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Preface to the Second Edition

When writing the first edition of this book, my motivation was to provide a textbook
on the emerging fields of music processing and music information retrieval (MIR)
with a focus on audio signal processing. Using well-established music analysis and
retrieval topics as motivating application scenarios, the book introduces fundamen-
tal techniques and algorithms relevant for general courses in various fields, including
computer science, multimedia engineering, information science, and digital human-
ities. The book is intended for Master and advanced Bachelor students in these fields
as well as any reader interested in delving into the field of music processing (and
not being frightened by some mathematics). While providing profound technolog-
ical knowledge as well as a comprehensive treatment of music processing appli-
cations, the book also includes numerous examples and illustrations to convey the
main ideas in an intuitive fashion. In recent years, suitably designed software pack-
ages and freely accessible web-based frameworks have made education in computer
science and signal processing more interactive. Such novel technology allows for
designing courses that aid students in moving from recalling and reciting theoretical
concepts towards comprehension and application.

These new developments are precisely the motivation for the second edition of
this book. It extends the first edition by providing additional material (called FMP
Notebooks), yielding an interactive foundation for teaching and learning fundamen-
tals of music processing (FMP). The FMP notebooks are built upon the Jupyter note-
book framework, which has become a standard in educational settings. This open-
source web application allows users to create documents that contain executable
code, text-based information, mathematical formulas, plots, images, sound exam-
ples, and videos. By leveraging the Jupyter framework, the FMP notebooks bridge
the gap between theory and practice by interleaving technical concepts, mathemati-
cal details, code examples, illustrations, and sound examples within a unifying set-
ting. The FMP notebooks closely follow the eight chapters of the textbook and,
as such, provide an explicit link between structured educational environments and
current professional practices, in line with current curricular recommendations for
computer science.

One primary purpose of the FMP notebooks is to provide audio-visual material
and Python code examples that implement the computational approaches step by
step. Additionally, the FMP notebooks yield an interactive framework that allows
students to experiment with their music examples, explore the effect of parameter
settings, and understand the computed results by suitable visualizations and soni-
fications. When teaching and learning music processing, it is essential to have a

vii
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Overview of various components and didactical aspects of the FMP notebooks.

holistic view of the MIR task at hand, the algorithmic approach, and its practical
implementation. Looking at all the steps of the processing pipeline sheds light on
the input data and its biases, possible violations of model assumptions, and the short-
comings of quantitative evaluation measures. Only by an interactive examination of
all these aspects will students acquire a deeper understanding of the concepts, tran-
sitioning from merely understanding concepts to applying their music processing
approaches both conceptually and in code.

The main body of the FMP notebooks consists of eight parts, structured along
with the eight chapters of this textbook. In the book’s second edition, we provide at
the end of each chapter an additional section titled FMP Notebooks. These sections
serve two purposes. First, we give a comprehensive guide by systematically describ-
ing the content and purpose of all the notebooks related to the corresponding chapter.
As a second objective, we make concrete suggestions on using the FMP notebooks
to create an enriching, interactive, and interdisciplinary supplement in the form of
experiments and advanced studies in a music processing curriculum. The textbook’s
guide can be best appreciated and understood when the FMP notebooks run in a
browser simultaneously while reading.

The FMP notebooks are publicly available under a Creative Commons license at
https://www.audiolabs-erlangen.de/FMP in the form of Jupyter note-
books as well as HTML exports, which can be accessed through a conventional web
browser. Using the static HTML version, all multimedia material, including the mu-
sic examples, audio files, video files, and images, can be directly accessed without
any specific technical requirements beyond a standard web browser. To run the FMP
notebooks’ code, one needs to install Python, Jupyter, and additional Python pack-
ages. All necessary steps for installing, running, and updating the required software
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packages are described in a separate part (called Part B) of the FMP notebooks.
This part also contains short introductions to Python programming, Jupyter note-
books, multimedia integration, as well as data annotation, visualization, and soni-
fication. Rather than being comprehensive, Part B gives instructive code examples
that become relevant in the other parts and documents how the FMP notebooks were
created.

Besides its substantial extensions through the FMP notebooks, another major
change in the second edition is the thorough revision of the sections called Sum-
mary and Further Readings (previously called Further Notes in the first edition).
These sections have been streamlined, now containing more compact and focused
summaries. Furthermore, the references and the links to literature for further read-
ings have been revised and updated. Rather than providing an extensive literature
review, we have deliberately limited ourselves to citing only selected core literature
and overview articles, where one can find further pointers to relevant and more ad-
vanced work. As in general multimedia processing, many recent advances in music
processing have been driven by techniques based on deep learning (DL). For exam-
ple, DL-based techniques have led to significant improvements for many tasks such
as music source separation, music transcription, chord recognition, melody estima-
tion, beat tracking, tempo estimation, and lyrics alignment, to name a few. In par-
ticular, major improvements could be achieved for music scenarios where sufficient
training data is available. A particular strength of DL-based approaches is their abil-
ity to extract complex features directly from raw audio data, which can then be used
to make predictions based on hidden structures and relations. Furthermore, power-
ful software packages allow for easily designing, implementing, and experimenting
with machine learning algorithms based on deep neural networks (DNNs). Cov-
ering the fast-growing and dynamic field of deep learning goes beyond the scope
of this textbook. Instead, we focus on classical signal and music processing tech-
niques, yielding fundamental insights into the problem at hand and providing ex-
plicit baseline approaches one may (and should) compare against when exploring
more powerful yet often difficult-to-interpret DNN-based learning approaches. For
further readings, we provided links to selected references that apply recent DNN-
based techniques to music processing. We hope that these references help students
and researchers transition from model-based approaches as introduced in this text-
book to the world of deep learning applied to specific music processing tasks. Our
literature choice is undoubtedly subjective, and we would like to apologize to all
those whose work we have not mentioned or adequately appreciated.

I want to thank Springer-Verlag for the opportunity afforded by the preparation of
this second edition. The initial idea of extending and complementing the textbook
by the FMP notebooks arose in 2018 during my visit to the Center for Computer
Research in Music and Acoustics (CCRMA) at Stanford University, where I was in-
vited to give a summer workshop on MIR jointly with Steve Tjoa and Brian McFee.
In particular, I started learning Python myself using the Python package 1ibrosa,
which offers advanced music and audio processing pipelines. Many thanks, Brian,
for developing this fantastic software package, which is not only extensively used
in the FMP notebooks but has also been a source of inspiration. Furthermore, I
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would like to express my gratitude to Frank Zalkow, who has helped me in the last
two years with all the technical aspects related to the FMP notebooks. Frank, you
have been my patient teacher and companion when struggling through the pitfalls
of Python programming. Many more people have helped me in creating the FMP
notebooks, and I will confine myself to only mentioning their names in alphabeti-
cal order: Vlora Arifi-Miiller, Stefan Balke, Rachel Bittner, Eran Egozy, Katherine
Kinnaird, Michael Krause, Patricio Lépez-Serrano, Brian McFee, Sebastian Rosen-
zweig, Bob Sturm, Steve Tjoa, Angel Villar-Corrales, Christof Weil3, Frank Zalkow,
and Tim Zunner. Of course, in the second edition of this book, I also corrected the
errors that have come to my attention, and I express my thanks to those colleagues
and students who pointed out these errors in the first edition. I hope that this book
will continue to serve as a basis for those interested in learning music processing
and undertaking research in this, to my view, beautiful and challenging field.

Erlangen, Meinard Miiller
January 2021



Preface to the First Edition

Music is a ubiquitous and vital part of the lives of billions of people worldwide.
Musical creations and performances are amongst the most complex and intricate of
our cultural artifacts, and the emotional power of music can touch us in surprising
and profound ways. Music spans an enormous range of forms and styles, from sim-
ple, unaccompanied folk songs, to popular and jazz music, to symphonies for full
orchestras. The digital revolution in music distribution and storage has simultane-
ously fueled tremendous interest in and attention to the ways that information tech-
nology can be applied to this kind of content. From browsing personal collections,
to discovering new artists, to managing and protecting the rights of music creators,
computers are now deeply involved in almost every aspect of music consumption,
not to mention their vital role in much of today’s music production.

Despite the importance of music, music processing is still a relatively young dis-
cipline compared with speech processing, a research field with a long tradition. A
research community represented by the International Society for Music Information
Retrieval ISMIR), which systematically deals with a wide range of computer-based
music analysis, processing, and retrieval topics, was formed in the year 2000. Tradi-
tionally, computer-based music research has mostly been conducted on the basis of
symbolic representations using music notation or MIDI representations. Because of
the increasing availability of digitized audio material and an explosion of computing
power, automated processing of waveform-based audio signals is now increasingly
in the focus of research efforts.

Many of these research efforts are directed towards the development of tech-
nologies that allow users to access and explore music in all its different facets. For
example, audio fingerprinting techniques are nowadays integrated into commercial
products that help users automatically identify songs they hear. Music processing
techniques are used in extended audio players that highlight the current measures
within sheet music while playing back a recording of a symphony. On demand, ad-
ditional information about melodic and harmonic progressions or thythm and tempo
is automatically presented to the listener. Interactive music interfaces display struc-
tural parts of the current piece of music and allow users to directly jump to any sec-
tion such as the chorus, the main musical theme, or a solo section without tedious
fast-forwarding and rewinding. Furthermore, listeners are equipped with Google-
like search engines that enable them to explore large music collections in various
ways. For example, the user may create a query by specifying a certain note con-
stellation, or some harmonic or rhythmic pattern by whistling a melody or tapping a
rhythm, or simply by selecting a short passage from an audio recording; the system

xi
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then provides the user with a ranked list of available music excerpts from the collec-
tion that are musically related to the query. In music processing, one main objective
is to contribute concepts, models, algorithms, implementations, and evaluations for
tackling such types of analysis and retrieval problems.

This textbook is devoted to the emerging fields of music processing and mu-
sic information retrieval (MIR)—interdisciplinary research areas which are related
to various disciplines including signal processing, information retrieval, machine
learning, multimedia engineering, library science, musicology, and digital humani-
ties. The main goal of this book is to give an introduction to this vibrant and exciting
new research area for a wide readership. Well-established topics in music analysis
and retrieval have been selected to serve as motivating application scenarios. Within
these scenarios, fundamental techniques and algorithms that are applicable to a wide
range of analysis and retrieval problems are presented in depth.

This book is meant to be a textbook that is suitable for courses at the advanced
undergraduate and beginning master level. By mixing theory and practice, the book
provides both deep technological knowledge as well as a comprehensive treatment
of music processing applications. Furthermore, by including numerous examples,
illustrations (the book contains more than 300 figures), and exercises, I hope that
the book provides interesting material for courses in various fields such as computer
science, multimedia engineering, information science, and digital humanities.

The subsequent sections of this preface contain further information on the overall
structure of the book, the interconnections between the various topics and tech-
niques, and suggestions on how this book may be used as a basis for different
courses. We first give an overview of the book’s content by quickly going through
the individual chapters. Then, we explain various ways of reading and using the
book, each time focusing on a different aspect. We start with the view of a lecturer
who wants to use this textbook as a basis for an introductory course in music pro-
cessing or music information retrieval. Then, we show how the book may be used for
an introductory course on Fourier analysis and its applications. Finally, we assume
the view of a computer scientist who wants to teach fundamental issues on data
representations and algorithms, where music may serve as an underlying applica-
tion domain. Describing these different views, we try to work out the dependencies
between the chapters as well as the conceptual relationships between the various
music processing tasks.

Content

This textbook consists of eight chapters. The first two chapters cover fundamental
material on music representations and the Fourier transform—concepts that are re-
quired throughout the book. These two chapters make the book self-contained to a
great extent. In the subsequent chapters, concrete music processing tasks serve as
starting points for our investigations. Each of these chapters is organized in a similar
fashion. A chapter starts with a general description of the music processing scenario
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Chapter

Music
Processing
Scenario

Music
Representations

Notions, Techniques &

Algorithms

Music notation, MIDI, audio signal,
waveform, pitch, loudness, timbre

Fourier Analysis

Discrete/analog signal, sinusoid,
exponential, Fourier transform,

of Signals Fourier representation, DFT, FFT,
STFT
Music Chroma feature, dyamic

Synchronization

programming, dyamic time warping
(DTW), alignment, user interface

Music Structure

Similarity matrix, repetition,
thumbnail, homogeneity, novelty,

Analysis evaluation, precision, recall, F-
measure, visualization, scape plot
Chord Harmony, music thepry, chords,
. scales, templates, hidden Markov
Recognition

model (HMM), evaluation

Tempo and Beat
Tracking

Onset, novelty, tempo, tempogram,
beat, periodicity, Fourier analysis,
autocorrelation

Content-Based
Audio Retrieval

Identification, fingerprint, indexing,

inverted list, matching, version, cover

song

i
8 -~ = .ILnIIILtl i

Musically
Informed Audio
Decomposition

Harmonic/percussive component,
signal reconstruction, instanteneous
frequency, fundamental frequency
(FO0), trajectory, nonnegative matrix
factorization (NMF)

J
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at hand and integrates the topic into a wider context. Motivated by the scenario at
hand, each chapter discusses important techniques and algorithms that are generally
applicable to a wide range of analysis, classification, and retrieval problems. All
these techniques are treated in a mathematically rigorous way. At the same time, the
techniques are immediately applied to a concrete music processing task. By mixing
theory and practice, the book’s goal is to convey both profound technological knowl-
edge as well as a solid understanding of music processing applications. Each of the
chapters ends with a section that includes links to the research literature, hints for
further reading, a list of references, and exercises. Before we discuss how this text-
book may be employed in a course or used for self-study, we first give an overview
of the individual chapters and the main topics.
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Musical information can be represented in many different ways. In Chapter 1,
we consider three widely used music representations: sheet music, symbolic, and
audio representations. This first chapter also introduces basic terminology that is
used throughout the book. In particular, we discuss musical and acoustic properties
of audio signals including aspects such as frequency, pitch, dynamics, and timbre.

Important technical terminology is covered in Chapter 2. In particular, we ap-
proach the Fourier transform—which is perhaps the most fundamental tool in signal
processing—from various perspectives. For the reader who is more interested in
the musical aspects of the book, Section 2.1 provides a summary of the most im-
portant facts on the Fourier transform. In particular, the notion of a spectrogram,
which yields a time—frequency representation of an audio signal, is introduced. The
remainder of the chapter treats the Fourier transform in greater mathematical depth
and also includes the fast Fourier transform (FFT)—an algorithm of great beauty
and high practical relevance.

As a first music processing task, we study in Chapter 3 the problem of mu-
sic synchronization. The objective is to temporally align compatible representa-
tions of the same piece of music. Considering this scenario, we explain the need
for musically informed audio features. In particular, we introduce the concept of
chroma-based music features, which capture properties that are related to harmony
and melody. Furthermore, we study an alignment technique known as dynamic
time warping (DTW), a concept that is applicable for the analysis of general time
series. For its efficient computation, we discuss an algorithm based on dynamic
programming—a widely used method for solving a complex problem by breaking
it down into a collection of simpler subproblems.

In Chapter 4, we address a central and well-researched area within MIR known
as music structure analysis. Given a music recording, the objective is to identify
important structural elements and to temporally segment the recording according to
these elements. Within this scenario, we discuss fundamental segmentation princi-
ples based on repetitions, homogeneity, and novelty—principles that also apply to
other types of multimedia beyond music. As an important technical tool, we study
in detail the concept of self-similarity matrices and discuss their structural prop-
erties. Finally, we briefly touch the topic of evaluation, introducing the notions of
precision, recall, and F-measure. These measures are used to compare the computed
results that are obtained by an automated procedure with so-called ground truth an-
notations that are typically generated manually by some domain expert.

In Chapter 5, we consider the problem of analyzing harmonic properties of a
piece of music by determining a descriptive progression of chords from a given
audio recording. We take this opportunity to first discuss some basic theory of har-
mony including concepts such as intervals, chords, and scales. Then, motivated by
the automated chord recognition scenario, we introduce template-based matching
procedures and hidden Markov models—a concept of central importance for the
analysis of temporal patterns in time-dependent data streams including speech, ges-
tures, and music.

Tempo and beat are further fundamental properties of music. In Chapter 6, we
introduce the basic ideas on how to extract tempo-related information from audio
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recordings. In this scenario, a first challenge is to locate note onset information—a
task that requires methods for detecting changes in energy and spectral content. To
derive tempo and beat information, note onset candidates are then analyzed with
regard to quasiperiodic patterns. This leads us to the study of general methods for
local periodicity analysis of time series.

One important topic in information retrieval is concerned with the development
of search engines that enable users to explore music collections in a flexible and
intuitive way. In Chapter 7, we discuss audio retrieval strategies that follow the
query-by-example paradigm: given an audio query, the task is to retrieve all docu-
ments that are somehow similar or related to the query. Starting with audio iden-
tification, a technique used in many commercial applications such as Shazam, we
study various retrieval strategies to handle different degrees of similarity. Further-
more, considering efficiency issues, we discuss fundamental indexing techniques
based on inverted lists—a concept originally used in text retrieval.

In the final Chapter 8 on audio decomposition, we present a challenging research
direction that is closely related to source separation. Within this wide research area,
we consider three subproblems: harmonic—percussive separation, main melody ex-
traction, and score-informed audio decomposition. Within these scenarios, we dis-
cuss a number of key techniques including instantaneous frequency estimation, fun-
damental frequency (FO) estimation, spectrogram inversion, and nonnegative matrix
factorization (NMF). Furthermore, we encounter a number of acoustic and musical
properties of audio recordings that have been introduced and discussed in previous
chapters, which rounds off the book.

Target Readership

In the last fifteen years, music processing and music information retrieval (MIR)
have developed into a vibrant and multidisciplinary area of research. Because of
the diversity and richness of music, this area brings together researchers and stu-
dents from a multitude of fields including information science, audio engineering,
computer science, and musicology. This book’s intention is to offer interesting ma-
terial for courses in these fields. The main target groups of this book are Master
and advanced Bachelor students. Furthermore, we also hope that researchers who
are interested in delving into the field of music processing will benefit from this
textbook. The eight chapters are organized in a modular fashion, thus offering lec-
turers and readers many ways to choose, rearrange, or supplement the material. In
this way, it should be possible to easily integrate selected chapters or individual sec-
tions into courses that are related to general multimedia, information science, signal
processing, music informatics, or digital humanities.

Of course, writing a textbook requires making some choices. The topics selected
for this textbook play an important role in music processing and MIR, but they also
reflect the research areas of the author—I want to apologize to my colleagues for
having ignored many other important topics. The focus of this textbook is not to give
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a comprehensive overview of music processing, but to provide a solid understanding
of the concepts introduced within a small number of important application scenarios.
The layout, the tempo of presentation, and the pattern of figures have been kept
consistent throughout the textbook. We hope that this helps lecturers and students
to quickly get comfortable with the style of presentation and to flexibly use the
material. In particular, great care has been taken with the illustrations. One way to
approach a new topic is to first go through all figures of a section or chapter. Not
only should this hone one’s intuition, but also yield a first visual overview of the
concepts to be studied.

In the following, we describe the dependencies between the chapters and sections
by assuming different views on the book. Each view focuses on different aspects and
may serve as a basis for designing a one-semester or even two-semester course (with
two to four hours weekly per semester plus exercises). Even though the views are
presented from the perspective of a lecturer, we hope that they are also helpful for
a student or reader to gain a comprehensive overview and a better understanding of
the crosslinks between sections and chapters. A more abstract goal of describing the
different views is to highlight the general applicability of the presented techniques
and the conceptual relationships between the various music processing tasks.

View: A First Course in Music Processing

We start with the view of a lecturer who wants to use this textbook as a basis for
an introductory course in music processing or music information retrieval. To lay
the foundation for such a course and to fix important notions, we recommend to
begin with Chapter 1 on music representations. By going through Section 1.1, the
student should get an intuitive idea on the various attributes of music such as notes,
pitch, chroma, note length, dynamics, or time signature. We also hope that students
who are not familiar with Western music notation will benefit from this section
by gaining some intuitive understanding—the intricacies of music notation are not
required for the subsequent chapters. Section 1.2 contains background information
on symbolic representations. As with the sheet music section, an understanding of
all details, e.g., concerning the MIDI format or optical music recognition, is not
required. These details, however, become important when working with this kind of
data in practice. For most tasks and techniques presented in this book, the piano-roll
representation (Section 1.2.1) may serve as an intuitive substitute for sheet music or
symbolic representations.

The material on audio representations (Section 1.3) is fundamental for a music
processing course based on this book. Many notions such as waveform, sinusoid,
frequency, phase, pitch, harmonic, partial, decibel, timbre, transient, or spectrogram
are introduced in a more informal way—concepts that will be revisited in the sub-
sequent chapters in more detail.

To make this textbook self-contained and accessible to a wide audience, the re-
quired tools from signal processing have been confined to a small number of key
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techniques. Basically all audio processing steps as presented in this book are de-
rived from standard Fourier analysis. The Fourier transform becomes our main sig-
nal processing tool, and a good understanding of this transform is indispensable. In
Section 2.1, the most important facts on Fourier analysis are introduced in a math-
ematically rigorous, yet compact fashion. Omitting the proofs, this section aims to
convey the main ideas (using many illustrations and examples), while introducing
the required technical notions. This section contains all material that is required to
understand the subsequent chapters. For a course with a focus on music processing,
we recommend to skip the remaining sections of Chapter 2 (and to come back to
them at a later stage if required). However, Section 2.1 should be covered in detail.

Motivated by the music synchronization application, Chapter 3 introduces fur-
ther basic concepts that run like a thread through this book. To make music data
comparable and algorithmically accessible, the first step in most music processing
tasks is to convert the data into suitable feature representations that capture the rel-
evant aspects while suppressing irrelevant details. In Section 3.1, we address the
issue of converting an audio signal into musically informed feature representations.
As our main example, we discuss the construction of time—chroma representations,
which are based on the equal-tempered scale. Besides music synchronization, these
features play an important role in many other applications including music struc-
ture analysis (Chapter 4), chord recognition (Chapter 5), and content-based audio
retrieval (Chapter 7).

The second important concept introduced in Chapter 3 is known as sequence
alignment—a general technique for arranging two time-dependent sequences to
identify regions of similarity. To compute an optimal alignment, there are effi-
cient algorithms that are based on dynamic programming—a general paradigm
for solving a complex problem by breaking it down into a collection of simpler
subproblems. In Section 3.2, we study an alignment technique referred to as dy-
namic time warping (DTW) as well as an efficient algorithm. In later chapters, we
encounter similar alignment techniques, e.g., in the context of audio thumbnail-
ing (Section 4.3), chord recognition (Section 5.3), beat tracking (Section 6.3), audio
matching (Section 7.2), and version identification (Section 7.3).
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While we recommend covering the fundamental material presented in Chapter 1,
Section 2.1, Section 3.1, and Section 3.2 in a course on music processing, there is
a lot of freedom on how to proceed afterwards. The remaining chapters are kept
mostly independent, excluding a few exceptions that are suitably referenced. One
possible continuation of a course is to cover the applications of music synchroniza-
tion (Section 3.3) and then to proceed with Chapter 4 on music structure analysis.
As opposed to music synchronization, where one compares two given sequences,
in music structure analysis a single sequence is compared with itself. This leads to
the notion of self-similarity matrices—a concept that is related to recurrence plots
as used for the analysis of general time series. The study of self-similarity matri-
ces yields deep insights into structural properties of music representations as well
as into the properties of the underlying feature representations. By suitably visual-
izing self-similarity matrices, these aspects can be conveyed in a nontechnical and
intuitive fashion. On the other hand, the automated extraction of musically relevant
structures from self-similarity matrices—even if they seem obvious for humans—is
anything but a trivial problem. In Chapter 4, various challenges as well as algorith-
mic approaches are presented.

As an alternative, after having introduced chroma-based audio features
(Section 3.1), one may directly jump to Chapter 5. The task of automated chord
recognition yields a natural motivation for this type of feature. The reason is that
chroma features capture a signal’s short-time tonal content, which is closely cor-
related to the harmonic progression of the underlying piece. For a more musically
oriented course, Section 5.1 provides some background material on harmony the-
ory including concepts such as intervals, chords, and scales. In a more technically
oriented course, most of this material may be skipped. One can then directly pro-
ceed with the classification approaches based on templates (Section 5.2) and hidden
Markov models (Section 5.3). In view of their great importance, Section 5.3 pro-
vides a detailed technical account on Markov chains and hidden Markov models
using chord recognition as a motivating application. In particular, the Viterbi algo-
rithm (Section 5.3.3.2) and its close relation to the DTW algorithm (Section 3.2)
can be elaborated in a lecture and in homework problems.

Being of high practical relevance and widely known by smartphone users, the
topic of audio identification (Section 7.1) is well suited to delve into the topic of
content-based audio retrieval. Only requiring the spectrogram representation as pre-
requisite, this section may be covered directly after Section 2.1. Furthermore, the
audio identification application provides a good opportunity for raising efficiency
and indexing issues—a topic that is often neglected in music processing and MIR.
The next two sections on audio matching (Section 7.2) and version identification
(Section 7.3) deal with retrieval scenarios of lower specificity, where the query and
the documents to be retrieved may reveal only a low degree of similarity. Requiring
chroma-based audio features and alignment techniques, Section 7.2 and Section 7.3
form a nice continuation of Chapter 3 and Chapter 4.

Along with Section 7.1, Chapter 6 and Chapter 8 focus more on technical as-
pects. Requiring Fourier analysis of audio signals, this material may be used after
covering Section 1.3 and Section 2.1. In Chapter 6, which deals with tempo and beat
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tracking, the Fourier transform is used on two different levels. On the first level, it
is used to convert an audio signal into a novelty representation that indicates note
onset candidates (Section 6.1). On the second level, Fourier analysis is applied as
a means to detect locally periodic patterns in the novelty function. This type of pe-
riodicity analysis not only yields a tempogram representation (Section 6.2.2), but
also reveals locally periodic pulse trains that can be used for beat tracking applica-
tions (Section 6.3.1). Having a close personal relation to thythm and dance, many
students are immediately receptive to the topic of beat and tempo tracking. There-
fore, also in my experience as a lecturer, this topic generates a lot of interest and
inspiration.

As said before, Chapter 8 is also quite independent from previous chapters and
can be studied after Section 1.3 and Section 2.1. The topic of harmonic—percussive
separation (Section 8.1) is a direct application of the spectrogram representation.
Applying some simple median filtering and binary masking techniques allows for
decomposing a music signal into a percussive component and a harmonic compo-
nent. In this context, we also cover the issue of reconstructing time-domain signals
from modified spectral representations—a topic that is fraught with unanticipated
pitfalls (Section 8.1.2). Using melody extraction as a motivating music processing
application, Section 8.2 details further important topics including fundamental and
instantaneous frequency estimation. This scenario provides the opportunity to have
a closer look at the phase information supplied by Fourier analysis—a rather techni-
cal yet important topic that is not easy to understand when studied for the first time
(Section 8.2.1).

In Section 8.3, we touch on another central research field related to source separa-
tion. Within this area, a general concept known as nonnegative matrix factorization
(NMF) has turned out to be a key technique. Among its many variants, we discuss
the most basic NMF version in Section 8.3.1. This technique is then employed for
decomposing a music signal into more elementary sound events. Doing so, one can
highlight another general strategy that is widely applied in music processing to cope
with the complexity of music signals. In order to make certain problems tractable,
current approaches often exploit musical knowledge in one way or another. In this
chapter, we study several score-informed approaches that make use of the availabil-
ity of score representations in order to support an audio processing task. This strat-
egy, in turn, requires note information aligned to the audio signal to be processed,
which brings us back to Chapter 3 on music synchronization.

View: Introduction to Fourier Analysis and Applications

As said before, the Fourier transform is one of the most important tools for a wide
range of applications in engineering and computer science. Due to a large number
of variants and the complex-valued formulation, students often have difficulties in
understanding the Fourier transform when encountering this concept for the first
time. The music domain offers a natural access to the main ideas of Fourier analy-
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sis thanks to intuitive relations between abstract concepts and musical counterparts
such as sinusoids and musical tones, frequency and pitch, magnitude and tone in-
tensity, and so on. This textbook can be used as a basis for an introductory course
on Fourier analysis. Starting with some basics on audio representations and their
properties (Section 1.3), one can continue with Section 2.1 to introduce the most
important facts on Fourier analysis. This section contains all material that is actually
needed to understand the subsequent chapters. For an in-depth treatment of signals,
signal spaces, and Fourier analysis—including many of the mathematical proofs—
one may proceed with the remaining sections of Chapter 2. One algorithmic high-
light is definitely the fast Fourier transform (FFT), which is treated in Section 2.4.3.
As example applications of the Fourier transform and its short-time versions
(STFT, spectrogram), one can then discuss log-frequency spectrograms and their
relation to musical pitch (Section 3.1.1), spectrum-based novelty detection as used
in note onset detection (Section 6.1.2), and spectral peak fingerprints applied to au-
dio identification (Section 7.1). Using the many concrete examples and illustrations
provided by the book, these applications can be treated in a nontechnical fashion
without needing to go through all the material of the respective chapter.
Considering only the magnitude information, the phases of the complex-valued
Fourier coefficients are often neglected in many applications. With Section 6.1.3
and Section 8.2.1, the book offers material to illustrate the importance of the phase
and to approach this difficult topic. Using phase-based novelty detection and in-
stantaneous frequency estimation as motivating applications, the meaning of phase
becomes evident when considering possible phase inconsistencies over subsequent
frames. These applications also put the STFT and its properties in a different light.
To round off an introductory course on Fourier analysis, one may look into how
to decompose time—frequency representations with applications to source separa-
tion. In particular, the decomposition of audio signals into harmonic and percus-
sive components by considering horizontal and vertical time—frequency patterns is
a simple and very instructive application (Section 8.1.1). This scenario also offers
a nice motivation for discussing important topics such as binary and soft spectral
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masking (Section 8.1.1.2), as well as Fourier inversion and signal reconstruction
(Section 8.1.2). Finally, as another more advanced application, one may consider
Section 8.3 on audio decomposition using a technique known as nonnegative matrix
factorization (NMF). In this application, a music signal is decomposed into a set of
notewise audio events, where each audio event is directly associated with a note of
a given musical score.

View: Data Representations and Algorithms

We finally want to assume the view of a computer scientist who may be interested
in making his or her basic course on data representations and algorithms a bit more
“musical.” As a multimedia domain, music offers a wide range of data types and
formats including text, symbolic data, audio, image, and video. For example, as
discussed in Chapter 1, music can be represented as printed sheet music (image do-
main), encoded as MIDI or MusicXML files (symbolic domain), and played back
as audio recordings (acoustic domain). Using music as an example, one can discuss
fundamental issues of data representations including bitmap and vector graphic en-
codings for images, XML-like markup languages for symbolic music, communica-
tion protocols for electronic musical instruments such as MIDI, or audio file for-
mats including WAV or MP3. The immediate relationships between different music
representations yield a natural motivation for data conversion issues including im-
age rendering, optical character/music recognition, sound synthesis, and so on (see
Figure 1.24).

The first step in most computer-based analysis and classification applications
consists in transforming the input data into suitable feature representations, which
capture relevant information while suppressing redundancies. The spectrogram rep-
resentation (Section 2.1) and the derived audio features (Section 3.1) can be seen as
typical examples for such a transformation process. In many cases, feature extrac-
tion can be seen as a kind of dimensionality reduction. A prominent example are the
twelve-dimensional chroma features, which capture tonal information of a music
signal (Section 3.1.2).

After introducing data representations, a computer science course may continue
with the discussion of algorithms. This textbook offers a number of interesting algo-
rithms that are relevant for a wide range of applications going far beyond the music
processing scenarios considered. Many of these algorithms are based on dynamic
programming, which is a fundamental algorithmic paradigm for solving optimiza-
tion problems. This method appears—in one form or another—in the curriculum
of basically any computer science student. The idea of dynamic programming is to
break down a complex problem into smaller “overlapping” subproblems in some
recursive manner. An optimal solution of the global problem is obtained by effi-
ciently assembling optimal solutions for the subproblems. Dynamic programming
is widely used for alignment tasks as occurring in bioinformatics (e.g., to determine
the similarity of DNA sequences) or in text processing (e.g., to compute the distance
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between text strings). In this book, we consider a variant of this technique referred
to as dynamic time warping (DTW), which allows us to temporally align feature se-
quences extracted from music representations. Motivated by a music synchroniza-
tion application, Section 3.2 covers DTW in detail including careful mathematical
modeling of the optimization problem, the algorithm based on dynamic program-
ming, and the mathematical proofs. Furthermore, numerous illustrations, examples,
and exercises are provided.

Besides DTW, further algorithms based on dynamic programming are presented
throughout the book. For example, subsequence variants of DTW are discussed in
the context of audio matching (Section 7.2) and version identification (Section 7.3).
In our audio thumbnailing application (Section 4.3), dynamic programming is used
to efficiently compute a fitness measure for audio segments. Furthermore, the well-
known Viterbi algorithm for finding an optimizing state sequence is based on dy-
namic programming—a concept that is applied in this book for estimating chord
sequences (Section 5.3). Finally, a dynamic programming approach is introduced to
derive an optimal beat sequence (Section 6.3). In all these problems, which are mo-
tivated by concrete applications, the objective is to find a sequence or an alignment
between two sequences that is optimal in one or another way. By considering var-
ious scenarios, the student should acquire a solid understanding of the underlying
principles of dynamic programming.

There are a number of other important algorithms treated in this book, which may
be integrated into a basic computer science curriculum. First of all, Section 2.4.3
covers the classic fast Fourier transform (FFT), which goes back to Carl Friedrich
Gaul (1805, published posthumously in 1866). Being a typical example for a divide-
and-conquer strategy, the basic idea of the FFT algorithm is to divide the discrete
Fourier transform (DFT) into two pieces of half the size. The FFT algorithm can
also be interpreted as a factorization of the DFT matrix into a product of sparse
matrices.

In Section 8.3, we study another matrix factorization technique known as non-
negative matrix factorization (NMF). This technique is studied within an audio de-
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composition scenario. The general objective of NMF is to factorize a given real-
valued matrix with no negative elements into a product of two other matrices that
also have no negative elements. Usually, the two matrices in the product have a much
lower rank than the original matrix. In this case, the product can be thought of as a
compressed and more structured version of the original matrix. As a typical exam-
ple for how to approach nonconvex optimization problems in machine learning, we
discuss an iterative procedure for learning an NMF decomposition (Section 8.3.1).

Originally applied for speech recognition, hidden Markov models (HMMs) are
now a standard tool for applications in temporal pattern recognition. Motivated
by a chord recognition application, we introduce this mathematical concept in
Section 5.3 as a typical example for a statistical data model. A rigorous treatment
of statistical data analysis goes beyond the scope of this book. With Section 5.3.2
we provide, at least, a glimpse into this important area. Furthermore, by considering
HMMs, one can also show how alignment concepts such as DTW can be extended
using a probabilistic framework.

As a final fundamental topic that may be covered in an introductory course in
computer science, we address the issue of data indexing, where the objective is to
speed up a retrieval process. The basic procedure is similar to what we do when
using a traditional book index. When looking for a specific passage in a book, an
index allows us to directly access the page numbers where certain key words occur.
In Section 7.1, we study such techniques in the context of an audio identification ap-
plication. Here, the key words correspond to audio fingerprints (e.g., spectral peaks
or combinations thereof), while the page numbers correspond to the time positions
where these fingerprints appear.

With these comments, we hope to have convinced lecturers that music process-
ing may serve as a beautiful and instructive application scenario for teaching basic
concepts on data representations and algorithms. In my experience as a lecturer in
computer science and engineering, starting a lecture with music processing applica-
tions, in particular playing music to students, opens them up and raises their interest.
This makes it much easier to get the students engaged with the mathematical theory
and technical details. Mixing theory and practice by immediately applying algo-
rithms to concrete music processing tasks helps to develop the necessary intuition
behind the abstract concepts and awakens the student’s fascination and enthusiasm
for the topic.
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Basic Symbols and Notions

The following basic symbols and notions are used throughout this book:

N={1,2,3...}

No = NU{0}
zZ=A{..,-2,—-1,0,1,2,...}
la:b]:={a,a+1,....b} CZ
Q

R

Reo={aeR|a>0}
Rso={aeR|a>0}

[a,b] :={reR|a<r<b}CR
C

i=v—1

la|

natural numbers

whole numbers

integers

integers from a to b for a,b € Z

rational numbers

real numbers

positive real numbers

nonnegative real numbers

interval of real numbers from a to b for a,b € R
complex numbers

imaginary unit

absolute value of a number a € R (ora € C)

real coordinate space of dimension N € N

complex coordinate space of dimension N € N
norm of a vector x € RY (or x € CV)

inner product of two vectors x,y € RV (or x,y € CV)

transpose of a vector x
transpose of a matrix A
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Music Representations
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Music can be represented in many different ways and formats. For example, a
composer may write down a composition in the form of a musical score. In a score,
musical symbols are used to visually encode notes and how these notes are to be
played by a musician. The printed form of a musical score is also referred to as
sheet music. The original medium of this representation is paper, although it is now
also accessible on computer screens through digital images. For electronic instru-
ments and computers, music may be communicated by means of standard proto-
cols such as the widely used Musical Instrument Digital Interface (MIDI) protocol,
where event messages specify pitches, velocities, and other parameters to generate
the intended sounds. In this book, we use the term symbolic to refer to any machine-
readable data format that explicitly represents musical entities. These musical en-
tities may range from timed note events, as is the case of MIDI files, to graphical
shapes with attached musical meaning, as is the case of music engraving systems.
Unlike symbolic representations, audio representations such as WAV or MP3 files
do not explicitly specify musical events. These files encode acoustic waves, which
are generated when a source (e.g., an instrument) creates a sound that travels to the
human ear as air pressure oscillations.

In this book, we distinguish between three main classes of music representations:
sheet music, symbolic, and audio. To put it simply, the term sheet music stands for
visual representations of a score given in printed form or in the form of digitized im-
ages. The term symbolic comprises any kind of score representation with an explicit
encoding of notes or other musical events. Finally, the term audio refers to repre-
sentations of acoustic sound waves. Each of these representations reflects certain
aspects of a musical object, but no single representation encompasses all its proper-
ties. In this sense, each representation can be considered a projection or a realization
of what we generally refer to as a piece of music. In this introductory chapter, we
discuss some basic properties of music by means of these different music represen-
tations. We start by describing basic elements of Western music notation as used in
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sheet music representations (Section 1.1). Even though the exact specifications of
music notation are not essential in this book, we require basic notions of the pitch,
duration, and onset time of musical notes. Then, we summarize basic properties
of symbolic representations with a specific focus on MIDI, which is the prevailing
standard for controlling music synthesizers (Section 1.2). Finally, we discuss audio
representations, which are at the heart of this book. In particular, we deal with as-
pects concerning the properties of sound waves including frequency, dynamics, and
timbre (Section 1.3).

1.1 Sheet Music Representations

Sheet music, also referred to as musical score, provides a visual representation
of what we commonly refer to—in particular for Western classical music—as the
“piece of music.” Sheet music describes a musical work using a formal language
based on musical symbols and letters, which are depicted in a graphical-textual
form. Reading sheet music, a musician can create a performance by following the
given instructions. Performing a piece from sheet music, however, not only requires
a special form of literacy, i.e., the ability to understand the music notation, but also
involves a creative process. A musical score is rarely played mechanically. Musi-
cians may shape the flow of the music by varying the tempo, dynamics, and articu-
lation, thus resulting in a personal interpretation of the given musical score. In this
sense, rather than giving rigid specifications, sheet music can be considered as a
guide for performing a piece of music leaving room for different interpretations.

As a first example, let us consider Symphony No. 5 in C minor by Ludwig van
Beethoven, which is one of the most popular and best-known compositions in clas-
sical music. It begins with a short musical idea, the famous ““short-short-short-long”
motif, which is commonly referred to as the “fate motif” of Beethoven’s Fifth.
Figure 1.1 shows a sheet music representation of the first five measures in a piano
reduced version. In the following sections, we explain the meaning of the musical
symbols in more detail while introducing some music notations used throughout this
book. The Beethoven piece will serve as our running example.
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1.1.1 Musical Notes and Pitches

In music, the term note is often used in a rather loose way and may refer to both
a musical symbol (when talking about score representations) as well as a pitched
sound (when talking about audio representations). In this section, we employ the
term to refer to musical symbols used in Western music notation. Each note has
several attributes that determine the relative duration and the pitch of a sound to be
performed by a musician. For example, in the case of a piano, the pitch of a note
tells a musician which key is to be pressed on the keyboard, and the duration of the
note determines how long this key is to be held. The notion of pitch is not strict and
refers to a perceptual property that allows a listener to order a sound on a frequency-
related scale. As we will discuss in Section 1.3 in more detail, playing a note on
an instrument results in a (more or less) periodic sound of a certain fundamental
frequency. This fundamental frequency is closely related to what is meant by the
pitch of a note. In the following discussion, we use the term “pitch” in an intuitive
way. It allows us to order pitched sounds from “lower” to “higher”—similarly to the
keys of a piano keyboard ordered from left to right.

Two notes with fundamental frequencies in a ratio equal to any power of two
(e.g., half, twice, or four times) are perceived as very similar. Because of that, all
notes with this kind of relation can be grouped under the same pitch class. This
observation also leads to the fundamental notion of an octave, which is defined
to be the interval between one musical note and another with half or double its
fundamental frequency. Using this definition, a pitch class is a set of all pitches or
notes that are an integer number of octaves apart.

In order to describe music using a finite number of symbols, one needs to dis-
cretize the space of all possible pitches. This leads to the notion of a musical scale,
which can be thought of as a finite set of representative pitches. Because of the close
octave relationship of pitches, scales are generally considered to span a single oc-
tave, with higher or lower octaves simply repeating the pattern. A musical scale can
then be specified by a division of the octave space into a certain number of scale
steps. The elements of a scale are often simply referred to as the notes of the scale
and are ordered according to their respective pitches.

In music history, many different scales have been suggested and used, and there
have been fierce discussions about the suitability of specific scales. The appropri-
ateness of a scale very much depends on the kind of music to be described, the
instruments used, the musical genre, or the cultural background. A scale that is
suited for representing Western piano music may not be suited for representing In-
dian sitar music. A scale used for Gregorian chant of the 10th century may not be
a good choice for describing experimental music of the 20th century. There is no
universally valid musical scale, and the choice of a musical scale necessarily goes
along with simplifications typically imposed by practical considerations.

In this book, we only consider the case of the twelve-tone equal-tempered scale,
where an octave is subdivided into twelve scale steps. The fundamental frequencies
of these steps are equally spaced on a logarithmic frequency axis (see Section 1.3.2).
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Fig. 1.2 (a) Section of piano keyboard with keys ranging from C3 to C5. (b) Corresponding notes
using Western music notation.

The difference between the fundamental frequencies of two subsequent scale steps
is also called a semitone, which is the smallest possible interval in this scale.

In the twelve-tone equal-tempered scale, there are twelve pitch classes. In West-
ern music notation, these pitch classes are denoted by combining a letter-name and
accidentals. Seven of the pitch classes (corresponding to C major) are denoted by
the letters C, D, E, F, G, A, B. These pitch classes correspond to the white keys of a
piano keyboard (see Figure 1.2). The remaining five pitch classes correspond to the
black keys of a piano keyboard and are denoted by a combination of a letter and an
accidental (f, b). A sharp (f) raises a note by a semitone, and a flat () lowers it by
a semitone. The accidentals are written after the note name. For example, D? repre-
sents D-sharp and D’ represents D-flat. In the equal-tempered scale, the remaining
five pitches can be either denoted by C?, Df, Ff, G, Af or by D°, E’, G’, A”, B’.
For example, C* and D’ represent the same pitch class,' even though from a musical
point of view one distinguishes between these two concepts.

To name the notes of the twelve-tone equal-tempered scale, in addition to indi-
cating the pitch class, one needs to provide an identifier for the octave. Following
the Scientific Pitch Notation, each note is specified by the pitch class name, fol-
lowed by a number that indicates the octave. The note A4 is determined to have a
fundamental frequency of 440 Hz and serves as a reference. The octave number
increases by one upon an ascension from a note with pitch class B to one with pitch
class C. For example, the note B4 is followed by the note C5. Similarly, the octave
number decreases by 1 upon a descent from a C to a B. The lowest note CO in this
notation has a fundamental frequency in the region of 16 Hz, which is already below
what a human can acoustically perceive. Figure 1.2 shows the notes from C3 to C5
along with the corresponding keys of a piano keyboard.

Ordering all notes of the equal-tempered scale according to their pitches, one
obtains an equal-tempered chromatic scale, where all notes of the scale are equally
spaced. The term chromatic is derived from the Greek word chroma, meaning
color. In the music context, the term “chroma” closely relates to the twelve different

! This phenomenon is also known as enharmonic equivalence.
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pitch classes. For example, the notes C2 and C5 both have the same chroma value C.
In other words, all notes that have the same chroma value belong to the same pitch
class. Recall that notes that belong to the same pitch class (or have the same chroma
value) are perceived as similar in a certain way. In contrast, notes that belong to
different pitch classes (or have different chroma values) are perceived as dissimilar.
This justifies the usage of the term “chroma” in the sense that notes with different
chroma values have a different “sound color.” The cyclic nature of chroma values is
illustrated by the chromatic circle as shown in Figure 1.3a. Extending this notion,
Shepard’s helix of pitch represents the linear pitch space as a helix wrapped around
a cylinder so that octave-related pitches lie along a single vertical line [23]. The
projection of the cylinder onto the horizontal plane yields the chromatic circle. The
factorization of a pitch into a chroma value and an octave number will play an
important role in this book. The chroma components of pitches can be used to yield
mid-level representations, which turn out to be a powerful tool for various music
analysis and retrieval applications.

1.1.2 Western Music Notation

Generally speaking, music notation refers to a system for graphically representing
music through symbols. The standard Western music notation is based on a staff,
which is a set of five horizontal lines and four spaces each representing a different
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musical pitch (see Figure 1.4a). Appropriate music symbols, depending upon the
intended effect, are placed on the staff according to their corresponding pitch or
function. Pitch is shown by placement of note symbols on the staff—sometimes
modified by accidentals. The higher the placement within a given staff, the higher
the pitch of the corresponding note. Furthermore, the duration is indicated by the
shapes of the note symbols as well as additional symbols such as dots and ties.

Notation is read from left to right. A staff generally begins with a clef symbol,
which indicates the position of one particular note on the staff. For example, by
convention, the treble clef (é), also known as the G-clef, indicates that the second
line is the pitch G4 (see Figure 1.4b). Similarly, the bass clef (9), also known as the
F-clef, indicates that the fourth line is the pitch F3 (see Figure 1.4c). There are also
further clef symbols and clef positions. The details are not important in this book.
However, one should keep in mind that the clef symbol, along with its position,
serves as a reference in relation to which the meaning of the notes positioned on
any line or space of the staff can be determined. Notes representing a pitch outside
the scope of the five-line staff can be described using ledger lines, which provide a
single note with additional lines and spaces (see, e.g., the C4 in Figure 1.5).

Following the clef, the key signature on a staff indicates the key of the piece by
specifying that certain notes are flat or sharp throughout the piece, unless otherwise
specified. For example, the notes shown in Figure 1.5a are C4, D4, E4, F4, G4, A4,
B4, C5 thus forming a C-major scale. Using the key signature consisting of three
flats as shown in Figure 1.5b, the notes become C4, D4, E’4, F4, G4, Ab4, Bb4, C5
thus forming a (natural) C-minor scale.

Music is typically organized into temporal units, referred to as beats. Repeating
sequences of stressed and unstressed beats, in turn, form higher temporal patterns,
which are related to what is called the rhythm of music and is expressed in terms
of the musical meter. A measure (or bar) is a segment of time defined by a given
number of beats. Dividing music into measures not only reflects it rhythmic nature,
but also provides regular reference points within it. In music notation, the temporal
structure of a piece is indicated by the time signature, which appears in a staff after
the key signature. Typically, a time signature consists of two numerals, one stacked
above the other. The lower numeral indicates the note duration that represents one
beat (given as a fraction with regard to a whole note), while the upper numeral
indicates how many such beats are in a measure. For example, the time signature
§ shown in Figure 1.6b indicates that a measure consists of six beats, where a beat
has the duration of an eighth note. In sheet music, two subsequent measures are
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separated by a vertical line drawn through the staff, which are referred to as bar
lines.

After specifying the clef, the key signature, and the time signature, which all
reflect global characteristics of the piece and hold for the entire staff (if not redefined
explicitly), the actual notes are specified. As illustrated by Figure 1.7a, each note is
represented by a symbol that consists of a note head and possibly a stem and a flag.
Sometimes several notes are combined by a beam. As discussed above, a note’s
pitch is indicated by its placement on the staff and possibly by an accidental, where
the clef symbol serves as a reference pitch. The duration of a note is defined in a
relative fashion by means of its note value, which is indicated by the color or shape
of the note head, the presence or absence of a stem, and the presence or absence of
flags (see Figure 1.7b). The whole note is the reference value, and the other notes
are named in accordance. For example, a half note has half the length of a whole
note, a quarter note has a quarter the length of a whole note, and so on. For each
note value, there also exists a rest symbol of equivalent duration, which expresses
an interval of silence in a piece of music (see Figure 1.7c).

The musical onset times of the notes are specified in a relative fashion and fol-
low from the horizontal formation of the note symbols. Notes that are to be played
at the same time are given by vertically aligned musical symbols. In this case, dif-
ferent notes may share the same stem and flag as illustrated by Figure 1.1. Once the
physical duration of a beat is known, the physical onset times of the notes can be
derived from the relative timing. The duration of a beat is given by the tempo indica-
tion specified in beats per minute (BPM). For example, a specification of 120 BPM
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Fig. 1.9 Musical score with various symbols used for indicating dynamics and articulation.

means that 120 beats are to be played within one minute. In the case that a beat
corresponds to a quarter note, 120 BPM implies that the duration of a quarter note
is half a second. Composers often suggest a tempo notated above the first staff line
of the piece. For example, in Figure 1.1, the suggested tempo is 108 BPM with a
beat being a half note (J - 10s). However, when performing a piece, musicians often
significantly deviate from the suggested tempo.

To notate music that is played on a piano or is played by different musicians
on various instruments, one often uses several staves to notate the various musical
voices. A single vertical line drawn to the left of multiple staves creates a staff sys-
tem, which indicates that the music on all the staves is to be played simultaneously.
A bracket is an additional vertically aligned symbol joining staves. This symbol
shows groupings of instruments that function as a unit, such as the string section
of an orchestra (see Figure 1.8b). When music notated across different staves is in-
tended to be played at once by a single performer (usually a keyboard instrument or
the harp), a grand staff is created by joining the two staves by a brace. For example,
in the case of piano music, one has two staves, where the upper staff uses a treble
clef and the lower staff uses a bass clef (see Figure 1.8a). When playing the piano,
the upper staff is normally played with the right hand and the lower staff with the
left hand. This is the case with our Beethoven example shown in Figure 1.1.

Besides the aforementioned attributes, music notation may contain many more
instructions to the musician regarding matters such as tempo, dynamics, and ex-
pression. For example, the overall tempo and style of the piece may be specified by
textual notations such as Allegro con brio (fast with vigor and spirit) or Andante
con moto (moderate tempo with motion). Other directions such as accelerando
(gradually becoming faster) or ritardando (gradually becoming slower) refer to
local tempo deviations. Similarly, dynamics, which refers to the volume of a sound
or note, may be described by terms such as forte (loud), piano (soft), crescendo
(gradually becoming louder), or diminuendo (gradually becoming softer). For vo-
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Fig. 1.10 Sheet music representation of the full orchestral score of the beginning of Beethoven’s
Fifth Symphony (from Breitkopf & Hirtel, Leipzig, 1862).

cal music, lyrics may be written above or below staff lines. Other symbols such as
articulation marks are used to indicate how certain notes are to be played. For ex-
ample, a staccato mark (a dot placed above or below a note) signifies that a note is
to be played with shortened duration detached from the subsequent note, whereas a
legato mark (a curved line placed above or below a group of notes) indicates that
musical notes are played smoothly and connected (see Figure 1.9).

We close this section by coming back to our Beethoven example. In the piano
reduced version shown in Figure 1.1, the score shows a system with two staves,
where the upper staff for the right hand starts with a G-clef 4 and the lower staff
for the left hand with an F-clef 9. Both staves are equipped with a key signature
(three flats b) and a time signature (two quarter-note beats per measure %). The score
reveals that the first five measures consist of two “short-short-short-long” patterns,
where the second fate motif is played lower than the first fate motif. Further in-
structions are given in the form of additional symbols and textual notations. For
example, a fermata sign (™) indicates that the respective note duration should be
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prolonged. The pedaling information (. # ) tells the musician to hold the sustain
pedal, which can have a significant impact on the sound. The overall tempo is in-
dicated by “Allegro con brio” and a metronome specification (108 half notes per
minute) (see Exercise 1.1). Finally, the symbol ff stands for “fortissimo” or “very
loud” and indicates the dynamics.

Let us now have a look at Figure 1.10, which shows the full orchestral score of
the beginning of Beethoven’s Fifth as used by conductors to direct rehearsals and
performances. The shown excerpt is the scanned version of an edition published
by Breitkop & Hirtel in the year 1862. The various staves of the system specify
the music according to the different instruments lined up in a fixed order. From top
to bottom, the voices for the woodwinds (flute, oboe, clarinet, bassoon), the brass
(French horn, trumpet) and percussion (timpani), and the strings (violin, viola, cello,
double bass) are listed. For certain instruments such as the violin, there may be more
than one musical voice to be played, each specified by a separate staff (e.g., violin I
and violin II).

In this section, we have only scratched the surface of Western music notation.
Rather than giving a comprehensive overview, our goal was to build up some in-
tuition while introducing some basic terminology. Furthermore, we wanted to indi-
cate that music notation is far from being comprehensive. Many of the symbols only
give a vague description of how the notes should be played leaving room for artistic
freedom and creativity. Furthermore, as indicated by the full score and the piano
transcript of Beethoven’s Fifth, there may exist different score versions of the same
piece of music. For most parts of this book, it suffices to have a rough understanding
of musical concepts examined in this chapter. The aspects of pitch and timing will
be picked up again when discussing various kinds of derived music representations.

1.2 Symbolic Representations

As discussed at the beginning of this chapter, symbolic representations describe mu-
sic by means of entities that have an explicit musical meaning and, given in some
digital format, can be parsed by a computer. Any kind of digital data format may be
regarded as “symbolic” since it is based on a finite alphabet of letters or symbols.
For example, the pixels in a digital image file or the samples in a digital audio file
may be regarded as symbols or basic entities. However, considering these entities
individually, no musical meaning can be inferred. Therefore, neither scanned im-
ages nor digitized music recordings are regarded as being symbolic music formats.
Similarly, graphical shapes in vector graphics representations are not considered to
be musical entities as long as no musically meaningful specification of the shapes is
given. Still, there is a wide range of what may be considered as symbolic music. In
this section, we discuss some examples including piano-roll representations, MIDI
representations, and other symbolic formats that encode sheet music. Furthermore,
we touch on optical music recognition (OMR), which is the process of converting
digital scans of printed sheet music into symbolic representations.
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Fig. 1.11 (a) Player piano. (b) Piano roll. (Reprinted by kind permission of the Institut fiir Musik-
wissenschaft der Goethe-Universitidt Frankfurt)

1.2.1 Piano-Roll Representations

We start with a symbolic representation having a history of more than one hun-
dred years. In the late 19th and early 20th century, self-playing pianos, so-called
player pianos (see Figure 1.11a), became quite popular with a peak in 1924, be-
fore being replaced by phonograph recordings. Player pianos contained pneumatic
mechanisms to automatically operate the key and pedal movements according to
the instructions specified by a prestored piano-roll medium. A piano roll is a con-
tinuous roll of paper with perforations (holes) punched into it. The perforations
represent note control data (see Figure 1.11b). The roll moves over a reading sys-
tem known as a tracker bar, and the playing cycle for each musical note is triggered
when a perforation crosses the bar and is read. Rolls for player pianos were gen-
erally made from recorded performances of musicians. This way, the playing of
many famous pianists and composers including Gustav Mahler, Edvard Grieg, Scott
Joplin, or George Gershwin is preserved on piano rolls. Typically, a pianist would sit
at a specially designed player piano, and the pitch and duration of any notes played
would be perforated into a blank roll, together with the duration of the sustain and
soft pedal. Player pianos can also recreate the dynamics of a pianist’s performance
by means of specially encoded control perforations placed towards the edges of a
music roll.

In the following, a piano-roll representation is understood to be a geometric
visualization of the note information as specified by a piano roll. The horizontal
axis of this two-dimensional representation encodes time, whereas the vertical axis
encodes pitch. Every note is described by an axis-parallel rectangle coding three
parameters. The first parameter is the onset time, given by the leftmost horizontal
coordinate of the rectangle, and the second is the pitch, given by the lower vertical
coordinate of the rectangle. Finally, the third parameter is the duration of the note,
encoded by the width of the rectangle.
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Fig. 1.12 (a) Sheet music representation and (b) piano-roll representation of the beginning of
Fugue BWYV 846 in C major by Johann Sebastian Bach. The four occurrences of the theme are
highlighted.

Figure 1.12b shows a piano-roll representation of the beginning of Fugue
BWYV 846 in C major by Johann Sebastian Bach. For comparison, Figure 1.12a
shows the corresponding part in a sheet music representation. Generally, a fugue
is a compositional technique using two or more musical voices, built on a musical
theme (or subject) that is introduced at the beginning by one voice and then repeated
at different pitches in the other voices. Fugue BWV 846 consists of four voices. Al-
though played on a keyboard instrument, the four voices are referred to as soprano
(highest voice), alto (second highest voice), tenor (third highest voice), and bass
(lowest voice). The fugue starts with the main theme in the alto, which is then re-
peated in the soprano, the tenor, and finally in the bass. As shown by Figure 1.12, the
four occurrences of the theme are hard to detect in the sheet music representation,
but can be easily seen in the piano-roll representation, where each one corresponds
to a pattern shifted in the time—pitch plane.

While they are a considerable simplification of what is notated in sheet music,
piano-roll representations visually describe the most important attributes of musical
notes in an easy-to-understand way. Therefore, we will often use piano-roll repre-
sentations when describing and talking about symbolic music. Furthermore, as we
will see in later chapters, one can also derive similar representations from other mu-
sic encodings including MIDI and audio. In this sense, piano rolls can be seen as a
kind of mid-level representation on the basis of which semantic relations can be
established across various manifestations of music.
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1.2.2 MIDI Representations

The next symbolic representation we want to discuss is based on the MIDI stan-
dard, which stands for Musical Instrument Digital Interface. Although MIDI was
not originally developed to be used as a symbolic music format and imposes many
limitations on what can actually be represented, the importance of MIDI is due to
its widespread usage over the last three decades, and the abundance of MIDI data
freely available on the web. From a music encoding point of view, one needs to keep
in mind that the quality of available MIDI data is sometimes questionable.

MIDI was originally developed as an industry standard to get digital electronic
musical instruments from different manufacturers to work and play together. It was
the advent of MIDI in 1981-1983 that caused a rapid growth of the electronic musi-
cal instrument market. MIDI allows a musician to remotely and automatically con-
trol an electronic instrument or a digital synthesizer in real time. As an example,
let us consider a digital piano, where a musician pushes down a key of the piano
keyboard to start a sound. The intensity of the sound is controlled by the velocity
of the keystroke. Releasing the key stops the sound. Instead of physically pushing
and releasing the piano key, the musician may also trigger the instrument to produce
the same sound by transmitting suitable MIDI messages, which encode the note-on,
the velocity, the note-off, and other information. These MIDI messages may be au-
tomatically generated by some other electronic instrument or may be provided by
a computer. It is an important fact that MIDI does not represent musical sound di-
rectly, but only represents performance information encoding the instructions about
how an instrument has been played or how music is to be produced.

The original MIDI standard was later augmented to include the Standard MIDI
File (SMF) specification, which describes how MIDI data should be stored on a
computer. In the following, we denote SMF files simply as MIDI files or MIDI rep-
resentations. The SMF file format allows users to exchange MIDI data regardless
of the computer operating system and has provided a basis for an efficient internet-
wide distribution of music data, including numerous websites devoted to the sale
and exchange of music. A MIDI file contains a list of MIDI messages together with
timestamps, which are required to determine the timing of the messages. Further in-
formation (called meta messages) is relevant to software that processes MIDI files.

For our purposes, the most important MIDI messages are the note-on and the
note-off commands, which correspond to the start and the end of a note, respectively.
Each note-on and note-off message is, among others, equipped with a MIDI note
number, a value for the key velocity, a channel specification, as well as a timestamp.
The MIDI note number is an integer between 0 and 127 and encodes a note’s
pitch. Here, MIDI pitches are based on the equal-tempered scale as discussed in
Section 1.1.1. Similarly to an acoustic piano, where the 88 keys of the keyboard
correspond to the musical pitches AO to C8, the MIDI note numbers encode, in
increasing order, the musical pitches CO to G*9. For example, note C4 has the MIDI
note number 60, whereas the concert pitch A4 has the MIDI note number 69.

The key velocity is again an integer between 0 and 127, which controls the inten-
sity of the sound—in the case of a note-on event it determines the volume, whereas
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Fig. 1.13 Various symbolic music representations of the first twelve notes of Beethoven’s Fifth.
(a) Sheet music representation. (b) MIDI representation (in a simplified, tabular form). (¢) Piano-
roll representation.

in the case of a note-off event it controls the decay during the release phase of the
tone. The exact interpretation of the key velocity, however, depends on the respec-
tive instrument or synthesizer. The MIDI channel is an integer between 0 and 15.
Intuitively speaking, this number prompts the synthesizer to use the instrument that
has been previously assigned to the respective channel number. Note that each chan-
nel, in turn, supports polyphony, i.e., multiple simultaneous notes. Finally, the time
stamp is an integer value that represents how many clock pulses or ticks to wait
before the respective note-on or note-off command is executed. Before we comment
in more detail on the timing concept employed by MIDI, we illustrate the MIDI rep-
resentation by means of our Beethoven example. Figure 1.13b shows a (simplified
and tabular) MIDI encoding of the first fate motif corresponding to the twelve notes
of the score in Figure 1.13a. In this example, the notes of the right hand are assigned
to channel 1 and the notes of the left hand to channel 2. The notes specified by cor-
responding note-on and note-off events in the MIDI file can also be visualized by
a piano-roll representation (see Figure 1.13c). In case we are only interested in the
note events (and not the channel and velocity information), this is how we represent
MIDI information.

An important feature of the MIDI format is that it can handle musical as well as
physical onset times and note durations. Similarly to sheet music representations,
MIDI can express timing information in terms of musical entities rather than using
absolute time units such as microseconds. To this end, MIDI subdivides a quarter
note into basic time units referred to as clock pulses or ticks. The number of pulses
per quarter note (PPQN) is to be specified at the beginning, in the so-called header
of a MIDI file, and refers to all subsequent MIDI messages. A common value is
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120 PPQN, which determines the resolution of the time stamps associated to note
events. As mentioned above, a time stamp indicates how many ticks to wait before
a certain MIDI message is executed, relative to the previous MIDI message. For
example, the first note-on message with MIDI note number 67 is executed after 60
ticks, corresponding to the eighth rest at the beginning of Beethoven’s Fifth. The
second and third note-on messages are executed at the same time as the first one,
encoded by the tick value zero. Then, after 55 ticks, MIDI note 67 is switched off
by the note-off message and so on.

Like the sheet music representation, MIDI also allows for encoding and storing
absolute timing information, however, at a much finer resolution level and in a more
flexible way. To this end, one can include additional tempo messages that specify
the number of microseconds per quarter note. From the tempo message, one can
compute the absolute duration of a tick. For example, having 600000 tts per quarter
note and 120 PPQN, each tick corresponds to 5000 us. Furthermore, one can derive
from the tempo message the number of quarter notes played in a minute, which
yields the tempo measured in beats per minute (BPM). For example, the 600000 us
per quarter note correspond to 100 BPM. While the number of pulses per quarter
note is fixed throughout a MIDI file, the absolute tempo information may be changed
by inserting a tempo message between any two note-on or other MIDI messages.
This makes it possible to account not only for global tempo information but also for
local tempo changes such as accelerandi, ritardandi, or fermate.

In this section, we have briefly touched on MIDI and its functionality. As noted
above, MIDI was originally designed to solve problems in electronic music per-
formance and is limited in terms of the musical aspects it represents. For example,
MIDI is not capable of distinguishing between a D4 and an E’4, both of which have
the MIDI note number 63. Also, information on the representation of beams, stem
directions, or clefs is not encoded by MIDI. Furthermore, MIDI does not define a
note element explicitly; rather, notes are bounded by note-on and note-off events (or
note-on events with velocity 0). Rests are not represented at all and must be inferred
from the absence of notes.

1.2.3 Score Representations

Within the class of symbolic music representations, we want to distinguish one sub-
class we refer to as score representations. A representation from this subclass is
defined to yield explicit information about musical symbols such as the staff system,
clefs, time signatures, notes, rests, accidentals, and dynamics. In this sense, score
representations are, compared with MIDI representations, much closer to what is
actually shown in sheet music. For example, in a score representation, the notes D4
and E’4 would be distinguishable, and the musical onset times are specified. How-
ever, a score representation may not contain a description of the final layout and
the particular shape of the musical symbols. The process of generating or render-
ing visually pleasing sheet music representations from score representations is an
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Fig. 1.14 Different sheet music representations corresponding to the same score representation
of the beginning of Prelude BWV 846 (C major) by Johann Sebastian Bach. From top left to
bottom right, a computer-generated, a handwritten, and two traditionally engraved representations
are shown.

art in itself. In former days, the art of drawing high-quality music notation for me-
chanical reproduction was called music engraving. Nowadays, computer software
or scorewriters have been designed for the purpose of writing, editing, and printing
music, though only a few produce results comparable to high-quality traditional en-
graving. Figure 1.14 illustrates this by showing different sheet music representations
corresponding to the same score.

In this book, we do not give an overview of existing symbolic score formats.
Instead, as an example, we discuss some aspects of MusicXML, which has been
developed to serve as a universal format for storing music files and sharing them
between different music notation applications. Following the general XML (Exten-
sible Markup Language) paradigm, MusicXML is a textual data format that defines
a set of rules for encoding documents in a way that is both human and machine
readable. For example, Figure 1.15 shows how a note E’4 is encoded. In the Mu-
sicXML encoding of the half note E’4, the tags <note> and </note> mark the
beginning and the end of a MusicXML note element. The pitch element, delimited
by the tags <pitch> and </pitch>, consists of a pitch class element E (denot-
ing the letter name of the pitch), the alter element -1 (changing E to E flat), and
the octave element 4 (fixing the octave). Thus, the resulting note is an E’4. The ele-
ment <duration>2</duration> encodes the duration of the note measured in
quarter notes. Finally, the element <type>half</type> tells us how this note
is actually depicted in the rendered sheet music.

There are various ways to generate digital score representations. For example,
one could manually input the score information in a format such as MusicXML.
This, however, is a tedious and error-prone procedure. Music notation software or
scorewriters support users in the task of writing and editing digitized sheet music.
Such software allows a user to conveniently input and modify note objects by stan-
dard computer input devices or electronic keyboards. In the next section, we discuss
another way for generating score representations from scanned images of printed
sheet music, which is, in a sense, the inverse of a rendering process.
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Fig. 1.15 Textual description

in the MusicXML format of <note>

a half note E’4. The clef, key <pitch>

signature, and time signature <step>E</step>

P <alter>-1</alter>

are deﬁneq at the beginning <octavesi</octaved

of the MusicXML file. </pitch>
<duration>2</duration> ——
<type>half</type> .

</note> —&—

1.2.4 Optical Music Recognition

Sheet music is widely available, and many people are trained to use music nota-
tion for studying and playing music. For centuries, music has been documented,
transmitted, and distributed in the form of printed sheet music. Music libraries and
archives possess huge collections comprising millions of sheet music books, which
are now successively being transferred into the digital domain using scanning de-
vices. A digital image resulting from such a scanning process consists of a number
of rows and columns of pixels, each pixel encoding the color at a specific point of
the scanned page. In other words, a digital image of a sheet music page is by itself
a mere accumulation of colored (often black and white) pixels without expressing
any deeper musical meaning.

The process of converting digital images of sheet music into symbolic music
representations such as MIDI or MusicXML is commonly referred to as optical
music recognition (OMR).? During this process, the image pixels have to be suit-
ably grouped and interpreted in terms of musical symbols. This process is not easy,
because of the many ways musical symbols may be engraved into sheet music. As
discussed in the last section and illustrated by Figure 1.14, there may be substantial
variations in the layout of the symbols and the staff system. Symbols do not always
look exactly the same across different editions and may also be degraded in quality
by artifacts of the printing or scanning process. Furthermore, musical symbols often
intersect with staff lines, and several symbols may be stacked and combined (e.g.,
several notes sharing the same stem or combined with a beam). As a result, musical
scores and the interrelations between musical symbols can become quite complex.

Correctly recognizing and interpreting the meaning of all the musical symbols is
easy for a trained human, but hard for a computer. Figure 1.16a shows some exam-
ples of typical errors produced by automated OMR procedures. Some of these errors
such as missing notes, flags or beams are of local nature, while other errors, such as
an incorrectly detected key signature, affect all notes of a staff line. Even worse is
the presence of a transposing instrument, whose music is notated at a pitch differ-
ent from the pitch that is actually played (see Figure 1.16c). For example, a clarinet
inB’isa transposed instrument, where a C in a score sounds like a B’. Missing this
information, which is encoded in textual form in front of a staff line, leads to a mis-

2 The equivalent in the text domain is known as optical character recognition (OCR) with the
goal of converting scanned images of printed text into machine-encoded text.
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Fig. 1.16 (a) Examples of typical OMR errors (top: original score; bottom: OMR result). (b) Jump
directives and repeats often not detected by OMR. (¢) Transposed instruments often not interpreted
correctly by OMR.

representation of all the notes’ pitches. A score may also contain repeat signs with
alternative endings or textual jump directives as shown in Figure 1.16b. This infor-
mation is required to derive the correct sequence of measures to be performed by a
musician. Consequently, an error in detecting jump directives may lead to structural
misinterpretations of the score. Another problem is that even small artifacts in the
scan may lead to confusion with musical symbols, e.g., a small dot being mixed up
with a staccato mark. Even though current OMR software is reported to yield highly
accurate results, manual postprocessing still seems necessary to obtain high-quality
symbolic representation.

1.3 Audio Representation

Music is much more than a symbolic description of the notes to be played. Music
is about making, creating, and shaping sounds. When musicians start delving into
the music, the playing instructions recede into the background. The musical meter
turns into a rhythmic flow, the different note objects melt into harmonic sounds and
smooth melody lines, and the instruments communicate with each other. Musicians
get emotionally involved with their music and react to it by continuously adapting
tempo, dynamics, and articulation. Instead of playing mechanically, they speed up at
some points and slow down at others in order to shape a piece of music. Similarly,
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they continuously change the sound intensity and stress certain notes. All of this
results in a unique performance or an interpretation of the piece of music.

From a physical point of view, performing music results in sounds or acoustic
waves, which are transmitted through the air as pressure oscillations. The term au-
dio is used to refer to the transmission, reception, or reproduction of sounds that lie
within the limits of human hearing. An audio signal is a representation of sound. As
opposed to sheet music and symbolic representations, an audio representation en-
codes all information needed to reproduce an acoustic realization of a piece of mu-
sic. This includes the temporal, dynamic, and tonal microdeviations that make up the
specific performance style of a musician. However, in an audio representation, note
parameters such as onset times, pitches or note durations are not given explicitly.
This makes the analysis and comparison of music signals a difficult task, in partic-
ular with regard to polyphonic music, where different instruments and voices are
superimposed upon each other. Furthermore, the perception of sounds does not only
depend on objective properties of the acoustic wave, but also on subjective criteria
as a result of the complex processing a sound undergoes by both the human ear and
the brain. The study of subjective human sound perception is called psychoacous-
tics—for further details see [5, 17]. In this section, after having a look at waves and
waveforms, we summarize the most important properties of audio representations:
frequency and pitch, dynamics, intensity and loudness, as well as timbre.

1.3.1 Waves and Waveforms

A sound is generated by a vibrating object such as the vocal cords of a singer, the
string and soundboard of a violin, the diaphragm of a kettledrum, or the prongs of a
tuning fork. These vibrations cause displacements and oscillations of air molecules,
resulting in local regions of compression and rarefaction. The alternating pressure
travels through the air as a wave, from its source to a listener or a microphone. At
its destination, it can then be perceived as sound by the human or converted into an
electrical signal by a microphone (see Figure 1.17). In the case of a listener, the outer
part of the ear captures the sound wave and passes it to the eardrum, which in turn
starts vibrating according to the pressure oscillations. After further processing in the
middle and inner ear, the sound wave is transformed into nerve impulses, which are
finally sent to and interpreted by the brain. Graphically, the change in air pressure
at a certain location can be represented by a pressure—time plot, also referred to as
the waveform of the sound. The waveform shows the deviation of the air pressure
from the average air pressure. Figure 1.18 shows a waveform representation of a
recording of Beethoven’s Fifth Symphony.

In general terms, a (mechanical) wave can be described as an oscillation that
travels through space, where energy is transferred from one point to another. When
a wave travels through some medium, the substance of this medium is temporarily
deformed. As described above, sound waves propagate via air molecules colliding
with their neighbors. After air molecules collide, they bounce away from each other
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particles. The pressure oscillation propagates as a longitudinal wave through the air. The waveform
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Fig. 1.18 (a) Waveform of the first eight seconds of a recording of the first five measures of
Beethoven’s Fifth as indicated by Figure 1.1. (b) Enlargement of the section between 7.3 and 7.8
seconds.

(a restoring force). This keeps the molecules from continuing to travel in the direc-
tion of the wave. Instead, they oscillate around almost fixed locations. A general
wave can be transverse or longitudinal, depending on the direction of its oscilla-
tion. Transverse waves occur when a disturbance creates oscillations perpendicular
(at right angles) to the propagation (the direction of energy transfer). Longitudinal
waves occur when the oscillations are parallel to the direction of propagation. Ac-
cording to this definition, a vibration in a string is an example of a transverse wave,
whereas a sound wave has the form of a longitudinal wave. A transverse wave can
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Fig. 1.19 Waveform of a sinusoid with a frequency of 4 Hz.

in fact generate a longitudinal wave and visa versa. An instrument’s vibrating string,
which oscillates between the two fixed end points, gradually emits its energy to the
air, generating a longitudinal sound wave. If this wave, in turn, hits an eardrum,
again a transverse wave is generated.

1.3.2 Frequency and Pitch

We have seen that a sound wave can be visually represented by a waveform. If the
points of high and low air pressure repeat in an alternating and regular fashion, the
resulting waveform is called periodic. In this case, the period of the wave is defined
as the time required to complete a cycle. The frequency, measured in Hertz (Hz),
is the reciprocal of the period. Figure 1.19 shows a sinusoid, which is the simplest
type of periodic waveform. In this example, the waveform has a period of a quarter
second and hence a frequency of 4 Hz. A sinusoid is completely specified by its
frequency, its amplitude (the peak deviation of the sinusoid from its mean), and
its phase (determining where in its cycle the sinusoid is at time zero). These three
attributes of a sinusoid will become important when analyzing general audio signals
(see Section 2.3).

The higher the frequency of a sinusoidal wave, the higher it sounds. The audible
frequency range for humans is between about 20 Hz and 20,000 Hz (20 kHz). Other
species have different hearing ranges. For example, the top end of a dog’s hearing
range is about 45 kHz, a cat’s is 64 kHz, while bats can even detect frequencies
beyond 100 kHz. This is why one can use a dog whistle, which emits ultrasonic
sound beyond the human hearing capability, to train and to command animals with-
out disturbing nearby people.

The sinusoid can be considered the prototype of an acoustic realization of a musi-
cal note. Sometimes the sound resulting from a sinusoid is called a harmonic sound
or pure tone. As indicated in Section 1.1.1, the notion of frequency is closely related
to what determines the pitch of a sound. In general, pitch is a subjective attribute
of sound. In the case of complex sound mixtures its relation to frequency can be
especially ambiguous. In the case of pure tones, however, the relation between fre-
quency and pitch is clear. For example, a sinusoid having a frequency of 440 Hz
corresponds to the pitch A4. This particular pitch is known as concert pitch, and
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it is used as the reference pitch to which a group of musical instruments are tuned
for a performance. Since a slight change in frequency does not necessarily lead to a
perceived change, one usually associates an entire range of frequencies with a single
pitch.

As mentioned in Section 1.1.1, two frequencies are perceived as similar if they
differ by a power of two, which has motivated the notion of an octave. For example,
the pitches A3 (220 Hz), A4 (440 Hz), and A5 (880 Hz) sound similar. Furthermore,
the perceived distance between the pitches A3 and A4 is the same as the perceived
distance between the pitches A4 and AS. In other words, the human perception
of pitch is logarithmic in nature. This perceptual property has already been used
in Section 1.1.1 when defining the equal-tempered scale that subdivides an octave
into twelve semitones based on a logarithmic frequency axis. More formally, using
the MIDI note numbers introduced in Section 1.2.2, we can associate to each pitch
p € [0:127] a center frequency Fpich(p) (measured in Hz) by

Foiten(p) = 2(P=99/12.440. (1.1)

Indeed, this formula yields the frequency Fpitch( p) = 440 for the reference pitch
p = 69 (A4). Increasing the pitch number by 12 (an octave) leads to an increase by
a factor of two, i.e., Fpicch(p + 12) = 2 Fyiren(p). Similarly, it is easy to show that
the frequency ratio

Foiten(p+ 1)/ Fyieen (p) = 21/1% = 1.059463 (1.2)

of two subsequent pitches p+ 1 and p is constant (see Exercise 1.6). In other words,
multiplying the center frequency of an arbitrary pitch by this constant, the pitch
is raised by a semitone. Generalizing the notion of semitones, the cent denotes a
logarithmic unit of measure used for musical intervals. By definition, an octave is
divided into 1200 cents, so that each semitone corresponds to 100 cents. Again the
ratio of frequencies one cent apart is constant, yielding the value

2171200 ~ 1,0005777895. (1.3)

The difference in cents between two frequencies, say @; and @, is given by

(1
log, [ — | - 1200. (1.4)
&(@>

The interval of one cent is much too small to be heard between successive notes.
The threshold of what is perceptible, also called the just noticeable difference,
varies from person to person and depends on other aspects such as the timbre
(Section 1.3.4) and the musical context. As a rule of thumb, normal adults are able
to recognize pitch differences as small as 25 cents very reliably, with differences of
10 cents being recognizable only by trained listeners.

Real-world sounds are far from being a simple pure tone with a well-defined fre-
quency. Playing a single note on an instrument may result in a complex sound that
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contains a mixture of different frequencies changing over time. Intuitively, such a
musical tone can be described as a superposition of pure tones or sinusoids, each
with its own frequency of vibration, amplitude, and phase. A partial is any of the
sinusoids by which a musical tone is described. The frequency of the lowest partial
present is called the fundamental frequency of the sound. The pitch of a musical
tone is usually determined by the fundamental frequency, which is the one cre-
ated by vibration over the full length of a string or air column of an instrument.
A harmonic (or a harmonic partial) is a partial that is an integer multiple of the
fundamental frequency. Partials, as well as harmonics, are counted upwards along
the frequency axis. This convention implies that the fundamental frequency is the
first partial, as well as the first harmonic of a musical tone. The term inharmonic-
ity is used to denote a measure of the deviation of a partial from the closest ideal
harmonic, typically measured in cents for each partial. Finally, another term that
is often used in music theory is the overtone, which is any partial except the low-
est. This can lead to numbering confusion when comparing overtones with partials,
since the first overtone is the second partial.

Most pitched instruments are designed to have partials that are close to being
harmonics, with very low inharmonicity. Thus, for simplicity, one often speaks of
the partials in those instruments’ sounds as harmonics, even if they have some inhar-
monicity. Other pitched instruments, especially certain percussion instruments, such
as the marimba, vibraphone, bells, and kettledrums (timpani), contain nonharmonic
partials, yet give the ear a good sense of pitch. Nonpitched, or indefinite-pitched,
instruments, such as cymbals, gongs, or tam-tams, make sounds rich in inharmonic
partials. As an example of a harmonic sound, Figure 1.18 shows in its lower part
an enlargement of the waveform of the section between 7.3 and 7.8 seconds, which
reveals the almost periodic nature of the sound signal. The waveform within these
500 ms corresponds to the sound of a decaying D, which is played by the orchestra
in unison in the fourth and fifth measure (see Figure 1.1). Indeed, one counts 37 pe-
riods within this section, corresponding to a frequency of 74 Hz—the fundamental
frequency of D2.

We close this section on frequency and pitch by looking at harmonics in terms
of musical pitches. Let @ denote the center frequency of a musical note, e.g.,
® = 65.4 Hz for C2 (having MIDI note number p = 36). The harmonic series is
an arithmetic series @, 2@, 3®, 4, ..., where the difference between consecutive
harmonics is constant and equal to the fundamental. Since our perception of pitch
is logarithmic in frequency, we perceive higher harmonics as “closer together” than
lower ones. On the other hand, the octave series is a geometric progression ®, 2@,
4w, 8w, ..., and we hear these distances as “the same” in the sense of musical in-
terval. Consequently, in terms of what we hear, each octave in the harmonic series
is divided into increasingly “smaller” and more numerous intervals. In our example,
the second harmonic (2w) sounds like a C3 (one octave higher), the third harmonic
(Bw) like a G3 (a so-called perfect fifth above C3), and the fourth harmonic (4®)
like a C4 (two octaves higher). Starting with a C2, Figure 1.20 shows for each of
the first 16 harmonics the musical note that is closest in terms of the difference be-
tween the harmonic’s frequency and the center frequency of the note as specified
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Fig. 1.20 Illustration of the harmonic series in music notation. Starting with the note C2, for each
of the first 16 harmonics the closest musical note is shown. On top, the difference (in cents) between
a harmonic’s frequency and the center frequency of the closest note is shown.

in (1.1) (see also Exercise 1.9). For example, the frequency of the third harmonic is
just 2 cents above the center frequency of G3, which is much smaller than the just
noticeable difference. In contrast, the frequency of the 11™ harmonic is 49 cents be-
low the center frequency of the note F*5, which is nearly half a semitone and clearly
audible. If the harmonics are transposed into the span of one octave (by suitably
multiplying or dividing the frequencies by a power of two), they approximate cer-
tain notes of the twelve-tone equal-tempered scale. Some of the twelve scale steps
are approximated well such as the ones for C (1% harmonic), G (3" harmonic), or D
(9™ harmonic), whereas others are problematic such as F? (11" harmonic), A” (13™
harmonic), or B” (7™ harmonic).

1.3.3 Dynamics, Intensity, and Loudness

As mentioned in Section 1.1.2, a further important property of music concerns the
dynamics, a general term that is used to refer to the volume of a sound as well
as to the musical symbols that indicate the volume. For example, a piano (notated
as p) indicates that notes are to be played softly, whereas a forte (notated as f)
indicates that notes are to be played loudly. There are many more indicators for de-
scribing the dynamics of notes in sheet music. On the audio side, dynamics correlate
with a perceptual property called loudness, by which sounds can be ordered on a
scale extending from quiet to loud. Similarly to the relation between pitch and fre-
quency, loudness is a subjective measure which correlates to objective measures of
sound intensity and sound power. However, loudness also depends on other sound
characteristics such as duration or frequency. We will come back to some of these
subjective phenomena after having a closer look at the objective measures.

From a physical point of view, it is not easy to strictly define the intensity or
power of a sound. In the following, we only give some intuitive explanations. In gen-
eral, power is the rate at which energy is transferred, used, or transformed. Power
is measured in units of watt (W), which is defined as one joule per second. For ex-
ample, the rate at which a light bulb transforms electrical energy into heat and light
is measured in watts—the more wattage, the more power, or equivalently the more
electrical energy is used per unit time. Similarly, sound power expresses how much
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Table 1.1 Typical intensity

: b 2 . Source Intensity | Intensity level | x TOH

values given in W/m® (in- Threshold of hearing (TOH) 1012 0dB 1

tensity), in decibels (intensity Whisper 1070 20 dB 102

level), and by a factor com- ——

pared with the TOH. Pianissimo 108 40 dB 104
Normal conversation 106 60 dB 108
Fortissimo 102 100 dB 1010
Threshold of pain 10 130 dB 1013
Jet take-off 102 140 dB 10"
Instant perforation of eardrum 104 160 dB 1016

energy per unit time is emitted by a sound source passing in all directions through
the air. The term sound intensity is then used to denote the sound power per unit
area.

In practice, sound power and sound intensity can show extremely small values
that are still relevant for human listeners. For example, the threshold of hearing
(TOH), which is the minimum sound intensity of a pure tone a human can hear, is
as small as

oy := 10712 W/m?. (1.5)

Furthermore, the range of intensities a human can perceive is extremely large with
Itop :== 10 W/ m? being the threshold of pain (TOP). For practical reasons, one
switches to a logarithmic scale to express power and intensity. More precisely, one
uses a decibel (dB) scale, which is a logarithmic unit expressing the ratio between
two values. Typically, one of the values serves as a reference, such as Itoy in the
case of sound intensity. Then the intensity measured in dB is defined as

1

From this definition, one obtains dB(Iton) = 0, and a doubling of the intensity
results in an increase of roughly 3 dB:

dB(2-1) = 10-log,(2) +dB(I) ~ 3 +dB(I). (1.7)

When specifying intensity values in terms of decibels, one also speaks of intensity
levels. Table 1.1 shows some typical intensity values given in W/m? as well as in
decibels for some sound sources and dynamics indicators. For example, notes being
played pianissimo (“very softly”) typically result in intensity levels around 40 dB,
whereas notes being played fortissimo (“very loudly”) can reach levels up to 100 dB.

We now come back to the concept of loudness, which is the perceptual correlate
to sound intensity [6, 17]. As said before, the loudness is affected by a number of
factors. First of all, the same sound may be perceived to have different loudness de-
pending on the individual. In particular, age is one factor that affects the human ear’s
response to a sound. Also, the duration of the sound influences perception, since the
human auditory system averages the effect of sound intensity over an interval up
to a second. Therefore, a human has the feeling that a sound lasting for 200 ms
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Fig. 1.21 Equal loudness
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is louder than a similar sound only lasting 50 ms. Furthermore, two sounds with
the same intensity but different frequencies are generally not perceived to have the
same loudness. Humans with normal hearing are most sensitive to sounds around 2
to 4 kHz, with sensitivity declining for lower as well as higher frequencies. Based
on psychoacoustic experiments, the perceived loudness of pure tones depending on
the frequency has been determined and expressed by the unit phon. Figure 1.21
shows equal loudness contours. Each contour line specifies for a fixed loudness
given in phons the sound intensities over a (logarithmically spaced) frequency axis.
The unit of a phon is normalized with respect to the frequency of 1,000 Hz, where
a phon value equals the intensity level in dB. The contour for 0 phon shows how the
threshold of hearing depends on frequency.

1.3.4 Timbre

Besides pitch, loudness, and duration, there is another fundamental aspect of sound
referred to as timbre or tone color. Timbre allows a listener to distinguish the mu-
sical tone of a violin, an oboe, or a trumpet even if the tone is played at the same
pitch and with the same loudness. As with pitch and loudness, timbre is a percep-
tual property of sound [22]. However, timbre is very hard to grasp, and because of its
vagueness, it is often described in an indirect way: timbre is the attribute whereby
a listener can judge two sounds as dissimilar using any criterion other than pitch,
loudness, and duration. For example, timbre information allows us to tell apart the
sounds produced by the oboe and the violin, even when the pitch and loudness of the
sounds are identical [19]. The sound of a musical instrument may be described with
such words as bright, dark, warm, harsh, and other terms. Researchers have tried to
approach timbre by looking at correlations to more objective sound characteristics
such as the temporal and spectral evolution, the absence or presence of tonal and
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Fig. 1.22 (a) Envelope of a signal. (b) Schematic view of an ADSR envelope.

noise-like components, or the energy distribution across the partials of a tone. In the
following, we take a closer look at some of these characteristics.

When striking a piano key, the resulting sound is much more than a superposition
of pure sinusoids that correspond to the fundamental frequency and its overtones.
Playing a single note already produces a complex sound mixture with characteristics
that may constantly change over time, containing periodic as well as nonperiodic
components. At the beginning of a musical tone, there is often a sudden increase
of energy. In this short phase, the attack phase of the tone, the sound builds up. It
contains a high degree of nonperiodic components that are spread over the entire
range of frequencies, a property that is also inherent to noise. In acoustics, such a
noise-like short-duration sound of high amplitude occurring at the beginning of a
waveform is also called a transient. In the case of a piano, striking a key triggers an
entire chain of mechanical actions before a hammer hits one or several strings. All
these actions, starting with the finger touching the key and ending with the hammer
hitting the strings, produce mechanical noise that merges with the acoustic effects of
the strings’ excitation. After the attack phase, the sound of a musical tone stabilizes
(decay phase) and reaches a steady phase with a (more or less) periodic pattern.
This third phase, which is also called the sustain phase, makes up most of the du-
ration of a musical tone, where the energy remains more or less constant or slightly
decreases as is the case with a piano sound. In the final phase of a musical tone, also
called the release phase, the musical tone fades away. For a piano, this phase starts
as soon as the finger leaves the key and the damper stops the strings’ vibrations.

Intuitively, the envelope of a waveform can be regarded to be a smooth curve
outlining its extremes in amplitude (see Figure 1.22a). The different phases as de-
scribed above have a strong influence on the shape of the envelope of a musical tone.
In sound synthesis, the envelope of a signal to be generated is often described by
a model called ADSR, which consists of an attack (A), decay (D), sustain (S), and
release (R) phase (see Figure 1.22b). The relative durations and the amplitudes of
the four phases have a significant impact on how the synthesized tone will sound.

The ADSR model is a strong simplification and only yields a meaningful approx-
imation for amplitude envelopes of tones that are generated by certain instruments.
For example, the musical tone shown in Figure 1.23a, which is the note C4 played
on a piano, has an envelope that is similar to the one suggested by the ADSR model.
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Fig. 1.23 Waveform, amplitude envelope, and spectrogram representation for different instruments
playing the same note C4 (261.6 Hz). (a) Piano. (b) Violin.

After a sharp attack (when the hammer hits the string) and a stabilizing decay, the
tone continuously fades out. In the case of a piano sound, the decrease in sound in-
tensity is very slow as long as the damper does not touch the string. Therefore, one
can regard this phase as a kind of sustain phase. When the piano key is released and
the damper stops the string’s vibration, the sound quickly comes to an end. For other
instruments, however, the amplitude may evolve in a completely different fashion.
This is illustrated by Figure 1.23b, which shows an envelope for the note C4 played
on a violin. First of all, since the tone is played softly with a gradual increase in
volume, the attack phase is spread out in time. Furthermore, there does not seem
to be any decay phase and the subsequent sustain phase is not steady; instead, the
amplitude envelope oscillates in a regular fashion. The release phase starts when the
violinist stops exciting the string with the bow. The sound then quickly fades out.
For our violin example, one can observe periodic variations in amplitude. This
phenomenon, known as tremolo, is generated by certain playing styles used for
string or wind instruments. The effect of tremolo often goes along with vibrato,
which is a musical effect consisting of a regular, pulsating change of frequency.
Besides string music, vibrato is mainly used by human singers to add expression.
In technical terms, tremolo corresponds to an amplitude modulation, whereas vi-
brato corresponds to a frequency modulation. Both tremolo and vibrato depend on
two parameters: the extent of the variation and the rate at which the amplitude or
frequency is varied. Even though tremolo and vibrato are simply local changes in
intensity and frequency, they do not necessarily evoke a perceived change in loud-



1.3 Audio Representation 29

ness or pitch of the overall musical tone. Rather, they are features that influence the
timbre of a musical tone.

Perhaps the most important and well-known property for characterizing timbre
is the existence of certain partials and their relative strengths [19]. Recall from
Section 1.3.2 that partials are the dominant frequencies of a musical tone with the
lowest partial being the fundamental frequency. The inharmonicity expresses the
extent to which a partial deviates from the closest ideal harmonic. For harmonic
sounds such as a musical tone with a clearly perceivable pitch, most of the partials
are close to being harmonics. However, not all partials need to occur with the same
strength, as we will see in a moment.

The composition of a sound in terms of its partials can be visualized by a so-
called spectrogram, which shows the intensity of the occurring frequencies over
time. For a detailed introduction on such time—frequency representations refer to
Section 2.5. Figure 1.23a shows at the bottom a spectrogram for the note C4 played
on a piano, where the intensity is reflected by the shade of gray (the darker the
more intense). Both the fundamental frequency of the note (261.6 Hz) as well as its
harmonics (integer multiples of 261.6 Hz) are visible as horizontal lines. The decay
of the musical tone is reflected by a corresponding decay in each of the partials.
Most of the tone’s energy is contained in the lower partials, and the energy tends to
be lower for the higher partials. Such a distribution is typical for many instruments.

For string instruments, sounds tend to have a rich spectrum of partials, where
lots of energy may also be contained in the upper harmonics (see Figure 1.23b).
This figure also reveals the vibrato as a regular oscillation in the time—frequency
plane. Certain classes of wind instruments including the clarinet (so-called closed-
pipe wind instruments) produce a very characteristic spectrum of partials. For a
cylindrical wind instrument that is open at one end, but closed at the other (at the
mouthpiece), one can show that the even harmonics do not show up. In other words,
most energy is contained in the odd harmonics @y, 3@y, Sy, ..., with @y denoting
the fundamental frequency. For a musical tone played on a bassoon, the fundamental
frequency often contains much less energy compared with the higher partials. In
contrast, for a tuning fork, most energy is contained in the fundamental frequency,
resulting in a sound that is close to a synthesized sinusoid. Instruments such as bells
have a very complex spectrum with lots of inharmonicities, which often evokes in
the listener the feeling of a bell being out-of-tune. For stringed instruments, one
can often measure substantial deviations between higher partials and the theoretical
harmonics. The less elastic a string is (that is, the shorter, thicker, higher tension or
stiffer it is), the more inharmonicity it may exhibit. This particularly holds for the
piano, where such inharmonicities have a crucial influence on the timbre.

With this discussion, we want to indicate that timbre is a multidimensional phe-
nomenon that is hard to measure. It is the irregularities and variations that make a
musical tone sound interesting and that give it a particular and natural quality.
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Fig. 1.24 Tllustration of three classes of music representation and their relations.

1.4 Summary and Further Readings

In this chapter, we looked at three different classes of music representations while
introducing some musical and technical terminology that is used throughout this
book. We use the term sheet music to refer to visual representations of a musical
score either given in printed form or encoded digitally in some image format. The
term symbolic stands for any kind of symbolic representation where the entities
have an explicit musical meaning. Finally, the term audio is used to denote music
recordings given in the form of acoustic waveforms. The boundaries between these
classes are not clear. In particular, as illustrated by Figure 1.24, symbolic represen-
tations may be close to both sheet music as well as audio representations [24]. On
the one hand, symbolic representations such as MusicXML are used for rendering
sheet music, where the shape of the note objects and their arrangement on a page
are determined. As we have seen, optical music recognition (OMR) is the inverse
process with the goal of transforming sheet music into a symbolic representation.
On the other hand, symbolic representations such as MIDI are used for synthesizing
audio, where the note objects are transformed into musical tones and real sounds.
The inverse process is known as music transcription, where the objective is to
extract note events, key signature, time signature, instrumentation, and other score
parameters from a given music recording [2, 13].

In a sense, symbolic representations can be regarded as the link between the
visual (or graphical) domain accommodating sheet music representations and the
acoustic (or physical) domain accommodating audio representations [24]. In the
first case, timing is specified in terms of the shape and the relative arrangement of
the musical symbols and is typically given in musical units such as measures or
beats. In the latter case, timing is specified in physical units such as seconds. For
music recordings, there are often no sharp note onsets or offsets (think of a soft
onset for a note played on a violin or a gradual fade-out) and the specification of
the beginning and the end of musical events becomes an ill-defined problem. For a
general discussion of alignment procedures to bridge the gap between sheet music
and audio representations, we refer to [24].

Of course, any kind of categorization of music representations goes along with
an oversimplification. Our categorization is far from being comprehensive. We have
seen that, when describing musical attributes such as pitch, loudness, and timbre,
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human perception is a crucial factor. Therefore, besides the acoustic and visual
domain, Babbitt [1] considers an additional auditory domain. In his taxonomy, a
graphemic note (the blob on the page) corresponds in meaning with the (auditory)
percept of the note. From a philosophical point of view, as argued by Wiggins et
al. [25], music is actually something abstract and intangible which does not have
real existence in itself. In this sense, all of the domain-specific representations are
aspects of music, but none of them is music, individually. Mazzola [15] considers
music to be the universe of all different perspectives one may assume. For a psy-
chologically based approach to music along with the expectations and emotions it
evokes, we refer to the book by Huron [12]. Running the risk of oversimplification,
we adopt in this book a more technically oriented view of music processing and
leave out perhaps the most important aspect of music: the human mind.

Sheet music has a history of hundreds of years, and the basic concepts we have
presented can be found in introductory textbooks on music notation [9], and we also
refer to Wikipedia as a rich source of useful information on this topic. Because of
significant digitization efforts, sheet music is now widely available in digital for-
mats. In particular for Western classical music, scanned versions of musical edi-
tions out of copyright are now freely accessible on the world wide web. One promi-
nent example is the Petrucci Music Library, which is a virtual library of public-
domain music scores organized and created by the International Music Score Li-
brary Project IMSLP).? For symbolic music, many formats have been suggested in
the literature to represent sheet music in a digital, machine-readable form. A com-
prehensive account on MIDI* and its use with electronic instruments and sequencers
can be found in [11]. Extensions and challenges of the MIDI format are summarized
in [14]. In the book edited by Selfridge-Field [21], one not only finds an introduc-
tion to the MIDI format but also a detailed overview and description of symbolic
formats up to the year 1997. Since then, many new formats have been proposed and
developed, including both open and well-documented formats, as well as proprietary
formats that are bound to specific software packages. The MusicXML?> format [8]
and the MEI® format developed by the community-driven Music Encoding Initia-
tive [10], are only two prominent examples. Similarly, a multitude of commercial
and noncommercial OMR software systems have been developed. While many of
these systems only work for printed sheet music, others also address the much harder
problem of recognizing handwritten scores. In recent decades, significant research
efforts have been directed towards improving, comparing, and evaluating OMR sys-
tems [3]. Even though substantial improvements could be achieved, also thanks to
recent data-driven techniques based on deep learning, OMR can still not be regarded
as a solved problem. For a comprehensive overview of OMR literature, we refer to
the Bibliography on Optical Music Recognition.”

3http://imslp.org

4 http://www.midi.org
Shttp://www.musicxml.com
Shttps://music-encoding.org/

T https://omr-research.github.io/
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There are many excellent books on the foundations of the acoustical properties of
music and audio signals. For example, the classic book by Fletcher and Rossing [7]
gives a detailed account on musical sound waves and the physics behind their gener-
ation by musical instruments. The book by Fastl and Zwicker [5] as well as the one
by Moore [17] give deeper insights into the field of auditory perception and psycho-
acoustics for general audio signals. A source of inspiration for this chapter has been
the book by Sethares [22] on tuning, timbre, spectrum, and scale, which provides in-
teresting insights (along with sound examples) on how these concepts are related. A
signal-processing-oriented approach to the concepts of timbre and instrumentation
can be found in [19].

We finally want to remark that deep learning techniques have opened up new
avenues for various tasks related to processing, converting, and linking music
representations. For example, this holds for the task of OMR when a sufficient
amount of well-annotated training data is available [3]. Similarly, major progress
could be achieved in music transcription using deep learning techniques [2]. Data-
driven techniques are also increasingly used for cross-modal retrieval and alignment
tasks [4, 18]. However, music turns out to be a hard domain due to the complexity
and diversity of music, which would require vast amounts of data to efficiently cover
all these aspects. For example, OMR is still a hard problem for handwritten music
or sheet music with a dense and complex layout. Similarly, while automated meth-
ods for music transcription work well for piano recordings of high acoustic quality
(where one has a lot of training data), the automatic conversion of complex orches-
tral or choir performances into score notation—a task Mozart was capable of after
listening to a polyphonic choral piece only once—is still a largely open problem
despite decades of research.

1.5 FMP Notebooks

In this chapter, we have seen that musical information can be represented in many
different ways, including sheet music, symbolic, and audio representations. In Part
1 of the FMP notebooks [20], which is closely associated with this first chapter, we
offer visual and acoustic material as well as Python code examples to study musical
and acoustic properties of music. We now briefly go through the FMP notebooks of
Part 1 one by one while indicating how these can be used for possible experiments
and exercises.

We start with the FMP Notebook Sheet Music Representations, where we take
up the example of Beethoven’s Fifth Symphony. Besides the piano reduced ver-
sion (see Figure 1.1) and a full orchestral score (see Figure 1.10), we also show a
computer-generated sheet music representation. The comparison of these versions
is instructive, since it demonstrates the huge differences one may have between dif-
ferent layouts, also indicating that the generation of visually pleasing sheet music
representations from score representations is an art in itself. Besides the visual data,
the notebook also provides different recordings of this passage, including a synthe-
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sized orchestral version created from a full score and a recording by the Vienna
Philharmonic orchestra conducted by Herbert von Karajan (1946). The comparison
between the mechanical and performed versions shows that one requires additional
knowledge not directly specified in the sheet music to make the music come alive.
In the data folder of Part 1 (data/C1), one finds additional representations of our
Beethoven example including Sibelius files® of a piano, orchestral, and string quar-
tet version. These files, in turn, have been exported in symbolic formats (.mid,
.sib, .xml), image formats (. png), and audio formats (. wav, .mp3). Such sys-
tematically generated data is well suited for hands-on exercises that allow teachers
and students to experiment within a controlled setting. This is also one reason why
we will take up the Beethoven (and other) examples again and again throughout the
FMP notebooks.

In the FMP Notebook Musical Notes and Pitches, we deepen the concepts as
introduced in Section 1.1.1. We show how to generate musical sounds using a sim-
ple sinusoidal model, which can then be used to obtain acoustic representations of
concepts such as octaves, pitch classes, and musical scales. In the FMP Notebook
Chroma and Shepard Tones, we generate Shepard tones, which are weighted super-
positions of sine waves separated by octaves. These tones can be used to sonify the
chromatic circle and Shepard’s helix of pitch (see Figure 1.3). Extending the notion
of the twelve-tone discrete chromatic circle, one can generate a pitch-continuous
version, where the Shepard tones ascend (or descend) continuously. Originally cre-
ated by the French composer Jean-Claude Risset, this continuous version is also
known as the Shepard—Risset glissando. To implement such a glissando, one re-
quires a chirp function with an exponential (rather than a linear) frequency increase.
Experimenting with Shepard tones and glissandi not only leads to interesting sound
effects that may be used even for musical compositions, but also deepens the un-
derstanding of concepts such as frequency, pitch, and the role of overtones. The
concept of Shepard tones can also be used to obtain a sonification of chroma fea-
tures as introduced in Section 3.1.2 (see also the FMP Notebook Sonification of
Part B).

In the subsequent FMP notebooks, we discuss Python code for parsing, convert-
ing, and visualizing various symbolic music formats. In particular, for students who
are not familiar with Western music notation, the piano-roll representation yields
an easy-to-understand geometric encoding of symbolic music. Motivated by tra-
ditional piano rolls, the horizontal axis of this two-dimensional representation en-
codes time, whereas the vertical axis encodes pitch. The notes are visualized as
axis-parallel rectangles, where the color of the rectangles can be used to encode ad-
ditional note parameters such as velocity or instrumentation. A piano-roll represen-
tation can be easily stored in a comma-separated values (. csv) file, where each line
encodes a note event specified by parameters such as start, duration, pitch,
velocity, and an additional 1abel (e.g., encoding the instrumentation). This
slim and explicit format, even though representing symbolic music in a simplified
way, is used throughout most parts of the FMP notebooks, where the focus is on

8 These files have a . sib extension and are generated by the Sibe1ius music notation software
application.
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Fig. 1.25 Visualization of a piano-roll representation generated by the FMP Notebook Symbolic
Format: CSV. The figure shows the beginning of the four-voice Fugue BWV 846 in C major by
Johann Sebastian Bach.

the processing of waveform-based audio signals. In the FMP Notebook Symbolic
Format: CSV, we introduce the Python library pandas, which provides easy-to-
use data structures and data analysis tools for parsing and modifying text files [16].
Furthermore, we introduce a function for visualizing a piano-roll representation as
shown in Figure 1.25. The implementation of such visualization functions is an in-
structive exercise for students to get familiar with fundamental musical concepts as
well as to gain experience in standard concepts of Python programming.

As discussed in Section 1.2 , there are numerous formats for encoding symbolic
music. Describing and handling these formats goes beyond this textbook. The good
news is that there are various Python software tools for parsing, manipulating, syn-
thesizing, and storing music files. In the FMP Notebook Symbolic Format: MIDI,
we introduce the Python package Prett yMIDT for handling MIDI files. This pack-
age allows for transforming the (often cryptic) MIDI messages into a list of easy-
to-understand note events, which may then be stored using simple CSV files. Sim-
ilarly, in the FMP Notebook Symbolic Format: MusicXML, we indicate how the
Python package music21 can be used for parsing and handling symbolic music
given as a MusicXML file. This package is a toolkit for computer-aided musicol-
ogy which allows users to study large datasets of symbolically encoded music, to
generate musical examples, to teach fundamentals of music theory, to edit musical
notation, to study music and the brain, and to compose music. Finally, in the FMP
Notebook Symbolic Format: Rendering, we discuss some software tools for ren-
dering sheet music from a given symbolic music representation. By mentioning a
few open-source tools, our FMP notebooks only scratch the surface on symbolic
music processing and are intended to yield entry points to this area.

The next FMP notebooks cover aspects of audio representations and their prop-
erties (Section 1.3). In the FMP Notebook Waves and Waveforms, we provide
functions for simulating transverse and longitudinal waves as well as combinations
thereof. Furthermore, one finds Python code for generating videos of these sim-
ulations, thus indicating how the FMP notebooks can be used for generating ed-
ucational material (see Figure 1.26). In the FMP Notebook Frequency and Pitch,
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Fig. 1.26 Videos generated
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and Waveforms to illustrate
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we discuss some experiments on the audible frequency range and the just-noticeable
difference in pitch perception. In the FMP Notebook Harmonic Series, one finds an
acoustic comparison of the musical scale based on harmonics with the twelve-tone
equal-tempered scale (see Figure 1.20). Similarly, the FMP Notebook Pythagorean
Tuning considers the Pythagorean scale (see Exercise 1.10). In both of these note-
books, we again use simple sinusoidal models for the sonification. The FMP Note-
book Dynamics, Intensity, and Loudness yields an implementation for visualiz-
ing the sound power level over time for our Beethoven example. Furthermore, we
present an experiment using a chirp signal to illustrate the relation between signal
power and perceived loudness (see Figure 1.21). In the FMP Notebook Timbre,
we introduce simple yet instructive experiments that are also suitable as program-
ming exercises. First, we give an example on how one may compute an envelope
of a waveform by applying a windowed maximum filter (see Figure 1.22a). Then,
we provide some implementations for generating synthetic sinusoidal signals with
vibrato (frequency modulations) and tremolo (amplitude modulations). Finally, we
demonstrate that the perception of the perceived pitch depends not only on the fun-
damental frequency but also on its higher harmonics and their relationships. In par-
ticular, we show that a human may perceive the pitch of a tone even if the funda-
mental frequency associated to this pitch is completely missing.

In summary, in the FMP notebooks of Part 1, we provide basic Python code ex-
amples for parsing and visualizing various music representations. Furthermore, we
consider tangible music examples and suggest various experiments for deepening
understanding of musical and acoustic properties of audio signals including aspects
such as frequency, pitch, dynamics, and timbre. At the same time, the material is
also intended for developing Python programming skills as required in subsequent
FMP notebooks.


https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Waveform.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Waveform.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_HarmonicSeries.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1E10_PythagoreanTuning.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1E10_PythagoreanTuning.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Dynamics.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Dynamics.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S3_Timbre.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html
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Exercises

Exercise 1.1. Assume that a pianist exactly follows the specifications given in the Beethoven ex-
ample from Figure 1.1. Determine the duration (in milliseconds) of a quarter note and a measure,
respectively.

Exercise 1.2. Specify the MIDI representation (in tabular form) and sketch the piano-roll rep-
resentation (similar to Figure 1.13) of the following sheet music representations. Assume that a

quarter note corresponds to 120 ticks. Set the velocity to a value of 100 for all active note events.
Furthermore, assign the notes of the G-clef to channel 1 and the notes of the F-clef to channel 2.

(a) b) (7
S eEperrs 70—
J Jor———

NS
e

[Hint: In this exercise, we assume that the reader has some basic knowledge of Western music
notation.]

Exercise 1.3. In this exercise, a melody is regarded as a linear succession of musical notes. A
transposition of a given melody moves all notes up or down in pitch by a constant interval. Fur-
thermore, an inversion of a melody turns all the intervals upside-down. For instance, if the original
melody rises by three semitones, the inverted melody falls by three semitones. Finally, the retro-
grade of a melody is the reverse, where the notes are played from back to front. Let us consider
the following two melodies given in piano-roll representation:

(a) (b)

71ma —— — 7184
69/A4 — 69/A4 F
[0y — — 67/G4

Specify for each of the two melodies the piano-roll representation of the transposition by two
semitones upwards, the inversion (keeping the first note fixed), the retrograde, and the retrograde
of the inversion. Furthermore, regarding melodies only up to pitch classes (by ignoring octave
information), determine the number of different melodies that can be generated by successively
applying an arbitrary number of transpositions, inversions, and retrogrades.

Exercise 1.4. The speed of sound is the distance traveled per unit of time by a sound wave prop-
agating through an elastic medium. Look up the speed of sound in air. Assume that a concert hall
has a length of 50 meters. How long does it take for a sound wave to travel from the front to the
back of the hall?

Exercise 1.5. Using (1.1), compute the center frequencies for all notes of the C-major scale C4,
D4, E4, F4, G4, A4, B4, C5 and for all notes of the C-minor scale C4, D4, E’4, F4, G4, Ab4, Bb4,
CS5 (see also Figure 1.5).

Exercise 1.6. Using (1.1), compute the frequency ratio Fpiceh(p + 1)/Fpitch(p) of two subsequent
pitches p+ 1 and p (see (1.2)). How does the frequency Fyich(p + k) for some k € Z relate to
Fpiten (p)? Furthermore, derive a formula for the distance (in semitones) for two arbitrary frequen-
cies @; and @s.
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Exercise 1.7. Let us have a look at Figure 1.18b, which shows a waveform obtained from a record-
ing of Beethoven’s Fifth. Estimate the fundamental frequency of the sound played by counting the
number of oscillation cycles in the section between 7.3 and 7.8 seconds. Furthermore, determine
the musical note that has a center frequency closest to the estimated fundamental frequency. Com-
pare the result with the sheet music representation of Figure 1.1.

Exercise 1.8. Assume an equal-tempered scale that consists of 17 tones per octave and a reference
pitch p = 100 having a center frequency of 1000 Hz. Specify a formula similar to (1.1), which
yields the center frequencies for the pitches p € [0: 255]. In particular, determine the center fre-
quency for the pitches p = 83, p = 66, and p = 49 in this scale. What is the difference (in cents)
between two subsequent pitches in this scale?

Exercise 1.9. Write a small computer program to calculate the differences (in cents) between the
first 16 harmonics of the note C2 and the center frequencies of the closest notes of the twelve-tone
equal-tempered scale (see Figure 1.20). What are the corresponding differences when considering
the harmonics of another note such as B”4?

Exercise 1.10. Pythagorean tuning (named after the ancient Greek mathematician and philoso-
pher Pythagoras) is a system of musical tuning in which the frequency ratios of all intervals are
based on the ratio 3 : 2 as found in the harmonic series. This ratio is also known as the perfect
fifth. A Pythagorean scale is a scale constructed from only pure perfect fifths (3 : 2) and octaves
(2 :1). To obtain such a scale, start with the center frequency of the note C2, successively multiply
the frequency value by a factor of 3/2, and if necessary, divide it by two such that all frequency
values lie between C2 and C3. Repeat this procedure to produce 13 frequency values (including
the one for C2). As in Exercise 1.9, determine for each such frequency value the closest note of
the equal-tempered scale (along with the difference in cents). The last of the produced frequency
values is closest to the fundamental frequency of the note C3. The difference between the produced
frequency and the center frequency of C3 is known as the Pythagorean comma, which indicates
the degree of inconsistency when trying to define a twelve-tone scale using only perfect fifths.

Exercise 1.11. Investigate the typical frequency range as well as pitch range of musical instru-
ments (including the human voice) and graphically display this information as indicated by the
following figure. For example, consider the ranges of standard instruments as used in Western or-
chestras including the piano, human voice (bass, tenor, alto, soprano), double bass, cello, viola,
violin, bass guitar, guitar, trumpet. Similarly, consider instruments you are familiar with.

bo o k4 o oo Tfiso poo [so0 4o oo Tfiooo [rs00f000 aooo faaoo e
co [c1 [c2 [c3 [c4 [cs c6 [c7 cs8
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Exercise 1.12. Suppose that the intensity of a sound has been increased by 17 dB as defined in
(1.6). Determine the factor by which the sound intensity has been increased.
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As we have seen in the last chapter, music signals are generally complex sound
mixtures that consist of a multitude of different sound components. Because of this
complexity, the extraction of musically relevant information from a waveform con-
stitutes a difficult problem. A first step in better understanding a given signal is to
decompose it into building blocks that are more accessible for the subsequent pro-
cessing steps. In the case that these building blocks consist of sinusoidal functions,
such a process is also called Fourier analysis. Sinusoidal functions are special in
the sense that they possess an explicit physical meaning in terms of frequency. As
a consequence, the resulting decomposition unfolds the frequency spectrum of the
signal—similar to a prism that can be used to break light up into its constituent
spectral colors. The Fourier transform converts a signal that depends on time into
a representation that depends on frequency. Being one of the most important tools
in signal processing, we will encounter the Fourier transform in a variety of music
processing tasks.

In Section 2.1, we introduce the main ideas of the Fourier transform and sum-
marize the most important facts that are needed for understanding the subsequent
chapters of the book. Furthermore, we introduce the required mathematical notions.
A good understanding of Section 2.1 is essential for the various music processing
tasks to be discussed. In Section 2.2 to Section 2.5, we cover the Fourier transform
in greater mathematical depth. The reader who is mainly interested in the music
processing applications may skip these more technical sections on a first reading.

In Section 2.2, we take a closer look at signals and discuss their properties from
a more abstract perspective. In particular, we consider two classes of signals: ana-
log signals that give us the right physical interpretation and digital signals that
are needed fo