability matrix.

eters referred to as initial state probabilities. For a general Markov chain, these
probabilities are specified by the numbers

ci := P[s1 = αi] ∈ [0,1] (5.23)

for i ∈ [1 : I]. These coefficients, which sum up to one, can be expressed by a vector
of length I denoted by C.

Continuing our example from Figure 5.24, let us assume that C = (c1,c2,c3)
> =

(0.6,0.2,0.2)>. Furthermore, let us assume that we are given a state sequence S =
(s1, . . . ,sN), which is in our case a chord progression. For example, let us consider
the sequence

S = (C,C,C,G,G,F,F,C,C) (5.24)

having length N = 9. Then, using the transition probabilities from Figure 5.24, the
probability of the chord progression with regard to the given model can be computed
via

P[S |Model] = c1 ·a11 ·a11 ·a12 ·a22 ·a23 ·a33 ·a31 ·a11

= 0.6 ·0.8 ·0.8 ·0.1 ·0.7 ·0.1 ·0.6 ·0.1 ·0.8 (5.25)
≈ 0.000129 = 1.29 ·10−4.

This probability is quite a small number. However, rather than its absolute size,
we will see that the size relative to the probabilities of other sequences becomes
important. For example, the chord progression S′ = (F,C,F,C,F,C,F,C,F) has a
probability of P[S′ |Model] = 2 · 10−9, which is much smaller compared with the
one in (5.25). Thus, with regard to our model, the observation S is much more likely
to happen than S′.

280 5 Chord Recognition

5.3.2 Hidden Markov Models

Based on a Markov chain, we can compute a probability for a given observation con-
sisting of a sequence of states or chords. In our chord recognition scenario, however,
this is not what we need. Rather than observing a sequence of chords, we observe a
sequence of chroma vectors that are somehow related to the chords. In other words,
the state sequence is not directly visible, but only a fuzzier observation sequence
that is generated based on the state sequence. Furthermore, rather than computing a
probability of the observation sequence, the goal is to uncover the relation between
the observed feature vectors and the underlying chords.

In the following, we extend the concept of Markov chains to a statistical model
referred to as a hidden Markov model (HMM). The idea is to represent the relation
between the observed feature vectors and the chords (the states) using a probabilistic
framework. Each state is equipped with a probability function that expresses the
likelihood for a given chord to output or emit a certain feature vector. As a result, we
obtain a two-layered process consisting of a hidden layer and an observable layer.
The hidden layer produces a state sequence that is not observable (“hidden”), but
generates the observation sequence on the basis of the state-dependent probability
functions.

Before we formally define this concept, we illustrate the main ideas by continu-
ing our example from Figure 5.24. Recall that the Markov chain with its parameters
(the state transition and the initial state probabilities) can be used to generate a state
sequence. In the case of a hidden Markov model, this state sequence is no longer
directly visible, which also explains the term “hidden.” In Figure 5.25, this property
is illustrated by the “cloud” covering the Markov model. Instead, each state emits
certain entities, which are visible or observable to the outside world. Therefore,
these entities are also referred to as observations of the process. The observations
are emitted according to emission probabilities associated to each of the states. In
our example, the observations are chroma vectors. In Figure 5.25, the space of pos-
sible observations consists of three different chroma vectors. The first observation
vector is emitted with probability 0.7 by state α1 = C, with probability 0.1 by state
α2 = G, and with probability 0 by state α3 = F. This probability distribution reflects
the fact that the first observation vector, which has most of its energy in the C, E, and
G bands, is most likely produced by the state corresponding to the C-major chord
model.

We now formally specify the components of a hidden Markov model. The first
layer of an HMM is a Markov chain as introduced in Section 5.3.1. It is specified
by a set A = {α1,α2, . . . ,αI) of states (5.19), a matrix A = (ai j)i, j∈[1:I] of state
transition probabilities (5.21), and a vector C = (c1,c2, . . . ,cI)

> of initial state prob-
abilities (5.23).

To define the second layer of an HMM, we need to specify a space of possible
output values and a probability function for each state. In general, the output space
can be any set including the real numbers, a vector space, or any kind of feature
space. For example, in the case of chord recognition, this space may be modeled as

5.3 HMM-Based Chord Recognition 281

Fig. 5.25 Illustration of a
hidden Markov model ex-
tending Figure 5.24. The
state-dependent emission
probabilities are indicated
by the labels of the dashed
arrows.

0.7

0.1

0.9 0.2

0.3

0.8

C

FG

0.8

0.60.7

0.2

0.1

0.3

0.10.1

0.1

0

00

States
(hidden)

Observations
(visible)

Emission
probabilities

the feature spaceF =R12 consisting of all possible 12-dimensional chroma vectors.
For the sake of simplicity, we only want to consider the case of a discrete HMM,
where the output space is assumed to be discrete and even finite. In this case, the
space can be modeled as a finite set

B = {β1,β2, . . . ,βK} (5.26)

of size K ∈N consisting of distinct output elements βk, k ∈ [1 : K]. The elements βk
are also referred to as observation symbols.

As indicated before, an HMM associates with each state a probability function,
which is also referred to as the emission probability or output probability. In the
discrete case, the emission probabilities are specified by coefficients

bik ∈ [0,1] (5.27)

for i ∈ [1 : I] and k ∈ [1 : K]. Each coefficient bik expresses the probability of the
system to output the observation symbol βk when in state αi. Similarly to the state
transition probabilities, the emission probabilities are required to satisfy the stochas-
tic constraint

K

∑
k=1

bik = 1 (5.28)

for i∈ [1 : I] (thus forming a probability distribution for each state). The coefficients
can be expressed by an (I×K) matrix, which we denote by B.

In summary, an HMM is specified by a tuple

Θ := (A,A,C,B,B) (5.29)

(see Figure 5.26). The sets A and B are usually considered to be fixed components
of the model, while the three probability measures A, C, and B are the free parame-

282 5 Chord Recognition

Component Meaning Reference
A Set of states αi for i ∈ [1 : I] (5.19)
A State transition probabilities ai j for i, j ∈ [1 : I] (5.21)
C Initial state probabilities ci for i ∈ [1 : I] (5.23)
B Set of observation symbols βk for k ∈ [1 : K] (5.26)
B Emission probabilities bik for i ∈ [1 : I] and k ∈ [1 : K] (5.27)

Fig. 5.26 Overview of the components (A,A,C,B,B) used to specify an HMM.

Algorithm: HMM-based generation of observations

Input: HMM specified by (A,A,C,B,B)
Output: Observation sequence O = (o1,o2, . . . ,oN)

Procedure:
Compute in a loop for n = 1,2, . . . ,N:

If n = 1: Choose an initial state s1 according to the initial state distribution C.
If n > 1: Transit to the new state sn according to the state transition probability

(specified by the ith row of A when sn−1 = αi for some i ∈ [1 : I]).
Choose on = βk for some k ∈ [1 : K] according to the emission probabilities
(specified by the jth row of B when sn = α j for some j ∈ [1 : I]).

Table 5.1 Algorithm for generating a sequence of observations of length N based on an HMM.

ters to be determined. This can be done explicitly by an expert based on his or her
musical knowledge or by employing a learning procedure based on suitably labeled
training data.

Once an HMM has been specified by (A,A,C,B,B), it can be used for various
analysis and synthesis applications. In Section 5.3.3.1, we will see how an HMM
can be used for explaining a given sequence of observations. Since it is very instruc-
tive, we now discuss how to (artificially) generate an observation sequence

O := (o1,o2, . . . ,oN) (5.30)

of length N ∈ N on the basis of a given HMM. As said before, the elements on ∈
B are called observations. The basic idea is to choose a first state according to
the initial state distribution, to generate an observation according to the emission
probabilities, to move on to a next state according to the transition probabilities, and
to iterate this process (see Table 5.1 for a more detailed description).

In our chord recognition scenario, we encounter the inverse problem. Instead of
generating an observation sequence, we are given an observation sequence in the
form of a sequence of chroma vectors extracted from an audio recording. Then our
goal is to associate with each frame a chord label that best “explains” the corre-
sponding chroma vector. Based on a suitable HMM, where the states correspond to
the considered chords, this problem can be viewed as finding or “uncovering” the

5.3 HMM-Based Chord Recognition 283

hidden state sequence that generates the given observation sequence with the highest
probability. In the following section, we introduce several problems for HMMs that
become important for real-world applications and present an algorithm for solving
the specific problem at hand.

5.3.3 Evaluation and Model Specification

Following the tutorial by Rabiner [25], we now discuss some general problems for
HMMs that concern, on the one hand, the specification of the free model parameters,
and on the other hand, the evaluation of observation sequences.

5.3.3.1 Evaluation Problem

In Section 5.3.1, we discussed how to compute the probability of a state sequence
with regard to a given Markov chain. We now consider the same kind of evaluation
problem for the case of HMMs. In this case, we are given an HMM specified by
Θ = (A,A,C,B,B) as in (5.29) and an observation sequence O = (o1,o2, . . . ,oN).
The task is to compute the probability

P[O |Θ] (5.31)

of the observation sequence given the model. From a slightly different viewpoint,
this probability can be regarded as a score value that expresses how well a given
model matches a given observation sequence. This interpretation becomes useful
in the case where one is trying to choose among several competing models. The
solution would then be to choose the model which best matches the observation
sequence.

A typical application scenario is the task of isolated word recognition. For ex-
ample, let us assume that we want to build a system for recognizing the words
“zero,” “one,” “two,” “three,” and so on for the ten digits. A typical procedure is to
build a separate HMM for each of the words. Then, given a speech signal of a word,
the signal is transformed into a suitable feature representation used as the observa-
tion sequence. Each of the ten HMMs is evaluated on this observation sequence,
yielding a probability value. Finally, the speech signal is classified according to the
word represented by the probability-maximizing HMM.

Computing the overall probability for an HMM to output a given observation se-
quence is not as straightforward as in the case of a Markov chain. The reason is that
the hidden state sequence is not known and that every possible state sequence may
contribute to the overall probability. To be more precise, let O = (o1,o2, . . . ,oN) be
an observation sequence with on = βkn ∈B for some suitable kn ∈ [1 : K], n∈ [1 : N].
Furthermore, let S = (s1,s2, . . . ,sN) be a fixed state sequence with sn = αin ∈ A for
some suitable in ∈ [1 : I], n ∈ [1 : N]. Then the probability P[O,S |Θ] for generating

284 5 Chord Recognition

the state sequence S as well as the observation sequence O can be obtained as fol-
lows: First, the HMM needs to jump into the state αi1 (with probability ci1), then it
emits o1 (with probability bi1k1), moves on to state αi2 (with probability ai1i2), and
so on. This yields

P[O,S |Θ] = ci1 ·bi1k1 ·ai1i2 ·bi2k2 · . . . ·aiN−1iN ·biN kN . (5.32)

Next, to obtain the overall probability P[O |Θ], one needs to consider all possible
state sequences of length N:

P[O |Θ] = ∑
S=(s1,s2,...,sN)

P[O,S |Θ] (5.33)

=
I

∑
i1=1

I

∑
i2=1

. . .
I

∑
iN=1

ci1 ·bi1k1 ·ai1i2 ·bi2k2 · . . . ·aiN−1iN ·biN kN . (5.34)

This leads to IN summands, a number that is exponential in the length N of the
observation sequence. Therefore, in practice, this calculation is computationally in-
feasible even for a small N. The good news is that there is a more efficient way
to compute P[O | Θ] using an algorithm that is based on the dynamic program-
ming paradigm. This procedure requires a number of operations on the order of
I2N (instead of IN). Since we do not require this procedure in our chord recognition
scenario, we do not discuss it in this book and refer to [25] for a detailed description.

5.3.3.2 Uncovering Problem

Next, we discuss the so-called uncovering problem, which is the problem rele-
vant for our chord recognition scenario. Again, we are given an HMM specified
by Θ = (A,A,C,B,B) and an observation sequence O = (o1,o2, . . . ,oN). Instead
of finding the overall probability for O, where one needs to consider all possible
state sequences, the goal of the uncovering problem is to find the single state se-
quence S = (s1, . . . ,sN) that “best explains” the observation sequence. The uncover-
ing problem stated so far is not well defined since—in general—there is not a single
“correct” state sequence generating the observation sequence. Indeed, one needs a
kind of optimization criterion that specifies what is meant when talking about a best
possible explanation. There are several reasonable choices for such a criterion, and
the actual choice will depend on the intended application.

One possible optimization criterion is to choose the state sequence S∗ that yields
the highest probability Prob∗ when evaluated against the observation sequence O:

Prob∗ = max
S=(s1,s2,...,sN)

P[O,S |Θ], (5.35)

S∗ = argmax
S=(s1,s2,...,sN)

P[O,S |Θ]. (5.36)

5.3 HMM-Based Chord Recognition 285

Note that the probability P[O,S | Θ] is one of the summands contributing to the
overall probability P[O |Θ] in (5.33). To find the sequence S∗ using the naive ap-
proach, one would have to compute the probability value P[O,S |Θ] for each of the
IN possible state sequences of length N and then look for the maximizing argument.
Fortunately, there is a technique known as the Viterbi algorithm for finding the
optimizing state sequence in a much more efficient way.

The Viterbi algorithm, which is similar to the DTW algorithm (Section 3.2), is
based on dynamic programming (Section 3.2.1.3). The idea is to recursively com-
pute an optimal (i.e., probability-maximizing) state sequence from optimal solu-
tions for subproblems, where one considers truncated versions of the observation
sequence. Let O = (o1,o2, . . . ,oN) be the observation sequence. As in the case of
DTW (see (3.22)) we define the prefix O(1 : n) := (o1, . . . ,on) of length n ∈ [1 : N]
and set

D(i,n) := max
(s1,...,sn)

P[O(1:n),(s1, . . . ,sn−1,sn = αi) |Θ] (5.37)

for i ∈ [1 : I]. In other words, D(i,n) is the highest probability along a single state
sequence (s1, . . . ,sn) that accounts for the first n observations and ends in state sn =
αi. The state sequence yielding the maximal value

Prob∗ = max
i∈[1:I]

D(i,N) (5.38)

is the solution to our uncovering problem.
The (I×N) matrix D can be computed recursively along the column index n ∈

[1 : N] (see Figure 5.27). For the case n= 1, the prefix observation sequence consists
of the single element o1 = βk1 . Therefore, the value D(i,1) for some i ∈ [1 : I] is the
probability to start (and end) with state αi and to emit the element o1 = βk1 :

D(i,1) = cibik1 . (5.39)

This constitutes the initialization of our recursion. Now, let us assume that we want
to compute D(i,n) for some n ∈ [2 : N] and i ∈ [1 : I]. Let (s1, . . . ,sn−1,sn) be the
optimal state sequence yielding D(i,n). Then, by the definition in (5.37), we have
sn = αi and the observation on = βkn is emitted with probability bikn . Next, let us
look at the truncated sequence (s1, . . . ,sn−1) and suppose that it ends with the state
sn−1 = α j∗ for some j∗ ∈ [1 : I]. Note that the probability of changing from the state
α j∗ at time n−1 to state αi at time n is specified by a j∗i. Therefore, we obtain

D(i,n) = bikn ·a j∗i ·P[O(1:n−1),(s1, . . . ,sn−1 = α j∗) |Θ]. (5.40)

Furthermore, note that the truncated sequence must be optimal for D(j∗,n−1) (oth-
erwise, the sequence (s1, . . . ,sn−1,sn) would not be optimal for D(i,n)). Therefore,
we obtain

D(j∗,n−1) = P[O(1:n−1),(s1, . . . ,sn−1 = α j∗) |Θ]. (5.41)

286 5 Chord Recognition

1

1

2

3

4

5

6

7

8

…
… …

… …

…
…

…

…

…

…
… …

…

…

…

…

n-1 n N

𝑎𝑗𝑖
𝑏𝑖𝑘𝑛

𝐷 𝑗,𝑛 1

𝐷 𝑖,𝑛

𝐷 𝑖𝑁,𝑁

… …𝑐𝑖 𝑏𝑖
𝐷 𝑖, 1

𝑘1

Fig. 5.27 Illustration of the Viterbi algorithm. The blue cells indicate the entries D(i,1) initialized
by (5.39). The red cells illustrate the computation of (5.42). The black cell indicates the index
computed in (5.43).

In the computation, we do not know the truncated sequence (s1, . . . ,sn−1), neither do
we know the index j∗ ∈ [1 : I]. However, it is not hard to see that the index j∗ must
be the index that maximizes the product D(j,n−1) ·a ji (otherwise (s1, . . . ,sn−1,sn)
would not be optimal). Using (5.40) and (5.41), this implies the following recursion:

D(i,n) = bikn · max
j∈[1:I]

(
a ji ·D(j,n−1)

)
. (5.42)

From the (I×N) matrix D, we obtain the maximal probability via (5.38). How-
ever, we do not yet know the optimal state sequence. Again, as with finding the op-
timal warping path in the case of DTW, we need to apply a backtracking procedure
that constructs the optimal state sequence in reverse order. Let S∗ = (αi1 , . . . ,αiN)
denote the optimal state sequence to be constructed. Then, by (5.38), the last ele-
ment αiN is determined by

iN := argmax
j∈[1:I]

D(j,N). (5.43)

Furthermore, the element αin for n = N−1,N−2, . . . ,1 is determined by the maxi-
mizing argument in the recursion (5.42):

in = argmax
j∈[1:I]

(
a jin+1 ·D(j,n)

)
. (5.44)

Table 5.2 summarizes the entire procedure for computing the maximizing probabil-
ity and the optimal state sequence. As indicated in Table 5.2, the backtracking can
be simplified by introducing an (I× (N−1)) matrix E that keeps track of the max-
imizing argument in (5.42). Note that the ‘argmax’ in the backtracking may not be
unique, thus opening up the possibility of having more than one optimal state se-

5.3 HMM-Based Chord Recognition 287

Algorithm: VITERBI

Input: HMM specified by Θ = (A,A,C,B,B)
Observation sequence O = (o1 = βk1 ,o2 = βk2 , . . . ,oN = βkN)

Output: Optimal state sequence S∗ = (s∗1,s
∗
2, . . . ,s

∗
N)

Procedure: Initialize the (I×N) matrix D by D(i,1) = cibik1 for i ∈ [1 : I]. Then compute in
a nested loop for n = 2, . . . ,N and i = 1, . . . , I:

D(i,n) = max j∈[1:I]
(
a ji ·D(j,n−1)

)
·bikn

E(i,n−1) = argmax j∈[1:I]
(
a ji ·D(j,n−1)

)
Set iN = argmax j∈[1:I] D(j,N) and compute for decreasing n = N− 1, . . . ,1 the maximizing
indices

in = argmax j∈[1:I]
(
a jin+1 ·D(j,n)

)
= E(in+1,n).

The optimal state sequence S∗ = (s∗1, . . . ,s
∗
N) is defined by s∗n = αin for n ∈ [1 : N].

Table 5.2 Viterbi algorithm based on dynamic programming.

quence. To obtain a uniquely determined sequence, one may take, for example, the
lexicographically smallest index in case ‘argmax’ is not unique.

Continuing our example from Figure 5.25, we illustrate the principle of the
Viterbi algorithm. The HMM used in this example is specified by Figure 5.28a. In
particular, this model consists of I = 3 states A := {α1,α2,α3} and K = 3 observa-
tion symbols B = {β1,β2,β3}. Let us consider the observation sequence

O = (o1,o2, . . . ,o6) = (β1,β3,β1,β3,β3,β2) (5.45)

of length N = 6. The matrices D and E, which are computed as in Table 5.2, are
shown in Figure 5.28b. For example, one obtains D(1,1) = c1b11 = 0.6 ·0.7 = 0.42.
As another example, the entry D(1,2) is obtained by D(1,2) = a11 ·D(1,1) ·b12 =
0.8 · 0.42 · 0.3 = 0.1008, where E(1,1) = i1 = 1 is the maximizing argument. The
probability of the optimal state sequence is Prob∗ = 0.0006 (rounded up to four
decimal points) with i6 = 2 being the maximizing argument. Starting with this index,
backtracking yields the index sequence (1,1,1,3,3,2), which is highlighted by the
rectangles in the matrix E shown in Figure 5.28b. This corresponds to the optimal
state sequence

S∗ = (α1,α1,α1,α3,α3,α2). (5.46)

This example also illustrates the kind of context-sensitive smoothing introduced by
the HMM. Without regarding the previous and subsequent observations, the second
observation o2 = β3 is best explained by the state α3 (with an emission probability
of b33 = 0.8). However, being preceded by o1 = β1 as well as succeeded by o3 = β1,
the HMM-based procedure favors the state α1 to explain o2 = β3 (even though the
emission probability is only b13 = 0.3). In other words, it is beneficial to stay in state
α1 for the first three time instances rather than to switch back and forth between state

288 5 Chord Recognition

A α1 α2 α3

α1 0.8 0.1 0.1
α2 0.2 0.7 0.1
α3 0.1 0.3 0.6

B β1 β2 β3

α1 0.7 0 0.3
α2 0.1 0.9 0
α3 0 0.2 0.8

State transition probabilities

Emission probabilities

Initial state probabilities C α1 α2 α3

0.6 0.2 0.2

(a)

Optimal state sequenceD o1= β1 o2= β3 o3= β1 o4= β3 o5= β3 o6= β2

α1 0.4200 0.1008 0.0564 0.0135 0.0033 0
α2 0.0200 0 0.0010 0 0 0.0006
α3 0 0.0336 0 0.0045 0.0022 0.0003

E o1= β1 o2= β3 o3= β1 o4= β3 o5= β3

α1 1 1 1 1 1
α2 1 1 1 1 3
α3 1 3 1 3 3

i6 = 2

Observation sequence

β1 β3 β1 β3 β3 β2

S* = (α1,α1,α1,α3,α3,α2)O = (o1,o2,o3,o4,o5,o6)

Input OutputViterbi algorithm

(b)

Fig. 5.28 Illustration of the uncovering problem. (a) Specification of an HMM. (b) Application of
the Viterbi algorithm.

α1 and α3. The HMM trades off the loss in emission probability against the gain
in transition probability, thus reducing the number of transitions between different
states (see Exercise 5.10).

Finally, let us have a look at the overall computational complexity of the Viterbi
algorithm. For the memory requirements, one basically needs to store the (I×N)
matrix D along with other data including the HMM parameters (requiring O(I2)
numbers) and the observation sequence (requiring O(N) numbers). The number of
operations in the Viterbi algorithm is dominated by the recursion (5.42). In this re-
cursion, one needs to maximize a product over j ∈ [1 : I] for each n ∈ [2 : N] and
each i ∈ [1 : I]. This requires O(I2N) operations. The number of remaining opera-
tions has an order smaller than O(I2N). This shows that the overall complexity of
the Viterbi algorithm is O(I2N), which is much better than O(IN) required for the
naive approach.

5.3 HMM-Based Chord Recognition 289

5.3.3.3 Estimation Problem

Besides the evaluation and uncovering problems, the third basic problem for HMMs
is referred to as the estimation problem. Given an observation sequence O, the ob-
jective is to determine the three probability measures specified by A, C, and B of
Θ that maximize the probability P[O |Θ]. In other words, the free model parame-
ters are to be estimated so as to best describe the observation sequence. This is a
typical instance of an optimization problem where the observation sequence serves
as “training material” for adjusting the HMM. As stated by Rabiner [25], the esti-
mation problem is by far the most difficult problem of HMMs. In fact, there is no
known way to explicitly solve the given optimization problem. However, iterative
procedures that find locally optimal solutions have been suggested. One of these
procedures is known as the Baum–Welch algorithm. In the following, we give an
overview of this procedure. For the technical details and proper definitions of the
involved variables we refer to [9, 25].

The Baum–Welch algorithm is a reestimation procedure, which iteratively up-
dates and improves the free model parameters A, C, and B. In order to describe this
procedure, we need to define some variables that depend on a given observation
sequence O and a given HMM specified by Θ . First, let

γn(i) = P[sn = αi | O,Θ] (5.47)

be the probability of being in state αi, i ∈ [1 : I], at a given time instance n ∈ [1 : N].
Similarly, we define

γn(i, j) = P[sn = αi,sn+1 = α j | O,Θ] (5.48)

to be the probability of being in state αi at time n and in state α j at time n+ 1 for
i, j ∈ [1 : I] and n ∈ [1 : N−1]. The two variables are related by

γn(i) =
I

∑
j=1

γn(i, j). (5.49)

Summing γn(i) over the time index n, we obtain a quantity that can be interpreted
as the expected number of times a state αi has been visited. Excluding the last time
index n = N from the summation, the resulting quantity can also be interpreted as
the number of transitions that start from state αi and end in an arbitrary state α j for
i ∈ [1 : I]:

N−1

∑
n=1

γn(i) = expected number of transitions from αi. (5.50)

Similarly, summation of γn(i, j) over the time index n yields a quantity that expresses
the expected number of transitions from αi to α j:

N−1

∑
n=1

γn(i, j) = expected number of transitions from αi to α j. (5.51)

290 5 Chord Recognition

The computation of the described variables is not trivial. The good news is that there
exist efficient algorithms based on dynamic programming, which we have already
mentioned in Section 5.3.3.1. For a description of these procedures, we refer to the
literature [9, 25].

In the Baum–Welch algorithm, one starts with an HMM specified by parameters
Θ = (A,A,C,B,B) and an observation sequence O = (o1,o2, . . . ,oN). From this,
one computes

ĉi = expected number of transitions from αi at time (n = 1)

= γ1(i) (5.52)

âi j =
expected number of transitions from αi to α j

expected number of transitions from αi

=
∑

N−1
n=1 γn(i, j)

∑
N−1
n=1 γn(i)

(5.53)

b̂ik =
expected number of transitions from αi and observing βk

expected number of times in state αi

=
∑

N
n=1 γn(i) ·δon,βk

∑
N
n=1 γn(i)

(5.54)

for i, j ∈ [1 : I] and k ∈ [1 : K]. The function δon,βk
, which is also referred to as the

Kronecker delta, assumes a value 1 if on = βk and a value 0 otherwise. These num-
bers define a transition probability matrix Â= (âi j)i, j∈[1:I], an initial state probability
vector Ĉ = (ĉ1, . . . , ĉI)

>, and an emission probability matrix B̂ = (b̂ik)i∈[1:I],k∈[1:K],
thus yielding a new HMM specified by Θ̂ = (A, Â,Ĉ,B, B̂). One central result in the
theory of HMMs, which we state here without proof, is that

P[O | Θ̂]≥ P[O |Θ]. (5.55)

In other words, replacing the free parameters of the original HMM by the estimated
parameters (Â,Ĉ, B̂) is either insignificant, or increases the probability of the model
outputting the given observation sequence. In the case P[O | Θ̂] = P[O | Θ], the
model Θ is called a critical point. In the case P[O | Θ̂]> P[O |Θ], one says that the
model Θ̂ is more likely than the model Θ with regard to the observation O.

Based on this mathematical fact, one can iteratively use Θ̂ in place of Θ and
repeat the reestimation calculation defined by (5.52), (5.53), and (5.54). This proce-
dure is guaranteed to converge to a critical point. The final result of this reestimation
procedure is called a maximum-likelihood estimate of the parameters of the HMM.
It is important to note that, in general, this critical point only yields a local maxi-
mum of the likelihood function, which assigns to each parameter setting (A,C,B)
the value P[O | Θ]. In practice, this local maximum may be far from the global
maximum. Furthermore, the final estimate delivered by the Baum–Welch algorithm

5.3 HMM-Based Chord Recognition 291

crucially depends on the initialization of the HMM to start with. For further details,
proofs, and links to the literature, we refer to [9, 25].

5.3.4 Application to Chord Recognition

We now show how the concept of HMMs can be applied to our chord recognition
scenario. In particular, we have a look at the transition model, which introduces a
kind of context-aware postfiltering. This leads, as we will see in Section 5.3.4.3, to
substantial improvements in the recognition results beyond the simple prefiltering
approach discussed in Section 5.2.4.4.

First of all, we need to create an HMM that suitably models our chord recog-
nition problem. Recall from (5.29) that an HMM is specified by a tuple Θ :=
(A,A,C,B,B). The states of the HMM are used to model the various chords that
are allowed in the recognition problem. In the following, we consider the twelve
major and minor triads as in (5.5), thus setting

A= (α1, . . . ,αI) := {C,C], . . . ,B,Cm,C]m, . . . ,Bm}. (5.56)

In this case, the HMM consists of I = 24 states, which we enumerate as indicated
by (5.56). For example, α1 corresponds to C and α13 to Cm.

5.3.4.1 Specification of Emission Probabilities

In our chord recognition scenario, the observations are chroma vectors that have
previously been extracted from the given audio recording. In other words, the ob-
servations are 12-dimensional real-valued vectors which are elements of the contin-
uous feature space F = R12. So far, we have only considered the case of discrete
HMMs, where the observations are discrete symbols coming from a finite output
space B (see (5.26)). To make discrete HMMs applicable to our scenario, one possi-
ble procedure is to introduce a finite set of prototype vectors, a so-called codebook.
Such a codebook can be regarded as a discretization of the continuous feature space
F =R12, where each prototype vector represents an entire range of feature vectors.
The process of mapping an arbitrary feature vector to one of the prototype vectors
is also referred to as quantization.

There are many ways for determining a codebook and for performing the quan-
tization. Many approaches are based on clustering techniques, where a set of given
vectors is grouped in such a way that vectors in the same group (called a cluster) are
more similar to each other than to those in other clusters. The prototype vectors of
the codebook are then defined as, e.g., the centroids of the resulting clusters. Fur-
thermore, in the quantization, an arbitrary vector is mapped to the most similar (or
closest) prototype vector.

292 5 Chord Recognition

Finding a suitable codebook as well as a suitable quantization function is in gen-
eral not an easy problem, and there are many design choices to be made. Further-
more, the quantization may introduce serious degradations, in particular for vectors
that are not represented well by the codebook. An alternative is to use continuous
HMMs, where the finite output space B is replaced by a continuous output space.
In this case, the emission probabilities specified by the matrix B are to be replaced
by continuous probability density functions (PDFs). Also the reestimation proce-
dure needs to be modified by considering values of the density functions instead
of discrete probabilities. The PDFs used in practice are typically based on Gaus-
sian functions or mixtures thereof. Such PDFs can be compactly described by a
few parameters (means, variances, mixture coefficients). Similar to the procedure
described in Section 5.3.3.3, one can derive an iterative estimation procedure that
adjusts the PDF parameters (instead of the emission probabilities as in the case of
discrete HMMs) on the basis of given training sequences. For details, which go
beyond the scope of this book, we refer to [9, 25].

5.3.4.2 Specification of Transition Probabilities

In music, certain chord transitions are more likely than others. This observation
was our main motivation for introducing HMMs, where the first-order temporal
relationships between the various chords are captured by the transition probability
matrix A. We introduce the notation αi→ α j referring to the transition from state αi
to state α j, i, j ∈ [1 : I]. For example, the coefficient a1,2 expresses the probability
for the transition α1 → α2 (corresponding to C→ C]), whereas a1,8 expresses the
probability for α1→ α8 (corresponding to C→G). In real music, the change from
a tonic to the dominant is much more likely than transposing by one semitone, so
that the probability a1,8 should be much larger than a1,2. The coefficients aii express
the probability of staying in state αi, i.e., αi→ αi, i ∈ [1 : I]. These coefficients are
also referred to as self-transition probabilities.

A transition probability matrix can be specified in many ways. For example, the
matrix may be defined manually by a music expert based on rules from harmony
theory. The most common approach is to generate such a matrix automatically by
estimating the transition probabilities from labeled data. In the following, we de-
scribe such an automated approach.

To this end, one needs suitably labeled training data. For example, one may use
the annotated Beatles dataset described in Section 5.2.4.2. In the following, we as-
sume that each audio recording of the training dataset is represented by a sequence
of frames and that each frame is labeled with one of the states (the 24 major and
minor triads (see (5.56))). Next, we count how often each of the 24× 24 possible
chord transitions occurs in the training data. To this end, we consider adjacent ele-
ments, so called bigrams, in the labeled frame sequences. Let µ(i, j) be the number
of transitions αi→ α j, i, j ∈ [1 : I]. In other words, µ(i, j) is the number of bigrams
in the training data, where the first frame is labeled by αi and the next frame by α j.
Finally, we define the transition probability matrix A = (ai j)i, j∈[1:I] by setting

5.3 HMM-Based Chord Recognition 293

Fig. 5.29 Estimated transition
probability matrix (using
a log probability scale for
visualization purposes). The
matrix was computed based
on (5.57) using the Beatles
dataset from Section 5.2.4.2.
As an example, the coefficient
a1,8 (corresponding to the
transition C→ G) has been
highlighted.

State

S
ta

te

Lo
g

pr
ob

ab
ilit

y

𝛼
𝛼

ai j =
µ(i, j)

∑k∈[1:I] µ(i,k)
. (5.57)

The numerator of this fraction is the total number of transitions αi → α j, whereas
the denominator counts the total number of transitions starting at αi and going to an
arbitrary state. Note that this definition corresponds to the update rule (5.53).

As an illustration, let us have a look at the transition probability matrix of
Figure 5.29, which has been computed using the Beatles dataset described in
Section 5.2.4.2 (disregarding the frames annotated by N). The feature rate is 10 Hz
as in the previous experiments of this chapter. For the sake of visibility, Figure 5.29
shows the log probability values log(ai j). First of all, note that the matrix is domi-
nated by the coefficients on the main diagonal, which correspond to self-transitions.
Why is this the case? Most of the chord durations occurring in the training data are
much longer (often around one second) than the frame length in use (100 ms corre-
sponding to a feature rate of 10 Hz). As a result, the chord remains stable for several
subsequent frames, thus making the self-transition probabilities much higher than
the probabilities of moving to a different chord.

Next, one can observe in Figure 5.29 that certain transition probabilities such as
a1,8 are much higher than others. This reflects the fact that certain transitions such as
C→ G occur more often than others. This observation is not surprising, since this
transition expresses the musically important relation between C and its dominant
G. More generally, transitions such as I→ V lead to high transition probabilities
between major chords that differ by five or seven semitones, respectively. This ex-
plains some of the secondary diagonals visible in Figure 5.29.

In general, structures of secondary diagonals express the fact that chord transition
probabilities depend on functional relations, which are independent of the underly-
ing musical key (Section 5.1.2.5), between chords. For example, the probability of
moving from the tonic to the dominant is independent of playing a piece of mu-
sic in the C major scale or in the C] major scale. The transition probability matrix
shown in Figure 5.29, however, is more irregular than expected. The reason is that

294 5 Chord Recognition

Fig. 5.30 Transposition-
invariant transition proba-
bility matrix (using a log
probability scale for visual-
ization purposes) starting with
the matrix from Figure 5.29.

Major triads Minor triads

M
aj

or
 tr

ia
ds

M
in

or
 tr

ia
ds

Lo
g

pr
ob

ab
ilit

y

the training set used is not balanced with regard to the various existing musical keys.
For example, the Beatles dataset may contain many songs in the C major or A minor
scales, but rarely a song in the D[major or B[minor scales. As a result, there is not
sufficient training data for obtaining robust estimates of certain transition probabil-
ities.

To make the training set more balanced and invariant to the underlying musical
key, one can apply a similar trick as in Section 5.2.4.2, where we cyclically shifted
the chroma features. This time, we apply a cyclic chroma shift to the considered
bigrams so that the first chord of each bigram corresponds either to C or to Cm. In
this case, we say that the bigrams have been normalized with respect to the chroma
C. For example, after normalization, the transitions C] → G] or D→ A become
C→G. Afterwards, one takes twelve versions of each of the resulting C-normalized
bigrams. These twelve versions are then normalized with respect to the twelve dif-
ferent chroma values. As a result, the size of the training data used for deriving the
matrix A has been increased by a factor of twelve. Furthermore, the statistics on the
number of transitions have become invariant under transpositions (cyclic chroma
shifts). Therefore, we call the resulting matrix a transposition-invariant transition
probability matrix. Figure 5.30 shows such a matrix when applying this construction
to the matrix shown in Figure 5.29.

5.3.4.3 Effect of HMM-Based Postfiltering

We now demonstrate the effect of applying HMMs to our chord recognition sce-
nario and continue the discussion of the Beatles experiments in Section 5.2.4. As
described in Section 5.2.4.2, we use a 3-fold cross-validation on the basis of 180
Beatles songs. The free parameters of the HMM-based and template-based chord
recognizers are either learned automatically from the training set or set manually

5.3 HMM-Based Chord Recognition 295

using musical knowledge. In either case, the validation set is kept independent of
the free parameters of the respective chord recognizer model. In all experiments, we
use a feature rate of 10 Hz.

In Figure 5.22, we have studied the dependency of the chord recognition ac-
curacy on the underlying chroma type. In particular, we have seen that the accu-
racy crucially depends on the compression parameter. The same figure shows that
the HMM-based chord recognizer clearly outperforms both considered template-
based chord recognizers—independently of the feature type used. For example,
using the feature type C, the template-based chord recognizer using binary tem-
plates achieves an F-measure of F = 0.46, while the HMM-based approach yields
F = 0.53. The improvements become even more apparent when considering loga-
rithmically compressed features. For example, for the best performing feature type
C1000, the template-based chord recognizer using average templates achieves an F-
measure of F = 0.61, while the HMM-based approach yields F = 0.74.

The improvements in the HMM-based approach come specifically from the tran-
sition model that introduces context-sensitive smoothing (see also the example in
(5.46) of Section 5.3.3.2). In the case of high self-transition probabilities, a chord
recognizer tends to stay in the current chord rather than change to another one. As
a result, many of the noise-like outliers and ambiguous chroma vectors are skipped,
which can be regarded as a kind of smoothing.

This effect is also demonstrated in Figure 5.31. The broken chords cause many
chord ambiguities of short duration. This leads to many random-like chord changes
when using a simple template-based chord recognizer (see also Figure 5.31b). Us-
ing an HMM-based approach, chord changes are only performed when the rel-
atively low transition probabilities are compensated by a substantial increase of
emission probabilities. Consequently, only the dominant chord changes remain (see
Figure 5.31d).

We have seen in Section 5.2.4.4 that a similar smoothing effect can be achieved
by applying a prefiltering step. This effect is again demonstrated by Figure 5.31c.
However, there are some crucial differences. In prefiltering, which is performed
prior to the pattern matching step, a smoothing filter is applied to the feature
representation. This not only smooths out noise-like frames, but also washes out
characteristic chroma information and blurs transitions. As opposed to prefilter-
ing, the HMM-based approach leaves the feature representation untouched. Further-
more, the smoothing is performed in combination with the pattern matching step.
For this reason, we also call this approach postfiltering. As a result, the original
chroma information is preserved and transitions are kept sharp. The resulting ef-
fect on the recognition accuracy is also illustrated by comparing Figure 5.31d with
Figure 5.31c, where the prefiltering introduces recognition errors, in particular at
the chord boundaries.

The effect of prefiltering and postfiltering is also demonstrated by Figure 5.23,
where we have studied the dependency of the chord recognition accuracy on the
smoothing length used in the prefiltering. In the HMM-based approaches, the accu-
racy is always higher than the one in the template-based approaches—even when
using the best performing prefiltering strategy. The figure also demonstrates that the

296 5 Chord Recognition

(d) (e)

C Dm G C

Time (seconds)

(a)

(b) (c)

Time (seconds)

Fig. 5.31 Different chord recognition procedures applied to the first four measures of the Prelude
BWV 846 in C major by Johann Sebastian Bach (see Figure 5.20). In all procedures, the same
chroma type C10 at a feature rate of 10 Hz is used. (a) Musical score and reference annotations.
(b) Template-based chord recognition. (c) Template-based chord recognition using prefiltering (20
frames). (d) HMM-based chord recognition. (e) HMM-based chord recognition using prefiltering
(20 frames).

combination of postfiltering with prefiltering does not further improve the recogni-
tion results; the two filtering approaches lead to similar improvements that do not
add up, compare also Figure 5.31d with Figure 5.31e.

In conclusion, we want to mention that there is a complex interaction between
the various enhancement and smoothing strategies that have been suggested and ap-
plied for automated chord recognition. For a detailed analysis of these components,
we refer to the excellent study by Cho and Bello [4]. One main result of this study
is the importance of self-transitions in HMM-based chord recognizers. Even though
the strengthening of transitions such as I→ IV or I→ V leads to a boost of certain
musically meaningful chord changes, the main improvements come from high self-
transition probabilities that essentially reduce the number of chord changes. This
result is supported by an experiment using a transition matrix in which all transi-
tions are assigned the same (relatively small) probability value, except for the self-
transitions which are assigned a much larger value (see Figure 5.32). Even when
using this uniform transition probability matrix, which only reduces the number of

5.4 Summary and Further Readings 297

Fig. 5.32 Uniform transition
probability matrix with a large
value on the main diagonal
(self-transitions) and a much
smaller value at all remaining
positions.

Lo
g

pr
ob

ab
ilit

y

S
ta

te
 𝛼

State 𝛼

chord transitions without considering musical context, one obtains similar improve-
ments to the ones when using more complex transition probability matrices.

5.4 Summary and Further Readings

In this chapter, we studied the problem of chord recognition with the objective of
automatically extracting chord labels from a given music recording. This is only a
restricted scenario within the much wider field of harmony analysis, where one stud-
ies the construction of and relationships between chords and their progressions—not
to mention further aspects such as the underlying musical key and the role of non-
chord tones. In Section 5.1, we gave some background on notions such as intervals,
chords, and scales with a focus on Western tonal music. In particular, we discussed
the relation between the perceived consonance of sound mixtures and frequency
ratios of the constituent tonal sound components. For the sake of simplicity, we fo-
cused on the twelve major and minor triads and their (functional) relations within
a given musical scale. For real music, harmony analysis can be very complex and
ambiguous. There are many textbooks on harmony theory, ranging from basic to
advanced material. For introductory texts, we refer to, e.g., [8, 15, 28].

Chord Recognition

Automatic chord recognition, as considered in this chapter, is one of the central
tasks in the field of music information retrieval (MIR). Starting with the paper by
Fujishima [5], numerous approaches have been suggested over the last two decades,
moving from knowledge-driven to data-driven systems. For an overview of this de-
velopment and links to further references, we refer to [24]. Most of the traditional

298 5 Chord Recognition

model-based chord recognition strategies proceed in a similar fashion, as illustrated
by Figure 5.13. In the first step, the given music recording is converted into a se-
quence of chroma-based audio features. These features are often further processed,
for example, by applying suitable smoothing filters to even out temporal outliers
or by applying logarithmic compression procedures to enhance small yet perceptu-
ally relevant spectral components. In the next step, pattern matching techniques are
applied to map the chroma features to chord labels that correspond to the various
musical chords to be considered. Further postfiltering techniques may be applied
to smooth out local misclassifications. Often, hidden Markov models, which jointly
perform the pattern matching and temporal filtering steps within one optimization
procedure, are used. In Section 5.2, we discussed the main ideas of template-based
classifiers and then introduced in Section 5.3 a typical HMM-based approach.

One of this chapter’s main objectives was to illustrate the delicate interplay of the
various feature extraction, filtering, and pattern matching components composing a
chord recognition system—a phenomenon that is not limited to chord recognition
but occurs in most music analysis and retrieval tasks. The situation is complicated
because the components’ behavior may critically depend on various parameters used
for adjusting temporal, spectral, or dynamical aspects. For example, the chroma
representation used as input to the pattern matching step may already have a sig-
nificant impact on the chord recognition accuracy [11, 17]. A detailed analysis of
the interrelation of different chord recognition components can be found in the ar-
ticle by Cho and Bello [4]. We highly recommend this excellent article, which has
also been a source of inspiration for this book chapter. As reviewed by Pauwels et
al. [24], there has been a paradigm shift from model-based approaches (as described
in this chapter) to data-driven approaches. In recent years, automatic chord recog-
nition has been dominated by deep learning approaches thanks to their capability
of performing feature extraction and classification within a single optimization pro-
cedure [10, 13, 19, 24]. By exploiting relationships with other musical properties,
various approaches have been proposed for jointly analyzing chords and musical
attributes such as key, bass notes, and metric positions (see, e.g., [18, 21, 22, 26]).
Further references to such multi-task learning approaches can be found in [24].

To overcome the substantial simplifications that go along when considering only
the 24 major and minor triads, large-vocabulary automatic chord recognizers with
up to 170 chord labels have been proposed [19]. Although making much more sense
from a musical perspective, large-vocabulary systems are often hard to train, since,
for real music, class distributions often become highly skewed. Furthermore, such
systems often ignore the structural similarity between related chords [19]. Despite
substantial progress in automatic chord recognition and the integration of such tech-
niques in commercial products, there is still room for improvement [24]. In the
article [10], the authors give some insights into obstacles and limitations in chord
estimation. One question is whether standard dictionaries and comparison methods,
where all chords are treated independently, reflect the natural relationships between
chord models (see also [19]). Another issue is that chords’ perception in real music
can be highly subjective, thus making the very notion of “ground truth” annotations
tenuous [10]. One research direction to remedy this chord ambiguity problem is pre-

5.4 Summary and Further Readings 299

Fig. 5.33 Overview of different concepts for tonal analysis and related MIR tasks. (Figure adapted
from [31].)

dicting context-dependent interpretations and the personalization of chord recogni-
tion [12].

There are several music processing tasks that are related to chord recognition and
may be subsumed under the term “tonal analysis” [31]. These tasks, as illustrated
by Figure 5.33, refer to different types of tonal structures that hierarchically depend
on each other. For example, the object of global key detection is to assign a single
key label (e.g., tonic note and mode) for the whole song or movement. In contrast,
local key analysis aims at resolving key changes (modulations) that may occur
throughout a song or movement. While some approaches to local key estimation
try to partition a piece into key segments [3, 34], others propose hierarchical visu-
alizations that better account for possible segmentation and key ambiguities [27].
Similar to chord recognition, there has been a shift in the last years from model-
based to data-driven approaches based on deep learning [14, 33]. Typically, a key
segment can be further subdivided into several chord segments. Thus, chord recog-
nition refers to a finer temporal level. Further descending the temporal hierarchy,
one reaches music processing tasks related to music transcription with the goal of
extracting note-level information [2]. Several methods address the problem of de-
tecting chords and local keys at the same time [18, 23, 26]. Apart from concrete tonal
items, several researchers introduce methods for measuring more abstract concepts
such as musical and tonal complexity [30, 32]. For an overview on tonal analysis
tasks and further references to the literature, we refer to [31, 33].

Hidden Markov Models

The chord recognition scenario served as motivation for considering hidden Markov
models (HMMs), one of the essential concepts for modeling time-dependent data
streams. Initially introduced in the late 1960s, HMMs have become mainly known
for their application to speech recognition. Following the classical tutorial by Ra-
biner [25], which we strongly recommend for further reading, we first introduced the

ChordsC G7 Am

Global key

C major G major C major

Global key detection

Chord recognition

Music transcriptionNote level

Segment level

Chord level

Movement level C major

Local key detectionLocal key

Melody
Middle voices

Bass line

300 5 Chord Recognition

Training:
Learn model parameters
(Baum–Welch algorithm)

Training data: labeled
chroma vectors

Musical
knowledge

Evaluation:
Find optimal state sequence

(Viterbi algorithm)

Test data: unseen
chroma vectors

Recognition result:
state sequence

HMM: transition &
emission probabilities

Fig. 5.34 Overview of a typical HMM-based chord recognition approach consisting of a training
and an evaluation stage.

concept of Markov chains, which was then extended to the more powerful concept
of hidden Markov models. In Markov chains, the states are directly visible to the
observer, and therefore the state transition probabilities are the only parameters. In
a hidden Markov model, the states are not directly visible. Instead, an HMM emits
output entities according to a given state-dependent probability distribution.

Following Rabiner’s tutorial [25], we introduced three fundamental problems for
HMMs: the evaluation problem (computing the probability of an observation se-
quence given a specific HMM), the uncovering problem (finding the best sequence
of model states), and the estimation problem (adjusting the model parameters to
best account for an observed sequence). In particular, we discussed the uncovering
problem in more detail and introduced the efficient Viterbi algorithm for solving this
problem. The Viterbi algorithm is based on dynamic programming—a paradigm we
have already encountered in Section 3.2 for computing DTW distances and opti-
mal warping paths. In the application to chord labeling, which is summarized by
Figure 5.34, an HMM was used to uncover the most likely chord labeling sequence
that generates a given sequence of chroma features—an idea originally introduced
by [29].

In this book, we have only considered the most basic variant of discrete HMMs.
There are many more variants and extensions of HMMs, including continuous
HMMs, autoregressive HMMs, and HMMs with specific state transition topologies
(see [25]). The estimation of the model parameters can become very intricate, lead-
ing to challenging and deep mathematical problems. For an excellent textbook on

5.5 FMP Notebooks 301

the classical theory of HMMs, including the discrete as well as the continuous case,
we refer to [9].

5.5 FMP Notebooks

In Part 5 of the FMP notebooks [20], we provide and discuss Python code examples
of all the components that are required to realize a template-based and an HMM-
based chord recognizer. Based on evaluation metrics and suitable time–chord repre-
sentations, we quantitatively and qualitatively discuss how the various components
and their parameters affect the chord recognition results. To this end, we consider
real-world music recordings, which expose the weaknesses of the automatic proce-
dures, the problem modeling, and the evaluation metrics.

The first notebooks of Part 5 mainly provide sound examples of the basic musi-
cal concepts introduced in Section 5.1. In the FMP Notebook Intervals, we provide
Python code examples for generating sinusoidal sonifications of intervals. We then
generate sound examples of the various music intervals with respect to equal tem-
perament, just intonation, and Pythagorean tuning. Besides a mathematical spec-
ification of deviations (given in cents), the sound examples allow for an acoustic
comparison of intervals generated based on the different intonation schemes. Simi-
larly, in the FMP Notebook Chords, we give sound examples for different chords.
In particular, we provide a piano recording as well as a synthesized version of each
of the twelve major and minor triads. Finally, in the FMP Notebook Musical Scales
and Circle of Fifths, we cover the notions of musical scales and keys. In particular,
we look at diatonic scales, which are obtained from a chain of six successive per-
fect fifth intervals and can be arranged along the circle of fifths. In summary, these
three notebooks show how simple sonifications may help to better understand mu-
sical concepts. In a music processing course, one may develop small tools for ear
training in basic harmony analysis as part of small student projects.

After the musical warm-up in the previous notebooks, we introduce in the FMP
Notebook Template-Based Chord Recognition a simple yet instructive chord rec-
ognizer. For illustration, we use the first measures of the Beatles song “Let It Be”
(see Figure 5.1), which is converted into a chroma representation. As we already
discussed in the context of music synchronization (see Section 3.4), there are many
different ways of computing chroma features. As examples, we compute and visu-
alize three different chroma variants as provided by the Python package librosa.
Furthermore, we provide Python code examples to generate chord templates, com-
pare the templates against the recording’s chroma vectors in a frame-wise fashion,
and visualize the resulting similarity values in the form of a time–chord representa-
tion. By looking at the template that maximizes the similarity value, one obtains the
frame-wise chord estimate, which we visualize in the form of a binary time–chord
representation. Finally, we discuss these results by visually comparing them with
manually generated chord annotations. We recommend that students also use the
functionalities provided by the FMP Notebook Sonification of Part B to comple-

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S1_Intervals.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S1_Chords.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S1_Scales_CircleFifth.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S1_Scales_CircleFifth.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S2_ChordRec_Templates.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S2_ChordRec_Templates.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html

302 5 Chord Recognition

ment the visual inspections by acoustic ones. We think that qualitative inspections—
based on explicit music examples and using visualizations and sonifications of all
intermediate results—are essential for students to understand the technical compo-
nents, to become aware of the model assumptions and their implications, and to
sharpen their intuition of what to expect from computational approaches.

Besides a qualitative investigation using explicit examples and visualizations,
one also requires quantitative methods to evaluate an automatic chord recognizer’s
performance. To this end, one typically compares the computed result against a ref-
erence annotation. Such an evaluation, as we discuss in the FMP Notebook Chord
Recognition Evaluation, gives rise to several questions (see also Section 5.2.2).
How should the agreement between the computed result and the reference annota-
tion be quantified? Is the reference annotation reliable? Are the model assumptions
appropriate? To what extent do violations of these assumptions influence the fi-
nal result? Such issues should be kept in mind before turning to specific metrics.
Our evaluation focuses on some simple metrics based on precision, recall, and F-
measure, as we already encountered in the FMP Notebook Evaluation of Part 4.
Before the evaluation, one needs to convert the reference annotation into a suitable
format that conforms with the respective metric and the automatic approach’s for-
mat. Our notebook demonstrates how one may convert a segment-wise reference
annotation (where segment boundaries are specified in seconds) into a frame-wise
format. Furthermore, one may need to adjust the chords and naming conventions.
All these conversion steps are, by far, not trivial and often require simplifying de-
sign choices. Continuing our Beatles example, we discuss such issues and make
them explicit using suitable visualizations. Furthermore, we address some of the
typical evaluation problems that stem from chord ambiguities (e.g., due to an over-
simplification of the chord models) or segmentation ambiguities (e.g., due to broken
chords). We hope that this notebook is a source of inspiration for students to conduct
experiments with their own music examples.

Motivated by the chord recognition problem, the FMP Notebook Hidden
Markov Model (HMM) deepens the topic (closely following Section 5.3). We start
by providing a Python function that generates a state and observation sequence
from a given discrete HMM (see Table 5.1). Conversely, knowing an observation
sequence as well as the underlying state sequence it was generated from (which is
normally hidden), we show how one can estimate the state transition and output
probability matrices. The general problem of estimating HMM parameters only on
the basis of observation sequences is much harder—a topic beyond the scope of this
textbook. The uncovering problem of HMMs (see Section 5.3.3.2) is discussed in
the FMP Notebook Viterbi Algorithm. We first provide an implementation of the
Viterbi algorithm as presented in Table 5.2. In practice, however, this multiplica-
tive version of the algorithm is problematic since the product of probability values
decreases exponentially with the number of factors, which may finally lead to a
numerical underflow. To remedy this problem, one applies a logarithm to all proba-
bility values and replaces multiplication by summation. Our notebook also provides
this log-variant implementation of the Viterbi algorithm and compares it against the
original version using a toy example.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S2_ChordRec_Eval.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S2_ChordRec_Eval.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S5_Evaluation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S3_HiddenMarkovModel.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S3_HiddenMarkovModel.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S3_Viterbi.html

5.5 FMP Notebooks 303

Fig. 5.35 Prefiltering experiments for template-based and HMM-based chord recognizers and
three different chroma representations (STFT, CQT, IIR). The evaluation is performed on the
basis of four Beatles songs (LetItB, HereCo, ObLaDi, PennyL).

In the FMP Notebook HMM-Based Chord Recognition, we apply the HMM
concept to chord recognition. Rather than learning the HMM parameters from train-
ing examples, we fix all the HMM parameters using musical knowledge. In this way,
besides keeping the technical requirements low (not to speak of the massive training
data required for the learning procedure), the HMM-based chord recognizer can be
regarded as a direct extension of the template-based procedure. Note that we con-
sidered in this textbook only the case of discrete HMMs, where the observations
are discrete symbols coming from a finite output space (see Section 5.3.2). In our
application, however, the observations are real-valued chroma vectors. Therefore,
we use an HMM variant in our notebook, where we replace the discrete output
space by a continuous feature space R12. Furthermore, we replace a given state’s
emission probability by a normalized similarity value defined as the inner product
of a state-dependent normalized template and a normalized observation (chroma)
vector. As for the transition probabilities, we use different models as illustrated by
Figure 5.29, Figure 5.30, and Figure 5.32, respectively. Based on this HMM variant,
we implement an adapted Viterbi algorithm using a numerically stable log version.
Considering real-world music examples, we finally compare the resulting HMM-
based chord recognizer with the template-based approach, showing the evaluation
results in the form of time–chord visualizations, respectively.

As said before, chord recognition has always been and still is one of the central
tasks in MIR. Besides chords being a central concept in particular for Western mu-
sic, another reason for the topic’s popularity is the availability of a dataset known
as the Beatles Collection, which we already quickly mentioned in Section 5.2.4.2.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S3_ChordRec_HMM.html

304 5 Chord Recognition

This dataset is based on twelve Beatles albums comprising 180 audio tracks. While
being a well-defined, medium-sized collection of musical relevance, the primary
value of the dataset lies in the availability of high-quality reference annotations for
chords, beats, key changes, and music structures [7, 16]. In the FMP Notebook Ex-
periments: Beatles Collection, we take the opportunity to present a few systematic
studies in the context of chord recognition. To keep the notebook slim and efficient,
we only use from the collection the following four representative Beatles songs:
“Let It Be” (LetItB), “Here Comes the Sun” (HereCo), “Ob-La-Di, Ob-La-Da”
(ObLaDi), and “Penny Lane” (PennyL). The provided experimental setup and im-
plementation can be easily extended to an arbitrary number of examples. We provide
the full processing pipeline in the notebook, starting with raw audio and annotation
files and ending with parameter sweeps and quantitative evaluations. First, the refer-
ence annotations are converted into a suitable format. Then, the audio files are trans-
formed into chroma representations, where we consider three different chroma types
(STFT, CQT, IIR). All this data is computed in a preprocessing step and stored in
a suitable data structure for later usage. In our experiments, we consider two differ-
ent pattern matching techniques (a template-based and an HMM-based approach) to
map the chroma features to chord labels that correspond to the 24 major and minor
triads. As for the quantitative evaluation, we use the standard precision, recall, and
F-measure. After looking at some individual results using time–chord representa-
tions, we conduct a first comprehensive experiment to study the role of prefiltering
(see Section 5.2.4.4). To this end, we consider a parameter L ∈ {1,3, . . . ,63} that
determines the smoothing length (applied to the input chromagram) and report on
the resulting F-measure for each of the four songs and its mean over the four songs.
The overall parameter sweep result is shown in Figure 5.35 for different chroma
types and pattern matching techniques. Similarly, we conduct a parameter sweep
experiment to study the role of self-transition probabilities used in HMM-based
chord recognizers. Finally, we present two small experiments where we question
the musical relevance of the results achieved. First, we discuss a problem related
to an imbalance in the class distribution. As a concrete example, we consider a
rather dull chord recognizer that, based on some global statistics of the song, de-
cides on a single major or minor triad and outputs the corresponding chord label for
all time frames. In the case of the song “Ob-La-Di, Ob-La-Da,” this dull procedure
achieves an F-measure of F = 0.551—which does not seem bad for a classifica-
tion problem with 24 classes. Second, we discuss a problem that comes from the
reduction to only 24 chords and illustrates the role of the nonchord model. While
these experiments nicely demonstrate some of the obstacles and limitations in chord
estimation mentioned by [10], we see another main value of this notebook from an
educational perspective. Giving concrete examples for larger-scale experiments, we
hope that students get some inspiration from this notebook for conducting similar
experiments in the context of other music processing tasks.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S3_ChordRec_Beatles.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S3_ChordRec_Beatles.html

References 305

References

1. W. APEL, Harvard Dictionary of Music, Harvard University Press, 1969.
2. E. BENETOS, S. DIXON, Z. DUAN, AND S. EWERT, Automatic music transcription: An

overview, IEEE Signal Processing Magazine, 36 (2019), pp. 20–30.
3. W. CHAI AND B. VERCOE, Detection of key change in classical piano music, in Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR), London,
UK, 2005, pp. 468–474.

4. T. CHO AND J. P. BELLO, On the relative importance of individual components of chord
recognition systems, IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22 (2014), pp. 477–492.

5. T. FUJISHIMA, Realtime chord recognition of musical sound: A system using common lisp mu-
sic, in Proceedings of the International Computer Music Conference (ICMC), Beijing, China,
1999, pp. 464–467.

6. A. GUT, Probability: A Graduate Course, Springer, New York, 2nd ed., 2013.
7. C. HARTE, M. B. SANDLER, S. ABDALLAH, AND E. GÓMEZ, Symbolic representation of

musical chords: A proposed syntax for text annotations, in Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), London, UK, 2005, pp. 66–71.

8. F. HAUNSCHILD, The New Harmony Book, AMA Verlag, 2000.
9. X. D. HUANG, Y. ARIKI, AND M. A. JACK, Hidden Markov Models for Speech Recognition,

Edinburgh University Press, 1990.
10. E. J. HUMPHREY AND J. P. BELLO, Four timely insights on automatic chord estimation, in

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Málaga, Spain, 2015, pp. 673–679.

11. N. JIANG, P. GROSCHE, V. KONZ, AND M. MÜLLER, Analyzing chroma feature types for
automated chord recognition, in Proceedings of the AES Conference on Semantic Audio,
Ilmenau, Germany, 2011.

12. H. V. KOOPS, W. B. DE HAAS, J. BRANSEN, AND A. VOLK, Automatic chord label person-
alization through deep learning of shared harmonic interval profiles, Neural Computing and
Applications, 32 (2020), pp. 929–939.

13. F. KORZENIOWSKI AND G. WIDMER, Feature learning for chord recognition: The deep
chroma extractor, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), New York City, USA, 2016, pp. 37–43.

14. , Genre-agnostic key classification with convolutional neural networks, in Proceed-
ings of the International Society for Music Information Retrieval Conference (ISMIR), Paris,
France, 2018, pp. 264–270.

15. S. KOSTKA, D. PAYNE, AND B. ALMEN, Tonal Harmony, McGraw-Hill, 7th ed., 2012.
16. M. MAUCH, C. CANNAM, M. E. P. DAVIES, S. DIXON, C. HARTE, S. KOLOZALI, D. TID-

HAR, AND M. B. SANDLER, OMRAS2 metadata project 2009, in Late Breaking Demo of
the International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan,
2009.

17. M. MAUCH AND S. DIXON, Approximate note transcription for the improved identification
of difficult chords, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 135–140.

18. , Simultaneous estimation of chords and musical context from audio, IEEE Transactions
on Audio, Speech, and Language Processing, 18 (2010), pp. 1280–1289.

19. B. MCFEE AND J. P. BELLO, Structured training for large-vocabulary chord recognition, in
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Suzhou, China, 2017, pp. 188–194.

20. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

306 5 Chord Recognition

21. Y. NI, M. MCVICAR, R. SANTOS-RODRIGUEZ, AND T. D. BIE, An end-to-end machine
learning system for harmonic analysis of music, IEEE Transactions on Audio, Speech, and
Language Processing, 20 (2012), pp. 1771–1783.

22. H. PAPADOPOULOS AND G. PEETERS, Joint estimation of chords and downbeats from an
audio signal, IEEE Transactions on Audio, Speech, and Language Processing, 19 (2011),
pp. 138–152.

23. , Local key estimation from an audio signal relying on harmonic and metrical struc-
tures, IEEE Transactions on Audio, Speech, and Language Processing, 20 (2012), pp. 1297–
1312.

24. J. PAUWELS, K. O’HANLON, E. GÓMEZ, AND M. B. SANDLER, 20 years of automatic
chord recognition from audio, in Proceedings of the International Society for Music Informa-
tion Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 54–63.

25. L. R. RABINER, A tutorial on hidden Markov models and selected applications in speech
recognition, Proceedings of the IEEE, 77 (1989), pp. 257–286.

26. T. ROCHER, M. ROBINE, P. HANNA, AND L. OUDRE, Concurrent estimation of chords and
keys from audio, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 141–146.

27. C. S. SAPP, Visual hierarchical key analysis, ACM Computers in Entertainment, 3 (2005),
pp. 1–19.

28. C. SCHROEDER AND K. WYATT, Harmony and Theory: A Comprehensive Source for All
Musicians, Musicians Institute Press, 1998.

29. A. SHEH AND D. P. W. ELLIS, Chord segmentation and recognition using EM-trained hidden
Markov models, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Baltimore, MD, USA, 2003, pp. 185–191.

30. S. STREICH, Music Complexity: A Multi-Faceted Description of Audio Content, PhD thesis,
University Pompeu Fabra, Barcelona, Spain, 2007.

31. C. WEISS, Computational Methods for Tonality-Based Style Analysis of Classical Music Au-
dio Recordings, PhD thesis, Ilmenau University of Technology, Ilmenau, Germany, 2017.

32. C. WEISS AND M. MÜLLER, Tonal complexity features for style classification of classical
music, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Brisbane, Australia, 2015, pp. 688–692.

33. C. WEISS, H. SCHREIBER, AND M. MÜLLER, Local key estimation in music recordings: A
case study across songs, versions, and annotators, IEEE/ACM Transactions on Audio, Speech
& Language Processing, 28 (2020), pp. 2919–2932.

34. Y. ZHU AND M. S. KANKANHALLI, Key-based melody segmentation for popular songs, in
Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 3, Cam-
bridge, UK, 2004, pp. 862–865.

Exercises 307

Exercises

Exercise 5.1. Determine, for each of the following intervals, the number of semitones and the
interval name (as specified in Figure 5.3):

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Exercise 5.2. The complement of an interval is the interval which, when added to the original
interval, spans an octave in total. Specify the complement for each interval in Figure 5.3. In which
way is the tritone interval special?

Exercise 5.3. Determine the chord symbol for each of the following chords (similar to Figure 5.6):

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Exercise 5.4. In this exercise, we compare the size of the intervals obtained from different defi-
nitions. First, assuming the twelve-tone equal-tempered scale, determine the size (given in cents)
and frequency ratios for each of the 13 intervals shown in Figure 5.3. Next, assuming just intona-
tion, determine the size (given in cents) and the frequency ratios of the intervals (see Figure 5.3).
Finally, compute the difference of the interval sizes (given in cents) between the just intonation and
the equal-tempered case.
[Hint: Write a small computer program that helps you with the calculations.]

Exercise 5.5. In this exercise, we investigate the dependency between the degree of consonance of
an interval and the coincidence of partials of the two notes underyling the interval. Assuming the
twelve-tone equal-tempered scale, we look at the intervals that are formed by the root note C4 and
each of the following seven notes: C4, E[4, E4, F4, F]4, G4, and C5. Consider for each of these
notes the first eight harmonics. Determine for each of the resulting harmonics the closest musical
note along with the difference (given in cents) between the harmonic’s actual frequency and the
center frequency of the musical note (see also Figure 1.20). For example, the following table shows
these results for the two notes C4 and E[4 (with the differences being specified in brackets):

1 2 3 4 5 6 7 8

C4 [0] C5 [0] G5 [+2] C6 [0] E6 [-14] G6 [+2] B[6 [-31] C7 [0]

E[4 [0] E[5 [0] B[5 [+2] E[6 [0] G6 [-14] B[6 [+2] D[6 [-31] E[7 [0]
...

...
...

...
...

...
...

...

Then investigate, for each of the seven intervals, which of the harmonics of the two involved notes
coincide (or, to be more precise, are close together with respect to frequency). For example, the
coincidences of harmonics between the notes of the interval C4–C4 and the interval C4–E[4 are
indicated by frameboxes in the above table (where the first row represents the interval C4–C4 and
the second one the interval C4–E[4). Note that G6 appears as the sixth harmonic of C4 and as the
fifth harmonic of E[4. However, this coincidence is “tarnished” by the fact that the sixth harmonic
of C4 deviates by +2 cents from the center frequency of G6, whereas the fifth harmonic of E[4
deviates by −14 cents from G6. Similarly, discuss the results for the other intervals.

308 5 Chord Recognition

Exercise 5.6. In Figure 5.20b, one can observe many misclassifications and chord label changes in
the recognition result. Explain why these errors only occur in the second and third measure, while
the first and fourth measure have been classified correctly.

Exercise 5.7. Let Λ be the set of the major and minor triads (see (5.5)). Furthermore, for a given
chord λ ∈ Λ , let th

λ
be the chord template with harmonics based on the first eight harmonics (see

(5.14) and (5.15)). Compute th
λ

for λ = C and λ = Cm, respectively, using the parameter α = 1.

Exercise 5.8. In this exercise, we extend the chord template model as defined by (5.14) and (5.15)
by introducing some additional weight parameters. For the C-major chord λ = C, we define the
template

th,w
C = w1 · th

C +w2 · th
E +w3 · th

G

for w = (w1,w2,w3)
> ∈ R3. Similarly, using the same weights, we define the chord templates th,w

λ

for the other major and minor triads λ ∈Λ (see (5.5)). We now compare these new chord templates
with the original binary templates t

λ
(see (5.7)) using the similarity measure s as defined in (5.8).

Write a small computer program to compute the similarity values s(th,w
C , t

λ
) and s(th,w

Cm, t
λ
) for all

24 major and minor triads λ ∈Λ using the following parameters:

(a) α = 0 and w = (1,1,1)
(b) α = 1 and w = (1,1,1)
(c) α = 0 and w = (1,0.2,1)
(d) α = 1 and w = (1,0.2,1)

In which case is there a confusion between the C-major and C-minor chord? Explain the reason
for this confusion in words.

Exercise 5.9. Let us consider a Markov chain with I states {α1,α2, . . . ,αI} and transition proba-
bility coefficients ai j , i, j ∈ [1 : I] (see (5.21)). The goal of this exercise is to determine how long the
resulting system stays (on average) in a given state. To this end, consider an observation sequence
S = (αi, . . . ,αi,α j) of length d +1 consisting of d states αi for some i ∈ [1 : I] and a final state α j
for some j 6= i. Compute the probability Pi(d) := P[S |Model,s1 = αi], where the condition s1 = αi
means that the system is assumed to start with state αi. From this, compute the expected duration
di for state i, which is defined by di := ∑

∞
d=1 d ·Pi(d). Finally, determine the expected durations for

the states α1, α2, and α3 of the system specified in Figure 5.24.
[Hint: Use the fact that ∑

∞
d=1 d ·ad−1 = 1/(1−a)2 for a number a ∈ [0,1).]

Exercise 5.10. Let us consider the HMM as specified in Figure 5.28a. Compute the optimal state
sequence and its probability for the observation sequence O = (β1,β3,β1,β3,β3), which is a prefix
of the observation sequence used in Figure 5.28b. Compare the result with the one obtained in
Figure 5.28b.

Exercise 5.11. Let us consider the HMM as specified in Figure 5.28a. Determine the optimal state
sequence for the observation sequence O = (β1,β

N−1
3) for each N ∈ N. Argue why the respective

state sequence is optimal.

Chapter 6
Tempo and Beat Tracking

Temporal and structural regularities are perhaps the most important incentives
for people to get involved and to interact with music. It is the beat that drives music
forward and provides the temporal framework of a piece of music. Intuitively, the
beat corresponds to the pulse a human taps along when listening to music. The beat
is often described as a sequence of perceived pulse positions, which are typically
equally spaced in time and specified by two parameters: the phase and the period
(see Figure 6.1b). The term tempo refers to the rate of the pulse and is given by
the reciprocal of the beat period. Tempo and beat are fundamental aspects of music,
and the automated extraction of such information from audio recordings constitutes
one of the central and well-studied research areas in music processing. In this chap-
ter, we introduce some key techniques used in tempo estimation and beat tracking.
Furthermore, we discuss some of the challenges one has to face when dealing with
music where certain model assumptions are not fulfilled.

When listening to a piece of music, we as humans are often able to tap along with
the musical beat without difficulty—sometimes, we even do this unconsciously. In
the case that we lose track at some point in time, maybe because of a tempo change
or rhythmic displacement, we are able to recover quickly and resume tapping. How-
ever, simulating this cognitive process with an automated beat tracking system is
much harder than one may think. Recent beat tracking systems can cope well with
modern pop and rock music that has a strong and steady beat. In deriving this in-
formation, most systems are based on the assumptions that beats correspond to note
onsets (typically percussive in nature) and that beats are periodically spaced in time.
However, there are many types of music where these assumptions are violated. For
example, in string music a note may be played softly with a barely noticeable on-
set, or a musician may slightly lengthen certain notes to shape musical phrases. In
general, musicians do not play mechanically at a fixed tempo, but slow down or
accelerate at certain positions to create tension and release. As a consequence, the

309© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_ 6

https://doi.org/10.1007/978-3-030-69808-9_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_6&domain=pdf

310 6 Tempo and Beat Tracking

Fig. 6.1 Waveform repre-
sentation of an excerpt of
“Another One Bites the Dust”
by Queen. (a) Note onsets.
(b) Beat positions.

PeriodPhase

Time (seconds)

Drum / bass / hihat

Hihat

Bass

(a)

(b)

presence of such local tempo changes makes the extraction of beat positions a very
challenging task. Still, at least when familiar with the type of music, humans are
capable of anticipating local tempo changes and tracking the beats even for highly
complex music.

In most approaches to automated tempo and beat tracking, the first step is to es-
timate the positions of note onsets within the music signal (see Figure 6.1a). This
task, which is also referred to as onset detection, is discussed in Section 6.1. In
particular, we show how to transform a given music signal into a novelty represen-
tation that captures certain changes in the signal’s energy or spectrum. The peaks
of such a representation yield good indicators for note onset candidates. We have
seen a similar concept when applying novelty detection to music structure analy-
sis (see Section 4.4). In Section 6.2, we introduce the notion of a tempogram, which
represents local tempo information on different pulse levels. Such a time–tempo rep-
resentation is obtained by analyzing a novelty representation with regard to reoccur-
ring patterns and quasiperiodic pulse trains. In this context, we study two important
methods for periodicity analysis, one using Fourier and the other using autocorre-
lation analysis techniques. We then continue in Section 6.3 with the topic of beat
tracking. First, we introduce a mid-level representation that captures meaningful lo-
cal pulse information even in the presence of significant tempo changes. Then, based
on a dynamic programming approach, we discuss a robust beat tracking procedure,
which assumes a roughly constant tempo throughout the recording.

6.1 Onset Detection 311

TransientOnset

Attack

Decay

(a) (b)

Fig. 6.2 Illustration of attack, transient, onset, and decay of a single note (based on [1]). (a) Note
played on a piano. (b) Idealized amplitude envelope.

6.1 Onset Detection

Generally speaking, onset detection is the task of determining the starting times of
notes or other musical events as they occur in a music recording. In practice, how-
ever, the notion of an onset can be rather vague and is related to other concepts such
as attacks or transients. As discussed in Section 1.3.4, there is often a sudden in-
crease of energy at the beginning of a musical tone (see Figure 6.2a). The attack of
a note refers to the phase where the sound builds up, which typically goes along with
a sharply increasing amplitude envelope. This is also reflected by the initial phase
of the ADSR model shown in Figure 1.22. The concept of a transient is more diffi-
cult to grasp. As noted in Section 1.3.4, a transient may be described as a noise-like
sound component of short duration and high amplitude typically occurring at the
beginning of a musical tone or a more general sound event. However, the release or
offset of a sustained note may also contain a transient-like component. In transient
regions, the signal evolves quickly in an unpredictable and rather chaotic way. For
example, in the case of a piano, the transient corresponds to the initial phase where
a key is hit, the damper is raised, the hammer strikes the strings, the strings start
to vibrate, and the vibrations are transmitted to the large soundboard that starts res-
onating to finally yield a steady and sustained sound. As opposed to the attack and
transient, the onset of a note refers to the single instant (rather than a period) that
marks the beginning of the transient, or the earliest time point at which the transient
can be reliably detected (see Figure 6.2b).

To detect note onsets in the signal, the general idea is to capture sudden changes
that often mark the beginning of transient regions. For notes that have a pronounced
attack phase, onset candidates may be determined by locating time positions where
the signal’s amplitude envelope starts increasing. When this is not the case, such as
for nonpercussive music with soft onsets and blurred note transitions, the detection
of onsets is much more challenging. For example, the waveform of a violin sound,
as shown in Figure 1.23b, may exhibit a slow energy increase rather than an abrupt
change as in a piano sound. For soft sounds, it is hard to determine the exact onset

312 6 Tempo and Beat Tracking

position. The detection of individual note onsets becomes even harder when dealing
with complex polyphonic music. Simultaneously occurring sound events may result
in masking effects, where no significant changes in the signal’s energy are mea-
surable. In these cases, more refined onset detection methods are needed, e.g., by
looking at changes in the signal’s short-time spectrum or other statistical properties.

In this section, we study four different approaches for onset detection: an energy-
based approach (Section 6.1.1), a spectral-based approach (Section 6.1.2), a phase-
based approach (Section 6.1.3), and a complex-domain approach (Section 6.1.4).
All approaches follow the same algorithmic pipeline, but differ in the signal proper-
ties that are exploited to derive onset candidates. In this pipeline, the signal is first
converted into a suitable feature representation that better reflects the properties of
interest. Then, a type of derivative operator is applied to the feature sequence and
a novelty function is derived. Finally, a peak-picking algorithm is employed to lo-
cate the onset candidates. Note that this general procedure is exactly the same as
for novelty detection in the context of music structure analysis (see Section 4.4.1).
However, the features and, in particular, the temporal levels that are relevant in struc-
ture analysis and onset detection are quite different. While a tolerance window of
500 ms up to a couple of seconds may be used in the case of structural boundaries,
the accuracy needed in onset detection is usually far below 100 ms, sometimes even
on the order of 10 ms.1

6.1.1 Energy-Based Novelty

We have seen that playing a note on an instrument often coincides with a sudden
increase of the signal’s energy. For example, this holds when striking a key on a
piano, plucking a string on a guitar, or hitting a drum with a stick. Based on this
observation, a straightforward way to detect note onsets is to transform the signal
into a local energy function that indicates the local energy of the signal for each
time instance and then to look for sudden changes in this function. Mathematically,
this procedure can be realized as follows: Let x be a DT-signal. As in the case of
a discrete STFT (see Section 2.5.3), we fix a discrete window function w : Z→
R, which is shifted over the signal x to determine local sections. In particular, we
assume that w is a bell-shaped function centered at time zero2 and that w(m) for
m ∈ [−M : M] comprises the nonzero samples of w for some M ∈ N. The local
energy of x with regard to w is defined to be the function Ex

w : Z→ R given by

Ex
w(n) :=

M

∑
m=−M

|x(n+m)w(m)|2 = ∑
m∈Z
|x(m)w(m−n)|2 (6.1)

1 This is the range where the human ear is no longer capable of distinguishing between two subse-
quent transients [26].
2 In Section 2.5.3, to simplify notation, we considered the noncentered case assuming that the
nonzero window coefficients are w(n) for n ∈ [0 : N−1].

6.1 Onset Detection 313

Fig. 6.3 Computation of an
energy-based novelty function
of the signal from Figure 6.1.
(a) Waveform. (b) Local
energy function. (c) Dis-
crete derivative. (d) Novelty
function ∆Energy obtained af-
ter half-wave rectification.
(e) Novelty function ∆

Log
Energy

based on a logarithmic energy
function. (f) Annotated note
onsets (the four beat positions
are marked by thick lines).

Time (seconds)

(a)

(b)

(c)

(d)

(f)

(e)

for n ∈ Z. In other words, Ex
w(n) contains the energy (as defined in (2.41)) of the

signal x multiplied with a window shifted by n samples. Let us have a look at the
example shown in Figure 6.3b, which shows a local energy function for the begin-
ning of “Another One Bites the Dust” by Queen. Starting with an offbeat consisting
of two sixteenth notes played only by bass, four percussive beats (played by kick
drum, snare drum, hihat, and bass) follow (see Figure 6.1). Furthermore, between
each two subsequent beats, there is an additional hihat stroke. As the energy func-
tion shows, the percussive beats contain a lot of energy, whereas the low-energy
hihat strokes are not as strongly captured.

Intuitively, to measure energy changes, we take a derivative of the local energy
function. In the discrete case, the easiest way to realize such a derivative is to take the
difference between two subsequent energy values (see Figure 6.3c). Furthermore,
since we are interested in energy increases (and not decreases), we keep only the
positive differences while setting the negative differences to zero. The latter step is
known as half-wave rectification and is notated as:

|r|≥0 :=
r+ |r|

2
=

{
r, if r ≥ 0,
0, if r < 0 (6.2)

for r ∈R. Altogether, we obtain an energy-based novelty function ∆Energy : Z→R
given by

∆Energy(n) := |Ex
w(n+1)−Ex

w(n)|≥0 (6.3)

314 6 Tempo and Beat Tracking

Time (seconds) Time (seconds) Time (seconds)

(a) (b) (c)

Fig. 6.4 Waveform and energy-based novelty function of the note C4 (261.6 Hz) played by dif-
ferent instruments (see Figure 1.23). (a) Piano. (b) Violin. (c) Flute.

for n ∈ Z. The resulting function is shown in Figure 6.3d for our example “An-
other One Bites the Dust.” The four quarter-note drum beats correspond to the four
highest peaks. Therefore, these beats can be correctly detected by a simple peak-
picking procedure. Also, the two beginning offbeats played by the bass are correctly
identified by the first two peaks. However, the four hihat strokes between the beat
positions do not show up in ∆Energy (see Figure 6.3d). As mentioned before, these
four hihat events contain relatively little energy and, when compared with the high-
energy drum events, become invisible in the energy-based novelty function.

As we discussed in Section 1.3.3, the human perception of sound intensity is log-
arithmic in nature. Therefore, even musical events of rather low energy may still be
perceptually relevant. For example, the hihat is clearly audible even at the beat posi-
tions where it is overlaid with the strong drum hits. To account for such phenomena,
one often applies a logarithm to the energy values, for example, by switching to the
logarithmic decibel scale (1.6) or by applying logarithmic compression (3.7). Note
that, in the logarithmic case, the resulting novelty function corresponds to (the log-
arithm of) energy ratios rather than differences as shown by the following equation:

∆
Log
Energy(n) := |log(Ex

w(n+1))− log(Ex
w(n))|≥0 =

∣∣∣∣log
(

Ex
w(n+1)
Ex

w(n)

)∣∣∣∣
≥0

. (6.4)

As can be seen in Figure 6.3e, even the weak hihat onsets become visible in the
logarithmic novelty function. On the downside, however, the logarithm may also
amplify noise-like sound components, possibly leading to spurious peaks.

Another general problem in onset detection is energy fluctuation in nonsteady
sounds as a result of vibrato or tremolo (see Section 1.3.4). Especially for purely
energy-based procedures, amplitude modulations often lead to spurious peaks in
the resulting novelty function. This is demonstrated by Figure 6.4, which shows
the energy-based novelty function for the note C4 played by different instruments.
While the novelty function shows a single clear peak in the case of a piano sound,
there are many additional peaks in the case of a violin or flute sound. Furthermore,
the relatively slow energy increase at the beginning of the violin sound leads to a
smeared and temporally inaccurate onset peak.

6.1 Onset Detection 315

To increase the robustness of onset detection, a typical approach is to first decom-
pose the signal into several subbands that contain complementary frequency infor-
mation. Then one computes a novelty function for each subband separately and suit-
ably combines the individual functions to derive the onset information. For exam-
ple, the subbands may correspond to musical pitches as discussed in Section 3.1.1,
which results in pitch-based novelty functions. To exploit prior knowledge, one may
use broader frequency bands that correspond to typical ranges of musical instru-
ments (see Exercise 1.11). In the next section, we study an approach that decom-
poses a signal into subbands that correspond to the spectral coefficients. In this case,
the resulting novelty function measures spectral changes, which yields more refined
information than purely energy-based approaches.

6.1.2 Spectral-Based Novelty

Onset detection becomes a much harder problem for polyphonic music with simul-
taneously occurring sound events. A musical event of low intensity may be masked
by an event of high intensity. Energy fluctuations (e.g., coming from vibrato) in the
sustain phase of one instrument may be stronger than energy increases in the attack
phase of other instruments. Therefore, in the case of multiple instruments playing
at the same time, it is generally hard to detect all onsets when using purely energy-
based methods. However, the characteristics of note onsets may strongly depend
on the respective type of instrument. For example, for percussive instruments with
an impulse-like onset, one can observe a sudden increase in energy that is spread
across the entire spectrum of frequencies (see Figure 2.21a). Such noise-like broad-
band transients may be observable in certain frequency bands even in polyphonic
mixtures. In particular, since the energy of harmonic sources is concentrated more
in the lower part of the spectrum, transients are often well detectable in the higher-
frequency region.

Motivated by such observations, the idea of spectral-based novelty detection is
to first convert the signal into a time–frequency representation and then to capture
changes in the frequency content. In the following, let X be the discrete STFT of
the DT-signal x as defined in (2.26) or (2.148). For a discussion of the various pa-
rameters, including the sampling rate Fs = 1/T , the window length N of the discrete
window w, and the hop size H, we refer to Section 2.5.3 or Section 3.1.1. For the
moment, we only need to keep in mind that X (n,k) ∈ C denotes the kth Fourier
coefficient for frequency index k ∈ [0 : K] and time frame n ∈ Z, where K = N/2 is
the frequency index corresponding to the Nyquist frequency.

To detect spectral changes in the signal, one basically computes the difference
between subsequent spectral vectors using a suitable distance measure. This results
in a spectral-based novelty function, which is also known as the spectral flux.
There are many different ways of computing such a novelty function, which depend
not only on the parameters of the STFT and the distance measure, but also on pre-
and postprocessing steps that are often applied.

316 6 Tempo and Beat Tracking

Time (seconds) Time (seconds) Time (seconds)

Fr
eq

ue
nc

y
(H

z)
(a) (b) (c)

Fig. 6.5 Logarithmic compression (using the same audio excerpt as in Figure 6.1). The figure
shows the respective magnitude spectrogram (top) and the resulting novelty function ∆̄Spectral (bot-
tom). (a) Magnitude spectrogram. (b) Compressed spectrogram using γ = 1. (c) Compressed spec-
trogram using γ = 1000.

In the following, we describe a typical procedure. First, to enhance weak spec-
tral components, we apply a logarithmic compression to the spectral coefficients.
Such a step, as we have already encountered in the context of chroma features
(Figure 3.7), is often applied to account for the logarithmic sensation of sound in-
tensity and to balance out the dynamic range of the signal. To obtain the compressed
spectrogram, we apply the function Γγ of (3.7) to the magnitude spectrogram |X |.
This yields

Y := Γγ(|X |) = log(1+ γ · |X |) (6.5)

for a suitable constant γ ≥ 1. In onset detection, logarithmic compression is partic-
ularly helpful for enhancing the comparatively weak high-frequency information.
This is also illustrated by Figure 6.5, which continues our example “Another One
Bites the Dust” from Figure 6.1. In the visualization of the original spectrogram |X |
(Figure 6.5a), the harmonic components of the bass are visible in the low-frequency
part. However, the transients at the beat positions can hardly be recognized. Using
a compressed spectrogram with γ = 1 (Figure 6.5b), the vertical structures of the
transients become more prominent—even the weak transients of the hihat between
subsequent beats become visible. By increasing γ , the low-intensity values are fur-
ther enhanced. On the downside, a large compression factor γ may also amplify
nonrelevant noise-like components.

In the next step, we compute the discrete temporal derivative of the compressed
spectrum Y . Similarly to the energy-based novelty function, we only consider the
positive differences (increase in intensity) and discard negative ones. This yields the
spectral-based novelty function ∆Spectral : Z→ R defined by

∆Spectral(n) :=
K

∑
k=0
|Y(n+1,k)−Y(n,k)|≥0 (6.6)

6.1 Onset Detection 317

Fig. 6.6 Computation of a
spectral-based novelty func-
tion for the signal from
Figure 6.1. (a) Waveform.
(b) Compressed spectrogram
using γ = 100. (c) Novelty
function ∆Spectral and lo-
cal average function µ (in
thick/red). (d) Novelty func-
tion ∆̄Spectral. (e) Annotated
note onsets (the four beat
positions are marked by thick
lines).

(a)

(b)

(c)

(d)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

(e)

for n ∈ Z, where we use the half-wave rectification as introduced in (6.2). One can
further enhance the properties of the novelty function by applying suitable postpro-
cessing steps. For example, in view of a subsequent peak-picking step, one objec-
tive may be to enhance the peak structure of the novelty function, while suppressing
small fluctuations. To this end, we introduce a local average function µ : Z→ R by
setting

µ(n) :=
1

2M+1

M

∑
m=−M

∆Spectral(n+m), (6.7)

n∈Z, where the parameter M ∈N determines the size of an averaging window. The
enhanced novelty function ∆̄Spectral is obtained by subtracting the local average from
∆Spectral and by only keeping the positive part (half-wave rectification):

∆̄Spectral(n) :=
∣∣∆Spectral(n)−µ(n)

∣∣
≥0 (6.8)

for n ∈ Z. Figure 6.6 illustrates the computational pipeline by means of our running
example. As opposed to the energy-based novelty functions (Figure 6.3), the en-
hanced spectral-based novelty function ∆̄Spectral (Figure 6.6d) not only indicates the
onsets at the four beat positions, but also has significant peaks at the four weak hihat
onsets between the beats. Even though the hihat sounds have a comparatively low
intensity, they produce sharp transients, which are captured well by the compressed
magnitude spectrogram (see also Figure 6.5c).

318 6 Tempo and Beat Tracking

(a)

Time (seconds)

(c)

(d)

(e)

(b)

Fig. 6.7 Different novelty functions for an audio excerpt of Shostakovich’s Waltz No. 2 from
the “Suite for Variety Orchestra No. 1.” (a) Score representation (in a piano reduced version).
(b) Waveform. (c) Energy-based novelty function. (d) Spectral-based novelty function. (e) Anno-
tated note onsets (downbeat positions are marked by thicker lines).

As a second example, let us have a look at an excerpt of an orchestra record-
ing of the Waltz No. 2 from Dimitri Shostakovich’s Suite for Variety Orchestra
No. 1, an example we have already used in Figure 4.11. The first beats (downbeats)
of the 3/4 meter are played softly by nonpercussive instruments, leading to rela-
tively weak and blurred onsets. In contrast, the second and third beats are played
sharply (“staccato”), supported by percussive instruments. These properties are also
reflected by the spectral-based novelty function shown in Figure 6.7d. The peaks
that correspond to downbeats are hardly visible or even missing, whereas the peaks
that correspond to the percussive beats are much more pronounced. The figure also
shows the improvements one obtains for this example when using spectral-based
methods (Figure 6.7d) compared with purely energy-based methods (Figure 6.7c).

As said before, there are many more approaches for computing spectral-based
novelty functions. For example, as with the energy-based case, it may be benefi-
cial to first split up the spectrum into several frequency bands (often five to eight
logarithmically spaced bands are used). The resulting bandwise novelty functions
are then weighted and summed up to yield the single overall novelty function (see
Exercise 6.4).

6.1 Onset Detection 319

Fig. 6.8 Locally stationary
signal and its correlation to
a sinusoid corresponding to
frequency index k for the
frames n−2, n−1, n, and n+
1. The angular representation
of the phases is indicated by
the circles.

n-2 n-1 n n+1

H

n-2

n-1

n

n+1

H H

φ(n-2,k)=0

φ(n-1,k)=0.75

φ(n,k)=0.5

φ(n+1,k)=0.25

6.1.3 Phase-Based Novelty

In the definition of the spectral-based novelty function, we have only used the mag-
nitude of the spectral coefficients. However, the phases of the complex coefficients
are also an important source of information for various audio analysis and synthesis
tasks. In the following, we show how the phase information can be used for on-
set detection. In particular, we exploit the fact that stationary tones have a stable
phase, while transients have an unstable phase. For another application of the phase
information, we refer to Section 8.2.1.

As before, let X (n,k) ∈ C be the complex-valued Fourier coefficient for fre-
quency index k ∈ [0 : K] and time frame n ∈ Z. Using the polar coordinate represen-
tation (2.9), this complex coefficient can be written as

X (n,k) = |X (n,k)|exp(2πiϕ(n,k)) (6.9)

with the phase ϕ(n,k) ∈ [0,1) (see also Section 2.3.2.2). Intuitively, as we ex-
plained in Section 2.1.1.1, the phase ϕ(n,k) determines how the sinusoid of fre-
quency Fcoef(k) = Fs · k/N (see (2.28)) has to be shifted to best correlate with the
windowed signal corresponding to the nth frame. Let us assume that the signal x
has a high correlation with this sinusoid (i.e., |X (n,k)| is large) and shows a steady
behavior in a region of a number of subsequent frames . . . ,n− 2,n− 1,n,n+ 1, . . .
(i.e., x is locally stationary). Then the phases . . . ,ϕ(n− 2,k), ϕ(n− 1,k), ϕ(n,k),
ϕ(n+1,k), . . . increase from frame to frame in a fashion that is linear in the hop size
H of the STFT (see Figure 6.8). Therefore, the frame-wise phase difference in this
region remains approximately constant (possibly up to some integer, as we discuss
shortly in this section):

320 6 Tempo and Beat Tracking

Fig. 6.9 Illustration of phase
unwrapping. (a) Wrapped
phase. (b) Unwrapped phase.

Time

P
ha

se

0.5

1

0

0.5

1

0

1.5

2

P
ha

se

(a)

(b)

ϕ(n,k)−ϕ(n−1,k)≈ ϕ(n−1,k)−ϕ(n−2,k). (6.10)

Let us define the first-order difference by

ϕ
′(n,k) := ϕ(n,k)−ϕ(n−1,k) (6.11)

and the second-order difference by

ϕ
′′(n,k) := ϕ

′(n,k)−ϕ
′(n−1,k). (6.12)

Note that one obtains ϕ ′′(n,k) ≈ 0 in steady regions of x. However, in transient
regions, the phase behaves quite unpredictably across the entire frequency range.
As a result, a simultaneous disturbance of the values ϕ ′′(n,k) for k ∈ [0 : K] is a
good indicator for note onsets. Motivated by this observation, we define the phase-
based novelty function ∆Phase by

∆Phase(n) =
K

∑
k=0
|ϕ ′′(n,k)| (6.13)

for n ∈ Z.
At this point, we need to discuss a technical issue. Recall that the phase γ (in

radians) of a complex number c ∈ C is defined only up to integer multiples of 2π

(see (2.9)). Therefore, the phase is often constrained to the interval [0,2π) and the
number γ ∈ [0,2π) is called the principal value of the phase. In the scenario of
Fourier analysis, we are using the normalized phases ϕ = γ/(2π). In this case, the
interval [0,1) represents the principal values. When considering a function or a time
series of phase values (e.g., the phase values over the frames of an STFT as above),
the choice of principal values may introduce unwanted discontinuities. These ar-
tificial phase jumps are the results of phase wrapping, where a phase value just
below one is followed by a value just above zero (or vice versa). To avoid such
discontinuities, one often applies a procedure called phase unwrapping, where the
objective is to recover a possibly continuous sequence of (unwrapped) phase values
(see Figure 6.9). Such a procedure, however, is in general not well defined since the

6.1 Onset Detection 321

Fig. 6.10 Illustration of the
complex-domain difference
X ′(n,k) between an estimated
spectral coefficient X̂ (n+
1,k) and the actual coefficient
X (n+1,k).

Re

Im

original time series may possess “real” discontinuities that are hard to distinguish
from “artificial” phase jumps. In the onset detection context, phase jumps due to
wrapping may occur when computing the differences in (6.11) and (6.12). In these
cases, one needs to use an unwrapped version of the phase. As an alternative, we
introduce a principal argument function

Ψ : R→ [−0.5,0.5] (6.14)

which maps phase differences into the range [−0.5,0.5]. To this end, a suitable
integer value is added to or subtracted from the original phase difference to yield a
value in [−0.5,0.5]. The differences as defined in (6.11) and (6.12) are then replaced
by

ϕ
′(n,k) := Ψ

(
ϕ(n,k)−ϕ(n−1,k)

)
, (6.15)

ϕ
′′(n,k) := Ψ

(
ϕ
′(n,k)−ϕ

′(n−1,k)
)
. (6.16)

Even though the principal argument function may cancel out large discontinuities in
the phase differences, this effect is attenuated since we consider in (6.13) the sum
of differences over all frequency indices.

6.1.4 Complex-Domain Novelty

We have seen that steady regions within a signal may be characterized by a phase-
based criterion in the case that the sinusoid correlates well with the signal. However,
if the magnitude of the Fourier coefficient X (n,k) is very small, the phase ϕ(n,k)
may exhibit a rather chaotic behavior due to small noise-like fluctuations that may
occur even within a steady region of the signal. To obtain a more robust detector,
one idea is to weight the phase information with the magnitude of the spectral coeffi-
cient. This leads to a complex-domain variant of the novelty function, which jointly
considers phase and magnitude. The assumption of this variant is that the phase
differences as well as the magnitude stay more or less constant in steady regions.
Therefore, given the Fourier coefficient X (n,k), one obtains a steady-state estimate

322 6 Tempo and Beat Tracking

X̂ (n+1,k) for the next frame by setting

X̂ (n+1,k) = |X (n,k)|exp(2πi(ϕ(n,k)+ϕ
′(n,k))) (6.17)

(see Figure 6.10). Then, we can use the magnitude between the estimate X̂ (n+1,k)
and the actual coefficient X (n+1,k) to obtain a measure of novelty:

X ′(n+1,k) = |X̂ (n+1,k)−X (n+1,k)|. (6.18)

The complex-domain difference X ′(n,k) quantifies the degree of nonstationarity for
frame n and coefficient k. Note that this number does not discriminate between note
onsets (energy increase) and note offsets (energy decrease). Therefore, we decom-
pose X ′(n,k) into a component X+(n,k) of increasing magnitude and a component
X−(n,k) of decreasing magnitude:

X+(n,k) =
{
X ′(n,k) for |X (n,k)|> |X (n−1,k)|

0 otherwise, (6.19)

X−(n,k) =
{
X ′(n,k) for |X (n,k)| ≤ |X (n−1,k)|

0 otherwise. (6.20)

A complex-domain novelty function ∆Complex for detecting note onsets can then
be defined by summing the values X+(n,k) over all frequency coefficients:

∆Complex(n,k) =
K

∑
k=0
X+(n,k). (6.21)

Similarly, for detecting general transients or note offsets, one may compute a novelty
function using X ′(n,k) or X−(n,k), respectively.

6.2 Tempo Analysis

The extraction of tempo and beat information from audio recordings is a challenging
problem in particular for music with weak note onsets and local tempo changes. For
example, in the case of romantic piano music, the pianist often takes the freedom
of speeding up and slowing down the tempo—an artistic means also referred to as
tempo rubato. There is a wide range of music where the notions of tempo and beat
remain rather vague or are even nonexistent. Sometimes, the rhythmic flow of music
is deliberately interrupted or disturbed by syncopation, where certain notes outside
the regular grid of beat positions are stressed. To make the problem of tempo and
beat tracking feasible, most automated approaches rely on two basic assumptions.
The first assumption is that beat positions occur at note onset positions, and the
second assumption is that beat positions are more or less equally spaced—at least
for a certain period of time. Even though both assumptions may be violated and

6.2 Tempo Analysis 323

Fig. 6.11 Illustration of two
different tempogram repre-
sentations T of a click track
with increasing tempo (170 to
200 BPM). The large values
T (t,τ) around t = 5 sec and
τ = 180 BPM are highlighted
by the rectangular frames.
(a) Novelty function of click
track. (b) Tempogram with
harmonics. (c) Tempogram
with subharmonics.

(a)

(b)

Te
m

po
 (B

P
M

)
(c)

Time (seconds)

Te
m

po
 (B

P
M

)

inappropriate for certain types of music, they are convenient and reasonable for a
wide range of music including most rock and popular songs.

Based on these two assumptions, we discuss in this section various time–tempo
or tempogram representations, which capture local tempo characteristics of music
signals (Section 6.2.1). To derive such representations, we study two methods for
analyzing novelty functions with regard to reoccurring or quasiperiodic patterns. Us-
ing Fourier analysis, we show how to derive a tempogram by comparing the novelty
function with templates that consist of windowed sinusoids, each representing a spe-
cific frequency or tempo (Section 6.2.2). For the second method, we discuss an auto-
correlation approach where a tempogram is obtained by comparing a novelty func-
tion with localized time-shifted copies of itself (Section 6.2.3). Finally, we introduce
robust mid-level representations referred to as cyclic tempograms (Section 6.2.4),
which are the tempo-related counterpart of the harmony-related chroma representa-
tions. The properties of the tempogram representations are illustrated in the context
of music segmentation.

6.2.1 Tempogram Representations

In Section 2.5.2, we studied the concept of a (magnitude) spectrogram, which rep-
resents the time–frequency content of a given signal. A large value Spec(t,ω) of a
spectrogram indicates that the signal contains at time instance t a periodic compo-
nent that corresponds to the frequency ω (see (2.141)). We now introduce a similar
concept referred to as a tempogram, which indicates for each time instance the lo-
cal relevance of a specific tempo for a given music recording. Mathematically, we
model a tempogram as a function

324 6 Tempo and Beat Tracking

T : R×R>0→ R≥0 (6.22)

depending on a time parameter t ∈ R measured in seconds and a tempo parameter
τ ∈R>0 measured in beats per minute (BPM). Intuitively, the value T (t,τ) indicates
the extent to which the signal contains a locally periodic pulse of a given tempo τ

in a neighborhood of time instance t. For example, the tempogram of Figure 6.11b
has a large value T (5,180), thus indicating that the music signal has a dominant
tempo of τ = 180 BPM around time position t = 5 sec. Just as with spectrograms
(Section 2.5.3), one computes a tempogram in practice only on a discrete time–
tempo grid. As before, we assume that the sampled time axis is given by [1 : N]. To
avoid boundary cases and to simplify the notation in the subsequent considerations,
we extend this axis to Z. (The respective representations are then extended by, e.g.,
zero-padding.) Furthermore, let Θ ⊂ R>0 be a finite set of tempi specified in BPM.
Then, a discrete tempogram is a function

T : Z×Θ → R≥0. (6.23)

Most approaches for deriving a tempogram representation from a given audio
recording proceed in two steps. Based on the assumption that pulse positions usu-
ally go along with note onsets, the music signal is first converted into a novelty
function (see Section 6.1). This function typically consists of impulse-like spikes,
each indicating a note onset position. In the second step, the locally periodic be-
havior of the novelty function is analyzed. To obtain a tempogram, one quantifies
the periodic behavior for various periods T > 0 (given in seconds) in a neighbor-
hood of a given time instance. The rate ω = 1/T (measured in Hz) and the tempo τ

(measured in BPM) are related by

τ = 60 ·ω. (6.24)

For example, a sequence of impulse-like spikes that are regularly spaced with period
T = 0.5 sec corresponds to a rate of ω = 1/T = 2 Hz or a tempo of τ = 120 BPM.

One major problem in determining the tempo of a music recording arises from the
fact that pulses in music are often organized in complex hierarchies that represent
the rhythm. In particular, there are various levels that are presumed to contribute to
the human perception of tempo and beat. For example, as illustrated by Figure 6.12,
one may consider the tempo on the tactus level, which typically corresponds to the
quarter note level and often matches the foot tapping rate. Thinking at a larger musi-
cal scale, one may also perceive the tempo at the measure level, in particular when
listening to fast music or to highly expressive music with strong rubato. Finally,
one may also consider the tatum (temporal atom) level, which refers to the fastest
repetition rate of musically meaningful accents occurring in the signal.

Often the tempo ambiguity that arises from the existence of different pulse levels
is also reflected in a tempogram T . Higher pulse levels often correspond to inte-
ger multiples τ,2τ,3τ, . . . of a given tempo τ . As with pitch (Section 1.3.2), we
call such integer multiples (tempo) harmonics of τ . Furthermore, integer fractions
τ,τ/2,τ/3, . . . are referred to as (tempo) subharmonics of τ . Analogous to the

6.2 Tempo Analysis 325

Measure

Tactus

Tatum

(a)

(b)

(c)

Fig. 6.12 Illustration of various pulse levels. In this example, the tactus level corresponds to the
quarter note and the tatum level to the eighth note level. (a) Score representation. (b) Waveform of
an audio excerpt of “Happy Birthday to you.” (c) Annotation of pulse levels.

notion of an octave for musical pitches (see Section 1.1.1), the difference between
two tempi with half or double the value is called a tempo octave. For an illustra-
tion, we refer to Figure 6.11, which shows two different types of tempograms for
a click track of increasing tempo (raising from 170 to 200 BPM over the course
of 20 sec). The tempogram of Figure 6.11b emphasizes tempo harmonics, whereas
the tempogram of Figure 6.11c emphasizes tempo subharmonics. In the following,
we will study two conceptually different methods that are used to derive these two
tempograms.

6.2.2 Fourier Tempogram

As a first periodicity estimation method, we show how a short-time Fourier trans-
form can be used to derive a tempogram from a given novelty function ∆ : Z→ R.
Dealing with a discrete-time signal ∆ , we consider the discrete version of the STFT
as discussed in Section 2.5.3. To this end, we fix a window function w : Z→ R of
finite length centered at n = 0 (e.g., a sampled Hann window as defined in (2.140)).
Then, for a frequency parameter ω ∈ R≥0 and time parameter n ∈ Z, the complex
Fourier coefficient F(n,ω) is defined by

F(n,ω) := ∆̃ w(n,ω) = ∑
m∈Z

∆(m)w(m−n)exp(−2πiωm). (6.25)

This definition corresponds to (2.143) when using a hop size H = 1. Converting
frequency to tempo values based on (6.24), we define the (discrete) Fourier tem-
pogram T F : Z×Θ → R≥0 by

T F(n,τ) := |F(n,τ/60)|. (6.26)

326 6 Tempo and Beat Tracking

The Fourier-based analysis of the novelty function is also illustrated by Figure 6.13,
which continues our Shostakovich example from Figure 6.7. As the Fourier tem-
pogram T F (Figure 6.13b) reveals, the dominant tempo of this excerpt is between
200 and 300 BPM. Starting with roughly τ = 225 BPM, the tempo slightly increases
over time. An entry T F(n,τ) of the tempogram is obtained by locally comparing
the novelty function ∆ in a neighborhood of n with a windowed sinusoid that rep-
resents the tempo τ . This kind of analysis is shown in Figure 6.13c for a time index
n that corresponds to the physical time t = 2 sec and a frequency parameter ω that
corresponds to the tempo τ = 230 BPM. In this case, the positive parts of the win-
dowed sinusoid nicely align with the impulse-like peaks of the novelty function ∆ ,
whereas the negative parts of the sinusoid fall into the zero-regions of ∆ . As a re-
sult, there is a high correlation between the windowed sinusoid and ∆ , which leads
to a large coefficient T F(n,τ). In contrast, using a sinusoid that represents only half
this tempo leads to a small coefficient, as illustrated by Figure 6.13d. In this case,
every second peak of ∆ falls into the positive parts of the sinusoid, whereas the
remaining peaks of ∆ fall into the negative parts of the sinusoid. Because of the
resulting cancellations, the correlation between ∆ and the sinusoid becomes small.
Finally, Figure 6.13e illustrates that one obtains a high correlation when using a si-
nusoid that represents twice the main tempo. In this case, the peaks of ∆ are aligned
with every second positive part of the sinusoid, whereas all other parts of the sinu-
soid fall into the zero-regions of ∆ . Our discussion shows that a Fourier tempogram
generally indicates tempo harmonics, but suppresses tempo subharmonics. This fact
is illustrated by Figure 6.11b, which shows the Fourier tempogram of a synthetic
click track. Also, in our Shostakovich example, the second tempo harmonic start-
ing at τ = 450 BPM is clearly visible in T F (Figure 6.13b). Interestingly, because
of the weak downbeats every third beat within the 3/4 meter (see our discussion of
Figure 6.7), the tempogram T F also shows some larger coefficients that correspond
to 1/3 and 2/3 of the main tempo (see Exercise 6.5)

For practical applications, T F is computed only for a small number of tempo
parameters. For example, one may choose the set Θ = [30 : 600] covering the (in-
teger) musical tempi between 30 and 600 BPM. The bounds are motivated by the
assumption that only musical events showing a temporal separation between roughly
100 ms (600 BPM) and 2 sec (30 BPM) contribute to the perception of tempo. This
tempo range requires a spectral analysis of high resolution in the lower frequency
range. Therefore, a straightforward FFT as discussed in Section 2.4.3 is not suitable.
However, since only relatively few frequency bands (tempo values) are needed for
the tempogram, computing the required Fourier coefficients individually according
to (6.25) still has a reasonable computational complexity. As for the temporal res-
olution, one can set w to be a sampled Hann window as defined in (2.140) of size
2N +1 for some N ∈ N. Depending on the respective application and the nature of
the music recording, a window size corresponding to 4–12 sec of audio is a rea-
sonable range. Finally, note that the feature rate of the resulting tempogram can be
adjusted by introducing a hop size parameter H in (6.25) as used in (2.143).

6.2 Tempo Analysis 327

Fig. 6.13 Fourier-based
tempo analysis for the
Shostakovich example from
Figure 6.7. (a) Novelty func-
tion ∆ . (b) Fourier tempogram
T F. (c–e) Correlation of ∆

and various analyzing win-
dowed sinusoids.

(a)

(b)

Te
m

po
 (B

P
M

)

(c)

Time (seconds)

(d)

(e)

(c)

(e)

(d)

6.2.3 Autocorrelation Tempogram

As a second periodicity estimation method, we now discuss an autocorrelation-
based approach. Generally speaking, the autocorrelation is a mathematical tool
for measuring the similarity of a signal with a time-shifted version of itself. Since
the inner product as defined in (2.43) is used for this measurement, this technique
is also known as the sliding inner product. In the following, we only consider the
case of discrete-time and real-valued signals. Let x ∈ `2(Z) be such a signal having
finite energy (see (2.41)). The autocorrelation Rxx : Z→ R of the real-valued signal
x is defined by

Rxx(`) = ∑
m∈Z

x(m)x(m− `), (6.27)

which yields a function that depends on the time-shift or lag parameter ` ∈ Z. As
shown in Exercise 6.6, the autocorrelation is well defined for signals in the space
`2(Z). Furthermore, Rxx(`) is maximal for ` = 0 and symmetric in `. Intuitively, if
the autocorrelation is large for a given lag, then the signal contains repeating patterns
that are separated by a time period as specified by the lag parameter.

We now apply the autocorrelation in a local fashion for analyzing a given novelty
function ∆ : Z→R in the neighborhood of a given time parameter n. As in the case
of the Fourier tempogram discussed in the last section, we fix a window function
w : Z→ R of finite length centered at n = 0. The windowed version ∆w,n : Z→ R
localized at point n ∈ Z is defined by

∆w,n(m) := ∆(m)w(m−n), (6.28)

328 6 Tempo and Beat Tracking

Fig. 6.14 Autocorrelation-
based tempo analysis for the
Shostakovich example from
Figure 6.7. (a) Novelty func-
tion ∆ . (b) Time-lag repre-
sentation A. (c–e) Correlation
of ∆ and various time-shifted
windowed sections.

(a)

(b)

La
g

(s
ec

on
ds

)
(c)

Time (seconds)

(d)

(e)

(d)

(e)

(c)

m ∈ Z. Recall that we have used a similar definition when introducing the STFT
(see (2.133)). To obtain the short-time autocorrelation A : Z×Z→ R, we apply
(6.27) to ∆w,n and define

A(n, `) := ∑
m∈Z

∆(m)w(m−n)∆(m− `)w(m−n− `). (6.29)

When assuming that the window function w is of finite length, the autocorrelation of
the localized novelty function is zero for all but a finite number of time lag parame-
ters. In the following, let us assume that the support of the window function w lies in
the interval [−L : L] for some L ∈ N. Then one has A(n, `) = 0 for |`| ≥ 2L+1 (see
Exercise 6.7). Because of this property and the symmetry of the autocorrelation, one
only needs to consider the time lag parameters ` ∈ [0 : 2L]. Furthermore, because of
the windowing, at most 2L+ 1− ` of the summands in (6.29) are nonzero. To bal-
ance out the effect of the windowing, the value A(n, `) may be divided by a factor
that depends on the window properties and the overlap 2L+ 1− ` of the window
and its time-shifted version.

Visualizing the short-time autocorrelation A leads to a time-lag representa-
tion. Before we discuss how this representation can be converted into a time–
tempo representation, let us first have a look at Figure 6.14, which continues our
Shostakovich example. The window w used in this example is a rectangular win-
dow that has a length corresponding to 2 sec of the original audio recording. Let us
consider the time index n corresponding to the time instance t = 3 sec. To compute
A(n, `), one only considers the section of the novelty function ∆ between 2 sec and
4 sec (Figure 6.14a). We have seen that the tempo of our Shostakovich recording is

6.2 Tempo Analysis 329

roughly 230 BPM in this section. In other words, the duration of the interval between
two subsequent beats is roughly s = 0.26 sec. Let us consider the lag parameter `
that corresponds to a time shift of s = 0.26 sec. Then, as illustrated by Figure 6.14c,
the novelty function in this section nicely correlates with its time-shifted version:
the peaks of the section fall onto peaks of the section shifted by one beat period.
The same holds when shifting the section by two, three or more beat periods. For
example, Figure 6.14d shows the case s = 0.78 sec (three beat periods). This period
corresponds to a tempo of 77 BPM, which is the tempo on the measure level. In
contrast, when using a lag ` that corresponds to half a beat period s = 0.13 sec (dou-
ble tempo 461 BPM), the peaks of the section and the peaks of the shifted section
miss each other, thus resulting in a coefficient A(n, `) close to zero. This case is
illustrated by Figure 6.14e.

To obtain a time–tempo representation from the time-lag representation, one
needs to convert the lag parameter into a tempo parameter. To this end, one requires
the frame rate or time resolution of the novelty function. Suppose that each time
frame corresponds to r seconds, then a time lag of ` (given in frames) corresponds
to ` ·r seconds. Since a shift of ` ·r seconds corresponds to a rate of 1/(` ·r) Hz, one
obtains from (6.24) the tempo

τ =
60
r · `

BPM. (6.30)

Based on this conversion, the lag axis can be interpreted as a tempo axis as illustrated
by Figure 6.15b. This allows us to define the autocorrelation tempogram T A by
setting

T A(n,τ) :=A(n, `) (6.31)

for each tempo τ = 60/(r · `), ` ∈ [1 : L]. Note that in this case, since the tempo
values are reciprocal to the linearly sampled lag values, the tempo axis is sampled in
a nonlinear fashion. To obtain a tempogram T A :Z×Θ→R≥0 that is defined on the
same tempo set Θ as the Fourier tempogram T F, one can use standard resampling
and interpolation techniques applied to the tempo domain. The result of such an
interpolation step is shown in Figure 6.15c.

As another example, Figure 6.11c shows the autocorrelation tempogram of a
click track. This figure illustrates that, as opposed to the Fourier tempogram, an
autocorrelation tempogram exhibits tempo subharmonics, but suppresses tempo har-
monics. We have already given the argument for this behavior when discussing
Figure 6.14: a high correlation of a local section of the novelty function with the
section shifted by ` samples also implies a high correlation with a section shifted
by k · ` lags for integers k ∈ N. Assuming that ` corresponds to tempo τ , the lag k · `
corresponds to the subharmonic τ/k.

This property is also evident in our Shostakovich example. Similar to the Fourier
tempogram T F (Figure 6.13b), the autocorrelation tempogram T A (Figure 6.15c)
reveals the dominant tempo at τ = 225 BPM, which corresponds to the quarter
note level. However, as opposed to T F, the dominant tempo revealed by T A is at
τ = 75 BPM, which corresponds to the tempo on the measure level and is the third

330 6 Tempo and Beat Tracking

Time (seconds) Time (seconds) Time (seconds)

Te
m

po
 (B

P
M

)

La
g

(s
ec

on
ds

)
(a) (b) (c)

Te
m

po
 (B

P
M

)

150
100

75

300

60

30

50
43
38
33

Fig. 6.15 Conversion from lag to tempo. (a) Time-lag representation with linear lag axis. (b) Rep-
resentation from (a) with tempo axis. (c) Time–tempo representation with linear tempo axis.

subharmonic of τ = 225 BPM. Reflecting the 3/4 meter of the waltz, the dominance
of the tempi τ = 225 BPM and τ = 75 BPM is also of musical relevance. In conclu-
sion, one may say that the Fourier tempogram and autocorrelation tempogram yield
different types of tempo information and ideally complement each other.

Assuming a more or less steady tempo, it suffices to determine one global tempo
value for the entire recording. Such a value may be obtained by averaging the tempo
values obtained from a frame-wise periodicity analysis. For example, based on a
tempogram representation, one can average the tempo values over all time frames
to obtain a function TAverage : Θ → R≥0 that only depends on τ ∈Θ . Assuming that
the relevant time positions lie in the interval [1 : N], one may define TAverage by

TAverage(τ) :=
1
N ∑

n∈[1:N]

T (n,τ). (6.32)

The maximum
τ̂ := max{TAverage(τ) | τ ∈Θ} (6.33)

of this function then yields an estimate for the global tempo of the recording. Of
course, more refined methods for estimating a single tempo value may be applied.
For example, instead of using a simple average in (6.32), we may apply median
filtering, which is more robust to outliers and noise. Also, to alleviate the problem
of tempo octave confusion, one may improve the result by a combined usage of the
Fourier and autocorrelation tempograms.

When dealing with music that exhibits significant tempo changes, one needs to
estimate the local tempo in the neighborhood of each time instance, which is a much
harder problem than global tempo estimation. Having computed a tempogram, the
frame-wise maximum yields a good indicator of the locally dominating tempo. In
the case that the tempo is relatively steady over longer periods of time, one may
increase the window size to obtain more robust and smoother tempo estimates.
However, it then becomes harder to detect sudden tempo changes and local tempo
fluctuations—the same trade-off we have already encountered in the case of the

6.2 Tempo Analysis 331

STFT (see Section 2.5.2). Furthermore, instead of simply taking the frame-wise
maximum—a strategy that is prone to local inconsistencies and outliers—global
optimization techniques based on dynamic programming may be used to obtain
smooth tempo trajectories. Such strategies will be discussed in Section 6.3 in the
context of beat tracking. In both global and local tempo estimation, one often has to
struggle with confusions of tempo harmonics and subharmonics, which are the re-
sult of the existence of various pulse levels such as measure, tactus, and tatum. In the
following section, we introduce a robust mid-level representation that is impervious
to tempo octave confusions while still capturing local tempo information.

6.2.4 Cyclic Tempogram

The various pulse levels mentioned above can be seen in analogy to the existence
of harmonics in the pitch context (see Section 1.3.2). To reduce the effects of har-
monics, we introduced in Section 3.1.2 the concept of chroma-based audio features.
By identifying pitches that differ by one or several octaves, we obtained a cyclic
mid-level representation that captures harmonic information while being robust to
changes in timbre. Inspired by the concept of chroma features, we now introduce
the concept of cyclic tempograms. The idea is to form tempo equivalence classes
by identifying tempi that differ by a power of two. More precisely, we say that two
tempi τ1 and τ2 are octave equivalent, if they are related by τ1 = 2kτ2 for some
k ∈ Z. For a tempo parameter τ , we denote the resulting tempo equivalence class by
[τ]. For example, for τ = 120 one obtains [τ] = {. . . ,30,60,120,240,480 . . .}. Given
a tempogram representation T : Z×R>0→ R≥0, we define the cyclic tempogram
by

C(n, [τ]) := ∑
λ∈[τ]
T (n,λ). (6.34)

Note that the tempo equivalence classes topologically correspond to a circle. Fixing
a reference tempo τ0, the cyclic tempogram can be represented by a mapping Cτ0 :
Z×R>0→ R≥0 defined by

Cτ0(n,s) := C(n, [s · τ0]) (6.35)

for n ∈ Z and a scaling parameter s ∈ R>0. Note that Cτ0(n,s) = Cτ0(n,2
ks) for

k ∈ Z. In particular, Cτ0 is completely determined by its values s ∈ [1,2).
These definitions are illustrated by Figure 6.16, which shows various tem-

pograms for a click track of increasing tempo (110 to 130 BPM), similar to the
one used in Figure 6.11. As demonstrated by Figure 6.16a, the Fourier tempogram
T F indicates the tempo as well as its tempo harmonics. Using a reference tempo
τ0 = 60 BPM, the resulting cyclic Fourier tempogram, which we denote by CF

τ0
, is

shown in Figure 6.16c. In the pitch context, given a reference frequency ω , the fre-
quency 3ω is an octave plus a fifth higher, and 3ω can be regarded as the dominant
to the tonic ω . In analogy to the pitch context, we call the tempo class [3τ], which

332 6 Tempo and Beat Tracking

Te
m

po
 (B

P
M

)

Te
m

po
 (B

P
M

)

(g) (h)

Time (seconds)Time (seconds)

(c) (d)

(e) (f)

(a) (b)
Te

m
po

 (B
P

M
)

Te
m

po
 (B

P
M

)

S
ca

lin
g

pa
ra

m
et

er
S

ca
lin

g
pa

ra
m

et
er

S
ca

lin
g

pa
ra

m
et

er
S

ca
lin

g
pa

ra
m

et
er

Fig. 6.16 Various tempogram representations for a click track of increasing tempo (110 to
130 BPM). (a,b) Fourier and autocorrelation tempogram representations. (c,d) Cyclic tempograms
obtained from (a,b) using τ0 = 60. (e,f) Tempograms with logarithmic tempo axis using M = 15.
(g,h) Cyclic tempograms from (e,f) using τ0 = 60.

corresponds to the third harmonic 3τ , the tempo dominant of [τ]. In Figure 6.16c,
the tempo dominant is visible as the weak increasing line starting with s = 1.33
at time t = 0. Similarly, the autocorrelation tempogram T A with its tempo subhar-
monics is displayed in Figure 6.16b. We denote the resulting cyclic autocorrelation
tempogram by CA

τ0
(see Figure 6.16d). Again inspired by the case of pitches, we call

the tempo class [τ/3] of the third subharmonic τ/3 the tempo subdominant of [τ].
In Figure 6.16d, the tempo subdominant appears as a weak increasing line starting
with s = 1.2 at time t = 0.

So far we have assumed that the space of tempo parameters is continuous. In
practice, one can compute a cyclic tempogram Cτ0 only for a finite number of pa-
rameters s ∈ [1,2). Recall that for computing a value Cτ0(n,s) one needs to sum the
values T (n,τ) for tempo parameters τ ∈ {s · τ0 ·2k | k ∈ Z}. In other words, the re-
quired tempo values are spaced exponentially on the tempo axis. Therefore, as with
chroma features, where one uses a log-frequency axis, one requires a log-tempo
axis for computing a cyclic tempogram. To this end, the tempo range is sampled
in a logarithmic fashion such that each tempo octave contains M tempo samples

6.2 Tempo Analysis 333

(a) (b)
S

ca
lin

g
pa

ra
m

et
er

S
ca

lin
g

pa
ra

m
et

er

S
ca

lin
g

pa
ra

m
et

er

S
ca

lin
g

pa
ra

m
et

er

TimeTime

Fig. 6.17 Cyclic Fourier (top) and autocorrelation (bottom) tempogram representations used for
homogeneity-based music segmentation. (a) “In the Year 2525” by Zager and Evans (see also
Figure 4.13). (b) Hungarian Dance No. 5 by Johannes Brahms (see also Figure 4.6d).

for a given number M ∈ N. Then one obtains a discrete cyclic tempogram Cτ0 sim-
ply by adding up the corresponding values of the different octaves as described in
(6.34). This yields an M-dimensional feature vector for every time frame n ∈ Z,
where the cyclic tempo axis is sampled at M positions (see Exercise 6.9) As an ex-
ample, Figure 6.16e shows a Fourier tempogram with a logarithmic tempo axis. In
this case, four tempo octaves ranging from τ = 30 to τ = 480 BPM are used, where
each octave is logarithmically sampled using M = 15 tempo parameters. The re-
sulting cyclic Fourier tempogram is shown in Figure 6.16g. Similarly, Figure 6.16f
shows an autocorrelation tempogram with logarithmic tempo axis and Figure 6.16h
the resulting cyclic tempogram.

As mentioned previously, cyclic tempogram representations are the tempo-based
counterparts of harmony-based chromagram representations. Compared with stan-
dard tempograms, the cyclic versions are more robust to ambiguities that are caused
by the various pulse levels. Furthermore, one can simulate changes in tempo by
cyclically shifting a cyclic tempogram. Note that this is similar to the property of
chromagrams, which can be cyclically shifted to simulate modulations in pitch. As
one further advantage, even low-dimensional versions of discrete cyclic tempograms
still bear valuable local tempo information of the underlying musical signal. We now
indicate how cyclic tempograms can be used as a tool for audio segmentation.

Recall from Section 4.1 that there are many different strategies for segmenting
music signals including novelty-based, repetition-based, and homogeneity-based
approaches. In the latter, the idea is to partition the music signal into segments that
are homogeneous with regard to a specific musical property. In this context, we have
considered various feature representations that capture different musical properties
such as timbre, harmony, and tempo (see Figure 4.6). We now indicate how cyclic
tempograms may be useful for tempo-based segmentation. In the following exam-
ples, we use low-dimensional versions of CA

60 and CF
60 based on M = 15 different

tempo classes. In our first example, we consider the song “In the Year 2525” by

334 6 Tempo and Beat Tracking

Zager and Evans, a song we have already encountered in Figure 4.13. Recall that
the song has a repetitive structure represented by IV1V2V3V4V5V6V7BV8O. The song
starts with a slow intro (I-part), which has a contemplative character with a rather
vague notion of tempo and rhythm. The music is dominated by a singing voice,
which is accompanied mainly by constant strumming of a guitar. The bridge (B-
part) towards the end of the song is played in the same style. As opposed to the intro
and bridge, the eight repeating verse sections (V -parts) are played much faster with
a clear notion of tempo and rhythm, which are supported by percussive instruments.
As seen in Figure 6.17a, the slow parts can be easily discerned from the fast parts
in both cyclic tempograms, CF

60 and CA
60. In the slow parts, the tempograms exhibit

a noise-like character, where no clear tempo is visible. In contrast, in the fast parts,
the tempograms have a dominating tempo corresponding to the scaling parameter
value s = 1.05, which reflects the actual constant tempo τ = s ·60 ·2 = 126 BPM of
the verse sections.

As a second example, we consider a recording of Brahms’ Hungarian Dance
No. 5, which has already served as our running example in Chapter 4. The musical
structure of this recording can be described by A1A2B1B2CA3B3B4D. In this record-
ing, the different musical parts are played in different tempi. Furthermore, there
are numerous abrupt changes in tempo, even within some of the parts. Although
the cyclic tempogram representations shown in Figure 6.17b do not reveal the exact
tempi, they capture tempo-related information that may be useful for homogeneity-
based structure analysis. In the two considered examples, the cyclic tempograms
yield musically meaningful segmentations purely based on a low-dimensional rep-
resentation of tempo. These segments cannot be recovered using MFCCs or chroma
features, since the homogeneity assumption does not hold with regard to timbre or
harmony (see Section 4.1.3).

Finally, we want to note that the tempogram representation shown in Figure 4.6d
was generated using a Fourier tempogram with M = 120 different tempo classes. For
tasks such as homogeneity-based audio segmentation, it may be beneficial to use a
much coarser resolution (e.g., M = 15 in Figure 6.17b). Decreasing the dimension
of the features makes them more robust to small tempo fluctuations. Furthermore,
a low feature dimension has advantages for many analysis and retrieval tasks with
regard to aspects that concern efficiency, indexing, and learning.

6.3 Beat and Pulse Tracking

The task of beat and pulse tracking can be seen as an extension of tempo estimation
in the sense that, additionally to the rate, it also considers the phase of the pulses
(see Figure 6.1b). Starting with a Fourier tempogram, we introduce in Section 6.3.1
a robust pulse representation that reveals the predominant local pulse occurring in
a neighborhood of a certain time instance in the music signal. This yields a pulse
tracker that can adjust to continuous and sudden changes in tempo as long as the
underlying novelty function possesses locally periodic patterns. We will see that the

6.3 Beat and Pulse Tracking 335

pulse representation can be thought of as a kind of periodicity enhancement of the
novelty function. The pulse representation does not aim at extracting pulses at a
specific level, but locally switches to the dominating pulse level. If one is interested
in the pulse positions that correspond to the beat level, one needs to exploit addi-
tional knowledge such as a rough estimate of the expected tempo. In Section 6.3.2,
we discuss such a beat tracking procedure based on dynamic programming, which
assumes a more or less constant tempo throughout the music recording.

6.3.1 Predominant Local Pulse

We now introduce a robust procedure for the extraction of musically meaningful
local pulse information even in the case of complex music. Intuitively speaking,
the idea is to construct a mid-level representation that explains the local periodic
nature of a given (possibly noisy) onset representation. More precisely, starting with
a novelty function, we determine for each time position a windowed sinusoid that
best captures the local peak structure of the novelty function. Instead of looking
at the windowed sinusoids individually, the crucial idea is to employ an overlap–
add technique by accumulating all sinusoids over time. As a result, one obtains
a single function that can be regarded as a local periodicity enhancement of the
original novelty function. Revealing predominant local pulse (PLP) information,
this representation is referred to as a PLP function. In this context, we use the
term predominant pulse in a rather loose way to refer to the strongest pulse level
that is measurable in the underlying novelty function. Since the PLP representation
yields the predominant pulse in a (windowed) neighborhood of each time position,
continuous tempo variations and local changes in the pulse level can be captured to
a certain degree.

6.3.1.1 Definition of PLP Function

In the following construction, we start with a Fourier tempogram T F :Z×Θ →R≥0
as defined in (6.26). For each time position n ∈ Z, we compute the tempo parameter
τn ∈Θ that maximizes T F(n,τ):

τn := argmax
τ∈Θ

T F(n,τ). (6.36)

As an example, Figure 6.18b shows the maximizing tempo parameters τn at seven
different time positions. We now make use of the phase information that is given
by the complex Fourier coefficients F(n,ω) defined in (6.25). Recall from (6.26)
that we have T F(n,τ) := |F(n,τ/60)|. Therefore, the phase ϕn that belongs to the
windowed sinusoid of tempo τn is given by

336 6 Tempo and Beat Tracking

Fig. 6.18 Illustration of the
PLP computation. (a) Novelty
function ∆ . (b) Tempogram
T with frame-wise tempo
maxima (indicated by cir-
cles) shown at seven time
positions n. (c) Optimal win-
dowed sinusoids κn (using a
window size of 4 seconds)
corresponding to the maxima
(see also Figure 6.13 for an
illustration of individual sinu-
soids). (d) Accumulation of
all sinusoids (overlap–add).
(e) PLP function Γ obtained
after half-wave rectification.

(a)

(b)

Te
m

po
 (B

P
M

)

(c)

Time (seconds)

(d)

(e)

ϕn =−
1

2π
γn, (6.37)

where γn is the angle of the polar coordinate representation F(n,τ/60) =
|F(n,τ/60)|exp(iγn) (see also (2.89)). Based on τn and ϕn, we define the optimal
windowed sinusoid κn : Z→ R by setting

κn(m) := w(m−n)cos
(

2π
(
(τn/60) ·m−ϕn

))
(6.38)

for each time point n ∈ Z, where we use the same window function w as for the
Fourier tempogram. For example, Figure 6.13c shows such an optimal windowed
sinusoid for the time index n that corresponds to t = 2 sec and the maximizing tempo
parameter τn = 230 BPM. Intuitively, the sinusoid κn best explains the local periodic
nature of the novelty function at time position n with respect to the tempo set Θ . The
period 60/τn corresponds to the predominant periodicity of the novelty function, and
the phase information ϕn takes care of accurately aligning the maxima of κn and the
peaks of the novelty function. The relevance of the sinusoids κn depends not only on
the quality of the novelty function, but also on the window size of w and the tempo
set Θ . For example, as we discussed before, increasing the window size typically
yields more robust estimates at the cost of temporal flexibility.

The estimation of optimal windowed sinusoids in regions with a strongly corrupt
peak structure is problematic. This particularly holds in the case of small window
sizes. To make the periodicity estimation more robust while keeping the temporal
flexibility, the idea is to form a single function instead of looking at the sinusoids
in a one-by-one fashion. To this end, we apply an overlap–add technique, where

6.3 Beat and Pulse Tracking 337

the optimal windowed sinusoids κn are accumulated over all time positions n ∈ Z
(see Figure 6.18). Furthermore, we only consider the positive part of the resulting
function. More precisely, we define a function Γ : Z→ R≥0 as follows:

Γ (m) = |∑n∈Z κn(m)|≥0 (6.39)

for n ∈ Z, where we use the half-wave rectification as introduced in (6.2). The re-
sulting function is our mid-level representation referred to as a PLP function.

As an example, Figure 6.18d shows the accumulation for the seven optimal win-
dowed sinusoids indicated in Figure 6.18c. Note how the maxima of the different
windowed sinusoids align well not only with the peaks of the novelty function,
but also with the maxima of neighboring sinusoids in the overlapping regions. This
leads to constructive interferences—a phenomenon that we have already seen in
Figure 2.19a. By suitably normalizing the window function w (in particular to com-
pensate for overlaps of subsequent windows in the tempogram computation), one
can achieve values in the accumulated sinusoids within the interval [−1,1] as well
as local maxima close to 1 if and only if the overlapping sinusoids align well. The
final PLP function Γ is obtained through half-wave rectification (see Figure 6.18e).
In the subsequent discussion, we show how to obtain suitable candidates for pulse
and beat positions from the peaks of Γ .

6.3.1.2 Discussion of Properties

We now discuss various properties of the PLP concept by looking at some repre-
sentative examples. As a first example, we continue with the Shostakovich excerpt
introduced in Figure 6.7. Recall that in this recording the first beats (downbeats)
of the 3/4 meter are weak, whereas the second and third beats are strong. This
property is also reflected by the peak structure of the novelty function shown in
Figure 6.18a, where the peaks corresponding to downbeats are very low. As indi-
cated by the Fourier tempogram (Figure 6.18b), the dominant tempo lies between
200 and 250 BPM throughout this excerpt with a slight tempo increase starting with
roughly τ = 225 BPM. The maximizing tempo values as well as the corresponding
optimal windowed sinusoids are indicated for seven different time positions. Note
that each of these windowed sinusoids tries to explain the locally periodic nature of
the peak structure of the novelty function, where small deviations from the “ideal”
periodicity and weak peaks are balanced out. The resulting PLP function Γ is shown
in Figure 6.18e. Note that the predominant pulse positions are clearly indicated by
the peaks of Γ even though some of these pulse positions are rather weak in the
original novelty function. In this sense, the PLP function can be regarded as a local
periodicity enhancement of the original novelty function, where the predominant
pulse level is taken into account.

As a second example, we consider an orchestra recording of the Hungarian Dance
No. 5 by Johannes Brahms, which was already used in Figure 6.17b. In the follow-
ing, we only consider a small audio excerpt (the section between t1 = 35 sec and

338 6 Tempo and Beat Tracking

(a)

(b)

Te
m

po
 (B

P
M

)

(c)

(d)

(e)

Time (seconds)

m. 26 (35 sec) m. 29 (39 sec) m. 33 (41 sec)

Fig. 6.19 Excerpt (corresponding to measures 26 to 38) of an orchestra recording conducted by
Ormandy of Brahms’ Hungarian Dance No. 5. (a) Score in a piano reduced version. (b) Fourier
tempogram. The rough tempo range of the predominant pulse is highlighted by the rectangular
frames. (c) Manual annotation of note onset positions. (d) Novelty function ∆Spectral. (e) PLP func-
tion Γ .

t2 = 53 sec of the recording), where measures 26 to 38 are played. Figure 6.19a
shows the musical score of a piano reduced version of these measures. With re-
spect to the overall musical structure A1A2B1B2CA3B3B4D, the excerpt comprises
the transition from the A2-section to the B1-section. Because of significant local
tempo changes, this recording constitutes a great challenge for tempo estimation and
pulse tracking. Considering a quarter-note pulse level, a manual inspection shows
that the excerpt starts with a tempo of 90 BPM (measures 26–28, seconds 35–39),
then abruptly changes to 140 BPM (measures 29–32, seconds 39–41), and contin-
ues with 75 BPM (measures 33–38, seconds 41–53). Many of the note onsets, which
are indicated in Figure 6.19c, are poorly captured by the novelty function shown in
Figure 6.19d. Furthermore, because of large differences in dynamics, there are some
strong onsets that dominate the novelty function as well as some weak onsets that
can hardly be distinguished from spurious peaks not related to any note onsets. As
a result, the height of a peak is not necessarily the only indicator of its relevance.
Despite these challenges, the tempo is reflected well by the Fourier tempogram on
the eighth-note pulse level (the second harmonic of the quarter-note tempo); see
Figure 6.19b. Although corrupt, the peak structure of the novelty function still pos-
sesses some local periodic regularities, which are captured by the windowed sinu-

6.3 Beat and Pulse Tracking 339

soids corresponding to the predominant local tempo. The resulting PLP function Γ ,
as shown by Figure 6.19e, is capable of revealing the pulse positions on the eighth-
note level.

The Brahms example illustrates another important property of the PLP function:
it not only reveals positions of predominant pulses but also indicates a kind of confi-
dence in the estimation. Note that the amplitudes of the optimal windowed sinusoids
do not depend on the amplitude of the novelty function. This makes a PLP function
invariant to changes in dynamics of the underlying music signal. Recall that we es-
timate the windowed sinusoids using a sliding window technique and add them up
over all considered time positions. Since neighboring sinusoids overlap, construc-
tive and destructive interference phenomena in the overlapping regions influence the
amplitude of the resulting PLP function Γ . Consistent local tempo estimates result
in sinusoids that produce constructive interferences in the overlap–add process. In
such regions, the peaks of the PLP function assume a value close to one. In contrast,
sudden random-like changes in the local tempo estimates result in inconsistencies
in the overlap regions of subsequent sinusoids, which in turn cause destructive in-
terferences and lower values of Γ . In Figure 6.19e, this effect is visible in measures
28–33 (seconds 38–42), where several sudden tempo changes occur within the win-
dow size of the analysis sinusoids. The confidence property of PLP functions can be
used to detect problematic passages in music recordings.

Although the PLP concept is designed to automatically adapt to the predominant
tempo, for some applications the local nature of these estimates might not be desir-
able. In particular, taking the frame-wise maximum to determine the predominant
tempo as in (6.36) has both advantages and drawbacks. On the one hand, it al-
lows the PLP function to quickly adjust—even to sudden changes in tempo. On the
other hand, it may lead to unwanted jumps such as random switches between tempo
octaves. This situation is illustrated by our third example, shown in Figure 6.20,
where a piano recording of a piece by Burgmüller is analyzed. Using the tempo set
Θ = [30 : 600] yields the PLP function of Figure 6.20b, where several changes be-
tween the quarter-note and eighth-note level occur. Such switches in the pulse level
can be avoided when constraining the tempo set Θ in the maximization. For ex-
ample, using a constrained set Θ = [60 : 200], one obtains the tempogram and PLP
function shown in Figure 6.20c. In this case, the PLP function correctly reveals the
quarter-note (tactus) pulse positions with a tempo of roughly 130 BPM. Similarly,
using the set Θ = [200 : 340] reveals the positions on the eighth-note (Figure 6.20d)
and using the set Θ = [450 : 600] the positions on the sixteenth-note pulse level. In
other words, one can easily incorporate into the PLP framework prior knowledge on
the expected tempo range to reveal the pulses on a specific level.

6.3.2 Beat Tracking by Dynamic Programming

There are many types of music with a strong and steady beat, where the tempo is
more or less constant throughout the entire recording. In such cases, the flexibility

340 6 Tempo and Beat Tracking

(a)

(b)

(d)

Te
m

po
 (B

P
M

)

Te
m

po
 (B

P
M

)

Te
m

po
 (B

P
M

)

Te
m

po
 (B

P
M

)

Time (seconds) Time (seconds)

(c)

(e)

Fig. 6.20 Beat level adjustment by tempo range restriction based on a piano recording of the
beginning of the Piano Etude Op. 100 No. 2 by Burgmüller. Tempograms and PLP functions (KS=
4 sec) are shown for various sets Θ specifying the tempo range used (given in BPM). (a) Θ = [30 :
600] (full tempo range). (b) Θ = [60 : 200] (tempo range around quarter-note level). (c) Θ = [200 :
340] (tempo range around eighth-note level). (d) Θ = [450 : 600] (tempo range around sixteenth-
note level).

offered by the PLP concept is not needed. Following the approach originally sug-
gested by Ellis [9], we now describe a beat tracking procedure which is based on
the assumptions that beat positions go along with the strongest note onsets and that
the tempo is roughly constant. The main idea is to construct a score function that
measures how well an arbitrary beat sequence reflects these two assumptions. The
score-maximizing beat sequence constitutes the final beat tracking result. We will
see that such an optimal beat sequence can be computed efficiently using dynamic
programming—an algorithmic paradigm we have introduced in Section 3.2.1.3.

The input of the beat tracking procedure consists of a novelty function
∆ : [1 : N]→ R as well as a rough estimate τ̂ ∈ R>0 of the global tempo. As usual,
we assume that the interval [1 : N] represents the sampled time axis used for the
novelty feature computation. The tempo estimate τ̂ may be specified manually or
obtained by an automated procedure such as (6.33). From τ̂ and the feature rate, one
can derive an estimate for the beat period. For simplicity, we assume that the beat
period is specified in terms of samples or feature indices (rather than in seconds).
Let δ̂ ∈ N be this number. Assuming a roughly constant tempo, the difference δ of
two consecutive beats should be close to δ̂ . To account for the deviation of δ from
the ideal beat period δ̂ , we introduce a penalty function P

δ̂
: N→ R by setting

6.3 Beat and Pulse Tracking 341

Fig. 6.21 Penalty function P
δ̂

measuring the deviation of a
given beat period δ from the
ideal beat period δ̂ .

42/2/4
Beat interval

Pe
na

lty

P
enalty

0

-1

-0.5

N
ov

el
ty

sc
or

e

0

1

0.25

0.5

0.75

-1.5

Fig. 6.22 Illustration of the score value S(B) from (6.41), which involves a (positive) novelty
score ∆(b`) and a (negative) deviation penalty P

δ̂
(b`−b`−1).

P
δ̂
(δ) :=−

(
log2(δ/δ̂)

)2 (6.40)

for δ ∈ N. This function has a maximal value of zero at δ = δ̂ and exhibits increas-
ingly negative values for larger deviations (see Figure 6.21). Furthermore, since
tempo deviations are relative in nature (doubling the tempo should be penalized
to the same degree as halving the tempo), the penalty function is defined to be sym-
metric on a logarithmic axis.

For a given N ∈ N, let B = (b1,b2, . . . ,bL) be a sequence of length L ∈ N0 con-
sisting of strictly monotonically increasing beat positions b` ∈ [1 : N] for ` ∈ [1 : L].
In the following, we refer to such a sequence as a beat sequence. By definition, the
beat sequence of length L = 0 is the empty sequence. Furthermore, let BN denote
the set consisting of all possible beat sequences for a given parameter N ∈ N. To
measure the quality of a beat sequence B ∈ BN , we introduce a score value S(B)
that includes positive values of the novelty function ∆ and negative values of the
penalty function P

δ̂
(see Figure 6.22). To this end, we set

S(B) :=
L

∑
`=1

∆(b`)+λ

L

∑
`=2

P
δ̂
(b`−b`−1). (6.41)

In particular, we obtain S(B) = 0 for the empty beat sequence with L = 0. Fur-
thermore, in the case L = 1, we obtain S(B) = ∆(b1). In order to achieve a large

342 6 Tempo and Beat Tracking

score, the novelty values ∆(b`) should be large, while the nonpositive penalty values
P

δ̂
(b`−b`−1) should be close to zero. The weight parameter λ ∈ R>0 is introduced

to balance out these two conflicting conditions. The beat sequence

B∗ := argmax{S(B) | B ∈ BN} (6.42)

that has the maximal score among all possible beat sequences yields the solution of
the beat tracking problem.

Note that the number of possible beat sequences is exponential in N (see
Exercise 6.10). We now show how an optimal beat sequence can be computed
efficiently using dynamic programming. We have already encountered this al-
gorithmic paradigm in previous chapters for solving similar optimization prob-
lems. For example, in Section 3.2.1.3, we used dynamic programming to compute
a cost-minimizing warping path or, in Section 5.3.3.2, to determine a probability-
maximizing state sequence (Viterbi algorithm).

Recall from Section 3.2.1.3 that, in the context of DTW, we broke down the
optimization problem into simpler subproblems by considering prefixes of the two
sequences to be aligned. In the beat tracking context, we employ a similar idea by
considering prefixes of the underlying novelty function. More precisely, letBN

n ⊂BN

denote the set of all beat sequences that end in n ∈ [0 : N]. In other words, for a beat
sequence B = (b1,b2, . . . ,bL) ∈ BN

n , we have bL = n. Note that, in the case n = 0,
the only possible beat sequence is the empty one. Let

D(n) := max
{

S(B) | B ∈ BN
n
}

(6.43)

denote the maximal score over all beat sequences ending with n ∈ [0 : N]. The value
D(n) is also referred to as the accumulated score. It is not hard to see that

BN =
⋃

n∈[0:N]

BN
n (6.44)

(see Exercise 6.10). Therefore, the maximal score S(B∗) for an optimal beat se-
quence B∗ as defined in (6.42) is obtained by looking for the largest value of D:

S(B∗) = max
n∈[0:N]

D(n). (6.45)

We now show how the values D(n) can be computed in an iterative fashion for
n = 0,1, . . . ,N. For a summary of the procedure, we also refer to Table 6.1.

First, we consider the case n = 0, which is used for initializing the procedure.
In this case, we have D(n) = 0, which is the accumulated score of the empty
beat sequence of length L = 0. Next, let n > 0. Assuming that we already know
the values D(m) for m ∈ [0 : n−1], we need to compute the value D(n). Let
B∗n = (b1,b2, . . . ,bL) with bL = n denote a score-maximizing beat sequence that
yields the value D(n) = S(B∗n). Even though we may not know such a sequence
explicitly, we know, at least, that the last beat bL = n contributes with the novelty
value ∆(n). We distinguish between two cases. The first case is L = 1, where one

6.3 Beat and Pulse Tracking 343

Algorithm: OPTIMAL BEAT SEQUENCE

Input: Novelty function ∆ : [1 : N]→ R
Estimate δ̂ for the beat period (given in samples)
Weight parameter λ ∈ R

Output: Optimal beat sequence B∗ = (b1,b2, . . . ,bL)

Procedure: Initialize D(0) = 0 and P(0) = 0. Then compute in a loop for n = 1, . . . ,N:

D(n) = ∆(n)+max
{

0, maxm∈[1:n−1]{D(m)+λP
δ̂
(n−m)}

}
If D(n) = ∆(n) then set P(n) = 0,

otherwise set P(n) = argmaxm∈[1:n−1]
{

D(m)+λP
δ̂
(n−m)

}
Set `= 1 and a` = argmaxn∈[0:N] D(n). Then repeat the following steps until P(a`) = 0:

Increase ` by one.
Set a` = P(a`−1).

If a` = 0, then set L = 0 and return B∗ = /0.
Otherwise let L = ` and return B∗ = (aL,aL−1, . . . ,a1).

Table 6.1 Computation of an optimal beat sequence using dynamic programming.

has a single beat and D(n) = ∆(n). The second case is L > 1, where one has a beat
bL−1 ∈ [1 : n−1] that precedes bL = n. Using (6.41), the accumulated score D(n) is
obtained by

D(n) = ∆(n)+λP
δ̂
(n−bL−1)+D(bL−1). (6.46)

In other words, the optimal score D(n) is obtained as the sum of the novelty value
∆(n), the (weighted) penalty of the beat period δ = bL − bL−1, and the optimal
score D(bL−1) of a beat sequence ending at bL−1. Even though we do not know bL−1
explicitly so far, we have already computed all values D(m) for m∈ [0 : n−1]. From
this and by considering the two cases (L = 1 and L > 1), we obtain the following
recursion:

D(n) = ∆(n)+max
{

0,
maxm∈[1:n−1]

{
D(m)+λP

δ̂
(n−m)

}
.

(6.47)

This concludes the computation of the accumulated score D. By (6.45), this also
yields the maximal score of an optimal beat sequence. However, we do not yet
know what an optimal beat sequence looks like. To determine such an optimal beat
sequence, we need to apply a backtracking procedure—similar to the previous sce-
narios in Section 3.2.1.3 and Section 5.3.3.2.

While calculating D(n), we additionally store the information on the maximiza-
tion process in (6.47) by means of a number P(n) ∈ [0 : n−1]. In the case that the
maximum in (6.47) is 0, we have L = 1 and there is no preceding beat. Therefore,
we set P(n) := 0. Otherwise, one has L > 1, and there is a preceding beat. In this
case we set

344 6 Tempo and Beat Tracking

P(n) := argmax
m∈[1:n−1]

{
D(m)+λP

δ̂
(n−m)

}
. (6.48)

The maximizing index n∗ ∈ [0 : N] in (6.45) determines the last beat bL = n∗ of
an optimal beat sequence B∗. (Only in the case n∗ = 0, there is no last beat and
B∗ = /0.) The remaining beats of B∗ can then be obtained by backtracking using
the predecessor information supplied by P. In the case P(n∗) = 0, the backtracking
is terminated and L = 1. Otherwise, bL−1 = P(bL) determines the beat preceding
the last beat bL = n∗. This procedure is then iterated to determine bL−2 = P(bL−1),
bL−3 = P(bL−2), and so on, until the condition P(b1) = 0 terminates the backtrack-
ing. Note that the length L is not known a priori and results from the backtracking.
Table 6.1 summarizes the entire procedure (compare this with the DTW procedure
of Table 3.2). Thanks to dynamic programming, the exponential number of oper-
ations needed to compute the score of all possible beat sequences is reduced to a
number of operations that is quadratic in N (see Exercise 6.11). In practice, further
savings can be achieved by restricting the search space in the maximization (6.47)
(see Exercise 6.13).

As said before, the main limitation of the beat tracking procedure is its depen-
dency on a single, predefined tempo τ̂ . Using a small weighting parameter λ , the
procedure may yield good beat tracking results even in the presence of local devia-
tions from the ideal beat period δ̂ . However, the presented procedure is not designed
for handling music with slowly varying tempo (such as ritardando or accelerando)
or abrupt changes in tempo. Despite these limitations, the simplicity and efficiency
of the dynamic programming approach to beat tracking makes it an attractive choice
for many types of music.

6.3.3 Adaptive Windowing

Onset and beat positions are expressive features that often segment a music record-
ing into semantically meaningful units. We now indicate how such a segmentation
can help to improve general feature extraction. One crucial step in practically all
music analysis tasks consists of transforming the given audio signal into a suitable
feature representation that captures certain musical properties while being invariant
to other aspects. For example, as we have seen in Section 3.1.2, chroma features are
a powerful representation for revealing harmonic properties of a music recording.
Since most musical properties vary over time, the given audio signal is typically split
up into segments or frames, which are then further processed individually. The un-
derlying assumption is that the signal stays (approximately) stationary within each
segment with regard to the property to be captured.

In practice, as is the case with the short-time Fourier transform (Section 2.5), a
predefined window of fixed size is used for the time localization, where the size is
determined empirically and optimized for the specific application in mind. Using
fixed-size windowing, however, may lead to a violation of the homogeneity as-
sumption: the boundaries of the resulting windowed sections often do not coincide

6.3 Beat and Pulse Tracking 345

(b) (c)

(a)

Time (seconds) Time (seconds)

Fig. 6.23 Score, audio recording, and chroma representation of a sequence of four chords. (a) Mu-
sical score of the four chords. (b) Segmentation using a window of fixed size. (c) Adaptive seg-
mentation resulting in beat-synchronized features.

with the positions where the changes of the signal occur. To illustrate this prob-
lem, Figure 6.23b shows a chroma representation for an audio excerpt with four
subsequent chords, where fixed-size windowing has been used. Note that the third
frame comprises a chord change leading to a rather “noisy” chroma feature where
the chroma bands contain energy from two different chords. To attenuate the prob-
lem, one may decrease the window size at the cost of an increased feature rate and
a poorer frequency resolution. As an alternative to fixed-size windowing, one can
employ a more musically meaningful adaptive windowing strategy, where segment
boundaries are induced by previously extracted onset and beat positions. Since mu-
sical changes typically occur at onset positions, this often leads to an increased ho-
mogeneity within the adaptively determined frames and a significant improvement
in the resulting feature quality. In our chord example, as shown by Figure 6.23c,
such an onset-based adaptive windowing leads to clean chroma features that nicely
capture the characteristics of the four chords.

Adaptive windowing techniques based on beat information are of particular im-
portance for many music analysis and retrieval applications. In this case, a win-
dowed section is determined by two consecutive beat positions, which results in one
feature vector per beat. Such beat-synchronous feature representations have the
advantage of possessing a musical time axis (given in beats) rather than a physical
time axis (given in seconds). This makes the feature representation robust to differ-
ences in tempo (given in BPM). In the context of music synchronization (Chapter 3),
the usage of beat-synchronous features could make DTW-like alignment techniques
obsolete—at least in the ideal case of having perfect beat positions. For exam-
ple, knowing the beat positions already yields a beatwise synchronization of two
different performances that follow the same musical score. However, in practice,
such strategies have to be treated with caution, in particular when the beat posi-
tions are determined automatically. As we have discussed in this chapter, automated

346 6 Tempo and Beat Tracking

Fig. 6.24 Time–pitch repre-
sentations for a piano record-
ing of a chromatic scale (simi-
lar to Figure 3.3). (a) Original
time–pitch representation
using fixed-size windowing
with a small window size.
(b) Adaptive windowing
using λ = 1. (c) Adaptive
windowing using λ = 0.5.

Fr
eq

ue
nc

y
(p

itc
h)

Time (seconds)

40

50

60

70

0 10 20 30 40 50

40

50

60

70

40

50

60

70

Fr
eq

ue
nc

y
(p

itc
h)

Fr
eq

ue
nc

y
(p

itc
h)

(a)

(b)

(c)

beat tracking procedures work well for music with percussive onsets and a steady
tempo. However, when dealing with weak note onsets and expressive music with
local tempo changes, the automated generation of beat positions becomes an error-
prone task, not to mention the problems related to tempo octave confusion. Using
corrupt beat information at the feature extraction stage may have immense conse-
quences for the subsequent music processing tasks to be solved. For example, to
compensate for beat tracking errors in the music synchronization context, one may
have to reintroduce error-tolerant techniques that are similar to DTW.

Next, we show how the knowledge of onset and beat positions can be used in an-
other way for improving the quality of audio features. Recall that note onsets often
go along with noise-like energy bursts spread over the entire spectrum, especially
for instruments such as the piano, guitar, or percussion. This phenomenon is illus-
trated in Figure 6.24a, which shows a time–pitch representation of a chromatic scale
played on a piano (similar to Figure 3.3). In this representation, the transients that
go along with note onsets are clearly visible as vertical structures at the beginning
of each note. While these transients are useful for the detection of note onset po-
sitions, they cause undesired artifacts in features that capture harmonic or melodic
information. As an example, Figure 6.24b shows the time–pitch representation using
adaptive windowing based on consecutive note onset positions. Each of the resulting
feature vectors reveals the pitch content of a single note. However, the nonharmonic
transient components also enter the analysis window and introduce noise-like arti-
facts in pitch bands that are not related to the underlying notes. To remove these
noise-like artifacts while keeping the harmonic information, one idea is to exclude
a neighborhood around each note onset position. To this end, we introduce a pa-

6.4 Summary and Further Readings 347

rameter λ ∈ R, 0 < λ < 1, which determines the size of the neighborhoods. Let
s, t ∈ [1 : N] denote the start and end positions of a given adaptive window. Then we
define

sλ := s+
⌊

1−λ

2
(t− s)

⌋
and tλ := t−

⌊
1−λ

2
(t− s)

⌋
, (6.49)

which determine the start and end positions of the shortened window used for the
feature computation. With this definition, the center of the adaptive window is pre-
served, while its size is reduced by a factor λ relative to its original size (t − s).
The effect of this procedure is illustrated by Figure 6.24c, where the factor λ = 0.5
has been used to remove the transients at the note onset positions. As a result, the
harmonic information of the time–pitch representation has clearly been enhanced.

6.4 Summary and Further Readings

The automated extraction of onset, beat, and tempo information is one of the central
tasks in music signal processing and constitutes a key element for a number of music
analysis and retrieval applications. Tempo and beat are not only expressive descrip-
tors per se, but also induce natural and musically meaningful segmentations of the
underlying audio signals. In this chapter, we studied a number of key techniques and
important principles that are used in this vibrant and well-studied area of research.
Furthermore, we showed how these techniques and principles are applied in specific
tempo and beat tracking procedures while discussing the benefits and limitations of
automated methods.

Onset Detection

In general, the notions of onset, beat, and tempo are not as well defined as one may
think at first sight. However, for most music, beat positions go along with note on-
sets or percussive events. Therefore, in typical tempo and beat tracking approaches,
the first step consists in locating such events in the given signal—a task we referred
to as onset detection or novelty detection. Following the excellent tutorial by Bello
et al. [1], we studied in Section 6.1 different methods for computing novelty func-
tions that capture changes in the signal’s energy, spectrum, or phase. When playing
a note, the onset often goes along with a sudden change of the signal’s energy. In
such a case, note onset candidates may be determined by locating time positions
where the signal’s amplitude envelope starts to increase. Much more challenging is
the detection of onsets in the case of nonpercussive music, where one has to deal
with soft onsets or blurred note transitions. As a result, more refined methods have
to be used for computing a novelty function, e.g., by analyzing the signal’s spectral
content, pitch, harmony, or phase. For an overview and links to further literature, we
refer to [1, 20]. In complex polyphonic mixtures of music, simultaneously occurring
events of high intensities lead to masking effects that prevent any observation of an

348 6 Tempo and Beat Tracking

energy increase of a low-intensity onset. To circumvent these masking effects, detec-
tion functions were proposed that analyze the signal in a bandwise fashion to extract
transients occurring in certain frequency regions of the signal [22, 31]. As a side-
effect of a sudden energy increase, there appears an accompanying broadband noise
burst in the signal’s spectrum. This effect is mostly masked by the signal’s energy
in lower frequency regions, but is easily detectable in the higher-frequency regions
of the spectrum. In this context, logarithmic compression and spectral whitening
are techniques for enhancing the high-frequency information. Rather than explicitly
modeling and capturing signal changes, more recent deep learning approaches try
to learn novelty (or activation) functions from labeled training data [11, 32].

Tempo Analysis

The estimation of a music recording’s tempo, which can be loosely defined as the
frequency with which humans tap along, is a central and long-studied task in music
information retrieval [7, 31]. To derive the beat period and tempo from a novelty
function, one strategy is to explicitly determine note onset positions and then an-
alyze the resulting interonset intervals (IOIs). Considering suitable histograms or
probabilities of the occurring IOIs, one may derive hypotheses on the beat period
and tempo [7]. The drawback of such approaches is that they rely on an explicit
localization of a discrete set of note onsets—a fragile and error-prone step, particu-
larly for weak and blurry onsets. Avoiding the explicit extraction of note onsets, nov-
elty functions can be directly analyzed concerning reoccurring or quasiperiodic pat-
terns. Generally speaking, one may distinguish between three different methods for
measuring periodicities. The autocorrelation method aims at detecting periodic self-
similarities by comparing a novelty function with time-shifted copies [5, 9, 15, 29].
Another widely used method is based on a bank of comb filter resonators, where
a novelty function is compared with templates consisting of equally spaced spikes,
with each template representing a specific tempo [23, 31]. Similarly, one can use
a short-time Fourier transform [16, 29] to derive a frequency representation of the
novelty functions. In this case, the novelty function is compared with sinusoidal
templates, each corresponding to a specific frequency. Avoiding even the interme-
diate step of computing a novelty function, recent deep learning techniques try to
estimate the tempo directly from a short patch of a signal’s time–frequency rep-
resentation. For example, framing tempo estimation as a multi-class classification
problem, Schreiber et al. [33] present such a single-step tempo estimation system
based on a convolutional neural network.

The estimation of a music recording’s tempo is more challenging, as one may
guess. First, the notions of tempo and beat are often vague and subjective, due
to the complex hierarchical structure of rhythm [28]. In particular, as illustrated
by Figure 6.12, there are various levels that contribute to the human perception of
tempo and beat. Furthermore, the detection of locally periodic patterns becomes
challenging when the music recording reveals significant tempo changes. This of-
ten occurs in performances of classical music as a result of ritardandi, accelerandi,

6.4 Summary and Further Readings 349

Table 6.2 Comparison of
tempogram representations
obtained by Fourier and auto-
correlation analysis.

Fourier tempogram Autocorrelation tempogram
Comparison of novelty curve
with windowed sinusoids with
each sinusoid representing a
tempo.

Comparison of novelty curve with
time-shifted windowed sections of
itself with each lag representing a
tempo.

Conversion of frequency
(Hertz) into tempo (BPM).

Conversion of lag (seconds) into
tempo (BPM).

Measurement of novelty
periodicities.

Measurement of novelty self-
similarities.

Emphasis of tempo
harmonics. Emphasis of tempo subharmonics.

Suitable to analyze tempo on
tactus and tatum level.

Suitable to analyze tempo on tactus
and measure level.

fermate, and so on [7]. Probably the biggest problem with tempo estimation, apart
from fluctuating tempi, is the so-called octave error, which occurs when estimates
are integer multiples or fractions of the reference tempo. Due to these challenges, the
evaluation of tempo estimation procedures constitutes a research problem in itself.
To conduct a basic evaluation of a tempo estimation system, one needs test record-
ings with well-defined (locally stable) tempi, reliable annotations, and suitable eval-
uation metrics. Starting with the work by Goto et al. [13] and Scheirer [31], the MIR
research community has been conducting such evaluations for 25 years [15, 34, 38].
Despite technological improvements, however, many of the basic questions have
remained the same. What are the applications tempo estimation is used for? Do
datasets and metrics match the use cases? Are there music examples for which no
system estimates the correct tempo, or recordings most systems estimate different
tempi for? Does that mean the annotation is wrong, the tempo is hard to estimate,
or the recording is not suitable for the task? For a discussion of these questions and
further references to the literature, we refer to [15, 34].

Rather than explicitly determining the tempo, another strand of research is to
convert a music recording into a feature representation that implicitly encodes infor-
mation related to tempo, rhythm, and other periodic characteristics. Such represen-
tations may then be used for other MIR tasks such as genre classification or music
structure analysis. In the literature, one finds various suggestions for spectrogram-
like representations, including tempograms [17], rhythmograms [21], or beat
spectrograms [12]. In Section 6.2, we studied two different techniques based on
Fourier and autocorrelation analysis to derive such time–tempo representations. A
summary of these two methods and their implications can be found in Table 6.2.
Furthermore, following [17, 24], we derived a cyclic version of tempogram repre-
sentations by identifying tempo octaves—as we did with chroma representations,
where we identified pitch octaves (see Table 6.3 for a comparison). We indicated
how these features, which are invariant to pulse level confusions, may be used for
music segmentation applications.

350 6 Tempo and Beat Tracking

Table 6.3 Steps for comput-
ing chromagram and cyclic
tempogram representations.

Steps Chromagram Cyclic tempogram
1. Analysis of waveform. Analysis of novelty curve.

2. Computation of spectrogram. Computation of tempogram.

3. Usage of log-frequency axis. Usage of log-tempo axis.

4. Cyclic projection. Cyclic projection.

Beat Tracking

As a further central topic of this chapter, we discussed in Section 6.3 the problem
of automated pulse and beat tracking following [16]. Using Fourier analysis, we ex-
ploited magnitude as well as phase information to derive for each time position a
windowed sinusoid that best explains the local periodic nature of a novelty repre-
sentation. Then, employing an overlap–add technique, a single function that reveals
the predominant local pulse (PLP) was derived. The PLP function reveals the local
pulse information even in the presence of continuous tempo changes. Furthermore,
its amplitudes indicate a kind of confidence in the periodicity estimation. For mod-
ern pop and rock music with a strong beat and relatively steady tempo, one does not
need the flexibility offered by the PLP concept. To handle such music, we studied
a robust beat tracking procedure, which was originally proposed by Ellis [9]. To
compute an optimal beat sequence, we discussed an efficient and elegant algorithm
based on dynamic programming—a paradigm we have already encountered in the
DTW context (Section 3.2).

There are numerous contributions within the area of beat tracking, and, in this
textbook, we have only offered a glimpse into this exciting research area. We have
seen that various pulse levels contribute to the human perception of tempo and
beat [28]. Most work in the literature has focused on determining musical pulses
on the tactus or foot tapping level [5, 9, 29], but few approaches exist for analyz-
ing the signal on the measure level [23, 30] or finer tatum level [6, 35]. Many of
these approaches handle different pulse levels simultaneously. The PLP concept in-
troduced in [16] does not explicitly address the problem of extracting pulses at a
specific level. Instead, a PLP function can be regarded as a kind of mid-level repre-
sentation that captures the locally predominant pulse.

A recent trend in research aims at improving beat and pulse tracking through
the use of neural networks (see, e.g., [3, 8, 10]). Like onset detection, many of
these approaches learn an activation function encoding the probability of pulse po-
sitions (classifying a frame as pulse or nonpulse). The relevant pulse positions are
then determined using some kind of peak picking applied in a post processing step.
Motivated by the fact that music genres may correlate to typical beat patterns and
tempo ranges, Böck et al. [3] introduce a system based on multiple recurrent neural
networks, each being specialized on a particular musical style. The deep learning
framework has also opened up new possibilities for multi-task learning approaches,
e.g., estimating tempo and beat jointly [2].

Due to the challenges mentioned already in the context of tempo estimation, the
evaluation of beat tracking procedures constitutes a research problem in itself (see,

6.5 FMP Notebooks 351

e.g., [4, 19, 37]). The evaluation measures used may be divided into two groups:
firstly, measures that analyze each beat position separately, and secondly, measures
that take the tempo and metrical levels into account [5, 23, 25]. Another interest-
ing approach for evaluating and improving beat tracking systems is to measure the
mutual agreement between beat sequences obtained by different beat tracking sys-
tems [19, 37]. In particular, looking at inconsistencies across the different beat se-
quences makes it possible to identify challenging music excerpts without the need
for ground-truth annotations. Investigations of musical properties that influence the
beat tracking quality have also been conducted in [7, 18].

Finally, we want to mention that the extraction of onset, beat, and tempo infor-
mation is of fundamental importance for the determination of higher-level musical
structures such as rhythm and meter [14, 28, 36]. Generally, the term rhythm is
used to refer to a temporal patterning of event durations, which are specified by a
regular succession of strong and weak stimuli. Furthermore, the perception of rhyth-
mic patterns also depends on other cues, such as the dynamics and timbre of the
sound events involved. Such repeating patterns of accents form characteristic pulse
groups, which determine the meter of a piece of music. Here, each group typically
starts with an accented beat and consists of all pulses until the next accent. In this
sense, the term meter is often used synonymously with the term time signature,
which specifies the beat structure of a musical measure or bar. It expresses a regular
pattern of beat stresses continuing through a piece, thus defining a hierarchical grid
of beats at various time scales.

6.5 FMP Notebooks

It is the beat that drives music forward and makes people move or tap along with
the music. Thus the extraction of beat and tempo information from audio recordings
constitutes a natural entry point into music processing and yields a multifaceted
application for teaching and learning signal processing. In Part 6 of the FMP note-
books [27], we demonstrate this by providing Python implementations of fundamen-
tal signal and music processing algorithms along with instructive music and audio
examples.

As discussed in this chapter, most approaches to beat tracking are based on two
assumptions: first, the beat positions correspond to note onsets (often percussive in
nature), and, second, beats are periodically spaced in time. In the first notebooks,
starting with the FMP Notebook Onset Detection, we consider the problem of de-
termining the starting times of notes or other musical events as they occur in a music
recording. To get a feeling for this seemingly simple task, we look at various sound
examples of increasing complexity, including a click sound, an isolated piano sound,
an isolated violin sound, and a section of a complex string quartet recording. It is
very instructive to look at such examples to demonstrate that the detection of indi-
vidual note onsets can become quite tricky for soft onsets in the presence of vibrato,
not to speak of complex polyphonic music. Furthermore, we introduce an excerpt

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_OnsetDetection.html

352 6 Tempo and Beat Tracking

of the song “Another One Bites the Dust” by Queen, which will serve as our run-
ning example throughout the subsequent notebooks (see also Figure 6.1). For later
usage, we introduce some Python code for parsing onset and beat annotations and
show how such annotations can be sonified via click tracks using a function from
the Python package librosa.

In the FMP Notebook Energy-Based Novelty, we implement the onset detector
from Section 6.1.1 step by step, computing a local energy function, taking a discrete
derivative, and applying half-wave rectification. In particular, we explain the role of
the window function used in the first step and apply logarithmic compression as a
way to enhance small energy values. Involving basic signal processing elements,
this simple procedure is instructive from an educational point of view. However, for
nonpercussive sounds, the approach has significant weaknesses.

This naturally leads us to the FMP Notebook Spectral-Based Novelty, where
we discuss a novelty representation that is commonly known as spectral flux (see
Section 6.1.2). The idea is to convert the signal into a spectrogram and then mea-
sure spectral changes by taking the distance between subsequent spectral vectors.
This technique is suited to recall a phenomenon from Fourier analysis: the energy
of transient events is spread across the entire spectrum of frequencies, thus yielding
broadband spectral structures. These structures can be detected well by the spectral-
based novelty detection approach. Again, we highlight the role of logarithmic com-
pression and further enhance the novelty function by subtracting its local average.

As an alternative to the spectral flux, we introduce in the FMP Notebook Phase-
Based Novelty an approach that is well suited to study the role of the STFT’s phase
(see Section 6.1.3). We use this opportunity to discuss phase unwrapping and in-
troduce the principal argument function—topics that beginners in signal process-
ing often find tricky. In the onset detection context, the importance of the phase
is highlighted by the fact that slight signal changes (e.g., caused by a weak onset)
can hardly be seen in the STFT’s magnitude, but may already introduce significant
phase distortions. In the FMP Notebook Complex-Domain Novelty, we discuss
how phase and magnitude information can be combined (Section 6.1.4).

Each novelty detection procedure has its benefits and limitations, as demon-
strated in the FMP Notebook Novelty: Comparison of Approaches. Different ap-
proaches may lead to novelty functions with different feature rates. Therefore, we
show how one may adjust the feature rate using a resampling approach. Further-
more, we introduce a matrix-based visualization that allows for easy comparison
and averaging of different novelty functions. In summary, the notebooks on on-
set detection constitute an instructive playground for students to learn and explore
fundamental signal processing techniques while gaining a deeper understanding of
essential onset-related properties of music signals.

The novelty functions introduced so far serve as the basis for onset detection. The
underlying assumption is that the positions of peaks (thought of as well-defined local
maxima) of the novelty function are good indicators for onset positions. Similarly,
in the context of music structure analysis, the peak positions of a novelty function
were used to derive segment boundaries between musical parts (see Section 4.4). If
the novelty function has a clear peak structure with impulse-like and well-separated

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyEnergy.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltySpectral.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyPhase.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyPhase.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyComplex.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_NoveltyComparison.html

6.5 FMP Notebooks 353

peaks, the peaks’ selection is a simple problem. However, in practice, one often has
to deal with rather noisy novelty functions with many spurious peaks. In such sit-
uations, the strategy used for peak picking may substantially influence the quality
of the final detection or segmentation result. In the FMP Notebook Peak Picking,
we cover this important, yet often underestimated topic. In particular, we present
and discuss Python code examples that demonstrate how to use and adapt existing
implementations of various peak picking strategies. Instead of advocating a specific
procedure, we discuss various heuristics that are often applied in practice. For exam-
ple, simple smoothing operations may reduce the effect of noise-like fluctuations in
the novelty function. Furthermore, adaptive thresholding strategies, where a peak is
only selected when its value exceeds a local average of the novelty function, can be
applied. Another strategy is to impose a constraint on the minimal distance between
two subsequent peak positions to reduce the number of spurious peaks further. In a
music processing class, it is essential to note that there is no best peak picking strat-
egy per se—the suitability of a peak picking strategy depends on the requirements
of the application. On the one hand, unsuitable heuristics and parameter choices
may lead to surprising and unwanted results. On the other hand, exploiting specific
data statistics (e.g., minimum distance of two subsequent peaks) at the peak picking
stage can lead to substantial improvements. Therefore, knowing the details of peak
picking strategies and the often delicate interplay of their parameters is essential
when building MIR systems.

While novelty and onset detection are in themselves important tasks, they also
constitute the basis for other music processing problems such as tempo estimation,
beat tracking, and rhythmic analysis. When designing processing pipelines, a gen-
eral principle is to avoid intermediate steps based on hard and error-prone decisions.
In the following notebooks, we apply this principle for tempo estimation, where we
avoid the explicit extraction of note onset positions by directly analyzing a novelty
representation concerning periodic patterns. We start with the introductory FMP
Notebook Tempo and Beat, where we discuss basic notions and assumptions on
which most tempo and beat tracking procedures are based. As already noted before,
one first assumption is that beat positions occur at note onset positions, and a sec-
ond assumption is that beat positions are more or less equally spaced—at least for
a certain period. These assumptions may be questionable for certain types of music,
and we provide some concrete music examples that illustrate this. For example, in
passages with syncopation, beat positions may not go along with any onsets, or the
periodicity assumption may be violated for romantic piano music with strong tempo
fluctuations. We think that the explicit discussion of such simplifying assumptions
is at the core of researching and teaching music processing. In the notebook, we
also introduce the notion of pulse levels (e.g., measure, tactus, and tatum level) and
give audio examples to illustrate these concepts. Furthermore, we use the concept
of tempograms (time–tempo representations) to illustrate tempo phenomena over
time. To further deepen the understanding of beat tracking and its challenges, we
sonify the beat positions with click sounds and mix them into the original audio
recording—a procedure also described in the FMP Notebook Sonification of Part

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_PeakPicking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempoBeat.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempoBeat.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/B/B_Sonification.html

354 6 Tempo and Beat Tracking

B. At this point, we again advocate the importance of visualization and sonification
methods to make teaching and learning signal processing an interactive pursuit.

Closely following the theory of Section 6.2, we study in the next notebooks the
concept of tempograms, which reveal tempo-related phenomena. In the FMP Note-
book Fourier Tempogram, the basic idea is to analyze a novelty function using an
STFT (see (6.25)) and to re-interpret frequency (given in Hertz) as tempo (given in
BPM). We adopt a centered view in our implementation, where the novelty func-
tion is zero-padded by half the window length. The Fourier coefficients are com-
puted frequency by frequency, allowing us to explicitly specify the tempo values
and tempo resolution (typically corresponding to a nonlinear frequency spacing).
Even though losing the FFT algorithm’s efficiency, the computational complexity
may still be reasonable, when only considering a relatively small number of tempo
values. In the FMP Notebook Autocorrelation Tempogram, we cover a second
approach for capturing local periodicities of the novelty function. After a general
introduction of autocorrelation and its short-time variant, we provide an implemen-
tation for computing the time–lag representation and visualization of its interpreta-
tion (similar to Figure 6.14). Furthermore, we show how to apply interpolation for
converting the lag axis into a tempo axis. Next, in the FMP Notebook Cyclic Tem-
pogram, we provide an implementation of the procedure described in Section 6.2.4.
Again we apply interpolation to convert the linear tempo axis into a logarithmic axis
before identifying tempo octaves—similar to the approach for computing chroma
features. We then study the properties of Fourier- and autocorrelation-based cyclic
tempograms, focusing on the tempo discretization parameter. Finally, using real mu-
sic recordings with tempo changes, we demonstrate the potential of tempogram fea-
tures for music segmentation applications.

As we discussed in this chapter, the task of beat and pulse tracking extends
tempo estimation in the sense that, additionally to the rate, it also considers the
phase of the pulses. We described in Section 6.3 how one can obtain a local pulse
representation from a Fourier-based tempogram along with its phase. In the FMP
Notebook Fourier Tempogram, we provide Python code examples to compute and
visualize the optimal windowed sinusoids underlying the idea of Fourier analysis
(see Figure 6.13). Then, in the FMP Notebook Predominant Local Pulse (PLP),
we apply an overlap–add technique, where such optimal windowed sinusoids are
accumulated over time, yielding the PLP function. Considering challenging mu-
sic examples with continuous and sudden tempo changes, we explore the role of
various parameters, including the sinusoidal length and tempo range. Although the
techniques and their implementation are sophisticated, the results (presented in the
form of visualizations and sonifications) are highly instructive and, as we find, es-
thetically pleasing.

Rather than being a beat tracker per se, the PLP concept should be seen as a tool
for bringing out a locally predominant pulse track within a specific tempo range. In
Section 6.3.2, we introduced a genuine beat tracking algorithm that aims at extract-
ing a stable pulse track from a novelty function, given an estimate of the expected
tempo. In the FMP Notebook Beat Tracking by Dynamic Programming, we pro-
vide an implementation of this instructive algorithm, which can be solved using

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramAutocorrelation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramCyclic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramCyclic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S2_TempogramFourier.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_PredominantLocalPulse.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_BeatTracking.html

6.5 FMP Notebooks 355

Fig. 6.25 Example of adaptive windowing using a parameter λ ∈R to control the neighborhood’s
relative size to be excluded (see (6.49)). Top: Waveform and time grid (indicated by red vertical
lines). Bottom: Feature representation with frames corresponding to the shaded segments of the
signal.

dynamic programming. We apply this algorithm to a small toy example, which is
something that is not only helpful for understanding the algorithm but should always
be done to test one’s implementation. We then move on to real music recordings to
indicate the algorithm’s potential and limitations.

Finally, in the FMP Notebook Adaptive Windowing, we discuss another impor-
tant application of beat and pulse tracking, following Section 6.3.3. Our algorithm’s
input is a feature representation based on fixed-size windowing and an arbitrary
(typically nonuniform) time grid, e.g., consisting of previously extracted onset and
beat positions. The output is a feature representation adapted according to the input
time grid. In our implementation, an additional parameter allows for excluding a
certain neighborhood around each time grid position (see Figure 6.25). This strat-
egy may be beneficial when expecting signal artifacts (e.g., transients) around these
positions, which degrade the feature representation.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S3_AdaptiveWindowing.html

356 6 Tempo and Beat Tracking

References

1. J. P. BELLO, L. DAUDET, S. ABDALLAH, C. DUXBURY, M. DAVIES, AND M. B. SAN-
DLER, A tutorial on onset detection in music signals, IEEE Transactions on Speech and Audio
Processing, 13 (2005), pp. 1035–1047.

2. S. BÖCK, M. E. P. DAVIES, AND P. KNEES, Multi-task learning of tempo and beat: Learning
one to improve the other, in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 486–493.

3. S. BÖCK, F. KREBS, AND G. WIDMER, A multi-model approach to beat tracking considering
heterogeneous music styles, in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Taipei, Taiwan, 2014, pp. 603–608.

4. M. E. P. DAVIES AND S. BÖCK, Evaluating the evaluation measures for beat tracking, in
Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
Taipei, Taiwan, 2014, pp. 637–642.

5. M. E. P. DAVIES AND M. D. PLUMBLEY, Context-dependent beat tracking of musical audio,
IEEE Transactions on Audio, Speech, and Language Processing, 15 (2007), pp. 1009–1020.

6. N. DEGARA, A. PENA, M. E. P. DAVIES, AND M. D. PLUMBLEY, Note onset detection
using rhythmic structure, in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Dallas, Texas, USA, 2010, pp. 5526–5529.

7. S. DIXON, Automatic extraction of tempo and beat from expressive performances, Journal of
New Music Research, 30 (2001), pp. 39–58.

8. S. DURAND, J. P. BELLO, B. DAVID, AND G. RICHARD, Robust downbeat tracking us-
ing an ensemble of convolutional networks, IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 25 (2017), pp. 76–89.

9. D. P. ELLIS, Beat tracking by dynamic programming, Journal of New Music Research, 36
(2007), pp. 51–60.

10. A. ELOWSSON, Beat tracking with a cepstroid invariant neural network, in Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), New York City,
USA, 2016, pp. 351–357.

11. F. EYBEN, S. BÖCK, B. SCHULLER, AND A. GRAVES, Universal onset detection with bidi-
rectional long short-term memory neural networks, in Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR), Utrecht, The Netherlands, August 2010,
pp. 589–594.

12. J. FOOTE AND S. UCHIHASHI, The beat spectrum: A new approach to rhythm analysis, in
Proceedings of the International Conference on Multimedia and Expo (ICME), Tokyo, Japan,
August 2001, pp. 881–884.

13. M. GOTO AND Y. MURAOKA, A beat tracking system for acoustic signals of music, in Pro-
ceedings of the ACM International Conference on Multimedia, San Francisco, CA, USA,
1994, pp. 365–372.

14. F. GOUYON AND S. DIXON, A review of automatic rhythm description systems, Computer
Music Journal, 29 (2005), pp. 34–54.

15. F. GOUYON, A. P. KLAPURI, S. DIXON, M. ALONSO, G. TZANETAKIS, C. UHLE, AND
P. CANO, An experimental comparison of audio tempo induction algorithms, IEEE Transac-
tions on Audio, Speech, and Language Processing, 14 (2006), pp. 1832–1844.

16. P. GROSCHE AND M. MÜLLER, Extracting predominant local pulse information from mu-
sic recordings, IEEE Transactions on Audio, Speech, and Language Processing, 19 (2011),
pp. 1688–1701.

17. P. GROSCHE, M. MÜLLER, AND F. KURTH, Cyclic tempogram – a mid-level tempo repre-
sentation for music signals, in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Dallas, Texas, USA, Mar. 2010, pp. 5522–5525.

18. P. GROSCHE, M. MÜLLER, AND C. S. SAPP, What makes beat tracking difficult? A case
study on Chopin Mazurkas, in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Utrecht, The Netherlands, 2010, pp. 649–654.

References 357

19. A. HOLZAPFEL, M. E. P. DAVIES, J. R. ZAPATA, J. L. OLIVEIRA, AND F. GOUYON, Se-
lective sampling for beat tracking evaluation, IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 20 (2012), pp. 2539–2548.

20. A. HOLZAPFEL, Y. STYLIANOU, A. C. GEDIK, AND B. BOZKURT, Three dimensions of
pitched instrument onset detection, IEEE Transactions on Audio, Speech, and Language Pro-
cessing, 18 (2010), pp. 1517–1527.

21. K. JENSEN, J. XU, AND M. ZACHARIASEN, Rhythm-based segmentation of popular Chinese
music, in Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), London, UK, 2005.

22. A. P. KLAPURI, Sound onset detection by applying psychoacoustic knowledge, in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Washington, DC, USA, 1999, pp. 3089–3092.

23. A. P. KLAPURI, A. J. ERONEN, AND J. ASTOLA, Analysis of the meter of acoustic musical
signals, IEEE Transactions on Audio, Speech, and Language Processing, 14 (2006), pp. 342–
355.

24. F. KURTH, T. GEHRMANN, AND M. MÜLLER, The cyclic beat spectrum: Tempo-related
audio features for time-scale invariant audio identification, in Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), Victoria, Canada, Oct. 2006,
pp. 35–40.

25. M. F. MCKINNEY, D. MOELANTS, M. E. P. DAVIES, AND A. P. KLAPURI, Evaluation of
audio beat tracking and music tempo extraction algorithms, Journal of New Music Research,
36 (2007), pp. 1–16.

26. B. C. MOORE, An Introduction to the Psychology of Hearing, Brill Academic Publisher,
6th ed., 2013.

27. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

28. R. PARNCUTT, A perceptual model of pulse salience and metrical accent in musical rhythms,
Music Perception, 11 (1994), pp. 409–464.

29. G. PEETERS, Template-based estimation of time-varying tempo, EURASIP Journal on Ad-
vances in Signal Processing, (2007).

30. G. PEETERS AND H. PAPADOPOULOS, Simultaneous beat and downbeat-tracking using a
probabilistic framework: Theory and large-scale evaluation, IEEE Transactions on Audio,
Speech, and Language Processing, 19 (2011), pp. 1754–1769.

31. E. D. SCHEIRER, Tempo and beat analysis of acoustical musical signals, Journal of the
Acoustical Society of America, 103 (1998), pp. 588–601.

32. J. SCHLÜTER AND S. BÖCK, Improved musical onset detection with convolutional neural
networks, in Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 6979–6983.

33. H. SCHREIBER AND M. MÜLLER, A single-step approach to musical tempo estimation us-
ing a convolutional neural network, in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), Paris, France, 2018, pp. 98–105.

34. H. SCHREIBER, J. URBANO, AND M. MÜLLER, Global music tempo estimation: Are we done
yet?, Transactions of the International Society for Music Information Retrieval (TISMIR), 3
(2020), pp. 111–125.

35. J. SEPPÄNEN, Tatum grid analysis of musical signals, in Proceedings of the IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY,
USA, 2001, pp. 131–134.

36. W. A. SETHARES, Rhythm and Transforms, Springer, 2007.
37. J. R. ZAPATA, M. E. P. DAVIES, AND E. GÓMEZ, Multi-feature beat tracking, IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 22 (2014), pp. 816–825.
38. J. R. ZAPATA AND E. GÓMEZ, Comparative evaluation and combination of audio tempo

estimation approaches, in Proceedings of the Audio Engineering Society (AES) Conference
on Semantic Audio, Ilmenau, Germany, 2011.

358 6 Tempo and Beat Tracking

Exercises

Exercise 6.1. Let x : Z → R be a signal with the nonzero samples (x(0), . . . ,x(6)) =
(0.1,−0.1,0.1,0.9,0.7,0.1,−0.3) (all other samples being zero). Furthermore, let w : Z → R
be a rectangular window function with nonzero coefficients w(−1) = w(0) = w(1) = 1 (i.e.,
M = 1; see Section 6.1.1). Compute all nonzero coefficients of the energy-based novelty function
∆Energy : Z→ R as defined in (6.3).

Exercise 6.2. Let x : Z→ R be a discrete signal. Furthermore, let w : Z→ R be a rectangular
window function of length 2M + 1 centered at time zero, i.e., w(m) = 1 for m ∈ [−M : M] and
w(m) = 0 otherwise. Then the local energy Ex

w (see (6.1)) is given by

Ex
w(n) :=

M

∑
m=−M

x(n+m)2

for n ∈ Z. In the following, an operation refers to a multiplication, an addition, or a subtraction
of two real-valued samples. Determine the overall number of operations that are required to com-
pute Ex

w(n) for n ∈ [0 : N−1] using a naive approach. Then, describe an improved procedure that
reduces the overall number of required operations. How many operations are needed by your pro-
cedure?

Exercise 6.3. Let Y be an (N×(K+1)) matrix with coefficients Y(n,k) indexed by n∈ [0 : N−1]
and k ∈ [0 : K]. In the following, we consider the matrix Y defined by

Y> =

0 0.1 0.1 0 0.2 0.1
0 0 0.1 0.1 0.2 0.1
0 0.8 0.7 0.5 0.6 0.4
0 0 0 0 0.8 0.7
0 0 0 0.1 0 0

 ,

where N = 6 and K = 4. (Note that the transposed matrix has been specified.) Interpreting this
matrix as a magnitude spectrogram, compute the novelty function ∆Spectral as defined in (6.6).
Furthermore, compute the local average function µ using M = 1 (see (6.7)) and the enhanced
novelty function ∆̄Spectral (see (6.8)).

Exercise 6.4. Realize a bandwise approach for spectral-based novelty detection as outlined at the
end of Section 6.1.2. More concretely, let x denote the given music signal sampled at a rate of
Fs = 22050 Hz and Y the resulting (possibly compressed) magnitude spectrogram (as in (6.5))
using an STFT window length of N = 4096 and a hop size of H = N/2. In a first step, divide the
frequency range into bands with the first band covering 0–500 Hz, the second 500–1000 Hz, the
third 1000–2000 Hz, the fourth 2000–4000 Hz, and the fifth band 4000–11025 Hz. Determine for
each of the bands the set of spectral coefficients (similar to (3.3)). Then, compute a novelty function
for each of the bands separately (similar to (6.6)). Finally, compute a single overall novelty function
by considering a weighted sum over the bandwise novelty functions using the weighting factor
w` ∈R>0 for the `th band, ` ∈ [1 : 5]. Give a formal description of this procedure by specifying the
mathematical details.

Exercise 6.5. In this exercise, we consider the novelty functions corresponding to the click tracks
shown in the following figure:

Time (seconds)
0 1 2 3

1

0.5

0

Time (seconds)
0 1 2 3

1

0.5

0

Time (seconds)
0 1 2 3

1

0.5

0

(a) (b) (c)

Exercises 359

For each of these novelty functions, sketch the Fourier tempogram (see Section 6.2.2) in the tempo
range between 20 and 250 BPM. In particular, specify the tempo parameters for which one expects
large tempogram coefficients. What is the smallest such parameter (corresponding to the lowest
relevant tempo) for each case? Finally, for each of the three novelty functions, indicate visually
(as in Figure 6.13) the correlation with the analyzing sinusoid corresponding to this smallest, yet
relevant tempo.

Exercise 6.6. Let x ∈ `2(Z) be a real-valued discrete-time signal. Furthermore, let Rxx be the au-
tocorrelation of x, which is given by Rxx(`) = ∑n∈Z x(n)x(n− `) for each lag parameter ` ∈ Z (see
(6.27)). Show that Rxx(0) = E(x) (see (2.41)) and |Rxx(`)| ≤ Rxx(0). Furthermore, show that Rxx is
symmetric, i.e., Rxx(`) = Rxx(−`).
[Hint: Use the Cauchy–Schwarz inequality |〈x|y〉| ≤ ||x||||y|| from (2.40), which holds for any
x,y ∈ `2(Z).]

Exercise 6.7. Let x :Z→R be a real-valued signal. Assume that the support of x lies in the interval
[−M : M] for some M ∈N. Let Rxx be the autocorrelation as defined in (6.27). Show that Rxx(`) = 0
for |`| ≥ 2M + 1. Furthermore, show that at most 2M + 1− |`| of the summands in (6.29) are
nonzero.

Exercise 6.8. Let ∆ : Z→ R be a novelty function with a feature rate of 10 Hz. Furthermore, let
T A be the autocorrelation tempogram derived from ∆ (see (6.31)). What is the maximal tempo
that is captured by T A?

Exercise 6.9. In this exercise, we consider a discrete cyclic tempogram representation Cτ0 using a
reference tempo τ0 = 60 BPM (see (6.35)). For computing Cτ0 , we use four tempo octaves ranging
from τ = 30 to τ = 480 BPM, where each octave is logarithmically sampled using M ∈ N tempo
parameters. Specify a formula for the tempo values that are needed to compute Cτ0 . Furthermore,
using M = 10, determine the eleven tempo values between τ = 60 and τ = 120 BPM. Next, assume
that Cτ0 is derived from an autocorrelation tempogram based on a feature rate of 10 Hz. Determine
the lag parameters corresponding to the eleven computed tempo values. Which problems arise?
Make suggestions to alleviate these problems.

Exercise 6.10. For a given parameter N ∈ N, let BN be the space of all possible beat sequences
within the interval [1 : N] (see Section 6.3.2). Determine the number |BN |. Furthermore, given a
length parameter L ∈ [0 : N], determine the number of beat sequences of length L. Finally, let
BN

n ⊂BN denote the subset of all beat sequences that end in n∈ [0 : N] (where the case n = 0 refers
to the empty beat sequence). Determine the number |BN

n |. Finally, show that BN = ∪n∈[0:N]BN
n (see

(6.44)).

Exercise 6.11. Given a novelty function ∆ : [1 : N]→ R, analyze the computational complexity
of the beat tracking procedure described in Section 6.3.2 (see also Table 6.1) in terms of memory
requirements as well as in terms of the number of required operations. Assume that an operation is
an addition, a multiplication, an evaluation of P

δ̂
, or a maximization (where maximization over a

set of M ∈ N elements counts as M operations).

Exercise 6.12. Apply the beat tracking procedure described in Section 6.3.2 (see also Table 6.1)
to the novelty function ∆ : [1 : N]→ R with N = 11 given by the following values:

n 1 2 3 4 5 6 7 8 9 10 11
∆(n) 0.1 0.0 1.0 0.0 1.0 0.8 0.0 0.2 0.4 1.0 0.0

For the computations, use the weight parameter λ = 1 and the following values for the penalty
function P

δ̂
which favors the beat period δ̂ = 3 (note that, for the sake of simplicity, these values

are not obtained from (6.40)):

n 1 2 3 4 5 6 7 8 9 10 11
P

δ̂
(n) −2 −0.2 1.0 0.5 −0.1 −1 −1.5 −3 −5 −8 −12

360 6 Tempo and Beat Tracking

Compute the accumulated score values D(n) and the predecessors P(n) for n ∈ [1 : N]. Further-
more, derive the optimal beat sequence B∗.

Exercise 6.13. The penalty function P
δ̂

defined in (6.40) (see also Figure 6.21) decreases rapidly
with larger deviations from the ideal beat period δ̂ . Therefore, it becomes unlikely that the pre-
decessor m of some beat position n lies far from the position n− δ̂ . This observation can be used
to achieve significant savings by restricting the search space m ∈ [1 : n−1] in the maximization
(6.47). For example, assuming that the next beat to be estimated has at least the distance δ̂/2 and
at most the distance 2δ̂ from its predecessor beat, one may replace the search space m ∈ [1 : n−1]
by the constrained search space m ∈ [1 : n−1]∩ [n− 2δ̂ ,n− δ̂/2]. Analyze the computational
complexity of the modified procedure (as in Exercise 6.11). Compare the result with the original
procedure.

Exercise 6.14. Recall that a beat sequence B = (b1,b2, . . . ,bL) is a sequence of increasing indices
b` ∈ [1 : N], ` ∈ [1 : L]. Mathematically, this is identical to the notion of a boundary annotation,
which we introduced for evaluating novelty-based segmentation procedures in the context of music
structure analysis (see Section 4.5.4). Therefore, to evaluate a beat tracking procedure, one can
use exactly the same evaluation measures as for novelty detection. Following Section 4.5.4, let
BRef be a reference beat sequence and BEst an estimated beat sequence. Furthermore, let τ ≥ 0 be
a tolerance parameter for the maximal acceptable deviation. Similar to (4.57), an estimated beat
bEst ∈BEst is considered correct if it lies within the τ-neighborhood of a reference beat bRef ∈BRef:

|bEst−bRef| ≤ τ.

Following Section 4.5.4, introduce the notions of true positives, false positives, and false negatives,
and then derive the precision, recall, and F-measure. Furthermore, using τ = 1, compute these
measures for the following beat sequences:

BRef = (10,20,30,40,50,60,70,80,90)

BEst = (10,19,26,34,42,50,61,70,78,89)

Exercise 6.15. In the evaluation measure considered in Exercise 6.14, the beat positions were eval-
uated independently of each other. However, when tapping to the beat of music, a listener obvi-
ously requires the temporal context of several consecutive beats. Therefore, in evaluating beat
tracking procedures, it seems natural to consider beats in the temporal context instead of looking
at the beat positions individually. To account for these temporal dependencies, we now introduce
a context-sensitive evaluation measure. Let BRef = (r1,r2, . . . ,rM) be a reference beat sequence
with rm ∈ [1 : N], m ∈ [1 : M]. Similarly, let BEst = (b1,b2, . . . ,bL) be an estimated beat sequence
with b` ∈ [1 : N], ` ∈ [1 : L]. Furthermore, let K ∈ N be a parameter that specifies the temporal
context measured in beats, and let τ ≥ 0 be a tolerance parameter for the maximal acceptable devi-
ation. Then, an estimated beat b` is considered a K-correct detection if there exists a subsequence
bi, . . . ,bi+K−1 of BEst containing b` (i.e., ` ∈ [i : i+K−1]) as well as a subsequence r j, . . . ,r j+K−1
of BRef such that

|bi+k− r j+k| ≤ τ

for all k ∈ [0 : K − 1]. Intuitively, for a beat to be considered K-correct, one requires an entire
track consisting of K consecutive estimated beats that match (up to the tolerance τ) a track of K
consecutive reference beats. Note that a single outlier in the estimated beats voids this property.
Let LK be the number of K-correct estimated beats. Then, we define the context-sensitive precision
PK := LK/L, recall RK := LK/M, and F-measure FK := 2PKRK/(PK +RK). For BRef and BEst as
specified in Exercise 6.14, determine the set of K-correct beat sequences as well as the context-
sensitive precision, recall, and F-measure for τ = 1 and K ∈ {1,2,3,4}.

Chapter 7
Content-Based Audio Retrieval

The revolution in music distribution and storage brought about by digital tech-
nology has fueled tremendous interest in and attention to the ways that information
technology can be applied to this kind of content. The rapidly growing corpus of
digitally available music data requires novel technologies that allow users to browse
personal collections or discover new music on the world wide web, or to help mu-
sic creators to manage and protect their rights. The general field of information
retrieval (IR) is devoted to the task of organizing information and of making it ac-
cessible and useful. An information retrieval process begins when a user specifies
his/her information needs by means of a query. The retrieval system should then de-
liver from a given data collection all documents or items that are somehow related
to the query. For example, in the case of a typical web search, the query may consist
of a text string of words and the search engine should deliver all text documents
containing the specified words.

While ten years ago, most digital content was textual, it has now expanded to
include audio, images, video, and other types of multimedia documents. This par-
ticularly holds for the music domain, where listeners enjoy ubiquitous access to
huge music collections containing audio recordings, digitized images of sheet mu-
sic, album covers, and an increasing number of video clips. Such huge amounts
of readily available music require retrieval strategies that allow users to explore
large music collections in a convenient and enjoyable way. Most of the available
services for music recommendation and playlist generation rely on metadata and
textual annotations of the actual audio content. For example, a music recording may
be described by the name of the artist or composer, the title of the piece, or the song
lyrics—editorial data that is typically created manually by domain experts. Typical
query terms may be a title such as “Day Tripper” when searching for the song by
The Beatles, or a composer’s name such as “Beethoven” when looking for the Fifth

361© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_7

https://doi.org/10.1007/978-3-030-69808-9_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_7&domain=pdf

362 7 Content-Based Audio Retrieval

(a)

(c)

(b)

Fig. 7.1 Illustration of retrieval scenarios. (a) Traditional retrieval using textual metadata (e.g.,
artist, title) and a web search engine. (b) Retrieval based on rich and expressive metadata given by
tags. (c) Content-based retrieval using audio, MIDI, or score information.

Symphony. In this scenario, a user needs to have a relatively clear idea of what he or
she is looking for (see Figure 7.1a). To overcome these limitations, recent retrieval
systems complement editorial metadata with general and expressive annotations,
which are also referred to as tags. Such tags may describe the musical style or genre
of a recording, and also include information about the mood, the musical key, or the
tempo. Many music recommendation systems rely on a large number of tags that
have been generated by different users, automatically extracted from music blogs,
and enriched by statistical information on user behavior and music consumption.
Even though such tags may be quite noisy, they still express certain general trends
and describe the music content in a statistical and human-centered way.

While text-based retrieval systems can be very powerful, they require the au-
dio material to be enriched with suitable metadata—an assumption that is often not
valid, in particular for less popular music or music material that is scattered in un-
structured data collections. Furthermore, not all retrieval scenarios can be handled
by a purely text-based approach. How should a retrieval system be designed if the
user’s query consists of a short excerpt of a CD recording or a melody sung into
a microphone? What can be done if only a few measures of a musical score are
available? How can a user be satisfied if he or she looks for music with a specific
rhythmic pattern or harmonic progression which have not been annotated? To han-
dle such scenarios, one requires content-based retrieval systems that only make
use of the raw music data, rather than relying on manually generated metadata. The
term content loosely refers to any kind of information that can be directly derived
from the music material to be queried, compared, and retrieved.

In this chapter, we present various content-based retrieval strategies that follow
the query-by-example paradigm: given a music representation or a fragment of it
(used as a query or example), the task is to automatically retrieve documents from

7.1 Audio Identification 363

a music collection containing parts or aspects that are similar to the query. Such
strategies can be loosely classified according to their specificity, which refers to the
degree of similarity between the query and the database documents. High specificity
is related to a strict notion of similarity, whereas low specificity refers to a rather
vague one. Starting with a retrieval task of high specificity, in Section 7.1 we deal
with the problem of audio identification. Given a small audio fragment as query,
the task of audio identification consists in identifying the particular audio record-
ing that is the source of the query. At a lower specificity level, one finds the task
of audio matching, which we discuss in Section 7.2. Given a query fragment, the
goal of audio matching is to retrieve all audio excerpts that musically correspond
to the query. In this scenario, one explicitly allows semantically motivated varia-
tions as they typically occur in different performances and arrangements of a piece
of music. Further softening the notion of similarity, we finally introduce the task
of version identification in Section 7.3. In this scenario, one deals not only with
performance variations in instrumentation and tempo, but also with more extreme
variations concerning the musical structure, key, or melody, as typically occur in
remixes and cover songs. By means of these three scenarios, we introduce a num-
ber of key techniques and discuss the trade-off between requirements that become
important when designing and implementing retrieval systems.

7.1 Audio Identification

Within the area of content-based music retrieval, the task of audio identification
has received a lot of attention in both academic research and industry. Audio iden-
tification techniques have now been integrated into many commercial applications
such as broadcast and copyright monitoring, or added-value services for deliver-
ing metadata and other content information. In Section 7.1.1, we explain the most
important requirements for audio identification systems, including robustness, relia-
bility, granularity, scalability, and efficiency. In the identification process, the audio
material is compared by means of so-called audio fingerprints, which are com-
pact and descriptive audio features. There are many different ways for designing
and computing audio fingerprints, and the suitability of a specific type of finger-
print very much depends on the requirements imposed by the application in mind.
Serving as an instructive and important example, we discuss the main ideas of the
fingerprinting techniques that are used in the commercial Shazam1 music identi-
fication service, which were developed by Wang [30]. First, in Section 7.1.2, we
introduce fingerprints based on spectral peaks and discuss their properties. Then, in
Section 7.1.3, we present retrieval and indexing techniques that are needed to scale
up the fingerprinting system to huge audio collections.

1 www.shazam.com

http://www.shazam.com

364 7 Content-Based Audio Retrieval

Fig. 7.2 Client–server model
for an added-value service
which delivers metadata
linked to an identified query
audio fragment.

Audio
fragment

Audio
fingerprints

User (client)

Service (server)

Metdata
database

Fingerprint
database

Fingerprint
computation

Use identified
fingerprints to look

up metadata

Send metadata
back to user

Send fingerprints
to service

7.1.1 General Requirements

Let us assume you hear a song in a restaurant, in a shopping mall, or in a car, and
you want to learn more about it. For example, you want to know the song’s title
or the name of the performer or the artist. Recent music discovery services help
users in such situations by identifying the audio recording and delivering suitable
content information. A typical scenario is that a user, also called the client, records a
short audio fragment of the unknown song using a smartphone. The audio fragment
is then converted into a compact fingerprint representation, which is transmitted
to the identification service, also called the server. The server hosts various data
resources including a fingerprint database that covers all music recordings to be
identified, as well as a metadata database that contains content information linked
to these recordings. The server receives the query fingerprints sent by the client and
compares them with the fingerprints contained in the database. This step is typically
realized by an efficient database look-up supported by suitable index structures. In
the case of a successful identification, the server retrieves the content information
linked to the identified fingerprints and sends back the desired metadata to the client.
Figure 7.2 presents a schematic overview of the underlying client–server model of
the described metadata delivery service.

Real-world music recognition systems need to be robust and computationally ef-
ficient, which leads to a number of technical challenges to be solved. In particular,
the audio fingerprints used in such systems need to fulfill certain requirements in-
cluding high specificity, robustness, compactness, and scalability. We now discuss
these requirements in more detail.

First of all, audio fingerprints should possess a high specificity so that even an
audio fragment only a few seconds long suffices to reliably identify the correspond-
ing recording and to distinguish it from millions of others. To this end, the finger-
prints must retain a sufficient amount of acoustically relevant information to allow
discrimination over a large number of fingerprints.

The discrimination requirement, however, is undermined by the fact that audio
signals may be exposed to many different kinds of distortions. For example, the user
may record the audio fragment in a noisy environment, where the music is super-

7.1 Audio Identification 365

imposed with other sound sources such as people speaking, traffic, or engine noise.
Additionally, there may be environmental factors such as reverberation and absorp-
tion. Furthermore, the audio signal to be identified may be modified and degraded
by imperfect recording, transmission, or playback devices. For example, transmis-
sion through telephone equipment reduces the frequencies to a range from about
300 Hz to 4000 Hz. Other artifacts may be introduced by lossy compression, pitch
shifting, time scaling, equalization, or dynamics compression. For a reliable identi-
fication, fingerprints have to possess a significant degree of robustness against such
background noise and signal distortions.

As another important requirement, audio fingerprints should be as compact as
possible. A small-sized fingerprint representation is required in view of the millions
of recordings the server has to process and provide in its database. Furthermore,
in smartphone-based applications, audio fingerprints need to be transmitted over
channels with limited bandwidth. Thus the size of the query fingerprints should be
kept to a minimum.

Beyond having compact fingerprints, a more general requirement for audio iden-
tification systems is referred to as scalability. In order to scale to millions of record-
ings, the computation of audio fingerprints should be simple and efficient—a re-
quirement that is also needed when computing the fingerprints on mobile devices
with limited processing power. Most importantly, for the design of large-scale au-
dio identification systems, one requires efficient retrieval strategies to facilitate fast
database look-ups. In this context, hash-based indexing techniques come into play.
Such techniques also become crucial when the server needs to process hundreds or
thousands of queries per second. Finally, in view of a constantly growing digital mu-
sic catalog, one requires efficient update procedures for extending and maintaining
the server’s fingerprint database and the underlying index structures.

All these requirements are important for the design of large-scale audio iden-
tification systems. However, improving a certain requirement often implies losing
performance in some other, and one has to face a delicate trade-off between con-
tradicting principles. For example, boosting the robustness typically leads to an in-
crease of wrong identifications (false positives), thus deteriorating the accuracy of
the identification system. Similarly, even though beneficial for computational and
compactness reasons, an excessive reduction of the fingerprint size negatively af-
fects the discrimination capability. Conversely, fingerprints of high specificity and
robustness may not be usable in practice if their computation requires extensive pro-
cessing power. The balance between the different requirements very much depends
on the respective application. For certain applications, one may only deal with rather
mild signal distortions (e.g., only compression artifacts, but no background noise),
which significantly lowers the robustness requirement. In other applications, even
query fragments of long duration may be acceptable, which makes the discrimina-
tion between different items much easier.

366 7 Content-Based Audio Retrieval

7.1.2 Audio Fingerprints Based on Spectral Peaks

Closely following the original publication by Wang [30], we now present the main
ideas of the audio fingerprint techniques that are used in the Shazam audio identifi-
cation system. Recall that, in smartphone-based applications, the audio fragment
used as a query may be severely distorted and superimposed with other sound
sources. Furthermore, the duration of the fragment is typically short (a couple of
seconds) and it may come from any portion of the original music recording. There-
fore, besides robustness and specificity, temporal locality and translation invariance
are further important properties that audio fingerprints should possess. Temporal
locality means that each fingerprint should be calculated using audio samples only
from a small neighborhood of a corresponding point in time, so that distant sam-
ples do not have any influence. The requirement of translation invariance means
that the fingerprints should be reproducible regardless of the position of the audio
fragment within the original music recording, as long as the neighborhood needed
to compute the fingerprint is contained in the fragment. We now describe audio fin-
gerprints that are based on the concept of spectral peaks. Being characteristic points
in the time–frequency plane, such peaks turn out to fulfill most of the desired prop-
erties. In particular, the time–frequency coordinates of a spectral peak often remain
unchanged even in the presence of noise and additional sound sources, which makes
them highly suitable for the aforementioned smartphone-based application.

7.1.2.1 Design of Audio Fingerprints

Given an audio signal in the form of a sampled waveform, the first step in deriving
the fingerprints consists in computing an STFT X as in (2.148) or (3.1). Recall
that X (n,k) denotes the kth Fourier coefficient for the nth time frame, where k ∈
[0 : K] and n ∈ Z. In the following, an element k ∈ [0 : K] is also referred to as a
frequency stamp and an element n ∈ Z as a time stamp. Hence, the coordinates
of a Fourier coefficient X (n,k) are specified by a time–frequency point (n,k) ∈
Z× [0 : K] consisting of a time stamp n and a frequency stamp k.

In the second step of the fingerprint computation, the STFT representation of the
signal is reduced to a sparse set of time–frequency points. To this end, one uses a
peak-picking strategy that identifies time–frequency points that have a higher mag-
nitude than all their neighbors within a region around the respective points. More
precisely, let τ > 0 and κ > 0 be parameters that determine the size of the neigh-
borhood in the time and frequency direction, respectively. Then a point (n0,k0) is
selected as a peak if

|X(n0,k0)|> |X(n,k)| (7.1)

for all (n,k) ∈
(
[n0− τ,n0 + τ]× [k0−κ,k0 +κ]

)
∩
(
Z× [0 : K]

)
. These definitions

are illustrated by Figure 7.3a, which shows a spectrogram and one extracted peak
with its local neighborhood. Note that increasing the size of the neighborhood makes
it harder for a point to be selected. Thus, the parameters τ and κ can be used to adjust

7.1 Audio Identification 367

Time

Fr
eq

ue
nc

y

Time Time

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

2

2

(a) (b) (c)

Fig. 7.3 Illustration of peak selection and signal distortions. (a) Original spectrogram of an undis-
torted signal with a peak at position (n0,k0) and a neighborhood specified by the parameters τ

and κ . (b) Spectrogram of the signal after applying lossy audio data compression (e.g., MP3).
(c) Spectrogram of the signal superimposed with strong background noise.

the density of the selected peaks and to yield a reasonably uniform coverage of the
time–frequency plane.

By definition, the spectral peaks are local in nature with regard to time and fre-
quency, thus fulfilling the locality requirement. Furthermore, when choosing a small
hop size H (e.g., H = 1, which shifts the analysis window sample by sample) in
the STFT computation, the peak features become invariant to signal translations.
One major benefit of using spectral peaks is their robustness to even severe signal
degradations. For example, Figure 7.3b shows a spectrogram obtained after apply-
ing lossy audio compression (e.g., MP3) using a very low bitrate. Even though the
magnitudes of the spectral coefficients may have changed significantly, many of
the time–frequency coordinates of the local maxima have not changed. Figure 7.3c
shows an example where the music recording has been superimposed with strong
noise and people speaking in the background. Still, some of the characteristic peaks
can be found in the distorted spectrogram.

In general, one may distinguish between two different types of distortions. The
first type of distortion affects all spectral coefficients in a similar fashion. For ex-
ample, this is the case when changing the amplitude of the signal or when adding
white noise. Even though the magnitudes of the spectral coefficients may change,
the proportions of the magnitudes and therefore the peak coordinates remain more
or less unaffected. For the second type, the distortions are concentrated in certain
time–frequency regions, while other regions are left unchanged. For example, this
happens when the signal is bandlimited to a certain frequency range or when more
structured sound sources such as people speaking in the background are superim-
posed. Because of their local nature, peak positions are relatively independent from
each other and many of them survive in the unchanged regions.

The peak selection step reduces a complicated spectrogram representation of the
signal to a sparse set of coordinates (see Figure 7.4 for an illustration). Notice that
the magnitudes of the peaks are no longer used—only the time and frequency stamps
of the peaks are considered, which introduces a high degree of robustness. In the fol-
lowing, the representation consisting of all peak coordinates is also referred to as a

368 7 Content-Based Audio Retrieval

Fig. 7.4 Illustration of the
peak-based audio fingerprints
using a recording of “Day
Tripper” by The Beatles as
an example. (a) Spectrogram
representation with extracted
peak fingerprints. (b) Result-
ing constellation map. 0

4000

3000

1000

2000

0 2 4 6 8 101 3 5 7 9

Fr
eq

ue
nc

y
(H

z)

0

4000

3000

1000

2000

0 2 4 6 8 101 3 5 7 9
Time (seconds)

Fr
eq

ue
nc

y
(H

z)

0

4

3

1

2

1

0

(a)

(b)

constellation map. We will see how one can build robust yet efficient audio iden-
tification systems by using fingerprint representations based on such constellation
maps.

7.1.2.2 Fingerprint Matching

Let us consider a short query audio fragment, calledQ, as well as a database record-
ing, called D. Furthermore, let C(Q) and C(D) denote the constellation maps of Q
andD, respectively. In the case that the queryQ is contained in the recordingD, the
constellation map C(Q) should more or less agree with the corresponding section
within the constellation map C(D). Intuitively, the basic idea of audio identification
is to put the constellation map of D on a strip chart and the constellation map of
Q on a transparent piece of plastic. The latter is then shifted over the former, and
when the number of matching points is significant, the query is considered to be
contained in the document. The proper time offset of the matching position within
C(D) is given by the shift. This matching process, which is similar to computing the
cross-correlation between two time series, is illustrated by Figure 7.5. In our exam-
ple, the time offset of the best matching segment in D corresponds to time position
t = 4.5 sec (see Figure 7.5b). Even in the case of spurious and missing peaks due
to signal degradations, the query may be correctly identified as long as the number
of correctly matching peak coordinates is statistically significant. For example, in
current music discovery services, a query audio fragment of 10 to 15 seconds of
duration may still be identified correctly even in the case that less than 10% of the
peaks have survived [30].

We now formalize the outlined matching procedure. Recall that a peak position is
specified by its coordinates (n,k) consisting of a time stamp n ∈ Z and a frequency
stamp k ∈ [0 : K]. A constellation map is then a finite set of such coordinates. As

7.1 Audio Identification 369

0

4000

3000

1000

2000

0 2 4 6 8 101 3 5 7 9
Time (seconds)

Fr
eq

ue
nc

y
(H

z)

0

4000

3000

1000

2000

0 2 4 6 8 101 3 5 7 9
Time (seconds)

Fr
eq

ue
nc

y
(H

z)
0

4000

3000

1000

2000

0 2 4 6 8 101 3 5 7 9
Time (seconds)

Fr
eq

ue
nc

y
(H

z)

0

35

30

10

20

0 2 4 61 3 5 7
Shift (seconds)

(a)

(c)

(b)

(d)

(a) (b) (c)

Fig. 7.5 Constellation maps of a database document D (black, small dots) and a query Q (red,
large dots). The constellation map of Q (containing |Q| = 35 points) is shifted and locally com-
pared with the one of D. (a) Shift corresponding to time offset t = 2 sec. (b) Shift corresponding
to time offset t = 4.5 sec (matching position). (c) Shift corresponding to time offset t = 7 sec.
(d) Matching function ∆C .

before, let C(Q) ⊂ Z× [0 : K] and C(D) ⊂ Z× [0 : K] be the constellation maps of
the queryQ and the documentD, respectively. Shifting the query by m∈Z positions
yields the constellation map m+C(Q) defined by

m+C(Q) := {(m+n,k) | (n,k) ∈ C(Q)} . (7.2)

To count the matching peak coordinates between a shifted query and a database
document, we simply need to intersect the corresponding constellation maps and to
determine the size of the resulting set. This yields a matching function ∆C : Z→N0
defined by

∆C(m) :=
∣∣(m+C(Q))∩C(D)

∣∣ (7.3)

for m∈Z. In general, when the query and the database documents are unrelated, the
number ∆C(m) of (coincidentally) matching peak positions is usually small com-
pared with |C(Q)|. Only if the query is contained in the database document will
the matching function have a large value ∆C(m) for some shift index m ∈ Z. This
index indicates the time offset between the query Q and the matching section in
D. Figure 7.5d shows an example of a matching function ∆C , which assumes its
maximum at the matching position corresponding to the time offset t = 4.5 sec.

370 7 Content-Based Audio Retrieval

7.1.3 Indexing, Retrieval, Inverted Lists

In the matching processes described so far, the query needs to be compared against
all sections (having the same duration as the query) of all documents contained in
the database. Obviously, such an exhaustive search strategy, whose run-time linearly
depends on the number and sizes of the documents, is not feasible for large databases
containing millions of recordings. In view of scalability, one requires search strate-
gies that facilitate fast information access without sacrificing the accuracy of the
retrieval results. Such search strategies typically use indexing techniques, which
optimize speed and performance by cutting down the search space through suitable
look-up operations. An index is constructed similarly to a traditional book index,
which consists of a collection of alphabetically ordered key words. For each key
word, in turn, there is a list of increasing page numbers indicating the occurrences
of the given key word in the book.

Before we come back to our fingerprinting scenario, we now introduce a general
indexing and retrieval framework based on inverted lists. In the following, we as-
sume that the data items to be indexed consist of a time stamp n∈Z as well as a hash
h∈H, whereH denotes a finite set of possible hash values. In information retrieval,
the notion of a hash is used to refer to a fixed-length identifier (e.g., a binary string
consisting of a fixed number of bits) that acts as a shortened and compact reference
to the original, more complex data entity. In analogy to a traditional book index, the
hash values play the role of the key words and the time stamps the role of the page
numbers.

In the following we assume that a document D can be represented by a finite
set of data items. The resulting set F(D) ⊂ Z×H is also referred to as a feature
representation of D. In practice, one has to deal with an entire database containing
a large number of documents. To simplify notation, we only regard the case that
the database consists of a single document D. This can be assumed without loss
of generality since one may concatenate all database documents to form a single
(possibly very large) document (keeping track of possible document boundaries in
an additional data structure).

Extending the notion of a book index, we now introduce an index structure that
provides a mapping from the hashes (corresponding to the key words) to their lo-
cations (corresponding to the page numbers). To this end, we construct for each
hash h ∈ H an inverted list L(h). For a fixed hash h, the list L(h) consists of the
time stamps n ∈ Z with (n,h) ∈ F(D), where the time stamps are sorted in in-
creasing order. For an illustrative example, let us have a look at Figure 7.6a, which
shows a feature representation F(D) of a document D. Each of the plotted points
indicates an element (n,h) ∈ F(D) consisting of a time stamp n ∈ Z and a hash
h ∈H= {1,2,3,4}. Figure 7.6b shows the inverted lists for each of the four hashes.
For example, the list L(3) = (0,3,5) encodes that the set F(D) contains the three
elements (0,3), (3,3), (5,3) all having the hash h = 3.

Next, we show how the inverted lists can be used to accelerate the retrieval pro-
cess. Let Q be a query with feature representation F(Q). As in (7.2), we define the
shifted version m+F(Q) for m ∈ Z by

7.1 Audio Identification 371

Fig. 7.6 Illustrative example
of index-based retrieval using
inverted lists. (a) Feature rep-
resentation F(D)⊂ Z×H of
a database document D with
H = {1,2,3,4}. (b) Inverted
lists for F(D). (c) Feature
representation F(Q) of a
query Q. (d) Computation
of the matching function ∆F
using the indicator functions
of shifted inverted lists.

2 41 3 5 60

1

2

3

4

L(1) = (0,1,3,5)

L(2) = (2,4)

L(3) = (0,3,5)

L(4) = (3,4)

210

1

2

3

4

Query
(n,h) L(h) - n

Indicator functions
… -1 0 1 2 3 4 5 6 …

(0,2) (2,4) 0 0 0 0 1 0 1 0 0 0

(1,3) (-1,2,4) 0 1 0 0 1 0 1 0 0 0

(1,4) (2,3) 0 0 0 0 1 1 0 0 0 0

(2,2) (0,2) 0 0 1 0 1 0 0 0 0 0

(2,4) (1,2) 0 0 0 1 1 0 0 0 0 0

Matching function 0 1 1 1 5 1 2 0 0 0

(a) (b) (c)

(d)

H
as

h

H
as

h

Time stamp Time stamp

m+F(Q) := {(m+n,h) | (n,h) ∈ F(Q)} . (7.4)

Generalizing (7.3), we define the matching function ∆F : Z→ N0 by setting

∆F (m) :=
∣∣(m+F(Q))∩F(D)

∣∣ (7.5)

for m ∈ Z. Instead of scanning over the entire database document, we can use the
inverted lists to reduce the search space by looking only at the hashes that actually
occur in the query. For example, let us consider the query indicated by Figure 7.6c,
where the hash h = 1 does not occur for any of the points contained inF(Q). There-
fore, the database points encoded by the inverted list L(h) with h = 1 are irrelevant
for computing the matching function ∆F and can be left unconsidered.

How can the matching function ∆F be computed efficiently using the information
supplied by the inverted lists? Let us first examine a single element (n,h) ∈ F(Q)
of the query. How does this element need to be shifted to match a database point?
By construction of the inverted list, each time stamp ` ∈ L(h) indicates that (`,h) ∈
F(D). Furthermore, the query point (n,h) needs to be shifted by m = `−n positions
to match the database point (`,h). In other words, the shifted list L(h)− n defined
by

L(h)−n := {`−n | ` ∈ L(h)} (7.6)

contains exactly all the shifts that, when applied to the query point (n,h), result in a
match with a database point having the same hash h. For example, when considering
the query point (n,h) = (1,3) (see Figure 7.6c), one obtains the shifted list L(h)−
n = L(3)− 1 = (−1,2,4) (see Figure 7.6b). Shifting the query point (1,3) by m =
−1, m = 2, or m = 4 yields the matching database points (0,3), (3,3), and (5,3),
respectively.

372 7 Content-Based Audio Retrieval

We now look at all elements (n,h) ∈ F(Q) of the query. For a given shift m, the
value ∆F (m) counts the number of matching points between the m-shifted query
and the database document. Therefore, a point (n,h) ∈ F(Q) contributes to this
number if and only if m ∈ (L(h)−n). In other words, looking at all (n,h) ∈ F(Q),
one can derive the value ∆F (m) by counting how often the shift index m appears in
the shifted lists L(h)−n.

To formalize this counting procedure, we introduce the notion of an indicator
function (sometimes also called a characteristic function). Given an arbitrary set
A and a subset B⊆ A, the indicator function is a function 1B : A→{0,1} defined by

1B(a) :=
{

1 if a ∈ B,
0 if a /∈ B. (7.7)

We apply the concept of indicator functions for the case of inverted lists by regarding
a list simply as a set of its list elements. Setting A =Z and B = L(h)−n, one obtains
1L(h)−n(m) = 1 if and only if m ∈ (L(h)− n). From the above argumentation, the
matching function ∆F can be derived from the indicator functions in the following
way:

∆F (m) = ∑
(n,h)∈F(Q)

1L(h)−n(m) (7.8)

for m ∈ Z. This equation yields a method for calculating ∆F , which we illustrate
by means of our example from Figure 7.6. The feature representation F(Q) of
the query contains five points. For each of the points (n,h) ∈ F(Q), we consider
the indicator function 1L(h)−n of the shifted list (L(h)− n). Finally, all of the five
resulting indicator functions are summed up to yield the matching function ∆F
(see Figure 7.6d).

Let us analyze what we have gained by using the index-based computation of
the matching function. First, note that the number N := |F(D)| of database items
is in general very large, whereas the number M := |F(Q)| of query items is small.
Let L := |H| be the number of different hashes. Assuming that the hash values of
the database items are more or less evenly distributed over the set H, each of the L
inverted lists contains roughly N/L elements. Such a uniformity property is one of
the main objectives when designing a hash function, which should map the entities
of the database documents as evenly as possible over the range of available hash
values.

Since each database item enters exactly one of the inverted lists, computing and
storing the inverted lists has a computational complexity that is linear in N. Fur-
thermore, this step is independent of the query so that the construction of the index
can be done offline. In the query stage, only the information contained in the in-
verted lists corresponding to the M items of F(Q) is needed. These M lists need
to be accessed, shifted, and further processed to derive the matching function—all
operations that are linear in the sizes of the required lists. Therefore, the overall
complexity in processing a query is linear in

M ·N
L

. (7.9)

7.1 Audio Identification 373

Time

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

y

Hash:
Consists of two
frequency stamps
and a time stamp
difference:

(, ,)k0 k1 n1-n0

k0

k1

(a) (b)

n1-n0

Fig. 7.7 Illustration of the peak pairing strategy to form fingerprint hashes. (a) Anchor peak and
associated target zone. The fan-out in this example is F = 6. (b) Pairing of anchor peak and target
peaks to form hashes.

Compared with the naive approach for computing the matching function, which
requires M ·N operations, we have gained an increase in efficiency by a factor of L.
Even though, for a fixed number of hashes, the overall complexity for processing
a query is still linear in the size N of the database items, the speed-up in practical
applications can be drastic in the case that L is large. Therefore, in order to speed up
the computations, one straightforward idea is to increase the number L of hashes.
This, however, comes at a cost—as we will see in the next section when applying
the index-based retrieval concept for audio identification.

7.1.4 Index-Based Audio Identification

The indexing and retrieval framework of the last section can be directly applied to
our fingerprinting scenario based on spectral peaks. For the feature representations,
we use the constellation mapsF(Q) = C(Q) for the query andF(D) = C(D) for the
database document. The set of possible hashes is then given by H = [0 : K], which
consists of the different frequency stamps resulting from the STFT computation.
With these settings, the matching function ∆C of (7.3) is given by ∆C = ∆F .

In practice, this simple indexing approach turns out to be problematic, since the
number of frequency stamps may be too small to sufficiently speed up the retrieval
process. For example, using a 1024-bin frequency axis yields only a speed-up fac-
tor of L = 1024 compared with the brute-force approach (see (7.9)). In view of the
huge databases containing millions of recordings, much larger speed-up factors are
needed. One idea could be to increase the number of hashes by using a finer fre-
quency resolution in the peak computation, e.g., using L = 16384 frequency bins
instead of L = 1024. This, however, would drastically affect the robustness of the
overall system. Using a higher frequency resolution would significantly increase the
probability that small spectral distortions in the query signal lead to modifications
of the frequency stamps of spectral peaks. Since the frequency stamps serve as hash

374 7 Content-Based Audio Retrieval

values, this would result in many mismatches when comparing the query peaks with
the corresponding peaks in the database document.

How can one increase the specificity and the number of hashes without sacrific-
ing the robustness of the fingerprints? We now present a possible approach, which
was originally suggested in [30]. The main idea is to form fingerprint hashes by
considering pairs of peaks instead of individual peaks (see Figure 7.7). To this end,
one fixes a point (n0,k0) ∈ C(D) to serve as an anchor point as well as a target
zone T(n0,k0) ⊂ Z× [0 : K] associated to it (see Figure 7.7a). The target zone should
be thought of as a small rectangular region in the time–frequency plane close to the
anchor point. Then one considers pairs of points(

(n0,k0),(n1,k1)
)

(7.10)

consisting of the anchor point (n0,k0) and some target point (n1,k1) ∈ T(n0,k0) ∩
C(D). Each pair yields a triple

(k0,k1,n1−n0) (7.11)

consisting of two frequency stamps and a difference of two time stamps. The idea
is to use these triples as hashes instead of single frequency stamps.

Based on such triples, we redefine our feature representations for the database
document and the query. Let

T (n0,k0) := {(k0,k1,n1−n0) | (n1,k1) ∈ T(n0,k0)∩C(D)} (7.12)

be the set of all triples that can be formed by using a single anchor point (n0,k0) ∈
C(D). Then, we obtain the new feature representation for D by adding the time
stamp n0 of the anchor point to each of these triples and by considering every point
of C(D) as an anchor:

F(D) :=
⋃

(n0,k0)∈C(D)

{(n0,h) | h ∈ T (n0,k0)}. (7.13)

Similarly, we redefine the feature representation F(Q) for the query Q. Note that,
instead of [0 : K], the set of possible hashes is now a subset

H⊂ [0 : K]× [0 : K]×Z. (7.14)

With these newly defined feature representations, we can use exactly the same
indexing and retrieval framework as introduced in Section 7.1.3 for computing a
matching function ∆F . This time, however, we count matching triples (consisting
of two frequency stamps and a time stamp difference) between the shifted query
and the database document instead of considering only matching frequency stamps.
Still, a high value ∆F (m) is a good indicator that the query is likely to be part of the
database document.

What have we gained by this construction? Recall that it was our goal to accel-
erate the retrieval process by reducing the length of the inverted lists without losing

7.1 Audio Identification 375

fingerprint robustness. To this end, we increased the specificity of the fingerprints
by considering pairs of peaks along with their distance instead of individual peaks.
Obviously, the number of items to be indexed and queried increases by this con-
struction. Using all pairs of peaks would result in a number of items quadratic in the
number of points contained in a constellation map. To avoid such a combinatorial
explosion, the target zones come into play. Assuming that the peak coordinates are
more or less evenly distributed in a constellation map and using suitably shifted tar-
get zones of the same fixed size for all anchor points, the number of constellation
points per target zone is roughly the same. We call this number the fan-out of the
target zone and denote it by F ∈ N (see also Figure 7.7a). For example, if F = 10,
then the number of items (the pairs of peaks) contained in a feature representation
F(D) (or F(Q)) is approximately ten times the number of items (the peaks) in the
original constellation map C(D) (or C(Q)). In other words, the fan-out factor leads
directly to a cost factor in terms of the number of items to be stored, indexed, and
processed.

Despite this increase in data items, we gain a tremendous acceleration in the
search process. In view of a more concrete explanation, let us assume that the two
frequency stamps, as well as the difference of time stamps of a triple (k0,k1,n1−
n0), can each be encoded using B bits. Then the triples yield a number of LTriple =
2B+B+B possible hash values, as opposed to the number of L = 2B hash values when
using only a single frequency stamp. In other words, the specificity of the hashes has
increased by a factor of 2B+B. On the downside, the number NTriple := |F(D)| and
MTriple := |F(Q)| contained in the new feature representations have both increased
by a factor of F compared with N = |C(D)| and M = |C(Q)|, respectively. By (7.9),
the overall complexity of the new procedure is

MTriple ·NTriple

LTriple
=

F ·M ·F ·N
L ·L ·L

=
F2

L2 ·
M ·N

L
. (7.15)

Thus, the time to process a query has been reduced by a factor of L2/F2. For exam-
ple, having F = 10 and using B = 10 bits, this results in a huge speed-up by a factor
of 220/100≈ 10000.

What have we lost on the side of the overall procedure’s robustness? First note
that we have not changed the way the spectral peaks are computed—we only com-
bined two peaks to form a new, more complex and therefore more specific item.
However, being a combination of two individual peaks, it becomes more likely that
this item will be modified due to signal distortions. To be more concrete, let us
assume that the probability of an original spectral peak surviving the distortions to
which the query audio fragment may be exposed is given by a number p∈ [0,1]. For
example, p = 0.2 means that 20% of the original peaks survive. Furthermore, let us
simplistically assume that this probability is independent and identically distributed
over all points involved. Then the probability that two specific points in the query
survive is p2. For example, in the case of p = 0.2, one obtains that this probability
is only p2 = 0.04.

376 7 Content-Based Audio Retrieval

Assuming that the distance between two surviving peaks is not affected by the
distortion, the probability of a triple (k0,k1,n1− n0) surviving is also p2. This re-
duction in item resilience is a trade-off against the tremendous amount of speed-up
provided. Furthermore, the reduced probability of individual item survival is miti-
gated by the F times larger number of available items compared with the number
of original constellation points. For a given anchor point, the probability of at least
one item surviving is the joint probability of the anchor point and at least one target
point in its target zone surviving. This probability is given by

p · (1− (1− p)F) (7.16)

(see Exercise 7.3). Now, if F is not too small, e.g., F = 10, then even if the survival
probability of a single peak is only p = 0.2, the probability of at least one target
point surviving is (1− (1− p)F) = 1− 0.810 ≈ 0.9. Therefore, we are not much
worse off than before. In summary, we have seen that, by using more complex items
for indexing, we have traded off approximately F = 10 times the storage space for
approximately 10000 times improvement in speed, and a small loss in probability
of audio identification.

In recent years, many different fingerprinting and indexing techniques have been
proposed and are now being used in commercial products. In this section, we have
had a closer look at one of these techniques, which was originally developed for
the Shazam audio identification system [30]. We have discussed the main ideas un-
derlying this system, but there are many parameters that need to be adjusted in or-
der to find a good trade-off between the various requirements including robustness,
specificity, scalability, and compactness. Important aspects include the temporal and
spectral resolutions used for the STFT computation, the peak-picking strategy, the
size of the target zones, the fan-out parameter, and suitable data structures for pro-
cessing the inverted lists.

Although robust to many kinds of signal distortions, the discussed fingerprinting
approach is not designed for handling temporal deformations. The matching of the
constellation maps as well as the time stamp differences in the peak pairs are both
sensitive to relative tempo differences between the query and database document.
Therefore, one needs other techniques to become invariant to time scale modifica-
tions.

The fingerprints using spectral peaks are designed to be highly sensitive to a
particular version of a piece of music. For example, given a multitude of different
performances of a song by the same artist, the fingerprinting system is likely to pick
the correct one even if they are virtually indistinguishable by the human ear. In gen-
eral, audio identification systems are designed to target identification of recordings
that are already present in the database. Therefore, such techniques usually do not
generalize to live recordings or performances that are not part of the database. In the
following sections, we discuss retrieval tasks and techniques that aim at identifying
different versions of a given recording including different performances of the same
piece, arrangements, and cover songs.

7.2 Audio Matching 377

7.2 Audio Matching

While significant progress has been made for highly specific retrieval scenarios such
as audio identification, retrieval scenarios of lower specificity still pose many chal-
lenges. In this section, we address a retrieval task referred to as audio matching:
given a short query audio clip, the goal is to automatically retrieve all excerpts
from all recordings within a given audio database that musically correspond to the
query [16, 15]. In this matching scenario, as opposed to classic audio identification,
one allows semantically motivated variations as they typically appear in different
performances and arrangements of a piece of music. For example, two different
performances of the same piece may exhibit significant nonlinear global and local
differences in tempo, articulation, and phrasing, which are due to the freedom an
artist has in executing performance directives such as ritardandi, accelerandi, fer-
mate, or ornamentations. Furthermore, one has to deal with considerable spectral
variations, which are due to differences in instrumentation, dynamics, accentuation,
and so on. In Section 7.2.1, we address in more detail the various challenges one
has to face in audio matching and discuss the implications for the feature design
step. In particular, we introduce a scalable class of chroma-based audio features.
Based on these features, we discuss in Section 7.2.2 a basic matching procedure for
locally comparing the query sequence with database subsequences. Finally, to better
account for temporal deformations in this comparison, we discuss in Section 7.2.3
a more flexible DTW-based matching approach.

7.2.1 General Requirements and Feature Design

To further illustrate the audio matching scenario, let us again consider the Sym-
phony No. 5 by Ludwig van Beethoven, which we have already encountered as a
running example in the previous chapters. Being one of the most popular pieces
in the Western classical music literature, there exist a large number of different
performances and arrangements of Beethoven’s Fifth Symphony. More than 100
recordings are commercially available, not to mention numerous nonprofessional
live performances as may be found on video-sharing websites such as YouTube.

Now imagine you are sitting in a student orchestra concert at your university and
listen to a performance of Beethoven’s Fifth. You take your smartphone, record a
few seconds, and send the audio fragments to an identification service. Since the
live performance of the query is not part of the system’s fingerprint database, the
service will not be able to identify the recording when using traditional fingerprint-
ing techniques.

This is exactly the scenario where audio matching techniques should step in. For
example, let us assume that the query consists of a recording of the first theme of
Beethoven’s Fifth. Then the goal of audio matching is to find all audio fragments
that musically correspond to the query in a given database. The retrieved matches
should include the repetitions of the main theme in the exposition and recapitulation

378 7 Content-Based Audio Retrieval

Fig. 7.8 User interface for
content-based music retrieval
and navigation. The user may
specify a query by marking
certain parts of a waveform.
The system then retrieves all
recordings that contain sec-
tions musically similar to the
query. In the shown example,
the query consists of the first
21 seconds of a Bernstein
recording of Beethoven’s
Fifth. The system retrieved
three recordings (Bernstein,
Karajan, Scherbakov) along
with three matching sections
(represented by the rectan-
gles) in each of the record-
ings.

Ludwig van Beethoven
Symphony No. 5

I. Allegro con brio

Bernstein

Karajan

Scherbakov

1:41

1:25

1:26

Interpretation
Switcher

within the same performance as well as the corresponding excerpts in other record-
ings, arrangements, and synthesized versions (e.g., obtained from MIDI files). All
the retrieved matches can then be presented and made accessible to a user by means
of suitable interfaces. Extending the functionality of the Interpretation Switcher in-
troduced in Figure 3.21, all the matching sections within the retrieved recordings
can be highlighted, as indicated by Figure 7.8. Based on this interface, the user can
easily browse through and listen to the retrieved audio fragments, possibly starting
a new retrieval process with a refined query or a retrieved item.

Note that variation across different performances of the same musical work may
be quite significant. First of all, the various performances may be played in different
tempi. For example, in a recording by Herbert von Karajan, the first theme has a
duration of 18 seconds, as opposed to 21 seconds in the Bernstein version. There
are also different instrumental versions of Beethoven’s Fifth. The famous pianist and
composer Franz Liszt scaled down the symphony to a piano solo, which significantly
deviates from an orchestral version in timbre and dynamics. There are even more
distant arrangements including arrangements for marching bands, disco adaptations,
and swinging jazz versions.

The audio fingerprints based on spectral peaks as introduced in Section 7.1.2
are suitable features to characterize the local acoustic properties of a specific audio
recording. Also, as we have seen, such features possess a high degree of robust-
ness to certain signal distortions and superpositions. However, spectral peaks are
not designed to handle musical variations. This fact is illustrated by the left part of
Figure 7.9, which shows the spectrograms along with the resulting peak-based con-
stellation maps for a Bernstein as well as for a Karajan version of the beginning of
Beethoven’s Fifth. The spectrogram peaks for the two different recordings are quite
inconsistent with regard to their frequency stamps (due to differences in timbre)
as well as with regard to their time stamps (due to differences in tempo). For the

7.2 Audio Matching 379

(a)

(c)

(b)

(d)

Time (seconds) Time (seconds)

Time (seconds) Time (seconds)

Fr
eq

uq
ne

y
(H

z)
Fr

eq
uq

ne
y

(H
z)

C
hr

om
a

C
hr

om
a

Fig. 7.9 Different representations derived from recordings of the beginning first theme of
Beethoven’s Fifth Symphony. (a) Spectrogram and spectral peaks for a Bernstein recording.
(b) Chromagram for a Bernstein recording. (c) Spectrogram and spectral peaks for a Karajan
recording. (d) Chromagram for a Karajan recording.

audio matching task, one requires descriptors that capture musical characteristics
of the underlying piece of music rather than acoustic characteristics of a specific
recording.

Thinking of different performances of the same musical work, all these versions
are based on more or less the same note material. The same melodies are played
within the same harmonic context. As we have seen in the music synchronization
scenario (Chapter 3), chroma-based audio features are suitable mid-level represen-
tations for capturing this kind of information. This is again demonstrated by the right
part of Figure 7.9, which shows chroma-based audio representations for the Bern-
stein and Karajan versions. The two chromagrams exhibit a much higher degree of
similarity than the corresponding spectrograms, thus revealing a much higher in-
variance against performance variations.

Recall from Section 3.1.2 that chroma features are based on the twelve pitch
spelling attributes C, C], D, . . ., B as used in Western music notation, where each
chroma vector indicates how the energy over a signal’s frame is distributed across
the twelve chroma bands. Measuring such distributions over time yields a time–
chroma representation that closely correlates to the melodic and harmonic progres-
sion. Such progressions are often similar for different recordings of the same piece
of music, thus making chroma features a suitable tool for our matching task. We
have already seen in Section 3.1.2 that there are different ways of computing chroma
features and that the properties of chroma features can be adjusted by applying
suitable postprocessing steps such as logarithmic compression, normalization, or
smoothing.

380 7 Content-Based Audio Retrieval

Time (samples) Time (samples)

Time (samples) Time (samples)

Time (samples) Time (samples)

(a) (b)

(c) (d)

(e) (f)

Fig. 7.10 Different chroma representations for two orchestra recordings (Bernstein, Karajan) of
the beginning first theme of Beethoven’s Fifth Symphony. (a)/(b) Basic chroma features with
a 10 Hz feature rate. (c)/(d) Normalized chroma features. (e)/(f) Smoothed and downsampled
CENS41

10-features.

Which chroma variant is suitable for the task of audio matching? Let us have
a look at Figure 7.10, which shows three chroma variants for a Bernstein as well
as a Karajan recording of the beginning of Beethoven’s Fifth. The first row of
Figure 7.10 shows a basic chroma variant as computed in (3.6) using a feature rate
of 10 Hz, where each chroma vector corresponds to a window of 200 ms with a
window overlap of half the size. To balance out the huge differences in dynamics
within and across the recordings, one can apply normalization techniques. For ex-
ample, one may normalize each chroma vector with regard to the Euclidean norm
or by using the more robust projection operator as defined in (3.10). The result of
such a normalization is illustrated by the second row of Figure 7.10. Even though
these normalized chromagram representations already reveal similar patterns across
the two recordings, there are still many performance-specific differences. Therefore,
one idea is to apply additional quantization and smoothing procedures to further re-

7.2 Audio Matching 381

duce the effect of local fluctuations due to variations in local tempo, articulation,
and note execution.

As an example, we now discuss a concrete postprocessing procedure as origi-
nally suggested in [17], which illustrates how these steps may be implemented in
practice. We start with some basic chroma features, as illustrated by the first row of
Figure 7.10, and normalize each chroma vector with respect to the Manhattan norm
so that the twelve chroma values add up to one. Let X = (x1,x2, . . . ,xN) denote the
resulting sequence of normalized chroma vectors xn ∈ [0,1]12, n ∈ [1 : N]. Note that
each of these vectors has only positive entries between zero and one.

Next, we define a quantization function Q : [0,1]→{0,1,2,3,4} by

Q(a) :=

0 for 0 ≤ a < 0.05,
1 for 0.05 ≤ a < 0.1,
2 for 0.1 ≤ a < 0.2,
3 for 0.2 ≤ a < 0.4,
4 for 0.4 ≤ a ≤ 1.

(7.17)

In the first step, we quantize each chroma vector xn = (xn(0), . . . ,xn(11))> ∈ [0,1]12

by applying Q to each component of xn, yielding

Q(xn) := (Q(xn(0)), . . . ,Q(xn(11)))>. (7.18)

Intuitively, this quantization assigns a value of 4 to a chroma component if the
corresponding chroma class contains more than 40% of the signal’s total energy
and so on. The chroma components below a 5% threshold are set to zero, which
introduces robustness to noise. The thresholds are chosen in a logarithmic fash-
ion to account for the logarithmic perception of sound intensity. For example,
the vector xn = (0.02,0.5,0.3,0.07,0.11,0, . . . ,0)> is transformed into the vec-
tor Q(xn) := (0,4,3,1,2,0, . . . ,0)>. In the second step, the quantized sequence
(Q(x1), . . . ,Q(xN)) is further smoothed. To this end, we fix a number ` ∈ N that
determines the length of a smoothing window (e.g., a Hann window as defined in
(2.140)) and then consider local averages (weighted by the window function) of each
of the twelve components of the sequence (Q(x1), . . . ,Q(xN)). This again results in
a sequence of 12-dimensional vectors with nonnegative entries. In the last step, this
sequence is downsampled by a factor of d, and the resulting vectors are normalized
with respect to the Euclidean norm.

The two steps, quantization and smoothing, amount to computing weighted
statistics of the energy distribution over a window of ` consecutive vectors. There-
fore, we call the resulting features CENS`

d (chroma energy normalized statistics).
The main idea of CENS features is that taking statistics over relatively large win-
dows smooths out local deviations in tempo, articulation, and execution of note
groups such as trills or arpeggios. As an illustration of this effect, the third row of
Figure 7.10 shows the sequences of CENS41

10-features for the two Beethoven perfor-
mances. Starting with a feature rate of 10 Hz for the original chroma sequence, the
parameter `= 41 corresponds to a window size of 4100 ms. Furthermore, using the
parameter d = 10 reduces the feature rate to 1 Hz (one feature per second). Com-

382 7 Content-Based Audio Retrieval

Fig. 7.11 Schematic illustra-
tion of the computation of the
matching function ∆Diag by
summing up diagonals of the
cost matrix C.

m=0 m=1 m=2 m=M-N…

…

…

pared with the original chroma sequences, the resulting CENS sequences of the two
performances possess a much higher degree of similarity, while still capturing some
characteristic musical information.

In summary, providing a family of chroma features depending on the two pa-
rameters ` and d, the described procedure is a flexible and computationally inex-
pensive way to adjust the feature specificity and resolution without repeating the
cost-intensive spectral audio decomposition.

7.2.2 Diagonal Matching

As in the audio identification scenario, we are given a query audio fragment Q and
a database recording D. Instead of using constellation maps, however, the query
and the database document are now compared on the basis of chroma features. Let
X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be the chroma feature sequences for
Q and D, respectively. The length N of the query is typically short in comparison
with the length M of the database recording. Intuitively, to test if and where the
queryQ is contained in D, we shift the sequence X over the sequence Y and locally
compare X with suitable subsequences of Y . Every subsequence of Y that is similar
or, equivalently, has a small distance to X is considered a match for the query.

There are many ways for locally comparing X with subsequences of Y . Follow-
ing [16], let us start with a basic procedure that we refer to as diagonal matching.
First of all, we need to fix a local cost measure (or local distance measure) to com-
pare the chroma vectors of the sequences X and Y . As in the context of music syn-
chronization, we use the cosine distance, denoted by c (see (3.14)). Assuming that
the chroma vectors are normalized with respect to the Euclidean norm, this distance
is given by

c(x,y) = 1−〈x|y〉 (7.19)

for two vectors x and y with ||x|| = ||y|| = 1. One simple way for comparing two
chroma sequences that share the same length is to compute the average distance
between corresponding vectors of the two sequences. Doing so, we compare the
query sequence X = (x1, . . . ,xN) with all subsequences (y1+m, . . . ,yN+m) of Y hav-
ing the same length N as the query, where m ∈ [0 : M−N] denotes the shift index.
This procedure, which is illustrated by Figure 7.11, yields a matching function
∆Diag : [0 : M−N]→ R defined by

7.2 Audio Matching 383

∆Diag(m) :=
1
N

N

∑
n=1

c(xn,yn+m). (7.20)

We now slightly reformulate the way this matching function is computed. As in
(3.13), let C ∈ RN×M be the cost matrix given by

C(n,m) := c(xn,ym) (7.21)

for n ∈ [1 : N] and m ∈ [1 : M]. Then the value ∆Diag(m) is obtained (up to the nor-
malization by the query length) by summing up diagonals of the matrix C as illus-
trated by Figure 7.11. This explains why we denote this procedure as “diagonal”
matching.

We now discuss how the matching function can be applied for retrieving all
matches that are similar to the query fragment. As in Section 7.1.3, to simplify
notation, we assume that the database is represented by a single document D.
To determine the best match between Q and D, we simply look for the index
m∗ ∈ [0 : M−N] that minimizes the matching function ∆Diag:

m∗ := argmin
m∈[0:M−N]

∆Diag(m). (7.22)

The best match is then given by the audio clip corresponding to the subsequence

Y (1+m∗ : N +m∗) := (y1+m∗ , . . . ,yN+m∗). (7.23)

To obtain further matches, we exclude a neighborhood of the best match from further
considerations. For example, one may exclude a neighborhood of ρ = N/2 around
m∗ by (intuitively) setting ∆Diag(m) = ∞ for m∈ [m∗−ρ,m∗+ρ]∩ [0 : M−N]. This
ensures that the subsequent matches do not overlap by more than half the query
length. To find subsequent matches, the latter procedure is repeated until a certain
number of matches is obtained or a specified distance threshold is exceeded.

As an illustration, let us consider a database that consists of four recordings: one
recording of a waltz by Shostakovich, two recordings (Bernstein, Karajan) of the
first movement of Beethoven’s Fifth, and one recording of the Hungarian Dance
No. 5 by Brahms. We obtain the document D by concatenating these four record-
ings. To avoid matches across different recordings, we keep track of the boundaries
in an additional data structure. Technically, this can be done by inserting additional
columns with ∞ value at the recordings’ boundary positions in the feature represen-
tation Y of the database documentD (see Exercise 7.5). As a queryQ, we again use
the first 21 seconds of the Bernstein recording, which correspond to the first theme
of Beethoven’s Fifth. This theme appears again in the repetition of the exposition
and once more, with slight modifications, in the recapitulation. SinceD contains two
different performances of Beethoven’s Fifth, we expect six matches that musically
correspond to the query. Now, let us have a look at Figure 7.12a, which shows the
matching function ∆Diag using CENS41

10-features. The minimizing index m∗ appears
at the beginning of the Bernstein recording with a cost value of ∆Diag(m∗)≈ 0. This

384 7 Content-Based Audio Retrieval

Shostakovich Beethoven / Bernstein Beethoven / Karajan Brahms

1 2 4 6 3 5

Time (seconds)

(a)

(b)

Fig. 7.12 Matching functions for a database consisting of four recordings including two recordings
of the first movement of Beethoven’s Fifth Symphony. (a) Matching function ∆Diag using a query
that consists of the first 21 seconds (first theme) of the Bernstein recording. The top six matches
correspond to the six occurrences of the first theme. (b) Matching function ∆Diag using a modified
Bernstein query with a tempo reduced by 25%.

is no surprise, since the query is part of the database. In other words, the query Q
has been correctly identified within D by means of the first match. The matching
function yields additional matches by looking at the positions of all local minima
of ∆Diag that are close to zero and fall below a certain cost threshold τ > 0. For
example, looking at all local minima below τ = 0.2, we obtain six matching posi-
tions that indeed correspond to the six musically meaningful matches. For example,
the second match corresponds to the theme in the repetition of the exposition in
the Bernstein recording, the third match to the corresponding section in the Karajan
recording, and so on. The cost value ∆Diag(m) at a position m indicates the distance
between the respective matching section and the query.

This basic matching procedure works well in the case that the tempo of the query
roughly coincides with the tempo within the sections to be matched. Using relatively
coarse and smoothed features (such as the CENS41

10-features in our example), the
temporal blurring is capable of introducing robustness to local tempo variations.
This explains why the themes—even in the Karajan recording—were found despite
being played faster than in the Bernstein query. However, when the tempo difference
between the query and a database section becomes too large, the diagonal matching
procedure is doomed to fail. This fact is illustrated by Figure 7.12b, which shows
the matching function ∆Diag when using a modified Bernstein query with a tempo
reduced by 25%. Since the costs at the desired matching positions have increased
significantly, most of these positions can no longer be distinguished from spurious
matches.

7.2 Audio Matching 385

Fig. 7.13 Time alignment of
a sequence X with a subse-
quence of Y (see Figure 3.10
for comparison). Aligned
points or frames are indicated
by the arrows.

Sequence X

Sequence Y

Time / frame index

Time / frame index
1 2 3 4

7.2.3 DTW-Based Matching

In Section 3.2, we have studied how one can deal with tempo differences when
comparing two feature sequences. Based on the notion of a warping path, we com-
puted an optimal global alignment between the two sequences using dynamic time
warping (DTW). In the audio matching scenario, the alignment task is slightly dif-
ferent. Instead of finding a global alignment between the two given sequences, the
objective is to find a subsequence within the longer sequence that optimally fits
the shorter sequence (see Figure 7.13). We now show how the problem of finding
optimal subsequences can be solved by a variant of dynamic time warping.

In the following, we adopt the notation introduced in Section 3.2. Let X =
(x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two feature sequences over the feature
space F , where we assume that the length M is much larger than the length N. Fur-
thermore, let c :F ×F →R be a local cost measure as in (3.12) and C the resulting
cost matrix given by C(n,m) = c(xn,ym) for n ∈ [1 : N] and m ∈ [1 : M]. For two
indices a,b ∈ [1 : M] with a≤ b, we use the notation

Y (a : b) := (ya,ya+1, . . . ,yb) (7.24)

to denote a subsequence of Y . Based on the global DTW distance, our matching
problem can be formulated as the following optimization task: find the subsequence
of Y (over all possible subsequences of Y) that minimizes the DTW distance to X .
In other words, the task is to determine the indices defined by

(a∗,b∗) := argmin
(a,b):1≤a≤b≤M

DTW
(
X , Y (a : b)

)
. (7.25)

This task seems to involve two different kinds of optimization steps. First, one needs
to consider all possible subsequences of Y to find the optimal one. Second, for
each subsequence in turn, one needs to compute the DTW distance to X , which
itself involves an optimization for determining the cost of an optimal warping path.
The good news is that both the indices a∗ and b∗, as well as an optimal alignment
between X and the subsequence Y (a∗ : b∗), can be computed within a single op-
timization framework. Only a slight modification of the original DTW algorithm
(described in Table 3.2) is necessary. The basic idea is to allow for omissions at

386 7 Content-Based Audio Retrieval

the beginning and at the end of Y in the alignment with X . Instead of giving a for-
mal proof of the entire procedure, we describe in the following only the necessary
modifications.

As with the original DTW algorithm, one defines an N ×M accumulated cost
matrix denoted by D. As in (3.23), the first column of this matrix is initialized by
setting

D(n,1) :=
n

∑
k=1

C(k,1) (7.26)

for n ∈ [1 : N]. However, as opposed to (3.24), the first row of D is now initialized
by

D(1,m) := C(1,m) (7.27)

for m ∈ [1 : M]. This initialization makes it possible to start at any position of the
sequence Y without accumulating any cost, thus realizing the idea of skipping the
beginning of Y when being matched to X . The remaining values of D are defined re-
cursively as in (3.25) for n ∈ [2 : N] and m ∈ [2 : M]. Finally, instead of looking only
at the coefficient D(N,M) to obtain the global DTW cost, the second modification
is to consider the entire last row D(N,m) for m ∈ [1 : M]. From this row, the index
b∗ defined in (7.25) can be determined by

b∗ = argmin
b∈[1:M]

D(N,b). (7.28)

Choosing the cost-minimizing index in this row (instead of taking the last index as
is done in the original DTW approach) realizes the idea of skipping the end of Y
when being matched to X .

The start index a∗ defined in (7.25) cannot be directly read off from the matrix
D(N,m). To determine a∗, one needs to apply a backtracking procedure as in clas-
sical DTW to construct an optimal warping path (see Table 3.2). This time, how-
ever, one starts with q1 = (N,b∗) (instead of q1 = (N,M)) and stops as soon as
the first row of D is reached by some element qL = (1,m), m ∈ [1 : M] (instead of
qL = (1,1)). The index a∗ ∈ [1 : M] is then determined by this index m. Furthermore,
the path (qL,qL−1, . . . ,q1) defines an optimal warping path between the sequence X
and the subsequence Y (a∗ : b∗) (see also Exercise 7.6).

Let us have a look at an example while reflecting on the overall procedure from
a more general perspective. Based on the cost matrix C of Figure 7.14a, one obtains
the accumulated cost matrix D shown in Figure 7.14b. The optimal index b∗ = 24
can be determined from the values of the top row of D. The index a∗ = 13 is de-
rived via backtracking, which also yields the optimal alignment path between the
sequence Y (13 : 24) and X . Besides revealing the optimal index b∗, the top row of
D provides more information. Each entry D(N,m) for an arbitrary m ∈ [1 : M] in-
dicates the total cost of aligning X with an optimal subsequence of Y that ends at
position m. This motivates us to define a matching function ∆DTW : [1 : M]→R by
setting

∆DTW(m) :=
1
N

D(N,m) (7.29)

7.2 Audio Matching 387

Sequence Y

S
eq

ue
nc

e
X

S

eq
ue

nc
e

X

Optimal
subsequence

(a)

(b)

(c)

b* a*

Sequence Y

Sequence Y

Minimum

Sequence Y

(e)

N+m* 1+m*

S
eq

ue
nc

e
X

(d)

Sequence Y

Minimum

Fig. 7.14 Illustration of subsequence DTW for finding an optimal subsequence of Y that matches
X . (a) Cost matrix C. (b) Accumulated cost matrix D with warping path between X and the optimal
subsequence Y (a∗ : b∗). (c) Matching function ∆DTW. (d) Cost matrix C with optimal diagonal
match. (e) Matching function ∆Diag.

for m ∈ [1 : M], where we have normalized the accumulated cost by the length N of
the query. Each local minimum b ∈ [1 : M] of ∆DTW that is close to zero indicates
the end position of a subsequence Y (a : b) that has a small DTW distance to X . The
start index a ∈ [1 : M] as well as the optimal alignment between this subsequence
and X are obtained by a backtracking procedure starting with the cell q1 = (N,b).

In summary, we have obtained a generalization of our diagonal matching pro-
cedure, which is illustrated by the lower part of Figure 7.14. However, instead of

388 7 Content-Based Audio Retrieval

revealing start positions of matching sections as is the case with ∆Diag, the match-
ing function ∆DTW indicates end positions of matching sections. In simple terms,
in diagonal matching, the query X is processed in forward direction, whereas in the
DTW-based approach it is processed in backward direction. Furthermore, instead
of just diagonally aligning the matching section with the query, the DTW-based
approach introduces warping operations that make it possible to handle temporal
deviations between the match and the query. This effect becomes visible in our ex-
ample of Figure 7.14, where the query sequence X has length N = 8, while the best
matching subsequence Y (13 : 24) has length 12. The DTW-based matching proce-
dure, which is based on the step size set Σ = {(1,0),(0,1),(1,1)}, can account for
such temporal differences as indicated by Figure 7.14b. By using diagonal match-
ing, however, the length of the matching subsequence is forced to have the same
length N as the query X . This leads to a poorer alignment and inaccuracies in the
matching, as illustrated by Figure 7.14d.

As another example, let us again have a look at Figure 7.12b, where we have
used a modified Bernstein query with a tempo reduced by 25%. As a result of large
tempo differences, the expected matches in the much faster Karajan recording could
not be identified using diagonal matching. Using DTW-based matching, however,
the matching positions clearly stand out in ∆DTW as demonstrated by Figure 7.15c.
Furthermore, Figure 7.15a illustrates how the matching sections lead to “corridors”
of low cost in the matrix C. Accumulating the costs in these corridors leads to com-
paratively small values in the matrix D, as shown by Figure 7.15b.

The discussed subsequence variant of DTW can be modified in the same way
as classical DTW (see Section 3.2.2). In particular, the step size condition may
be changed by replacing the set Σ = {(1,0),(0,1),(1,1)}. For example, using the
set Σ = {(1,1)}, DTW-based matching basically reduces to diagonal matching—
except for the backward processing instead of the forward processing (see also
Exercise 7.7). In general, using the set Σ = {(1,0),(0,1),(1,1)} may lead to align-
ment paths that are highly deteriorated. In the extreme case, the sequence X may be
assigned to a single element of Y . Therefore, in certain applications, it may be ben-
eficial to use the set Σ = {(2,1),(1,2),(1,1)}, which yields a compromise between
the strict diagonal matching and the DTW-based matching with the full flexibility
(see also Figure 3.17). Further properties and variants of the DTW-based matching
procedure are discussed in the exercises.

Finally, we want to discuss how one can handle possible transpositions between
the query and matching database sections. As discussed in Section 3.1.2, one can
simulate transpositions by cyclically shifting the chroma features along the 12-
dimensional chroma axis. Let ρ : R12→ R12 be the cyclic shift operator as defined
in (3.11) and let ρ i(X) = (ρ i(x1),ρ

i(x2), . . . ,ρ
i(xN)), i ∈ [0 : 11] be the shifted ver-

sions of the query X . Then, the idea is to use each of the twelve sequences ρ i(X)
as a separate query to retrieve matches from the database. Similar to the concept
of transposition-invariant self-similarity matrices as introduced in Section 4.2.2.3,
one can also define a transposition-invariant matching function. To this end, one
first computes a separate matching function, say ∆i, for each ρ i(X) and Y . The
transposition-invariant matching function ∆TI is then obtained by setting

7.2 Audio Matching 389

(a)

Time (seconds)

(b)

(c)

S
eq

ue
nc

e
X

Sequence Y

S
eq

ue
nc

e
X

Sequence Y

Sequence Y b* a*

Fig. 7.15 Illustration of matching procedures for the modified Bernstein query from Figure 7.12b
(sequence X) and the Karajan recording (sequence Y). (a) Cost matrix C with “corridor” of low
cost (as highlighted by the oval in the image) corresponding to the top match. (b) Accumulated
cost matrix D. (c) Diagonal matching function ∆Diag (thin red curve) and DTW-based matching
function ∆DTW (thick black curve). The best matching subsequence Y (a∗ : b∗) is highlighted.

∆
TI(m) := min

i∈[0:11]
∆

i(m) (7.30)

for m ∈ [1 : M]. This is exactly the same approach as used in the SSM context
(see (4.15)).

This procedure is illustrated by Figure 7.16 by means of the song “In the Year
2525” by Zager and Evans, which we have already encountered in Section 4.2.2.3.
Recall that the musical structure of this song is given by IV1V2V3V4V5V6V7BV8O,
where the first four verse sections are in the same musical key, V5 and V6 are trans-
posed by one semitone upwards, and V7 and V8 are transposed by two semitones
upwards. Using a query X that corresponds to V1 and a database sequence Y that
consists of the entire song, the first four rows of Figure 7.16 show the match-
ing functions ∆i for i = 0,1,2,3 using the DTW-based matching approach (i.e.,
∆0 = ∆DTW). The resulting transposition-invariant matching function ∆TI, as illus-
trated by Figure 7.16e, correctly indicates the end positions of all eight verse sec-
tions.

390 7 Content-Based Audio Retrieval

Fig. 7.16 Illustration of the
concept of a transposition-
invariant matching function
by means of the song “In
the Year 2525” by Zager and
Evans. The query X corre-
sponds to the verse section V1
and the database sequence Y
to the entire song. (a) Match-
ing function ∆0 = ∆DTW.
(b) ∆1. (c) ∆2. (d) ∆3. (e) All
twelve matching functions
∆i for i ∈ [0 : 11] and the re-
sulting transposition-invariant
matching function ∆TI (thick
black curve).

(a)

(b)

(c)

(d)

(e)

7.3 Version Identification

In the previous tasks, we used an audio fragment as a query and looked for sim-
ilar fragments contained in a database of music recordings. The degree of speci-
ficity considered was very high for audio identification and much lower for audio
matching. In this section, we further relax the notion of similarity and deal with a
task referred to as version identification. A version may differ from the original
recording in many ways, possibly including significant changes in timbre, instru-
mentation, tempo, key, harmony, melody, lyrics, and musical structure. For example,
when looking for versions of Beethoven’s Fifth Symphony, one may be interested
in retrieving a live performance played by a punk-metal band, where many notes
have been modified and most of the original structure has been lost. Despite rad-
ical changes in tone and tempo, one may still recognize the original composition
by means of characteristic melodic, harmonic, or rhythmic elements of the original
composition that shine through in the modified version. In Section 7.3.1, we discuss
in more detail the various ways an original musical work may be modified to create
new versions such as cover songs, remixes, mashups, or medleys. We then describe
the main ideas of a retrieval system to identify versions that share some charac-
teristic melodic and harmonic progressions. As opposed to audio matching, where
one compares a given short query fragment with local sections of other recordings,
one typically compares entire recordings in version identification. In Section 7.3.2,
we describe an algorithm for deriving a global similarity measure by finding po-

7.3 Version Identification 391

tentially long matching sections within the query and database document. Finally,
in Section 7.3.3, we address the topic of evaluating the quality of ranked retrieval
results as typically obtained from version identification systems.

7.3.1 Versions in Music

In Western culture, when speaking of a piece of music, one typically thinks of a spe-
cific composition given in music notation or given in the form of a recorded track.
Often, the origin of a piece of music can be traced back and associated to the name
of a composer or a music group. For example, the musical score written down by
Ludwig van Beethoven is considered the original version of the Fifth Symphony.
Or the original version of the song “Yellow Submarine” is without question the
recording by the English rock band “The Beatles.” For music in general, however,
this view is somewhat simplistic and using the term “piece of music”—not to men-
tion the term “original version”—may be problematic. For example, what should be
considered the original version of a folk song that has been orally transmitted over
hundreds of years, undergoing numerous changes and existing in many different
versions? In jazz, where improvisation and the resulting variations are key elements
of the music, one often speaks of a standard rather than a piece of music. For a
jazz piece there typically exists an entire family of performances, which only share
certain variations on a melody or are in accordance with certain chord progressions.
The terms are even more problematic for Indian classical music, where a raga only
yields the tonal or melodic framework on which a composition or improvisation is
based, rather than denoting a specific piece of music.

7.3.1.1 Types of Versions

It is beyond the scope of this book to discuss such musicological aspects in greater
depth. Closely following [23], we adopt a simplistic point of view and use the terms
“piece of music” and “version” in a rather loose way. Instead of trying to give a
formal definition of these terms, let us consider some typical examples in the context
of Western music.

In Western classical music, the original version of a piece of music is often given
in the form of a musical score, which has been written down and authorized by the
composer. All performances following the musical score are typically also consid-
ered original versions of the piece of music, even though there may exist significant
differences between these versions, as we have seen in the context of audio match-
ing. An arrangement refers to a reworking of a piece of music so that it can be
played by instruments different from the ones notated in the original score. For ex-
ample, a piece for violin might be arranged so that it can be played on a clarinet
instead, or a piece written for piano solo might be arranged so that it can be played
by a full orchestra. Conversely, symphonic and chamber music has often been ar-

392 7 Content-Based Audio Retrieval

ranged for one or two pianos, a reworking also referred to as piano transcription.
Such transcriptions became popular in particular during the 19th century, since this
was the only way symphonic music originally composed for orchestra could also be
listened to by a wider audience.

There are many terms that refer to music that has been created by concatenat-
ing and mixing existing pieces and recordings. Already in the 15th century, one
finds pieces of music called quodlibet (Latin for “what pleases”), where different
melodies, usually popular folk tunes, were combined in an often humorous manner.
Later, in the 19th century, such pieces also became known as potpourri, where in-
dividual sections of popular operas, operettas, or songs are simply juxtaposed with
no strong connection or relationship. Similar techniques are also used nowadays
in mainstream popular music. In this context, the term medley is used to refer to a
piece composed from parts of existing pieces, typically the most memorable parts of
songs, played one after another, sometimes overlapping. When selecting and playing
back music, a disc jockey (DJ) tries to create smooth transitions between the indi-
vidual tracks by suitably manipulating existing audio material, thus creating a new
version often referred to as a DJ mix. Going beyond simple playback, DJs may act
as performing musicians by manipulating, blending, and mixing existing audio ma-
terial, e.g., by applying turntable scratching to create percussive sounds mixed into
the original recordings. Mixing techniques are often used by songwriters and music
producers to create backing instrumentals for new songs. In the music production
context, sampling (not to be confused with sampling as used in the discretization
context, see Section 2.2.2) refers to the technique of taking portions, or samples, of
one recording and reusing them as a “new” instrument in a different piece.

For popular music, there exist many different terms that are used to refer to ver-
sions that have been derived from original recordings or songs. For example, a remix
is a recording that has been edited or completely recreated to sound different from
the original version. Such modifications may range from changes in dynamics, pitch,
tempo, and playing time to complete rearrangements of voices and instrumental
tracks. Thus, on the one hand, a remix may be close to a remaster with the goal of
enhancing the sound quality of a previously existing recording. On the other hand,
it may be a mashup, where a new composition has been created by overlaying the
vocal track of one song seamlessly over the instrumental track of another. The term
sound collage is used to refer to a composition obtained by combining portions of
existing recordings or pieces of music—similar to a collage in the visual arts, where
portions of other artwork or texts, photographs, and other found objects are glued to
a piece of paper or canvas. The practice of directly using existing musical material
such as a melody or theme in a new composition is called a quotation. This is dif-
ferent from a variation, where musical material is repeated in an altered form with
changes that may involve harmony, melody, rhythm, timbre, orchestration or any
combination of these. Also the notion of parody, where the objective is to imitate
an original work in a ridiculing and trivializing way, is known in music.

Finally, we want to mention the notion of a cover version or cover song, which
loosely refers to a new performance of a previously released song by someone other
than the original artist. Typically within the pop and rock genres, this notion some-

7.3 Version Identification 393

Fig. 7.17 Examples of different versions of the painting “Mona Lisa” by Leonardo da Vinci
(adopted from [23]).

times has a slightly negative connotation, in particular because the release of cover
songs has been a strategy of the marketing industry to profit from the popularity of
previously successful songs without remunerating the composer or original group.
Cover versions of popular songs are now widespread, sometimes with a radical
change in style.

This overview only gives a glimpse of the various notions that exist to refer to
versions that can be associated to an original musical work. Nowadays, with the
availability of personal digital technology for distributing, recording, and process-
ing audio material, semiprofessional music bands and amateurs can easily produce
their own music—often on the basis of existing songs and audio material. For many
songs such as “Summertime” by George Gershwin or “Yesterday” by The Beatles
one can find hundreds of versions on video-sharing websites such as YouTube—
some of them having millions of clicks. Of course, the imitation, manipulation, and
modification of existing artworks to create new versions is not limited to music.
Principles based on quotation, parody, translation, and plagiarism can be found in
literature, painting, sculpture or photography. Figure 7.17 illustrates this by means
of the painting “Mona Lisa” by Leonardo da Vinci.

7.3.1.2 Types of Modifications

Different versions of a piece of music typically share some characteristic elements—
the “essence” of the piece. However, versions may differ significantly with regard

394 7 Content-Based Audio Retrieval

to a wider range of musical and acoustic properties. Following [23], we now discuss
some of these properties in more detail.

First of all, versions of the same piece of music may differ substantially in their
tempo (see Section 1.1.2). In particular for classical Western music, the tempo may
only loosely be specified by terms such as Largo (very slow), Andante (at a walk-
ing pace), or Presto (extremely fast), and performers take the freedom to play the
music at their own pace. As an extreme example, one may mention the two fa-
mous recordings by the Canadian classical pianist Glenn Gould of Johann Sebastian
Bach’s Goldberg Variations. In his 1955 debut album, Glenn Gould plays the begin-
ning Aria with a tempo of 60 BPM. Shortly before his death, Gould re-recorded the
Goldberg Variations in the year 1981 in a more introverted way, this time choosing
a tempo of only 33 BPM for the Aria—nearly half the tempo compared with his first
recording. Tempo changes can also be introduced by processing an existing music
recording using techniques based on resampling or time scale modification. For ex-
ample, DJs use beatmatching tools for speeding up or slowing down a recording in
order to match the tempo of a previous track so both can be seamlessly mixed. The
tempo-related aspect of timing deals with a much smaller temporal scale. Rather
than strictly following a predefined tempo, musicians give a performance an indi-
vidual touch by introducing subtle temporal fluctuations—a musical phenomenon
also referred to as expressive timing.

Besides tempo and timing, one of the most typical differences between versions
of a piece of music is the “sound color” or timbre (see Section 1.3.4). Such differ-
ences result from modifications in the instrumentation, the different playing styles of
artists, room acoustics, the application of postproduction techniques such as equal-
ization, dynamic compression, and so on.

In versions such as cover songs it is also quite common to have a change of
the original structure of the piece (see Chapter 4). For example, the intro may be
skipped, an instrumental solo section may be added, or a chorus section may be
repeated more often than in the original song. Similarly, in a classical solo concerto,
an improvised cadenza may be included by the soloist displaying his or her virtuosic
skills.

Sometimes the musical key is changed when creating a new version of a piece of
music. For example, in an arrangement, the pitch range may be adapted to a different
singer or another instrument. Such key changes are typically applied to an entire
piece, although they may also be restricted to a single musical part. Besides the main
key, one may also find changes in the harmonization, the chordal accompaniment
to a melody. Such reharmonization techniques are used to make the music sound
more interesting or to create a different mood. Particularly in jazz, musicians often
modify a well-known jazz standard by applying reharmonization techniques and
then also adapt the melody to fit the new chord progression.

There are also other properties that may be changed when creating new versions.
Often the lyrics, the set of words underlying a song, are replaced to adjust the song
for a specific occasion such as a celebration. Also, popular songs and operas are
translated into other languages to open up to new audiences including people from
other countries. Last but not least, in versions such as live performances, the actual

7.3 Version Identification 395

Fig. 7.18 Overview of a
pipeline for a version identifi-
cation system.

Database
document

Query
document

Similarity
matrix

Optimal
local

alignment

Similarity
score

Chroma
sequence

Chroma
sequence

music may be superimposed by additional sound sources such as applause, rhythmic
clapping, people shouting, and so on.

7.3.2 Identification Procedure

Given an audio recording (or another representation) of a piece of music, the objec-
tive of version identification is to retrieve from a given music database all recordings
that can be considered a version of the given piece. In this retrieval scenario, the
query typically consists of an entire recording—as opposed to audio identification
and audio matching, where the query was only a small audio fragment. Therefore,
version identification is usually considered a document-level retrieval task, where a
single similarity measure is used to globally compare entire documents. As we have
discussed before, the original and a derived version of a piece of music typically
share some common characteristics. However, due to possible structural differences
between these versions, it is not clear where these common elements occur. There-
fore, when assessing the global similarity between a given query document and a
database document, a general strategy in version identification is to look for local
concurrences with regard to certain musical properties. In other words, the global
comparison is performed on a local basis.

In view of the many possible kinds of modifications that may be applied when
creating new versions, it is not realistic to assume that one can deal with all the
resulting variations by using a single technique. In the following, we restrict our-
selves to the scenario where the versions to be identified share a similar melodic
or harmonic progression—at least in certain sections. On the other side, we allow
differences in aspects such as tempo, instrumentation, timbre, and the overall mu-
sical structure. Following [23], we present the main ideas of a typical version iden-
tification procedure, which is tailored towards capturing tonal elements of music
recordings while showing a high degree of invariance with regard to a wide range
of modifications. Based on these assumptions, the overall strategy for comparing
two given documents is as follows (see also Figure 7.18): First, to capture the tonal
characteristics, we convert the recordings into sequences of chroma-based audio fea-
tures. Second, we compute a similarity matrix by comparing the elements of these
two sequences in a pairwise fashion. Third, we try to identify a potentially long path
of high similarity. The presence of such a path indicates that the two chroma se-

396 7 Content-Based Audio Retrieval

quences share some related subsequences. Finally, from this information, we derive
a similarity score between the two versions to be compared.

Many of the required techniques to realize such a version identification system
are similar to the ones we have already used for audio matching (Section 7.2), for
music structure analysis (Chapter 4), and for music synchronization (Chapter 3).
Therefore, in the following, we only highlight how these techniques need to be
adjusted for the given scenario. As in audio matching, we are interested in capturing
the rough tonal progression while retaining invariance to dynamics and local tempo
fluctuations. Therefore, the requirements for the feature representations are similar
to the ones discussed in Section 7.2.1. Both the query and the database document
are converted into chroma-based feature sequences, say X = (x1,x2, . . . ,xN) and
Y = (y1,y2, . . . ,yM). Since we want to blend out nuances, the usage of a smoothed
and normalized chroma variant is beneficial. In the following examples, we use
the CENS21

5 -features as introduced in Section 7.2.1. These features, which have a
rate of 2 Hz (two chroma vectors per second), constitute a good trade-off between
robustness and specificity.

In the audio matching scenario, we looked for subsequences of Y that are sim-
ilar to the full query sequence X . Now, in the version identification scenario, the
situation is different. The assumption is that the query document and the database
document may share a similar tonal progression in certain parts, but we know nei-
ther the strength and the duration nor the locations where these concurrences occur.
In this context, the matching task can be formulated as follows: given the sequences
X and Y , we are looking for a subsequence within X and a subsequence within Y
such that these two subsequences are as similar as possible. Furthermore, in the
comparison of these two subsequences, we want to be able to deal with temporal
deformations.

As in the case of audio matching, this task can be expressed in the form of an
optimization problem, which can be solved efficiently by using dynamic program-
ming. However, we need to assume a different viewpoint on the given problem. In
audio matching, we looked for a cost-minimizing subsequence of Y that matched
the query X (see (7.25)). This optimization criterion worked since the entire query
sequence X was forced to be matched against a subsequence of Y . Now, when we
assume that only a subsequence of X needs to be matched against one of Y , there is
a trivial solution: the empty subsequences. Indeed, matching two empty sequences
results in an overall cost of zero, which is an optimal solution when we assume that
the cost matrix C has no negative values. This is definitely not what we are looking
for.

Intuitively speaking, we are not only looking for subsequences that can be
matched with minimal cost, but also for preferably long subsequences that have
a certain relevance. In other words, we need to balance two principles at the same
time: minimizing the overall matching cost on the one hand, and maximizing the
lengths of the subsequences on the other hand. To remedy this problem, we assume
a “positive” viewpoint by using a similarity matrix (or score matrix) instead of a cost
matrix. Then, instead of identifying cost-minimizing subsequences, we are looking
for score-maximizing subsequences. Further constraints for the comparison of the

7.3 Version Identification 397

Fig. 7.19 Comparison of the
original version of the song
“Day Tripper” by The Beatles
(vertical axis) with a cover
version by the band Ocean
Colour Scene (horizontal
axis). (a) Similarity matrix
S computed in the same
fashion as the one shown in
Figure 4.15f. (b) Accumu-
lated score matrix D. (c) S
with score-maximizing path
and induced segments.

(a)

Ti
m

e
(s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

(b)

(c)

Ti
m

e
(s

ec
on

ds
)

Time (seconds)

subsequences are imposed by introducing negative penalty values as well as suit-
able step size conditions. Note that we have already employed similar strategies in
the context of audio thumbnailing (see Section 4.3). We now quickly review these
concepts and apply them to our version identification task.

Fixing a similarity measure s : F ×F → R as in (4.3), we compute an N×M
similarity matrix by setting

S(n,m) := s(xn,ym) (7.31)

for n ∈ [1 : N] and m ∈ [1 : M]. The properties of this similarity matrix can be fur-
ther improved by using the same enhancement strategies as described for the case
of self-similarity matrices (see Section 4.2.2). In particular, we apply some thresh-
olding with respect to a threshold parameter τ > 0 and a penalty parameter δ ≤ 0 as
discussed in Section 4.2.2.4 and illustrated by Figure 4.15f. The resulting matrix is
constructed in such a way that the cells that may express relevant similarity relations
tend to have a positive score, whereas all other cells are given a negative score. This

398 7 Content-Based Audio Retrieval

property is crucial in view of the following procedure, which tries to find a path
component that accumulates a possibly large score. Such a path mainly lies in the
positive part of S while avoiding running through cells of negative score (see also
Figure 7.19c for an example).

To formalize the optimization task, we need again the notion of a path to account
for temporal deformations when comparing two feature sequences. As in (4.5), a
path is defined to be a sequence P = ((n1,m1), . . . ,(nL,mL)) of cells (n`,m`) ∈
[1 : N]× [1 : M], ` ∈ [1 : L], satisfying (n`+1,m`+1)− (n`,m`) ∈ Σ for some set Σ

of admissible step sizes. Thus, choosing Σ = {(0,1),(1,0),(1,1)}, this definition is
the same as the one for a warping path in Section 3.2.1.1 except for having omitted
the boundary condition. The reason for this is that we do not want to globally align
the sequences X and Y , but only subsequences. As in (4.7), we associate for a path
P the two induced segments π1(P) := [n1 : nL] and π2(P) := [m1 : mL]. The score
σ(P) of P is defined as σ(P) := ∑

L
`=1 S(n`,m`) (see (4.8)). With these definitions at

hand, our optimization task is to find the score-maximizing path

P∗ := argmax
P

σ(P) (7.32)

over all possible paths (with arbitrary start and end positions). The two best match-
ing subsequences of X and Y are then given by the induced segments π1(P∗) and
π2(P∗), respectively.

A score-maximizing path can be computed via dynamic programming similar to
the DTW algorithm. To this end, we define an N×M accumulated score matrix D
by

D(n,m) := max{σ(P) | P is path ending at (n,m) } (7.33)

for n∈ [1 : N] and n∈ [1 : M]. In other words, D(n,m) is the maximal possible score
that can be accumulated by a path that starts at some arbitrary cell but ends with cell
(n,m). In this definition, the empty path P = /0 is considered to be a path of score
σ(P) = 0, which belongs to the paths considered in (7.33). For cells (n,m) with
n = 1 or m = 1, one obtains

D(1,1) = max
{

0,S(1,1)
}
, (7.34)

D(n,1) = max
{

0,D(n−1,1)+S(n,1)
}

for n ∈ [2 : N], (7.35)
D(1,m) = max

{
0,D(1,m−1)+S(1,m)

}
for m ∈ [2 : M], (7.36)

constituting the boundary cases for our recursion. For n ∈ [2 : N] and m ∈ [2 : M],
one can compute D via

D(n,m) = max

0,
D(n−1,m−1)+S(n,m),
D(n−1,m)+S(n,m),
D(n,m−1)+S(n,m).

(7.37)

Note that this recursion differs from the one in (3.25) in two ways. First, instead
of minimizing over costs, we now maximize over (possibly negative) scores. Even

7.3 Version Identification 399

-2 -2 1 -2 1 0

-2 1 -2 1 -2 -2

0 1 -2 -2 1 -2

0 -2 1 2 -2 1

1 -2 1 1 0 -2

y1 y2 y3 y4 y5 y6

(a) (b) (c)

x5

x4

x3

x2

x1

0 1 4 2 4 4

0 3 1 3 3 3

1 2 0 2 5 3

1 0 2 4 2 3

1 0 1 2 2 0

y1 y2 y3 y4 y5 y6

x5

x4

x3

x2

x1 y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

Fig. 7.20 (a) Similarity matrix S for two sequences X = (x1, . . . ,x5) and Y = (y1, . . . ,y6). (b) Ac-
cumulated score matrix D with a score-maximizing path. (c) Resulting local alignment.

more important, the second difference is that the maximization includes a zero value.
This modification makes it possible to start a path at any position without having
accumulated any potentially negative score. This realizes the idea of skipping the
beginnings of the sequences X and Y when being compared.

How do we obtain the score-maximizing path P∗ as defined in (7.32)? Since we
do not impose any boundary constraints on the considered paths, P∗ may end at any
cell. Therefore, to obtain the maximal score over all possible paths, we need to look
at the maximal entry of D:

Dmax := σ(P∗) = max
(n,m)∈[1:N]×[1:M]

D(n,m). (7.38)

In general, there may be several entries of D having maximal value. We start
with one of these entries, say q1, which defines the end position of an optimal
path P∗. The full path is then obtained via backtracking—as we did with DTW
(see Table 3.2). This time, however, the stop condition of the backtracking is dif-
ferent. Let q1,q2, . . . ,q` be the iteratively determined cells, then the backtracking is
stopped as soon as a cell q` = (a,b) with D(a,b) = 0 or q` = (1,1) is reached. In the
first case, the cell q` = (a,b) is omitted since it has a nonpositive score S(a,b)≤ 0.
This yields the optimal path P∗ = (q`−1, . . . ,q1). In the second case the path starts
with the cell q` = (1,1) if S(1,1)> 0 or with the cell q`−1 if S(1,1)≤ 0.

For an example, let us have a look at Figure 7.20, which shows a similarity ma-
trix S and the resulting accumulated score matrix D. The matrix D assumes its
maximal value at the cell (3,5). Backtracking yields the score-maximizing path
P∗ = ((1,3),(2,3),(2,4),(3,5)) with σ(P∗) = 5. The two induced segments are
π1(P∗) = [1 : 3] and π2(P∗) = [3 : 5], which yield the subsequences (x1,x2,x3) and
(y3,y4,y5) (see Figure 7.20c).

An example obtained from real audio recordings is shown in Figure 7.19, where
the original Beatles version of the song “Day Tripper” is compared with a cover
version by the band Ocean Colour Scene. Figure 7.19a shows an enhanced and
thresholded similarity matrix S. In this matrix, one can clearly notice a number
of path components, which lie in the positive part of S. On the other hand, there
are no path-like structures at the beginning and the end of the cover version, which
is longer than the original version. Listening to the cover song reveals that in the

400 7 Content-Based Audio Retrieval

first fifty seconds the band members interact and talk to the audience so that there
are no tonal relations to the original Beatles version. The accumulated score matrix
D, which is shown in Figure 7.19b, assumes a maximal value of σ(P∗) = 107 at
the cell (n,m) that corresponds to the end position (72,116) (given in seconds) of a
score-maximizing optimal path. The entire path as well as the induced segments are
shown in Figure 7.19c.

In summary, given two audio recordings, we computed chroma-based feature
sequences X and Y and derived an enhanced similarity matrix S. In the design of
this matrix it was important that the cells expressing tonal concurrences lie in the
positive part of S, while the irrelevant cells lie in the negative part. The threshold
parameter τ and penalty parameter δ can be used to balance out the positive and
negative parts. We then computed the highest value Dmax of an accumulated score
matrix D, which amounts to the total score of the two best matching subsequences
of X and Y (see (7.38)). By construction, the value Dmax is high if and only if the
recordings share some common tonal progression of a certain strength and duration.
The duration of possible gaps (cells of negative score within an alignment path) can
be controlled by the penalty parameter δ . The concept of an alignment path allows
for temporal deviations between these progressions, while the chroma features used
yield some robustness to differences in timbre and dynamics. Furthermore, using a
local alignment, the specific locations of the progression within the versions are not
relevant, which accounts for possible structural differences of the two versions.

Because of these properties, we define the overall similarity score γ(Q,D) for the
document-level comparison between a query documentQ and a database document
D by setting

γ(Q,D) := Dmax. (7.39)

This definition implements the idea of performing the global comparison on the
basis of local concurrences. For the version identification task, a given query doc-
ument is compared with all database documents. The database documents are then
ranked according to the computed similarity score. In the next section, we discuss
this retrieval process in more detail and address the topic of evaluating the retrieval
quality.

7.3.3 Evaluation Measures

In audio identification and audio matching we dealt with fragment-level retrieval
tasks, where the objective was to identify specific sections of a database document
that are similar to the given query fragment. In these scenarios, to simplify notation,
we assumed that the database consists of a single document D (by concatenating
all database documents). Now, in version identification, we deal with a document-
level retrieval task, where the objective is to retrieve entire documents rather than
fragments (even though the document-level similarity score is based on a fragment-
level comparison). We now give a mathematical description of this retrieval scenario

7.3 Version Identification 401

and introduce some evaluation measures to assess the quality of a document-level
retrieval result.

In the following, we assume that the database consists of a set of K documents,
{D1,D2, . . . ,DK}, where each documentDk is associated to an identifier k ∈ [1 : K].
Furthermore, given a query documentQ, we suppose that we have a similarity mea-
sure that yields a value γ(Q,Dk) ∈R for each k ∈ [1 : K]. Based on these values, we
can rank (i.e., sort) the database documents in descending order of their similarity
values. In this way (imagining a Google-like retrieval scenario), the retrieval results
that are most similar to the given query appear early in the result list displayed to a
user. The top rank is the retrieval result that is ranked at the first position (i.e., the
document with the highest similarity value). Furthermore, we say that the document
Dk has a higher rank than the document D` if

γ(Q,Dk)> γ(Q,D`) (7.40)

for k, ` ∈ [1 : K]. To break ties in the case γ(Q,Dk) = γ(Q,D`), we simply say that
Dk has a higher rank than D` if k < `. Mathematically, a ranking can be specified
by a permutation

ρQ : [1 : K]→ [1 : K] (7.41)

that sorts the database documents in descending order of rank:

γ(Q,DρQ(1))≥ γ(Q,DρQ(2))≥ . . .≥ γ(Q,DρQ(K)). (7.42)

Note that, using this notation, the top rank (highest rank) is represented by the index
value 1 (corresponding to the document with identifier ρQ(1)) and the lowest rank
by the index value K (corresponding to the document with identifier ρQ(K)).

The version identification system described in Section 7.3.2 yields such a ranked
list of documents based on the similarity score of (7.39). Depending on the ap-
plication in mind, one can think of many different ways for presenting the final
retrieval result and assessing its quality. In certain applications, only the top-ranked
match may be of interest, and will be further processed by the retrieval system. For
example, in audio identification, only the top match is needed to identify the au-
dio recording and to retrieve suitable metadata, which is then presented to the user
(see Figure 7.2). In other scenarios, the system may show the top ten matches, a
typical standard setting as used in web search systems such as Google. When look-
ing only at the similarity values, the top matches may include just documents that
are nearly identical to the query document. Therefore, some retrieval systems try
to find a good balance between document similarity, relevance, and diversity when
presenting retrieval results to the user.

In the design and evaluation of retrieval systems, such issues are of great impor-
tance and constitute a separate area of research [13]. In the following, we introduce
the main ideas of some general evaluation measures based on precision and recall.
Using the notions of Section 4.5.1, the items of our current scenario are the database
documents or its identifiers. Let I := [1 : K] be the set of items. For the evaluation,
we assume that a reference annotation of the relevant (or positive) items is available.

402 7 Content-Based Audio Retrieval

Let
IQ := IRef

+ ⊆ I (7.43)

be the set of the relevant items, which depends on the given query document Q.
In Section 4.5.1, we assumed that the retrieval system returns a set IEst

+ ⊆ I , which
consists of the items being estimated as positive. Based on this fixed set of items, we
introduced precision and recall measures. Now, the situation is different: instead of
having a fixed and unordered set of retrieved items, the system returns an ordered list
of documents. One possibility for evaluating ranked retrieval results is to consider
an entire family of precision and recall values depending on the ranking parameter
r ∈ [1 : K]. For later convenience, we define a relevance function χQ : [1 : K]→
{0,1} that assumes the value 1 if the document at rank r is relevant; otherwise it
assumes the value 0. Mathematically, this definition is expressed by

χQ(r) :=
{

1 if ρQ(r) ∈ IQ,
0 if ρQ(r) ∈ I \IQ. (7.44)

We then define the precision PQ(r) and recall RQ(r) at rank r ∈ [1 : K] by setting

PQ(r) :=
1
r

r

∑
k=1

χQ(k), (7.45)

RQ(r) :=
1
|IQ|

r

∑
k=1

χQ(k). (7.46)

Note that these definitions agree with (4.47) and (4.48) when IEst
+ is defined to

be the set of the top r items of the ranked list (see Exercise 7.11). The family
{(PQ(r),RQ(r)) | r ∈ [1 : K]} can be visualized in a two-dimensional plane with
one axis referring to precision and the other to recall. Combining subsequent points
yields a so-called precision–recall curve or PR curve.

Let us have a look at the example of Figure 7.21, where we consider a database
consisting of K = 10 documents. The similarity scores and the resulting rank posi-
tions of these documents are shown in Figure 7.21a. Furthermore, in Figure 7.21b,
the ten documents have been sorted according to their rank. For the permutation
ρQ of (7.41), which specifies this reordering, one obtains ρQ(1) = 9, ρQ(2) = 2,
ρQ(3) = 6, and so on. In our example, the set of relevant items is IQ = {2,7,8,9}.
These documents occur at the rank positions r ∈ {1,2,4,8}, which are also the posi-
tions of the 1-values of the relevance function χQ (see (7.44)). The last two columns
of Figure 7.21b indicate the precision PQ(r) and recall RQ(r) at rank r ∈ [1 : K]. For
example, the top three matches contain two of the four relevant documents, which
yields PQ(3) = 2/3 and RQ(3) = 2/4.

The precision–recall curve of our example is shown in Figure 7.21c. In general,
a PR curve has a characteristic sawtooth shape: if the rth document is relevant, both
the precision and the recall increase. If it is nonrelevant, the precision drops while
the recall remains the same. Furthermore, a value PQ(r) = 1 means that all of the
top r matches are relevant.

7.3 Version Identification 403

Recall

P
re

ci
si

on

0.2 0.4 0.6 0.8 10
0

0.2

0.4

0.6

0.8

1ID Score Rank
1 8 10
2 52 2
3 22 5
4 10 9
5 12 7
6 34 3
7 11 8
8 27 4
9 72 1
10 18 6

Rank ID Rel. P(r) R(r)
1 9 + 1.00 0.25
2 2 + 1.00 0.50
3 6 - 0.67 0.50
4 8 + 0.75 0.75
5 3 - 0.60 0.75
6 10 - 0.50 0.75
7 5 - 0.43 0.75
8 7 + 0.50 1.00
9 4 - 0.44 1.00
10 1 - 0.40 1.00

(a) (b) (c)

Fig. 7.21 Precision and recall values for a ranked retrieval result for K = 10 documents and a
given query Q. (a) Table indicating the document identifier, the similarity scores, and the rank
r ∈ [1 : K]. (b) Table indicating the rank, the document identifier, the relevance of the document,
and the precision values PQ(r) and recall values RQ(r) at rank r ∈ [1 : K]. (c) Plot of the resulting
precision–recall curve with break-even point indicated by the circle.

For a certain query, the PR curve gives a good impression of the overall quality
of the ranked retrieval result. However, dealing with an entire family of precision
and recall values can be quite cumbersome. Therefore, one often reduces this fam-
ily of PR values to a single evaluation measure that still bears some characteristic
information on the overall retrieval performance. In the following, we discuss some
prominent examples.

As noted above, for applications such as a web search, a user typically looks only
at the retrieval results presented on the first or second page. Therefore, rather than
looking at the entire ranked list, only the quality of the first ten or twenty top matches
is what matters to the user. To measure the retrieval performance in this setting, one
can simply look at the precision PQ(r) at a specific rank r, for example, PQ(r) at
rank r = 10 or at r = 20. Using this measure has the advantage that one does not
need to know the entire set of relevant documents. On the downside, however, such
a single precision value does not reflect well the overall behavior of the retrieval
system. Furthermore, precision at some fixed rank r does not average well when
considering different queries. The reason for this is that the total number of relevant
documents for a query has a strong influence on PQ(r). For example, if there are
only five relevant documents in total, one obtains PQ(10) ≤ 0.5 even in the case of
a perfect retrieval result. On the other side, if the number of relevant documents is
large, PQ(r) also tends to be large.

A more robust alternative is known as the break-even point of the PR curve,
which is defined to be the positive value where the precision equals the recall. In the
example of Figure 7.21, the break-even point is PQ(4) = RQ(4) = 0.75. For further
details, see also Exercise 7.13.

As another measure, one may consider the “best point” of the PR curve in terms
of the F-measure. To this end, let FQ(r) denote the F-measure of PQ(r) and RQ(r)
(see (4.49)). In the case that PQ(r) = 0 and RQ(r) = 0, we set FQ(r) = 0. Then, the

404 7 Content-Based Audio Retrieval

maximal F-measure of the PR curve is defined as

Fmax
Q := max

r∈[1:K]
FQ(r). (7.47)

In the example of Figure 7.21, the maximal F-measure is Fmax
Q = 0.75 and equals

the break-even point. In general, however, the two measures do not need to agree
(see Exercise 7.14).

As a third example, we consider the average precision PQ defined by

PQ :=
1
|IQ|

K

∑
r=1

PQ(r)χQ(r). (7.48)

In this definition, the precision PQ(r) is only considered when χQ(r) = 1. In other
words, the average is computed only at the ranks where the recall level changes (see
also Exercise 7.15). For example, for the retrieval result of Figure 7.21 one obtains
an average precision of

PQ =
1
4
(1+1+0.75+0.5) = 0.8125. (7.49)

As for the break-even point and the maximal F-measure, the average precision
ranges between zero and one, where the value one is assumed if and only if all
relevant documents are ranked at the top. One advantage of the average preci-
sion is that it takes into account the entire ranked list, contrary to the other two
measures. For example, interchanging in Figure 7.21 the values χQ(8) and χQ(9)
(thus ranking a relevant document one position lower) leaves the break-even point
and the maximal F-measure unchanged, whereas the average precision decreases to
PQ = (1+1+0.75+0.44)/4 = 0.7975.

So far, we have considered evaluation measures for a single query document Q.
In practice, when evaluating the performance of a retrieval system, one should use
many different queries that reflect the typical information a user needs within a given
application scenario. To obtain a single evaluation number, one often combines the
query-dependent values by taking the mean over all these values. As an example,
let us consider the case of average precision. Let {Q1, . . . ,QJ} be the set of query
documents to be considered in the evaluation. Then we obtain a value PQ j for each
j ∈ [1 : J]. The mean average precision or MAP is defined by

P :=
1
J

J

∑
j=1

PQ j . (7.50)

Having good discrimination and stability properties, the mean average precision is
widely employed in information retrieval for different multimedia domains includ-
ing text, image, audio, and music. In particular, the MAP has been used as a standard
measure for evaluating the performance of version identification systems. State-of-
the-art procedures, which use techniques similar to those described in Section 7.3.2,

7.4 Summary and Further Readings 405

Audio identification

Audio fingerprinting

Plagiarism detection

Copyright monitoring

Audio matching

Remix / remaster retrieval

Cover song detection
Version identification

Variation / motif
discovery

Musical quotations
discovery

Year / epoch discovery

Key / mode discovery

Loudness-based retrieval

Tag / metadata inference

Mood classification
Genre / style similarity

Instrument-based retrieval

Music / speech segmentation

Recommendation

Category-Based
Retrieval

Audio
Matching

Specificity lowhigh

G
ra

nu
la

rit
y

do
cu

m
en

t
fra

gm
en

t

Version
Identification

Audio
Identification

Fig. 7.22 Various content-based music retrieval tasks arranged within a specificity–granularity
plane (adopted from [12]).

reach MAP values between 0.7 and 0.8 or even slightly above (see [23]). Of course,
such numbers need to be treated with caution, since they also critically depend on
the properties of the evaluation datasets used.

7.4 Summary and Further Readings

In this chapter, we discussed various content-based audio retrieval scenarios that
follow the query-by-example paradigm. Given an audio recording or a fragment of
it (used as a query), the task was to automatically retrieve documents from an audio
database containing parts or aspects similar to the query. Retrieval systems based on
this paradigm do not require any textual descriptions in the form of metadata or tags.
However, the notion of similarity used to compare different audio recordings (or
fragments) is of great importance and largely depends on the respective application
as well as the user requirements.

There are many different scenarios for content-based audio retrieval which fol-
low different strategies and aim at different applications. We had a look at three
such scenarios: audio identification, audio matching, and version identification.
Generally, such retrieval tasks can be characterized by various aspects, such as
the notion of similarity, the underlying matching principles, or the query format.
Following [5, 12], we consider two aspects: specificity and granularity (see also
Figure 7.22). The specificity of a retrieval system refers to the degree of similar-
ity between the query and the database documents to be retrieved. Highly specific
retrieval systems return exact or near copies of the query, whereas low-specific re-

406 7 Content-Based Audio Retrieval

Table 7.1 Overview of the
three different retrieval sce-
narios and feature types as
considered in this chapter.
(Note that there are many
more approaches that may use
other feature types as well.)

Retrieval
task

Audio
identification

Audio
matching

Version
identification

Identification Specific audio
recording

Different
interpretations

Different
versions

Query Short fragment
(5–10 seconds)

Audio clip
(10–40 seconds)

Entire recording

Retrieval level Fragment Fragment Document

Specificity High Medium Medium / low

Features Spectral peaks
(abstract)

Chroma
(harmony)

Chroma
(harmony)

trieval systems return semantically related matches that, from a numerical point of
view, may be quite different from the original query. The granularity refers to the
temporal level considered in the retrieval scenario. In fragment-level retrieval sce-
narios, the query consists of a short fragment of an audio recording, and the goal is
to retrieve all related fragments that are contained in the database documents. For
example, such fragments may cover a few seconds of audio content or may corre-
spond to a motif, a theme, or a musical part. In contrast, in document-level retrieval,
the query may consist of an entire document which is compared with entire docu-
ments of the database. In this case, the notion of similarity tends to be coarser, even
though the global similarity score between documents may still be based on a local,
fragment-level comparison.

The various content-based retrieval scenarios may be loosely classified and
arranged according to their specificity and granularity (see Figure 7.22). In the
specificity–granularity plane shown, the three scenarios considered in this chapter
(audio identification, audio matching, and version identification) are represented by
clouds, which enclose several related retrieval scenarios. A fourth cloud that rep-
resents category-based retrieval scenarios has been added. In these scenarios, the
similarity relationships are somewhat vague and express cultural or musicological
categories, such as genre [29] or emotion [32]. A more in-depth discussion of such
retrieval scenarios is outside the scope of this book, and we refer to [19] for fur-
ther entry points into this area of research. Even though the taxonomy indicated by
Figure 7.22 may be too simplistic, it gives an intuitive overview of various retrieval
paradigms while illustrating their subtle but crucial differences. The main differ-
ences between the three scenarios considered in this chapter are again summarized
by Table 7.1. In the following, we give pointers to relevant literature for further
readings.

Audio Identification

Among the three considered scenarios, the task of audio identification (also referred
to as audio fingerprinting) is of the highest specificity. Given a short, potentially
distorted audio fragment, the objective is to identify the original recording in which
the fragment is contained. Being a fragment-level task, the query may be as short
as a couple of seconds. As discussed in Section 7.1.1, one main challenge in this
scenario is that the audio signals may be affected by noise, artifacts from lossy

7.4 Summary and Further Readings 407

audio compression, pitch shifting, time scaling, equalization, or dynamics compres-
sion [3]. As a result, many different strategies for the design and computation of
fingerprints have been suggested (see, e.g., [2, 3, 14, 30] for some earlier ap-
proaches). As an example, we have described in Section 7.1.2 a peak-based fin-
gerprinting strategy, where we have closely followed the original publication by
Wang [30]. In Section 7.1.3, we turned to the topic of data indexing with the ob-
jective of improving the speed of the retrieval process without sacrificing accuracy.
Motivated by our fingerprinting scenario, we introduced and applied the concept of
inverted lists—a standard technique used in information retrieval [31]. One central
issue for obtaining a good index structure is the design of suitable hashes that serve
as key words for the inverted lists. Following [30], we discussed in Section 7.1.4
an approach (using pairs of peaks) that balances out the conflicting goals of high
specificity, robustness, and efficiency. Sonnleitner et al. [28] extended this approach
(using quadruples of peaks) to obtain a fingerprinting system that is robust to time
scale modifications and pitch shifting. For further pointers to the literature, we refer
to the references discussed in [1, 12, 22, 25, 28].

Audio identification is never performed as an end in itself—it always serves a
specific purpose, an application (see [2, 3, 14]). Following [22], we want to mention
four important application scenarios. A first application is broadcast monitoring,
where audio identification techniques are used to monitor radio stations, e.g., to en-
sure that advertisements were actually broadcast, to automatically create playlists
based on what has been broadcast, or to compile charts. Audio fingerprinting is
also applied for copyright monitoring, with the advantage that one can identify
copyrighted material without having to rely on filenames, embedded metadata, or
watermarks. Such techniques are now an integral part of video-sharing platforms
such as YouTube, where users can freely upload video and audio content. A third
kind of application is subsumed under the heading connected audio. Typically, such
an application is able to identify a song played in the environment, e.g., on the ra-
dio or in a club, and looks up metadata for the user. To monetize, consumers are
then often given the opportunity to purchase the recognized song from one of the
major online music stores. Finally, audio fingerprinting techniques are used for file
metadata correction. Often, when ripped from CD, audio recordings are given
semi-anonymous names such as “01_Track.mp3” without any additional informa-
tion. To fix this issue, metadata services identify badly labeled tracks and import or
update the missing or wrong metadata.

Audio Matching

While the problem of audio identification can be regarded as largely solved even for
vast music collections, less specific retrieval tasks still pose many open problems re-
garding robustness and scalability. In Section 7.2, we highlighted the differences be-
tween high-specific audio identification and mid-specific audio matching. Further-
more, we presented various strategies to cope with musically motivated variations.
Instead of using rather abstract features such as spectral peaks, we used chroma fea-

http://doi.org/01_Track.mp3

408 7 Content-Based Audio Retrieval

tures that capture musical (tonal, harmonic, melodic) information. We have already
encountered these features in the context of music synchronization (Chapter 3), mu-
sic structure analysis (Chapter 4), and chord recognition (Chapter 5). To make the
features more robust to local temporal fluctuations, we discussed a chroma variant
obtained by applying suitable postprocessing techniques, an approach originally in-
troduced in [17]. For a detailed discussion of relevant literature on chroma features,
we refer to Section 3.4.

Instead of using sparse peak representations as with audio identification, we em-
ployed a subsequence search based on time–chroma representations. By locally
comparing a query chromagram with all database chromagrams, we obtained a
matching function that indicated the matching subsequences. Diagonal matching
(see Section 7.2.2) yields a simple matching procedure that can be computed effi-
ciently but becomes problematic in the presence of tempo differences. To deal with
nonlinear tempo differences, we introduced in Section 7.2.3 a subsequence vari-
ant of DTW. However, DTW-based approaches become more cumbersome when it
comes to indexing and scalability to huge datasets. An alternative approach is to
apply a multiple query strategy similar to the tempo-invariant smoothing strategy
introduced in Section 4.2.2.2. The idea is to generate multiple versions of a query
by applying scaling operations that simulate different tempi, compute a separate
matching function for each of the scaled versions using diagonal matching, and
then minimize over all resulting matching functions [16].

The matching procedures described in Section 7.2 are exhaustive in the sense
that the query is shifted over all database documents. This is not practical for large-
scale retrieval scenarios with millions of recordings. Similar to audio fingerprinting,
Kurth et al. [15] use inverted file indexing, where the hashes are defined by suitably
quantized chroma vectors. However, to deal with the variations, one requires various
fault-tolerance mechanisms, which partly undermine the speed-up obtained by this
method. As an alternative to considering long feature sequences, one may split up
the audio material into small overlapping shingles that consist of short feature sub-
sequences. Having a fixed size, the shingles can then be retrieved efficiently using
index-based nearest-neighbor search [4, 11]. To cope with temporal variations and
to obtain low-dimensional shingles, each shingle may cover only a small portion of
the audio material, with the result that queries typically consist of many shingles [4].
Such an approach, as a downside, may lead to a high number of table lookups and
to many intermediate results that need to be merged in a post processing step. In-
creasing the shingle duration (e.g., covering 15 to 25 seconds of the audio) may
alleviate this problem but requires a combination of local feature smoothing and
global query scaling techniques to handle temporal variations [11]. In this context,
feature embedding strategies have been successfully applied to make feature repre-
sentations more robust to musical variations while significantly reducing the shingle
dimension [34].

7.4 Summary and Further Readings 409

Version Identification

In Section 7.3, we discussed the task of version identification, which is an instance
of document-level retrieval at a lower specificity level compared with audio match-
ing. In version identification, one has to deal not only with changes in instrumen-
tation, tempo, and tonality, but also with more extreme variations concerning the
musical structure, key, or melody, as typically occur in remixes and cover songs.
This requires document-level similarity measures that globally compare entire doc-
uments. Closely following [23, 24], we presented a typical approach for version
identification that consists of two ingredients. First, since versions such as cover
songs typically share similar harmonic and melodic progressions, most procedures
are based on one or another variant of chroma-based feature representations. Sec-
ond, as we discussed, the global similarity measure is often inferred from locally
comparing only parts of the documents—a strategy that allows for dealing with
nontrivial structural changes. Therefore, as for the audio matching task, dynamic
programming algorithms are a standard choice for dealing with tempo variations,
this time applied in a local fashion to identify matching subsequences or local align-
ments. In particular, inspired by [24, 23], we presented in Section 7.3.2 an approach
based on finding possibly long matching subsequences. In [9], beat-synchronous
feature representations are used as a strategy to cope with tempo variations. How-
ever, as discussed in Section 6.3.3, the required beat tracking step is often error-
prone for certain types of music, which may have a negative impact on the final
retrieval result. Circumventing the need for an explicit temporal alignment, recent
deep neural networks have been applied to learn a nonlinear embedding function
that maps a song’s high-dimensional feature representation into a low-dimensional
metric space. The retrieval of cover songs can then be performed in the embedding
space using simple nearest-neighborhood search (see, e.g., [7, 33]). Furthermore,
we want to draw attention to the work by Raffel and Ellis [20, 21], which combines
traditional alignment and indexing techniques with recent deep learning techniques
for content-based matching of MIDI and audio files.

Finally, in Section 7.3.3, we addressed the issue of measuring the performance
of version identification and other retrieval systems [23]. In particular, we looked
at the general scenario, where one submits a query and obtains a ranked list of
matches retrieved from a given collection. We introduced various standard evalua-
tion measures for ranked lists (using notions of precision and recall as introduced in
Section 4.5). At this point, we also want to mention that systematic evaluations have
been conducted for the task of audio cover song identification in the MIREX (Music
Information Retrieval Evaluation eXchange) initiative. For further details, we refer
to [8, 23].

Alignment Scenarios

We want to conclude this section by reflecting on the various alignment scenarios
that have crossed our way so far. The objective of sequence alignment is to identify

410 7 Content-Based Audio Retrieval

Fig. 7.23 Illustration of
different alignment scenar-
ios. (a) Global alignment.
(b) Mixed global/local align-
ment. (c) Local alignment.
(d) Partial matching.

(a)

(b)

(c)

(d)

Y

X

Y

X

Y

X

Time

Time

Time

Y

X

Time

X

X

X

Y

Y

Y

X

Y

regions of similarity that are shared by two given sequences X = (x1,x2, . . . ,xN)
and Y = (y1,y2, . . . ,yM). At the same time, the elements of the matching regions
are brought into correspondence. Generally speaking, one may distinguish between
two categories of alignments: global alignments and local alignments. In the global
case, one forces the alignment to span the entire length of the two sequences. By
contrast, in the local case, one tries to identify regions of similarity within longer
sequences that are often widely divergent overall.

In Section 3.2, we have encountered a first alignment technique known as dy-
namic time warping, where the alignment was mathematically modeled by the no-
tion of a warping path (see Section 3.2.1.1). The boundary condition in this def-
inition enforced that the two given sequences X and Y were aligned globally, as
illustrated by Figure 7.23a. Furthermore, one could adjust the degree of continuity
in the alignment by suitably modifying the step size condition.

In the context of audio matching (Section 7.2.3), the two sequences X and Y
were treated in a different way. While the sequence X had to be aligned as a whole,
only a subsequence of the sequence Y was sufficient as a matching counterpart
(see Figure 7.23b). Therefore, this scenario required a mixed global/local alignment
approach. Technically, the idea was to relax the boundary conditions for the se-
quence Y , where a suffix and a prefix could be left out in the alignment without any
cost.

In Section 7.3.2, we then encountered a local alignment scenario, where for
both sequences X and Y only matching subsequences were to be identified
(see Figure 7.23c). To compute the matching, the boundary condition for the se-

7.5 FMP Notebooks 411

quence X was also dropped. Furthermore, we needed a second technical modifica-
tion. In the previous two scenarios, having a global constraint at least on the side
of the sequence X , the alignment was computed by considering a cost-minimizing
path. Now, in the third scenario with no global constraints, such an approach would
lead to an empty alignment. Therefore, we introduced a different optimization cri-
terion by looking at a score-maximizing alignment based on a similarity matrix
containing cells with a positive score (encoding relevant information) and cells with
a negative score (encoding irrelevant information). Of course, the procedure and the
threshold used to determine the positive and negative score are crucial for the final
optimization result. Instead of using negative score values, one finds in the litera-
ture many related approaches that use other kinds of penalty terms to account for
the introduction of gaps and other discontinuities [23]. Such an instance is the fa-
mous Smith–Waterman algorithm, which is widely used for the identification of
common molecular subsequences [27].

As discussed in Section 3.4, there are many more approaches for aligning and
matching sequences—many of them inspired by applications in bioinformatics to
align sequences of DNA, RNA, or proteins. Besides the boundary conditions, other
factors, such as the cost (or similarity) measure and the step size condition, cru-
cially influence the alignment result. For example, in the extreme case, one may
completely drop the step size condition and replace it with a much weaker mono-
tonicity condition. One such example is the longest common subsequence (LCS)
problem whose objective is to find the longest subsequence shared by two (or more)
sequences (see [6]). A similar problem, referred to as partial matching, is discussed
in Exercise 7.10 and illustrated by Figure 7.23d.

In all the alignment scenarios we have considered, an optimal solution could
be computed efficiently by employing dynamic programming [6]. One fundamental
property that is needed for the recursion to work is the monotonicity condition in the
alignments. We have seen an example in the context of audio thumbnailing where
monotonicity for only one of the sequences still suffices for applying dynamic pro-
gramming. In Section 4.3.1.2, we described such an approach when computing an
optimal path family, where additional steps were introduced to allow for nonmono-
tonic jumps (from the end to the start) in one of the sequences. For a more unifying
description of the various alignment scenarios, we also refer to [10].

7.5 FMP Notebooks

Motivated by content-based audio retrieval tasks, we studied in this chapter funda-
mental concepts for comparing music documents based on local similarity cues. In
particular, we introduced efficient algorithms for globally and locally aligning fea-
ture sequences—concepts useful for handling temporal deformations in general time
series. In Part 7 of the FMP notebooks [18], we provide Python implementations
of the core algorithms and explain how they work using instructive and explicit toy
examples. Furthermore, using real music recordings, we show how the algorithms

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7.html

412 7 Content-Based Audio Retrieval

Fig. 7.24 Evaluation measures that indicate the agreement between two constellation maps com-
puted for an original version (Reference) and a noisy version (Estimation).

are used in the respective retrieval application. We close Part 7 with an implemen-
tation and discussion of metrics for evaluating retrieval results given in the form of
ranked lists.

While giving a brief outline of the various music retrieval aspects considered
in this chapter, the primary purpose of the FMP Notebook Content-Based Audio
Retrieval is to provide concrete music examples that highlight typical variations en-
countered. In particular, we work out the differences in the objectives of audio iden-
tification, audio matching, and version identification by looking at different versions
of Beethoven’s Fifth Symphony. Furthermore, providing cover song excerpts of the
song “Knockin’ On Heaven’s Door” by Bob Dylan, we indicate some of the most
common modifications as they appear in different versions of the original song. In a
lecture, we consider it essential to let students listen to, discuss, and find their own
music examples, which they can then use as a basis for subsequent experiments.

In the FMP Notebook Audio Identification, we discuss the requirements placed
on a fingerprinting system by looking at specific audio examples. In particular, us-
ing a short excerpt from the Beatles song “Act Naturally,” we provide audio exam-
ples with typical distortions a fingerprinting system needs to deal with. Then, we
introduce the main ideas of an early fingerprinting approach originally developed
by Wang [30] and successfully used in the commercial Shazam music identifica-
tion service. In this system, the fingerprints are based on spectral peaks and the
matching is performed using constellation maps that encode peak coordinates (see
Figure 7.24). Closely following Section 7.1.2.1, we provide a naive Python imple-
mentation for computing a constellation map by iteratively extracting spectral peaks.
While being instructive, looping over the frequency and time axis of a 2D spectro-
gram representation is inefficient in practice—even when using a high-performance
Python compiler as provided by the numba package. As an alternative, we provide
a much faster implementation using 2D filtering techniques from image process-
ing. Comparing running times of different implementations should leave a deep
impression on students—an essential experience everyone should have in a com-
puter science lecture. We test the robustness of constellation maps towards signal
degradations by considering our Beatles example. To this end, we introduce over-

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7_ContentBasedAudioRetrieval.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7_ContentBasedAudioRetrieval.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S1_AudioIdentification.html
http://www.shazam.com

7.5 FMP Notebooks 413

lay visualizations of constellation maps for qualitative analysis and information re-
trieval metrics for quantitative analysis (see Figure 7.24 for an example). Extending
the procedure of Section 7.1.2.2, we then provide an implementation of a match-
ing function with additional tolerance parameters to account for small deviations of
spectral peak positions. Again we use our modified Beatles excerpts to illustrate the
behavior of the matching function under signal distortions. In particular, we demon-
strate that the overall fingerprinting procedure is robust to adding noise or other
sources while breaking down when changing the signal using time-scale modifica-
tion or pitch shifting. The concept of indexing (as discussed in Section 7.1.3 and
Section 7.1.4) is not covered in our FMP notebooks. For a Python implementation
of a full-fledged fingerprinting system, we refer to [26].

Motivated by the audio matching application, the next notebooks provide
Python implementations of all the required algorithmic components, closely fol-
lowing Section 7.2. Rather then using abstract features such as spectral peaks, au-
dio matching requires features that capture musical (e.g., tonal, harmonic, melodic)
properties. In the FMP Notebook Feature Design (Chroma, CENS), we consider
a family of scalable and robust chroma-related audio features (called CENS), orig-
inally proposed in [17]. Using different performances of Beethoven’s Fifth Sym-
phony, we study the effects introduced by the quantization, smoothing, normaliza-
tion, and downsampling operations used in the CENS computation. In the FMP
Notebook Feature Design (Chroma, CENS), we provide a reference implementa-
tion of the CENS concept, which yields a family of scalable and robust chroma-
related audio features (see Section 7.2.1 and [17]). Using different performances
of Beethoven’s Fifth Symphony, we study the effects introduced by the quanti-
zation, smoothing, normalization, and downsampling operations. The CENS con-
cept can be applied to various chromagram implementations as introduced in the
FMP Notebook Log-Frequency Spectrogram and Chromagram of Part 3 and the
FMP Notebook Template-Based Chord Recognition of Part 5. From an educa-
tional viewpoint, these notebooks should make students aware that one may change
a feature’s properties considerably by applying a little post processing. When try-
ing out some complicated techniques, one should keep an eye on the simple and
straightforward approaches (which often yield profound insights into the task and
data at hand and may serve as baselines to compare against).

Next, the FMP Notebook Diagonal Matching provides a step-by-step imple-
mentation of the retrieval procedure described in Section 7.2.2. Using a toy exam-
ple, we discuss the matching function’s behavior under signal distortions (including
stretching and compressing). We then introduce a function that iteratively extracts
local minima under certain neighborhood constraints. In some sense, this procedure
can be regarded as a simple peak picking strategy, which should be compared with
the more involved alternatives, as discussed in the FMP Notebook Peak Picking.
Finally, we cover the multiple-query strategy, where we generate multiple versions
of a query by applying scaling operations that simulate different tempi. We illustrate
the effect of this procedure by continuing our toy example from above. Providing
suitable functions for visualizing the results of all intermediate steps (including fea-
ture representations, cost matrices, matching functions, and retrieved matches) is

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_CENS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_CENS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_CENS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_SpecLogFreq-Chromagram.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C5/C5S2_ChordRec_Templates.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_DiagonalMatching.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6S1_PeakPicking.html

414 7 Content-Based Audio Retrieval

a central feature of the notebook, which allows students to analyze the results and
create their own illustrations.

As an alternative to diagonal matching, we studied in Section 7.2.3 a DTW-based
matching approach, which is covered in the FMP Notebook Subsequence DTW.
The Python code of this notebook closely follows the implementation of the orig-
inal DTW approach (see the FMP Notebook Dynamic Time Warping (DTW) of
Part 3), which allows students to recognize the differences between the two ap-
proaches immediately. Again we draw attention to indexing conventions used in
Python (where indexing starts with the index 0) and go through easy-to-understand
toy examples. Furthermore, we highlight conceptual differences between the match-
ing functions obtained by diagonal matching and subsequence DTW and discuss
their relation to different step size conditions. Finally, we compare our implemen-
tation with the one provided by the Python package librosa and discuss various
parameter settings.

In the FMP Notebook Audio Matching, we put the individual components to-
gether to create a complete audio matching system. We apply our implementation to
several real-world music examples starting with three performances (two orchestral
and one piano version) of Beethoven’s Fifth Symphony. Then, we consider two per-
formances of the second waltz of Shostakovich’s Jazz Suite No. 2, which contains
repeating parts with different instrumentation. This example is very instructive when
using one of these parts as a query since it illustrates to what extent the matching
procedure is capable of identifying the other parts across different performances.
We also present an experiment, which shows how the quality of the matching re-
sults crucially depends on the length of the query: queries of short duration (having
low specificity) will generally lead to a large number of spurious matches, while
enlarging the query length (thus increasing its specificity) will generally reduce the
number of such matches. Finally, using the song “In the Year 2525” by Zager and
Evans, we implement the transposition-invariant matching function and provide a
visualization function that reproduces Figure 7.16.

Turning to the task of version identification, we introduce in the FMP Notebook
Common Subsequence Matching another sequence alignment variant that drops
the boundary condition for both sequences. In our implementation, we follow the
same line as with the original DTW and subsequence DTW, thus facilitating an easy
comparison of the different algorithms. Furthermore, to round off the alignment
topic, we also provide an implementation of the partial matching algorithm, which
replaces the step size with a weaker monotonicity condition (see Exercise 7.10). As
we discussed in this chapter, the four alignment problems illustrated by Figure 7.23
can all be solved efficiently using dynamic programming. Studying the subtle dif-
ferences in the algorithmic approaches is an ideal exercise in a computer science
curriculum to deepen algorithmic understanding.

In the FMP Notebook Version Identification, we present a baseline system that
integrates common subsequence matching as a main algorithmic component. We
illustrate how the system works by using the original recording and a cover ver-
sion of the Beatles song “Day Tripper” as input documents. Using chromagrams of
the two recordings, we first create a score matrix that encodes potential relations

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_SubsequenceDTW.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S2_DTWbasic.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_AudioMatching.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_CommonSubsequence.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_CommonSubsequence.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_VersionIdentification.html

7.5 FMP Notebooks 415

Fig. 7.25 Evaluation metrics for the toy example of Exercise 7.12.

between the two input sequences. In the notebook, we provide an implementation
for computing such a score matrix using path-enhancement and thresholding tech-
niques, as introduced in the FMP Notebook Audio Thumbnailing of Part 4. We
then apply common subsequence matching for computing a potentially long path of
high similarity, show this path for our Beatles example, and provide the audio ex-
cerpts that correspond to the two induced segments. The Python functions provided
in this notebook may serve as a suitable basis for mini-projects within a music pro-
cessing curriculum. Understanding the influence of the feature representation, the
score matrix, and the matching strategy is crucial before students move on to apply
more involved techniques such as supervised deep learning techniques. In particu-
lar, listening to the audio excerpts encoded by the alignment path says a lot about
the versions’ musical relationships.

In the final FMP Notebook Evaluation Measures, we provide an implementa-
tion of some evaluation metrics that are useful for document-level retrieval scenar-
ios (see Section 7.3.3). This continues our discussion of general evaluation metrics
from the FMP Notebook Evaluation of Part 4. We start with an implementation
for computing and visualizing a PR curve and its characteristic points. Then, we
turn to the average precision and mean average precision. We test our implementa-
tions using toy example, where the evaluation measures can be computed manually.
We strongly advise students to perform such sanity checks to verify the correct-
ness of the implementation, but also to deepen the understanding of the measures.
The notebook also provides Python scripts (e.g., based on Python data manipula-
tion tools such as pandas) that show how one may generate nice-looking tables
and figures of evaluation results. One such example is shown in Figure 7.25, which
presents the solution of Exercise 7.12.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S3_AudioThumbnailing.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S3_Evaluation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C4/C4S5_Evaluation.html

416 7 Content-Based Audio Retrieval

References

1. B. AGÜERA Y ARCAS, B. GFELLER, R. GUO, K. KILGOUR, S. KUMAR, J. LYON,
J. ODELL, M. RITTER, D. ROBLEK, M. SHARIFI, AND M. VELIMIROVIĆ, Now playing:
Continuous low-power music recognition, CoRR, abs/1711.10958 (2017).

2. E. ALLAMANCHE, J. HERRE, O. HELLMUTH, B. FRÖBA, AND M. CREMER, AudioID: To-
wards content-based identification of audio material, in Proceedings of the Audio Engineering
Society (AES) Convention, Amsterdam, The Netherlands, 2001.

3. P. CANO, E. BATLLE, T. KALKER, AND J. HAITSMA, A review of audio fingerprinting, The
Journal of VLSI Signal Processing, 41 (2005), pp. 271–284.

4. M. A. CASEY, C. RHODES, AND M. SLANEY, Analysis of minimum distances in high-
dimensional musical spaces, IEEE Transactions on Audio, Speech, and Language Processing,
16 (2008), pp. 1015–1028.

5. M. A. CASEY, R. VELTKAP, M. GOTO, M. LEMAN, C. RHODES, AND M. SLANEY,
Content-based music information retrieval: Current directions and future challenges, Pro-
ceedings of the IEEE, 96 (2008), pp. 668–696.

6. T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Algo-
rithms, The MIT Press, 3rd ed., 2009.

7. G. DORAS AND G. PEETERS, A prototypical triplet loss for cover detection, in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Barcelona, Spain, 2020, pp. 3797–3801.

8. J. S. DOWNIE, M. BAY, A. F. EHMANN, AND M. C. JONES, Audio cover song identification:
MIREX 2006–2007 results and analyses, in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), Philadelphia, USA, 2008, pp. 468–474.

9. D. P. ELLIS AND G. E. POLINER, Identifying ‘cover songs’ with chroma features and dy-
namic programming beat tracking, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, Honolulu, Hawaii, USA, 2007,
pp. 1429–1432.

10. S. EWERT, M. MÜLLER, V. KONZ, D. MÜLLENSIEFEN, AND G. A. WIGGINS, Towards
cross-version harmonic analysis of music, IEEE Transactions on Multimedia, 14 (2012),
pp. 770–782.

11. P. GROSCHE AND M. MÜLLER, Toward characteristic audio shingles for efficient cross-
version music retrieval, in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp. 473–476.

12. P. GROSCHE, M. MÜLLER, AND J. SERRÀ, Audio content-based music retrieval, in Multi-
modal Music Processing, M. Müller, M. Goto, and M. Schedl, eds., vol. 3 of Dagstuhl Follow-
Ups, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2012, pp. 157–
174.

13. F. GUILLET AND H. HAMILTON, eds., Quality Measures in Data Mining, Springer, 2007.
14. J. HAITSMA AND T. KALKER, A highly robust audio fingerprinting system, in Proceedings of

the International Society for Music Information Retrieval Conference (ISMIR), Paris, France,
2002, pp. 107–115.

15. F. KURTH AND M. MÜLLER, Efficient index-based audio matching, IEEE Transactions on
Audio, Speech, and Language Processing, 16 (2008), pp. 382–395.

16. M. MÜLLER, F. KURTH, AND M. CLAUSEN, Audio matching via chroma-based statistical
features, in Proceedings of the International Society for Music Information Retrieval Confer-
ence (ISMIR), London, UK, 2005, pp. 288–295.

17. , Chroma-based statistical audio features for audio matching, in Proceedings of the
IEEE Workshop on Applications of Signal Processing (WASPAA), New Paltz, NY, USA, Oct.
2005, pp. 275–278.

18. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

References 417

19. J. NAM, K. CHOI, J. LEE, S. CHOU, AND Y. YANG, Deep learning for audio-based music
classification and tagging: Teaching computers to distinguish rock from bach, IEEE Signal
Processing Magazine, 36 (2019), pp. 41–51.

20. C. RAFFEL AND D. P. W. ELLIS, Large-scale content-based matching of MIDI and audio
files, in Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), Málaga, Spain, 2015, pp. 234–240.

21. , Optimizing DTW-based audio-to-MIDI alignment and matching, in Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Shanghai, China, 2016, pp. 81–85.

22. H. SCHREIBER AND M. MÜLLER, Accelerating index-based audio identification, IEEE
Transactions on Multimedia, 16 (2014), pp. 1654–1664.

23. J. SERRÀ, Identification of Versions of the Same Musical Composition by Processing Audio
Descriptions, PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain, 2011.

24. J. SERRÀ, E. GÓMEZ, P. HERRERA, AND X. SERRA, Chroma binary similarity and local
alignment applied to cover song identification, IEEE Transactions on Audio, Speech, and
Language Processing, 16 (2008), pp. 1138–1151.

25. J. SIX, F. BRESSAN, AND M. LEMAN, A case for reproducibility in MIR: Replication of
‘A Highly Robust Audio Fingerprinting System’, Transactions of the International Society for
Music Information Retrieval (TISMIR), 1 (2018), pp. 56–67.

26. J. SIX AND M. LEMAN, Panako – A scalable acoustic fingerprinting system handling time-
scale and pitch modification, in Proceedings of the International Society for Music Informa-
tion Retrieval Conference (ISMIR), Taipei, Taiwan, 2014, pp. 259–264.

27. T. F. SMITH AND M. S. WATERMAN, Identification of common molecular subsequences,
Journal of Molecular Biology, 147 (1981), pp. 195–197.

28. R. SONNLEITNER AND G. WIDMER, Robust quad-based audio fingerprinting, IEEE Trans-
actions on Audio, Speech, and Language Processing, 24 (2016), pp. 409–421.

29. G. TZANETAKIS AND P. COOK, Musical genre classification of audio signals, IEEE Trans-
actions on Speech and Audio Processing, 10 (2002), pp. 293–302.

30. A. WANG, An industrial strength audio search algorithm, in Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), Baltimore, MD, USA, 2003,
pp. 7–13.

31. I. H. WITTEN, A. MOFFAT, AND T. C. BELL, Managing Gigabytes: Compressing and In-
dexing Documents and Images, Morgan Kaufmann, 1999.

32. Y.-H. YANG AND H. H. CHEN, Music Emotion Recognition, CRC Press, 2011.
33. F. YESILER, J. SERRÀ, AND E. GÓMEZ, Accurate and scalable version identification using

musically-motivated embeddings, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 21–25.

34. F. ZALKOW AND M. MÜLLER, Learning low-dimensional embeddings of audio shingles for
cross-version retrieval of classical music, Applied Sciences, 10 (2020).

418 7 Content-Based Audio Retrieval

Exercises

Exercise 7.1. Consider the constellation maps C(D) (left) and C(Q) (right) as specified by the
figure below. Determine the resulting matching function ∆C :Z→N0 as defined in (7.3) by shifting
C(Q) over C(D) (see Figure 7.5).

Time stamp n

Fr
eq

ue
nc

y
st

am
p

k

2 4 6 80
0

2

4

3 5 7 91

1

3

5

Time stamp n

Fr
eq

ue
nc

y
st

am
p

k

2 40
0

2

4

31

1

3

5

Exercise 7.2. Let F(D) := C(D) and F(Q) := C(Q) be specified as in the figure of Exercise 7.1.
Determine the inverted lists and the indicator functions as in Figure 7.6. Then compute the match-
ing function ∆F as in (7.8).

Exercise 7.3. In this exercise, we look at the survival probability of a hash that consists of two
frequency stamps and a time stamp difference (see Section 7.1.4). Let p ∈ [0,1] be the probability
of a spectral peak surviving in the query audio fragment, and let F ∈ N denote the fan-out of the
target zone. Assuming that the peak survival probability is independent and identically distributed,
show that the joint probability of the anchor point and at least one target point in its target zone
surviving is given by (7.16):

p · (1− (1− p)F).

Furthermore, compute the number (1− (1− p)F) for p ∈ {0.1,0.2,0.3,0.4,0.5} in combination
with different F ∈ {1,5,10,20,40}. Discuss the results and the kind of trade-offs involved.

Exercise 7.4. Let F = R be a feature space and c : F ×F → R≥0 be a local cost measure defined
by c(x,y) = |x− y| for x,y ∈ R (see also Exercise 3.10). Given the sequences X = (x1, . . . ,xN) =
(3,0,6) of length N = 3 and Y = (y1, . . . ,yM) = (2,4,0,4,0,0,5,2) of length M = 8, compute the
matching function ∆Diag : [0 : M−N]→ R (see (7.20)) as well as the resulting best match (see
(7.23)). Furthermore, compute the DTW-based matching function ∆DTW : [1 : M]→ R using the
step size set Σ = {(1,0),(0,1),(1,1)} (see (7.29)) as well as the resulting optimal subsequence
Y (a∗ : b∗) (see (7.25)).

Exercise 7.5. In this exercise, we show how the matching procedures of Section 7.2 can be applied
to a concatenated feature sequence of different recordings, while avoiding matches across different
recordings. As in Section 7.2.2, let X = (x1, . . . ,xN) be a feature sequence of a query audio frag-
ment. Furthermore, let Y i = (yi

1, . . . ,y
i
Mi
) be feature sequences of length Mi ≥ N of two database

recordings indexed by i ∈ {1,2}. Let ∆ i
Diag be the two matching functions obtained by comparing

X and Y i for i ∈ {1,2} (see (7.20)). Next, we concatenate both feature sequences by defining

Y := (y1
1, . . . ,y

1
M1

,y∞,y2
1, . . . ,y

2
M2

),

where y∞ denotes a feature vector consisting of ∞ entries. Assume that c(x,y∞) :=∞ for any feature
vector x. Furthermore, assume that the sum of the value ∞ with a finite value is defined to be ∞

and that the minimum over a set containing finite values as well as the value ∞ is defined to be the
minimum over the finite values (see also Exercise 3.13). Using these calculation rules, let ∆Diag be
the matching function obtained by comparing X and Y . Describe the relation between ∆Diag, ∆ 1

Diag,
and ∆ 2

Diag. What happens in the case that Y is simply defined as the concatenation of Y 1 and Y 2

(without the additional y∞ vector)?

Exercises 419

Similarly, define the matching functions ∆DTW, ∆ 1
DTW, and ∆ 2

DTW based on the step size set
Σ = {(1,0),(0,1),(1,1)} (see (7.29)) and discuss their relations. What happens when the step size
condition Σ = {(2,1),(1,2),(1,1)} is used? Describe a strategy to avoid matches across different
recordings in this setting.

Exercise 7.6. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two feature sequences over the
feature space F , and let c : F×F →R be a local cost measure. The task of subsequence DTW is
to determine the subsequence of Y that best matches the sequence X . This subsequence is given by

(a∗,b∗) := argmin
(a,b):1≤a≤b≤M

DTW
(
X , Y (a : b)

)
(see (7.25)). Following Section 7.2.3, specify the subsequence DTW algorithm (using the step size
set Σ = {(1,0),(0,1),(1,1)}) similar to Table 3.2. Given the cost matrix C, the algorithm should
output the accumulated cost matrix D, the indices a∗,b∗ ∈ [1 : M], as well as an optimal warping
path between X and Y (a∗ : b∗).

Exercise 7.7. The goal of this exercise is to show how diagonal matching is related to DTW-
based matching. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two sequences, and let ∆Diag
be the matching function based on diagonal matching (see Section 7.2.2). Furthermore, let ∆DTW
be the DTW-based matching function using the step size set Σ = {(1,1)} (instead of using Σ =
{(1,0),(0,1),(1,1)} as in Section 7.2.3). First, describe how the DTW-based procedure needs to
be modified when using Σ = {(1,1)}. Then, explain how ∆Diag and ∆DTW are related.

Exercise 7.8. For a sequence S = (s1, . . . ,sL), let Rev(S) = (r1, . . . ,rL) with r` := sL−`+1, `∈ [1 : L]
denote the reversed sequence. Now, let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two feature
sequences as in Section 7.2.3. Using the step size set Σ = {(1,0),(0,1),(1,1)}, let ∆DTW[X ,Y] be
the DTW-based matching function for X and Y and ∆DTW[Rev(X),Rev(Y)] be the one for Rev(X)
and Rev(Y). Assume that the indices

(a∗,b∗) := argmin
(a,b):1≤a≤b≤M

DTW
(
X , Y (a : b)

)
(see (7.25)) are uniquely determined. In Section 7.2.3, we showed that

b∗ = argmin
m∈[1:M]

∆DTW[X ,Y](m),

whereas a∗ was obtained via backtracking. Show that a∗ can also be computed without backtrack-
ing using the matching function ∆DTW[Rev(X),Rev(Y)].
[Hint: Study the relation between optimal paths that align X with subsequences of Y and optimal
paths that align Rev(X) with subsequences of Rev(Y).]

Exercise 7.9. Let F =R be a feature space and s := sa : F×F →R a similarity measure defined
by sa(x,y) := a− |x− y| for a constant a ∈ R and x,y ∈ R (see also Exercise 4.1). Given the se-
quences X = (x1, . . . ,xN) = (1,0,4,2,1,3,0) of length N = 7 and Y = (y1, . . . ,yM) = (2,3,1,3,6)
of length M = 5, compute the optimal local alignment (best matching subsequences) of X and Y
using the procedure described in Section 7.3.2. To this end, compute the similarity matrix S (see
(7.31)) using s= s1 (i.e., a= 1), the accumluated score matrix D (see (7.33)), the score-maximizing
path P∗ (see (7.32)), and the two induced segments π1(P∗) and π2(P∗) (see also Figure 7.20).

Then, in the same fashion, compute the optimal local alignment using the similarity measure
s = s2 (i.e., a = 2). What do you expect when further increasing the number a? Why is it problem-
atic when all entries of S are positive?

Exercise 7.10. Let X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) be two sequences over the fea-
ture space F . A partial match of length L ∈ N0 between X and Y is defined to be a sequence

420 7 Content-Based Audio Retrieval

P = ((n1,m1), . . . ,(nL,mL)) of cells (n`,m`) ∈ [1 : N]× [1 : M], ` ∈ [1 : L], which is strictly mono-
tonically increasing:

n1 < n2 < .. . < nL and m1 < m2 < .. . < mL.

Given a similarity measure s : F ×F → R, define the similarity matrix S by S(n,m) := s(xn,ym)
as in (7.31). Then, the total score σ(P) of a partial match P is specified by

σ(P) :=
L

∑
`=1

S(n`,m`).

Describe an algorithm based on dynamic programming as in Table 3.2 to compute an optimal (i.e.,
score-maximizing) partial match.

Exercise 7.11. Show that the definitions of the precision PQ(r) and recall RQ(r) at rank r ∈ [1 : K]
in (7.45) and (7.46) agree with the definitions in (4.47) and (4.48), respectively. To this end, de-
pending on r, define a suitable set IEst

+ .

Exercise 7.12. Let us consider a database {D1,D2, . . . ,DK} consisting of K = 8 documents. Given
a query document Q, assume that we have a similarity measure that yields the following values
γ(Q,Dk) ∈ R for each k ∈ [1 : K]:

k 1 2 3 4 5 6 7 8
γ(Q,Dk) 0.7 2.6 3.6 3.5 3.2 3.7 1.5 3.1

Furthermore, let IQ = {2,3,4,8} be the set of the relevant items (see (7.43)). Calculate the pre-
cision PQ(r) and recall RQ(r) at rank r ∈ [1 : K]. Furthermore, draw the corresponding precision–
recall curve (as in Figure 7.21c). Finally, determine the break-even point, the maximal F-measure
Fmax
Q (see (7.47)), as well as the average precision PQ (see (7.48)).

Exercise 7.13. Let us consider a PR curve {(PQ(r),RQ(r)) | r ∈ [1 : K]} for a ranked retrieval
result over K database documents. Recall that the break-even point of the PR curve is the positive
value where the precision equals the recall. Show that the break-even point exists if and only if
there is at least one relevant document among the top |IQ| items of the ranked list. Furthermore,
show that in this case PQ(r) = RQ(r) if and only if r = |IQ|.

Exercise 7.14. Show that the maximal F-measure of a PR curve is at least as large as the break-
even point (if it exists; see Exercise 7.13). Give an example where the maximal F-measure and the
break-even point do not coincide.

Exercise 7.15. Let us consider a database consisting of K ∈N documents. Furthermore, let Q be a
query document with L := |IQ| ∈ [1 : K] relevant items. Assume that the relevant items are ranked
by a retrieval system at the positions

r1 < r2 < .. . < rL,

where r` ∈ [1 : K] for `∈ [1 : L]. (Recall from Section 7.3.3 that, the smaller the index r`, the higher
the rank of the document.) Specify a formula for the average precision PQ of this ranking (see
(7.48)). Furthermore, assuming K = 5 and L = 2, calculate the average precision for all possible
rankings.

Chapter 8
Musically Informed Audio Decomposition

Audio signals are typically complex mixtures of different sound sources. The
sound sources can be several people talking simultaneously in a room, different in-
struments playing together, or a speaker talking in the foreground with music being
played in the background. The decomposition of a complex sound mixture into its
constituent components is one of the central research topics in digital audio signal
processing. Often, this task is referred to as source separation. A classical source
separation scenario is the so-called cocktail party problem, where the objective
is to separate the voice of a specific speaker from a mixture of conversations with
multiple speakers and background noises.

In the field of music processing, there are many related issues commonly sub-
sumed under the notion of source separation. In music, a source might correspond
to a melody, a bass line, a drum track, or a general instrumental voice. For exam-
ple, when producing a song, a singer, a guitarist, a keyboard player, and a drummer
may be recorded separately. In the subsequent step, the resulting individual tracks
are mixed down to create a cohesive whole. The task of source separation may be
thought of as the inverse process. Given a recorded song, the objective is to recover
the individual tracks as if they were played in an isolated fashion (see Figure 8.1).

Source separation methods often rely on specific assumptions such as the avail-
ability of multiple channels, where several microphones have been used to record
the acoustic scene from different directions. Furthermore, the source signals to be
identified are assumed to be independent in a statistical way. In music, however,
such assumptions are not applicable in many cases. For example, musical sound
sources may outnumber the available information channels, such as a string quartet
recorded in two-channel stereo. Also, sound sources in music are typically highly
correlated in time and frequency. Instruments follow the same rhythmic patterns
and play notes which are harmonically related. This makes the separation of mu-

421© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9_8

https://doi.org/10.1007/978-3-030-69808-9_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69808-9_8&domain=pdf

422 8 Musically Informed Audio Decomposition

Musical
Information

Musical
Voices

Audio
Signal

Audio
Decomposition

Time
P

itc
h

Time

P
itc

h

Time

P
itc

h
Time

Time Time

D
ru

m

Fig. 8.1 Scenario of a musically informed decomposition of an audio signal into individual in-
strument tracks.

sical voices from a polyphonic sound mixture an extremely difficult and generally
intractable problem [16].

When decomposing a music signal, one strategy is to exploit music-specific prop-
erties and additional musical knowledge. For example, the separation problem can
be alleviated by exploiting the fact that the melody is often the leading voice, charac-
terized by its dominant dynamics and by its temporal continuity. The track of a bass
guitar may be extracted by specifically looking at the lower part of the frequency
spectrum. A human singing voice can often be distinguished from other musical
sources due to characteristic time–frequency patterns such as vibrato. Furthermore,
the drum track may be isolated by exploiting the fact that most of its components
are of percussive nature while the other sources are of more harmonic nature. Be-
sides such acoustic cues, score-informed source separation strategies make use of
the availability of score representations in order to support the separation process.
The score provides valuable information in two respects. On the one hand, pitch and
timing of note events provide rough guidance within the separation process. On the
other hand, the score provides a natural way to specify the target sources to be sep-
arated. For example, as illustrated by Figure 8.1, the specification of musical voices
in separate staves of the sheet music may be exploited to extract each individual
voice from a given audio recording, where the score provides additional cues on the
sources’ spectral and temporal properties.

In this chapter, we discuss various approaches for decomposing a given music
signal into sound sources or, more generally, into semantically meaningful compo-
nents. In these approaches, we exploit additional information either in the form of
specific acoustic properties of the components, or in the form of additional score
information. Rather than giving a comprehensive overview of source separation and

8.1 Harmonic–Percussive Separation 423

its many related tasks, we consider three specific scenarios along with some key
techniques that are widely used in music processing and beyond.

In Section 8.1, we start with the task of decomposing an audio signal into har-
monic and percussive components. The crucial observation is that harmonic sounds
are typically reflected by horizontal structures in a spectrogram representation of the
input signal, while percussive sounds form vertical structures. Based on this obser-
vation, we show how a spectrogram can be decomposed into two components that
correspond to vertical and horizontal structures. We then discuss how the two com-
ponents can be transformed back to the time domain by applying a kind of inverse
STFT. This general reconstruction technique also plays an important role in the
subsequent sections of this chapter.

In Section 8.2, we deal with the problem of extracting the main melody from a
music recording or, to be more precise, with the problem of identifying the fun-
damental frequency trajectory corresponding to the melody’s notes. The underly-
ing assumption is that most notes of the main melody are manifested as predom-
inant frequency trajectories over time. In particular, we introduce a generalized
log-frequency spectrogram referred to as a salience representation along with a
number of important techniques including instantaneous frequency estimation and
harmonic summation. The extracted frequency trajectory can be used to decom-
pose the recording into melody and accompaniment tracks—a problem referred to
as melody separation.

Finally, in Section 8.3, we discuss a central technique referred to as nonnegative
matrix factorization (NMF). In the music context, this technique can be used to
approximate a magnitude spectrogram by a product of two nonnegative matrices.
Intuitively, the first matrix represents the various spectral patterns (musical pitches)
that occur in a recording, while the second matrix exhibits the time points where
these spectral patterns are active. Within this scenario, we show how to successively
incorporate score information to finally yield a notewise decomposition of the mu-
sic signal.

In this final chapter on audio decomposition, our motivation is to present a chal-
lenging research direction with many as yet unsolved problems. We discuss a num-
ber of key techniques which are useful for a variety of music and multimedia pro-
cessing tasks beyond source separation. Furthermore, we encounter a number of
acoustic and musical properties of audio recordings that have been introduced and
discussed in previous chapters, thus rounding off the book nicely.

8.1 Harmonic–Percussive Separation

Musical sounds can comprise a wide range of sound components with different
acoustic qualities. As an illustration, let us reconsider the piano example from
Figure 2.10 (see Section 2.1.4). In the spectrogram representation, one can observe
horizontal lines that are stacked on top of each other. Recall that these horizontal
structures correspond to the harmonics, the integer multiples of the fundamental

424 8 Musically Informed Audio Decomposition

(a)

(c)

(b)

(d)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

Fig. 8.2 Spectrogram of various signals (magnitudes are given in dB). (a) Ideal harmonic sig-
nal (sinusoid). (b) Ideal percussive signal (impulse). (c) Recording of a note played on a violin.
(d) Recording of two click sounds generated by castanets.

frequency of a played note. Furthermore, one can observe vertical lines at the notes’
start time positions. These vertical structures result from noise-like transients that
occur in the attack phase of a piano sound.

Motivated by these observations, we consider two types of sound components:
harmonic sounds and percussive sounds. Loosely speaking, a harmonic sound is
what we perceive as pitched sound, what makes us hear melodies and chords. The
prototype of a harmonic sound is the acoustic realization of a sinusoid, which cor-
responds to a horizontal line in a spectrogram representation (see Figure 8.2a). The
sound of a violin played without vibrato is another typical example of what we con-
sider a harmonic sound. Again, most of the observed structures in the spectrogram
are of horizontal nature even though they are intermingled with noise-like compo-
nents (see Figure 8.2c). On the other hand, a percussive sound is what we perceive
as a clash, a knock, a clap, or a click. The prototype of a percussive sound is the
acoustic realization of an impulse, which corresponds to a vertical line in a spectro-
gram representation (see Figure 8.2b). Recall from Section 2.3.3.2 that impulse-like
sounds such as a drum stroke or a transient that occurs in the attack phase of a
musical tone lead to many nonzero Fourier coefficients that are spread across the
entire frequency spectrum. This is also demonstrated by Figure 8.2d, which shows
the spectrogram of two click sounds generated by castanets. An important charac-
teristic of such percussive sounds is that they do not have a pitch and are localized
in time.

8.1 Harmonic–Percussive Separation 425

Input
signal

Masked
STFT

Masked
STFT

Percussive
component

Harmonic
component

Power
spectrogram

Filtered
spectrogram

Filtered
spectrogram

Horizontal
median
filtering

Vertical
median
filtering

Binary
masking

iSTFT

iSTFT

STFT

Fig. 8.3 Overview of a procedure for harmonic–percussive separation as suggested in [17].

The goal of harmonic–percussive separation (HPS) is to decompose a given
audio signal into two parts—one consisting of the harmonic and another of the per-
cussive events. This task is rather vague since it often remains unclear whether a
sound event is actually of harmonic or percussive nature. Indeed, there are many
sounds such as white noise or applause which are neither harmonic nor percussive.

We now approach this task from a more technical point of view, motivated by
the observation that harmonic events tend to form horizontal structures and per-
cussive events tend to form vertical structures in a spectrogram. Closely follow-
ing the work by Fitzgerald [17], we introduce an HPS procedure as illustrated in
Figure 8.3. The idea is to filter a spectrogram representation of the given signal in
the horizontal direction (along time) to enhance harmonic events while suppress-
ing percussive ones. Similarly, the spectrogram is filtered in the vertical direction
(along frequency) to enhance percussive events while suppressing harmonic ones.
The two resulting filtered spectrograms are used to generate time–frequency masks,
which are then applied to the original spectrogram. From the masked spectrogram
representations, the harmonic and percussive parts of the signal are obtained by ap-
plying an inverse STFT. In Section 8.1.1, we explain the mathematical details of
this procedure. The issue of reconstructing a time-domain signal (waveform) from
a modified STFT representation, which involves some unanticipated pitfalls, is dis-
cussed in Section 8.1.2. Finally, in Section 8.1.3, we discuss further examples and
applications.

426 8 Musically Informed Audio Decomposition

8.1.1 Horizontal–Vertical Spectrogram Decomposition

We now describe the HPS algorithm as proposed in [17] in detail. Let x : Z→ R be
a discrete-time representation of a sampled audio signal (see (2.19)). The objective
is to decompose x into a harmonic component signal xh : Z→ R and a percussive
component signal xp : Z→ R such that

x = xh + xp. (8.1)

In the first step, we compute the discrete STFT X of the signal x (see (2.26) of
Section 2.1.4). For convenience, we repeat its definition:

X (n,k) :=
N−1

∑
r=0

x(r+nH)w(r)exp(−2πikr/N), (8.2)

where w : [0 : N−1]→R is a suitable window function of length N and H is the hop
size parameter. To avoid boundary considerations at later stages, we may assume
that n ∈ Z and k ∈ Z by applying a suitable zero-padding of the matrix X in the
time as well as frequency direction. From X , we derive the (power) spectrogram Y
as in (2.29):

Y(n,k) := |X (n,k)|2. (8.3)

8.1.1.1 Median Filtering

In the separation process, harmonic events are regarded as horizontal structures in
Y and percussive events as vertical structures. Let us fix a frequency index k0 and
define the function Yk0 : Z→ R by setting Yk0(n) := Y(n,k0), n ∈ Z. Then, a per-
cussive event at some time instance n0 ∈ Z results in a spike of the function Yk0

at that instance (see Figure 8.4a). Similarly, let us fix a time index n0 and define a
function Yn0 : Z→ R by setting Yn0(k) := Y(n0,k), k ∈ Z. Then, a harmonic event
of some frequency corresponding to the parameter k0 ∈ Z results in a spike of the
function Yn0 at that position (see Figure 8.4b). In other words, percussive events
can be regarded as outliers across time, while harmonic events can be regarded as
outliers across frequency. This brings us to the concept of median filtering, which
is used to reduce the effect of outliers in general sequences of real numbers. As
suggested in [17], we apply these filters in the vertical and horizontal directions to
reduce the effect of harmonic and percussive events, respectively.

The median of a finite list of numbers is the numerical value with the property
that half the numbers fall below the value and half above it. The median can be com-
puted by arranging all the numbers from lowest value to highest value and picking
the middle one. If there is an even number of observations, then there is no single
middle value; the median is then usually defined to be the mean of the two middle
values. For example, the median of the list (5,3,2,8,2) is 3, while the median of the

8.1 Harmonic–Percussive Separation 427

Time (seconds)
M

ag
ni

tu
de

 (d
B

)

M
ag

ni
tu

de
 (d

B
)

Fr
eq

ue
nc

y
(H

z)

0

M
ag

ni
tu

de
 (d

B
)

Fr
eq

ue
nc

y
(H

z)

M
ag

ni
tu

de
 (d

B
)

Time (seconds)

Frequency (Hz)

Time (seconds)

(a) (b)

0

Fig. 8.4 Interpretation of harmonic and percussive components for an audio recording of a
note played on a violin superimposed with two click sounds generated by castanets (similar to
Figure 8.2). (a) Spectrogram Y and function Yk0 for some fixed frequency parameter k0. Per-
cussive events lead to spikes in Yk0 . (b) Spectrogram Y and function Yn0 for some fixed time
parameter n0. Harmonic events lead to spikes in Yn0 .

list (5,3,2,8) is 4. More formally, let A = (a1,a2, . . . ,aL) be a list of length L ∈ N
consisting of real numbers a` ∈ R, ` ∈ [1 : L]. First, the elements of A are sorted in
ascending order. This results in a list Ã = (ã1, ã2, . . . , ãL) with ã` ≤ ãm for ` < m,
`,m ∈ [1 : L]. Then, the median µ1/2(A) of A is defined as

µ1/2(A) :=

{
ã(L+1)/2, for L being odd,
(ãL/2 + ãL/2+1)/2, otherwise.

(8.4)

The median can be applied in a local fashion to a sequence of real numbers. To
this end, one replaces a given element in the sequence by the median defined by
the elements that lie in a suitably defined neighborhood of the given element. This
leads us to the concept of a median filter of length L ∈N. Let A = (an | n ∈ Z) be a
sequence of real numbers an ∈ R and assume that L ∈ N is odd. Then the sequence
µL

1/2[A] is defined by

µ
L
1/2[A](n) = µ1/2((an−(L−1)/2, . . . ,an+(L−1)/2)). (8.5)

For example, consider the sequence A = (. . . ,0,5,3,2,8,2,0, . . .), where we as-
sume that A is zero outside the shown values. Using L = 3, we obtain µL

1/2[A] =
(. . . ,0,3,3,3,2,2,0, . . .).

In our scenario, we apply the concept of median filtering to the spectrogram Y
in two ways: once horizontally by considering rows of Y and once vertically by
considering columns of Y . This yields two filtered spectrograms which we denote
by Ỹh and Ỹp, respectively. More precisely, let Lh and Lp be odd length parameters,

428 8 Musically Informed Audio Decomposition

Fr
eq

ue
nc

y
(H

z)

(a)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

(b) (c)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)
(d) (e)

Time (seconds) Time (seconds)

Time (seconds)

Fig. 8.5 Continuation of the example from Figure 8.4. (a) Original spectrogram Y . (b) Filtered
spectrogram Ỹh using a small length Lh. (c) Filtered spectrogram Ỹp using a small length Lp.
(d) Filtered spectrogram Ỹh using a large length Lh. (e) Filtered spectrogram Ỹp using a large
length Lp.

then we define

Ỹh(n,k) := µ1/2((Y(n− (Lh−1)/2,k), . . . ,Y(n+(Lh−1)/2,k))), (8.6)

Ỹp(n,k) := µ1/2((Y(n,k− (Lp−1)/2), . . . ,Y(n,k+(Lp−1)/2))) (8.7)

for n,k ∈ Z (assuming some suitable zero-padding of Y).
As an example, let us come back to the audio recording used in Figure 8.4,

which consists of a note played by a violin (harmonic component) and two cas-
tanet clicks (percussive component). Figure 8.5a shows the original spectrogram
of the signal. When applying a median filter in the horizontal direction, the hori-
zontal structures become more apparent, whereas the vertical structures vanish (see
Figure 8.5b). Further increasing the median length parameter Lh, this effect becomes
even stronger (see Figure 8.5d). When applying a median filter in the vertical direc-
tion, one obtains similar enhancement effects, this time for the percussive structures
(see Figure 8.5c and Figure 8.5e).

8.1 Harmonic–Percussive Separation 429

Fr
eq

ue
nc

y
(H

z)

(a)
Fr

eq
ue

nc
y

(H
z)

Fr
eq

ue
nc

y
(H

z)

(b) (c)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)
(d) (e)

Time (seconds) Time (seconds)

Time (seconds)

Fig. 8.6 Continuation of the example from Figure 8.5. For computing the masks, the filtered
spectrograms from Figure 8.5d and Figure 8.5e are used. (a) Original spectrogram Y . (b) Binary
mask Mh. (c) Binary mask Mp. (d) Masked spectrogram Yh. (e) Masked spectrogram Yp.

8.1.1.2 Binary and Soft Masking

The two filtered spectrograms Ỹh and Ỹp are not directly applied for constructing
the harmonic and percussive components of the signal. Instead, they are used to
first generate two masks which, in turn, are then employed for “punching out” the
desired components from the original spectrogram. There are various types of time–
frequency masks one may derive from Ỹh and Ỹp. The first type is referred to as a
binary mask, where each time–frequency bin is assigned either the value one or the
value zero. In the binary case, we define the two masks by setting

Mh(n,k) :=

{
1, if Ỹh(n,k)≥ Ỹp(n,k),
0, otherwise,

(8.8)

Mp(n,k) :=

{
1, if Ỹh(n,k)< Ỹp(n,k),
0, otherwise

(8.9)

430 8 Musically Informed Audio Decomposition

for n,k ∈ Z. For our running example, the two resulting binary masks are shown in
Figure 8.6b and Figure 8.6c, respectively.

Instead of a binary (hard) decision, one can consider a relative weighting when
comparing the magnitudes of spectral coefficients. This leads us to another type of
mask also known as a soft mask. In this case, we define the two masks by setting

Mh(n,k) :=
Ỹh(n,k)+ ε/2

Ỹh(n,k)+ Ỹp(n,k)+ ε
, (8.10)

Mp(n,k) :=
Ỹp(n,k)+ ε/2

Ỹh(n,k)+ Ỹp(n,k)+ ε
(8.11)

for n,k ∈ Z. The small positive value ε > 0 is added to avoid division by zero.
A (binary or soft) time–frequency mask expresses the extent to which each of the

time–frequency bins belongs to the respective component. To obtain the component,
the mask is applied to the original spectrogram by pointwise multiplication. In the
case of the harmonic and percussive masks, this yields two masked versions Yh and
Yp defined by

Yh(n,k) :=Mh(n,k) ·Y(n,k), (8.12)
Yp(n,k) :=Mp(n,k) ·Y(n,k) (8.13)

for n,k ∈ Z. For an illustration, we refer to Figure 8.6d and Figure 8.6e. In the case
of binary masks, a mask value of one preserves the value in the spectrogram, while
a mask value of zero suppresses it. In other words, every time–frequency bin of Y
is assigned either to Yh or to Yp. In the case of soft masks, this assignment is not
strict but proportionate as expressed by the masking weights. This kind of spectral
manipulation is also known as Wiener filtering, which is an important concept in
statistical digital signal processing. As it goes beyond the scope of the book, we
refer to [21] for details on this topic.

We have not yet fully reached our goal. As indicated in (8.1), our objective is
to decompose the signal x into a harmonic component signal xh and a percussive
component signal xp. So far, we have decomposed the spectrogram Y of the signal
into two components Yh and Yp. The most convenient way to obtain two time-
domain signals xh and xp is to apply the two masks directly to the original STFT X ,
yielding two complex-valued masked STFTs X h and X p:

X h(n,k) :=Mh(n,k) ·X (n,k), (8.14)
X p(n,k) :=Mp(n,k) ·X (n,k) (8.15)

for n,k ∈ Z. Then, each of these masked STFTs is converted into a time-domain
signal by applying an inverse STFT.

Note that this procedure is more problematic than it might seem at first glance.
Simply using the same phase information of X for both components X h and X p

does not account for a possible phase interference between different signal compo-
nents (see Section 2.3.3.1). In general, the estimation of coherent phase information

8.1 Harmonic–Percussive Separation 431

for different signal components is very hard or even intractable. For convenience,
one often transfers the phase information of the mixture signal to the different com-
ponents even though this is not correct. A second problem arises from the fact that,
due to the windowing, the STFT may not be invertible. Only under certain restric-
tions imposed on the window function and the hop size used can one reconstruct a
signal from its STFT. Finally, even in the case that the STFT is invertible, manipu-
lating an STFT (e.g., by applying a mask) may cause problems in the reconstruction
of a coherent time-domain signal. In the following section, we discuss the recon-
struction problem in more detail.

8.1.2 Signal Reconstruction

In this section, we start with the problem of inverting the STFT and then discuss the
case where the STFT has been modified. As usual, let x : Z→ R be a discrete-time
signal and X its STFT as computed in (8.2). Furthermore, let w : [0 : N−1]→ R
denote the underlying real-valued discrete window function of length N ∈ N and
H ∈ N the hop size parameter. For notational convenience, we extend the window
function to w : Z→ R by setting w(r) = 0 for r ∈ Z\ [0 : N−1].

8.1.2.1 Signal Reconstruction from Original STFT

We first show that the signal x can be recovered from its STFT X under rela-
tively mild conditions on the windowing process. Recall from Section 2.1.4 and
Section 2.5.3 that each column of X is obtained by applying a DFTN to a windowed
section of the original signal x. More precisely, for a fixed frame parameter n ∈ Z,
let xn : Z→ R be the windowed signal defined by

xn(r) := x(r+nH)w(r) (8.16)

for r ∈ Z (see (2.146)). Then, the STFT coefficients X (n,k) for k ∈ [0 : N−1] are
obtained via

(X (n,0), . . . ,X (n,N−1))> = DFTN · (xn(0), . . . ,xn(N−1))>. (8.17)

We have seen that the DFTN is an invertible matrix with its inverse given by (2.118).
Therefore, we can reconstruct the windowed signal xn from the STFT by

(xn(0), . . . ,xn(N−1))> = DFT−1
N · (X (n,0), . . . ,X (n,N−1))> (8.18)

and xn(r) = 0 for r ∈Z\ [0 : N−1]. To obtain the samples x(r) of the original signal,
we have to reverse the windowing process. How, if at all, can this be done? Let us
consider the superposition over all suitably shifted versions of windowed sections
of the signal:

432 8 Musically Informed Audio Decomposition

Fig. 8.7 Various window
functions of length N and
their time-shifted versions
using a hop size H. The sum
of the shown time-shifted ver-
sions is indicated by the thick
red curve. (a) Hann window
with hop size H = N/2 (see
Figure 2.29b and (2.140)).
(b) Triangular window with
H = N/2 (see Figure 2.29b).
(c) Squared sinusoidal
window with H = N/2.
(d) Squared sinusoidal win-
dow with H = 3N/8.

Time (samples)

(a)

(b)

(c)

(d)

∑
n∈Z

xn(r−nH) = ∑
n∈Z

x(r−nH +nH)w(r−nH)

= x(r) ∑
n∈Z

w(r−nH). (8.19)

Therefore, in the case that
∑
n∈Z

w(r−nH) 6= 0 (8.20)

for some r ∈ Z, one can obtain the sample x(r) via

x(r) =
∑n∈Z xn(r−nH)

∑n∈Z w(r−nH)
. (8.21)

In other words, if the condition (8.20) holds for all r ∈ Z, one can reconstruct the
original signal x from its STFT X . For example, this is the case when the window
function w : [0 : N−1]→ R is strictly positive and the hop size is smaller than or
equal to the window length.

The good news is that it is not hard to find window functions along with hop sizes
that satisfy the condition (8.20). For example, using the Hann window as defined in
(2.140) and a hop size that is smaller than the window length, one can immedi-
ately see that the sum over the time-shifted windows is always positive (see also
Figure 8.7a). Often, one chooses a window function and a hop size such that the
stronger condition

∑
n∈Z

w(r−nH) = 1 (8.22)

8.1 Harmonic–Percussive Separation 433

for all r ∈ Z is fulfilled. In this case, one also says that the time-shifted window
functions define a partition of unity of the discrete time axis Z. For example, as
illustrated by Figure 8.7b, one obtains such a partition when using the triangular
window from Figure 2.29b and a hop size H = N/2 of half the window length.
Similarly, one obtains a partition of unity when using the window w :Z→R defined
by

w(r) :=
{

sin(πr/N)2 if r ∈ [0 : N−1],
0 otherwise, (8.23)

and a hop size of H = N/2 (see Figure 8.7c and Exercise 8.4). As illustrated by
Figure 8.7d, the property of being a partition of unity not only depends on the win-
dow function itself but also on the hop size parameter.

8.1.2.2 Signal Reconstruction from a Modified STFT

Let us assume that (8.20) holds for all r ∈ Z, so that the original signal can be
reconstructed from its STFT. In many applications, the STFT is manipulated by
applying a time–frequency mask as in Section 8.1.1.2. This results in a modified
STFT (MSTFT). One important question is whether there is a time-domain signal
whose STFT coincides with the specified MSTFT. In this case, we say that the
MSTFT is valid. In practice, however, it turns out that most of the modified STFTs
are not valid.

This fact may be surprising at first sight. From the reconstruction described in
Section 8.1.2.1, it seems straightforward to apply the following procedure: Assume
that XMod is the given MSTFT. In a first step, we apply the inverse DFT to each of
the columns of XMod, yielding

(vn(0), . . . ,vn(N−1))> := DFT−1
N

(
(XMod(n,0), . . . ,XMod(n,N−1))>

)
(8.24)

for n ∈ Z (see (8.18)). Furthermore, we set vn(r) := 0 for r ∈ Z \ [0 : N−1]. Then,
based on the overlap–add technique as specified in (8.21), we define a signal xRec :
Z→ R by setting

xRec(r) :=
∑n∈Z vn(r−nH)

∑n∈Z w(r−nH)
(8.25)

for r ∈ Z. Is there something wrong with the signal xRec? Yes, there is! In general,
the STFT XRec of the signal xRec is not the same as the modified STFT XMod.
The reason is that, when applying the windowing to xRec as in (8.16), the resulting
windowed sections xRec

n usually do not agree with the vn obtained from (8.24).
To understand this better, let us have a look at the example shown in Figure 8.8.

We start with a sampled signal x : Z→ R which is a sinusoidal function with a
spike close to the sample position n = 32, where we set x(32) = 1 and x(33) =
−1. In Figure 8.8a, only the samples x(n) for n ∈ [1 : 64] are shown. Using the
window from (8.23) with a length N = 32 and hop size H = N/2 = 16, we obtain
windowed sections xn for n ∈ Z and the resulting STFT X with coefficients X (n,k)

434 8 Musically Informed Audio Decomposition

Time (samples)

Time (samples)

Fr
eq

ue
nc

y
(in

di
ce

s)

Time (frames)

Windowing DFT

(a)

Time (samples)

Time (samples)

Fr
eq

ue
nc

y
(in

di
ce

s)

Time (frames)

Overlap & Add Inverse DFT

(b)

Time (samples)

Time (samples)

Fr
eq

ue
nc

y
(in

di
ce

s)
Time (frames)

Windowing DFT

(c)

Fig. 8.8 (a) Signal x, windowed sections xn, and magnitude of the STFT X . In the visualization,
only the frames for n ∈ [1 : 3] are shown. (b) Magnitude of modified STFT XMod, signals vn, and
signal xRec. (c) Signal xRec, windowed sections xRec

n , and magnitude of STFT XRec.

for n ∈ Z and k ∈ [0 : N−1]. Figure 8.8a shows the resulting windowed sections
xn as well as the magnitude STFT for the frames n ∈ [1 : 3]. The other frames are
also computed, but not included in the visualization. The harmonic component of
the signal is revealed in the form of horizontal lines across the frames, whereas the
impulse-like component falls into the second frame.

Next, let us modify the STFT X . For example, to remove the impulse-like com-
ponent, we set all coefficients in the second frame X (2,k) to zero, yielding the
modified STFT shown in Figure 8.8b. As described above, we apply the inverse
DFT to the MSTFT, resulting in the signals vn, which are suitably overlaid and
added to yield xRec via (8.25). At this point, we want to make a remark regarding the
symmetry properties of the DFT for real-valued signals (see Exercise 2.24). Recall
that the signals vn are real-valued if and only if XMod(n,0) ∈ R and XMod(n,k) =
XMod(n,N− k) for all k ∈ [1 : N−1]. In other words, in the case that one wants to
obtain a real-valued signal in the reconstruction step, one needs to take care that the
symmetry properties are preserved when modifying the STFT.

Using xRec, we compute the windowed sections xRec
n and the STFT XRec. As

illustrated by Figure 8.8c, the STFT XRec does not match the MSTFT XMod. This

8.1 Harmonic–Percussive Separation 435

is due to the fact that the time-shifted analysis windows used for computing the
STFT overlap with their adjacent windows. For example, computing the second
frame ofXRec also includes information from the first and third windows. Intuitively
speaking, by using the overlap–add procedure of (8.25), the information from the
previous and subsequent frames is reintroduced into the current frame. Note that,
even though the signals vn and xRec

n may be different, the respective sums over these
signals yield the same signal xRec.

Our example has shown that the STFT of the reconstructed signal xRec may not
coincide with the specified MSTFT. One can show that, in general, there exists no
time-domain signal that realizes a given MSTFT. Therefore, an important problem
is to find ways for estimating a signal whose STFT is at least as close as possible
to the MSTFT with regard to a suitably defined distance measure. This topic goes
beyond the scope of this book. Following [20], we only outline one of these possible
procedures. To measure the distance between a given MSTFT XMod and an STFT
X ′ of a signal x′, we introduce the squared error ∆(XMod,X ′) defined by

∆(XMod,X ′) := ∑
n∈Z

∑
k∈[0:N−1]

|XMod(n,k)−X ′(n,k)|2. (8.26)

The objective is to find the signal x∗ whose STFT X ∗ minimizes this error over all
possible signals x′:

x∗ := argmin
x′

∆(XMod,X ′). (8.27)

It can be shown that this optimization problem has an explicit solution given by

x∗(r) =
∑n∈Z w(r−nH)vn(r−nH)

∑n∈Z w(r−nH)2 , (8.28)

where the signals vn are defined as in (8.24). Note that this procedure is similar in
nature to the overlap–add techniques suggested in (8.25). The major difference is
that in (8.28) the signals vn are windowed with the analysis window before being
overlaid and added. Furthermore, the additional windowing is compensated by nor-
malizing with the sum of the squared windows. For further details and a discussion
of alternative procedures, we refer to [20].

8.1.3 Applications

In many audio processing tasks, the relevant information lies in either the harmonic
or the percussive component of an audio signal. For example, in chord recognition
(see Chapter 5) one tries to capture and classify the harmonic properties of an audio
signal, while the percussive properties are left unconsidered. Similarly, the pres-
ence of percussive components may become problematic when trying to determine
the main melody within a polyphonic music recording (see Section 8.2). For other
tasks, one may have the reverse situation. For example, when analyzing and classi-

436 8 Musically Informed Audio Decomposition

Fr
eq

ue
nc

y
(H

z)
(a)

C
hr

om
a

Fr
eq

ue
nc

y
(H

z)

(b)

C
hr

om
a

Fr
eq

ue
nc

y
(H

z)

(c)

C
hr

om
a

Time (seconds) Time (seconds) Time (seconds)

Fig. 8.9 Spectrogram (top), chroma (middle), and novelty representation (bottom) before and after
applying an HPS decomposition. (a) Representations for the original signal x. (b) Representations
for the harmonic component xh. (c) Representations for the percussive component xp.

fying drum sounds, most of the relevant information is contained in the percussive
component of the audio signal. Also the measurement of transient-like phenomena,
which is important in the context of onset detection (see Section 6.1), may be alle-
viated when removing tonal components beforehand. These scenarios indicate that
harmonic–percussive separation can be a useful component for tackling a variety of
music processing tasks. In the following, we further illustrate this by discussing two
concrete examples (see Figure 8.9).

As a first example, let us consider how the output of an HPS procedure can be
used to enhance chroma-based audio features. Recall from Section 3.1.2 that chroma
features are designed for tasks where melodic and harmonic properties of music
become important. Such properties are typically reflected by a concentration of the
signal’s energy in a small number of chroma bands. When computing chroma-based
features, one starts with a decomposition of a spectrogram into pitchwise subbands
(see (3.4)). In this decomposition, horizontal structures in the spectrogram lead to
high concentration of the signal’s energy in a few bands, whereas vertical structures
lead to a flat energy distribution. Therefore, one way for improving the chroma
representation is to first apply HPS to decompose the signal x into a harmonic com-
ponent xh and percussive component xp. Then, the chroma features are computed
only on the basis of the harmonic component xh.

The effect of such an HPS-based preprocessing step is demonstrated by
Figure 8.9, which shows the magnitude STFT (first row) and the resulting chroma
representation (second row) for the original signal x, the harmonic component xh,
and the percussive component xp. Of course, in this processing pipeline, one does

8.2 Melody Extraction 437

not need to reconstruct the time-domain signal xh prior to computing chroma fea-
tures. Instead, one can directly use the masked magnitude STFT Yh (see (8.12))
for deriving the log-frequency and chroma representations. Also, the HPS step
can be easily combined with further enhancement strategies such as logarithmic
compression (see Section 3.1.2.1) or quantization and temporal smoothing (see
Section 7.2.1). However, note that the various enhancement strategies may influ-
ence each other or may serve similar purposes. For example, quantization and tem-
poral smoothing also aim at reducing the influence of percussive components, thus
yielding an effect similar to the HPS-based preprocessing.

As a second example, let us consider the task of onset detection. As discussed
in Section 6.1, a note onset often goes along with a transient-like sound component
that is typically spread over the entire frequency spectrum. Therefore, HPS-based
techniques may be used to enhance vertical time–frequency patterns before apply-
ing an onset detector. Figure 8.9 demonstrates the effect of such an approach, where
a simple energy-based novelty function (see Section 6.1.1) is applied to the origi-
nal signal as well as to the harmonic component xh and the percussive component
xp. Note that other onset detectors based on spectral changes (see Section 6.1.2)
may not benefit to the same degree from a prior harmonic–percussive decomposi-
tion. One reason is that the computation of spectral changes already involves some
enhancement of percussive (vertical) structures by considering columnwise differ-
ences of adjacent spectral vectors.

Finally, we want to mention that harmonic–percussive decomposition is problem-
atic for sounds that are neither of clearly harmonic nor of clearly percussive nature.
For example, sounds such as applause or a heavily distorted electric guitar are often
more or less randomly distributed among the two components. Also, depending on
the parameter setting (length of the analysis window, length of the median filter),
harmonic sounds may leak into the percussive component and vice versa. Finding
suitable parameters often involves a delicate trade-off between leakage in one or
the other direction. To cope with this problem, one possible strategy is to introduce
a third residual component that captures all sounds that are neither harmonic nor
percussive. For such an extension of HPS, we refer to [11] and Exercise 8.5.

8.2 Melody Extraction

In this section, we address a music processing task which is often referred to as
melody extraction. Given a music recording, the objective is to estimate the se-
quence of frequency values that correspond to the main melody [38, 45]. Based on
this estimation, the goal of melody separation is to decompose the music signal into
a melody component that captures the main melodic voice and an accompaniment
component that captures the remaining acoustic events.

Before we resume a technical viewpoint on melody extraction, let us first ap-
proach the concept of a melody from a more musical perspective. When asked to
describe a specific song, we are often able to sing or hum the main melody. In

438 8 Musically Informed Audio Decomposition

Fig. 8.10 Short excerpt of
an aria from the opera “Der
Freischütz” by Carl Maria
von Weber. The main melody
of this excerpt is performed
by a soprano singer. (a) Sheet
music representation. The
melody is notated in a sepa-
rate staff line underlaid with
lyrics. (b) Waveform of a
performance. (c) Sequence of
fundamental frequency values
corresponding to the melody.

general terms, a melody may be defined as a linear succession of musical tones ex-
pressing a particular musical idea. Because of the special arrangement of tones, a
melody is perceived as a coherent entity, which gets stuck in a listener’s head as the
most memorable element of a song. As the original Greek term melōidı́a (meaning
“singing” or “chanting”) implies, a melody is often performed by a human voice.
Of course, a melody may also be played by other instruments such as a violin in
a concerto or a saxophone in a jazz piece. Oftentimes, the melody constitutes the
leading element in a composition, appearing in the foreground, while the accompa-
niment is in the background. Sometimes melody and accompaniment may even be
played on a single instrument such as a guitar or a piano. In any case, the melody
typically stands out in one way or another. For example, the melody often comprises
the higher notes in a musical composition, while the accompaniment consists of the
lower notes. Or the melody is played by some instrument with a characteristic tim-
bre (see Section 1.3.4). In some performances, the notes of a melody may feature
easily discernible time–frequency patterns such as vibrato, tremolo, or glissando
(i.e., a continuous glide from one pitch to another).

As an example, let us consider Figure 8.10, which shows a short excerpt of an
opera aria. In the score representation (Figure 8.10a), the main melody is notated in
a separate staff line underlaid with lyrics. In a performance by a soprano singer, the
melody corresponds to a sequence of fundamental frequency values (Figure 8.10c).
As opposed to the notated symbolic representation, some of the notes are smoothly

Fr
eq

ue
nc

y
(H

z)

Time (seconds)

(a)

(b)

(c)

8.2 Melody Extraction 439

connected. Furthermore, one can observe rather pronounced frequency modulations
due to vibrato.

As with many other concepts in music processing, the notion of melody remains
rather vague. In this book, we only consider a restricted scenario, making several
simplifying assumptions (similar to [38, 45]). First, we consider the scenario where
the music is given in the form of an audio recording (and not as a symbolic music
representation). Therefore, rather than estimating a sequence of notes, our objective
is to determine a sequence of frequency values that correspond to the notes’ pitches.
Such a frequency path over time, which may also capture continuous frequency
glides and modulations, is referred to as a frequency trajectory. In particular, we
are interested in the fundamental frequency values (also called F0 values) of the
melody’s notes (see Section 1.3.4). The resulting trajectory is also called an F0-
trajectory. In the following, we restrict ourselves to music where the melody is
predominantly being performed by a lead singer or a lead instrument. In particular,
we assume that there is only one melody line at a time, which can be associated to
a single sound source.

Based on these assumptions, our melody extraction problem can be regarded as
the following signal processing task (see [45]): Given a recording, our objective is
to automatically estimate the sequence of predominant F0-values that correspond to
the notes played by the lead voice or instrument. Even this restricted task is more
difficult than it may seem. First, in music with many instruments playing simultane-
ously, it is hard to attribute specific time–frequency patterns to notes of individual
instruments. This task becomes even more difficult in the presence of resonance and
reverberation effects, which further increase the overlap of different sound sources.
Second, even after a successful estimation of fundamental frequencies, one still has
to determine which of the F0-values belong to the predominant melody and which
are part of the accompaniment.

Some of the challenges in automated melody extraction are illustrated by
Figure 8.11, which shows two different spectrogram representations of a song’s
multitrack recording. In this example, the melody is performed by a male singer,
who is accompanied by drums, piano, and guitar. When considering the record-
ing only of the singing voice, the F0-trajectory of the melody is clearly visible
(Figure 8.11a). However, note that some of the higher harmonics may contain
more energy than the fundamental frequency. The task of finding the melody’s F0-
trajectory becomes much more challenging when several sound events occur at the
same time (Figure 8.11b). In this case, even the automated estimation of the time
intervals when the lead singer is active (see Figure 8.11c) becomes a nontrivial sub-
task [28].

In the following, we describe a typical procedure for predominant F0 estimation
following [44]. As in most music processing tasks, the first step is to convert the
audio signal into a time–frequency representation using an STFT. In Section 8.2.1,
we introduce a technique referred to as instantaneous frequency estimation. This
technique makes it possible to refine the frequency grid that is introduced by the
discrete STFT. The discussion of the instantaneous frequency, which is derived by
looking at the phase information, also puts the STFT and its properties in a different

440 8 Musically Informed Audio Decomposition

Fig. 8.11 Short excerpt of
an audio recording. The
song features a male singer
(melody) and accompani-
ment (drums, piano, guitar).
(a) Spectrogram of the iso-
lated singing voice. The F0-
trajectory of the melody is
highlighted by the shaded
region. The ellipsoid indicates
that some higher harmonics
may contain more energy
than the fundamental fre-
quency. (b) Spectrogram of
the full recording including
the singing voice and accom-
paniment. (c) Time positions
where the singer is active.

(a)

(b)

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

(c)

light. Then, in Section 8.2.2, we show how the refined frequency estimates can be
used to derive an improved log-frequency spectrogram. In a further processing step
we use a technique called harmonic summation to obtain a salience representa-
tion. This representation is used as a basis for extracting the predominant melody.
Simply looking at the maximal F0-value for each frame without additional assump-
tions may lead to numerous outliers and temporal discontinuities. In Section 8.2.3,
we show how to stabilize the extraction process by introducing temporal continu-
ity conditions and by incorporating additional knowledge as specified by a musical
score. Finally, we indicate how to use the F0-trajectory in order to decompose a
music recording into a melody and an accompaniment track.

8.2.1 Instantaneous Frequency Estimation

Let x denote the given music signal sampled at a rate of Fs Hertz. Furthermore, let
X be its STFT as in (8.2) using a suitable window function of length N ∈ N and
hop size H ∈ N. In Section 2.5.3, we discussed the physical interpretation of the
resulting Fourier coefficients X (n,k). The frame index n ∈ Z is associated to the
physical time

Tcoef(n) :=
n ·H
Fs

(8.29)

given in seconds (see (2.150)), and the frequency index k ∈ [0 : N/2] corresponds to
the frequency

Fcoef(k) :=
k ·Fs

N
(8.30)

8.2 Melody Extraction 441

Fig. 8.12 Illustration for
interpreting frequency as
the quotient of the change
ϕ2−ϕ1 in angular position
and the length t2− t1 of the
time interval, where ϕ1 is the
angular position at time t1 and
ϕ2 the one at time t2.

Re

Im

 	

given in Hertz (see (2.149)). In particular, recall that the discrete STFT introduces
a linear sampling of the frequency axis. In view of our F0 estimation task, the fre-
quency resolution may not suffice to accurately capture continuous time–frequency
patterns caused by vibrato or glissando. Furthermore, because of the logarithmic
perception of frequency, the linear sampling of the frequency axis becomes par-
ticularly problematic for the low-frequency part of the spectrum. Increasing the fre-
quency resolution by simply increasing the window length N is not a viable solution,
since this process decreases the temporal resolution. In the following, we discuss a
technique for obtaining an enhanced frequency estimation by exploiting the phase
information encoded in the complex-valued STFT.

In order to explain this technique, let us start by recalling the main ideas of ex-
pressing and measuring frequency. As our prototypical oscillations, we considered
sinusoidal functions each depending on a frequency parameter ω ∈ R and a phase
parameter ϕ ∈ [0,1) (see (2.2)). For a fixed frequency parameter ω , we have seen
that a sinusoid of arbitrary phase can be represented as a suitably weighted sum
of a cosine and a sine function (see (2.54)). These two functions, in turn, can be
regarded as the real and imaginary part of a complex-valued exponential function
expω : R→ C (see (2.90)). Uniformly increasing the time parameter t, the expo-
nential function t 7→ expω(t) describes a circular motion around the unit circle.
When projected onto the real and imaginary axes, this yields two sinusoidal mo-
tions (described by a cosine and a sine function). Thinking of the circular motion as
a uniformly rotating wheel, the frequency parameter ω corresponds to the number
of revolutions per unit time (in our case, the duration of one second). In other words,
the frequency can be interpreted as the rate of rotation. Based on this interpretation,
one can associate a frequency value with a rotating wheel for arbitrary time intervals
[t1, t2] with t1 < t2 (see Figure 8.12). To this end, one measures the angular position
ϕ1 at time t1 and the angular position ϕ2 at time t2. The frequency is then defined as
the change ϕ2−ϕ1 in angular position divided by the length t2− t1 of the time inter-
val. In the limit case, when the time interval becomes arbitrarily small, one obtains
the instantaneous frequency ωt1 given by

442 8 Musically Informed Audio Decomposition

ωt1 := lim
t2→t1

ϕ2−ϕ1

t2− t1
. (8.31)

When computing frequency using the change in angular position, one has to take
care of phase wrapping as discussed in Section 6.1.3. Recall that we specify an
angle in the form of the principal value of the normalized phase, which results in
a number ϕ ∈ [0,1). When computing phase differences, the choice of the principal
value may produce discontinuities. One way to deal with such discontinuities is to
use the concept of phase unwrapping as illustrated by Figure 6.9 of Section 6.1.3.
Another way is to use the principal argument function Ψ : R→ [−0.5,0.5], which
we defined in (6.14). Recall that this function maps phase differences into the range
[−0.5,0.5] by adding or subtracting a suitable integer value. We will apply this
function later in (8.33).

What have we gained by looking at the frequency from a phase-based perspec-
tive? As said above, the discrete STFT X analyzes a given signal x at certain fre-
quencies ω = Fcoef(k) which are spaced on a linear grid (see (8.30)). However, the
frequencies occurring in the signal x may not exactly correspond to these frequen-
cies. The main idea is to use phase differences across subsequent analysis frames to
refine the frequency estimation beyond the frequency grid imposed by the STFT.

For the moment, let us assume a time-continuous perspective, fixing a frequency
value ω ∈ R and two time instances, say t1 ∈ R and t2 ∈ R. Later, we will choose
specific values that are related to the STFT parameters. Correlating the signal x with
a windowed version of the analysis function expω , one positioned at t1 and one at t2,
we obtain two complex Fourier coefficients. Let ϕ1 and ϕ2 be the phases of these two
coefficients, respectively. In the case that the signal x contains a strong frequency
component of frequency ω , the two phases ϕ1 and ϕ2 should be consistent in the
following way: A rotation of frequency ω that assumes the angular position ϕ1 at
time position t1 should have the phase

ϕ
Pred := ϕ1 +ω ·∆ t, (8.32)

where ∆ t := t2− t1. Therefore, in the case that the signal x behaves similarly to the
function expω , one should have ϕ2 ≈ ϕPred. This case is illustrated by Figure 8.13a.
However, what happens if the signal x oscillates, e.g., slightly slower than expω as
illustrated by Figure 8.13b? In this case, the phase increment from time instance
t1 to instance t2 for the signal x is less than the one for the prototype oscillation
expω . As a result, the phase ϕ2 measured at t2 is less than the predicted phase ϕPred.
Conversely, if x oscillates slightly faster than expω , the phase ϕ2 is larger than the
predicted phase ϕPred (see Figure 8.13c). To measure the difference between ϕ2 and
ϕPred, we introduce the prediction error defined by

ϕ
Err :=Ψ(ϕ2−ϕ

Pred). (8.33)

The principal argument function Ψ (see (6.14)) ensures that the difference lies
within the range [−0.5,0.5]. The prediction error can be used to correct the fre-
quency value ω to obtain a refined frequency estimate IF(ω) for the signal x:

8.2 Melody Extraction 443

n-1 n

∆t

n-1

n

φ1 = 0

φ2 = 0.75

n-1 n

∆t

n-1

n

φ1 = 0.95

φ2 = 0.55

n-1 n

∆t

n-1

n

φ1 = 0.05

φ2 = 0.95

(a) (b) (c)

φPred = 0.75
φErr = 0

φPred = 1.70
φErr = -0.15

φPred = 0.80
φErr = 0.15

t1 t2 t1 t2 t1 t2

t1 t1 t1

t2 t2 t2

Fig. 8.13 Illustration for computing the instantaneous frequency for three different signals.
(a) Signal x having the same frequency as the prototype sinusoid. (b) Signal x with a slightly
lower frequency. (c) Signal x with a slightly higher frequency. From top to bottom, each of the sub-
figures shows the signal x (with an indication of two windowed sections corresponding to frames
n− 1 and n), the correlation between a prototype sinusoid and x at time instance t1 and the mea-
sured phase ϕ1, as well as the correlation between a prototype sinusoid and x at time instance t2
and the measured phase ϕ2. Furthermore, the predicted phase ϕPred and the prediction error ϕErr

are indicated.

IF(ω) := ω +
ϕErr

∆ t
. (8.34)

This value is also called the instantaneous frequency (IF) at ω . Strictly speaking,
rather than referring to a single time instance, the instantaneous frequency refers—
in this case—to an entire time interval [t1, t2]. In practice, however, this interval is
typically chosen to be very small (on the order of a couple of milliseconds).

Let us come back to the examples shown in Figure 8.13 assuming that t1 = 0 sec,
t2 = 0.75 sec, and ω = 1 Hz. In Figure 8.13a, one measures ϕ1 = 0 and ϕ2 = 0.75.
In this case, the predicted phase

ϕ
Pred = ϕ1 +ω ·∆ t = 0+1 ·0.75 = 0.75 (8.35)

444 8 Musically Informed Audio Decomposition

coincides with ϕ2 so that ϕErr = 0 and IF(ω) = ω . In the case of Figure 8.13b, one
measures ϕ1 = 0.95 and ϕ2 = 0.55. On the other side, one obtains

ϕ
Pred = ϕ1 +ω ·∆ t = 0.95+1 ·0.75 = 1.7. (8.36)

This yields a prediction error of

ϕ
Err :=Ψ(0.55−1.7) =−0.15. (8.37)

From this, we get the instantaneous frequency

IF(ω) = ω +
ϕErr

∆ t
= 1− 0.15

0.75
= 0.8, (8.38)

which reflects the actual signal’s frequency content well. Similarly, in the case of
Figure 8.13c, one obtains the instantaneous frequency IF(ω) = 1.2 Hz. Note that
the refinement of the frequency only works if the signal x contains a main frequency
component close to ω . Furthermore, the time interval [t1 : t2] should be small so that
the difference between the unwrapped predicted phase and the unwrapped measured
phase lies within the interval [−0.5,0.5].

We now apply the concept of instantaneous frequency for improving the fre-
quency resolution of a discrete STFT. Using the polar coordinate representa-
tion (2.9), a Fourier coefficient X (n,k) ∈ C can be written as

X (n,k) = |X (n,k)|exp(2πiϕ(n,k)) (8.39)

with the phase ϕ(n,k) ∈ [0,1). Recall that we have already used such a represen-
tation in the context of phase-based novelty detection (see (6.9) of Section 6.1.3).
For the prototype oscillation, we use the frequency determined by the frequency
parameter k ∈ [0 : N/2] (see (8.30)):

ω = Fcoef(k) =
k ·Fs

N
. (8.40)

Furthermore, the two time instances are determined by the positions of the previous
frame and the current frame (see (8.29)):

t1 = Tcoef(n−1) =
(n−1) ·H

Fs
and t2 = Tcoef(n) =

n ·H
Fs

. (8.41)

Finally, the measured phases at these time instances are the ones obtained by the
STFT:

ϕ1 = ϕ(n−1,k) and ϕ2 = ϕ(n,k). (8.42)

From this, we obtain the instantaneous frequency

F IF
coef(k,n) := IF(ω) (8.43)

8.2 Melody Extraction 445

as in (8.34). Using the above equations, one can easily derive the following formula
for F IF

coef(k,n), which only depends on the measured phases as well as on the window
length N, the hop size H, and the sampling rate Fs (see Exercise 8.6):

F IF
coef(k,n) = (k+κ(k,n)) · Fs

N
, (8.44)

where the bin offset κ(k,n) is calculated as

κ(k,n) =
N
H
·Ψ
(

ϕ(n,k)−ϕ(n−1,k)− k ·H
N

)
. (8.45)

Note that the quality of the estimated instantaneous frequency depends, among
other parameters, on the length ∆ t = t2− t1 = H/Fs. Therefore, when applied to the
discrete STFT, it is beneficial to use a small hop size H. On the downside, using a
small hop size increases the computational cost for calculating the discrete STFT
(see Exercise 8.7 for an alternative approach). In the following section, we will see
some examples that illustrate the effect of using the instantaneous frequency instead
of simply using the frequencies on the grid introduced by the discrete STFT (see
Figure 8.14).

8.2.2 Salience Representation

For an accurate estimation of the predominant F0-values, we now derive a log-
frequency spectrogram similar to the one introduced in Section 3.1.1. This time,
however, we need a resolution that goes beyond the 128 pitch bands correspond-
ing to the equal-tempered scale. Exploiting the instantaneous frequency, we show
how the log-frequency spectrogram can be improved and refined, in particular in the
low-frequency part of the spectrum.

8.2.2.1 Refined Log-Frequency Spectrogram

As preparation, let us recall the log-frequency spectrogram from Section 3.1.1. The
idea was to pool the STFT coefficients by regarding the sets

P(p) = {k : Fpitch(p−0.5)≤ Fcoef(k)< Fpitch(p+0.5)} (8.46)

for the pitch parameters p∈ [0 : 127] (see (3.3)). Instead of fixing a pitch and looking
for all frequencies that lie in the resulting pitch band, one can also define a mapping
Bin : R→ Z which assigns to a given frequency the corresponding pitch index.
Indeed, it is not hard to prove (see Exercise 8.8) that

Bin(ω) :=
⌊

12 · log2

(
ω

440

)
+69.5

⌋
(8.47)

446 8 Musically Informed Audio Decomposition

assigns to a given frequency ω ∈ R the pitch p := Bin(ω) ∈ Z such that ω ∈
[Fpitch(p−0.5),Fpitch(p+0.5)). From this, one obtains

P(p) := {k : Bin(Fcoef(k)) = p}. (8.48)

Each set P(p) can be thought of as a bin, while p = Bin(ω) yields the bin index
associated to frequency ω . We now extend (8.47) by considering a more general
bin assignment. To this end, let ωref ∈ R be a reference frequency which is to be
assigned to the bin index 1. Furthermore, let R∈R (given in cents, see Section 1.3.2)
be the desired resolution of the logarithmically spaced frequency axis. Then, for a
frequency ω ∈ R (given in Hertz), the bin index Bin(ω) is defined as

Bin(ω) :=
⌊

1200
R
· log2

(
ω

ωref

)
+1.5

⌋
. (8.49)

For example, R = 100 yields a subdivision of the frequency axis with a resolution of
100 cents (one semitone) per bin, which is the same resolution as in (8.47). Using
R = 10 results in a finer subdivision of the frequency axis, where each bin corre-
sponds to 10 cents (a tenth of a semitone).

Based on the bin mapping function (8.49), we now extend the definition (3.4) of
the log-frequency spectrogram. Fixing a reference frequency ωref and a resolution
R, let B ∈ N be the number of bins to be considered. For each bin index b ∈ [1 : B],
we then define the set

P(b) := {k : Bin(Fcoef(k)) = b} . (8.50)

Furthermore, we set
YLF(n,b) := ∑

k∈P(b)
|X (n,k)|2 (8.51)

for each frame index n ∈ Z and bin index b ∈ [1 : B].
As an illustration, let us revisit the Weber excerpt from Figure 8.10, which also

serves as our running example in the subsequent explanations. Figure 8.14a shows
a spectrogram representation Y of the excerpt for frequencies up to 4000 Hz. In
addition, to the right of the spectrogram, we provide a zoomed-in version which
only covers the first second of audio between 250 Hz and 1000 Hz. Let us fix
a reference frequency of ωref = 100 Hz and a resolution of R = 10 cents. In the
following, we consider a maximal bin index B that corresponds to ω = 4000 Hz,
i.e., B = Bin(4000) = 640. The resulting log-frequency spectrogram is shown in
Figure 8.14b. Note that, in the visualizations, the labeling of the frequency axis is
specified in Hertz rather than in bin indices. As demonstrated by the example, the
linearly spaced frequency information in Y is expanded in a nonlinear, logarithmic
fashion. This results in interpolation artifacts in the frequency direction, leading to
a rather blurred representation in the lower part of YLF.

8.2 Melody Extraction 447

(c)

Fr
eq

ue
nc

y
(H

z)

Time (seconds) Time (seconds)

Fr
eq

ue
nc

y
(H

z)

(b)

Fr
eq

ue
nc

y
(H

z)

(a)

Fig. 8.14 Various spectrogram representations for a recording of a short excerpt of an aria from
the opera “Der Freischütz” by Carl Maria von Weber (continuing the example from Figure 8.10).
(a) Original spectrogram Y (left) and zoom into a section (right). (b) Log-frequency spectrogram
YLF using R = 10 and ωref = 100 Hz. (c) Enhanced log-frequency spectrogram Y IF

LF employing the
instantaneous frequency.

8.2.2.2 Using Instantaneous Frequency

We now discuss how this problem can be alleviated by using the instantaneous
frequency as introduced in Section 8.2.1. Instead of taking the center frequencies
Fcoef(k), the idea is to employ the refined frequency estimates F IF

coef(k,n) (see (8.44))
for defining the sets

PIF(b,n) :=
{

k : Bin
(
F IF

coef(k,n)
)
= b
}

(8.52)

for b ∈ [1 : B] and n ∈ Z. From this new bin assignment, we derive a refined log-
frequency spectrogram Y IF

LF by setting

Y IF
LF(n,b) := ∑

k∈PIF(b,n)

|X (n,k)|2 (8.53)

448 8 Musically Informed Audio Decomposition

for each frame index n ∈ Z and bin index b ∈ [1 : B]. The effect of this modification
is illustrated by Figure 8.14c. By employing the instantaneous frequency, many of
the characteristic time–frequency patterns in the lower part of the spectrum have be-
come much sharper. Note that the estimation of the instantaneous frequency works
particularly well for dominating spectral coefficients that can be clearly assigned to
a single harmonic source. For example, the vertical blurring around 500 Hz (seen
in the zoom visualizations of Figure 8.14) has been resolved nicely, resulting in a
sharp horizontal line in Y IF

LF. However, the interference of several sound sources may
lead to severe degradations in the IF estimates. Furthermore, the IF estimates may
not be reliable at weaker time–frequency bins. Some of these problems can be al-
leviated by introducing spectral weighting and peak-picking strategies (see [44] for
details). In the following, we discuss an enhancement strategy based on the fact that
tonal time–frequency patterns are typically reinforced by the presence of harmonic
partials.

8.2.2.3 Harmonic Summation

Recall that a sound event such as a musical tone is associated to a fundamental fre-
quency along with its harmonic partials, which are (approximately) the integer mul-
tiples of the fundamental frequency (see Section 1.3.2). Therefore, a spectrogram
representation of a recorded melody typically exhibits an entire family of frequency
trajectories which are stacked on top of each other. This phenomenon is clearly vis-
ible in the examples of Figure 8.11 and Figure 8.14. In particular, one can observe
several families of modulating frequency trajectories, which are the result of musical
notes being sung with vibrato.

The multiple appearance of tonal time–frequency patterns can be exploited to
improve a spectrogram representation. The idea is to jointly consider a frequency
and its harmonics by forming suitably weighted sums—a technique also called har-
monic summation (see [26, 44]). Let H ∈ N be the number of harmonics to be
considered in the summation. Then, given a spectrogram representation Y , we de-
fine a harmonic-sum spectrogram Ỹ by setting

Ỹ(n,k) :=
H

∑
h=1
Y(n,k ·h) (8.54)

for n,k ∈ Z (assuming that Y is suitably zero-padded).
A similar construction can be applied for log-frequency spectrogram representa-

tions such as YLF or Y IF
LF. In this case, however, one requires a small modification

in the harmonic summation. In particular, working in the log-frequency domain, the
relation between a frequency and its harmonics is not a multiplicative but an additive
one. For the log-frequency spectrogram YLF, one obtains a harmonically enhanced
version ỸLF by setting

8.2 Melody Extraction 449

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

(b)

Fr
eq

ue
nc

y
(H

z)

(a)

Time (seconds)

Fig. 8.15 (a) Illustration of harmonic summation for the enhanced log-frequency spectrogram
Y IF

LF from Figure 8.14c (along with a zoom into a section). (b) Resulting salience representation
Z := Ỹ IF

LF.

ỸLF(n,b) :=
H

∑
h=1
YLF

(
n,b+

⌊
1200

R
log2(h)

⌋)
(8.55)

(see Exercise 8.9). Similarly, one obtains a harmonic-sum version

Z := Ỹ IF
LF (8.56)

from Y IF
LF. Emphasizing the salience of tonal frequency components, Z is also re-

ferred to as a salience representation (see [44]). This representation will be used
in Section 8.2.3 as a basis for extracting the predominant melody.

The process of harmonic summation, as well as the resulting salience representa-
tion, are illustrated by our Weber example in Figure 8.15. As shown in this example,
the summation process amplifies the dominating harmonic or tonal components,
while noise-like artifacts as introduced by the instantaneous frequency estimation
are attenuated. On the downside, the process produces “ghost components” that ap-
pear particularly in the lower frequency regions of the spectrogram. This, however,
is not a major problem when only looking for the predominant frequency trajecto-
ries, as we will see in the next section.

We want to make some concluding remarks on the summation process. When
considering the spectrogram representation Y , the frequency trajectories that corre-
spond to the various harmonics are scaled versions of each other. This fact becomes
particularly noticeable when looking at the vibrato patterns of Figure 8.14a, where
the amplitudes of the frequency modulations are larger for the higher harmonics
compared with the ones for the lower harmonics. In contrast, when considering a

450 8 Musically Informed Audio Decomposition

log-frequency spectrogram representation, the frequency trajectories are translated
versions of each other (see Figure 8.15a). In this case, the amplitudes of the fre-
quency modulations are the same for all harmonics. For a more formal treatment of
this fact, we refer to Exercise 8.10.

8.2.3 Informed Fundamental Frequency Tracking

The construction of our salience representation Z from (8.56) is motivated by sev-
eral assumptions and observations. First, the logarithmic frequency binning ac-
counts for the logarithmic perception of frequency and the musical notion of a note’s
pitch. Using the instantaneous frequency improves the accuracy of the frequency es-
timates. Furthermore, the harmonic summation amplifies the regularly spaced fre-
quency components. This accounts for the fact that a tone’s energy is not only con-
tained in the fundamental frequency, but spread over the entire harmonic spectrum.

Based on the assumption that the main melody corresponds to the predominant
F0-value, a first strategy for melody extraction is to simply consider the frame-wise
maximum of Z . Let us formalize this procedure. In the following, a frequency
trajectory is defined to be a function

η : Z→ [1 : B]∪{∗} (8.57)

which assigns to each frame index n∈Z either a bin index η(n)∈ [1 : B] or the sym-
bol η(n) = ∗. The interpretation of η(n) = ∗ is that there is no melodic component
at this time instance.

Taking the maximizing bin index of Z for each frame yields a frequency trajec-
tory ηmax defined by

η
max(n) := argmax

b∈[1:B]
Z(n,b). (8.58)

As illustrated by our Weber example in Figure 8.16a, this procedure already yields
an accurate estimation of the melody’s F0-trajectory for most of the frames. How-
ever, at certain time positions, the calculated trajectory does not follow the singing
voice, but some of the accompanying instruments. Also, the proposed method as-
signs an F0-value to each time frame, regardless of whether the melody is actually
present or not. Finally, one can observe a number of outliers and temporal discon-
tinuities that are due to confusions between the fundamental frequency and higher
harmonics or lower ghost components introduced by the harmonic summation.

8.2.3.1 Continuity Constraints

We now discuss several ways for improving the melody extraction procedure by
incorporating additional knowledge. As illustrated by Figure 8.16a, computing a
frequency trajectory in a purely frame-wise fashion without considering any tem-

8.2 Melody Extraction 451

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

(b)

Fr
eq

ue
nc

y
(H

z)

(a)

Fig. 8.16 Salience representation Z from Figure 8.15b with different frequency trajectories.
(a) Frequency trajectory ηmax obtained by frame-wise maximization. (b) Frequency trajectory
ηDP using temporal continuity constraints.

poral context can lead to local discontinuities and random jumps. In practice, how-
ever, a melody’s frequency trajectory is far more structured. Typically, it slowly
changes over time with some occasional jumps between note transitions. Therefore,
one needs a tracking procedure that can balance out the two conflicting conditions
of temporal flexibility (to account for possible jumps) and temporal continuity (to
account for smoothness properties).

We have already encountered a similar problem when discussing the task of
chord recognition (see Chapter 5). In this context, we introduced temporal con-
tinuity into the frame-wise chord labeling process by using HMM-based models
that involve transition probabilities (see Section 5.3). Inspired by the Viterbi algo-
rithm, which solves the uncovering problem for HMMs (see Section 5.3.3.2), we
now introduce a similar procedure for constructing a frequency trajectory based on
dynamic programming.

LetZ be a salience representation that consists of N time frames and B frequency
bins. The value Z(n,b) can be regarded as a score which expresses the likelihood
that a frequency associated to bin b ∈ [1 : B] belongs to a dominating tonal com-
ponent at time n ∈ [1 : N]. To achieve temporal continuity, we slightly modify the
concept of transition probabilities as used for Markov chains (see Section 5.3.1). To
this end, we introduce a (B×B) matrix T that encodes the transition likelihood be-
tween bins. The value T(b,c) ∈ R≥0 expresses the likelihood for moving from bin
b ∈ [1 : B] at time frame n ∈ [1 : N−1] to bin c ∈ [1 : B] at the next frame n+1. For
example, let us define T by setting

452 8 Musically Informed Audio Decomposition

T(b,c) :=
1

1+ |b− c|
. (8.59)

Then the likelihood value T(b,c) becomes smaller when enlarging the bin distance
|b− c|. This favors a trajectory that maintains (more or less) the same frequency
value over time while punishing larger frequency jumps. Of course, there are many
other ways for defining the matrix T in a meaningful way.

Given a salience representation Z and a transition likelihood matrix T, we can
associate to each trajectory η : [1 : N]→ [1 : B] a total score σ(η) by setting

σ(η) := Z(1,η(1)) ·
N

∏
n=2

(
T(η(n−1),η(n)) ·Z(n,η(n))

)
. (8.60)

The desired trajectory ηDP is then defined to be the score-maximizing trajectory:

η
DP := argmax

η

σ(η). (8.61)

The maximal total score can be computed via dynamic programming similar to
the Viterbi algorithm (see Table 5.2). Furthermore, the trajectory ηDP is obtained
by applying a suitable backtracking procedure. The elaboration of the algorithmic
details are left as an exercise (see Exercise 8.11).

In our Weber example, all outliers have been eliminated thanks to the continuity
constraints introduced by the transition likelihoods (see Figure 8.16b). While the
local frequency modulations are still captured well, the trajectory ηDP exhibits a
continuous profile with smooth transitions between the different tones. Even though
this may be a desirable property most of the time, discontinuities that are the result
of abrupt note changes tend to be smoothed out. Furthermore, tracking errors still
occur when the accompaniment exhibits tonal components that are stronger than
the ones of the melody. This particularly holds for time positions where there is
no melody at all. For this reason, melody extraction algorithms should include an
estimation stage to determine where the melody is actually present and where it is
not [28, 44].

8.2.3.2 Score-Informed Constraints

Besides incorporating continuity constraints, another strategy is to exploit additional
musical knowledge about the melodic progression to support the F0-tracking pro-
cess. For example, knowing the vocal range (soprano, alto, tenor, bass) of the singer,
one may narrow down the search range of the expected F0-values. Or, having infor-
mation about when the melody is actually present and when it is not, one can set all
F0-values to the symbol ‘∗’ for the nonmelody frames. More generally, additional
knowledge as described above can be used to define constraint regions within the
time–frequency plane. The F0-tracking is then performed only in these specified
regions. As an example of such an approach, we now discuss a score-informed

8.2 Melody Extraction 453

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

(c)

Fr
eq

ue
nc

y
(H

z)
(b)

(a)

Fig. 8.17 (a) Musical score of the melody of our Weber example (see Figure 8.10). (b) Salience
representation Z from Figure 8.15b with constraint regions obtained from synchronized note
events and the resulting frequency trajectory ηScore. (c) Frequency trajectory ηUser obtained from
user-specified constraint regions.

procedure, where one assumes the availability of a score representation that under-
lies the given music recording. The additional instrumentation and note information
provided by the score can then be used to guide the estimation of the melody’s
F0-trajectory.

The main idea of our score-informed tracking approach is illustrated by
Figure 8.17. Recall from Section 1.1 that, rather than giving strict specifications,
a musical score serves as a guide for performing a piece of music, leaving room for
different interpretations. Reading the instructions in the score, a musician shapes the
music by varying the tempo, dynamics, and articulation, thus creating a personal in-
terpretation of the piece. In a first step, one needs to align the musical score and
the given audio recording. In Chapter 3, we have studied music synchronization
techniques for automating this process. In particular, based on score–audio syn-
chronization (see Section 3.4), one can establish a temporal alignment between the
score’s note events and the physical time position, where they occur in the given
music recording.

The aligned score information can be used to define a rectangular constraint re-
gion in the time–frequency plane for each note of the melody (see Figure 8.17b).
The horizontal position and width of such a region correspond to the note’s physical
onset time and estimated duration, while the vertical position and height account

454 8 Musically Informed Audio Decomposition

for the note’s pitch and the expected frequency deviations from its center frequency.
For each of the constraint regions, one can compute a notewise frequency trajec-
tory as described in Section 8.2.3.1. Assuming that there is no temporal overlap of
the notes’ constraint regions, one may assemble the notewise trajectories to form
a single score-informed trajectory ηScore. In the case that a frame n ∈ [1 : N] is not
covered by any of the constraint regions, one sets ηScore(n) := ∗. Figure 8.17b shows
the resulting score-informed trajectory ηScore for our Weber example.

As illustrated by the figure, score-informed constraint regions are an easy means
to control the F0-extraction process. Suitably chosen regions may significantly re-
duce the confusion with harmonics and other musical voices. However, in the pres-
ence of synchronization inaccuracies and deviations between the score and audio
recording, such a procedure can also become problematic. For example, in our We-
ber excerpt, the singer deviates from the specified score by singing a note C]5 in-
stead of the notated B4 (second note to last in Figure 8.17a). As a result, the con-
straint region is misplaced, leading to a corrupted frequency trajectory. Similarly,
incorrect estimations of the notes’ durations introduce errors in the frequency esti-
mation. For example, this happens for the last note of Figure 8.17a.

Many of these errors can be corrected by suitably adjusting the constraint regions.
Figure 8.17c shows an example of user-optimized constraint regions along with the
resulting F0-trajectory ηUser.

8.2.3.3 Applications

The quality requirements of the extracted F0-trajectory very much depend on the
applications in mind. As a first application, let us consider the problem of content-
based audio retrieval (see Chapter 7). One retrieval scenario is known as query-by-
humming, which can be regarded as a special case of version identification (see
Section 7.3). In this scenario, the user specifies a query by singing or humming
part of a melody. The objective is then to identify all audio recordings (or other
music representations) that contain a melody similar to the specified query. One
important step in solving this task is the generation of a melody database against
which the sung query can be compared. To this end, one requires automated methods
for extracting melodic information from audio recordings of polyphonic music. In
this application scenario, however, one may not need a perfect F0-trajectory in order
to identify a melody. The comparison of a query and a database document may be
performed on the basis of a mid-level representation that tolerates local extraction
errors, at least to a certain degree (see [46] for further details).

Other applications are less sensitive to inaccuracies in the extracted F0-values.
One such application is the automated generation of a Karaoke version for a given
song, where the main melodic voice is to be removed from the song’s original
recording. This leads us to the task of melody separation. Given a music signal
x, the objective is to decompose the signal into a melody component xMel and an
accompaniment component xAcc such that

8.2 Melody Extraction 455

(b)

(a)

(c)

(d) (e)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

Fr
eq

ue
nc

y
(H

z)

Time (seconds) Time (seconds)

Time (seconds) Time (seconds)

Time (seconds)

Fig. 8.18 (a) Magnitude of the STFT X of the original signal x. (b) Binary mask for the melodic
component using the F0-trajectory from Figure 8.17c. (c) Complementary binary mask for the ac-
companiment component. (d) Magnitude of the masked STFT XMel. (e) Magnitude of the masked
STFT XAcc.

x = xMel + xAcc. (8.62)

One general approach is to first apply a melody extraction algorithm to derive the
F0-trajectory of the main melody. Based on these F0-values and their harmon-
ics, one can construct a binary mask for the melodic component as illustrated by
Figure 8.18b. The binary mask of the accompaniment is defined to be the comple-
ment (see Figure 8.18c). Using masking techniques as described in Section 8.1.1.2,
one then derives the two masked STFTs XMel (see Figure 8.18d) and XAcc (see
Figure 8.18e). From this, one obtains the signals xMel and xAcc by applying sig-
nal reconstruction techniques as discussed in Section 8.1.2. Obviously, in this voice
separation scenario, the requirements on the accuracy of the extracted F0-values
are much higher than in the previously described retrieval scenario. Also note that,
in this simplistic separation approach, nonharmonic properties of the singing voice
such as fricative and plosive components (coming from consonants) have not been
considered. Modeling and separating such nonharmonic components from sound
mixtures generally constitutes a hard research question.

456 8 Musically Informed Audio Decomposition

Fig. 8.19 (a) Score and
piano-roll representation.
(b) Score-informed decom-
position of the corresponding
music signal into notewise
audio events and a residual
signal.

(a)

(b)

Time (seconds)

=

8.3 NMF-Based Audio Decomposition

In the previous sections, we have studied source separation techniques for decom-
posing a music recording into a harmonic and percussive component as well as for
extracting a melodic voice. In this section, we consider a scenario in which we de-
compose a music signal into a set of notewise audio events, where each audio event
is directly associated with a note of a given musical score, see Figure 8.19. Having
direct access to the audio recording in a notewise fashion opens up novel ways of
editing and manipulating audio material (see Figure 8.27).

To obtain such a decomposition, we introduce in this section an important tech-
nique known as nonnegative matrix factorization (NMF). To build up some intu-
ition, let us start with a simple example shown in Figure 8.20a. Suppose we are
given a matrix V with nonnegative entries, which can be thought of as a time–
frequency representation consisting of a sequence of spectral vectors. In our toy
example, there are N = 7 time frames, and each of the vectors consists of K = 11
spectral coefficients. At first sight, the matrix does not seem to have a particular
structure. However, it turns out that the matrix can be represented by only R = 3
different “prototype” spectral vectors (referred to as templates), which are suitably
weighted and superimposed over time. Mathematically, this means that V can be
factorized, i.e., V can be represented as a product of two matrices. To this end, the
template vectors are stored in a (K×R) matrix W (called the template matrix),
whereas the weights are stored in an (R×N) matrix H (called the activation ma-
trix). Then, the original matrix V can be written as a matrix product V =WH. The
advantage of such a factorization is that the factors W and H are often easier to
understand and more accessible for further processing than the original matrix W .

Given a matrix V with nonnegative entries, the goal of NMF is to automatically
find a matrix factorization similar to the one in our previous example. Mathemati-
cally, many different factorizations are possible. In NMF, one special requirement
is that, besides the given matrix V , the factors W and H should also only contain
nonnegative entries. As we will see, this additional requirement often allows for an
immediate interpretation of W and H. On the downside, the computational process

8.3 NMF-Based Audio Decomposition 457

Fig. 8.20 (a) Decomposition
of a nonnegative matrix V
into a product of simpler
nonnegative matrices W and
H. (The shade of gray encodes
the size of the matrix entries.)
(b) Illustration of nonnegative
matrix factorization (NMF).

≈
Activations

V W H(b)

Templates

(a) =
1 2 3 4 5 6 7

1 2 3 4 5 6 7
1

3

5

7

9

11

1

3

7

9

11

5

1 2 3

3

2

1

Time

Time

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

becomes more complicated and the conditions are hard to satisfy. Therefore, to relax
the problem, one looks for a factorization where the original matrix is represented
at least in some approximate sense, i.e., V ≈WH (see Figure 8.20b).

As in our example, the matrix V is regarded as a sequence of column vectors.
The underlying assumption is that these vectors can be represented as a weighted
superposition of a relatively small number of template vectors. The columns of W
correspond to these templates. Furthermore, the rows of H—called activations—
indicate where these templates occur in V (see Figure 8.20a).

In Section 8.3.1, we formally introduce NMF, which is one of the most successful
machine learning techniques that has been applied to various problem areas, rang-
ing from computer vision to text mining and audio processing. Following [27], we
derive some update rules for learning the matrix factorization in an iterative fashion.
This method is easy to implement as well as computationally efficient.

We then show in Section 8.3.2 how NMF-based techniques can be applied for
audio decomposition by factoring the magnitude STFT into a product of two non-
negative matrices. In the ideal case, the first matrix represents the spectral patterns of
the notes’ pitches that occur in the piece of music, while the second matrix exhibits
the time positions where these spectral patterns are active in the audio recording.
Figure 8.21 illustrates such a factorization for a recording of the Prélude Op. 28, No.
4 by Frédéric Chopin, which also serves as our running example in the subsequent
explanations. In this case, each template specified by the matrix W reflects how a
note of a certain pitch is spectrally realized in V , and the activation matrix H looks
similar to a corresponding piano-roll representation of the score (Figure 8.21b). In
practice, however, it is often hard to predict which of the signal’s properties are ulti-
mately captured by the learned factors. To better control this factorization, we show
how additional score information can be used to constrain NMF and to yield a more
musically meaningful decomposition.

The score not only guides the factorization process, but also yields an intuitive
and user-friendly representation for musically experienced users to specify the tar-
get sources or events to be separated. In Section 8.3.3, we discuss how the result of
the score-informed NMF can be used for deriving various kinds of audio decom-
positions. In particular, we present an example application where a user can specify

458 8 Musically Informed Audio Decomposition

0 2 4 6 8

500

0

1000

1500

Time (seconds)

Fr
eq

ue
nc

y
(H

z)

54

500

0

1000

1500

Note number

Fr
eq

ue
nc

y
(H

z)

0 2 4 6 8
Time (seconds)

≈

55 57 59 63 64 71 72
54
55
57
59
63
64
71
72

N
ot

e
nu

m
be

r

(c)

0 2 4 6 8
Time (seconds)

54
59

64

72

(b)(a)

N
ot

e
nu

m
be

r

(d) (e)

Fig. 8.21 Illustration of nonnegative matrix factorization V ≈WH. The example is based on an
audio recording of the Prélude Op. 28, No. 4 by Frédéric Chopin. All information related to the
note number p = 71 is highlighted by the red rectangular frames. (a) Musical score. (b) Piano-roll
representation of the score synchronized to the audio recording. (c) Magnitude spectrogram of the
audio recording used as matrix V . (d) Template matrix W . (e) Activation matrix H.

the desired audio manipulation within the score simply by editing some of the notes.
These manipulations are then automatically transferred to a given audio recording.

8.3.1 Nonnegative Matrix Factorization

The general goal of matrix decomposition or matrix factorization is to represent a
given matrix as a product of matrices that have specific properties. These properties
can then be exploited for further processing, analysis, or storage. For example, in
Section 2.4.3, we have seen how a factorization of the DFT matrix into a product of
sparse matrices can be exploited to increase the computational efficiency (leading
to the famous FFT algorithm). Besides computational purposes, matrix factorization
techniques are also used for analytic purposes. For example, a given data matrix of
some numerical observations is often hard to understand. In this context, a factor-
ization of the matrix into a product of lower-rank matrices can reveal some inherent
structures, which facilitates the interpretation of their meaning.

Nonnegative matrix factorization (NMF) is a technique where a matrix V with
nonnegative entries is factored into two matrices W and H that also have only non-
negative entries. Typically, the matrices W and H are required to have a much lower
rank than the original matrix V . The nonnegativity constraints often lead to a decom-
position that allows for a semantically meaningful interpretation of the coefficients.
However, in most cases, the resulting factorization problem has no exact solution,
thus requiring optimization procedures for finding suitable numerical approxima-
tions. Closely following [27], we now give a formal definition of the NMF problem

8.3 NMF-Based Audio Decomposition 459

and introduce an iterative learning procedure for computing a factorization in prac-
tice.

8.3.1.1 Formal Definition of NMF

A matrix with real-valued coefficients is called nonnegative if all the coefficients are
either zero or positive. Let V ∈ RK×N

≥0 be such a nonnegative matrix having K ∈ N
rows and N ∈ N columns. The dimensions K and N of the matrix V are usually
thought to be large. Given a number R ∈ N smaller than both K and N, the goal of
NMF is to find two nonnegative matrices W ∈ RK×R

≥0 and H ∈ RR×N
≥0 such that

V ≈W ·H. (8.63)

This factorization is interpreted as follows (see [27]): The columns of V are regarded
as K-dimensional data vectors (e.g., spectral vectors of a magnitude spectrogram),
where N is the number of data vectors. This matrix is then approximately factorized
into a (K×R) matrix W and an (R×N) matrix H. The parameter R, which is referred
to as the rank of the factorization, is usually chosen to be smaller than K and N.
Therefore, the number of coefficients in W and H is typically much smaller than the
total number in V (i.e., KR+RN� KN), and the product WH can be thought of as
a compressed version of the original matrix V .

Let us have a closer look at the meaning of the approximation by rewriting (8.63)
column by column as

v≈W ·h, (8.64)

where v is the nth column of V and h the nth column of H, n∈ [1 : N]. This shows that
each data vector v is approximated by a linear combination of the columns of W ,
weighted by the entries of h. Therefore, W can be regarded as containing a kind of
basis that is optimized for the linear approximation of the data in V . Since relatively
few basis vectors are used to represent many data vectors, a good approximation can
only be achieved if the basis vectors capture structures that are latent in the data. In
this context, a good estimation of the parameter R, which defines the number of
basis vectors used to approximate the data matrix V , constitutes a difficult problem
by itself.

As already mentioned before, the basis vectors are also referred to as template
vectors, whereas the weights specified by H are called activations. As opposed
to arbitrary linear combinations as known from linear algebra, the linear combina-
tions occurring in the NMF context only involve nonnegative weights of nonnegative
template vectors. As a result, there are no effects such as destructive interferences,
where a (positive) component can be canceled out by adding a kind of inverse (neg-
ative) component. Instead, the data vectors need to be explained in a purely con-
structive fashion only involving positive components.

To find an approximate factorization V ≈W ·H, we first need to specify a distance
function that quantifies the quality of the approximation. There are many ways for
defining such a distance function, leading to different NMF variants. In the follow-

460 8 Musically Informed Audio Decomposition

ing, we only consider one of these variants, which is based on the Euclidean dis-
tance. Let A,B ∈RK×N be two matrices with coefficients Akn and Bkn for k ∈ [1 : K]
and n ∈ [1 : N]. Then, the square of the Euclidean distance between A and B is de-
fined by

||A−B||2 :=
K

∑
k=1

N

∑
n=1

(Akn−Bkn)
2. (8.65)

Based on this distance measure, we can formalize our NMF problem as follows:
Given a nonnegative matrix V ∈ RK×N

≥0 and a rank parameter R, minimize

||V −WH||2 (8.66)

with respect to W ∈RK×R
≥0 and H ∈RR×N

≥0 . In other words, regarding ||V −WH||2 as
a joint function of W and H, the objective is to find a minimum under the nonnega-
tivity constraint for W and H.

For general matrices, this is a hard computational problem due to several reasons.
First, it is in general difficult to enforce hard constraints such as nonnegativity on the
solution of an optimization problem. Second, the joint optimization over both matri-
ces W and H leads to computational challenges. In fact, when regarding ||V −WH||2
as a function of W only or H only, one can show that the resulting functions satisfy
a strong property referred to as convexity. This property, which implies that any
local minimum must be a global minimum, makes it possible to apply powerful
tools from the field of convex analysis. However, ||V −WH||2 is not convex in both
matrices together. Therefore, it is unrealistic to expect an algorithm that can solve
this problem in the sense of finding a global minimum. However, there are many
techniques from numerical optimization that can be applied to find—at least—local
minima. In the following we discuss such a procedure which can be derived from
the fundamental optimization strategy known as gradient descent.

8.3.1.2 Gradient Descent

Let us start by recalling some basic facts from differential calculus and numerical
optimization (see, e.g., [34]). Suppose that we have a function

ϕ : RD→ R (8.67)

which depends on D variables, say u1, . . . ,uD. If the function ϕ is differentiable, one
can compute the derivative with respect to one of those variables, with the others
held constant. This yields a partial derivative denoted by ∂ϕ

∂ud
for each d ∈ [1 : D].

Now, if ϕ is differentiable in a neighborhood of a point p ∈ RD, then the gradient
∇ϕ(p) at p is defined as

∇ϕ(p) :=
(

∂ϕ

∂u1
(p), . . . ,

∂ϕ

∂uD
(p)
)
. (8.68)

8.3 NMF-Based Audio Decomposition 461

In this case, the function ϕ decreases fastest if one goes from p in the direction of
the negative gradient of ϕ at p. Motivated by this property, we define

p′ := p− γ ·∇ϕ(p) (8.69)

for some parameter γ ≥ 0, which is also referred to as the step size. Then, one can
show that ϕ(p′)≤ϕ(p) in the case that the step size γ is small enough. Based on this
fact, gradient descent tries to find a local minimum of ϕ by an iterative approach.
Starting with a guess for a local minimum of ϕ at p(0) ∈ RD, one iteratively defines

p(`+1) := p(`)− γ
(`) ·∇ϕ

(
p(`)
)

(8.70)

for `= 0,1,2, Based on suitable step size parameters γ(`), which depend on the
properties of ϕ and need to be adjusted at every iteration, one obtains

ϕ
(
p(0))≥ ϕ

(
p(1))≥ ϕ

(
p(2))≥ . . . (8.71)

and the sequence p(0),p(1),p(2), . . . hopefully converges to a local minimum of ϕ .
With certain assumptions on γ(`) and ϕ , convergence to a local minimum can be
guaranteed. When the function ϕ is convex, all local minima are also global minima,
so in this case gradient descent converges to a global solution.

8.3.1.3 Learning the Factorization Using Gradient Descent

We now apply the concept of gradient descent to our problem of minimizing
||V −WH||2 as a function of W and H. Since the joint optimization is a very hard
problem, one idea is to first fix the factor W and to optimize with regard to H, and
then to fix the learned factor H and to optimize with regard to W . This process is
then iterated, where the role of W and H is interchanged after each step.

For the moment, let us fix a matrix W ∈RK×R. We define a function ϕW :RD→R
with D := RN by setting

ϕ
W (H) := ||V −WH||2 (8.72)

for H ∈ RR×N , where the matrix H is regarded as a D-dimensional vector. Fur-
thermore, we denote the variables of the function ϕW by Hρν for ρ ∈ [1 : R] and
ν ∈ [1 : N]. Note that we use the parameters ρ and ν in order to distinguish them
from the parameters r and n, which are later used as summation indices (see (8.73)).
In order to apply gradient descent to ϕW , we need to compute the partial derivatives
of ϕW with regard to all variables Hρν . After the following equations, we give more
detailed explanations on the calculation steps:

462 8 Musically Informed Audio Decomposition

∂ϕW

∂Hρν

=
∂

(
∑

K
k=1 ∑

N
n=1
(
Vkn−∑

R
r=1 WkrHrn

)2
)

∂Hρν

(8.73)

=
∂

(
∑

K
k=1
(
Vkν −∑

R
r=1 WkrHrν

)2
)

∂Hρν

(8.74)

= ∑
K
k=12

(
Vkν −∑

R
r=1WkrHrν

)
· (−Wkρ) (8.75)

= 2
(

∑
R
r=1∑

K
k=1WkρWkrHrν −∑

K
k=1WkρVkν

)
(8.76)

= 2
(

∑
R
r=1

(
∑

K
k=1W>

ρkWkr

)
Hrν −∑

K
k=1W>

ρkVkν

)
(8.77)

= 2
(
(W>WH)ρν − (W>V)ρν

)
. (8.78)

The sums in (8.73) are obtained by writing out the Euclidean distance and the matrix
product in (8.72). To derive (8.74), we use the fact that a derivative of a summand
that does not depend on ν (thus not depending on Hρν) must be zero. Therefore, only
the summand with n = ν remains. Then, we apply the chain rule from calculus to
obtain (8.75). In the next steps, we rearrange the sums and introduce the transposed
matrix W> with the property W>

ρk =Wkρ . This finally yields (8.78), which constitutes
a compact matrix-based formulation of the partial derivatives.

Starting with an initial guess H(0) ∈ RR×N , we obtain from (8.78) the following
additive update rules that reduce the squared Euclidean distance:

H(`+1)
rn = H(`)

rn − γ
(`)
rn ·
((

W>WH(`)
)

rn−
(
W>V

)
rn

)
(8.79)

for `= 0,1,2, . . . and some suitable parameters γ
(`)
rn ≥ 0. If the step sizes γ

(`)
rn are set

equal to some small positive number γ(`) (independent from r and n), we obtain the
conventional gradient descent as described by (8.70). In (8.79), we use coordinate-
dependent scaling factors γ

(`)
rn , thus yielding a generalized gradient descent.

Next, we fix a matrix H ∈RR×N and define a function ϕH :RD→R with D :=KR
by setting

ϕ
H(W) := ||V −WH||2 (8.80)

for W ∈ RK×R. By a similar computation as in (8.78), one can derive the following
additive update rules starting with an initial guess W (0) ∈ RK×R:

W (`+1)
kr =W (`)

kr − γ
(`)
kr ·
((

W (`)HH>
)

kr−
(
V H>

)
kr

)
(8.81)

for `= 0,1,2, . . . and some suitable parameters γ
(`)
kr ≥ 0.

At this point, let us reflect on the procedure we have obtained so far. We start
with initialized matrices W (0) ∈ RK×R and H(0) ∈ RR×N . Fixing W (0), we apply the
update rules (8.79) to derive a matrix H(1). Fixing this matrix, we then use the update

8.3 NMF-Based Audio Decomposition 463

rules (8.81) to derive a matrix W (1). Alternately updating the activation and template
matrices, this process is iterated, yielding matrices H(`) and W (`) for `= 0,1,2,
The hope is that the process converges to two matrices H(∞) and W (∞) which provide
a local minimum for our optimization problem (8.66).

There are still several issues with this procedure. First, it is unclear how to choose
the step size parameters to guarantee some kind of convergence. Second, applying
the gradient descent for each of the factors separately, it is unclear if the alternation
in the updates leads to a joint local minimum. Third, we have not yet accounted
for the nonnegativity constraint. In other words, using the proposed additive update
rules, some coefficients of the learned matrices may become negative even when
starting from nonnegative matrices W (0) and H(0).

8.3.1.4 Multiplicative Update Rules

In the case of NMF, there is a simple yet powerful solution for enforcing the non-
negativity constraints. The crucial idea is to set the step size parameters to specific
values with the result that the additive update rules become multiplicative update
rules. More precisely, setting

γ
(`)
rn :=

H(`)
rn(

W>WH(`)
)

rn

, (8.82)

the update rule (8.79) becomes

H(`+1)
rn = H(`)

rn −
H(`)

rn(
W>WH(`)

)
rn

·
((

W>WH(`)
)

rn−
(
W>V

)
rn

)
= H(`)

rn ·
(
W>V

)
rn(

W>WH(`)
)

rn

. (8.83)

Similarly, setting

γ
(`)
kr :=

W (`)
kr(

W (`)HH>
)

kr

, (8.84)

the update rule (8.81) converts to

W (`+1)
kr =W (`)

kr ·
(
V H>

)
kr(

W (`)HH>
)

kr

. (8.85)

The specified choices for the step size parameters in (8.82) and (8.84) are generally
not small. Therefore, it may seem that there is no guarantee that the resulting update
rules should cause the distance function (8.66) to decrease.

Surprisingly, this is indeed the case. Lee and Sung show in their seminal pa-
per [27] that the Euclidean distance ||V −W (`)H(`)|| is nonincreasing under the up-
date rules (8.83) and (8.85). Furthermore, the Euclidean distance is invariant under

464 8 Musically Informed Audio Decomposition

Algorithm: NMF (V ≈WH)

Input: Nonnegative matrix V of size K×N
Rank parameter R ∈ N
Threshold ε used as stop criterion

Output: Nonnegative template matrix W of size K×R
Nonnegative activation matrix H of size R×N

Procedure: Define nonnegative matrices W (0) and H(0) by some random or informed initial-
ization. Furthermore set `= 0. Apply the following update rules (written in matrix notation):

(1) H(`+1) = H(`)�
(
((W (`))>V)� ((W (`))>W (`)H(`))

)
(2) W (`+1) =W (`)�

(
(V (H(`+1))>)� (W (`)H(`+1)(H(`+1))>)

)
(3) Increase ` by one.

Repeat the steps (1) to (3) until ||H(`)−H(`−1)|| ≤ ε and ||W (`)−W (`−1)|| ≤ ε (or until some
other stop criterion is fulfilled). Finally, set H = H(`) and W =W (`).

Table 8.1 Iterative algorithm for learning an NMF decomposition. The multiplicative update rules
are given in matrix notation, where the operator � denotes pointwise multiplication and the oper-
ator � pointwise division.

these updates if and only if W (`) and H(`) are at a stationary point of the distance
(i.e., a point where the gradient is zero). The proof of these facts goes beyond the
scope of this book, and we refer to [27] for details.

The multiplicative update rules and their properties have a number of remarkable
implications. The first implication is that the matrix sequences W (0),W (1),W (2), . . .
and H(0),H(1),H(2), . . . (as defined in Table 8.1) converge. Denoting the limit ma-
trices by W (∞) and H(∞), the stationarity property implies that these matrices form a
local minimum of the distance function (8.66). Another advantage of multiplicative
update rules is that they are extremely easy to implement. Furthermore, in prac-
tice, the convergence turns out to be relatively fast in comparison with many other
methods. Finally, one major benefit of using multiplicative update rules is that the
nonnegativity constraints are enforced automatically. Indeed, starting with nonneg-
ative matrices V , W (0), and H(0), the factors (8.82) and (8.84) are also nonnegative.
As a result, the matrices W (`) and H(`) are nonnegative.

Table 8.1 summarizes the iterative learning procedure for computing an NMF
decomposition based on multiplicative update rules. In practice, the iteration is per-
formed until a specified stop criterion is fulfilled. For example, one may perform
a certain number of iterations ` = 0,1,2, . . . ,L for some user-specified parameter
L ∈ N. As another stop criterion, one may look at the distances between two subse-
quently computed template matrices and activation matrices, respectively. Specify-
ing a threshold ε > 0, the iteration may be stopped when ||H(`+1)−H(`)|| ≤ ε and
||W (`+1)−W (`)|| ≤ ε . Note that this stop criterion does not say anything about the
quality of the approximation V ≈WH achieved by the procedure. Even in the limit
case and even when converging to the global minimum (and not to a local one),

8.3 NMF-Based Audio Decomposition 465

the distance ||V −WH|| may still be large. In particular, this may happen if the rank
parameter R is chosen too small.

8.3.2 Spectrogram Factorization

We now show how our introduced NMF framework can be applied in practice for
decomposing a given audio recording into musically meaningful sound events. The
piano piece shown in Figure 8.21 will serve as our running example. Let us start with
an individual note played on a piano, which corresponds to a time–frequency pattern
as illustrated by Figure 1.23a. Intuitively, this pattern may be described by a spec-
tral vector that has a pitch-dependent harmonic structure and some time-dependent
weights that describe the sound’s volume over time. Playing several notes, the re-
sulting audio recording may be regarded as a superposition of the sound events that
correspond to the individual notes.

Even though this model is too simplistic to correctly reflect all acoustic proper-
ties of the music recording, it justifies applying the NMF framework. In order to
decompose the given music signal x, we apply NMF to the magnitude of the STFT
X (see (8.2)). More precisely, we use the transposed version, yielding a nonnegative
(K×N) matrix

V := |X |>. (8.86)

In the factorization V ≈W ·H, we expect that the template matrix W picks up the
structure of the pitch-dependent spectral vectors, while the activation matrix H en-
codes when and how strongly the respective vectors are active. In this way, the ma-
trix H yields a kind of weighted piano-roll representation for the notes’ templates
(see Figure 8.21d). For this kind of interpretation, the rank parameter R should cor-
respond to the number of different pitches occurring in the piece of music. For
example, in Figure 8.21a one can count eight different pitches, thus making R = 8 a
good choice.

We now apply the NMF algorithm from Table 8.1 to V by iteratively updating
the randomly initialized matrices W (0) and H(0). For our running example, both the
initialized and learned template and activation matrices are shown in Figure 8.22. In
this example, the rank parameter R was manually set to eight, allowing one template
for each of the eight different musical pitches. However, as demonstrated by this
example, there are various issues with this approach. Looking at the learned template
matrix W , it is not clear to which sound or pitch a given template vector corresponds.
While only a few of the template vectors reveal a clear harmonic structure, most of
the templates seem to correspond to mixtures of notes rather than individual notes.
This is also indicated by the activation patterns in H, which can hardly be associated
to the piano-roll representation from Figure 8.21b. In summary, even though the
original matrix V may be approximated well, simply applying the standard NMF
approach based on a random initialization often produces a factorization that lacks
clear musical semantics.

466 8 Musically Informed Audio Decomposition

N
ot

e
nu

m
be

r

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

Note number

N
ot

e
nu

m
be

r

Time (seconds)

(a) (b)

(c) (d)

Fig. 8.22 NMF based on random initialization. The matrix V is the magnitude spectrogram from
Figure 8.21c. (The matrix entries are encoded by different gray levels, which are lighter for small
values and darker for large values.) (a) Initialization of W (0) using random values. (b) Initialization
of H(0) using random values. (c) Learned W . (d) Learned H.

8.3.2.1 Template Constraints

To overcome these issues, one important idea is to guide the NMF processing by im-
posing additional suitable constraints on W and H. In this context, the multiplicative
update rules again constitute a great advantage over additive rules. In the multiplica-
tive case, zero-valued entries remain so during the entire learning process. Thanks
to this property, one can enforce certain structures on W and H by setting suitable
entries to zero in the initialization stage. Using this modified initialization, one can
then apply the standard NMF approach from Table 8.1 in the subsequent learning
process.

Let us apply this strategy to enforce a harmonic structure in the templates of
W . The motivating observation is that many instruments such as a piano produce
harmonic sounds, and that the templates should reflect this structure. Recall from
Section 1.3.2 that a harmonic sound is one whose energy is concentrated around
the harmonics of the fundamental frequency. To enforce such a structure in the
templates, we can constrain the spectral energy between harmonics to be zero. More
precisely, after assigning a musical pitch p to each template vector, we can use the
center frequency Fpitch(p) (see (1.1)) associated with each pitch as an estimate of
the fundamental frequency. From this, we can derive the approximate positions for
the harmonics. As the exact frequencies are not known, a neighborhood around

8.3 NMF-Based Audio Decomposition 467

Fr
eq

ue
nc

y
(H

z)

Note number Time (seconds)

(a) (b)

(c) (d)

N
ot

e
nu

m
be

r
N

ot
e

nu
m

be
r

Fr
eq

ue
nc

y
(H

z)

Fig. 8.23 NMF with a harmonically informed initialization of the template vectors. The matrix
V is the magnitude spectrogram from Figure 8.21c. (a) Initialization of W (0) using harmonic tem-
plates. (b) Initialization of H(0) using random values. (c) Learned W . (d) Learned H.

these positions can then be initialized with nonzero values in the templates, while
setting the remaining entries to zero. This kind of initialization is also illustrated by
Figure 8.23a. For example, for a pitch corresponding to the note number p = 55,
the frequency coefficients in a neighborhood of the harmonics h ·Fpitch(p) for h =
1,2,3, . . . are set to a nonzero value (e.g., the value of one or a value of 1/h as in our
example), while the other coefficients are set to zero.

As illustrated by Figure 8.23c, the learning process based on multiplicative up-
date rules not only retains this harmonic structure but further refines it. At the same
time, the activation matrix reflects the presence and the intensity of the played notes
much better (see Figure 8.23d). Furthermore, one can also observe vertical struc-
tures in the activation matrix. These structures are the result of short-time energy
bursts that are related to the note onsets’ transients.

8.3.2.2 Score-Informed Constraints

If additional prior knowledge is available, it can be exploited to further stabilize the
factorization process. In this context, a musical score is particularly valuable. On a
coarse level, we can extract global information from the score, such as which instru-
ments are playing or which and how many pitches occur over the course of a piece
of music. In our example, this information can be used to set the number of tem-

468 8 Musically Informed Audio Decomposition

Fr
eq

ue
nc

y
(H

z)

Note number

N
ot

e
nu

m
be

r

Time (seconds)

(a) (b)

(c) (d)

N
ot

e
nu

m
be

r

Fr
eq

ue
nc

y
(H

z)

Fig. 8.24 NMF with a harmonically informed initialization of the template vectors and score-
informed initialization of the activation matrix. The matrix V is the magnitude spectrogram from
Figure 8.21c, and the score information comes from the synchronized piano-roll representation
shown in Figure 8.21b. (a) Initialization of W (0) using harmonic templates. (b) Initialization of
H(0) using score information. (c) Learned W . (d) Learned H.

plates automatically to R = 8. One can also refine the initialization of the templates
using instrument-dependent harmonic models, which may be derived from example
recordings of isolated notes.

On a finer level, one may also exploit local information about when notes are
actually played. As in Section 8.2.3.2, we assume that a score aligned to a cor-
responding audio recording is available, i.e., that the note events specified by the
score are aligned to the time positions where they occur in the audio recording.
Such an alignment may be computed automatically by employing music synchro-
nization techniques (see Chapter 3). Based on the synchronized score information,
one can impose time constraints on where certain templates may become active. To
this end, one initializes suitable regions in H(0) by setting the corresponding acti-
vation entries to one. The remaining entries are set to zero. Such a score-informed
initialization is illustrated by Figure 8.24b. For example, the activation entries cor-
responding to pitch p = 55 are constrained to the time interval ranging from roughly
t = 2 to t = 7 (given in seconds).

To account for possible alignment inaccuracies, the temporal boundaries for the
constraint regions can be chosen rather generously. As a result, the activation ma-
trix H can be interpreted as a coarse piano-roll representation of the synchronized
score information. In a sense, the synchronization step can be seen as yielding a first

8.3 NMF-Based Audio Decomposition 469

Fr
eq

ue
nc

y
(H

z)

Note number

N
ot

e
nu

m
be

r

Time (seconds)

(a) (b)

(c) (d)

N
ot

e
nu

m
be

r

Fr
eq

ue
nc

y
(H

z)

Fig. 8.25 Score-informed NMF using an extended NMF model with additional onset templates.
The matrix V is the magnitude spectrogram from Figure 8.21c (a) Initialization of W (0) using
harmonic templates. (b) Initialization of H(0) using score information. (c) Learned W . (d) Learned
H.

approximate factorization, which is then refined by the NMF-based learning proce-
dure. As expected, combining the activation constraints with those for the template
vectors further stabilizes the factorization in the sense that the result better reflects
the desired semantics. For example, most of the transients’ short-time energy bursts,
which are spread across activations of all pitches in Figure 8.23d, are suppressed in
Figure 8.24d.

8.3.2.3 Onset Models

So far, our NMF-based decomposition only represents harmonic properties of the
signal. To also account for percussive properties such as onsets, we now show how
one may extend the NMF model by introducing additional templates. A first idea is
to use one additional template that jointly explains the onsets for all pitches. How-
ever, since the spectral patterns for note onsets may not be completely independent
from the respective pitch (as is the case with the piano), we use in the following one
additional onset template for each pitch. In general, it is hard to predict the spectral
shape of an onset template. Therefore, in contrast to the harmonic templates, we do
not enforce any spectral constraints, but initialize the onset templates uniformly and
let the learning process derive their respective shapes (see Figure 8.25a).

470 8 Musically Informed Audio Decomposition

While it is hard to find meaningful spectral constraints for the onset templates,
the short-time nature of note onsets makes it possible to introduce relatively strict
temporal constraints on the activation side. Using the synchronized score informa-
tion, one has a rough estimate for the onset positions. Within a small neighborhood
around each of these positions (accounting for possible synchronization inaccura-
cies), we initialize the corresponding activation entries with one, while setting all
remaining entries to zero. This strongly constrains the time points where onset tem-
plates are allowed to become active (see Figure 8.25b).

Let us have a look at how the additional onset templates affect the factorization.
As illustrated by Figure 8.25c, the learned harmonic template vectors have a much
cleaner harmonic structure compared with the ones in previous factorizations. The
reason is that most of the transients’ broadband energy is now captured by the onset
templates. Furthermore, one can observe an impulse-like activation pattern at the
beginning of note events for most of the onset templates. This indicates that these
templates indeed represent onsets. Having a closer look at the onset templates, one
can observe a spread of energy across many different spectral coefficients. Still, the
spread is concentrated in regions around the fundamental frequency and the first
harmonic.

In summary, we have seen that a combination of template and activation con-
straints may significantly stabilize and guide an NMF-based factorization process
to yield a musically meaningful decomposition. In this process, constraints on the
activation side can compensate for using relatively loose or even no constraints on
the template side and vice versa. Note that the constraints introduced are hard in the
sense that zero entries in W (0) and H(0) remain zero throughout the learning process.
Therefore, one should use rather generous constraint regions to account for potential
synchronization inaccuracies and to retain a certain degree of flexibility. Finally, we
want to emphasize one of the most advantageous aspects of the proposed strategy.
Using hard constraints by setting certain coefficients to zero allows for using ex-
actly the same multiplicative update rules as in standard NMF. Thus the constrained
procedure inherits the ease of implementation and computational efficiency of the
original approach.

8.3.3 Audio Decomposition

The score-informed NMF procedure from Figure 8.25 yields a decomposition of the
magnitude spectrum into musically meaningful template and activation matrices.
In particular, the notewise activation constraints yield a mapping between nonzero
coefficients in H and the score’s note events (see Figure 8.25d). We now describe
how this spectrogram decomposition can be employed to separate audio components
that correspond to specific note groups. These note groups, which may encode a
melody line, a certain motif, or the accompaniment, may be specified by means of
a suitable labeling of the score representation.

8.3 NMF-Based Audio Decomposition 471

(a)

(b)

N
ot

e
nu

m
be

r

2 4 6 802 4 6 80

0 2 4 6 8

500

0

1000

1500

2 4 6 8

500

0

1000

1500

0

0 2 4 6 8

500

0

1000

1500

(c)

(d)

Fr
eq

ue
nc

y
(H

z)
Fr

eq
ue

nc
y

(H
z)

2 4 6 8

500

0

1000

1500

0
Time (seconds)Time (seconds)

54

55

57
59

63

64

71

72

54

55

57
59

63

64

71

72

N
ot

e
nu

m
be

r
Fr

eq
ue

nc
y

(H
z)

Fr
eq

ue
nc

y
(H

z)

Fig. 8.26 Decomposition of a piano recording into signals corresponding to the notes of the left
and the right hand. (a) Score representation (Prélude Op. 28, No. 4 by Frédéric Chopin) with a
labeling of the notes for the left hand (indicated by the lower red box) and right hand (indicated by
the upper yellow box). (b) Partition of the activation matrix H from Figure 8.25d into HL and HR.
(c) Product matrices WHL and WHR. (d) Soft masks ML and MR.

8.3.3.1 Separation Process Using Spectral Masking

As an illustrative scenario, let us consider the task of decomposing the recording
of our running example into two components. As indicated by Figure 8.26a, one
component corresponds to the notes of the lower staff (the accompaniment played by
the left hand of the pianist) and the other to the notes of the upper staff (the melody
played by the right hand). Using the mapping between the activation constraints in
H and the score’s notes, we can split up H (see Figure 8.25d) into two matrices HL

and HR, which contain the activations for the left and for the right hand, respectively
(see Figure 8.26b). Multiplying these two matrices with the template matrix W , we
obtain two matrices WHL and WHR as shown in Figure 8.26c. Intuitively, these
two matrices can be regarded as the estimated magnitude STFTs for the desired
components. To obtain time-domain signals, a first idea is to simply use the phase
information of the original STFT X and to invert the resulting modified STFTs by
applying the signal reconstruction method from Section 8.1.2.2. However, NMF-
based models typically yield only a rough approximation of the original magnitude

472 8 Musically Informed Audio Decomposition

spectrogram, where spectral nuances may not be captured well. Therefore, the audio
components reconstructed in this way may contain a number of audible artifacts.

Some of these artifacts may be removed or attenuated by using masking tech-
niques as discussed in Section 8.1.1.2. Instead of directly using WHL and WHR for
the reconstruction, the idea is to use these matrices to first define the matrices

ML := (WHL)� (WH + ε) and MR := (WHR)� (WH + ε) (8.87)

(see Figure 8.26d), where the operator � denotes pointwise division and the small
positive value ε > 0 is added to avoid division by zero. As in (8.10) and (8.11), these
two matrices can then be used as soft masks. Applying the two masks to the origi-
nal STFT X and employing the signal reconstruction method from Section 8.1.2.2,
one obtains the two desired time-domain component signals for the left and the right
hand notes, respectively. By using the masking-based approach, many of the spectral
details of the original recording are preserved, even if they are not directly captured
by the factors of the NMF decomposition. This often yields more acoustically ap-
pealing results. On the downside, by filtering the original audio data, masking may
also retain more nontarget spectral components compared with a direct reconstruc-
tion from WHL and WHR.

8.3.3.2 Notewise Audio Processing

The described separation procedure can be applied for any group of notes or even
individual notes specified by the score. Let us further formalize this process for the
notewise case, which has already served as an example in Figure 8.19. The goal is to
decompose a given audio recording x into notewise audio events xm for m ∈ [1 : M],
where M is the number of note events specified in the score, and a residual signal r
such that

x =
M

∑
m=1

xm + r. (8.88)

To obtain this decomposition, we apply the masking procedure described above for
each note event separately. To this end, we introduce a binary constraint matrix
Cm ∈ {0,1}R×N that describes the activation constraints for note event m ∈ [1 : M].
The union (OR-sum) of all Cm is used as initialization for the activation matrix.
Based on the resulting score-informed decomposition V ≈WH, we define the note-
wise activation matrix Hm := H�Cm, where the operator� denotes pointwise mul-
tiplication. Subsequently, we derive a spectral mask

Mm := (WHm)� (WH + ε) (8.89)

as in (8.87). The mask Mm can be interpreted as a weighting matrix that reflects the
contribution of the mth note event to the original spectrogram X . Then, as before,
we define Xm := X �Mm and apply an inverse STFT to obtain the audio event xm

(see Section 8.1.2). Finally, the residual signal is defined as

8.3 NMF-Based Audio Decomposition 473

Fig. 8.27 Score-informed audio editing for Prélude Op. 28, No. 4 by Frédéric Chopin. (a) Original
score and a recording’s spectrogram. (b) Modified score and spectrogram.

r = x−
M

∑
m=1

xm. (8.90)

The signal r holds a lot of valuable information since it may give deeper insights
into the quality of the decomposition and separation process. The score-informed
decomposition becomes problematic in the case that the recorded performance de-
viates from the musical score. More generally, synchronization inaccuracies and
deviations in the alignment of the score events and their expected realization in the
music recording typically lead to local errors in the decomposition. Further artifacts
in the decomposition may be introduced by deviations in the expected tuning or by
additional sound components caused by resonance or reverberation. Moreover, the
model assumption that the harmonic partials’ relative energy distribution (the har-
monic structure of the templates) is independent of the volume is rather simplistic
and may be violated for real sounds. Many of the resulting artifacts and errors are
gathered in the residual component [9].

8.3.3.3 Audio Editing

As said before, the availability of score information can not only be exploited for the
separation process, but also offers user-friendly access for interactive audio process-
ing applications. Figure 8.27 gives an example of a score-informed audio editing
application, where a user can easily specify the desired audio manipulation within
the score simply by editing some of the notes. For example, a user may convert the

500

580

523

Fr
eq

ue
nc

y
(H

z)

0 10.5
Time (seconds)

9876

1600

1200

800

400

9876

1600

1200

800

400

500

580

554

Fr
eq

ue
nc

y
 (H

z)

0 10.5
Time (seconds)

(a) (b)

474 8 Musically Informed Audio Decomposition

piece originally written in E-minor (Figure 8.27a) into E-major (Figure 8.27b) by
changing the key signature from one sharp to four sharps. This shifts the note C5
to C]5 and the note G3 to G]3. Based on the notewise audio decomposition, the
same manipulations can be automatically transferred to a given audio recording. To
this end, the original recording is first decomposed into the notewise audio events of
the manipulated notes and a remainder component. Subsequently, the original pitch
of each of the notewise audio events is suitably raised or lowered according to the
specified score manipulations. Such sound modification techniques are also known
as pitch shifting (see, e.g., [52]). Finally, the modified audio events are added
back to the remainder component. By using similar strategies, it is also possible to
change the duration or the volume of notes, to remove notes completely from the
audio recording, or to add additional notes by copying and manipulating existing
ones [9].

8.4 Summary and Further Readings

In this chapter, we studied various techniques for decomposing a music signal into
its constituent components—a task closely related to what is generally referred to
as source separation. Given a mixture signal containing different combinations of
sources (e.g., vocals, drums, bass, and guitar), source separation aims to recover the
individual source signals as if they were played in isolation [7]. Musical sources
(within a mixture) often follow the same rhythmic patterns or play harmonically re-
lated notes. These strong correlations make music source separation a particularly
challenging area of research. To make the decomposition of music recordings feasi-
ble, one general strategy is to use additional knowledge about the sources. For exam-
ple, as noted in [7], musical sources often have a regular harmonic structure where
groups of equally spaced frequencies are formed. Specific instruments may go along
with characteristic frequency contours (e.g., vibrato patterns for singing). Other
sources may correspond to temporal-spectral patterns that repeat over time [42].

This chapter has dealt with three audio decomposition scenarios where musical
knowledge was exploited in one way or another. First, in Section 8.1, we exploited
the property that percussive instruments typically exhibit structures in the frequency
direction (short bursts of broadband energy) while harmonic instruments usually
lead to structures in the time direction (slowly changing harmonics). This obser-
vation has motivated the method for decomposing a music signal into a harmonic
and a percussive component [17]. Second, in Section 8.2, we studied techniques for
automatically estimating frequency trajectories of harmonic sources [45]. Based on
the assumption that the melody often correlates to the predominant fundamental fre-
quency trajectory, we showed how this information can be used for decomposing a
music signal into a melody component that captures the main melodic voice and
an accompaniment component that captures the remaining acoustic events. Third,
in Section 8.3, we discussed a score-informed approach for decomposing a music
signal into notewise audio events [16]. As the underlying technique, we introduced

8.4 Summary and Further Readings 475

the concept of nonnegative matrix factorization (NMF) [27], which is based on the
assumption that characteristic events (in our case spectral vectors) repeatedly oc-
cur. While considering three selected decomposition scenarios, we studied various
fundamental techniques, including signal reconstruction, STFT inversion, instan-
taneous frequency estimation, harmonic summation, and NMF. In the subsequent
paragraphs, we give pointers to the literature that further discusses these topics.

As for the many tasks related to music source separation and signal decompo-
sition, we only scratched the surface, and it is beyond the book’s scope to give an
overview of this extensive research area. For pointers to the literature, we refer to
the overview article by Cano et al. [7]. In recent years, significant advances could
be achieved using supervised learning methods based on deep neural networks (see,
e.g., [22, 35, 41]). A good overview of current approaches is also provided by the
Signal Separation Evaluation Campaign (SiSEC)—a community-based initiative to
compare the performance of source separation systems based on standard datasets
and evaluation metrics [50]. For open-source implementations of source separation
systems based on deep learning, we refer to [31, 51].

Harmonic–Percussive Separation

The task of decomposing an audio signal into a harmonic and a percussive com-
ponent has received much research interest, and various decomposition algorithms
have been proposed. For example, in the earlier approach [14], the percussive part is
separated by looking at signal components with an unstable phase behavior, while
the remainder is defined to be the harmonic part of the signal. Subsequently, HPS
approaches were proposed based on the observation that harmonic sounds reveal
horizontal time–frequency structures, while percussive sounds reveal vertical ones.
Based on this observation, Ono et al. [36] introduced an iterative diffusion technique
applied to a spectrogram once in the horizontal and once in the vertical direction.
Similar to the approach discussed in this chapter, spectral masking and signal re-
construction techniques are used to derive the harmonic and percussive signal com-
ponents. Following the same lines, Fitzgerald [17] replaced the diffusion step with a
simpler median filtering strategy, which turned out to yield similar results while hav-
ing a much lower computational complexity. In Section 8.1.1, we closely followed
Fitzgerald’s approach. One problem with HPS is that certain signal components may
be neither of harmonic nor of percussive nature (e.g., noise-like sounds such as ap-
plause). For an extension of HPS which introduces a third residual component, we
refer to [11] (see also Exercise 8.5).

In Section 8.1.1.2, we discussed the topic of time–frequency masking. Apply-
ing a mask in the spectral domain in a pointwise fashion is equivalent to applying a
suitable convolution filter in the time domain. In the case of soft time–frequency
masking, this leads to an important concept in signal processing referred to as
Wiener filtering. For details on this topic, we refer to [21].

Finally, in Section 8.1.2, we dealt with another important problem in digital sig-
nal processing, which is concerned with the reconstruction of a time-domain signal

476 8 Musically Informed Audio Decomposition

from a modified STFT. In their seminal paper [20], Griffin and Lim described sev-
eral algorithms, including the overlap–add approach discussed in this chapter. Sim-
ply taking the original phase, this approach can lead to clicking and ringing artifacts
in the reconstructed signal. As the main contribution of [20], the authors introduced
a method that attenuates the inversion artifacts by iteratively modifying the origi-
nal phase information. For variants and alternative phase estimation approaches, we
refer to [37, 39, 43].

Melody Extraction

Main melody extraction, especially for the singing voice, is a central research topic
in music information retrieval. For a comprehensive overview of related tasks and
their applications, we refer to the overview articles [23, 32, 45]. In Section 8.2, we
discussed a subtask of melody extraction, often referred to as predominant F0 esti-
mation [4, 19, 38, 44]. As described in [38], the problem of main melody extraction
is traditionally split into a preliminary analysis stage followed by a melody identi-
fication phase and concluded by a smoothing or tracking process. This is also the
strategy presented in this chapter. Closely following [44], we introduced a salience
representation used in the preliminary analysis stage. One important step was to re-
fine the frequency grid introduced by a discrete STFT. To this end, we applied a
technique for estimating the instantaneous frequency. Originally, this technique
was used in the context of a phase vocoder, where one objective is to modify the
time scale of an audio signal by exploiting the phase information [18]. An excellent
tutorial on the phase vocoder and the underlying techniques can be found in [8]—
this article also served as a source of inspiration for Section 8.2.1. As a second
important technique, we discussed the concept of harmonic summation, which is
a common technique used in fundamental frequency estimation [26, 44]. Finally,
we want to note that data-driven methods based on deep neural networks have been
successively applied for fundamental frequency tracking and for learning salience
representations (see, e.g., [5, 4, 25]). For an example of a richly annotated multi-
track dataset, as required for such supervised learning approaches, we refer to [6].

Numerous problems are conceptually similar or even equivalent to melody ex-
traction [32]. For example, the melody is often performed by a solo or lead in-
strument. We refer to [41] for an overview of lead and accompaniment separation
approaches. Another problem closely related to melody tracking is the extraction of
the bass line from a music recording. The term bass line is typically used to refer
to a linear succession of musical tones played with a bass guitar, a double bass,
or a bass synthesizer. The bass line plays an important role in several music styles
such as jazz or popular music. Therefore, explicit knowledge of the bass line is use-
ful for a multitude of applications including chord extraction, downbeat estimation,
genre classification, and so on [1]. Finally, we want to mention the problem of drum
extraction, which requires techniques that are quite different from those used for
melody extraction. Most research in drum extraction has targeted the Western drum
kit composed of instrument classes including the bass drum, snare drum, cymbals,

8.4 Summary and Further Readings 477

and hihat. Starting from solo drum signals, recent studies tackle the more realistic
scenario of extracting and transcribing drum signals directly from polyphonic sound
mixtures. For an overview and pointers to the literature, we refer to the comprehen-
sive article by Wu et al. [56].

NMF-Based Audio Decomposition

In Section 8.3, we discussed nonnegative matrix factorization (NMF) as an exam-
ple for an important machine learning and matrix decomposition technique. In their
seminal paper, Lee and Seung [27] introduced and analyzed multiplicative update
rules, laying the theoretical basis for a wide range of NMF applications. In music
processing, NMF and its variants have been extensively used for tasks such as mu-
sic transcription [3, 48], source separation [54], and structure analysis [55]. For an
overview of NMF and its extensions, as well as applications to music processing
and beyond, we refer to the overview articles [16, 49, 53, 57].

As discussed in Section 8.3.2, the application of standard NMF may lead to a
decomposition that is hard to interpret from a musical perspective. Therefore, one
often imposes certain constraints on the template and activation matrices. A typical
approach is to enforce a harmonic structure in the templates, and temporal continu-
ity in the activations (see, e.g., [3, 24, 40, 54]). In Section 8.3.2.2, we showed how
synchronized score information can be exploited to guide the NMF decomposition
process. Besides harmonic constraints [40] on the template side, the aligned note
information can be used to introduce constraints on the activation side [15]. The
application of dual constraints for the template as well as the activation matrix can
significantly stabilize the factorization process, leading to musically meaningful au-
dio decompositions. Of course, the availability of synchronized score information is
a strong requirement, which only applies for limited classes of music.

The NMF-based procedures, as discussed in this chapter, rely on the assumption
that the fundamental frequency associated with a musical pitch is approximately
constant over time since the frequency position of harmonics in each template is
fixed and cannot move up or down. While this assumption is valid for some instru-
ments, such as a piano, which typically produces stable horizontal frequency trajec-
tories, it is not true in general. For example, a violin may produce strong frequency
modulations (vibrato) due to the way it is played. As a result, while a single note in
the score is associated with a single musical pitch, its realization in the audio can
be much more complex, involving a whole range of frequencies. To deal with such
fluctuating fundamental frequencies, parametric signal models have been consid-
ered as extensions to NMF (see, e.g., [2, 13, 24]). In these approaches, the musical
audio signal is modeled using a family of parameters that capture the fundamental
frequency and its temporal fluctuations, the spectral envelope of instruments, or the
amplitude progression. Such parameters often have an explicit acoustic or musical
interpretation and allow for an integration of available score information.

We want to conclude this section by mentioning that significant progress has been
achieved in many music processing tasks, including source separation, by apply-

478 8 Musically Informed Audio Decomposition

Fig. 8.28 Cascaded HRPS
procedure with three cascades
using different separation
parameters β (see [29]).

ing deep learning (DL) techniques. Rather than requiring explicit modeling, these
approaches take advantage of optimization techniques to train source models in a
supervised manner, where both the mix and the isolated sources are required [7]. If
a huge number of multi-track recordings are available, DL-based methods are capa-
ble of learning and separating even complex time–frequency patterns as occurring,
e.g., in singing [23]. In other words, rather than exploiting a source’s musical func-
tion (e.g., melody or bassline), such approaches perform the separation based on
learned timbre- and instrument-specific cues [47]. For other scenarios, more tradi-
tional techniques such as NMF (while being explicit and instructive) may still be an
alternative—in particular, when only little training material is available.

8.5 FMP Notebooks

Besides introducing basic source separation and audio decomposition tasks, the
main purpose of this chapter was to study fundamental signal processing techniques
such as signal reconstruction, STFT inversion, instantaneous frequency estimation,
harmonic summation, and NMF. In Part 8 of the FMP notebooks [33], we deepen
the studies of these techniques from an implementation perspective while providing
many instructive examples and illustrations.

We start in the FMP Notebook Harmonic–Percussive Separation (HPS) by
providing an implementation of the simple yet beautiful decomposition approach
originally suggested by Fitzgerald [17]. Closely following Section 8.1.1, we cover
the required mathematical concepts such as median filtering, binary masking, and
soft masking. Applied to spectrograms, the effects of these techniques immediately
become clear when visualizing the processed matrices. The main parameters of the
HPS implementation are the window length N and the hop size H of the STFT as
well as the length parameters Lh and Lp of the median filters applied in the horizon-
tal (time) and vertical (frequency) direction, respectively. To illustrate the role of
and interplay between the different parameters, we conduct a systematic experiment
where one can listen to the resulting harmonic and percussive sound components
for various real-world music recordings. This way, one can understand acoustically
how, e.g., the energy “flows” from the harmonic to the percussive component when
increasing Lh. The opposite occurs when increasing Lp. In general, due to the in-
terplay between the four parameters, it is not easy to predict the sound quality of

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HPS.html

8.5 FMP Notebooks 479

Fig. 8.29 Application of HPS
for time-scale modification
(TSM), where TSM based
on the phase vocoder is used
for the harmonic component
and TSM based on OLA
(overlap–add techniques)
is used for the percussive
component (see [12]).

the resulting components. In the FMP Notebook Harmonic–Residual–Percussive
Separation (HRPS), we provide an implementation of the extended HPS approach
by introducing a third, residual component (see [11] and Exercise 8.5). Again, stu-
dents are encouraged to listen to the separated sound components computed for
various music recordings. This HPRS approach has an additional separation param-
eter β , which can be used to adjust the size of the middle, residual component.
We conclude the notebook by discussing a cascaded application of HRPS where
the residual component is further decomposed using different separation factors β

(see [29] and Figure 8.28).
In the HPS procedure, we need to reconstruct the time-domain signals for the

harmonic and percussive sound components from modified STFTs. However, as
discussed in Section 8.1.2.2, modified STFTs are typically not valid in the sense
that there is no time-domain signal whose STFT coincides with the specified mod-
ified STFT. Intuitively, the problem arises from the STFT’s overlapping windows,
which reintroduce in the reconstruction some information from the previous and
subsequent frames into the current frame. This fact, which is not easy to under-
stand and often overlooked when employing black-box implementations for STFT
inversion, may lead to unexpected signal artifacts. In the FMP Notebook Signal
Reconstruction, we provide Python code that yields such an example (similar to
Figure 8.8). We strongly recommend that students experiment with such examples
to gain a feeling on the intricacies of STFT inversion. As we already indicated in
the FMP Notebook STFT: Inverse of Part 2, signal reconstruction needs to be re-
garded as an optimization problem, where the objective is to estimate a signal whose
STFT is at least as close as possible to the modified STFT with regard to a suitably
defined distance measure. Using a measure based on the mean square error leads to
the famous approach originally introduced by Griffin and Lim [20]. This approach
is often used as default in implementations of the inverse STFT, as, e.g., provided
by the Python package librosa.

In the FMP Notebook Applications of HPS and HRPS, we cover Python im-
plementations for the applications sketched in Section 8.1.3. Similar to Figure 8.9,
we show how to enhance a chroma representation by considering only a signal’s

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HRPS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HRPS.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_SignalReconstruction.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_SignalReconstruction.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Inverse.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S1_HPS-Application.html

480 8 Musically Informed Audio Decomposition

Fig. 8.30 Interpretation of time–frequency bins of an STFT as specified by the (frame-
independent) frequency values Fcoef(k) and the (frame-dependent) instantaneous frequency values
F IF

coef(k,n). The bin offset (specified in Hertz) is given by F IF
coef−Fcoef.

harmonic component and how to enhance a novelty representation by considering
only a signal’s percussive component. While these simple applications should by
seen only as an illustration of the HPS decomposition’s potential, we also sketch a
more serious application in the context of time-scale modification (TSM), where the
task is to speed up or slow down an audio signal’s playback speed without chang-
ing its pitch. The main idea of the TSM approach by Driedger et al. [12] is to first
split up the signal into a harmonic and percussive component using HPS. The two
components are then processed separately using specialized TSM approaches—one
that is specialized to stretch tonal elements of music and one that is specialized to
preserve transients. The final TSM result is then obtained by superimposing the two
modified components (see Figure 8.29). For an implementation of this procedure,
which goes beyond the scope of the FMP notebooks, we refer to [10].

In the next notebooks, we turn to the topic of melody extraction, which serves as
a motivating scenario for studying several important signal processing techniques.
In the FMP Notebook Instantaneous Frequency Estimation, we show how one
can improve the frequency resolution of the discrete STFT by exploiting the infor-
mation hidden in its phase. Looking at the phases of subsequent frames, as described
in Section 8.2.1, allows for adjusting the STFT’s frame-independent grid frequency
Fcoef(k) (see (8.30)) to obtain a frame-dependent instantaneous frequency F IF

coef(k,n)
(see (8.44)). Besides providing an implementation, the notebook introduces visual-
izations that yield deeper insights into the IF estimation procedure. In particular, we
look at a piano recording of the note C4 with fundamental frequency 261.5 Hz as
an example (see Figure 8.30). The resulting visualization indicates that the IF esti-
mation procedure assigns all frequency coefficients in a neighborhood of 261.5 Hz
to exactly that frequency (see F IF

coef of Figure 8.30). Also the difference F IF
coef−Fcoef,

which corresponds to the bin offset computed in (8.45), is shown. The notebook
closes with an experiment that indicates how the quality of the estimated instanta-
neous frequency depends on the hop-size parameter (with small hop sizes improving
the IF estimate). In conclusion, an overall aim of the notebook is to emphasize the
potential of the phase information—an aspect that is often neglected in a signal
processing course.

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_InstantFreqEstimation.html

8.5 FMP Notebooks 481

As a second concept central to melody extraction, we introduce in the FMP
Notebook Salience Representation a time–frequency representation that empha-
sizes the predominant frequency information. Closely following the explanations of
Section 8.2.2, we provide a step-by-step implementation of the procedure. As our
running example, we use a short excerpt of an aria from the opera “Der Freischütz”
by Carl Maria von Weber. We first examine the shortcomings of logarithmic binning
methods based on the STFT’s linearly spaced frequency grid and then discuss the
benefits when using the IF-based frequency refinement. Next, we introduce a Python
function for harmonic summation following (8.55). Applied to our Weber example,
the effect of harmonic summation does not seem to be huge—a disappointment that
students often encounter when they put theory into practice. In our case, as we dis-
cuss in this notebook, a high frequency resolution in combination with the IF-based
sharpening leads to small deviations across harmonically related frequency bins.
To balance out these deviations, we introduce a simple method by introducing a
smoothing step along the frequency axis. Continuing our Weber example, we show
that this small modification increases the robustness of the harmonic summation,
leading to significant improvements in the resulting salience representation. In gen-
eral, when applying local operations to data that is sampled with high resolution,
small deviations or outliers in the data may lead to considerable degradations. In
such situations, additional filtering steps (e.g., convolution with a Gaussian kernel
or median filtering) may help to alleviate some of the problems. Besides providing
reference implementations, it is at the core of the FMP notebooks to also bring up
practical issues and introduce small engineering tricks that may help in practice.

Assuming that the main melody corresponds to the strongest harmonic frequency
component at each time point motivates the next topic covered by the FMP Note-
book Fundamental Frequency Tracking. Continuing our Weber example, we start
by providing Python code for the visualization and sonification (using sinusoidal
models) of frequency trajectories. In particular, listening to a trajectory’s sonifica-
tion superimposed with the original music recordings yields an excellent acoustic
feedback on the trajectory’s accuracy. Then, following Section 8.2.3, we provide
implementations of different frequency tracking procedures, including a frame-wise
approach, an approach using continuity constraints, and a score-informed approach.
Again, the benefits and limitations of these approaches are made tangible through vi-
sualizations and sonifications of concrete examples. This again highlights the main
purpose of the FMP notebooks: Instead of just passively following the concepts, the
notebooks enable students to deepen their understanding by conducting experiments
using their own examples.

Finally, in the FMP Notebook Melody Extraction and Separation, we show
how to integrate the algorithmic components learned in the previous notebooks to
build a complete system. Based on the assumption that the melody correlates to
the predominant fundamental frequency trajectory, we show how this information
can be used for decomposing a music signal into a melody component that cap-
tures the main melodic voice and an accompaniment component that captures the
remaining acoustic events. To this end, given a (previously estimated) predominant
frequency trajectory, we construct a binary mask that takes harmonics into account

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_SalienceRepresentation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_SalienceRepresentation.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_FundFreqTracking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_FundFreqTracking.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S2_MelodyExtractSep.html

482 8 Musically Informed Audio Decomposition

Fig. 8.31 NMF procedure applied to a toy example. (a) Matrix V and randomly initialized matrices
W and H. (b) Matrix V and matrices W and H after training. (c) Error terms over iterations.

(see Section 8.2.3.3). In our implementation, we consider two variants, one based on
a fixed size around each frequency bin and one based on a frequency-dependent size
(where the neighborhood size increases linearly with the center frequency). Using
such a binary mask and its complement, we apply the same signal reconstruction
techniques as introduced in Section 8.1.2 to obtain component signals for the tra-
jectory (i.e., the melody) and the rest (i.e., the accompaniment). Admittedly, the
overall procedure is too simplistic to obtain state-of-the-art results in source separa-
tion. However, providing a full pipeline along with visual and acoustic analysis tools
should invite students to explore the role of the various components and to start with
their own research (e.g., using more advanced methods based on deep learning as
provided by [31, 51]).

In the final three notebooks, we turn to a powerful and beautiful machine learn-
ing technique that is applicable for general data analysis far beyond the considered
music scenario. Closely following the theory of Section 8.3.1, we provide in the
FMP Notebook Nonnegative Matrix Factorization (NMF) a basic implementation
of the NMF algorithm as specified in Table 8.1. There are several practical issues
one needs to consider. First, for efficiency reasons, we use matrix-based operations
for implementing the multiplicative update rules. Second, to avoid division by zero,
a small value (machine epsilon) is added to the denominators in the multiplicative
update rules. Third, we provide a parameter for controlling certain normalization
constraints (e.g., enforcing that template vectors are normalized). Fourth, the im-
plementation allows for specifying matrices used for initialization. Finally, different
criteria may be used to terminate the iterative optimization procedure. Using ex-
plicit toy examples, we present some experiments that illustrate the functioning of
the NMF procedure and discuss the role of the rank parameter (see also Figure 8.31).

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFbasic.html

8.5 FMP Notebooks 483

For further extensions, implementations, and applications of NMF, we refer to the
NMF toolbox [30].

The FMP Notebook NMF-Based Spectrogram Factorization yields an applica-
tion of NMF to decompose a magnitude spectrogram into template and activation
matrices that possess an explicit musical meaning. As in Section 8.3.2, we use the
first measures of Chopin’s Prélude Op. 28, No. 4 to demonstrate how one may in-
tegrate musical knowledge to guide the decomposition. In particular, we provide
complete Python implementations for various initialization strategies using pitch-
informed template constraints and score-informed activation constraints. Further-
more, to also account for percussive properties such as onsets, we implement the
NMF model with additional onset templates as introduced in Section 8.3.2.3. This
extended NMF model is then applied in the FMP Notebook NMF-Based Audio
Decomposition for score-informed spectrogram factorization. In particular, we pro-
vide a full pipeline for decomposing a music recording into note-based sound events.
Continuing our Chopin example, we decompose the recording into two components,
where one component corresponds to the notes of the lower staff and the other to
the notes of the upper staff (see also Figure 8.26). Providing the code and all the
data required, this implementation reproduces the results originally introduced in
[15]. Furthermore, we sketch the audio editing application based on notewise audio
decomposition showing a video as presented in [9].

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFSpecFac.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFAudioDecomp.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8S3_NMFAudioDecomp.html

484 8 Musically Informed Audio Decomposition

References

1. J. ABESSER, Automatic Transcription of Bass Guitar Tracks Applied for Music Genre Clas-
sification and Sound Synthesis, PhD thesis, Ilmenau University of Technology, Ilmenau, Ger-
many, 2014.

2. E. BENETOS AND S. DIXON, Multiple-instrument polyphonic music transcription using a
temporally constrained shift-invariant model, The Journal of the Acoustical Society of Amer-
ica (JASA), 133 (2013), pp. 1727–1741.

3. N. BERTIN, R. BADEAU, AND E. VINCENT, Enforcing harmonicity and smoothness in
bayesian non-negative matrix factorization applied to polyphonic music transcription, IEEE
Transactions on Audio, Speech, and Language Processing, 18 (2010), pp. 538–549.

4. R. M. BITTNER, Data-Driven Fundamental Frequency Estimation, PhD thesis, New York
University, 2018.

5. R. M. BITTNER, B. MCFEE, J. SALAMON, P. LI, AND J. P. BELLO, Deep salience repre-
sentations for F0 tracking in polyphonic music, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Suzhou, China, 2017, pp. 63–70.

6. R. M. BITTNER, J. SALAMON, M. TIERNEY, M. MAUCH, C. CANNAM, AND J. P. BELLO,
MedleyDB: A multitrack dataset for annotation-intensive MIR research, in Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan,
2014, pp. 155–160.

7. E. CANO, D. FITZGERALD, A. LIUTKUS, M. D. PLUMBLEY, AND F. STÖTER, Musical
source separation: An introduction, IEEE Signal Processing Magazine, 36 (2019), pp. 31–40.

8. M. DOLSON, The phase vocoder: A tutorial, Computer Music Journal, 10 (1986), pp. 14–27.
9. J. DRIEDGER, H. GROHGANZ, T. PRÄTZLICH, S. EWERT, AND M. MÜLLER, Score-

informed audio decomposition and applications, in Proceedings of the ACM International
Conference on Multimedia (ACM-MM), Barcelona, Spain, 2013, pp. 541–544.

10. J. DRIEDGER AND M. MÜLLER, TSM Toolbox: MATLAB implementations of time-scale mod-
ification algorithms, in Proceedings of the International Conference on Digital Audio Effects
(DAFx), Erlangen, Germany, 2014, pp. 249–256.

11. J. DRIEDGER, M. MÜLLER, AND S. DISCH, Extending harmonic–percussive separation of
audio signals, in Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Taipei, Taiwan, October 2014, pp. 611–616.

12. J. DRIEDGER, M. MÜLLER, AND S. EWERT, Improving time-scale modification of music
signals using harmonic–percussive separation, IEEE Signal Processing Letters, 21 (2014),
pp. 105–109.

13. J.-L. DURRIEU, G. RICHARD, B. DAVID, AND C. FÉVOTTE, Source/filter model for unsu-
pervised main melody extraction from polyphonic audio signals, IEEE Transactions on Audio,
Speech, and Language Processing, 18 (2010), pp. 564–575.

14. C. DUXBURY, M. DAVIES, AND M. B. SANDLER, Separation of transient information in au-
dio using multiresolution analysis techniques, in Proceedings of the International Conference
on Digital Audio Effects (DAFx), Limerick, Ireland, 2001.

15. S. EWERT AND M. MÜLLER, Using score-informed constraints for NMF-based source sepa-
ration, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Kyoto, Japan, March 2012, pp. 129–132.

16. S. EWERT, B. PARDO, M. MÜLLER, AND M. PLUMBLEY, Score-informed source separation
for musical audio recordings: An overview, IEEE Signal Processing Magazine, 31 (2014),
pp. 116–124.

17. D. FITZGERALD, Harmonic/percussive separation using median filtering, in Proceedings
of the International Conference on Digital Audio Effects (DAFx), Graz, Austria, September
2010, pp. 246–253.

18. J. L. FLANAGAN AND R. M. GOLDEN, Phase vocoder, Bell System Technical Journal, 45
(1966), pp. 1493–1509.

19. M. GOTO, A robust predominant-F0 estimation method for real-time detection of melody and
bass lines in CD recordings, in IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 2, 2000, pp. 757–760.

References 485

20. D. W. GRIFFIN AND J. S. LIM, Signal estimation from modified short-time Fourier transform,
IEEE Transactions on Acoustics, Speech, and Signal Processing, 32 (1984), pp. 236–243.

21. M. H. HAYES, Statistical Digital Signal Processing and Modeling, Wiley, 1st ed., 1996.
22. P.-S. HUANG, M. KIM, M. HASEGAWA-JOHNSON, AND P. SMARAGDIS, Joint optimization

of masks and deep recurrent neural networks for monaural source separation, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 23 (2015), pp. 2136–2147.

23. E. J. HUMPHREY, S. REDDY, P. SEETHARAMAN, A. KUMAR, R. M. BITTNER,
A. DEMETRIOU, S. GULATI, A. JANSSON, T. JEHAN, B. LEHNER, A. KRUPSE, AND
L. YANG, An introduction to signal processing for singing-voice analysis: High notes in the
effort to automate the understanding of vocals in music, IEEE Signal Processing Magazine,
36 (2019), pp. 82–94.

24. H. KAMEOKA, T. NISHIMOTO, AND S. SAGAYAMA, A multipitch analyzer based on har-
monic temporal structured clustering, IEEE Transactions on Audio, Speech, and Language
Processing, 15 (2007), pp. 982–994.

25. J. W. KIM, J. SALAMON, P. LI, AND J. P. BELLO, CREPE: A convolutional representa-
tion for pitch estimation, in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, Canada, 2018, pp. 161–165.

26. A. P. KLAPURI, Multiple fundamental frequency estimation by summing harmonic ampli-
tudes, in Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), 2006, pp. 216–221.

27. D. D. LEE AND H. S. SEUNG, Algorithms for non-negative matrix factorization, in Proceed-
ings of the Neural Information Processing Systems (NIPS), Denver, Colorado, USA, Novem-
ber 2000, pp. 556–562.

28. B. LEHNER, R. SONNLEITNER, AND G. WIDMER, Towards light-weight, real-time-capable
singing voice detection, in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Curitiba, Brazil, 2013, pp. 53–58.

29. P. LÓPEZ-SERRANO, C. DITTMAR, AND M. MÜLLER, Mid-level audio features based on
cascaded harmonic–residual–percussive separation, in Proceedings of the Audio Engineering
Society Conference on Semantic Audio (AES), Erlangen, Germany, June 2017, pp. 32–44.

30. P. LÓPEZ-SERRANO, C. DITTMAR, Y. ÖZER, AND M. MÜLLER, NMF toolbox: Music pro-
cessing applications of nonnegative matrix factorization, in Proceedings of the International
Conference on Digital Audio Effects (DAFx), Birmingham, UK, 2019.

31. E. MANILOW, P. SEETHARMAN, AND J. SALAMON, Open Source Tools & Data for Music
Source Separation, https://source-separation.github.io/tutorial, 2020.

32. M. MÜLLER, D. P. W. ELLIS, A. KLAPURI, AND G. RICHARD, Signal processing for music
analysis, IEEE Journal on Selected Topics in Signal Processing, 5 (2011), pp. 1088–1110.

33. M. MÜLLER AND F. ZALKOW, FMP Notebooks: Educational material for teaching and
learning fundamentals of music processing, in Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 2019, pp. 573–
580.

34. J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer (Springer Series in Op-
erations Research and Financial Engineering), 2006.

35. A. A. NUGRAHA, A. LIUTKUS, AND E. VINCENT, Multichannel audio source separation
with deep neural networks, IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 24 (2016), pp. 1652–1664.

36. N. ONO, K. MIYAMOTO, J. LEROUX, H. KAMEOKA, AND S. SAGAYAMA, Separation of a
monaural audio signal into harmonic/percussive components by complementary diffusion on
spectrogram, in European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland,
2008, pp. 240–244.

37. N. PERRAUDIN, P. BALAZS, AND P. L. SØNDERGAARD, A fast Griffin–Lim algorithm, in
Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acous-
tics (WASPAA), New Paltz, NY, USA, October 2013, pp. 1–4.

38. G. E. POLINER, D. P. ELLIS, A. F. EHMANN, E. GÓMEZ, S. STREICH, AND B. ONG,
Melody transcription from music audio: Approaches and evaluation, IEEE Transactions on
Audio, Speech, and Language Processing, 15 (2007), pp. 1247–1256.

486 8 Musically Informed Audio Decomposition

39. Z. PRUŠA, P. BALÁZS, AND P. L. SØNDERGAARD, A noniterative method for reconstruction
of phase from STFT magnitude, IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25 (2017), pp. 1154–1164.

40. S. A. RACZYNSKI, N. ONO, AND S. SAGAYAMA, Multipitch analysis with harmonic nonneg-
ative matrix approximation, in Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Vienna, Austria, September 2007, pp. 381–386.

41. Z. RAFII, A. LIUTKUS, F. STÖTER, S. I. MIMILAKIS, D. FITZGERALD, AND B. PARDO,
An overview of lead and accompaniment separation in music, IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 26 (2018), pp. 1307–1335.

42. Z. RAFII AND B. PARDO, Repeating pattern extraction technique (REPET): A simple method
for music/voice separation., IEEE Transactions on Audio, Speech, and Language Processing,
21 (2013), pp. 71–82.

43. J. L. ROUX AND E. VINCENT, Consistent wiener filtering for audio source separation, IEEE
Signal Processing Letters, 20 (2013), pp. 217–220.

44. J. SALAMON AND E. GÓMEZ, Melody extraction from polyphonic music signals using pitch
contour characteristics, IEEE Transactions on Audio, Speech, and Language Processing, 20
(2012), pp. 1759–1770.

45. J. SALAMON, E. GÓMEZ, D. P. W. ELLIS, AND G. RICHARD, Melody extraction from
polyphonic music signals: Approaches, applications, and challenges, IEEE Signal Process-
ing Magazine, 31 (2014), pp. 118–134.

46. J. SALAMON, J. SERRÀ, AND E. GÓMEZ, Tonal representations for music retrieval: From
version identification to query-by-humming, International Journal of Multimedia Information
Retrieval, 2 (2013), pp. 45–58.

47. O. SLIZOVSKAIA, L. KIM, G. HARO, AND E. GÓMEZ, End-to-end sound source separation
conditioned on instrument labels, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2019, pp. 306–310.

48. P. SMARAGDIS AND J. C. BROWN, Non-negative matrix factorization for polyphonic music
transcription, in Proceedings of the IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), 2003, pp. 177–180.

49. P. SMARAGDIS, C. FÉVOTTE, G. J. MYSORE, N. MOHAMMADIHA, AND M. D. HOFFMAN,
Static and dynamic source separation using nonnegative factorizations: A unified view, IEEE
Signal Processing Magazine, 31 (2014), pp. 66–75.

50. F. STÖTER, A. LIUTKUS, AND N. ITO, The 2018 Signal Separation Evaluation Campaign, in
Proceedings of the International Conference on Latent Variable Analysis and Signal Separa-
tion (LVA/ICA), vol. 10891 of Lecture Notes in Computer Science, Springer, 2018, pp. 293–
305.

51. F. STÖTER, S. UHLICH, A. LIUTKUS, AND Y. MITSUFUJI, Open-Unmix – A reference im-
plementation for music source separation, Journal of Open Source Software, 4 (2019).

52. W. VERHELST AND M. ROELANDS, An overlap–add technique based on waveform similarity
(WSOLA) for high quality time-scale modification of speech, in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP), Minneapolis,
USA, 1993.

53. E. VINCENT, N. BERTIN, R. GRIBONVAL, AND F. BIMBOT, From blind to guided audio
source separation: How models and side information can improve the separation of sound,
IEEE Signal Processing Magazine, 31 (2014), pp. 107–115.

54. T. VIRTANEN, Monaural sound source separation by nonnegative matrix factorization with
temporal continuity and sparseness criteria, IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 15 (2007), pp. 1066–1074.

55. R. J. WEISS AND J. P. BELLO, Unsupervised discovery of temporal structure in music, IEEE
Journal of Selected Topics in Signal Processing, 5 (2011), pp. 1240–1251.

56. C.-W. WU, C. DITTMAR, C. SOUTHALL, R. VOGL, G. WIDMER, J. HOCKMAN,
M. MÜLLER, AND A. LERCH, A review of automatic drum transcription, IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 26 (2018), pp. 1457–1483.

57. G. ZHOU, A. CICHOCKI, Q. ZHAO, AND S. XIE, Nonnegative matrix and tensor factoriza-
tions: An algorithmic perspective, IEEE Signal Processing Magazine, 31 (2014), pp. 54–65.

Exercises 487

Exercises

Exercise 8.1. The arithmetic mean µ(A) of a list A = (a1,a2, . . . ,aL) that consists of real numbers
a` ∈ R, ` ∈ [1 : L] is defined by µ(A) :=

(
∑

L
`=1 a`

)
/L. Let A = (2,3,190,2,3). Compute the mean

µ(A) as well as the median µ1/2(A) (see (8.4)). Explain why the HPS algorithm described in
Section 8.1 employs median filtering and not mean filtering.

Exercise 8.2. Let

Y =

1 1 46 2
3 1 50 1

60 68 70 67
2 1 65 1

be a spectrogram. Assuming a suitable zero-padding, compute Ỹh as in (8.6) using Lh = 3 and Ỹp

as in (8.7) using Lp = 3. Furthermore, compute the binary mask Mh as in (8.8) and Mp as in (8.9).
Finally, apply the masks to the matrix Y using pointwise multiplication to derive the two matrices
Yh as in (8.12) and Yp as in (8.13).

Exercise 8.3. Let Fs (given in Hz) be the sampling rate of a given signal x. Furthermore, let N ∈N
be the window length and H ∈ N the hop size of a discrete STFT. The filter lengths Lh,Lp ∈ N of
the median filters used in the HPS approach are specified in terms of frame and frequency indices
of the underlying STFT. In practice, it may be more convenient if a user can specify the filter length
Lh in terms of seconds and Lp in terms of Hertz. Derive a formula that converts a time duration
∆t ∈ R given in seconds to a minimum filter length Lh(∆t) ∈ N given in frame indices covering
this duration. Similarly, derive a formula that converts a frequency range ∆ω ∈ R given in Hertz
to a minimum filter length Lp(∆ω) ∈ N given in frequency indices covering this range. Finally,
assuming Fs = 22050 Hz, N = 1024, and H = 256, determine Lh(∆t) for ∆t = 0.5 sec and Lp(∆ω)
for ∆ω = 600 Hz.

Exercise 8.4. Show that one obtains a partition of unity (see (8.22)) when using the discrete win-
dow function w : Z→ R defined by

w(r) :=
{

sin(πr/N)2 if r ∈ [0 : N−1],
0 otherwise

(see (8.23)) and the hop size H = N/2 (assuming that N is even). What happens if the hop size
H = N/4 (assuming that N is divisible by four) is used instead? Give a proof of your claim.

Exercise 8.5. One problem in harmonic–percussive separation (HPS) is that a sound may contain
noise-like events (e.g., applause, distorted guitar) that are neither of harmonic nor of percussive
nature. In this exercise, we study an extension to HPS by considering a third residual component
which captures the sounds that lie “between” a clearly harmonic and a clearly percussive compo-
nent. To this end, we introduce an additional parameter β ∈ R with β ≥ 1 called the separation
factor. Generalizing (8.8) and (8.9), we define the binary masks Mh, Mp, and Mr for the clearly
harmonic, the clearly percussive, and the residual components by setting

Mh(n,k) :=

{
1 if Ỹh(n,k)≥ β · Ỹp(n,k),
0 otherwise,

Mp(n,k) :=

{
1 if Ỹp(n,k)> β · Ỹh(n,k),
0 otherwise,

Mr(n,k) := 1−
(
Mh(n,k)+Mp(n,k)

)
.

Using these masks, derive a signal decomposition x = xh + xp + xr. Furthermore, discuss the role
of the parameter β . How do the components change when successively increasing β?

488 8 Musically Informed Audio Decomposition

Exercise 8.6. Derive the formula (8.44) for the instantaneous frequency F IF
coef(k,n) and the formula

(8.45) for the bin offset κ(k,n).

Exercise 8.7. We have seen in Section 8.2.1 that the quality of the estimated instantaneous fre-
quency depends on the length ∆ t = t2− t1 = H/Fs. Therefore, it is beneficial to use a small hop
size H. On the downside, using a small hop size increases the computational cost for calculating
the discrete STFT. An alternative approach for obtaining good instantaneous frequency estimates
is to keep the original hop size, but compute the STFT twice—the second time at a lag of just one
sample. Discuss the benefits of this alternative approach over the strategy of simply reducing the
hop size.

Exercise 8.8. Defining Bin(ω) := b12 · log2 (ω/440)+69.5c for ω ∈ R as in (8.47), show that
ω ∈ [Fpitch(p−0.5),Fpitch(p+0.5)) if and only if Bin(ω) = p for p ∈ Z.

Exercise 8.9. Let ω be a frequency and h ·ω its hth harmonic for some h ∈N. Considering the bin
mapping function from (8.49), determine the relation between Bin(ω) and Bin(h ·ω). This relation
explains the formula in (8.55) for the harmonic summation in the log-frequency domain.

Exercise 8.10. Let Y be a magnitude spectrogram with coefficients Y(n,k) for n ∈ Z and k ∈
[0 : K]. Furthermore, for a given reference frequency ωref and a resolution R, let YLF be the log-
frequency magnitude spectrogram as defined in (8.51) with coefficients YLF(n,b) for n ∈ Z and
b ∈ [1 : B]. Given a frequency trajectory η : Z→ [0 : K] for Y , describe how one can derive a
corresponding trajectory ηLF : Z→ [1 : B] for YLF. Which problems may occur in this calculation?

Furthemore, let ηh and ηh
LF be the frequency trajectories of the first H ∈ N harmonics,

h ∈ [1 : H]. Note that η1 = η and η1
LF = ηLF. Describe the mathematical relations between these

trajectories. Thinking of practical computations and real-world musical sounds, discuss some prob-
lems that may introduce inaccuracies in these relations.

Exercise 8.11. The goal of this exercise is to develop an efficient algorithm for computing a fre-
quency trajectory with temporal continuity constraints (see Section 8.2.3.1). Given a salience rep-
resentation Z ∈ RN×B

≥0 and a transition likelihood matrix T ∈ RB×B
≥0 , let σ(η) be the total score for

a given trajectory η : [1 : N]→ [1 : B] as defined in (8.60). Specify an algorithm based on dynamic
programming and backtracking (similar to the Viterbi algorithm in Table 5.2) for determining the
score-maximizing trajectory ηDP (see (8.61)).

Exercise 8.12. Fixing a matrix H ∈RR×N , let ϕH :RD→R with D :=KR be defined by ϕH(W) :=
||V −WH||2 for W ∈ RK×R (see (8.80)). Compute the gradient of ϕH (similar to the calculation of
the gradient of ϕH in (8.73) to (8.78)). From this, derive the update rule as specified in (8.81).

Exercise 8.13. Show that, in the case of a “perfect” factorization V =WH, the matrices W and H
are a fixed point of the multiplicative update rules (8.83) and (8.85).

Exercise 8.14. Let V be a (K×N) matrix with nonnegative entries. As in Figure 8.20a, we consider
in this exercise an exact matrix factorization V =WH with a nonnegative (K×R) matrix W and a
nonnegative (R×N) matrix H. In the following examples, we have N = 7 and K = 9. Determine
for each of the two matrices at least two decompositions V =WH using R = 3:

(b)

1 1 1 1 1

1 2 2 1 1 1

1 1 1 1

1 2 3 4 5 6 7
1

3

5

7

9

Time

Fr
eq

ue
nc

y

1 1 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1 1 1 1
1 1 1
1 1 1 1 1
1 1 1 1 11

3

5

7

9

Fr
eq

ue
nc

y

(a)

1 2 3 4 5 6 7
Time

Explain why in these examples there are no exact factorizations when using R = 2.

Index

accidental, 4, 253
accumulated score, 342
ADSR, 27
aliasing, 50, 61, 82
alignment

global, 410
local, 410

amplitude, 21, 42, 58
amplitude modulation, 28
arrangement, 391
articulation, 9
attack, 311
attack phase, 27
audio, 1, 19
audio identification, 363
audio matching, 377
audio signal, 19
augmented fifth, 248
augmented triad, 248
autocorrelation, 327

short-time, 328
average precision, 404

backtracking, 143, 286, 343
bandlimited, 106, 117
bandwidth, 125
bar, 6
bar line, 7
bass line, 476
Baum–Welch algorithm, 289
beat, 6, 309
beat sequence, 341
beating, 111, 116
beats per minute, 15
bigram, 292
bin offset, 445
binary mask, 429

block, 183, 186
BPM, 7, 15
break-even point, 403
broadcast monitoring, 407
broken chord, 250, 268

cadenza, 394
Cauchy–Schwarz inequality, 65
cell, 136, 183
CENS, 381
cent, 22
center frequency, 22
character, 170
characteristic function, 372
chirp signal, 85
chord, 241, 247
chord progression, 256
chord recognition, 242
chorus, 177
chroma, 4, 127
chroma feature, 128
chromagram, 128
chromatic circle, 5
chromatic scale, 4, 251
circle of fifths, 252
clef, 6

bass, 6
treble, 6

client, 364
client–server model, 364
clustering, 291
cocktail party problem, 421
compact support, 77
complex conjugate, 63
complex numbers, 63
concert pitch, 21, 168
conditional probability, 278

489© Springer Nature Switzerland AG 2021

M. Müller, Fundamentals of Music Processing, https://doi.org/10.1007/978-3-030-69808-9

https://doi.org/10.1007/978-3-030-69808-9

490 Index

confusion
major–minor, 266

conjugate symmetric, 64
consonance, 246

imperfect, 247
constellation map, 368
constraint region, 452
content, 362
content-based, 362
contrast, 175
convexity, 460
copyright monitoring, 407
cosine distance, 382
cost matrix, 136, 383

accumulated, 141
cost measure

local, 136
cover song, 392
cover version, 392
coverage, 201
critical point, 290
cross-validation, 272

K-fold, 272
cutoff frequencies, 124
cyclic shift, 133, 388

dB, 25
decay phase, 27
decibel, see dB
deletion, 170
DFT, 52, 88

inverse, 433
diagonal matching, 382
diatonic scale, 251
digitization, 49, 60
diminished fifth, 248
diminished triad, 247
Dirac delta function, 79
Dirac sequence, 79
discrete Fourier transform, see DFT
discrete STFT, 54
dissonance, 246
distance, 140
distance measure

local, 136
distribution, 79
DJ mix, 392
document, 361
domain

acoustic, 30
auditory, 31
physical, 30
visual, 30

dominant, 251

drum extraction, 476
DT-signal

finite length, 87
length, 87

DTW, 135
boundary condition, 138
constraint region, 147
distance, 140
global constraint, 147
local weights, 146
monotonicity condition, 138
multiscale, 148
step size, 138, 145
subsequence, 419
warping path, 138

duality, 83
dyad, 247
dynamic programming, 141, 285, 342, 451
dynamic time warping, see DTW
dynamics, 8, 24

edit distance, 160, 170
emission probability, 281
energy, 66, 67

local, 312
enharmonic equivalence, 4, 244
envelope, 27
equal loudness contours, 26
Euclidean distance, 460
Euler’s formula, 72
exponential function, 46, 72

F-measure, 221
maximal, 404
pairwise, 222

false negative, 220
false positive, 220
fan-out, 375
feature, 121

beat-synchronous, 181, 276, 345
CENS, 381
space, 136

feature representation, 370
FFT, 89
fifth, 244
file metadata correction, 407
fingerprinting

compactness, 365
robustness, 365
scalability, 365
specificity, 364

fitness, 205
fold, 272
form

Index 491

chain, 176
part, 176
rondo, 177
sonata, 177
strophic, 176

Fourier
coefficient, 71
series, 70

Fourier analysis, 40, 105
Fourier coefficient, 46, 70
Fourier representation, 41, 47, 70, 82, 105
Fourier synthesis, 105
Fourier transform, 41, 46

L2([0,1)), 75
L2(R), 77
`2(Z), 82
discrete, see DFT
fast, see FFT
magnitude, 47
windowed, 107

frame, 104
frame index, 104
frequency, 21, 42, 58

center, 22
fundamental, 23, 439, 466
instantaneous, 85, 423, 441, 443, 476

frequency modulation, 28
frequency stamp, 366
frequency trajectory, 439, 450
front-end transform, 122
fugue, 12
function, 42

argument, 42
sinc, 80
value, 42

functional, 254
fundamental

missing, 35
fundamental frequency, 23, 439, 466

F0, 439

gap, 400
Gaussian function, 79
glissando, 438
gradient, 460

step size, 461
granularity, 406
ground truth, 220, 262

half step, 251
half-wave rectification, 313
harmonic, 23, 466
harmonic mean, 205
harmonic series, 245

harmonic summation, 423, 440, 448, 476
harmonics

tempo, 324
harmonization, 394
harmony, 241
Heisenberg uncertainty principle, 102
Hertz, 21
hidden Markov model, see HMM
Hilbert space, 68
HMM, 277, 280, 299

continuous, 292
discrete, 281, 291
estimation problem, 289
evaluation problem, 283
uncovering problem, 284

hop size, 54, 102
Hz, 21

impulse function, 79
IMSLP, 31
index, 370
indexing, 370
indicator function, 372
induced segment family, 201
information retrieval, 361
inharmonicity, 23, 29
initial state probability, 279
inner product, 44

sliding, 327
input object, 271
insertion, 170
instantaneous frequency, 85, 423, 441, 443,

476
instantaneous frequency estimation, 439
integral

Lebesgue, 66
Riemann, 66

intensity, 25
intensity level, 25
Interface

Score Viewer, 153
interference, 78

constructive, 78
destructive, 78

Interpretation Switcher, 151
interval, 243

complement, 307
inversion, 37, 250
inverted list, 370
isometry, 75
Itakura parallelogram, 147
item, 220, 361, 401

negative, 220
positive, 220

492 Index

relevant, 220

jazz, 391
just interval, 246
just intonation, 246
just noticeable difference, 22

Karaoke, 454
key, 252, 394
key detection

global, 299
local, 299

key note, 251
key signature, 6, 474

label function, 222
labeling, 222
lag, 327
LCS, 170, 411
ledger line, 6
legato, 9
Levenshtein distance, 170
linear

C-, 64
linear chirp, 85
linear operator, 114
logarithmic compression, 129, 273, 316
longest common subsequence, see LCS
loudness, 24
lyrics, 9, 394

magnitude, 47
major scale, 251
major third, 245
major triad, 247
MAP, 404
Markov chain, 278
Markov property, 278
mashup, 392
match, 382
matching function, 382, 386

transposition-invariant, 388
matrix decomposition, 458
matrix factorization, 458
maximum likelihood, 290
mean average precision, 404
measure, 6, 324
median, 426
median filter, 427
medley, 392
melody, 37, 438
melody extraction, 437
melody separation, 437, 454
meter, 6, 351

MFCC, 181
MIDI, 13
MIDI file, 13
MIDI note number, 13
minor scale, 251

harmonic, 252
melodic, 252
natural, 252

minor third, 245
minor triad, 247
modulation, 81, 254
motif, 2
MSTFT, 433

valid, 433
music engraving, 16
music notation, 5
music transcription, 30, 299
musical form, 176
musical structure, 176
MusicXML, 16

natural note, 253
navigation

interdocument, 151
intradocument, 152

NMF, 423, 456, 458, 477
activation, 457, 459
template, 457, 459

noise, 27
nonnegative matrix, 459
nonnegative matrix factorization, see NMF
norm, 65
note, 3

quarter, 7
value, 7

novelty, 213
novelty function, 212, 214

complex-domain, 322
energy-based, 313
phase-based, 320
spectral-based, 315

Nyquist frequency, 50, 82

observation, 280, 282
observation symbol, 281
OCR, 17
octave, 3, 243, 244

tempo, 325
octave equivalence, 331
octave number, 4, 127
OMR, 17
onset, 311
onset detection, 310, 311
optical character recognition, see OCR

Index 493

optical music recognition, see OMR
orthonormal basis, 68
output probability, 281
output value, 271
oversegmentation, 227
overtone, 23

parody, 392
partial, 23, 29

harmonic, 23
partial derivative, 460
partial match, 419
partial matching, 411
partition of unity, 433
passing note, 263
path, 183, 185
path family, 201
pentatonic scale, 252
perfect, 246
perfect fifth, 38
perfect interval, 246
performance analysis, 155
period, 21, 58

prime, 58
periodic, 21
Petrucci Music Library, 31
phase, 42, 58
phase unwrapping, 320, 442
phase vocoder, 476
phase wrapping, 320, 442
phon, 26
piano roll, 11
piano transcription, 392
pitch, 3, 21, 23
pitch class, 3, 127
pitch shifting, 474
player piano, 11
PLP function, 335, 337
polar coordinate, 45, 73
portamento, 131
positive definite, 64
postfiltering, 257, 295
potpourri, 392
power, 24
PPQN, 14
PR curve, 402
precision, 221

at rank r, 402
pairwise, 222

precision–recall curve, see PR curve
predominant F0 estimation, 476
predominant frequency, 423
predominant local pulse, 335
prefiltering, 257, 275

primitive, 87, 116
principal argument function, 321, 442
principal value, 320, 442
probability density function, 292
psychoacoustics, 19
pure interval, 246
pure intonation, 246
Pythagorean comma, 38
Pythagorean scale, 38
Pythagorean tuning, 38, 246

quantization, 61, 291
noise, 111
nonuniform, 111

quantization error, 62
quantization step size, 61
quantizer, 61
query, 361
query-by-example, 362
query-by-humming, 454
quodlibet, 392
quotation, 392

raga, 391
rank, 401

higher, 401
top, 401

rank (factorization), 459
recall, 221

at rank r, 402
pairwise, 222

reconstruction, 475
rectangular function, 80
reference thumbnail family, 226
relative relationship, 253
release phase, 27
relevance function, 402
remaster, 392
remix, 392
repetition, 175
representation

chroma, 128
mid-level, 12, 454
MIDI, 13
piano-roll, 11
score, 15
time–chord, 261
time-lag, 328

rest, 7
retrieval

content-based, 362
document-level, 395, 400, 406
fragment-level, 400, 406

retrograde, 37

494 Index

rhythm, 6, 351
Riemann sum, 51, 84
riff, 211
Roman numeral analysis, 255
root note, 247
root of unity, 116
root position, 250

Sakoe–Chiba band, 147
salience representation, 423, 440, 449
sample, 50, 60
sampling, 60

T -, 50
equidistant, 49, 60
period, 50, 60
rate, 50, 60

sampling (production), 392
sampling theorem, 50, 61, 106, 117
scalability, 365
scale, 3, 250

equal-tempered, 3, 244
scale degree, 251
scale steps, 250
scaling, 59
scaling parameter, 331
scape plot, 207
score, 2
score following, 160
score-informed processing, 453
score-informed source separation, 422
scorewriter, 16
segment, 176

induced, 186, 398
segment family, 201
segmentation, 174
self-similarity matrix, 182

i-transposed, 194
transposition-invariant, 194

self-transition, 292
semitone, 4, 244
separation

harmonic–percussive, 425
server, 364
sheet music, 1, 2
Shepard helix, 5
Shepard–Risset glissando, 33
short-time Fourier transform, see STFT
signal, 57

analog, 42, 58
audio, 19
bandlimited, 106, 117
continuous time, 58
digital, 58
discrete time, 50, 60

measurable, 66
periodic, 58, 67

similarity
music, 121

sinusoid, 21, 42, 58
SMF, 13
Smith–Waterman, 411
soft mask, 430, 472
sound, 19

harmonic, 21, 424, 466
intensity, 25
percussive, 424
power, 24
ultrasonic, 21

sound collage, 392
source separation, 421
space

signal, 58
specificity, 363, 405
spectral flux, 315
spectral leakage, 126
spectral vector, 54
spectrogram, 29, 55, 98
speed of sound, 37
square-summable, 66
SSM, 182
staccato, 9
staff, 5

grand, 8
system, 8

Standard MIDI File, see SMF
state, 277
state transition probability, 278
STFT, 53, 94

continuous-time, 94
discrete, 103
discrete-time, 102
inverse, 423
modified, 433

stripe, 183
structure, 394

homogeneity-based, 176
novelty-based, 176
repetition-based, 176

structure analysis, 174
structure annotation, 222
structure features, 218
style, 8
subdominant, 251
subharmonics

tempo, 324
substitution, 170
superposition, 59
supervised learning, 271

Index 495

suspended note, 263
sustain phase, 27
sweep signal, 85
symbolic, 1
synchronization, 119

audio–audio, 160
MIDI–audio, 160
music, 119, 453
score–audio, 160, 453

syncopation, 322

tactus, 324
tag, 362
target zone, 374
tatum, 324
tempo, 7, 8, 309, 394
tempo dominant, 332
tempo rubato, 322
tempo subdominant, 332
tempogram, 323

autocorrelation, 329
cyclic, 331
discrete, 324
Fourier, 325

testing set, 272
tetrad, 247
threshold of hearing, see TOH
threshold of pain, 25
thresholding

global, 196
relative, 197

tick, 14
timbre, 26
time signature, 6, 351
time stamp, 366
time–frequency masking, 475
time-lag representation, 217

circular, 217
timing

expressive, 394
TOH, 25
tone

musical, 23
pure, 21

tone height, 127
tonic, 251
total score, 452
track, 421
training set, 272
trajectory

F0-, 439
transient, 27, 311

transition probability matrix
transposition-invariant, 294

translation, 81
transposition, 37, 132
tremolo, 28, 438
triad, 247
triangle inequality, 65
tritone, 245
true negative, 220
true positive, 220
twiddle factor, 90

undersegmentation, 227
unison, 244

validation set, 272
variation, 392
vector

distance, 65
orthogonal, 65
transposed, 64

vector space, 64
verse, 177
version identification, 390
vibrato, 28, 438
Viterbi algorithm, 285, 300, 451

warping path, 138
optimal, 140
total cost, 139

wave, 19
acoustic, 19
longitudinal, 20
transverse, 20

waveform, 19
whole step, 251
whole tone scale, 252
Wiener filtering, 430, 475
window

Hann, 98
rectangular, 97
triangular, 98

window function, 53, 94
windowed signal, 53
windowing

adaptive, 190, 345
fixed-size, 344

word, 170
word recognition, 283

zero-padding, 192, 214, 275, 324, 426

	Preface to the Second Edition
	Preface to the First Edition
	Content
	Target Readership
	View: A First Course in Music Processing
	View: Introduction to Fourier Analysis and Applications
	View: Data Representations and Algorithms
	Acknowledgements

	Contents
	Basic Symbols and Notions
	Chapter 1 Music Representations
	1.1 Sheet Music Representations
	1.1.1 Musical Notes and Pitches
	1.1.2 Western Music Notation

	1.2 Symbolic Representations
	1.2.1 Piano-Roll Representations
	1.2.2 MIDI Representations
	1.2.3 Score Representations
	1.2.4 Optical Music Recognition

	1.3 Audio Representation
	1.3.1 Waves and Waveforms
	1.3.2 Frequency and Pitch
	1.3.3 Dynamics, Intensity, and Loudness
	1.3.4 Timbre

	1.4 Summary and Further Readings
	1.5 FMP Notebooks
	References
	Exercises

	Chapter 2 Fourier Analysis of Signals
	2.1 The Fourier Transform in a Nutshell
	2.1.1 Fourier Transform for Analog Signals
	2.1.1.1 The Role of the Phase
	2.1.1.2 Computing Similarity with Integrals
	2.1.1.3 First Definition of the Fourier Transform
	2.1.1.4 Complex Numbers
	2.1.1.5 Complex Definition of the Fourier Transform
	2.1.1.6 Fourier Representation

	2.1.2 Examples
	2.1.3 Discrete Fourier Transform
	2.1.4 Short-Time Fourier Transform

	2.2 Signals and Signal Spaces
	2.2.1 Analog Signals
	2.2.2 Digital Signals
	2.2.2.1 Sampling
	2.2.2.2 Quantization

	2.2.3 Signal Spaces
	2.2.3.1 Complex Numbers
	2.2.3.2 Vector Spaces
	2.2.3.3 Inner Products
	2.2.3.4 The Space l2(Z)
	2.2.3.5 The Space L2(R)
	2.2.3.6 The Space L2([0;1))
	2.2.3.7 Hilbert Spaces

	2.3 Fourier Transform
	2.3.1 Fourier Transform for Periodic CT-Signals
	2.3.2 Complex Formulation of the Fourier Transform
	2.3.2.1 Exponential Function
	2.3.2.2 Polar Coordinates
	2.3.2.3 Complex Fourier Series
	2.3.2.4 Relation Between Complex and Real Fourier Series

	2.3.3 Fourier Transform for CT-Signals
	2.3.3.1 Interference
	2.3.3.2 Fourier Transform for Impulses
	2.3.3.3 Translation and Modulation

	2.3.4 Fourier Transform for DT-Signals
	2.3.4.1 Periodicity and Aliasing
	2.3.4.2 Riemann Approximation
	2.3.4.3 Chirp Signal Example

	2.4 Discrete Fourier Transform (DFT)
	2.4.1 Signals of Finite Length
	2.4.2 Definition of the DFT
	2.4.3 Fast Fourier Transform (FFT)
	2.4.4 Interpretation of the DFT

	2.5 Short-Time Fourier Transform (STFT)
	2.5.1 Definition of the STFT
	2.5.1.1 Alternative Definition of the STFT
	2.5.1.2 Role of the Window Function

	2.5.2 Spectrogram Representation
	2.5.3 Discrete Version of the STFT
	2.5.3.1 Summary
	2.5.3.2 Examples

	2.6 Summary and Further Readings
	2.7 FMP Notebooks
	References
	Exercises

	Chapter 3 Music Synchronization
	3.1 Audio Features
	3.1.1 Log-Frequency Spectrogram
	3.1.2 Chroma Features
	3.1.2.1 Logarithmic Compression
	3.1.2.2 Transpositions
	3.1.2.3 Concluding Example

	3.2 Dynamic Time Warping
	3.2.1 Basic Approach
	3.2.1.1 Warping Path
	3.2.1.2 OptimalWarping Path and DTW Distance
	3.2.1.3 Dynamic Programming Algorithm

	3.2.2 DTW Variants
	3.2.2.2 LocalWeights
	3.2.2.3 Global Constraints
	3.2.2.4 Multiscale DTW

	3.3 Applications
	3.3.1 Multimodal Music Navigation
	3.3.1.1 Interpretation Switcher Interface
	3.3.1.2 Score Viewer Interface

	3.3.2 Tempo Curves

	3.4 Summary and Further Readings
	Audio Features
	Dynamic Time Warping
	Music Synchronization
	Applications

	3.5 FMP Notebooks
	References
	Exercises

	Chapter 4 Music Structure Analysis
	4.1 General Principles
	4.1.1 Segmentation and Structure Analysis
	4.1.2 Musical Structure
	4.1.3 Musical Dimensions

	4.2 Self-Similarity Matrices
	4.2.1 Basic Definitions and Properties
	4.2.2 Enhancement Strategies
	4.2.2.1 Feature Representation
	4.2.2.2 Path Smoothing
	4.2.2.3 Transposition Invariance
	4.2.2.4 Thresholding

	4.3 Audio Thumbnailing
	4.3.1 Fitness Measure
	4.3.1.1 Path Family
	4.3.1.2 Optimization Scheme
	4.3.1.3 Definition of Fitness Measure
	4.3.1.4 Thumbnail Selection

	4.3.2 Scape Plot Representation
	4.3.3 Discussion of Properties

	4.4 Novelty-Based Segmentation
	4.4.1 Novelty Detection
	4.4.2 Structure Features

	4.5 Evaluation
	Precision, Recall, F-Measure
	Structure Annotations
	Labeling Evaluation
	Boundary Evaluation
	Thumbnail Evaluation

	4.6 Summary and Further Readings
	Self-Similarity Matrices
	Audio Thumbnailing
	Segmentation Approaches
	Evaluation

	4.7 FMP Notebooks
	References
	Exercises

	Chapter 5 Chord Recognition
	5.1 Basic Theory of Harmony
	5.1.1 Intervals
	5.1.1.1 Semitone Differences
	5.1.1.2 Frequency Ratios
	5.1.1.3 Consonance and Dissonance

	5.1.2 Chords and Scales
	5.1.2.1 Triads
	5.1.2.2 Major and Minor Chords
	5.1.2.3 Musical Scales
	5.1.2.4 Circle of Fifths
	5.1.2.5 Functional Relation of Chords
	5.1.2.6 Chord Progressions

	5.2 Template-Based Chord Recognition
	5.2.1 Basic Approach
	5.2.2 Evaluation
	5.2.2.1 Manual Annotation
	5.2.2.2 Precision, Recall, F-measure

	5.2.3 Ambiguities in Chord Recognition
	5.2.3.1 Chord Ambiguities
	5.2.3.2 Acoustic Ambiguities
	5.2.3.3 Tuning
	5.2.3.4 Segmentation Ambiguities

	5.2.4 Enhancement Strategies
	5.2.4.1 Templates with Harmonics
	5.2.4.2 Templates from Examples
	5.2.4.3 Spectral Enhancement
	5.2.4.4 Prefiltering

	5.3 HMM-Based Chord Recognition
	5.3.1 Markov Chains and Transition Probabilities
	5.3.2 Hidden Markov Models
	5.3.3 Evaluation and Model Specification
	5.3.3.1 Evaluation Problem
	5.3.3.2 Uncovering Problem
	5.3.3.3 Estimation Problem

	5.3.4 Application to Chord Recognition
	5.3.4.1 Specification of Emission Probabilities
	5.3.4.2 Specification of Transition Probabilities
	5.3.4.3 Effect of HMM-Based Postfiltering

	5.4 Summary and Further Readings
	Chord Recognition
	Hidden Markov Models

	5.5 FMP Notebooks
	References
	Exercises

	Chapter 6 Tempo and Beat Tracking
	6.1 Onset Detection
	6.1.1 Energy-Based Novelty
	6.1.2 Spectral-Based Novelty
	6.1.3 Phase-Based Novelty
	6.1.4 Complex-Domain Novelty

	6.2 Tempo Analysis
	6.2.1 Tempogram Representations
	6.2.2 Fourier Tempogram
	6.2.3 Autocorrelation Tempogram
	6.2.4 Cyclic Tempogram

	6.3 Beat and Pulse Tracking
	6.3.1 Predominant Local Pulse
	6.3.1.1 Definition of PLP Function
	6.3.1.2 Discussion of Properties

	6.3.2 Beat Tracking by Dynamic Programming
	6.3.3 Adaptive Windowing

	6.4 Summary and Further Readings
	Onset Detection
	Tempo Analysis
	Beat Tracking

	6.5 FMP Notebooks
	References
	Exercises

	Chapter 7 Content-Based Audio Retrieval
	7.1 Audio Identification
	7.1.1 General Requirements
	7.1.2 Audio Fingerprints Based on Spectral Peaks
	7.1.2.1 Design of Audio Fingerprints
	7.1.2.2 Fingerprint Matching

	7.1.3 Indexing, Retrieval, Inverted Lists
	7.1.4 Index-Based Audio Identification

	7.2 Audio Matching
	7.2.1 General Requirements and Feature Design
	7.2.2 Diagonal Matching
	7.2.3 DTW-Based Matching

	7.3 Version Identification
	7.3.1 Versions in Music
	7.3.1.1 Types of Versions
	7.3.1.2 Types of Modifications

	7.3.2 Identification Procedure
	7.3.3 Evaluation Measures

	7.4 Summary and Further Readings
	Audio Identification
	Audio Matching
	Version Identification
	Alignment Scenarios

	7.5 FMP Notebooks
	References
	Exercises

	Chapter 8 Musically Informed Audio Decomposition
	8.1 Harmonic–Percussive Separation
	8.1.1 Horizontal–Vertical Spectrogram Decomposition
	8.1.1.1 Median Filtering
	8.1.1.2 Binary and Soft Masking

	8.1.2 Signal Reconstruction
	8.1.2.1 Signal Reconstruction from Original STFT
	8.1.2.2 Signal Reconstruction from a Modified STFT

	8.1.3 Applications

	8.2 Melody Extraction
	8.2.1 Instantaneous Frequency Estimation
	8.2.2 Salience Representation
	8.2.2.1 Refined Log-Frequency Spectrogram
	8.2.2.2 Using Instantaneous Frequency
	8.2.2.3 Harmonic Summation

	8.2.3 Informed Fundamental Frequency Tracking
	8.2.3.1 Continuity Constraints
	8.2.3.2 Score-Informed Constraints
	8.2.3.3 Applications

	8.3 NMF-Based Audio Decomposition
	8.3.1 Nonnegative Matrix Factorization
	8.3.1.1 Formal Definition of NMF
	8.3.1.2 Gradient Descent
	8.3.1.3 Learning the Factorization Using Gradient Descent
	8.3.1.4 Multiplicative Update Rules

	8.3.2 Spectrogram Factorization
	8.3.2.1 Template Constraints
	8.3.2.2 Score-Informed Constraints
	8.3.2.3 Onset Models

	8.3.3 Audio Decomposition
	8.3.3.1 Separation Process Using Spectral Masking
	8.3.3.2 Notewise Audio Processing
	8.3.3.3 Audio Editing

	8.4 Summary and Further Readings
	Harmonic–Percussive Separation
	Melody Extraction
	NMF-Based Audio Decomposition

	8.5 FMP Notebooks
	References
	Exercises

	Index

