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Preface

Thanks for choosing Data Structures and Algorithms with Python. This text was
written based on classroom notes for two courses, an introductory data structures
and algorithms course and an advanced data structures and algorithms course. The
material contained in this text can be taught in two semesters. The early chapters
in this text are intended as an introductory text for data structures and algorithms
while the latter chapters cover advanced topics that are suitable for a second
course. The Python language is used throughout the text, and some familiarity
with Python or some other object-oriented language is assumed. However, the
first chapter contains a Python primer for those coming from a different language
background.

This text serves well as a follow-on text to Python Programming Fundamen-
tals by Kent D. Lee and published by Springer, but does not require you to have
read that text. In this text, the next steps are taken to teach you how to handle
large amounts of data efficiently. A number of algorithms are introduced, and the
need for them is motivated through examples that bring meaning to the problems
we face as computer programmers. An algorithm is a well-defined procedure for
accomplishing a task. Algorithms are an important part of Computer Science, and
this text explores many algorithms to give you the background you need when
writing programs of your own. The goal is that having seen some of the sorts of
algorithms presented in this text, you will be able to apply these techniques to
other programs you write in the future.

Another goal of this text is to introduce you to the idea of computational com-
plexity. While there are many unique and interesting algorithms that we could
explore, it is important to understand that some algorithms are more efficient than
others. While computers are very good at doing calculations quickly, an inefficient
algorithm can make the fastest computer seem very slow or even make it appear
to come to a halt. This text will show you what can and cannot be computed effi-
ciently. The text builds this idea of efficiency from the most basic of facts giving
you the tools you’ll need to determine just how efficient any algorithm is so you
can make informed judgements about the programs you write.

v



vi Preface

Two new chapters are now included with the book on parallel programming
using multiprocessing. An API that can support today’s demanding dynamic work-
loads is essential, and the Python multiprocessing API was designed for this
purpose. While the final two chapters are optional, the concepts introduced in these
chapters work well as a capstone to an advanced data structures and algorithms
course.

The text assumes that you have some prior experience in computer program-
ming, probably from an introductory programming course where you learned to
break simple problems into steps that could be solved by a computer. The lan-
guage you used may have been Python, but not necessarily. Python is an excellent
language for a text on data structures and algorithms whether you have used it
before or not. Python is an object-oriented programming language with operator
overloading and dynamic typing. Whether this is your first exposure to Python or
you used it in your first course, you’ll learn more about the language from this
text. The first chapter of the text reviews some of the fundamentals of computer
programming along with the basic syntax of Python to get you up to speed in the
language. Then subsequent chapters dive into more advanced topics and should be
read in sequence.

At the beginning of every chapter, the goals of the chapter are stated. At the end
of every chapter is a set of review questions that reinforce the goals of the chapter.
These review questions are followed in all but one chapter by a few programming
problems that relate to the chapter goals by asking you to use the things you
learned in the chapter and apply them to a computer program. You can motivate
your reading of a chapter by first consulting the review questions and then reading
the chapter to answer them. Along the way, there are many examples to illustrate
the concepts being introduced.

The first edition of this text was the culmination of many years of teaching Data
Structures and Advanced Data Structures by both Steve Hubbard and Kent Lee.
Combined, we have over 40 years of experience, more likely closer to 50 years if
we cared to count.

As stated earlier, the second edition of this text includes two new chapters
on parallel programming and supercomputing. Since June of 2019, I have had
the privilege to work for Cray and then Hewlett-Packard Enterprise upon their
acquisition of Cray. HPE has supported the Dragon team as we have developed
what has become some important work in the world of parallel computation as it
relates to solving large programs at scale in both Physics and Artificial Intelligence.
The team I have worked with is incredible, and I am so grateful to all of them
for all their hard work. We have all worked hard with the goal of building a
dynamic run-time system for distributed parallel computation that is designed to
work across a variety of programming languages including Python. The original
version of Python multiprocessing was implemented as a one-node implementation
which carried it along for many years, but as problems to be solved grew, so did the
need for a multi-node run-time system capable of scaling to supercomputer sizes.
DragonHPC provides just that, a multi-node implementation of multiprocessing
that works at scale out of the box. In fact, DragonHPC was designed to work



Preface vii

from laptop to supercomputer. That was one of our original tenets, and it is now
available as a free, open-source project. DragonHPC operates alongside the old
implementation, and you only need to import the library, set the start method to
dragon, and start your program with the dragon command to take advantage of it.
Since many Python libraries have been implemented using multiprocessing, many
of them will automatically take advantage of DragonHPC. You can read about the
specifics of DragonHPC at http://dragonhpc.org. Go there to get started and learn
more!

You can find additional support materials by going to http://kentdlee.com where
my teaching webpage is available. We hope you enjoy the text! If you have any
questions or comments, please send them to kentdlee@luther.edu.

Decorah, USA Kent D. Lee
Steve Hubbard

http://dragonhpc.org
http://kentdlee.com
mailto:kentdlee@luther.edu


For Teachers

A typical introductory data structures course covers the first seven chapters of this
text. Chapter 1 introduces Python programming and the Tkinter module which
is used in various places in the text. Tkinter comes with Python, so no special
libraries need to be installed for students to use it. Tkinter is used to visualize
many of the results in this text.

Chapter 2 introduces complexity analysis and depending on your needs, some
of the material in Chap. 2 could be skipped in an introductory data structures
course. In particular, the material on Q notation and amortized complexity can be
skipped. Big-O notation is enough for the first seven chapters. Typically, Chap. 7
is covered lightly and near the end of a semester course. It seems there is generally
not enough time in a semester to cover graph theory in much detail.

Advanced courses in data structures and algorithms should start with Chap. 1 if
students are unfamiliar with Python or Tkinter. A brief refresher may not be bad
even for those that have programmed using Python before. Chapter 2 should be
covered in detail including the material on � notation and amortized complexity.

Some review of hashing as it is used in sets and maps in Chap. 5 may be a
good review earlier in the advanced course along with a brief discussion of binary
search trees and tree traversals in Chap. 6. Depending on your needs, Chap. 7
would be a good chapter to cover next including the material on depth first search
of a graph.

Chapter 8 is where the advanced material begins with assumptions made such
that students understand the concepts presented in the earlier chapters. The two
introductory chapters along with Chaps. 8–12 make a seven-chapter sequence that
will fill a semester in an advanced course nicely. However, for slightly more accel-
erated students, the final chapters can provide a meaningful introduction to the
world of parallel computation and supercomputing.

This text is very project-oriented. Solutions to most projects are available. You
can contact Kent at kentdlee@luther.edu for instructor solutions. You must pro-
vide proof (through a website or other reference) that you are an instructor at
an educational institution to get access to the instructor materials. When mak-
ing your request, you must provide a GitHub.com account id since materials are
disseminated by giving teachers access to a private group on GitHub.

ix
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x For Teachers

The really nice feature of Python multiprocessing, covered in the final chapters
of this text, is that it is very accessible and runs with almost no setup required.
In addition, with just a little setup it will run on a department cluster. Imagine
programming a parallel application without needing to use MPI and getting all
the cross-node communication infrastructure for free! That’s what DragonHPC
provides. It really is amazing when it comes right down to it, and the amazing
part is that it is not complicated to use. It just works, batteries included (which
was another of our early goals). I hope you will give it a try! We think you will
be delighted.

I’ll mention one other goodie for teachers and students. I have constructed a
Docker container for doing development in Python, C, C++, and Java. The con-
tainer is not part of this text and you are in no way obligated to use it, but it
is available at http://github.com/kentdlee/homework. DragonHPC runs in a Linux
environment, and the homework container provides a Linux environment for both
Microsoft Windows and Apple Mac OS X based systems. If you have students
install Docker and download or clone the homework Github repository, they can
start the container automatically by opening the homework directory in VS Code.
Just start Docker first, then open the directory or folder. VS Code will then prompt
the user to ask if they wish to start the container. If you have the professional
version of Wing IDE, it also can run code in a container. I hope you give the
homework container a try!

If you have any suggestions or find any errors in the text, please let me know.
You can email me at kentdlee@luther.edu. Thanks and we hope you enjoy using
the text in your course!

Kent D. Lee
Steve Hubbard

http://github.com/kentdlee/homework
mailto:kentdlee@luther.edu


Contents

1 Python Programming 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Creating Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Literal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Non-literal Object Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Calling Methods on Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Implementing a Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Operator Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Importing Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Indentation in Python Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Python Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Reading from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.10 Reading Multi-line Records from a File . . . . . . . . . . . . . . . . . . . . . . 15
1.11 A Container Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.12 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13 The Accumulator Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.14 Implementing a GUI with Tkinter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.15 XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.15.1 The Truck XML File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.16 Reading XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.17 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.18 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.19 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Running a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Accessing Elements in a Python List . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Big-O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 The PyList Append Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 A Proof by Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 Making the PyList Append Efficient . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



xii Contents

2.8 Commonly Occurring Computational Complexities . . . . . . . . . . . 53
2.9 More Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9.1 Big-O Asymptotic Upper Bound . . . . . . . . . . . . . . . . . . . . . 55
2.9.2 Asymptotic Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9.3 Theta Asymptotic Tight Bound . . . . . . . . . . . . . . . . . . . . . . 56

2.10 Amortized Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.10.1 Proof of Append Complexity . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.12 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.13 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Local Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Enclosing Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Global Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Built-In Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.5 LEGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 The Run-Time Stack and the Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Writing a Recursive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Tracing the Execution of a Recursive Function . . . . . . . . . . . . . . . 76
3.6 Recursion in Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Recursion on Lists and Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8 Using Type Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.10 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.11 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 The PyList Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Cloning Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Item Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Selection Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6 Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.8 Two-Dimensional Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.9 The Minimax Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.10.1 LinkedList Concatenate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.10.2 Other Linked List Operations . . . . . . . . . . . . . . . . . . . . . . . . 123

4.11 Stacks and Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.11.1 Infix Expression Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.11.2 Radix Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Contents xiii

4.12 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.13 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.14 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Sets and Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 Playing Sudoku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.5 The HashSet Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.1 Storing an Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.5.2 Collision Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5.3 The Load Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.5.4 Other HashSet Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Solving Sudoku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.7 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.7.1 The HashMap Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.8 Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.9 Correlating Two Sources of Information . . . . . . . . . . . . . . . . . . . . . . 161
5.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.11 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.12 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Abstract Syntax Trees and Expressions . . . . . . . . . . . . . . . . . . . . . . . 166
6.3 Prefix and Postfix Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4 Parsing Prefix Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.1 The Prefix Expression Grammar . . . . . . . . . . . . . . . . . . . . . 170
6.4.2 The Postfix Expression Grammar . . . . . . . . . . . . . . . . . . . . 171

6.5 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.6 Search Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.8 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.9 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.2 Graph Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.3 Searching a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.4 Kruskal’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.4.1 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.4.2 Kruskal’s Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 196
7.4.3 The Partition Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.5 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.5.1 Dijkstra’s Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 201



xiv Contents

7.6 Graph Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.8 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.9 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8 Membership Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.2 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.2.1 The Hashing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.2.2 The Bloom Filter Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.2.3 Drawbacks of a Bloom Filter . . . . . . . . . . . . . . . . . . . . . . . . 211

8.3 The Trie Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.3.1 Inserting into a Trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.3.2 Membership in a Trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.3.3 Comparing Tries and Bloom Filters . . . . . . . . . . . . . . . . . . 214

8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.5 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.6 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9 Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.2 Key Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3 Building a Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.4 The Heapsort Algorithm Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.5 Analysis of Version 1 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.6 Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
9.7 Analysis of Phase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.8 The Heapsort Algorithm Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
9.9 Analysis of Heapsort Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.10 Comparison to Other Sortling Algorithms . . . . . . . . . . . . . . . . . . . . 236
9.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
9.12 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.13 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

10 Balanced Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.2 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
10.3 AVL Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

10.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.3.2 Implementation Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.3.3 AVL Tree Iterative Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10.3.4 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.3.5 AVL Tree Recursive Insert . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.3.6 Maintaining Balance Versus Height . . . . . . . . . . . . . . . . . . 254
10.3.7 Deleting an Item from an AVL Tree . . . . . . . . . . . . . . . . . 254



Contents xv

10.4 Splay Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.4.1 Splay Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

10.5 Iterative Splaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.6 Recursive Splaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.7 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
10.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.10 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11 B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.2 Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.3 B-Tree Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
11.4 The Advantages of B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
11.5 B-Tree Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
11.6 B-Tree Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
11.7 B-Tree Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.10 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

12 Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
12.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
12.2 Depth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

12.2.1 Maze Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.2.2 DFS Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

12.3 Breadth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
12.3.1 BFS Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

12.4 Hill Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
12.4.1 Hill Climbing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
12.4.2 Closed Knight’s Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
12.4.3 The N-Queens Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

12.5 Best First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
12.5.1 Best First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

12.6 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.6.1 A* Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

12.7 Minimax Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
12.9 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
12.10 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

13 Parallel Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
13.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
13.2 What Parallel Programs Can’t Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
13.3 Parallel Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

13.3.1 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310



xvi Contents

13.3.2 Covid-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
13.3.3 CFD Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
13.3.4 AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
13.3.5 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

13.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
13.5 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

14 Distributed Multiprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
14.1 Chapter Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
14.2 Sequential Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
14.3 Shared Memory Parallel Programming Model . . . . . . . . . . . . . . . . 317
14.4 Distributed Parallel Programming Model . . . . . . . . . . . . . . . . . . . . . 318
14.5 DragonHPC Multiprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
14.6 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
14.7 Sharing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
14.8 Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
14.9 Synchronization Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
14.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
14.11 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
14.12 Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

15 Appendix A: Integer Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

16 Appendix B: Float Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

17 Appendix C: String Operators and Methods . . . . . . . . . . . . . . . . . . . . . . . 337

18 Appendix D: List Operators and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 341

19 Appendix E: Dictionary Operators and Methods . . . . . . . . . . . . . . . . . . . 343

20 Appendix F: Turtle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

21 Appendix G: TurtleScreen Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

22 Appendix H: Complete Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
22.1 The Draw Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
22.2 The Scope Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
22.3 The Sort Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
22.4 The PlotData Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
22.5 The Tic Tac Toe Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
22.6 The Connect Four Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395



1PythonProgramming101

This Computer Science text further develops the skills you learned in your first CS
text or course and adds to your bag of tricks by teaching you how to use efficient
algorithms for dealing with large amounts of data. Without the proper understanding
of efficiency, it is possible to bring even the fastest computers to a grinding halt when
workingwith large data sets. This has happened before, and soon youwill understand
just how easy it can occur. But first, we’ll review some patterns for programming and
look at the Python programming language to make sure you understand the basic
structure and syntax of the language.

To begin writing programs using Python you need to install Python on your com-
puter. The examples in this text use Python 3. Python 2 is not compatible with Python
3 so you’ll want to be sure you have Python 3 or later installed on your computer.
When writing programs in any language a good Integrated Development Environ-
ment (IDE) is a valuable tool so you’ll want to install an IDE, too. Examples within
this text will use Wing IDE 101 as pictured in Fig. 1.1, although other acceptable
IDEs are available as well. TheWing IDE is well maintained, simple to use, and has a
nice debugger which will be useful as you write Python programs. If you want to get
Wing IDE 101 then go to //wingware.com. The website //cs.luther.edu/~leekent/CS1
has directions for installing both Python 3 and Wing IDE 101. Wing IDE 101 is the
free version of Wing for educational use.

There are some general concepts about Python that you should knowwhen reading
the text. Python is an interpreted language. That means that you don’t have to go
through any extra steps after writing Python code before you can run it. You can
simply press the debug button in theWing IDE (it looks like an insect) and it will ask
you to save your program if you haven’t already done so at least once. Then it will
run your program. Python is also dynamically typed. This means that youwill not get
any type errors before you run your program as you would with some programming
languages. It is especially important for you to understand the types of data you are
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2 1 Python Programming 101

Fig. 1.1 The Wing IDE

using in your program. More on this in just a bit. Finally, your Python programs
are interpreted by the Python interpreter. The shell is another name for the Python
interpreter and Wing IDE 101 gives you access to a shell within the IDE itself. You
can type Python statements and expressions into the window pane that says Python
Shell to quickly try out a snippet of code before you put it in a program.

Like most programming languages, there are a couple kinds of errors you can get
in your Python programs. Syntax errors are found before your program runs. These
are things like missing a colon or forgetting to indent something. An IDE like Wing
IDE 101 will highlight these syntax errors so you can correct them. Run-time errors
are found when your program runs. Run-time errors come from things like variables
with unexpected values and operations on these values. To find a run-time error you
can look at the Stack Data tab as it appears in Fig. 1.1. When a run-time error occurs
the program will stop executing and the Stack Data tab will let you examine the
run-time stack where you can see the program variables.

In the event that you still don’t understand a problem, the Wing IDE 101 (and
most other IDEs) lets you step through your code so you can watch as an error is
reproduced. The three icons in the upper right corner of Fig. 1.1 let you Step Into a
function, Step Over code, and Step Out Of a function, respectively. Stepping over or
into your code can be valuable when trying to understand a run-time error and how
it occurred.

One other less than obvious tool is provided by the Wing IDE. By clicking on the
line number on the left side of the IDE it is possible to set a breakpoint. A breakpoint
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causes the program to stop execution just before the breakpoint. From there it is
possible to begin stepping over your code to determine how an error occurred.

To motivate learning or reviewing Python in this chapter, the text will develop
a simple drawing application using turtle graphics and a Graphical User Interface
(GUI) framework called Tkinter. Along the way, you’ll discover some patterns for
programming including the accumulator pattern and the loop and a half pattern for
reading records from a file. You’ll also see functions in Python and begin to learn
how to implement your own datatypes by designing and writing a class definition.

1.1 Chapter Goals

By the end of this chapter, you should be able to answer these questions.

• What two parts are needed for the accumulator pattern?
• When do you need to use the loop and a half pattern for reading from a file?
• What is the purpose of a class definition?
• What is an object and how do we create one?
• What is a mutator method?
• What is an accessor method?
• What is a widget and how does one use widgets in GUI programming?

1.2 Creating Objects

Python is an object-oriented language.All data items in Python are objects. In Python,
data items that could be thought of as similar are named by a type or class. The term
type and class in Python are synonymous: they are two names for the same thing. So
when you read about types in Python you can think of classes or vice versa.

There are several built-in types of data in Python including int, float, str, list, and
dict which is short for dictionary. These types of data and their associated operations
are included in the appendices at the end of the text so you have a quick reference
if you need to refer to it while programming. You can also get help for any type
by typing help(typename) in the Python shell, where typename is a type or class in
Python. A very good language reference can be found at http://python.org/doc, the
official Python documentation website.

1.2.1 Literal Values

There are two ways to create objects in Python. In a few cases, you can use a literal
value to create an object. Literal values are used when we want to set some variable

https://www.python.org/doc
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Fig. 1.2 A Reference and Object

to a specific value within our program. For example, the literal 6 denotes any object
with the integer value of 6.

x = 6

This creates an int object containing the value 6. It also points the reference called
x at this object as pictured in Fig. 1.2. All assignments in Python point references at
objects. Any time you see an assignment statement, you should remember that the
thing on the left side of the equals sign is a reference and the thing on the right side is
either another reference or a newly created object. In this case, writing x = 6 makes
a new object and then points x at this object.

Other literal values may be written in Python as well. Here are some literal values
that are possible in Python.

• int literals : 6, 3, 10, –2, etc.
• float literals : 6.0, –3.2, 4.5E10
• str literals : ‘hi there’, “how are you”
• list literals : [], [6, ‘hi there’]
• dict literals : {}, {‘hi there’:6, ‘how are you’:4}

Python lets you specify float literals with an exponent.
So, 4.5E10 represents the float 45000000000.0. Any number written with a deci-

mal point is a float, whether there is a 0 or some other value after the decimal point. If
you write a number using the E or exponent notation, it is a float as well. Any number
without a decimal point is an int, unless it is written in E notation. String literals are
surrounded by either single or double quotes. List literals are surrounded by [ and ].
The [] literal represents the empty list. The {} literal is the empty dictionary.

You may not have previously used dictionaries. A dictionary is a mapping of keys
to values. In the dictionary literal, the key ‘hi there’ is mapped to the value 6, and
the key ‘how are you’ is mapped to 4. Dictionaries will be covered in some detail in
Chap.5.

1.2.2 Non-literal Object Creation

Most of the time, when an object is created, it is not created from a literal value.
Of course, we need literal values in programming languages, but most of the time
we have an object already and want to create another object by using one or more
existing objects. For instance, if there is a string like ‘6’ and want to create an int
object from that string, you write code like that in Listing1.1.
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y = ’6’
x = int(y)
print(x)

Listing 1.1 Creating Objects

In this short piece of code, y is a reference to the str object created from the string
literal. The variable x is a reference to an object that is created by using the object
that y refers to. In general, when we want to create an object based on other object
values we write the following:

variable = type(other_object_values)

The type is any type or class name in Python, like int, float, str or any other
type. The other_object_values is a comma-separated sequence of references to other
objects that are needed by the class or type to create an instance (i.e an object) of that
type. Listing1.2 shows some examples of creating objects from non-literal values.

z = float(’6.3’)
w = str(z)
u = list(w) # this results in the list [’6’, ’.’, ’3’]

Listing 1.2 Constructing Values from Types

1.3 CallingMethods on Objects

Objects are useful because they allow us to collect related information and group
them with behavior that act on this data. These behaviors are called methods in
Python. There are two kinds of methods in any object-oriented language: mutator
and accessor methods. Accessor methods access the current state of an object but
don’t change the object.Accessor methods return new object references when called.

x = ‘how are you’
y = x.upper()
print(y)

Listing 1.3 Calling Methods

In Listing1.3, the method upper is called on the object that x refers to. The upper
accessor method returns a new object, a str object, that is an upper-cased version of
the original string. Note that x is not changed by calling the upper method on it. The
upper method is an accessor method. There are many accessor methods available on
the str type which you can learn about in the appendices.

myList = [1, 2, 3]
myList.reverse()
print(myList) # This prints [3, 2, 1] to the screen

Listing 1.4 Mutator Methods

Some methods are mutator methods. Listing1.4 provides an example where an
existing object is changed. The reverse method mutates the existing object, in this
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case the list that myList refers to. Once called, a mutator method can’t be undone.
The change or mutation is permanent until mutated again by some other mutator
method.

All classes contain accessor methods. Without accessor methods, the class would
be pretty uninteresting. We use accessor methods to retrieve a value that is stored
in an object or to retrieve a value that depends on the value stored in an object. If a
class had no accessor methods we could put values in the object but we could never
retrieve them.

Some classes havemutatormethods and some don’t. For instance, the list class has
mutator methods, including the reverse method. There are some classes that don’t
have any mutator methods. For instance, the str class does not have any mutator
methods. When a class does not contain any mutator methods, we say that the class
is immutable. We can form new values from the data in an immutable class, but
once an immutable object is created, it cannot be changed. Other immutable classes
include int and float.

1.4 Implementing a Class

Programming in an object-oriented language usually means implementing classes
that describe objects which hold information that is needed by the program you
are writing. Objects contain data and methods operate on that data. A class is the
definition of the data and methods for a specific type of object.

Every class contains one special method called a constructor. The constructor’s
job is to create an instance of an object by placing references to data within the object
itself. For example, consider a class called Dog. A dog has a name, a birthday, and a
sound it makes when it barks. When we create a Dog object, we write code like that
appearing in Listing1.5.

1 boyDog = Dog("Mesa",5,15,2004,"WOOOF")
2 girlDog = Dog("Sequoia",5,6,2004,"barkbark")
3 print(boyDog.speak())
4 print(girlDog.speak())
5 print(boyDog.birthDate())
6 print(girlDog.birthDate())
7 boyDog.changeBark("woofywoofy")
8 print(boyDog.speak())

Listing 1.5 Calling Methods

Once created in the memory of the computer, dog objects looks like those appear-
ing in Fig. 1.3. Each object is referenced by the variable reference assigned to it,
either girlDog or boyDog in this case. The objects themselves are a collection of
references that point to the information that is stored in the object. Each object has
name, month, day, year, and speakText references that point to the associated data
that make up a Dog object.

To be able to createDog objects like these twoobjectsweneed aDog class to define
these objects. In addition, we’ll need to define speak, birthDate, and changeBark
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Fig. 1.3 A Couple of Dog
Objects

methods. We can do this by writing a class as shown in Listing1.6. Comments about
each part of the class appear in the code. The special variable self always points
at the current object and must be the first parameter to each method in the class.
Python takes care of passing the self argument to the methods. The other arguments
are passed by the programmer when the method is called (see the example of calling
each method in Listing1.5.

1 class Dog:
2 # This is the constructor for the class. It is called whenever a Dog
3 # object is created. The reference called "self" is created by Python
4 # and made to point to the space for the newly created object. Python
5 # does this automatically for us but we have to have "self" as the first
6 # parameter to the __init__ method (i.e. the constructor).
7 def __init__(self, name, month, day, year, speakText):
8 self.name = name
9 self.month = month
10 self.day = day
11 self.year = year
12 self.speakText = speakText
13
14 # This is an accessor method that returns the speakText stored in the
15 # object. Notice that "self" is a parameter. Every method has "self" as its
16 # first parameter. The "self" parameter is a reference to the current
17 # object. The current object appears on the left hand side of the dot (i.e.
18 # the .) when the method is called.
19 def speak(self):
20 return self.speakText
21
22 # Here is an accessor method to get the name
23 def getName(self):
24 return self.name
25
26 # This is another accessor method that uses the birthday information to
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27 # return a string representing the date.
28 def birthDate(self):
29 return str(self.month) + "/" + str(self.day) + "/" + str(self.year)
30
31 # This is a mutator method that changes the speakText of the Dog object.
32 def changeBark(self,bark):
33 self.speakText = bark

Listing 1.6 A Dog Class

1.5 Operator Overloading

Python provides operator overloading, which is a nice feature of programming lan-
guages because it makes it possible for the programmer to interact with objects in a
very natural way. Operator overloading is already implemented for a variety of the
built-in classes or types in Python. For instance, integers (i.e. the int type) under-
stand how they can be added together to form a new integer object. Addition is
implemented by a special method in Python called the __add__ method. When two
integers are added together, this method is called to create a new integer object. If
you look in the appendices, you’ll see examples of these special methods and how
they are called. For example, in Chap.15 the __add__ method is called by writing
x+y where x is an integer. The methods that begin and end with two underscores are
methods that Python associates with a corresponding operator.

When we say that Python supports operator overloading we mean that if you
define a method for your class with a name that is operator overloaded, your class
will support that operator as well. Python figures out which method to call based
on the types of the operands involved. For instance, writing x+y calls the int class
__add__ method when x is an integer, but it calls the float type’s __add__ method
when x is a float. This is because in the case of the __add__ method, the object on
the left hand side of the + operator corresponds to the object on the left hand side
of the dot (i.e. the period) in the equivalent method call x.__add__(y). The object
on the left side of the dot determines which add method is called. The + operator is
overloaded.

If we wanted to define addition for our Dog class, we would include an __add__
method in the class definition. It might be natural to write boyDog + girlDog to
create a new puppy object. If we wished to do that we would extend our Dog class
as shown in Listing1.7.

34 # When creating the new puppy we don’t know it’s birthday. Pick the
35 # first dog’s birthday plus one year. The speakText will be the
36 # concatenation of both dog’s text. The dog on the left side of the +
37 # operator is the object referenced by the "self" parameter. The
38 # "otherDog" parameter is the dog on the right side of the + operator.
39 def __add__(self,otherDog):
40 return Dog("Puppy of " + self.name + " and " + otherDog.name, \
41 self.month, self.day, self.year + 1, \
42 self.speakText + otherDog.speakText)
43
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44 def main():
45 boyDog = Dog("Mesa", 5, 15, 2004, "WOOOOF")
46 girlDog = Dog("Sequoia", 5, 6, 2004, "barkbark")
47 print(boyDog.speak())
48 print(girlDog.speak())
49 print(boyDog.birthDate())
50 print(girlDog.birthDate())
51 boyDog.changeBark("woofywoofy")
52 print(boyDog.speak())
53 puppy = boyDog + girlDog
54 print(puppy.speak())
55 print(puppy.getName())
56 print(puppy.birthDate())
57
58 if __name__ == "__main__":
59 main()

Listing 1.7 Operator Overloading for the Dog Class

This text uses operator overloading fairly extensively. There are many operators
that are defined in Python. Python programmers often call these operators Magic
Methods because a method automatically gets called when an operator is used in an
expression. Many of the common operators are given in the table in Fig. 1.4 for your
convenience. For each operator the magic method is given, how to call the operator
is given, and a short description of it as well. In the table, self and x refer to the same
object. The type of x determines which operator method is called in each case in the
table.

Method Definition Operator Description
__add__(self,y) x + y The addition of two objects. The type of x determines which add

operator is called.
__contains__(self,y) y in x When x is a collection you can test to see if y is in it.
__eq__(self,y) x == y Returns True or False depending on the values of x and y.
__ge__(self,y) x >= y Returns True or False depending on the values of x and y.
__getitem__(self,y) x[y] Returns the item at the yth position in x.
__gt__(self,y) x > y Returns True or False depending on the values of x and y.
__hash__(self) hash(x) Returns an integral value for x.
__int__(self) int(x) Returns an integer representation of x.
__iter__(self) for v in x Returns an iterator object for the sequence x.
__le__(self,y) x <= y Returns True or False depending on the values of x and y.
__len__(self) len(x) Returns the size of x where x has some length attribute.
__lt__(self,y) x < y Returns True or False depending on the values of x and y.
__mod__(self,y) x % y Returns the value of x modulo y. This is the remainder of x/y.
__mul__(self,y) x * y Returns the product of x and y.
__ne__(self,y) x != y Returns True or False depending on the values of x and y.
__neg__(self) -x Returns the unary negation of x.
__repr__(self) repr(x) Returns a string version of x suitable to be evaluated by the eval

function.
__setitem__(self,i,y) x[i] = y Sets the item at the ith position in x to y.
__str__(self) str(x) Return a string representation of x suitable for user-level interac-

tion.
__sub__(self,y) x - y The difference of two objects.

Fig. 1.4 Python Operator Magic Methods
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The repr(x) and the str(x) operators deserve a little more explanation. Both oper-
ators return a string representation of x. The difference is that the str operator should
return a string that is suitable for human interaction while the repr operator is called
when a string representation is needed that can be evaluated. For instance, if we
wanted to define these two operators on theDog class, the repr method would return
the string “Dog(‘Mesa’, 5, 15, 2004, ‘WOOOF’)” while the str operator might return
just the dog’s name. The repr operator, when called, will treat the string as an expres-
sion that could later be evaluated by the eval function in Python whereas the str
operator simply returns a string for an object.

1.6 ImportingModules

In Python, programs can be broken up into modules. Typically, when you write a
program in Python you are going to use code that someone else wrote. Code that
others wrote is usually provided in a module. To use a module, you import it. There
are two ways to import a module. For the drawing program we are developing in this
chapter, we want to use turtle graphics. Turtle graphics was first developed a long
time ago for a programming language called Logo. Logo was created around 1967
so the basis for turtle graphics is pretty ancient in terms of Computer Science. It still
remains a useful way of thinking about Computer Graphics. The idea is that a turtle
is wandering a beach and as it walks around it drags its tail in the sand leaving a trail
behind it. All that you can do with a turtle is discussed in the Chap.20.

There are two ways to import a module in Python: the convenient way and the
safe way. Which way you choose to import code may be a personal preference, but
there are some implications about using the convenient method of importing code.
The convenient way to import the turtle module would be to write the following.

from turtle import *
t = Turtle()

Listing 1.8 Creating a Turtle

This is convenient, because whenever you want to use the Turtle class, you can
just write Turtle which is convenient, but not completely safe because you then have
to make sure you never use the identifier Turtle for anything else in your code. In
fact, there may be other identifiers that the turtle module defines that you are unaware
of that would also be identifiers you should not use in your code. The safe way to
import the turtle module would be as follows.

import turtle
t = turtle.Turtle()

Listing 1.9 Module Import

While this is not quite as convenient, because you must precede Turtle with “tur-
tle.”, it is safe because the namespace of your module and the turtle module are kept
separate. All identifiers in the turtle module are in the turtle namespace, while the
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local identifiers are in the local namespace. This idea of namespaces is an important
feature of most programming languages. It helps programmers keep from stepping
on each others’ toes. The rest of this text will stick to using the safe method of
importing modules.

1.7 Indentation in Python Programs

Indentation plays an important role in Python programs. An indented line belongs
to the line it is indented under. The body of a function is indented under its function
definition line. The then part of an if statement is indented under the if. A while
loop’s body is indented under it. The methods of a class are all indented under the
class definition line. All statements that are indented the same amount and grouped
together are called a block. It is important that all statements within a block are
indented exactly the same amount. If they are not, then Python will complain about
inconsistent indentation.

Because indentation is so important to Python, theWing IDE 101 lets you select a
series of lines and adjust their indentation as a group, as shown in Fig. 1.5. You first

Fig. 1.5 Adjusting Indentation in Wing IDE 101
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select the lines of the block and then press the tab key to increase their indentation.
To decrease the indentation of a block you select the lines of the block and press
Shift-tab. As you write Python code this is a common chore and being able to adjust
the indentation of a whole block at a time is a real timesaver.

1.8 Python Program Structure

Programs are typically written with many function definitions and function calls.
One function definition is written by convention in Python, usually called the main
function. This function contains code the program typically executes when it is first
started. The general outline of a Python program is given in Listing1.10.

1 # Imports at the top.
2 import turtle
3
4 # other function definitions followed by the main function definition
5 def main():
6 # The main code of the program goes here
7 t = turtle.Turtle()
8 # this code calls the main function to get everything started. The condition in this
9 # if statement evaluates to True when the module is executed by the interpreter, but

10 # not when it is imported into another module.
11 if __name__ == "__main__":
12 main()

Listing 1.10 Program Structure

The if statement at the end of the code in Listing1.10 is the first code executed
after the import statements. The if statement’s condition evaluates to True when
the program is run as a stand-alone program. Sometimes we write modules that
we may want to import into another module. Writing this if statement to call the
main function makes the module execute its own main function when it is run as a
stand-alone program. When the module is imported into another module it will not
execute its main function. Later you will have the opportunity to write a module to
be imported into another module so it is a good habit to form to always call themain
function in this way.

1.9 Reading from a File

To begin our drawing program, let’s assume that a picture is stored in a file and we
wish to read this file when the program is started. We’ll assume that each line of the
file contains a drawing command and its associated data. We’ll keep it simple and
stick to drawing commands that look like this in the input file:

• goto, x, y, width, color
• circle, radius, width, color
• beginfill, color
• endfill
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• penup
• pendown.

Each line of the file will contain a record with the needed information. We can
draw a picture by providing a file with the right sequence of these commands. The
file in Listing1.11 contains records that describe a pickup truck.

1 beginfill, black
2 circle, 20, 1, black
3 endfill
4 penup
5 goto, 120, 0, 1, black
6 pendown
7 beginfill, black
8 circle, 20, 1, black
9 endfill
10 penup
11 goto, 150, 40, 1, black
12 pendown
13 beginfill, yellow
14 goto, 30, 40, 1, black
15 goto, 30, 70, 1, black
16 goto, 60, 70, 1, black
17 goto, 60, 100, 1, black
18 goto, 90, 100, 1, black
19 goto, 115, 70, 1, black
20 goto, 150, 70, 1, black
21 goto, 150, 40, 1, black
22 endfill

Listing 1.11 Single Line Records File

To process the records in the file in Listing1.11, we can write a Python program
that reads the lines of this file and does the appropriate turtle graphics commands
for each record in the file. Since each record (i.e. drawing command) is on its own
line in the file format described in Sect. 1.9, we can read the file by using a for loop
to read the lines of the file. The code of Listing1.12 is a program that reads these
commands and processes each record in the file, drawing the picture that it contains.

1 # This imports the turtle graphics module.
2 import turtle
3
4 # The main function is where the main code of the program is written.
5 def main():
6 # This line reads a line of input from the user.
7 filename = input("Please enter drawing filename: ")
8
9 # Create a Turtle Graphics window to draw in.

10 t = turtle.Turtle()
11 # The screen is used at the end of the program.
12 screen = t.getscreen()
13
14 # The next line opens the file for "r" or reading. "w" would open it for
15 # writing, and "a" would open the file to append to it (i.e. add to the
16 # end). In this program we are only interested in reading the file.
17 file = open(filename, "r")
18
19 # The following for loop reads the lines of the file, one at a time
20 # and executes the body of the loop once for each line of the file.
21 for line in file:
22
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23 # The strip method strips off the newline character at the end of the line
24 # and any blanks that might be at the beginning or end of the line.
25 text = line.strip()
26
27 # The following line splits the text variable into its pieces.
28 # For instance, if text contained "goto, 10, 20, 1, black" then
29 # commandList will be equal to ["goto", "10", "20", "1", "black"] after
30 # splitting text.
31 commandList = text.split(",")
32
33 # get the drawing command
34 command = commandList[0]
35
36 if command == "goto":
37 # Writing float(commandList[1]) makes a float object out of the
38 # string found in commandList[1]. You can do similar conversion
39 # between types for int objects.
40 x = float(commandList[1])
41 y = float(commandList[2])
42 width = float(commandList[3])
43 color = commandList[4].strip()
44 t.width(width)
45 t.pencolor(color)
46 t.goto(x,y)
47 elif command == "circle":
48 radius = float(commandList[1])
49 width = float(commandList[2])
50 color = commandList[3].strip()
51 t.width(width)
52 t.pencolor(color)
53 t.circle(radius)
54 elif command == "beginfill":
55 color = commandList[1].strip()
56 t.fillcolor(color)
57 t.begin_fill()
58 elif command == "endfill":
59 t.end_fill()
60 elif command == "penup":
61 t.penup()
62 elif command == "pendown":
63 t.pendown()
64 else:
65 print("Unknown command found in file:" ,command)
66
67 #close the file
68 file.close()
69
70 #hide the turtle that we used to draw the picture.
71 t.ht()
72
73 # This causes the program to hold the turtle graphics window open
74 # until the mouse is clicked.
75 screen.exitonclick()
76 print("Program Execution Completed.")
77
78
79 # This code calls the main function to get everything started.
80 if __name__ == "__main__":
81 main()

Listing 1.12 Reading and Processing Single Line Records

When you have a data file where each line of the file is its own separate record,
you can process those records as we did in Listing1.12. The general pattern is to
open the file, use a for loop to iterate through the file, and have the body of the for
loop process each record. The pseudo-code in Listing1.13 is the abstract pattern for
reading one-line records from a file.
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1 # First the file must be opened.

2 file = open(filename,"r")

3
4 # The body of the for loop is executed once for each line in the file.

5 for line in file:

6 # Process each record of the file. Each record must be exactly one line of the input file.

7 # What processing a record means will be determined by the program you are writing.

8 print(line)

9
10 # Closing the file is always a good idea, but it will be closed when your program terminates

11 # if you do not close it explicitly.

12 file.close()

Listing 1.13 Pattern for Reading Single Line Records from a File

1.10 ReadingMulti-line Records from a File

Sometimes records of a file are not one per line. Records of a file may cross multiple
lines. In that case, you can’t use a for loop to read the file. You need a while loop
instead. When you use a while loop, you need to be able to check a condition to see
if you are done reading the file. But, to check the condition you must first try to read
at least a little of a record. This is a kind of chicken and egg problem. Which came
first, the chicken or the egg? Computer programmers have a name for this problem
as it relates to reading from files. It is called the Loop and a Half Pattern. To use a
while loop to read from a file, we need a loop and a half. The half comes before the
while loop.

Consider the program we are writing in this chapter. Let’s assume that the records
of the file cross multiple lines. In fact, let’s assume that we have variable length
records. That is, the records of our file consist of one to five lines. The drawing
commands will be exactly as they were before. But, instead of all the data for a
record appearing on one line, we’ll put each piece of data on its own separate line as
shown in Listing1.14.

1 beginfill
2 black
3 circle
4 20
5 1
6 black
7 endfill
8 penup
9 goto
10 120
11 0
12 1
13 black
14 pendown
15 beginfill
16 black
17 circle
18 20
19 1
20 black
21 endfill
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22 penup
23 goto
24 150
25 40
26 1
27 black
28 pendown
29 beginfill
30 yellow
31 goto
32 30
33 40
34 1
35 black
36 goto
37 30
38 70
39 1
40 black
41 goto
42 60
43 70
44 1
45 black
46 goto
47 60
48 100
49 1
50 black
51 goto
52 90
53 100
54 1
55 black
56 goto
57 115
58 70
59 1
60 black
61 goto
62 150
63 70
64 1
65 black
66 goto
67 150
68 40
69 1
70 black
71 endfill

Listing 1.14 A Text File with Multiple Line Records

To read a file as shown in Listing1.14 we write our loop and a half to read the
first line of each record and then check that line (i.e. the graphics command) so we
know how many more lines to read. The code in Listing1.15 uses a while loop to
read these variable length records.
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1 import turtle
2
3 def main():
4 filename = input("Please enter drawing filename: ")
5
6 t = turtle.Turtle()
7 screen = t.getscreen()
8
9 file = open(filename, "r")
10
11 # Here we have the half a loop to get things started. Reading our first
12 # graphics command here lets us determine if the file is empty or not.
13 command = file.readline().strip()
14
15 # If the command is empty, then there are no more commands left in the file.
16 while command != "":
17
18 # Now we must read the rest of the record and then process it. Because
19 # records are variable length, we’ll use an if-elif to determine which
20 # type of record it is and then we’ll read and process the record.
21
22 if command == "goto":
23 x = float(file.readline())
24 y = float(file.readline())
25 width = float(file.readline())
26 color = file.readline().strip()
27 t.width(width)
28 t.pencolor(color)
29 t.goto(x,y)
30 elif command == "circle":
31 radius = float(file.readline())
32 width = int(file.readline())
33 color = file.readline().strip()
34 t.width(width)
35 t.pencolor(color)
36 t.circle(radius)
37 elif command == "beginfill":
38 color = file.readline().strip()
39 t.fillcolor(color)
40 t.begin_fill()
41 elif command == "endfill":
42 t.end_fill()
43 elif command == "penup":
44 t.penup()
45 elif command == "pendown":
46 t.pendown()
47 else:
48 print("Unknown command found in file:" ,command)
49
50 # This is still inside the while loop. We must (attempt to) read
51 # the next command from the file. If the read succeeds, then command
52 # will not be the empty string and the loop will be repeated. If
53 # command is empty it is because there were no more commands in the
54 # file and the while loop will terminate.
55 command = file.readline().strip()
56
57
58 # close the file
59 file.close()
60
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61 t.ht()
62 screen.exitonclick()
63 print("Program Execution Completed.")
64
65 if __name__ == "__main__":
66 main()

Listing 1.15 Reading and Processing Multi-Line Records

When reading a file with multi-line records, a while loop is needed. Notice that
on line 13 the first line of the first record is read prior to the while loop. For the body
of the while loop to execute, the condition must be tested prior to executing the loop.
Reading a line prior to the while loop is necessary so we can check to see if the file
is empty or not. The first line of every other record is read at the end of the while
loop on line 55. This is the loop and a half pattern. The first line of the first record
is read before the while loop while the first line of every other record is read inside
the while loop just before the end. When the condition becomes false, the while loop
terminates.

The abstract pattern for reading multi-line records from a file is shown in
Listing1.16. There are certainly other forms of this pattern that can be used, but
memorizing this pattern is worth-while since the pattern will work using pretty much
any programming language.

1 # First the file must be opened

2 file = open(filename, "r")

3
4 # Read the first line of the first record in the file. Of course, firstLine should be called

5 # something that makes sense in your program.

6 firstLine = file.readline().strip()

7
8 while firstLine != "":

9 # Read the rest of the record

10 secondLine = file.readline().strip()

11 thirdLine = file.readline().strip()

12 # ...

13
14 # Then process the record. This will be determined by the program you are writing.

15 print(firstLine, secondLine, thirdLine)

16
17 # Finally, finish the loop by reading the first line of the next record to set up for

18 # the next iteration of the loop.

19 firstLine = file.readline().strip()

20
21 # It’s a good idea to close the file, but it will be automatically closed when your

22 # program terminates.

23 file.close()

Listing 1.16 Pattern for Reading Multi-line Records from a File
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1.11 A Container Class

To further enhance our drawing program we will first create a data structure to hold
all of our drawing commands. This is our first example of defining our own class in
this text so we’ll go slow and provide a lot of detail about what is happening and
why. To begin let’s figure out what we want to do with this container class.

Our program will begin by creating an empty container. To do this, we’ll write a
line like this.

graphicsCommands = PyList()

Then, we will want to add graphics commands to our list using an append method
like this.

command = GotoCommand(x, y, width, color)
graphicsCommands.append(command)

We would also like to be able to iterate over the commands in our list.

for command in graphicsCommands:
# draw each command on the screen using the turtle called t.
command.draw(t)

At this point, our container class looks a lot like a list. We are defining our own
list class to illustrate a first data structure and to motivate discussion of how lists can
be implemented efficiently in this and the next chapter.

1.12 Polymorphism

One important concept in Object-Oriented Programming is called polymorphism.
The word polymorphic literally means many forms. As this concept is applied to
computer programming, the idea is that there can be many ways that a particular
behavior might be implemented. In relationship to our PyList container class that we
are building, the idea is that each type of graphics command will know how to draw
itself correctly. For instance, one type of graphics command is the GoToCommand.
When aGoToCommand is drawn it draws a line on the screen from the current point
to some new (x,y) coordinate. But, when aCircleCommand is drawn, it draws a circle
on the screen with a particular radius. This polymorphic behavior can be defined by
creating a class and draw method for each different type of behavior. The code in
Listing1.17 is a collection of classes that define the polymorophic behavior of the
different graphics draw methods. There is one class for each drawing command that
will be processed by the program.

1 # Each of the command classes below hold information for one of the
2 # types of commands found in a graphics file. For each command there must
3 # be a draw method that is given a turtle and uses the turtle to draw
4 # the object. By having a draw method for each class, we can
5 # polymorphically call the right draw method when traversing a sequence of
6 # these commands. Polymorphism occurs when the "right" draw method gets
7 # called without having to know which graphics command it is being called on.
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8 class GoToCommand:
9 # Here the constructor is defined with default values for width and color.
10 # This means we can construct a GoToCommand objects as GoToCommand(10,20),
11 # or GoToCommand(10,20,5), or GoToCommand(10,20,5,"yellow").
12 def __init__(self,x,y,width=1,color="black"):
13 self.x = x
14 self.y = y
15 self.color = color
16 self.width = width
17
18 def draw(self,turtle):
19 turtle.width(self.width)
20 turtle.pencolor(self.color)
21 turtle.goto(self.x,self.y)
22
23 class CircleCommand:
24 def __init__(self,radius, width=1,color="black"):
25 self.radius = radius
26 self.width = width
27 self.color = color
28
29 def draw(self,turtle):
30 turtle.width(self.width)
31 turtle.pencolor(self.color)
32 turtle.circle(self.radius)
33
34 class BeginFillCommand:
35 def __init__(self,color):
36 self.color = color
37
38 def draw(self,turtle):
39 turtle.fillcolor(self.color)
40 turtle.begin_fill()
41
42 class EndFillCommand:
43 def __init__(self):
44 # pass is a statement placeholder and does nothing. We have nothing
45 # to initialize in this class because all we want is the polymorphic
46 # behavior of the draw method.
47 pass
48
49 def draw(self,turtle):
50 turtle.end_fill()
51
52 class PenUpCommand:
53 def __init__(self):
54 pass
55
56 def draw(self,turtle):
57 turtle.penup()
58
59 class PenDownCommand:
60 def __init__(self):
61 pass
62
63 def draw(self,turtle):
64 turtle.pendown()

Listing 1.17 Graphics Command Classes
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1.13 The Accumulator Pattern

To use the different command classes that we have just defined, our program will
read the variable length records from the file as it did before using the loop and a half
pattern thatwe have already seen. Patterns of programming, sometimes called idioms,
are important in Computer Science. Once we have learned an idiom we can apply it
over and over in our programs. This is useful to us because as we solve problems its
nice to say, “Oh, yes, I can solve this problem using that idiom”. Having idioms at
our fingertips frees our minds to deal with the tougher problems we encounter while
programming.

One important pattern in programming is the Accumulator Pattern. This pattern
is used in nearly every program we write. When using this pattern you initialize an
accumulator before a loop and then inside the loop you add to the accumulator. For
instance, the code in Listing1.18 uses the accumulator pattern to compute the sum
of the squares of 1–10.

1 # initialize the accumulator, in this case a list
2 accumulator = []
3
4 # write some kind of for loop or while loop
5 for i in range(10):
6 # add to the accumulator, in this case add to the list
7 accumulator = accumulator + [i ** 2]

Listing 1.18 Sum of Squares

To complete our graphics program, we’ll use the loop and a half pattern to read
the records from a file and the accumulator pattern to add a command object to our
PyList container for each record we find in the file. The code is given in Listing1.19.

1 import turtle
2
3 # Command classes would be inserted here but are left out because they
4 # were defined earlier in the chapter.
5
6 # This is our PyList class. It holds a list of our graphics
7 # commands.
8
9 class PyList:

10 def __init__(self):
11 self.items = []
12
13 def append(self,item):
14 self.items = self.items + [item]
15
16 # if we want to iterate over this sequence, we define the special method
17 # called __iter__(self). Without this we’ll get "builtins.TypeError:
18 # ’PyList’ object is not iterable" if we try to write
19 # for cmd in seq:
20 # where seq is one of these sequences. The yield below will yield an
21 # element of the sequence and will suspend the execution of the for
22 # loop in the method below until the next element is needed. The ability
23 # to yield each element of the sequence as needed is called "lazy" evaluation
24 # and is very powerful. It means that we only need to provide access to as
25 # many of elements of the sequence as are necessary and no more.
26 def __iter__(self):
27 for c in self.items:
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28 yield c
29
30 def main():
31 filename = input("Please enter drawing filename: ")
32
33 t = turtle.Turtle()
34 screen = t.getscreen()
35 file = open(filename, "r")
36
37 # Create a PyList to hold the graphics commands that are
38 # read from the file.
39 graphicsCommands = PyList()
40
41 command = file.readline().strip()
42
43 while command != "":
44
45 # Now we must read the rest of the record and then process it. Because
46 # records are variable length, we’ll use an if-elif to determine which
47 # type of record it is and then we’ll read and process the record.
48 # In this program, processing the record means creating a command object
49 # using one of the classes above and then adding that object to our
50 # graphicsCommands PyList object.
51
52 if command == "goto":
53 x = float(file.readline())
54 y = float(file.readline())
55 width = float(file.readline())
56 color = file.readline().strip()
57 cmd = GoToCommand(x,y,width,color)
58
59 elif command == "circle":
60 radius = float(file.readline())
61 width = float(file.readline())
62 color = file.readline().strip()
63 cmd = CircleCommand(radius,width,color)
64
65 elif command == "beginfill":
66 color = file.readline().strip()
67 cmd = BeginFillCommand(color)
68
69 elif command == "endfill":
70 cmd = EndFillCommand()
71
72 elif command == "penup":
73 cmd = PenUpCommand()
74
75 elif command == "pendown":
76 cmd = PenDownCommand()
77 else:
78 # raising an exception will terminate the program immediately
79 # which is what we want to happen if we encounter an unknown
80 # command. The RuntimeError exception is a common exception
81 # to raise. The string will be printed when the exception is
82 # printed.
83 raise RuntimeError("Unknown Command: " + command)
84
85 # Finish processing the record by adding the command to the sequence.
86 graphicsCommands.append(cmd)
87
88 # Read one more line to set up for the next time through the loop.
89 command = file.readline().strip()
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90
91 # This code iterates through the commands to do the drawing and
92 # demonstrates the use of the __iter(self)__ method in the
93 # PyList class above.
94 for cmd in graphicsCommands:
95 cmd.draw(t)
96
97 file.close()
98 t.ht()
99 screen.exitonclick()

100 print("Program Execution Completed.")
101
102 if __name__ == "__main__":
103 main()

Listing 1.19 A Graphics Program

1.14 Implementing a GUI with Tkinter

The word GUI means Graphical User Interface. Implementing a Graphical User
Interface in Python is very easy using a module called Tkinter. The Tcl/Tk language
and toolkit was designed as a cross-platform method of creating GUI interfaces.
Python provides an interface to this toolkit via the Tkinter module.

AGUI is an event-driven program. Thismeans that youwrite your code to respond
to events that occur in the program. The events occur as a result of mouse clicks,
dragging the mouse, button presses, and menu items being selected.

To build a GUI you place widgets in a window. Widgets are any element of a GUI
like labels, buttons, entry boxes, and sometimes invisible widgets called frames. A
frame is a widget that can hold other widgets. The drawing application you see in
Fig. 1.6 is one such GUI built with Tkinter. In this section we’ll develop this drawing
application so you learn how to create your own GUI applications using Tkinter and
to improve or refresh your Python programming skills.

To construct a GUI you need to create a window. It is really very simple to do this
using Tkinter.

root = tkinter.Tk()

This creates an empty window on the screen, but of course does not put anything
in it. We need to place widgets in it so it looks like the window in Fig. 1.6 (without
the nice picture that Denise drew for us; thanks Denise!). We also need to create
event handlers to handle events in the drawing application.

Putting widgets in a window is called layout. Laying out a window relies on a
layout manager of some sort. Windowing toolkits support some kind of layout. In
Tkinter you either pack, grid, or place widgets within a window. When you pack
widgets it’s like packing a suitcase and each widget is stacked either beside or below
the previous widget packed in the GUI. Packing widgets will give you the desired
layout in most situations, but at times a grid may be useful for laying out a window.
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Fig. 1.6 The Draw Program

The place layout manager lets you place widgets at a particular location within a
window. We’ll use the pack layout manager to layout our drawing application.

When packing widgets, to get the proper layout, sometimes you need to create
a Frame widget. Frame widgets hold other widgets. In Fig. 1.7 two frame widgets
have been created. The DrawingApplication frame is the size of the whole window
and holds just two widgets that are placed side by side within it: the canvas and the
sideBar frame. A canvas is a widget on which a turtle can draw. The sideBar widget
holds all the buttons, entry boxes, and labels.

The DrawingApplication frame inherits from Frame. When programming in an
object-oriented language, sometimes you want to implement a class, but it is almost
like another class. In this case, theDrawingApplication is a Frame. This means there
are two parts to DrawingApplication objects, the Frame part of the DrawingAp-
plication and the rest of it, which in this case is the PyList sequence of graphics
commands. Our frame will keep track of the graphics commands that are used to
draw the picture on the canvas. Portions of the code appear in Listing1.20. The code
in Listing1.20 shows you all the widgets that are created and how they are packed
within the window.



1.14 Implementing a GUI with Tkinter 25

Fig. 1.7 The Draw Program Layout

The canvas and the sideBar widgets are added side by side to the DrawingAppli-
cation frame. Then all the entry, label, and button widgets are added to the sideBar
frame.

In addition, there is a menu with the Draw application. The menu is another
widget that is added to the window (called self.master in the code in Listing1.20).
The fileMenu is what appears on the menu bar. The menu items “New”, “Load...”,
“Load Into...”, “Save As...”, and “Exit” are all added to this menu. Each menu item
is linked to an event handler that is executed when it is selected.

When theTurtle object is created in Listing1.20, it is created as a RawTurtle. A
RawTurtle is just like a turtle except that a RawTurtle can be provided a canvas to
draw on. A Turtle object creates its own canvas when the first turtle is created. Since
we already have a canvas for the turtle, we create a RawTurtle object.

In addition to the event handlers for the widgets, there are three other event han-
dlers. The onclick event occurs when you click the mouse button on the canvas. The
ondrag event handler occurs when the turtle is dragged around the canvas. Finally,
the undoHandler is called when the u key is pressed on the keyboard.

1 # This class defines the drawing application. The following line says that

2 # the DrawingApplication class inherits from the Frame class. This means that

3 # a DrawingApplication object is a Frame object with some extra information



26 1 Python Programming 101

4 # and methods.

5 class DrawingApplication(tkinter.Frame):

6 def __init__(self, master=None):

7 super().__init__(master)

8 self.pack()

9 self.buildWindow()

10 self.graphicsCommands = PyList()

11
12 # This method is called to create all the widgets, place them in the GUI,

13 # and define the event handlers for the application.

14 def buildWindow(self):

15
16 # The master is the root window. The title is set as below.

17 self.master.title("Draw")

18
19 # Here is how to create a menu bar. The tearoff=0 means that menus

20 # can’t be separated from the window which is a feature of tkinter.

21 bar = tkinter.Menu(self.master)

22 fileMenu = tkinter.Menu(bar,tearoff=0)

23
24 # This code is called by the "New" menu item below when it is selected.

25 # The same applies for loadFile, addToFile, and saveFile below. The

26 # "Exit" menu item below calls quit on the "master" or root window.

27 def newWindow():

28 # This sets up the turtle to be ready for a new picture to be

29 # drawn. It also sets the sequence back to empty. It is necessary

30 # for the graphicsCommands sequence to be in the object (i.e.

31 # self.graphicsCommands) because otherwise the statement:

32 # graphicsCommands = PyList()

33 # would make this variable a local variable in the newWindow

34 # method. If it were local, it would not be set anymore once the

35 # newWindow method returned.

36 theTurtle.clear()

37 theTurtle.penup()

38 theTurtle.goto(0,0)

39 theTurtle.pendown()

40 screen.update()

41 screen.listen()

42 self.graphicsCommands = PyList()

43
44 fileMenu.add_command(label="New",command=newWindow)

45
46 def loadFile():

47
48 filename = tkinter.filedialog.askopenfilename(title="Select a Graphics File")

49
50 newWindow()

51
52 # This re-initializes the sequence for the new picture.

53 self.graphicsCommands = PyList()

54
55 # calling parse will read the graphics commands from the file.

56 self.graphicsCommands.parse(filename)

57
58 for cmd in self.graphicsCommands:

59 cmd.draw(theTurtle)

60
61 # This line is necessary to update the window after the picture is drawn.

62 screen.update()

63
64 fileMenu.add_command(label="Load...",command=loadFile)

65
66 def addToFile():

67 filename = tkinter.filedialog.askopenfilename(title="Select a Graphics File")

68
69 theTurtle.penup()

70 theTurtle.goto(0,0)
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71 theTurtle.pendown()

72 theTurtle.pencolor("#000000")

73 theTurtle.fillcolor("#000000")

74 cmd = PenUpCommand()

75 self.graphicsCommands.append(cmd)

76 cmd = GoToCommand(0,0,1,"#000000")

77 self.graphicsCommands.append(cmd)

78 cmd = PenDownCommand()

79 self.graphicsCommands.append(cmd)

80 screen.update()

81 self.graphicsCommands.parse(filename)

82
83 for cmd in self.graphicsCommands:

84 cmd.draw(theTurtle)

85
86 screen.update()

87
88 fileMenu.add_command(label="Load Into...",command=addToFile)

89
90 def saveFile():

91 filename = tkinter.filedialog.asksaveasfilename(title="Save Picture As...")

92 self.graphicsCommands.write(filename)

93
94 fileMenu.add_command(label="Save As...",command=saveFile)

95
96 fileMenu.add_command(label="Exit",command=self.master.quit)

97
98 bar.add_cascade(label="File",menu=fileMenu)

99
100 # This tells the root window to display the newly created menu bar.

101 self.master.config(menu=bar)

102
103 # Here several widgets are created. The canvas is the drawing area on

104 # the left side of the window.

105 canvas = tkinter.Canvas(self,width=600,height=600)

106 canvas.pack(side=tkinter.LEFT)

107
108 # By creating a RawTurtle, we can have the turtle draw on this canvas.

109 # Otherwise, a RawTurtle and a Turtle are exactly the same.

110 theTurtle = turtle.RawTurtle(canvas)

111
112 # This makes the shape of the turtle a circle.

113 theTurtle.shape("circle")

114 screen = theTurtle.getscreen()

115
116 # This causes the application to not update the screen unless

117 # screen.update() is called. This is necessary for the ondrag event

118 # handler below. Without it, the program bombs after dragging the

119 # turtle around for a while.

120 screen.tracer(0)

121
122 # This is the area on the right side of the window where all the

123 # buttons, labels, and entry boxes are located. The pad creates some empty

124 # space around the side. The side puts the sideBar on the right side of the

125 # this frame. The fill tells it to fill in all space available on the right

126 # side.

127 sideBar = tkinter.Frame(self,padx=5,pady=5)

128 sideBar.pack(side=tkinter.RIGHT, fill=tkinter.BOTH)

129
130 # This is a label widget. Packing it puts it at the top of the sidebar.

131 widthLabel = tkinter.Label(sideBar,text="Width")

132 widthLabel.pack()

133
134 # This entry widget allows the user to pick a width for their lines.

135 # With the widthSize variable below you can write widthSize.get() to get

136 # the contents of the entry widget and widthSize.set(val) to set the value

137 # of the entry widget to val. Initially the widthSize is set to 1. str(1) is needed
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138 # because the entry widget must be given a string.

139 widthSize = tkinter.StringVar()

140 widthEntry = tkinter.Entry(sideBar,textvariable=widthSize)

141 widthEntry.pack()

142 widthSize.set(str(1))

143
144 radiusLabel = tkinter.Label(sideBar,text="Radius")

145 radiusLabel.pack()

146 radiusSize = tkinter.StringVar()

147 radiusEntry = tkinter.Entry(sideBar,textvariable=radiusSize)

148 radiusSize.set(str(10))

149 radiusEntry.pack()

150
151 # A button widget calls an event handler when it is pressed. The circleHandler

152 # function below is the event handler when the Draw Circle button is pressed.

153 def circleHandler():

154 # When drawing, a command is created and then the command is drawn by calling

155 # the draw method. Adding the command to the graphicsCommands sequence means the

156 # application will remember the picture.

157 cmd = CircleCommand(int(radiusSize.get()), int(widthSize.get()), penColor.get())

158 cmd.draw(theTurtle)

159 self.graphicsCommands.append(cmd)

160
161 # These two lines are needed to update the screen and to put the focus back

162 # in the drawing canvas. This is necessary because when pressing "u" to undo,

163 # the screen must have focus to receive the key press.

164 screen.update()

165 screen.listen()

166
167 # This creates the button widget in the sideBar. The fill=tkinter.BOTH causes the

168 # button to expand to fill the entire width of the sideBar.

169 circleButton = tkinter.Button(sideBar, text = "Draw Circle", command=circleHandler)

170 circleButton.pack(fill=tkinter.BOTH)

171
172 # The color mode 255 below allows colors to be specified in RGB form (i.e. Red/

173 # Green/Blue). The mode allows the Red value to be set by a two digit hexadecimal

174 # number ranging from 00-FF. The same applies for Blue and Green values. The

175 # color choosers below return a string representing the selected color and a slice

176 # is taken to extract the #RRGGBB hexadecimal string that the color choosers return.

177 screen.colormode(255)

178 penLabel = tkinter.Label(sideBar,text="Pen Color")

179 penLabel.pack()

180 penColor = tkinter.StringVar()

181 penEntry = tkinter.Entry(sideBar,textvariable=penColor)

182 penEntry.pack()

183 # This is the color black.

184 penColor.set("#000000")

185
186 def getPenColor():

187 color = tkinter.colorchooser.askcolor()

188 if color != None:

189 penColor.set(str(color)[-9:-2])

190
191 penColorButton = tkinter.Button(sideBar, text = "Pick Pen Color", command=getPenColor)

192 penColorButton.pack(fill=tkinter.BOTH)

193
194 fillLabel = tkinter.Label(sideBar,text="Fill Color")

195 fillLabel.pack()

196 fillColor = tkinter.StringVar()

197 fillEntry = tkinter.Entry(sideBar,textvariable=fillColor)

198 fillEntry.pack()

199 fillColor.set("#000000")

200
201 def getFillColor():

202 color = tkinter.colorchooser.askcolor()

203 if color != None:

204 fillColor.set(str(color)[-9:-2])
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205
206 fillColorButton = \

207 tkinter.Button(sideBar, text = "Pick Fill Color", command=getFillColor)

208 fillColorButton.pack(fill=tkinter.BOTH)

209
210 def beginFillHandler():

211 cmd = BeginFillCommand(fillColor.get())

212 cmd.draw(theTurtle)

213 self.graphicsCommands.append(cmd)

214
215 beginFillButton = tkinter.Button(sideBar, text = "Begin Fill", \

216 command=beginFillHandler)

217 beginFillButton.pack(fill=tkinter.BOTH)

218
219 def endFillHandler():

220 cmd = EndFillCommand()

221 cmd.draw(theTurtle)

222 self.graphicsCommands.append(cmd)

223
224 endFillButton = tkinter.Button(sideBar, text = "End Fill", command=endFillHandler)

225 endFillButton.pack(fill=tkinter.BOTH)

226
227 penLabel = tkinter.Label(sideBar,text="Pen Is Down")

228 penLabel.pack()

229
230 def penUpHandler():

231 cmd = PenUpCommand()

232 cmd.draw(theTurtle)

233 penLabel.configure(text="Pen Is Up")

234 self.graphicsCommands.append(cmd)

235
236 penUpButton = tkinter.Button(sideBar, text = "Pen Up", command=penUpHandler)

237 penUpButton.pack(fill=tkinter.BOTH)

238
239 def penDownHandler():

240 cmd = PenDownCommand()

241 cmd.draw(theTurtle)

242 penLabel.configure(text="Pen Is Down")

243 self.graphicsCommands.append(cmd)

244
245 penDownButton = tkinter.Button(sideBar, text = "Pen Down", command=penDownHandler)

246 penDownButton.pack(fill=tkinter.BOTH)

247
248 # Here is another event handler. This one handles mouse clicks on the screen.

249 def clickHandler(x,y):

250 # When a mouse click occurs, get the widthSize entry value and set the width

251 # of the pen to the widthSize value. The int(widthSize.get()) is needed because

252 # the width is an integer, but the entry widget stores it as a string.

253 cmd = GoToCommand(x,y,int(widthSize.get()),penColor.get())

254 cmd.draw(theTurtle)

255 self.graphicsCommands.append(cmd)

256 screen.update()

257 screen.listen()

258
259 # Here is how we tie the clickHandler to mouse clicks.

260 screen.onclick(clickHandler)

261
262 def dragHandler(x,y):

263 cmd = GoToCommand(x,y,int(widthSize.get()),penColor.get())

264 cmd.draw(theTurtle)

265 self.graphicsCommands.append(cmd)

266 screen.update()

267 screen.listen()

268
269 theTurtle.ondrag(dragHandler)

270
271 # the undoHandler undoes the last command by removing it from the
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272 # sequence and then redrawing the entire picture.

273 def undoHandler():

274 if len(self.graphicsCommands) > 0:

275 self.graphicsCommands.removeLast()

276 theTurtle.clear()

277 theTurtle.penup()

278 theTurtle.goto(0,0)

279 theTurtle.pendown()

280 for cmd in self.graphicsCommands:

281 cmd.draw(theTurtle)

282 screen.update()

283 screen.listen()

284
285 screen.onkeypress(undoHandler, "u")

286 screen.listen()

287
288 # The main function in our GUI program is very simple. It creates the

289 # root window. Then it creates the DrawingApplication frame which creates

290 # all the widgets and has the logic for the event handlers. Calling mainloop

291 # on the frames makes it start listening for events. The mainloop function will

292 # return when the application is exited.

293 def main():

294 root = tkinter.Tk()

295 drawingApp = DrawingApplication(root)

296 drawingApp.mainloop()

297 print("Program Execution Completed.")

298
299 if __name__ == "__main__":

300 main()

Listing 1.20 A GUI Drawing Application

1.15 XML Files

Reading a standard text file, like the graphics commands file we read using the loop
and a half pattern in Listing1.19, is a common task in computer programs. The only
problem is that the program must be written to read the specific format of the input
file. If we later wish to change the format of the input file to include, for example,
a new option like fill color for a circle, then we are stuck updating the program and
updating all the files it once read. The input file format and the program must always
be synchronized. This means that all old formatted input files must be converted to
the new format or they must be thrown away. That is simply not acceptable to most
businesses because data is valuable.

To deal with this problem, computer programmers designed a language for
describing data input files called XML which stands for eXtensible Markup Lan-
guage. XML is a meta-language for data description. A meta-language is a language
for describing other languages. The XML meta-language is universally accepted.
In fact, the XML format is governed by a standards committee, which means that
we can count on the XML format remaining very stable and backwards compatible
forever. Any additions to XML will have to be compatible with what has already
been defined.
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An XML document begins with a special line to identify it as an XML file. This
line looks like this.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

The rest of an XML file consists of elements or nodes. Each node is identified by
a tag or a pair of beginning and ending tags. Each tag is delimited (i.e. surrounded)
by angle brackets. For instance, here is one such tag.

<GraphicsCommands>

Most XML elements are delimited by a opening tag and a closing tag. The tag
above is an opening tag. Its matching closing tag looks like this.

</GraphicsCommands>

The slash just before the tag name means that it is a closing tag. An opening and
closing tag may have text or other XML elements in between the two tags so XML
documents may contain XML elements nested as deeply as necessary depending on
the data you are trying to encode.

Each XML element may have attributes associated with it. For instance, consider
an XML element that encapsulates the information needed to do a GoTo graphics
command. To complete aGoTo command we need the x and y coordinates, the width
of the line, and the pen color. Here is an example of encoding that information in
XML format.

<Command x="1.0" y="1.0" width="1.0" color="#000000">GoTo</Command>

In this example the attributes are x, y,width, and color. Each attribute is mapped to
its value as shown above. TheGoTo text is the text that appears between the opening
and closing tags. That text is sometimes called the child data.

By encoding an entire graphics commands input file in XML format we eliminate
some of the dependence between the Draw program and its data. Except for the
XML format (i.e. the grammar) the contents of the XML file are completely up to
the programmer or programmers using the data. The file in Listing1.21 is an example
of the truck picture’s XML input file.

1.15.1 TheTruck XML File

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
2 <GraphicsCommands>
3 <Command color="black">BeginFill</Command>
4 <Command radius="20.0" width="1" color="black">Circle</Command>
5 <Command>EndFill</Command>
6 <Command>PenUp</Command>
7 <Command x="120.0" y="0.0" width="1.0" color="black">GoTo</Command>
8 <Command>PenDown</Command>
9 <Command color="black">BeginFill</Command>
10 <Command radius="20.0" width="1" color="black">Circle</Command>
11 <Command>EndFill</Command>
12 <Command>PenUp</Command>
13 <Command x="150.0" y="40.0" width="1.0" color="black">GoTo</Command>
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14 <Command>PenDown</Command>
15 <Command color="yellow">BeginFill</Command>
16 <Command x="-30.0" y="40.0" width="1.0" color="black">GoTo</Command>
17 <Command x="-30.0" y="70.0" width="1.0" color="black">GoTo</Command>
18 <Command x="60.0" y="70.0" width="1.0" color="black">GoTo</Command>
19 <Command x="60.0" y="100.0" width="1.0" color="black">GoTo</Command>
20 <Command x="90.0" y="100.0" width="1.0" color="black">GoTo</Command>
21 <Command x="115.0" y="70.0" width="1.0" color="black">GoTo</Command>
22 <Command x="150.0" y="70.0" width="1.0" color="black">GoTo</Command>
23 <Command x="150.0" y="40.0" width="1.0" color="black">GoTo</Command>
24 <Command>EndFill</Command>
25 </GraphicsCommands>

Listing 1.21 The Truck XML file

XML files are text files. They just contain extra XML formatted data to help stan-
dardize how XML files are read. Writing an XML file is as simple as writing a text
file. While indentation is not necessary in XML files, it is often used to highlight
the format of the file. In Listing1.21 the GraphicsCommands element contains one
Command element for each drawing command in the picture. Each drawing com-
mand contains the command type as its text. The command types are GoTo, Circle,
BeginFill, EndFill, PenUp, and PenDown. The attributes of a command are data like
x, y, width, radius, and color that are used by the various types of commands.

To write the commands to a file, each of the Command classes can be modified
to produce an XML element when converted to a string using the special __str__
method. For instance, Listing1.22 contains the modified GoToCommand class sup-
porting the creation of an XML element.

1 # The following classes define the different commands that
2 # are supported by the drawing application.
3 class GoToCommand:
4 def __init__(self,x,y,width=1,color="black"):
5 self.x = x
6 self.y = y
7 self.width = width
8 self.color = color
9

10 # The draw method for each command draws the command
11 # using the given turtle
12 def draw(self,turtle):
13 turtle.width(self.width)
14 turtle.pencolor(self.color)
15 turtle.goto(self.x,self.y)
16
17 # The __str__ method is a special method that is called
18 # when a command is converted to a string. The string
19 # version of the command is how it appears in the graphics
20 # file format.
21 def __str__(self):
22 return ’<Command x="’ + str(self.x) + ’" y="’ + str(self.y) + ’" width="’ + \
23 str(self.width) + ’" color="’ + self.color + ’">GoTo</Command>’

Listing 1.22 The GoToCommand with XML Creation Code

By returning a string like this from each of the command objects, the code to write
the draw program’s data to a file is very simple. All that is needed is some code that
writes the xml line as the first line, followed by the <GraphicsCommands> tag and
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the command elements. Finally, the </GraphicsCommands> tag must be written.
The code in Listing1.23 accomplishes this.

1 file = open(filename, "w")
2 file.write(’<?xml version="1.0" encoding="UTF-8" standalone="no" ?>\n’)
3 file.write(’<GraphicsCommands>\n’)
4 for cmd in self.graphicsCommands:
5 file.write(’    ’+str(cmd)+"\n")
6
7 file.write(’</GraphicsCommands>\n’)
8 file.close()

Listing 1.23 Writing Graphics Commands to an XML File

Writing an XML file is like writing any text file except that the text file must
conform to the XML grammar specification. There are certainly ways to create XML
files that differ from how it was presented in Listing1.23. In the next section we’ll
learn about XML parsers and a very simple way to read XML documents. It turns
out there are at least some XML frameworks that make writing an XML document
just as simple.

1.16 Reading XML Files

XML files would be difficult to read if we had to read them like we read a regular text
file. This is especially true because XML files are not line-oriented. They conform
to the XML grammar, but the grammar does not specify anything about the lines in
the file. Instead of reading an XML file by reading lines of the file, we use a special
tool called a parser. A parser is written according to the rules of a grammar, in
this case the XML grammar. There are many XML parsers that have been written
and different parsers have different features. The one we will use in this text is one
of the simpler parsers called minidom. The minidom parser reads an entire XML
file by calling the parse method on it. It places the entire contents of an XML file
into an sequence of Element objects. An Element object contains the child data and
attributes of an XML element along with any other elements that might be defined
inside this element.

To use the minidom parser, you must first import the module where the minidom
parser is defined.

import xml.dom.minidom

Then, you can read an entire XML file by calling the parse method on an XML
document as follows.

xmldoc = xml.dom.minidom.parse(filename)

Once you have done that, you can read a specific type of element from the XML
file by calling the method getElementsByTagName on it. For instance, to get the
GraphicsCommands element from the graphics commands XML file, you would
write this.

graphicsCommands = xmldoc.getElementsByTagName("GraphicsCommands")[0]
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The XML document contains the GraphicsCommands element. Calling getEle-
mentsByTagName on GraphicsCommands returns a list of all elements that match
this tag name. Since we know there is only one of these tags in the file, we can
write [0] to get the first element from the list. Then, the graphicsCommands element
contains just the one element from the file and all the Command elements of the file
are located within it. If we want to go through all these elements we can use a for
loop as in the code in Listing1.24.

1 for commandElement in graphicsCommands:
2 print(type(commandElement))
3 command = commandElement.firstChild.data.strip()
4 attr = commandElement.attributes
5 if command == "GoTo":
6 x = float(attr["x"].value)
7 y = float(attr["y"].value)
8 width = float(attr["width"].value)
9 color = attr["color"].value.strip()
10 cmd = GoToCommand(x,y,width,color)
11
12 elif command == "Circle":
13 radius = float(attr["radius"].value)
14 width = int(attr["width"].value)
15 color = attr["color"].value.strip()
16 cmd = CircleCommand(radius,width,color)
17
18 elif command == "BeginFill":
19 color = attr["color"].value.strip()
20 cmd = BeginFillCommand(color)
21
22 elif command == "EndFill":
23 cmd = EndFillCommand()
24
25 elif command == "PenUp":
26 cmd = PenUpCommand()
27
28 elif command == "PenDown":
29 cmd = PenDownCommand()
30 else:
31 raise RuntimeError("Unknown Command: " + command)
32
33 self.append(cmd)

Listing 1.24 Using an XML Parser

In the code in Listing1.24 the attr variable is a dictionary mapping the attribute
names (i.e. keys) to their associated values. The child data of a Command node can
be found by looking at the firstChild.data for the node. The strip method is used to
strip away any unwanted blanks, tabs, or newline characters that might appear in the
string.
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1.17 Chapter Summary

In this first chapter we have covered a large amount of material which should be
mostly review but probably covered some things that are new to you as well. Don’t
be toooverwhelmedby it all. The purpose of this chapter is to get you askingquestions
about the things you don’t understand. If you don’t understand something, you should
ask your teacher or someone who knows more about programming in Python. They
can likely help you. Asking questions is a great way to learn and Computer Science
is all about a lifetime of learning.

Here is a list of the important concepts you should have learned in this chapter.
You should:

• know how to create an object, both from a literal value and by calling the object’s
constructor explicitly.

• understand the concept of a reference pointing at a value (i.e. an object) in Python.
• know how to call a method on an object.
• know how to import a module.
• understand the importance of indentation in Python programs.
• know why you write amain function in Python programs and how to call the main
function.

• know how to read records from a file whether they be multi-line, single line, fixed
length, or variable length records.

• know how to define a container class like PyList defined in this chapter.
• understand the concept of polymporphism and how that means an object will do
the right thing when a method is called.

• understand the Accumulator pattern and how to use it in a program.
• know how to implement a simpleGUI using Tkinter in Python. Entry boxes, labels,
buttons, frames, and event handlers should all be concepts that are understood and
can be programmed by looking back at the examples in this chapter.

• and finally you should know how to read and write XML files in your programs.

There is a lot of example code in this chapter and the final version of the Draw
program is provided on the text’s website or in Chap.22. While it is doubtful you
will be able to memorize each line of the code you found in this chapter, you should
make sure you know how things work when you look at it and you should remember
that you can use this chapter as a resource. Come back to it often when you need to
see how to do something in later chapters. Using this example code as a reference
will help to answer a lot of your questions in future chapters.

1.18 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.
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1. What does IDE stand for and why is it a good idea to use an IDE?
2. What code would you write to create a string containing the wordsHappy Birth-

day!? Write some code to point a reference called text at that newly created
object.

3. What code would you write to take the string you created in the last question
and split it into a list containing two strings? Point the reference lst at this newly
created list.

4. What code would you write to upper-case the string created in the second ques-
tion. Point the reference named bDayWish at this upper-cased string.

5. If you were to execute the code you wrote for answering the last three questions,
what would the string referenced by text contain after executing these three lines
of code?

6. How would you create a dictionary that maps “Kent” to “Denise” and maps
“Steve” to “Lindy”? In these two cases “Kent” and “Steve” are the keys and
“Denise” and “Lindy” are the values.

7. Consult Chap.19.Howwould youmap a key to a value as in the previous problem
when the dictionary was first created as an empty dictionary? HINT: This would
be called setting an item in the documentation in the appendix. Write a short
piece of code to create an empty dictionary and then map “Kent” to “Denise”
and “Steve” to “Lindy”.

8. What method is called when x<y is written? In which class is the method a
member? In other words, if you were presented with x<y in a program, how
would you figure out which class you needed to examine to understand exactly
what x<y meant?

9. What method is called when x<<y is written?
10. What is the loop and a half problem and how is it solved?
11. Do you need to use the solution to the loop and a half problem to read an XML

file? Why or why not?
12. Polymorphism and Operator Overloading are closely related concepts. Can you

briefly explain how the two concepts are similar and how Python supports them?
HINT: No is not a valid answer.

13. What would you write so that a program asks the user to enter an integer and
then adds up all the even integers from 2 to the integer entered by the user. HINT:
You might want to review how to use the range function to accomplish this and
decide on what pattern of programming you might use.

14. How do you create a window using Tkinter?
15. What is the purpose of a Frame object in a Tkinter program?
16. What are three types of widgets in the Tkinter framework?
17. When reading an XML file, how many lines of code does it take to read the file?
18. How do you get a single element from an XML document? What line(s) of code

do you have to write? Provide an example.
19. When traversing an XML document, how do you get a list of elements from it?

What line(s) of code do you have to write? Provide an example.
20. What is an attribute in an XML document and how do you access an attribute’s

value? Provide an example from the text or fromanother example youfind online.
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1.19 Programming Problems

1. Startingwith the version of theDraw program that reads an input filewith variable
length records, add a new graphics command of your choice to the program.
Consider how it would be written to a file, create a test file, write your code,
and test it. You must design two files: a sample test file, and the program itself.
Some examples might be a graphics command to draw a star with some number
of points, a rectangle with a height and width, etc.

2. Starting with the Draw program provided in Chap.22, extend the program to
include a new button to draw a new shape for the Draw program. For instance,
have the draw program draw a star on the screen or a smiley face or something
of your choosing. HINT: If you use the forward and back methods to draw your
shape, you can scale it by multiplying each forward and back amount by a scale
value. Then, you can let the user pick a scale for it (or use the radius amount
as your scale) and draw your shape in whatever size you like. To complete this
exercise you must extend your XML format to include a new graphics command
to store the relevant information for drawing your new shape. Youmust also define
a new graphicsCommand class for your new shape.

3. Add the ability to draw a text string on a Draw picture. You’ll need to let the
user pick a point size. For a real challenge, let the user pick the font type from
a drop-down list of font types. Draw a string that you have the user enter in an
entry box.

4. Find anXMLdocument of your choice on the internet, write code to parse through
the data and plot something from that data whether it be some value over time or
something else. Use turtle graphics to plot the data that you find.

5. Add a new button to the drawing program presented in Chap.22 that draws a rain-
bow centered above the current location of the turtle. This can be done quite easily
by using sin and cos (i.e. sine and cosine). The sin and cos functions take radians
as a parameter. To draw a rainbow, the radians would range from 0 tomath.pi from
the math module. You must import themathmodule to get access tomath.cos and
math.sin as well as math.pi. To draw values in an arc, you can use a for loop and
let a variable, i, range from 0 to 100. Then radius * math.cos(i/100.0 * math.pi),
radius * math.sin(i/100.0 * math.pi) is the next x,y coordinate of the rainbow’s
arc. By varying the radius you will get several stripes for your rainbow. Each
stripe should have a different color. To vary the color, you might convert a 24-bit
number to hex. To convert a number to hexadecimal in Python you can use the
hex function. You must make sure that your color string is 6 digits long and starts
with a pound sign (i.e. #) for it to be a valid color string in Python.
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In the last chapter we developed a drawing program. To hold the drawing commands
we built the PyList container class which is a lot like the built-in Python list class,
but helps illustrate our first data structure. When we added a drawing command to
the sequence we called the append method. It turns out that this method is called
a lot. In fact, the flower picture in the first chapter took around 700 commands to
draw. You can imagine that a complex picture with lots of free-hand drawing could
contain thousands of drawing commands. When creating a free-hand drawing we
want to append the next drawing command to the sequence quickly because there
are so many commands being appended. How long does it take to append a drawing
command to the sequence? Can we make a guess? Should we care about the exact
amount of time?

In this chapter you’ll learn how to answer these questions and you’ll learn what
questions are important for you as a computer programmer. First you’ll read about
some principles of computer architecture to understand something about how long
it takes a computer to do some simple operations. With that knowledge you’ll have
the tools you’ll need to make informed decisions about how much time it might take
to execute some code you have written.

2.1 Chapter Goals

By the end of this chapter you should be able to answer these questions.

• What are some of the primitive operations that a computer can perform?
• How much time does it take to perform these primitive operations?
• What does the term computational complexity mean?
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• Why do we care about computational complexity?
• When do we need to be concerned about the complexity of a piece of code?
• What can we do to improve the efficiency of a piece of code?
• What is the definition of big-O notation?
• What is the definition of Theta notation?
• What is amortized complexity and what is its importance?
• How can we apply what we learned to make the PyList container class better?

2.2 Computer Architecture

A computer consists of a Central Processing Unit (i.e. the CPU) that interacts with
Input/Output (i.e. I/O) devices like a keyboard,mouse, display, andnetwork interface.
When you run a program it is first read from a storage device like a hard drive into the
Random Access Memory, or RAM, of the computer. RAM loses its contents when
the power is shut off, so copies of programs are only stored in RAM while they are
running. The permanent copy of a program is stored on the hard drive or some other
permanent storage device.

The RAM of a computer holds a program as it is executing and also holds data
that the program is manipulating. While a program is running, the CPU reads input
from the input devices and stores data values in the RAM. The CPU also contains
a very limited amount of memory, usually called registers. When an operation is
performed by the CPU, such as adding two numbers together, the operands must
be in registers in the CPU. Typical operations that are performed by the CPU are
addition, subtraction, multiplication, division, and storing and retrieving values from
the RAM.

2.2.1 Running a Program

When a user runs a program on a computer, the following actions occur:

1. The program is read from the disk or other storage device into RAM.
2. The operating system (typically Mac OS X, Microsoft Windows, or Linux) sets

up two more areas of RAM called the run-time stack and the heap for use by the
program.

3. The operating system starts the program executing by telling the CPU to start
executing the first instruction of the computer.

4. The program reads data from the keyboard, mouse, disk, and other input sources.
5. Each instruction of the program retrieves small pieces of data from RAM, acts

on them, and writes new data back to RAM.
6. Once the data is processed the result is provided as output on the screen or some

other output device.
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Fig. 2.1 Conceptual View of
a Computer

Because there is so little memory in the CPU, the normal mode of operation is to
store values in the RAM until they are needed for a CPU operation. The RAM is a
much bigger storage space than the CPU. But, because it is bigger, it is also slower
than the CPU. Storing a value in RAM or retrieving a value from RAM can take
as much time as several CPU operations. When needed, the values are copied from
the RAM into the CPU, the operation is performed, and the result is then typically
written back into the RAM. The RAM of a computer is accessed frequently as a
program runs, so it is important that we understand what happens when it is accessed
(Fig. 2.1).

One analogy that is often used is that of a post office. The RAM of a computer is
like a collection of post office boxes. Each box has an address and can hold a value.
The values you can put in RAM are called bytes (i.e. eight bits grouped together).
With eight bits, 256 different values can be stored. Usually bytes are interpreted as
integers, so a byte can hold values from 0 to 255. If we want to store bigger values,
we can group bytes together into words. The word size of a computer is either 32 bits
(i.e. four bytes) or 64 bits, depending on the architecture of the computer’s hardware.
All modern computer hardware is capable of retrieving or storing a word at a time.

The post office box analogy helps us to visualize how the RAM of a computer
is organized, but the analogy does not serve well to show us how the RAM of a
computer behaves. If we were going to get something from a post office box, or store
something in a post office box, there would have to be some kind of search done to
find the post office box first. Then the letter or letters could be placed in it or taken
from it. The more post office boxes in the post office, the longer that search would
take. This helps us understand the fundamental problem we study in this text. As the
size of a problem space grows, how does a program or algorithm behave? In terms
of this analogy, as the number of post office boxes grows, how much longer does it
take to store or retrieve a value?

The RAM of a computer does not behave like a post office. The computer does
not need to find the right RAM location before the it can retrieve or store a value.
A much better analogy is a group of people, each person representing a memory
location within the RAM of the computer. Each person is assigned an address or
name. To store a value in a location, you call out the name of the person and then
tell them what value to remember. It does not take any time to find the right person
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because all the people are listening, just in case their name is called. To retrieve a
value, you call the name of the person and they tell you the value they were told
to remember. In this way it takes exactly the same amount of time to retrieve any
value from any memory location. This is how the RAM of a computer works. It takes
exactly the same amount of time to store a value in any location within the RAM.
Likewise, retrieving a value takes the same amount of time whether it is in the first
RAM location or the last.

2.3 Accessing Elements in a Python List

With experimentation we can verify that all locations within the RAM of a computer
can be accessed in the same amount of time.APython list is a collection of contiguous
memory locations. The word contiguous means that the memory locations of a list
are grouped together consecutively in RAM. If we want to verify that the RAM of
a computer behaves like a group of people all remembering their names and their
values, we can run some tests with Python lists of different sizes to find the average
time to retrieve from or store a value into a random element of the list.

To test the behavior of Python lists we can write a program that randomly stores
and retrieves values in a list. We can test two different theories in this program.

1. The size of a list does not affect the average access time in the list.
2. The average access time at any location within a list is the same, regardless of its

location within the list.

To test these two theories, we’ll need to time retrieval and storing of values within
a list. Thankfully, Python includes a datetime module that can be used to record the
current time. By subtracting two datetime objects we can compute the number of
microseconds (i.e. millionths of a second) for any operation within a program. The
program in Listing2.1 was written to test list access and record the access time for
retrieving values and storing values in a Python list.

1 import datetime

2 import random

3 import time

4
5 def main():

6 # Write an XML file with the results

7 file = open("ListAccessTiming.xml","w")

8 file.write(’<?xml version="1.0" encoding="UTF-8" standalone="no" ?>\n’)

9 file.write(’<Plot title="Average List Element Access Time">\n’)

10
11 # Test lists of size 1000 to 200000.

12 xmin = 1000

13 xmax = 200000

14
15 # Record the list sizes in xList and the average access time within

16 # a list that size in yList for 1000 retrievals.

17 xList = []

18 yList = []

19
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20 for x in range(xmin, xmax+1, 1000):

21 xList.append(x)

22 prod = 0

23
24 # Creates a list of size x with all 0’s

25 lst = [0] * x

26
27 # let any garbage collection/memory allocation complete or at least

28 # settle down

29 time.sleep(1)

30
31 # Time before the 1000 test retrievals

32 starttime = datetime.datetime.now()

33
34 for v in range(1000):

35 # Find a random location within the list

36 # and retrieve a value. Do a dummy operation

37 # with that value to ensure it is really retrieved.

38 index = random.randint(0,x-1)

39 val = lst[index]

40 prod = prod * val

41 # Time after the 1000 test retrievals

42 endtime = datetime.datetime.now()

43
44 # The difference in time between start and end.

45 deltaT = endtime - starttime

46
47 # Divide by 1000 for the average access time

48 # But also multiply by 1000000 for microseconds.

49 accessTime = deltaT.total_seconds() * 1000

50
51 yList.append(accessTime)

52
53 file.write(’  <Axes>\n’)

54 file.write(’    <XAxis min="’+str(xmin)+’" max="’+str(xmax)+’">List Size</XAxis>\n’)

55 file.write(’    <YAxis min="’+str(min(yList))+’" max="’+str(60)+’">Microseconds</YAxis>\n’)

56 file.write(’  </Axes>\n’)

57
58 file.write(’  <Sequence title="Average Access Time vs List Size" color="red">\n’)

59
60 for i in range(len(xList)):

61 file.write(’    <DataPoint x="’+str(xList[i])+’" y="’+str(yList[i])+’"/>\n’)

62
63 file.write(’  </Sequence>\n’)

64
65 # This part of the program tests access at 100 random locations within a list

66 # of 200,000 elements to see that all the locations can be accessed in

67 # about the same amount of time.

68 xList = lst

69 yList = [0] * 200000

70
71 time.sleep(2)

72
73 for i in range(100):

74 starttime = datetime.datetime.now()

75 index = random.randint(0,200000-1)

76 xList[index] = xList[index] + 1

77 endtime = datetime.datetime.now()

78 deltaT = endtime - starttime

79 yList[index] = yList[index] + deltaT.total_seconds() * 1000000

80
81 file.write(’  <Sequence title="Access Time Distribution" color="blue">\n’)

82
83 for i in range(len(xList)):

84 if xList[i] > 0:

85 file.write(’    <DataPoint x="’+str(i)+’" y="’+str(yList[i]/xList[i])+’"/>\n’)

86
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87 file.write(’  </Sequence>\n’)

88 file.write(’</Plot>\n’)

89 file.close()

90
91 if __name__ == "__main__":

92 main()

Listing 2.1 List Access Timing

When running a program like this the times that you get will depend not only
on the actual operations being performed, but the times will also depend on what
other activity is occurring on the computer where the test is being run. All modern
operating systems, like Mac OS X, Linux, or Microsoft Windows, are multi-tasking.
This means the operating system can switch between tasks so that we can get email
whilewriting a computer program, for instance.Whenwe time somethingwewill not
only see the effects of our own program running, but all programs that are currently
running on the computer. It is nearly impossible to completely isolate one program in
a multi-tasking system. However, most of the time a short program will run without
too much interruption.

The program in Listing2.1 writes an XML file with its results. The XML file for-
mat supports the description of experimentally collected data for a two dimensional
plot of one or more sequences of data. One sample of the data that this program
generates looks like Listing2.2. The data is abbreviated, but the format is as shown
in Listing2.2.

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
2 <Plot title="Average List Element Access Time">
3 <Axes>
4 <XAxis min="1000" max="200000">List Size</XAxis>
5 <YAxis min="20.244" max="60">Microseconds</YAxis>
6 </Axes>
7 <Sequence title="Average Access Time vs List Size" color="red">
8 <DataPoint x="1000" y="33.069"/>
9 <DataPoint x="2000" y="27.842"/>
10 <DataPoint x="3000" y="23.908"/>
11 <DataPoint x="4000" y="26.349"/>
12 <DataPoint x="5000" y="23.212"/>
13 <DataPoint x="6000" y="23.765"/>
14 <DataPoint x="7000" y="21.251"/>
15 <DataPoint x="8000" y="21.321"/>
16 <DataPoint x="9000" y="23.197"/>
17 <DataPoint x="10000" y="21.527"/>
18 <DataPoint x="11000" y="35.799"/>
19 <DataPoint x="12000" y="22.173"/>
20 ...
21 <DataPoint x="197000" y="26.245"/>
22 <DataPoint x="198000" y="30.013"/>
23 <DataPoint x="199000" y="25.888"/>
24 <DataPoint x="200000" y="23.578"/>
25 </Sequence>
26 <Sequence title="Access Time Distribution" color="blue">
27 <DataPoint x="219" y="41.0"/>
28 <DataPoint x="2839" y="38.0"/>
29 <DataPoint x="5902" y="38.0"/>
30 <DataPoint x="8531" y="58.0"/>
31 <DataPoint x="11491" y="38.0"/>
32 <DataPoint x="15415" y="38.0"/>
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33 <DataPoint x="17645" y="31.0"/>
34 <DataPoint x="18658" y="38.0"/>
35 <DataPoint x="20266" y="40.0"/>
36 <DataPoint x="21854" y="31.0"/>
37 ...
38 <DataPoint x="197159" y="37.0"/>
39 <DataPoint x="199601" y="40.0"/>
40 </Sequence>
41 </Plot>

Listing 2.2 A Plot XML Sample

Since we’ll be taking a look at quite a bit of experimental data in this text, we
have written a tkinter program that will read an XML file with the format given in
Listing2.2 and plot the sequences to the screen. The PlotData.py program is given
in Sect. 22.4.

If we use the program to plot the data gathered by the list access experiment, we
see a graph like the one in Fig. 2.2. This graph provides the experimental data to back
up the two statements we made earlier about lists in Python. The red line shows the
average element access time of 1000 element accesses on a list of the given size. The
average access time (computed from a sample of 1000 random list accesses) is no
longer on a list of 10,000 than it is on a list of 160,000.While the exact values are not

Fig. 2.2 Access times in a Python list
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printed in the graph, the exact values are not important. What we would be interested
in seeing is any trend toward longer or shorter average access times. Clearly the only
trend is that the size of the list does not affect the average access time. There are
some ups and downs in the experimental data, but this is caused by the system being
a multi-tasking system. Another factor is likely the caching of memory locations. A
cache is a way of speeding up access to memory in some situations and it is likely
that the really low access times benefited from the existence of a cache for the RAM
of the computer. The experimental data backs up the claim that the size of a list does
not affect the average access time in the list.

The blue line in the plot is the result of doing 100 list retrieval and store operations
on one list of 200,000 elements. The reason the blue line is higher than the red line is
likely the result of doing both a retrieval from and a store operation into the element
of the list. In addition, the further apart the values in memory, the less likely a cache
will help reduce the access time. Whatever the reason for the blue line being higher
the important thing to notice is that accessing the element at index 0 takes no more
time than accessing any other element of the sequence. All locations within the list
are treated equally. This backs up the claim that the average access time at any
location within a list is the same, regardless of its location within the list.

2.4 Big-O Notation

Whichever line we look at in the experimental data, the access time never exceeds
100µs for any of thememory accesses, evenwith the other things the computermight
be doing. We are safe concluding that accessing memory takes less than 100µs. In
fact, 100µs is much more time than is needed to access or store a value in a memory
location. Our experimental data backs up the two claims we made earlier. However,
technically, it does not prove our claim that accessing memory takes a constant
amount of time. The architecture of the RAM in a computer could be examined to
prove that accessing anymemory location takes a constant amount of time.Accessing
memory is just like calling out a name in a group of people and having that person
respond with the value they were assigned. It doesn’t matter which person’s name is
called out. The response time will be the same, or nearly the same. The actual time
to access the RAM of a computer may vary a little bit if a cache is available, but at
least we can say that there is an upper bound to how much time accessing a memory
location will take.

This idea of an upper bound can be stated more formally. The formal statement
of an upper bound is called big-O notation. The big-O refers to the Greek letter
Omicron which is typically used when talking about upper bounds. As computer
programmers, our number one concern is how our programs will perform when we
have large amounts of data. In terms of the memory of a computer, we wanted to
know how our program would perform if we have a very large list of elements. We
found that all elements of a list are accessed in the same amount of time independent
of how big this list is. Let’s represent the size of the list by a variable called n. Let
the average access time for accessing an element of a list of size n be given by f(n).
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Now we can state the following.

O(g(n)) = { f | ∃d > 0, n0 ∈ Z+ � 0 ≤ f (n) ≤ d g(n), ∀n ≥ n0}
In English this reads as follows: The class of functions designated by O(g(n)) con-
sists of all functions f, where there exists a d greater than 0 and an n0 (a positive
integer) such that 0 is less than or equal to f(n) is less than or equal to d times g(n)
for all n greater than or equal to n0.

If f is an element of O(g(n)), we say that f (n) is O(g(n)). The function g is
called an asymptotic upper bound for f in this case. You may not be comfortable
with the mathematical description above. Stated in English the set named O(g(n))

consists of the set of all functions, f (n), that have an upper bound of d ∗ g(n), as
n approaches infinity. This is the meaning of the word asymptotic. The idea of an
asymptotic bound means that for some small values of n the value of f (n) might be
bigger than the value of d ∗ g(n), but once n gets big enough (i.e. bigger than n0),
then for all bigger n it will always be true that f (n) is less than d ∗ g(n). This idea
of an asymptotic upper bound is pictured in Fig. 2.3. For some smaller values the
function’s performance, shown in green, may be worse than the blue upper bound
line, but eventually the upper bound is bigger for all larger values of n.

We have seen that the average time to access an element in a list is constant and
does not depend on the list size. In the example in Fig. 2.2, the list size is the n in
the definition and the average time to access an element in a list of size n is the f(n).
Because the time to access an element does not depend on n, we can pick g(n) = 1.
So, we say that the average time to access an element in a list of size n is O(1). If
we assume it never takes longer than 100µ s to access an element of a list in Python,
then a good choice for d would be 100. According to the definition above then it
must be the case that f(n) is less than or equal to 100 once n gets big enough.

The choice of g(n) = 1 is arbitrary in computing the complexity of accessing an
element of a list. We could have chosen g(n) = 2. If g(n) = 2 were chosen, d might
be chosen to be 50 instead of 100. But, since we are only concerned with the overall
growth in the function g, the choice of 1 or 2 is irrelevant and the simplest function
is chosen, in this case O(1). In English, when an operation or program is O(1), we
say it is a constant time operation or program. This means the operation does not
depend on the size of n.

It turns out that most operations that a computer can perform are O(1). For
instance, adding twonumbers together is aO(1)operation. So ismultiplication of two
numbers.While both operations require several cycles in a computer, the total number
of cycles does not depend on the size of the integers or floating point numbers being
added or multiplied. A cycle is simply a unit of time in a computer. Comparing two
values is also a constant time operation.When computing complexity, any arithmetic
calculation or comparison can be considered a constant time operation.

This idea of computational complexity is especially important when the com-
plexity of a piece of code depends on n. In the next section we’ll see some code that
depends on the size of the list it is working with and how important it is that we
understand the implications of how we write even a small piece of code.
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Fig. 2.3 An Upper Bound

2.5 The PyList Append Operation

We have established that accessing amemory location or storing a value in a memory
location is a O(1), or constant time, operation. The same goes for accessing an
element of a list or storing a value in a list. The size of the list does not change the
time needed to access or store an element and there is a fixed upper bound for the
amount of time needed to access or store a value in memory or in a list.

With this knowledge, let’s look at the drawing program again and specifically at
the piece of code that appends graphics commands to the PyList. This code is used a
lot in the program. Every time a new graphics command is created, it is appended to
the sequence. When the user is doing some free-hand drawing, hundreds of graphics
commands are getting appended every minute or so. Since free-hand drawing is
somewhat compute intensive, we want this code to be as efficient as possible.
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1 class PyList:
2 def __init__(self):
3 self.items = []
4
5 # The append method is used to add commands to the sequence.
6 def append(self,item):
7 self.items = self.items + [item]
8
9 ...

Listing 2.3 Inefficient Append

The code in Listing2.3 appends a new item to the list as follows:

1. The item is made into a list by putting [ and ] around it. We should be careful
about how we say this. The item itself is not changed. A new list is constructed
from the item.

2. The two lists are concatenated together using the + operator. The + operator is
an accessor method that does not change either original list. The concatenation
creates a new list from the elements in the two lists.

3. The assignment of self.items to this new list updates the PyList object so it now
refers to the new list.

The question we want to ask is, how does this append method perform as the size
of the PyList grows? Let’s consider the first time that the append method is called.
How many elements are in the list that is referenced by self.items? Zero, right? And
there is always one element in [item]. So the appendmethodmust access one element
of a list to form the new list, which also has one element in it.

What happens the second time the append method is called? This time, there is
one element in the list referenced by self.items and again one element in [item].
Now, two elements must be accessed to form the new list. The next time append is
called three elements must be accessed to form the new list. Of course, this pattern
continues for each new element that is appended to the PyList. When the nth element
is appended to the sequence there will have to be n elements copied to form the new
list. Overall, how many elements must be accessed to append n elements?

2.6 A Proof by Induction

We have already established that accessing each element of a list takes a constant
amount of time. So, if we want to calculate the amount of time it takes to append n
elements to the PyList we would have to add up all the list accesses and multiply by
the amount of time it takes to access a list element plus the time it takes to store a
list element. To count the total number of access and store operations we must start
with the number of access and store operations for copying the list the first time an
element is appended. That’s one element copied. The second append requires two
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copy operations. The third append requires three copy operations. So, we have the
following number of list elements being copied.

1 + 2 + 3 + 4 + ... + n =
n∑

i=1

i

In mathematics we can express this sum with a summation symbol (i.e.
∑

). This is
the mathematical way of expressing the sum of the first n integers. But, what is this
equal to? It turns out with a little work, we can find that the following is true.

n∑

i=1

i = n(n + 1)

2

We can prove this is true using a proof technique from Mathematics called mathe-
matical induction. There are a couple of variations of mathematical induction. We’ll
use what is called weak induction to prove this. When proving something using
induction you are really constructing a meta-proof. A meta-proof is a set of steps
that you can repeat over and over again to find your desired result. The power of
induction is that once we have constructed the meta-proof, we have proved that the
result is true for all possible values of n.

We want to prove that the formula given above is valid for all n. To do this we
first show it is true for a simple value of n. In our case we’ll pick 1 as our value of
n. In that case we have the following.

1∑

i=1

i = 1 = 1(1 + 1)

2

This is surely true. This step is called the base case of the inductive proof. Every
proof by induction must have a base case and it is usually trivial.

The next step is to create the meta-proof. This meta-proof is called the inductive
case.When forming the inductive case we get to assume that the formula holds for all
values, m, where m is less than n. This is called strong induction. In weak induction
we get to assume that the formula is valid for n–1 and we want to show that it is valid
for n. We’ll use weak induction in this problem to finish our proof. Again, this step
helps us form a set of steps that we can apply over and over again to get from our
base case to whatever value of n we need to find. To begin we will make note of the
following.

n∑

i=1

i =
(n−1∑

i=1

i

)
+ n

This is true by the definition of summation. But now we have a sum that goes to n–1
and weak induction says that we know the equation is valid for n–1. This is called
the inductive hypothesis. Since it holds for n–1 we know the following is true. We
get this by substituting n–1 everyplace that we see an n in the original formula.

n−1∑

i=1

i = (n − 1)n

2



2.7 Making the PyList Append Efficient 51

Now we can use this fact in proving the equality of our original formula. Here we
go!

n∑

i=1

i =
(n−1∑

i=1

i

)
+ n = n(n − 1)

2
+ n = n(n − 1)

2
+ 2n

2

= n2 − n + 2n

2
= n2 + n

2
= n(n + 1)

2
�

If you look at the left side and all the way over at the right side of this formula
you can see the two things that we set out to prove were equal are indeed equal.
This concludes our proof by induction. The meta-proof is in the formula above. It
is a template that we could use to prove that the equality holds for n = 2. To prove
the equality holds for n = 2 we needed to use the fact that the equality holds for
n = 1. This was our base case. Once we have proved that it holds for n = 2 we
could use that same formula to prove that the equality holds for n = 3. Mathematical
induction doesn’t require us to go through all the steps. As long as we’ve created
this meta-proof we have proved that the equality holds for all n. That’s the power of
induction.

2.7 Making the PyList Append Efficient

Now, going back to our original problem, we wanted to find out how much time
it takes to append n items to a PyList. It turns out, using the append method in
Listing2.3, it will perform in O(n2) time. This is because the first time we called
append we had to copy one element of the list. The second time we needed to
copy two elements. The third time append was called we needed to copy three
elements. Our proof in Sect. 2.6 is that 1 + 2 + 3 + ... + n equals n*(n + 1)/2. The
highest powered term in this formula is the n2 term. Therefore, the append method in
Listing2.3 exhibits O(n2) complexity. This is not really a good result. The red curve
in the graph of Fig. 2.4 shows the actual results of how much time it takes to append
200,000 elements to a PyList. The line looks somewhat like the graph of f(n) = n2.
What this tells us is that if we were to draw a complex program with say 100,000
graphics commands in it, to add one more command to the sequence it would take
around 27 s. This is unacceptable! We may never draw anything that complex, but a
computer should be able to add one more graphic command quicker than that!

In terms of big-O notation we say that the append method is O(n2). When n gets
large, programs or functions with O(n2) complexity are not very good. You typically
want to stay away from writing code that has this kind of computational complexity
associated with it unless you are absolutely sure it will never be called on large data
sizes.

One real-world example of this occurred a few years ago. A tester was testing
some code and placed a CD in a CD drive. On this computer all the directories and
file names on the CD were read into memory and sorted alphabetically. The sorting
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Fig. 2.4 The Complexity of Appending to a PyList

algorithm that was used in that case had O(n2) complexity. This was OK because
most CDs put in this computer had a relatively small number of directories and files
on them. However, along came one CD with literally hundreds of thousands of files
on it. The computer did nothing but sort those file names alphabetically for around
12 h.When this was discovered, the programmer rewrote the sorting code to be more
efficient and reduced the sorting time to around 15 s. That’s a BIG difference! It also
illustrates just how important this idea of computational complexity is.

If we take another look at our PyList append method we might be able to make
it more efficient if we didn’t have to access each element of the first list when
concatenating the two lists. The use of the + operator is what causes Python to
access each element of that first list. When + is used a new list is created with space
for one more element. Then all the elements from the old list must be copied to the
new list and the new element is added at the end of this list.

Using the appendmethod on lists changes the code to use amutatormethod to alter
the list by adding just one more element. It turns out that adding one more element
to an already existing list is very efficient in Python. In fact, appending an item to
a list is a O(1) operation as we’ll see later in this chapter. This means to append n
items to a list we have gone from O(n2) to O(n). Later in this chapter we’ll learn
just how Python can insure that we get O(1) complexity for the append operation.
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The blue line in Fig. 2.4 shows how the PyList append method works when the +
operator is replaced by calling the list append method instead. At 100,000 elements
in the PyList we go from 27 s to add another element tomaybe a second, but probably
less than that. That’s a nice speedup in our program. After making this change, the
PyList append method is given in Listing2.4.

1 class PyList:
2 def __init__(self):
3 self.items = []
4
5 # The append method is used to add commands to the sequence.
6 def append(self,item):
7 self.items.append(item)
8
9 ...

Listing 2.4 Efficient Append

2.8 Commonly Occurring Computational Complexities

The algorithms we will study in this text will be of one of the complexities of O(1),
O(log n), O(n log n), O(n2), or O(cn). A graph of the shapes of these functions
appears in Fig. 2.5. Most algorithms have one of these complexities corresponding
to some factor of n. Constant values added or multiplied to the terms in a formula for
measuring the time needed to complete a computation do not affect the overall com-
plexity of that operation. Computational complexity is only affected by the highest
power term of the equation. The complexities graphed in Fig. 2.5 are of some power
n or the log of n, except for the really awful exponential complexity of O(cn), where
c is some constant value.

As you are reading the text and encounter algorithms with differing complexities,
they will be one of the complexities shown in Fig. 2.5. As always, the variable n
represents the size of the data provided as input to the algorithm. The time taken
to process that data is the vertical axis in the graph. While we don’t care about the
exact numbers in this graph, we do care about the overall shape of these functions.
The flatter the line, the lower the slope, the better the algorithm performs. Clearly an
algorithm that has exponential complexity (i.e. O(cn)) or n-squared complexity (i.e.
O(n2)) complexity will not perform very well except for very small values of n. If
you know your algorithm will never be called for large values of n then an inefficient
algorithm might be acceptable, but you would have to be really sure that you knew
that your data size would always be small. Typically we want to design algorithms
that are as efficient as possible.

In subsequent chapters you will encounter sorting algorithms that are O(n2) and
then you’ll learn that we can do better and achieve O(n log n) complexity. You’ll
see search algorithms that are O(n) and then learn how to achieve O(log n) com-
plexity. You’ll also learn a technique called hashing that will search in O(1) time.
The techniques you learn will help you deal with large amounts of data as efficiently
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Fig. 2.5 Common Big-O Complexities

as possible. As each of these techniques are explored, you’ll also have the opportu-
nity to write some fun programs and you’ll learn a good deal about object-oriented
programming.

2.9 More Asymptotic Notation

Earlier in this chapter we developed big-O notation for describing an upper bound on
the complexity of an algorithm. Therewe beganwith an intuitive understanding of the
idea of efficiency saying that a function exhibits a complexity if it is bounded above
by a function of n where n represents the size of the data given to the algorithm. In
this section we further develop these concepts to bound the efficiency of an algorithm
from both above and below.

We begin with an in-depth discussion of efficiency and the measurement of it in
Computer Science. When concerning ourselves with algorithm efficiency there are
two issues that must be considered.
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• The amount of time an algorithm takes to run
• and, related to that, the amount of space an algorithm uses while running.

Typically, computer scientists will talk about a space/time tradeoff in algorithms.
Sometimes we can achieve a faster running time by using more memory. But, if we
use too much memory we can slow down the computer and other running programs.
The space that is referred to is the amount of RAM needed to solve a problem. The
time we are concerned with is a measure of how the number of operations grow as
the size of the data grows.

Consider a function T(n) that is a description of the running time of an algorithm,
wheren is the size of the data given to the algorithm.As computer scientistswewant to
study the asymptotic behavior of this function. In other words, we want to study how
T(n) increases as n → ∞. The value of n is a Natural number representing possible
sizes of input data. The natural numbers are the set of non-negative integers. The
definition in Sect. 2.9.1 is a re-statement of the big-O notation definition presented
earlier in this chapter.

2.9.1 Big-O Asymptotic Upper Bound

O(g(n)) = { f (n) | ∃d > 0 and n0 > 0 � 0 ≤ f (n) ≤ dg(n) ∀n ≥ n0}
We write that

f (n) is= O(g(n)) ⇔ f ∈ O((g(n)))

and we say that f is big-O g of n. The definition of big-O says that we can find an
upper bound for the time it will take for an algorithm to run. Consider the plot of
time versus data size given in Fig. 2.3. Data size, or n is the x axis, while time is the
y axis.

Imagine that the green line represents the observed behavior of some algorithm.
The blue line clearly is an upper bound to the green line after about n = 4. This is
what the definition of big-O means. For a while, the upper bounding function may
not be an upper bound, but eventually it becomes an upper bound and stays that way
all the way to the limit as n approaches infinity.

But, does the blue line represent a tight bound on the complexity of the algorithm
whose running time is depicted by the green line? We’d like to know that when
we describe the complexity of an algorithm it is truly representational of the actual
running time. Saying that the algorithm runs inO(n2) is accurate even if the algorithm
runs in time proportional to n because big-O notation only describes an upper bound.
If we truly want to say what the algorithm’s running time is proportional to, then we
need a little more power. This leads us to our next definition in Sect. 2.9.2.
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2.9.2 Asymptotic Lower Bound

�(g(n)) = { f (n) | ∃c > 0 and n0 > 0 � 0 ≤ cg(n) ≤ f (n) ∀n ≥ n0}
Omega notation serves as a way to describe a lower bound of a function. In this

case the lower bound definition says for a while it might be greater, but eventually
there is some n0 where T(n) dominates g(n) for all bigger values of n. In that case, we
can write that the algorithm is �(g(n)). Considering our graph once again, we see
that the purple line is dominated by the observed behavior sometime after n = 75. As
with the upper bound, for a while the lower bound may be greater than the observed
behavior, but after a while, the lower bound stays below the observed behavior for
all bigger values of n.

With both a lower bound and upper bound definition, we now have the notation
to define an asymptotically tight bound. This is called Theta notation.

2.9.3 Theta Asymptotic Tight Bound

�(g(n)) = { f (n) | ∃ c > 0, d > 0 and n0 > 0 � 0 ≤ cg(n) ≤ f (n) ≤ dg(n) ∀n ≥ n0}

If we can find such a function g, then we can declare that�(g(n)) is an asymptoti-
cally tight bound for T(n), the observed behavior of an algorithm. In Fig. 2.6 the upper
bound blue line is g(n) = n2 and the lower bound purple line is a plot of g(n)/110. If
we let c = 1 and d = 1/110, we have the asymptotically tight bound of T(n) at �(n2).
Now, instead of saying that n-squared is an upper bound on the algorithm’s behavior,
we can proclaim that the algorithm truly runs in time proportional to n-squared. The
behavior is bounded above and below by functions of n-squared proving the claim
that the algorithm is an n-squared algorithm.

2.10 Amortized Complexity

Sometimes it is not possible to find a tight upper bound on an algorithm. For instance,
most operations may be bounded by some function c*g(n) but every once in a while
theremay be an operation that takes longer. In these cases it may be helpful to employ
something called Amortized Complexity. Amortization is a term used by accountants
when spreading the cost of some business transaction over a number of years rather
than applying the whole expense to the books in one fiscal year. This same idea is
employed in Computer Science when the cost of an operation is averaged. The key
idea behind all amortization methods is to get as tight an upper bound as we can
for the worst case running time of any sequence of n operations on a data structure
(which usually starts out empty). By dividing by n we get the average or amortized
running time of each operation in the sequence.
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Fig. 2.6 A Lower and Upper Bound

Consider the PyList append operation discussed earlier in this chapter. The latest
version of the PyList append method simply calls the Python append operation on
lists. Python is implemented in C. It turns out that while Python supports an append
operation for lists, lists are implemented as arrays in C and it is not possible to add
to an array in C. An array can be allocated with a fixed size, but cannot have its size
increased once created.

Pretend for a moment that Python lists, like C arrays, did not support the append
method on lists and that the only way to create a list was to write something like
[None]*n where n was a fixed value. Writing [None]*n creates a fixed size list of
n elements each referencing the value None. This is the way C and C++ arrays are
allocated. In our example, since we are pretending that Python does not support
append we must implement our PyList append method differently. We can’t use the
append method and earlier in this chapter we saw that that adding on item at a time
with the + operator was a bad idea. We’ll do something a little different. Our PyList
append operation, when it runs out of space in the fixed size list, will double the size



58 2 Computational Complexity

of the list copying all items from the old list to the new list as shown in the code in
Listing2.5.

1 class PyList:
2 # The size below is an initial number of locations for the list object. The
3 # numItems instance variable keeps track of how many elements are currently stored
4 # in the list since self.items may have empty locations at the end.
5 def __init__(self,size=1):
6 self.items = [None] * size
7 self.numItems = 0
8
9 def append(self,item):

10 if self.numItems == len(self.items):
11 # We must make the list bigger by allocating a new list and copying
12 # all the elements over to the new list.
13 newlst = [None] * self.numItems * 2
14 for k in range(len(self.items)):
15 newlst[k] = self.items[k]
16
17 self.items = newlst
18
19 self.items[self.numItems] = item
20 self.numItems += 1
21
22 def main():
23 p = PyList()
24
25 for k in range(100):
26 p.append(k)
27
28 print(p.items)
29 print(p.numItems)
30 print(len(p.items))
31
32 if __name__ == "__main__":
33 main()

Listing 2.5 A PyList Class

The claim is that, using this new PyList append method, a sequence of n append
operations on a PyList object, starting with an empty list, takes O(n) time meaning
that individual operations must not take longer than O(1) time. How can this be true?
Whenever the list runs out of space a new list is allocated and all the old elements
are copied to the new list. Clearly, copying n elements from one list to another takes
longer than O(1) time. Understanding how append could exhibit O(1) complexity
relies on computing the amortized complexity of the append operation. Technically,
when the list size is doubled the complexity of append is O(n). But how often does
that happen? The answer is not that often.

2.10.1 Proof of Append Complexity

The proof that the append method has O(1) complexity uses what is called the
accounting method to find the amortized complexity of append. The accounting
method stores up cyber dollars to pay for expensive operations later. The idea is that
there must be enough cyber dollars to pay for any operation that is more expensive
than the desired complexity.
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Consider a sequence of n append operations on an initially empty list. Appending
the first element to the list is done in O(1) time since there is space for the first item
added to the list because one slot was initially allocated in the list. Storing a value
in an already allocated slot takes O(1) time. However, according to the accounting
method, we’ll claim that the cost of doing the append operation requires an additional
two cyber dollars. This is still O(1) complexity. Each time we run out of space we’ll
double the number of slots in the fixed size list. Allocating a fixed size list is a
O(1) operation regardless of the list size. The extra work comes when copying the
elements from the old list to the new list.

The first time we need to double the size is when the second append is called.
There are two cyber dollars stored up at this point in time. One of them is needed
when copying the one element stored in the old list to the new fixed size list capable
of holding two elements. Transition one in Fig. 2.7 shows the two stored cyber dollars
and the result after copying to the new list when moving from step A to step B.

When append is called on version B of the list the result is version C. At this point,
three cyber dollars are stored to be used when doubling the list size to 4 locations.
The first two are filled with the old contents of the list. Two of the three stored cyber
dollars are used while copying these values to the new list. When the list of size four
fills, two additional append operations have occurred, storing five cyber dollars. Four
of these cyber dollars are used in the copy from step E to step F. Again, when the list
of size eight fills in step G there are 9 stored cyber dollars to be used in doubling the
list size and copying the elements over.

But, what if we didn’t double the size of the list each time. If we increased the
list size by one half its previous size each time, we could still make this argument
work if we stored four cyber dollars for each append operation. In fact, as long as
the size of the list grows proportionally to its current size each time it is expanded
this argument still works to prove that appending to a list is a O(1) operation when
lists must be allocated with a fixed size.

As mentioned earlier, the Python list object is implemented in C. While Python
provides an append operation, theC language can only allocate fixed size lists, called
arrays in C. And yet, Python list objects can append objects in O(1) time as can be
observed by experimentation or by analyzing the C code that implements Python
list objects. The Python list append implementation achieves this by increasing the
list size as described in this section when the fixed size array runs out of space to
achieve an amortized complexity of O(1).
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Fig. 2.7 Append Cyber Dollars
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2.11 Chapter Summary

Chapter two covered some important topics related to the efficiency of algorithms.
Efficiency is an important topic because even the fastest computers will not be able
to solve problems in a reasonable amount of time if the programs that are written for
them are inefficient. In fact, some problems can’t be solved in a reasonable amount
of time no matter how the program is written. Nevertheless, it is important that we
understand these issues of efficiency. Finding the complexity of a piece of code is
an important skill that you will get better at the more you practice. Here are some of
the things you should have learned in this chapter. You should:

• know the complexity of storing or retrieving a value from a list or the memory of
the computer.

• know how memory is like a post office.
• know how memory is NOT like a post office.
• know how to use the datetime module to get information about the time it takes to
complete an operation in a program.

• know how to write an XML file that can be used by the plotting program to plot
information about the performance of an algorithm or piece of code.

• understand the definition of big-O notation and how it establishes an upper bound
on the performance of a piece of code.

• understand why the list + operation is not as efficient as the append operation.
• understand the difference between O(n), O(n2), and other computational com-
plexities and why those differences are important to us as computer programmers.

• Understand Theta notation and what an asymptotically tight bound says about an
algorithm.

• Understand Amortized complexity and how to apply it in some simple situations.

2.12 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. How is a list like a bunch of post office boxes?
2. How is accessing an element of a list NOT like retrieving the contents of a post

office box?
3. How can you compute the amount of time it takes to complete an operation in a

computer using Python?
4. In terms of computational complexity, which is better, an algorithm that is O(n2)

or an algorithm that is O(2n)?
5. Describe, in English, what it means for an algorithm to be O(n2).
6. When doing a proof by induction, what two parts are there to the proof?
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7. If you had an algorithm with a loop that executed n steps the first time through,
then n–2 the second time, n–4 the next time, and kept repeating until the last time
through the loop it executed 2 steps, what would be the complexity measure of
this loop? Justify your answer with what you learned in this chapter.

8. Assume you had a data set of size n and two algorithms that processed that data
set in the same way. Algorithm A took 10 steps to process each item in the data
set. Algorithm B processed each item in 100 steps. What would the complexity
be of these two algorithms?

9. Explain why the append operation on a list is more efficient than the + operator.
10. Describe an algorithm for finding a particular value in a list. Then give the

computational complexity of this algorithm. You may make any assumptions
you want, but you should state your assumptions along with your algorithm.

2.13 Programming Problems

1. Devise an experiment to discover the complexity of comparing strings in Python.
Does the size of the string affect the efficiency of the string comparison and if so,
what is the complexity of the comparison? In this experiment you might want to
consider a best case, worst case, and average case complexity. Write a program
that produces an XML file with your results in the format specified in this chapter.
Then use the PlotData.py program to visualize those results.

2. Conduct an experiment to prove that the product of two numbers does not depend
on the size of the two numbers being multiplied. Write a program that plots the
results of multiplying numbers of various sizes together. HINT: To get a good
reading you may want to do more than one of these multiplications and time
them as a group since a multiplication happens pretty quickly in a computer.
Verify that it truly is a O(1) operation. Do you see any anomalies? It might
be explained by Python’s support of large integers. What is the cutoff point for
handling multiplications in constant time? Why? Write a program that produces
an XML file with your results in the format given in this chapter. Then visualize
your results with the PlotData.py program provided in this chapter.

3. Write a program to gather experimental data about comparing integers. Compare
integers of different sizes and plot the amount of time it takes to do those com-
parisons. Plot your results by writing an XML file in the Ploy.py format. Is the
comparison operation always O(1)? If not, can you theorize why? HINT: You
may want to read about Python’s support for large integers.

4. Write a short function that searches for a particular value in a list and returns the
position of that value in the list (i.e. its index). Then write a program that times
how long it takes to search for an item in lists of different sizes. The size of the
list is your n. Gather results from this experiment and write them to an XML file
in the PlotData.py format. What is the complexity of this algorithm? Answer this
question in a comment in your program and verify that the experimental results
match your prediction. Then, compare this with the indexmethod on a list. Which
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is more efficient in terms of computational complexity? HINT: You need to be
careful to consider the average case for this problem, not just a trivial case.

5. Write a short function that given a list, adds together all the values in the list and
returns the sum. Write your program so it does this operation with varying sizes
of lists. Record the time it takes to find the sum for various list sizes. Record this
information in an XML file in the PlotData.py format. What complexity is this
algorithm? Answer this in a comment at the top of your program and verify it
with your experimental data. Compare this data with the built-in sum function in
Python that does the same thing.Which ismore efficient in terms of computational
complexity? HINT: You need to be careful to consider the average case for this
problem, not just a trivial case.

6. Assume that you have a datatype called the Clearable type. This data type has a
fixed size list inside it when it is created. SoClearable(10)would create a clearable
list of size 10. Objects of the Clearable type should support an append operation
and a lookup operation. The lookup operation is called __getitem__(item). If cl is
aClearable list, thenwriting cl[item]will return the item if it is in the list and return
None otherwise.Writing cl[item] results in amethod call of cl.__getitem__(item).
Unlike the append operation described in Listing2.5, when the Clearable object
fills up the list is automatically cleared or emptied on the next call to append
by setting all elements of the list back to None. The Clearable object should
always keep track of the number of values currently stored in the object. Form a
theory about the complexity of the append operation on this datatype. Then write
a test program to test the Clearable object on different initial sizes and numbers
of append operations. Create one sequence for each different initial size of the
Clearable datatype and write your results in the plot format described in this
chapter. Then comment on how your theory holds up or does not hold up given
your experimentation results.



3Recursion

Don’t think too hard! That’s one of the central themes of this chapter. It’s not often
that you tell computer programmers not to think too hard, but this is one time when
it is appropriate. You need to read this chapter if you have not written recursive
functions before. Most computer science students start by learning to program in a
style called imperative programming. This simply means that you are likely used
to thinking about creating variables, storing values, and updating those values as a
program proceeds. In this chapter you are going to begin learning a different style
of programming called functional programming. When you program in the func-
tional style, you think much more about the definition of what you are programming
than how you are going to program it. Some say that writing recursive functions
is a declarative approach rather than an imperative approach. You’ll start to learn
what that means for you very soon. When you start to get good at writing recursive
functions you’ll be surprised how easy it can be!

Python programs are executed by an interpreter. An interpreter is a program that
reads another program as its input and does what it says. The Python interpreter,
usually called python, was written in a language called C. That C program reads a
Python program and does what the Python program says to do in its statements. An
interpreter interprets a program by running or executing what is written within it. The
interpreter interacts with the operating system of the computer to use the network,
the keyboard, the mouse, the monitor, the hard drive, and any other I/O device that
it needs to complete the work that is described in the program it is interpreting. The
picture in Fig. 3.1 shows you how all these pieces fit together.

In this chapter we’ll introduce you to scope, the run-time stack, and the heap
so you understand how the interpreter calls functions and where local variables are
stored. Then we’ll provide several examples of recursive functions so you can begin
to see how they are written. There will be a number of recursive functions for you
to practice writing and we’ll apply recursion to drawing pictures as well.
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Fig. 3.1 The Python Interpreter

One thing you will not do in the homework for this chapter is write code that uses
a for loop or a while loop. If you find yourself trying to write code that uses either
kind of loop you are trying to write a function imperatively rather than functionally.
Recursion is the way we will repeat code in this chapter. A recursive function has no
need for a for or while loop.

3.1 Chapter Goals

By the end of this chapter, you should be able to answer these questions.

• How does Python determine the meaning of an identifier in a program?
• What happens to the run-time stack when a function is called?
• What happens to the run-time stack when a function returns from a call?
• What are the two important parts to a recursive function and which part comes
first?

• Exactly what happens when a return statement is executed?
• Why should we write recursive functions?
• What are the computational complexities of various recursive functions?

You should also be able to write some simple recursive functions yourself without
thinking too hard about how they work. In addition, you should be able to use a
debugger to examine the contents of the run-time stack for a recursive function.
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3.2 Scope

To form a complete mental picture of how your programs work we should further
explore just how the Python interpreter executes a Python program. In the first chapter
we explored how references are the things which we name and that references point
to objects, which are unnamed. However, we sometimes call an object by the name
of the reference that is pointing at it. For instance, if we write:

x = 6

it means that x is a reference that points to an object with a 6 inside it. But sometimes
we are careless and just say that x equals 6. It is important that you understand that
even when we say things like x equals 6 what we really mean is that x is a reference
that points to an object that contains 6. You can seewhywe are careless sometimes. It
takes toomanywords to saywhatwe reallymean and as long as everyone understands
that references have names and objects are pointed to by references, then we can save
the words. The rest of this text will make this assumption at times. When it is really
important, we’ll make sure we distinguish between references and objects.

Part of our mental picture must include Scope in a Python program. Scope refers
to a part of a program where a collection of identifiers are visible. Let’s look at a
simple example program.

3.2.1 Local Scope

Consider the code in Fig. 3.2. In this program there are several scopes. Every colored
region of the figure delimits one of those scopes. While executing line 23 of the
program in Fig. 3.2 the light green region is called the Local scope. The local scope
is the scope of the function that the computer is currently executing. When your
program is executing a line of code, the scope that surrounds that line of code is called
the local scope. When you reference an indentifier in a statement in your program,
Python first examines the local scope to see if the identifier is defined there, within
the local scope. An identifier, id, is defined under one of three conditions.

• A statement like id = ... appears somewhere within the current scope. In this case
id would be a reference to an object in the local scope.

• id appears as a parameter name of the function in the current scope. In this case
id would be a reference to an object that was passed to the current function as an
argument.

• id appears as a name of a function or class through the use of a function def or
class definition within the current scope.

While Python is executing line 23 in Fig. 3.2, the reference val is defined within
its local scope. If Python finds id in the local scope, it looks up the corresponding
value and retrieves it. This is what happens when val is encountered on line 23. The
object that is referenced by val is retrieved and returned.
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Fig. 3.2 Scopes Within a Simple Program

3.2.2 Enclosing Scope

If Python does not find the reference id within the local scope, it will examine the
Enclosing scope to see if it can find id there. In the program in Fig. 3.2, while Python
is executing the statement on line 23, the enclosing scope is the purple region of the
program. The identifiers defined in this enclosing scope include historyOfPrompts,
historyOfOutput, rString, r, val, getInput, and showInput. Notice that function names
are included as identifiers. Again, Python looks for the identifier using the same
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conditions as defined in Sect. 3.2.1 for the local scope. The identifier must be defined
using id = ..., it must be a parameter to the enclosing function, or it must be an
identifier for a class or function definition in the enclosing scope’s function. On line
23, when Python encounters the identifier historyOfOutput it finds that identifier
defined in the enclosing scope and retrieves it for use in the call to the append
method.

Which scope is local depends on where your program is currently executing.
When executing line 23, the light green region is the local scope. When executing
line 18 the brown region is the local scope. When executing line 14 or line 26 the
purple region is the local scope. When executing line 6 the darker green region is the
local scope. Finally, when executing line 1 or 3 the blue region is the local scope.
The local scope is determined by where your program is currently executing.

Scopes are nested. This means that each scope is nested inside another scope. The
final ensclosing scope of a module is the module itself. Each module has its own
scope. The blue region of Fig. 3.2 corresponds to the module scope. Identifiers that
are defined outside of any other functions, but inside the module, are at the module
level. The reference PI in Fig. 3.2 is defined at the module level. The functions area
and main are also defined at the module level scope.

While executing line 23 of the program in Fig. 3.2 the identifier val is defined in
the local scope. But, val is also defined in the enclosing scope. This is acceptable
and often happens in Python programs. Each scope has its own copy of identifiers.
The choice of which val is visible is made by always selecting the innermost scope
that defines the identifier. While executing line 23 of the program in Fig. 3.2 the val
in the local scope is visible and the val in the enclosing scope is hidden. This is why
it is important that we choose our variable names and identifiers carefully in our
programs. If we use an identifier that is already defined in an outer scope, we will no
longer be able to access it from an inner scope where the same identifier is defined.

It is relatively easy to determine all the nested scopes within a module. Every
function definition (including the definition of methods) within a module defines a
different scope. The scope never includes the function name itself, but includes its
parameters and the body of the function. You can follow this pattern to mentally
draw boxes around any scope so you know where it begins and ends in your code.

3.2.3 Global Scope

Using Python it is possible to define variables at the Global level. Generally this is
a bad programming practice and we will not do this in this text. If interested you
can read more about global variables in Python online. But, using too many global
variables will generally lead to name conflicts and will likely lead to unwanted side
effects. Poor use of global variables contributes to spaghetti code which is named
for the big mess you would have trying to untangle it to figure out what it does.
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3.2.4 Built-In Scope

The final scope in Python is the Built-In scope. If an identifier is not found within any
of the nested scopes within a module and it is not defined in the global scope, then
Python will examine the built-in identifiers to see if it is defined there. For instance,
consider the identifier int. If you were to write the following:

x = int("6")

Python would first look in the local scope to see if int were defined as a function
or variable within that local scope. If int is not found within the local scope, Python
would look in all the enclosing scopes starting with the next inner-most local scope
andworking outwards from there. If not found in any of the enclosing scopes, Python
would then look in the global scope for the int identifier. If not found there, then
Python would consult the Built-In scope, where it would find the int class or type.

With this explanation, it should now be clear why you should not use identifiers
that already exist in the built-in scope. If you use int as an identifier you will not be
able to use the int from the built-in scope because Python will find int in a local or
enclosing scope first.

3.2.5 LEGB

Mark Lutz, in his book Learning Python [8], described the rules of scope in Python
programs using the LEGB acronym. This acronym, standing for Local, Enclosing,
Global, and Built-In can help you memorize the rules of scope in Python. The order
of the letters in the acronym is important. When the Python interpreter encounters an
indentifier in a program, it searches the local scope first, followed by all the enclosing
scopes from the inside outward, followed by the global scope, and finally the built-in
scope.

3.3 The Run-Time Stack and the Heap

As we learned in the last section, the parameters and body of each function define
a scope within a Python program. The parameters and variables defined within the
local scope of a function must be stored someplace within the RAM of a computer.
Python splits the RAM up into two parts called the Run-time Stack and the Heap.

The run-time stack is like a stack of trays in a cafeteria. Most cafeterias have
a device that holds these trays. When the stack of trays gets short enough a spring
below the trays pops the trays up so they are at a nice height. As more trays are added
to the stack, the spring in this device compresses and the stack pushes down. A Stack
in Computer Science is similar in many ways to this kind of device. The run-time
stack is a stack of Activation Records. The Python interpreter pushes an activation
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record onto the run-time stack when a function is called. When a function returns the
Python interpreter pops the corresponding activation record off the run-time stack.

Python stores the identifiers defined in the local scope in an activation record.
When a function is called, a new scope becomes the local scope. At the same time a
new activation record is pushed onto the run-time stack. This new activation record
holds all the variables that are defined within the new local scope. When a function
returns its corresponding activation record is popped from the run-time stack.

The Heap is the area of RAM where all objects are stored. When an object is
created it resides in the heap. The run-time stack never contains objects. References
to objects are stored within the run-time stack and those references point to objects
in the heap.

Consider the program in Fig. 3.2. When the Python interpreter is executing lines
23 and 24 of the program, the run-time stack looks as it does in Fig. 3.3. There are
three activation records on the run-time stack. The first activation record pushed onto
the run-time stack was for the module. When the module first began executing, the
Python interpreter went through the module from top to bottom and put any variable
definitions in the module scope into the activation record for the module. In this
program that consisted of the reference PI to the value 3.14159.

Then, at the end of the module the if statement called the main function. This
caused the Python interpreter to push the activation record for the main function.
The variables defined within the main function include historyOfPrompts, history-
OfOutput, rString, r, and val. Each of these appear within the activation record for
the main function.

As the main function began executing it called the getInput function. When that
call occurred there was an activation record pushed for the function call. That acti-
vation record contained the prompt and x variables. This activation record does not
appear in the figure because by the time we execute line 23 and 24 of the program
the Python interpreter has already returned from the getInput function. When the
interpreter returned from the function call the corresponding activation record was
popped from the run-time stack.

Finally, the program calls the showOutput function on line 26 and execution of the
function begins. An activation record for the showOutpout function call was pushed
onto the run-time stack when showOutput was called. The references local to that
scope, which includes just the val variable, were stored the activation record for this
function call.

You can run this example program using Wing or some other IDE. The code for
it appears in Sect. 22.2. When you use the Wing IDE to run this program you can
stop the program at any point and examine the run-time stack. For instance, Fig. 3.4
shows Wing in the midst of running this program. A breakpoint has been set on line
24 to stop the program. The tab at the bottom of the Wing IDE window shows the
Stack Data. This is the run-time stack.

Right below the Stack Data tab there is a combination box that currently displays
showOutput(): Scope.py, line 24. This combo box lets you pick from the activation
record that is currently being displayed. If you pick a different activation record, its
contents will be displayed directly below it in the Wing IDE.
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Fig. 3.3 The Run-time Stack and the Heap
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Fig. 3.4 The Wing IDE showing the Run-time Stack

One important note should be made here. Figure3.4 shows historyOfOutput as a
local variable in the showOutput function. This is not really the case, because the
historyOfOutput reference is not defined within the local scope of the showOutput
function. However, due to the way Python is implemented the reference for this vari-
able shows up in the activation record for showOutput because it is being referenced
from this scope. But, the reference to historyOfOutput in the activation record for
showOutput and the reference called historyOfOutput in the main activation record
point at the same object so no real harm is done. The important thing to note is that
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the Wing IDE is correct in showing the historyOfOutput variable as a local variable
in this activation record since this is a reflection of Python’s implementation and not
due to a bug in Wing IDE 101.

3.4 Writing a Recursive Function

A recursive function is simply a function that calls itself. It’s really very simple to
write a recursive function, but of course you want to write recursive functions that
actually do something interesting. In addition, if a function just kept calling itself it
would never finish. Actually, it would finish when run on a computer because we
just learned that every time you call a function, an activation record is pushed on the
run-time stack. If a recursive function continues to call itself over and over it will
eventually fill up the run-time stack and you will get a stack overflow error when
running such a program.

To prevent a recursive function from running forever, or overflowing the run-
time stack, every recursive function must have a base case, just like an inductive
proof must have a base case. There are many similarities between inductive proofs
and recursive functions. The base case in a recursive function must be written first,
before the function is called recursively.

Now, wrapping your head around just how a recursive function works is a little
difficult at first. Actually, understanding how a recursive function works isn’t all that
important. When writing recursive functions we want to think more about what it
does than how it works. It doesn’t pay to think too hard about how recursive functions
work, but in fact even that will get much easier with some practice.

When writing a recursive function there are four rules that you adhere to. These
rules are not negotiable and will ensure that your recursive function will eventually
finish. If you memorize and learn to follow these rules you will be writing recursive
functions in no time. The rules are:

1. Decide on the name of your function and the arguments that must be passed to it
to complete its work as well as what value the function should return.

2. Write the base case for your recursive function first. The base case is an if state-
ment that handles a very simple case in the recursive function by returning a
value.

3. Finally, you must call the function recursively with an argument or arguments
that are smaller in some way than the parameters that were passed to the function
when the last call was made. The argument or arguments that get smaller are the
same argument or arguments you examined in your base case.

4. Look at a concrete example. Pick some values to try out with your recursive
function. Trust that the recursive call you made in the last step works. Take the
result from that recursive call and use it to form the result you want your function
to return. Use the concrete example to help you see how to form that result.
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We’ll do a very simple example to begin with. In the last chapter we proved the
following.

n∑

i=1

i = n(n + 1)

2

So, if we wanted to compute the sum of the first n integers, we could write a Python
program as shown in Listing3.1.

1 def sumFirstN(n):
2 return n * (n+1) // 2
3
4 def main():
5 x = int(input("Please enter a non-negative integer: "))
6 s = sumFirstN(x)
7 print("The sum of the first", x, "integers is", str(s)+".")
8
9 if __name__ == "__main__":
10 main()

Listing 3.1 Sum of Integers

In this case, this would be the best function we could write because the complexity
of the sumFirstN function is O(1). This means the time it takes to execute this
function is not dependent on the size of the data, n. However, to illustrate a recursive
function, let’s go back to the definition of summation. The definition for summation
has two parts. First, the base case of the definition.

0∑

i=1

i = 0

The recursive part of the definition is as follows. This is what we call a recursive
definition because it is defined in terms of itself. Notice that the recursive definition
is defined in terms of a smaller n, in this case n–1. The summation to n–1 is our
recursive call and it will work. If we want to compute the sum of the first 5 integers,
then the recursive call computes 1+2+3+4 to give us 10. Adding n will give use 15,
the result we want.

n∑

i=1

i =
(

n−1∑

i=1

i

)
+ n

The two parts of this recursive definition can be translated directly into a recursive
function in Python. The recursive definition is given in Listing3.2.

1 def recSumFirstN(n):
2 if n == 0:
3 return 0
4 else:
5 return recSumFirstN(n-1) + n
6
7 def main():
8 x = int(input("Please enter a non-negative integer: "))
9 s = recSumFirstN(x)
10 print("The sum of the first", x, "integers is", str(s)+".")
11
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12 if __name__ == "__main__":
13 main()

Listing 3.2 Recursive Sum of Integers

The recSumFirstN function in the code of Listing3.2 is recursive. It calls itself
with a smaller value and it has a base case that comes first, so it is well-formed.
There is one thing that we might point out in this recursive function. The else is not
necessary.When the Python interpreter encounters a return statement, the interpreter
returns immediately and does not execute the rest of the function. So, in Listing3.2,
if the function returns 0 in the then part of the if statement, the rest of the function is
not executed. If n is not zero, then we want to execute the code on the else statement.
This means we could rewrite this function as shown in Listing3.3.

1 def recSumFirstN(n):
2 if n == 0:
3 return 0
4
5 return recSumFirstN(n-1) + n

Listing 3.3 No Else Needed

The format of the code in Listing3.3 is a commonway towrite recursive functions.
Sometimes a recursive function has more than one base case. Each base case can be
handled by an if statement with a return in it. The recursive case does not need to be
in an else when all base cases result in a return. The recursive case comes last in the
recursive function definition.

3.5 Tracing the Execution of a Recursive Function

Early in this chapter youwere given themandate “Don’t think too hard”whenwriting
a recursive function. Understanding exactly how a recursive function works may be a
bit difficult when you are first learning about them. Itmay help to follow the execution
of a recursive function in an example. Consider the program in the previous section.
Let’s assume that the user entered the integer 4 at the keyboard. When this program
begins running it will have an activation record on the run-time stack for the module
and the main function.

When the program gets to line 10 in the code of Listing3.2, where the recSum-
FirstN function is first called, a new activation record will be pushed for the function
call, resulting in three activation records on the run-time stack. The Python inter-
preter then jumps to line 2 with n pointing at the number 4 as shown in the picture
of Fig. 3.5. Execution of the function proceeds. The value of n is not zero, so Python
executes line 5 where there is another function call to recSumFirstN. This causes the
Python interpreter to push another activation record on the run-time stack and the
interpreter jumps to line 2 again. This time the value of n is 3. But again, this is not
zero, so line 5 is executed and another activation record is pushed with a new value
of 2 for n. This repeats two more times for values of 1 and 0 for n.
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Fig. 3.5 The Run-time Stack of a Recursive Function Call
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The important thing to note in this program execution is that there is one copy of
the variable n for each recursive function call. An activation record holds the local
variables and parameters of all variables that are in the local scope of the function.
Each time the function is called a new activation record is pushed and a new copy
of the local variables is stored within the activation record. The picture in Fig. 3.5
depicts the run-time stack at its deepest point.

When execution of the function gets to the point when n equals 0, the Python
interpreter finds that n equals 0 on line 2 of the code. It is at this point that the
sumFirstN function returns its first value. It returns 0 to the previous function call
where n was 1. The return occurs on line 5 of the code. The activation record for
the function call when n was 0 is popped from the run-time stack. This is depicted
in Fig. 3.6 by the shading of the activation record in the figure. When the function
returns the space for the activation record is reclaimed for use later. The shaded
object containing 0 on the heap is also reclaimed by the garbage collector because
there are no references pointing at it anymore.

After the first return of the RecSumFirstN, the Python interpreter returns to line 5
in the previous function call. But, this statement contains a return statement as well.
So, the function returns again. Again, it returns to line 5, but this time with a value of
1. The function returns again, but with a value of 3 this time. Again, since it returned
to line 5, the function returns again with a value of 6. Finally, once again the function
returns, this time with a value of 10. But this time the recSumFirstN function returns
to line 10 of the main function where s is made to point to the value of 10. This is
depicted in Fig. 3.7.

The program terminates after printing the 10 to the screen and returning from
the main function after line 12 and from the module after line 15. The importance
of this example is to illustrate that each recursive call to recSumFirstN has its own
copy of the variable n because it is local to the scope of the recSumFirstN function.
Each time the function is called, the local variables and parameters are copied into
the corresponding activation record. When a function call returns, the corresponding
activation record is popped off the run-time stack. This is how a recursive function
is executed.

3.6 Recursion in Computer Graphics

Recursion can be applied to lots of different problems including sorting, searching,
drawing pictures, etc. The program given in Listing3.4 draws a spiral on the screen
as shown in Fig. 3.8.
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Fig. 3.6 The First Return from recSumFirstN
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Fig. 3.7 The Last Return from recSumFirstN
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1 import turtle
2
3 def drawSpiral(t, length, color, colorBase):
4 #color is a 24 bit value that is changing a bit
5 #each time for a nice color effect
6 if length == 0:
7 return
8
9 # add 2^10 to the old color modulo 2^24
10 # the modulo 2^24 prevents the color from
11 # getting too big.
12 newcolor = (int(color,16) + 2**10)%(2**24)
13
14 # find the color base integer value
15 base = int(colorBase,16)
16
17 # now if the new color is less than the base
18 # add the base modulo 2^24.
19 if newcolor < base:
20 newcolor = (newcolor + base)%(2**24)
21
22 # let newcolor be the hex string after conversion.
23 newcolor = hex(newcolor)
24
25 # add a pound sign and zeroes to the front so it
26 # is 6 characters long plus the pound sign for a
27 # proper color string.
28 newcolor = "#"+("0"*(6-len(newcolor)))+newcolor
29
30 t.color(newcolor)
31 t.forward(length)
32 t.left(90)
33
34 drawSpiral(t, length-1, newcolor, colorBase)
35
36 def main():
37 t = turtle.Turtle()
38 screen = t.getscreen()
39 t.speed(100)
40 t.penup()
41 t.goto(-100,-100)
42 t.pendown()
43
44 drawSpiral(t, 200, "#000000", "#ff00ff")
45
46 screen.exitonclick()
47
48 if __name__ == "__main__":
49 main()

Listing 3.4 Recursive Spiral

In this program the drawSpiral function is recursive. It has a base case that is
written first: when the length of the side is zero it exits. It calls itself on something
smaller: the new length passed to it is the old lengthminus one. The newcolor formula
is perhaps the most complex part of the code. There is some slicing going on there
to convert the color string from a hexadecimal string to an integer so 1024 can be
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Fig. 3.8 A Spiral Image

added, modulo 2 to the 24th. Then it must be converted back to a hexadecimal color
string with the “#ffffff” format. The program draws a spiral like the one pictured in
Fig. 3.8.

Notice that this recursive function does not return anything. Most recursive func-
tions do return a value. This one does not because the purpose of the function is to
draw a spiral. It has a side-effect instead of returning a value.

3.7 Recursion on Lists and Strings

Recursive functions can be written for many different purposes. Many problems
can be solved by solving a simpler problem and then applying that simpler solution
recursively. For instance, consider trying to write a function that returns the reverse
of a list. If we wrote this non-recursively, we might write it as follows.
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1 def revList(lst):
2 accumulator = []
3
4 for x in lst:
5 accumulator = [x] + accumulator
6
7 return accumulator
8
9 def main():
10 print(revList([1,2,3,4]))
11
12 if __name__ == "__main__":
13 main()

Listing 3.5 List Recursion

When run, this program prints [4, 3, 2, 1] to the screen. The code in Listing3.5
uses the accumulator pattern to solve the problem of reversing a list. This is a pattern
you have probably used before if you first learned to program imperatively. If we
think about the problem recursively, we would first consider how to reverse a very
simple list, say the empty list. The reverse of the empty list is just the empty list.

Once we have solved the problem for a very simple list, we can assume that if
we call a recursive reverse function on something smaller (i.e. a shorter list), it will
work. So, then to complete a recursive solution, we have only to piece our solution
together. A recursive solution to reversing a list is found in Listing3.6.

1 def revList(lst):
2 # Here is the base case
3 if lst == []:
4 return []
5
6 # The rest of this function is the recursive case.
7 # This works because we called it on something smaller.
8 # The lst[] is a slice of all but the first item in lst.
9 restrev = revList(lst[1:])
10 first = lst[:1]
11
12 # Now put the pieces together.
13 result = restrev + first
14
15 return result
16
17
18 def main():
19 print(revList([1,2,3,4]))
20
21 if __name__ == "__main__":
22 main()

Listing 3.6 Reversing a List

You can write recursive functions that work with strings too. Strings and lists are
both sequences. In the code of Listing3.6 we made sure we recursively called our
function on something smaller. The same is true when working with strings. A string
reverse function is given in Listing3.7.
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1 def revString(s):
2 if s == "":
3 return ""
4
5 restrev = revString(s[1:])
6 first = s[:1]
7
8 # Now put the pieces together.
9 result = restrev + first
10
11 return result
12
13
14 def main():
15 print(revString("hello"))
16
17 if __name__ == "__main__":
18 main()

Listing 3.7 Reversing a String

Notice the similarity of these two functions. The functions are nearly identical.
That’s because the recursive definition of reverse did not change. The only change is
that we must use the string concatenation operator instead of the list concatenation
operator and the empty string instead of the empty list.

1 def revList2(lst):
2
3 def revListHelper(index):
4 if index == -1:
5 return []
6
7 restrev = revListHelper(index-1)
8 first = [lst[index]]
9
10 # Now put the pieces together.
11 result = first + restrev
12
13 return result
14
15 # this is the one line of code for the
16 # revList2 function.
17 return revListHelper(len(lst)-1)
18
19
20 def main():
21 print(revList2([1,2,3,4]))
22
23 if __name__ == "__main__":
24 main()

Listing 3.8 Another Version of Reverse

The examples in Listings3.6 and 3.7 used slicing to make the list or string smaller
on each recursive call. It is possible to make a list or string smaller without actually
making it physically smaller. Using an index to keep track of your position within a
list can serve to make the list or string smaller. In that case it may be helpful to write
a function that calls a helper function to do the recursion. Consider the program in
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Listing3.8. This code uses a nested helper function called revListHelper to do the
actual recursion. The list itself does not get smaller in the helper function. Instead, the
index argument gets smaller, counting down to –1when the empty list is returned. The
revList2 function contains only one line of code to call the revListHelper function.

Because the revListHelper function is nested inside revList2 the helper function
is not visible to anything but the revList2 function since we don’t want other pro-
grammers to call the helper function except by calling the revList2 function first.

It is important to note that you don’t have to physicallymake a list or string smaller
to use it in a recursive function. As long as indexing is available to you, a recursive
function can make use of an index into a list or string and the index can get smaller
on each recursive call.

One other thing to note. In this example the index gets smaller by approaching
zero on each recursive call. There are other ways for the argument to the recursive
function to get smaller. For instance, this example could be rewritten so the index
grows toward the length of the list. In that case the distance between the index and
the length of the list is the value that would get smaller on each recursive call.

3.8 Using Type Reflection

Many of the similarities in the two functions of Listing3.7 and Listing3.6 are due to
operator overloading inPython. Pythonhas another very nice feature called reflection.
Reflection refers to the ability for code to be able to examine attributes about objects
that might be passed as parameters to a function. One interesting aspect of reflection
is the ability to see what the type of an object is. If wewrite type(obj) then Pythonwill
return an object which represents the type of obj. For instance, if obj is a reference to
a string, then Python will return the str type object. Further, if we write str() we get
a string which is the empty string. In other words, writing str() is the same thing as
writing “”. Likewise, writing list() is the same thing aswriting []. Using reflection, we
can write one recursive reverse function that will work for strings, lists, and any other
sequence that supports slicing and concatenation. A recursive version of reverse that
will reverse both strings and lists is provided in Listing3.9.

1 def reverse(seq):
2 SeqType = type(seq)
3 emptySeq = SeqType()
4
5 if seq == emptySeq:
6 return emptySeq
7
8 restrev = reverse(seq[1:])
9 first = seq[:1]
10
11 # Now put the pieces together.
12 result = restrev + first
13
14 return result
15



86 3 Recursion

16 def main():
17 print(reverse([1,2,3,4]))
18 print(reverse("hello"))
19
20 if __name__ == "__main__":
21 main()

Listing 3.9 Reflection Reverse

After writing the code in Listing3.9 we have a polymorphic reverse function that
will work to reverse any sequence. It is polymorphic due to reflection and operator
overloading. Pretty neat stuff!

3.9 Chapter Summary

In chapter three you were introduced to some concepts that are important to your
understanding of algorithms to be presented later in this text. Understanding how
the run-time stack and the heap work to make it possible to call functions in our
programs will make you a better programmer. Forming a mental model of how our
code works makes it possible to predict what our code will do. Writing recursive
functions is also a skill that is important to computer programmers. Here is what you
should have learned in this chapter. You should:

• be able to identify the various scopes within a program.
• be able to identifywhich scope a variable reference belongs to: the local, enclosing,
global, or built-in scope. Remember the LEGB rule.

• be able to trace the execution of a program by drawing a picture of the run-time
stack and the heap for a program as it executes.

• be able to write a simple recursive function by writing a base case and a recursive
case where the function is called with a smaller value.

• be able to trace the execution of a recursive function, showing the run-time stack
and heap as it executes.

• understand a little about reflection as it relates to examining types in Python code.

3.10 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. What is an interpreter?
2. What is the Python interpreter called?
3. When the Python interpreter sees an identifier, in which scope does it look for

the identifier first?
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4. What order are the various scopes inspected to see where or if a variable is
defined?

5. Pick a sample program from among the programs you have written, preferably
a short one, and identify three scopes within it by drawing a box around the
scopes.

6. When is an activation record pushed onto the run-time stack?
7. When is an activation record popped from the run-time stack?
8. What goes in the Heap in a computer?
9. What goes in an activation record on the run-time stack?

10. When writing a recursive function, what are the two cases for which you must
write code?

11. If a recursive function did not have a base case, what would happen when it was
called?

12. What must be true of the recursive call in a recursive function? In other words,
what must you ensure when making this recursive call?

13. What does the type function return in Python? If you call the type function in a
program, what aspect of Python are you using?

3.11 Programming Problems

1. Write a recursive function called intpow that given a number, x, and an integer, n,
will compute x^n. You must write this function recursively to get full credit. Be
sure to put it in a program with several test cases to test that your function works
correctly.

2. Write a recursive function to compute the factorial of an integer. The factorial of
0 is 1. The factorial of any integer, n, greater than zero is n times the factorial of
n–1. Write a program that tests your factorial function by asking the user to enter
an integer and printing the factorial of that integer. Be sure your program has a
main function. Comment your code with the base case and recursive case in your
recursive function.

3. Write a recursive function that computes the length of a string. You cannot use
the len function while computing the length of the string. You must rely on the
function you are writing. Put this function in a program that prompts the user to
enter a string and then prints the length of that string.

4. Write a recursive function that takes a string like “abcdefgh” and returns “bad-
cfehg”. Call this function swap since it swaps every two elements of the original
string. Put this function in a program and call it with at least a few test cases.

5. Write a recursive function that draws a tree. Call your function drawBranch. Pass
it a turtle to draw with, an angle, and the number of littler branches to draw like
the tree that appears in Fig. 3.9. Each time you recursively call this function you
can decrease the number of branches and the angle. Each littler branch is drawn at
some angle from the current branch so your function can change the angle of the
turtle by turning left or right.When your number of branches gets to zero, you can
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Fig. 3.9 A tree

draw a leaf as a little green square. If you make the width of the turtle line thicker
for bigger branches and smaller for littler branches, you’ll get a nice tree. You
might write one more function called drawTree that will set up everything (except
the turtle) to draw a nice tree. Put this function in a program that draws at least
one tree. HINT: In your drawBranch function, after you have drawn the branch
(and all sub-branches) you will want to return the turtle to the original position
and direction you started at. This is necessary so after calling drawBranch you
will know where the turtle is located. If you don’t return it to its original position,
the turtle will end up stranded out at a leaf somewhere.

6. Write a recursive function that draws a circular spiral. To do this, you’ll need to
use polar coordinates. Polar coordinates are a way of specifying any point in the
plane with an angle and a radius. Zero degrees goes to the right and the angles go
counter-clockwise in a circle. With an angle and a radius, any point in the plane
can be described. To convert an angle, a, and radius, r, from polar coordinates to
Cartesian coordinates you would use sine and cosine. You must import the math
module. Then x = r * math.cos(a) and y = r * math.sin(a). The drawSpiral function
will be given a radius for the spiral. To get a circular spiral, every recursive call
to the drawSpiral function must decrease the radius just a bit and increase the
angle. You convert the angle and the radius to its (x, y) coordinate equivalent and
then draw a line to that location. You must also pass an (x, y) coordinate to the
drawSpiral function for the center point of your spiral. Then, any coordinates
you compute will be added to the center (x, y). You can follow the square spiral
example in the text. Put this code in a program that draws a spiral to the screen.

7. Write a program to gather performance data for the reverse function found in this
chapter. Write an XML file in the plot format found in this text to visualize that
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performance data. Because this function is recursive, keep your data size small
and just gather data for string sizes of 1 through 10. This will help you visualize
your result. What is the complexity of this reverse function? Put a comment at the
top of your program stating the complexity of reverse in big-O notation. Justify
your answer by analyzing the code found in the reverse function.

8. Rewrite the program in Listing3.8 to use an index that approaches the length
of the list instead of an index that approaches zero. Then write a main function
that thoroughly tests your new reverse function on lists. You must test it on both
simple and more complex examples of lists to test it thoroughly.
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Computers are really good at dealing with large amounts of information. They can
repeat a task over and over again without getting bored. When they repeat a task
they are generally doing the same thing to similar data or objects. It is natural to
want to organize those objects into some kind of structure so that our program can
easily switch from one object to the next. How objects are added to a sequence or
collection and how we move from one item to the next has some impact on how we
might want to organize the collection of data in a program.

In this chapter we look at different ways of organizing data into a sequence.
We’ll also examine how to use Python to make working with sequences convenient.
Operator overloading in Python lets us build sequences that we can manipulate with
intuitive operations. Finally, we’ll also examine how the organization of a sequence
affects the computation complexity of operations on it.

An Abstract Data Type is a term that is used to describe a way of organizing data.
Lists are one way of organizing a sequence of data, but in this chapter we’ll discover
other ways of organizing sequences as well. Ascending and descending sequences,
linked lists, stacks, and queues are all abstract data types that we’ll explore in this
chapter.

4.1 Chapter Goals

In this chapter youwill read about differentways of organizing datawithin a program.
By the end of the chapter you should be able to answer these questions.

• When presented with an algorithm that requires you to maintain a sequence of
data, which organizational scheme fits best?

• What are the trade-offs of selecting one type of sequence as opposed to another?
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• What are some interesting algorithms that use lists, linked lists, stacks, or queues?
• What sorting algorithm ismost commonly usedwhen sorting a sequence of ordered
values?

• What search algorithms are possible in a sequence?
• What is the complexity of many of the common operations on sequences and how
is that complexity affected by the underlying organization of the data.

You will also be presented with a few interesting programming problems that will
help you learn to select and use appropriate data structures to solve some interesting
problems.

4.2 Lists

In the first and second chapter we developed a sequence called PyList. The PyList
class is really just a repackaging of the Python list class. The example sequence
demonstrates some of the operators that are supported by Python. In this section we
want to look more deeply into how lists are implemented. There are many operations
supported on lists. Chapter18 contains the full list. The table in Fig. 4.1 is a subset
of the operations supported by lists.

Each of the operations in the table has an associated complexity. The performance
of an algorithm depends on the complexity of the operations used in implementing
that algorithm. In the following sections we’ll further develop our own list datatype,
called PyList, using the built-in list only for setting and getting elements in a list. The
indexed get and indexed set operations can be observed to have O(1) complexity. This
complexity is achieved because the memory of a computer is randomly accessible,
which is why it is called Random Access Memory. In Chap.2 we spent some time
demonstrating that each location within a list is accessible in the same amount of

Fig. 4.1 Complexity of List Operations
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time regardless of list size and location being retrieved. In the following sections
we’ll enhance the PyList datatype to support the operations given in this table.

4.2.1 The PyList Datatype

In the first couple of chapters we began developing our PyList data structure. To
support the O(1) complexity of the append operation, the PyList contains empty
locations that can be filled when append is called as first described in Sect. 2.10.
We’ll keep track of the number of locations being used and the actual size of the
internal list in our PyList objects. So, we’ll need three pieces of information: the list
itself called items, the size of the internal list called size, and the number of locations
in the internal list that are currently being used called numItems. While we wouldn’t
have to keep track of the size of the list, because we could call the len function, we’ll
store the size in the object to avoid the overhead of calling len in multiple places in
the code.

All the used locations in the internal list will occur at the beginning of the list. In
other words, there will be no holes in the middle of a list that we will have to worry
about. We’ll call this assumption an invariant on our data structure. An invariant is
something that is true before and after any method call on the data structure. The
invariant for this list is that the internal list will have the first numItems filled with
no holes. The code in Listing4.1 provides a constructor that can also be passed a list
for its initial contents.

Storing all the items at the beginning of the list, without holes, also means that
we can randomly access elements of the list in O(1) time. We don’t have to search
for the proper location of an element. Indexing into the PyList will simply index into
the internal items list to find the proper element as seen in the next sections.

1 class PyList:
2 def __init__(self,contents=[], size=10):
3 # The contents allows the programmer to construct a list with
4 # the initial contents of this value. The initial_size
5 # lets the programmer pick a size for the internal size of the
6 # list. This is useful if the programmer knows he/she is going
7 # to add a specific number of items right away to the list.
8 self.items = [None] * size
9 self.numItems = 0
10 self.size = size
11
12 for e in contents:
13 self.append(e)

Listing 4.1 The PyList Constructor

The code in Listing4.1 builds a PyList object by creating a list of 10 None values.
None is the special value in Python for references that point at nothing. Figure4.2
shows a sample list after it was created and three items were appended to it. The
special None value is indicated in the figure by the three horizontal lines where
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Fig. 4.2 A Sample PyList Object

the empty slots in the list point. The initial size of the internal items list is 10 by
default, but a user could pass a larger size initially if they wanted to. This is only
the initial size. The list will still grow when it needs to. The contents parameter lets
the programmer pass in a list or sequence to put in the list initially. For instance, the
object in Fig. 4.2 could have been created by writing the following.

sampleList = PyList(["a","b","c"])

Each element of the sequence is added as a separate list item. The complexity of
creating a PyList object is O(1) if no value is passed to the constructor and O(n)
if a sequence is passed to the constructor, where n is the number of elements in the
sequence.

1 def __getitem__(self,index):
2 if index >= 0 and index < self.numItems:
3 return self.items[index]
4
5 raise IndexError("PyList index out of range")
6
7 def __setitem__(self,index,val):
8 if index >= 0 and index < self.numItems:
9 self.items[index] = val
10 return
11
12 raise IndexError("PyList assignment index out of range")

Listing 4.2 PyList Get and Set

Our PyList class is a wrapper for the built-in list class. So, to implement the get
item and set item operations on PyList, we’ll use the get and set operations on the
built-in list class. The code is given in Listing4.2. The complexity of both operations
is O(1). In both cases, we want to make sure the index is in the range of acceptable
indices. If it is not, we’ll raise an IndexError exception just as the built-in list class
does.
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1 def __add__(self,other):
2 result = PyList(size=self.numItems+other.numItems)
3
4 for i in range(self.numItems):
5 result.append(self.items[i])
6
7 for i in range(other.numItems):
8 result.append(other.items[i])
9
10 return result

Listing 4.3 PyList Concatenate

To concatenate two lists we must build a new list that contains the contents of
both. This is an accessor method because it does not mutate either list. Instead, it
builds a new list. We can do this operation in O(n) time where n is the sum of the
lengths of the two lists. Here is some code to accomplish this.

In Listing4.3 the size is set to the needed size for the result of concatenating the
two lists. The complexity of the __add__ method is O(n)where n is the length of the
two lists. The initial size of the list does not have to be set because append has O(1)
complexity as we saw in Sect. 2.10. However, since we know the size of the resulting
list, setting the initial size should speed up the concatenation operation slightly.

1 # This method is hidden since it starts with two underscores.
2 # It is only available to the class to use.
3 def __makeroom(self):
4 # increase list size by 1/4 to make more room.
5 # add one in case for some reason self.size is 0.
6 newlen = (self.size // 4) + self.size + 1
7 newlst = [None] * newlen
8 for i in range(self.numItems):
9 newlst[i] = self.items[i]
10
11 self.items = newlst
12 self.size = newlen
13
14 def append(self,item):
15 if self.numItems == self.size:
16 self.__makeroom()
17
18 self.items[self.numItems] = item
19 self.numItems += 1 # Same as writing self.numItems = self.numItems + 1

Listing 4.4 PyList Append

In Sect. 2.10 we learned that the append method has O(1) amortized complexity.
When appending, we will just add one more item to the end of the self.items list if
there is room. In the description of the constructor we decided the PyList objects
would contain a list that had room for more elements. When appending we can make
use of that extra space. Once in a while (i.e. after appending some number of items),
the internal self.items list will fill up. At that time we must increase the size of the
items list to make room for the new item we are appending by a size proportional to
the current length of self.items.
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Aswe learned in Chap.2, to make the append operation run in O(1) time we can’t
just add onemore location each timewe needmore space. It turns out that adding 25%
more space each time is enough to guarantee O(1) complexity. The choice of 25%
is not significant. If we added even 10% more space each time we would get O(1)
complexity. At the other extreme we could double the internal list size each time we
needed more room as we did in Sect. 2.10. However, 25% seems like a reasonable
amount to expand the list without gobbling up too much memory in the computer.
We just need a few more cyber dollars stored up for each append operation to pay
for expanding the list when we run out of room. The code in Listing4.4 implements
the append operation with an amortized complexity of O(1). Integer division by 4
is very quick in a computer because it can be implemented by shifting the bits of the
integer to the right, so computing our new length, when needed, is relatively quick.

ThePython interpreter implements append in a similarway.ThePython interpreter
is implemented in C, so the interpreter uses C code. Python also chooses to increase
the list size by other values. In Python list sizes increase by 4, 8, 16, 25, and so on.
The additional space to add to the internal list is calculated from the newly needed
size of the list and grows by 4, 8, 16, 25, 35, 46, 58, 72, 88, and so on. You can
see that the amount to add grows as the list grows and that leads to an amortized
complexity of O(1) for the append operation in the Python interpreter.

1 def insert(self,i,e):
2 if self.numItems == self.size:
3 self.__makeroom()
4
5 if i < self.numItems:
6 for j in range(self.numItems-1,i-1,-1):
7 self.items[j+1] = self.items[j]
8
9 self.items[i] = e
10 self.numItems += 1
11 else:
12 self.append(e)

Listing 4.5 PyList Insert

To insert into this sequential list we must make room for the new element. Given
the way the list is organized, there is no choice but to copy each element after the
point where we want to insert the new value to the next location in the list. This
works best if we start from the right end of the list and work our way back to the
point where the new value will be inserted. The complexity of the operation shown
in Listing4.5 is O(n)where n is the number of elements in the list after the insertion
point.

The index i is the location where the new value e is to be inserted. If the index
provided is larger than the size of the list the new item, e, is appended to the end of
the list.
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1 def __delitem__(self,index):
2 for i in range(index, self.numItems-1):
3 self.items[i] = self.items[i+1]
4 self.numItems -= 1 # same as writing self.numItems = self.numItems - 1

Listing 4.6 PyList Delete

When deleting an item at a specific index in the list, we must move everything
after the item down to preserve our invariant that there are no holes in the internal
list. As shown in Listing4.6, this results in a O(n) implementation in the average
and worst case where n is the number of items after the index in the list.

In the Python interpreter, to conserve space, if a list reaches a point after deletion
where less than half of the locations within the internal list are being used, then the
size of the available space is reduced by one half.

1 def __eq__(self,other):
2 if type(other) != type(self):
3 return False
4
5 if self.numItems != other.numItems:
6 return False
7
8 for i in range(self.numItems):
9 if self.items[i] != other.items[i]:
10 return False
11
12 return True

Listing 4.7 PyList Equality Test

Checking for equality of two lists requires the two lists be of the same type as
shown in Listing4.7. If they are of different types, then we’ll say they are not equal.
In addition, the two lists must have the same length. If they are not the same length,
they cannot be equal. If these two preconditions are met, then the lists are equal if
all the elements in the two lists are equal. Listing4.7 provides code that implements
equality testing of two PyList objects. Equality testing is a O(n) operation.

1 def __iter__(self):
2 for i in range(self.numItems):
3 yield self.items[i]

Listing 4.8 PyList Iteration

The ability to iterate over a sequence is certainly a requirement. Sequences hold
a collection of similar data items and we frequently want to do something with each
item in a sequence. Of course, the complexity of iterating over any sequence is O(n)
where n is the size of the sequence. Listing4.8 has the code that accomplishes this for
the PyList sequence. The yield call in Python suspends the execution of the __iter__
method and returns the yielded item to the iterator.

1 def __len__(self):
2 return self.numItems

Listing 4.9 PyList Length
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If the number of items were not kept track of within the PyList object, then
counting the number of items in the list would be a O(n) operation. Instead, if we
keep track of the number of items in the list as items are appended or deleted from
the list, then we need only return the value of numItems from the object as shown in
Listing4.9, resulting in O(1) complexity.

1 def __contains__(self,item):
2 for i in range(self.numItems):
3 if self.items[i] == item:
4 return True
5
6 return False

Listing 4.10 PyList Membership

Testing for membership in a list means checking to see if an item is one of the
items in the list. The only way to do this is to examine each item in sequence in
the list. If the item is found then True is returned, otherwise False is returned. This
results in O(n) complexity as shown in Listing4.10.

This idea of searching for an item in a sequence is so common that computer
scientists have named it. This is called linear search. It is named this because of its
O(n) complexity.

1 def __str__(self):
2 s = "["
3 for i in range(self.numItems):
4 s = s + repr(self.items[i])
5 if i < self.numItems - 1:
6 s = s + ", "
7 s = s + "]"
8 return s

Listing 4.11 PyList String Conversion

It is convenient to be able to convert a list to a string so it can be printed. Python
includes two methods that can be used for converting to a string. The first you are
probably already familiar with. The str function calls the __str__ method on an
object to create a string representation of itself suitable for printing. The code in
Listing4.11 implements the __str__ method for the PyList class.

1 def __repr__(self):
2 s = "PyList(["
3 for i in range(self.numItems):
4 s = s + repr(self.items[i])
5 if i < self.numItems - 1:
6 s = s + ", "
7 s = s + "])"
8 return s

Listing 4.12 PyList String Representation

The other method for converting an object to a string has a different purpose.
Python includes a function called eval that will take a string containing an expres-
sion and evaluate the expression in the string. For instance, eval(“6+5”) results in 11
and eval(“[1,2,3]”) results in the list [1,2,3]. The repr function in Python calls the
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__repr__ method on a class. This method, if defined, should return a string represen-
tation of an object that is suitable to be given to the eval function. In the case of the
PyList class, the repr form of the string would be something like “PyList([1,2,3])”
for the PyList sequence containing these items. The code in Listing4.12 accom-
plishes this. It is nearly identical to the __str__ code, except that PyList prefixes the
sequence.

Notice that in both Listings4.11 and 4.12 that repr is called on the elements of
the list. Calling repr is necessary because otherwise a list containing strings like
[“hi”,”there”] would be converted to [hi,there] in its str or repr representation.

4.3 Cloning Objects

It is interesting to note that we now have a method of making a copy of an object.
If x is a PyList object, then eval(repr(x)) is a copy or clone of this object. Since all
the items in the PyList object are also cloned by evaluating the representation of the
object, cloning an object like this is called a deep clone or deep copy of the object x.

It is also possible to make what is called a shallow copy of an object. A shallow
copy occurs when the object is copied, but items in the object are shared with the
clone. If we wish to create a shallow copy of a PyList object called x, we would write
the following.

x = PyList([1,2,3])
y = PyList(x)

Here, y is a shallow copy of x because both x and y share the items 1, 2, and
3. In most cases whether some items are shared or not probably doesn’t matter. In
this case it doesn’t matter if items are shared because 1, 2, and 3 are integers and
integers are immutable. However, if the shared items are mutable, then you may care
about shallow or deep clones of objects. When working with a shallow clone of an
object that contains mutable items the programmer must be aware that the items in
the collection might change values without any call to a method on the object. This
won’t happen to a deep clone of an object.

Which is better, shallow cloning or deep cloning, depends on the application
being written. One is not necessarily better than the other. There is an additional
performance and memory hit for making deep clones but they are safer. The type of
application being developed will probably help determine which type of cloning is
chosen should clones of objects be useful in the application.
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4.4 ItemOrdering

Now let us turn our attention to implementing the sort method on our PyList data
type. To sort a sequence of items, the items in the sequence must be ordered in some
way. For instance, consider a class that is used to represent Cartesian coordinates
on a plane. We’ll call the class Point and it will contain an (x, y) pair. We’ll order
the point objects by their directed distance from the x axis. In other words, they will
be ordered by their y-coordinates. Here is our Point class. For reasons that will be
obvious soon, our Point class will inherit from RawTurtle.

1 class Point(turtle.RawTurtle):

2 def __init__(self, canvas, x, y):

3 super().__init__(canvas)

4 canvas.register_shape("dot",((3,0),(2,2),(0,3),(-2,2),(-3,0),(-2,-2),(0,-3),(2,-2)))

5 self.shape("dot")

6 self.speed(200)

7 self.penup()

8 self.goto(x,y)

9
10 def __str__(self):

11 return "("+str(self.xcor())+","+str(self.ycor())+")"

12
13 def __lt__(self, other):

14 return self.ycor() < other.ycor()

Listing 4.13 The Point Class

Objects of the Point class have an ordering because we have defined the less than
operator (i.e. <) by writing an __lt__ method in the class. Once defined, this less
than operator orders all the elements of the class. Most of the built-in classes or
types in Python already have an implementation for the __lt__ method so we don’t
have to define this method for types like int, float, and str. Strings are compared
lexicographically in Python as they are in pretty much every language that supports
string comparison. Lexicographic ordering means that strings are compared from
left to right until one character is found to be different than the character at the
corresponding position in the other string. In other words, sorting a sequence of
strings means they will end up alphabetized like you would see in a dictionary.
Under some conditions lists are orderable, too. For lists to have an ordering, the
elements at corresponding indices within the lists must be orderable. Consider these
sample comparisons.

Python 3.2 (r32:88452, Feb 20 2011, 10:19:59)
[GCC 4.0.1 (Apple Inc. build 5493)]
Type "help", "copyright", "credits" or "license" for more information.
[evaluate untitled-3.py]
lst = [1,2,3]
lst2 = list("abc")
lst2
[’a’, ’b’, ’c’]
lst < lst2
Traceback (most recent call last):

File "<string>", line 1, in <fragment>
builtins.TypeError: unorderable types: int() < str()
lst3 = [4,5,6]
lst < lst3
True
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lst4 = [1,3,2]
lst < lst4
True
lst5 = [1,2,2]
lst5 < lst
True
lst6 = [1,1,’a’]
lst6 < lst
True

Comparing lst and lst2 did not work because the items in the two lists are not
orderable. You can’t compare an integer and a string. However, two lists with simi-
lar elements can be compared. List comparison is performed lexicographically like
strings. Note the last example. The two lists [1, 2, 3] and [1, 1, ‘a’] can be compared
because the lexicographical ordering does not require that 3 and ’a’ be compared.

There are some types in Python which have no natural ordering. For instance,
there is no natural ordering for dictionaries in Python. You cannot sort a list of
dictionaries. Of course, its unclear why you would want to as well. Since there is no
natural ordering there doesn’t seem to be a reason to sort them. However, if there
were a way to create an ordering on a set of dictionaries you could define it yourself
by writing your own class that inherited from the dict class and defining its own
__lt__ method just as we did for the Point class.

Once we have an ordering of elements in a list, we can sort the elements according
to that ordering. Lists have a sort method that will sort the items of a list according
to their ordering. The code in Listing4.14 illustrates how the items of a list can be
sorted.

1 def main():
2 t = turtle.Turtle()
3 t.ht()
4 screen = t.getscreen()
5 lst = []
6
7 for i in range(10):
8 for j in range(10):
9 pair = Point(screen,i,j)
10 lst.append(pair)
11
12 lst.sort()
13
14 for p in lst:
15 print(p)

Listing 4.14 Calling the Sort Method
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When the code in Listing4.14 is called it prints the points in order of their distance
from the x-axis as follows.

(0,0)
(1,0)
(2,0)
(3,0)
(4,0)
(5,0)
(6,0)
(7,0)
(8,0)
(9,0)
(0,1)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(7,1)
...

But, just how does this sort methodwork andwhat is its cost? In other words, what
kind of sorting algorithm does Python use and what is its computational complexity?
We explore these questions in the next sections.

4.5 Selection Sort

In the last section we learned that we can call a method called sort on a list to sort the
items in the list in ascending order. Ascending order is determined by the less than
operator as defined on the items. So how does the sorting algorithm work. One of
the early sorting algorithms was called Selection Sort and it serves as a good starting
place to understand sorting algorithms. However, this is not the sorting algorithm
used by Python. We’ll find out why soon.

The selection sort algorithm is pretty simple to describe. The algorithm begins
by finding the smallest value to place in the first position in the list. It does this by
doing a linear search through the list and along the way remembering the index of
the smallest item it finds. The algorithm uses the guess and check pattern by first
guessing that the smallest item is the first item in the list and then checking the
subsequent items to see if it made an incorrect guess. This part of the algorithm is
the selection part. The select function does this selection as shown in Listing4.15.
The start argument tells the select function where to start looking for the smallest
item. It searches from start to the end of the sequence for the smallest item.
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1 def select(seq, start):
2 minIndex = start
3
4 for j in range(start+1, len(seq)):
5 if seq[minIndex] > seq[j]:
6 minIndex = j
7
8 return minIndex

Listing 4.15 Selection Sort’s Select Function

The selection sort algorithm works by finding the smallest item using the select
function and placing that item into the first position of the sequence. Now the value in
the first position must be put someplace else. It is simply swapped with the location
of the value that is being moved. The algorithm proceeds by next looking for the
second smallest value in the sequence. Since the smallest value is now in the first
location in the sequence, the selection sort algorithm starts looking from the second
position in the list for the smallest value. When the smallest value is found (which
is really the second smallest value for the list) the value in the second position and
this value are swapped. Then the selection sort algorithm looks for the smallest item
starting at the third location in the sequence. This pattern repeats until all the items
in the sequence have been sorted. In Listing4.16, the selSort function does the actual
sorting for the algorithm.

1 def selSort(seq):
2 for i in range(len(seq)-1):
3 minIndex = select(seq, i)
4 tmp = seq[i]
5 seq[i] = seq[minIndex]
6 seq[minIndex] = tmp

Listing 4.16 The Selection Sort Code

We can visualize the selection sort algorithm by running an animation of it sorting.
The animation is pictured in Fig. 4.3 having sorted more than half the values in a
sequence. The green dots represent items that are now in their proper location in the
sequence. The height of the dot from the x-axis (i.e. the y-value) is its value. The
x-axis is the position in the list. In this animation all the values between 0 and 199
are being sorted into ascending order. The upper-right corner represents those values
that have not yet been sorted. The algorithm starts looking for the next smallest value
just to the right of the green diagonal line. It finds the minimum value (i.e. closest
to the x-axis) by going through all the remaining unsorted dots. Once it finds the
small, shortest dot, it swaps it with the left-most dot to put it into is sorted position
in the list. The complete code for this animation is given in Sect. 22.3 and can be
downloaded from the website accompanying this text. Try it out!

Consider sorting the list [5 8 2 6 9 1 0 7] as depicted in Fig. 4.4. After each call
of the select function from the selSort function the next element of the list is placed
in its final location. Sorting the list leads to the intermediate steps as shown. Each
time the select function is called the new smallest element is swapped with the first
location in the rest of the list to move the next smallest element into its location
within the sorted list.
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Fig. 4.3 Selection Sort Snapshot

To find each new smallest element we call select which must run through the
rest of the list looking for the minimum element. After each pass the list in Fig. 4.4
is one item closer to sorting the whole list. It turns out that this early attempt at
writing a sorting algorithm is not that great. The complexity of this algorithm is
O(n2) because each time through the for loop in the selSort function we call the
select function which has its own for loop. The for i loop is executed n times and
each time it is executed the for j loop must go through one less item looking for the
smallest value that is left to be sorted. So, the first time we execute the body of the
for j loop n–1 times, then n–2 times the second time select is called, then n–3 times
and so on. We have seen this pattern before. The sum of the first n integers has an n2

term in its formula. Therefore, selection sort is O(n2). This means as we try to sort
some larger lists the algorithm will really start to slow down. You should never use
this algorithm for sorting. Even on small lists we can do much better.

4.6 Merge Sort

Divide and conquer, as the ancient Romans might have said, is an effective battle
strategy. It turns out this concept is very important when writing algorithms. The
Merge Sort algorithm is one instance of a divide and conquer algorithm. Divide and
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Fig. 4.4 Selection Sort of a
List
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conquer algorithms are usually written recursively, but don’t necessarily have to be.
The basic premise is that we divide a problem into two pieces. Each of the two pieces
is easier to solve than trying to tackle the whole problem at once because the two
pieces are each smaller.

1 def merge(seq, start, mid, stop):
2 lst = []
3 i = start
4 j = mid
5
6 # Merge the two lists while each has more elements
7 while i < mid and j < stop:
8 if seq[i] < seq[j]:
9 lst.append(seq[i])
10 i+=1
11 else:
12 lst.append(seq[j])
13 j+=1
14
15 # Copy in the rest of the start to mid sequence
16 while i < mid:
17 lst.append(seq[i])
18 i+=1
19
20 # Many merge sort implementations copy the rest
21 # of the sequence from j to stop at this point.
22 # This is not necessary since in the next part
23 # of the code the same part of the sequence would
24 # be copied right back to the same place.
25 # while j < stop:
26 # lst.append(seq[j])
27 # j+=1
28
29 # Copy the elements back to the original sequence
30 for i in range(len(lst)):
31 seq[start+i]=lst[i]
32
33 def mergeSortRecursively(seq, start, stop):
34 # We must use >= here only when the sequence we are sorting
35 # is empty. Otherwise start == stop-1 in the base case.
36 if start >= stop-1:
37 return
38
39 mid = (start + stop) // 2
40
41 mergeSortRecursively(seq, start, mid)
42 mergeSortRecursively(seq, mid, stop)
43 merge(seq, start, mid, stop)
44
45 def mergeSort(seq):
46 mergeSortRecursively(seq, 0, len(seq))

Listing 4.17 The Merge Sort Code

The merge sort algorithm takes this divide and conquer strategy to the extreme. It
divides the list, then divides it again and again, until we are left with lists of size 1.
A sublist of length 1 is already sorted. Two sorted sublists can be merged into one
sorted list in O(n) time. A list can be divided into lists of size 1 by repeatedly splitting
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in O(log n) time. Each of the split lists are then merged together in O(n) time. This
results in a complexity of O(n log n) for merge sort. The merge sort code appears
in Listing 4.17.

The merge function takes care of merging two adjacent sublists. The first sublist
runs from start to mid-1. The second sublist runs frommid to stop-1. The elements of
the two sorted sublists are copied, in O(n) time, to a new list. Then the sorted list is
copied back into the original sequence, again in O(n) time. In themerge function, the
first while loop takes care of merging the two sublists until one or the other sublist is
empty. The second and third while loops take care of finishing up whichever sublist
had the left-over elements. Only one sublist will have left-over elements so only one
condition on the second and third while loops will ever be true.

Notice that the third while loop in the code is commented out. Copying elements
from j to stop in the third while loop is not necessary since they would only be copied
right back to the same place when the contents of lst are copied back to the seq
sequence. This optimization speeds up merge sort a little bit. One other optimization
is to pre-allocate one more list in which to copy values and then alternate between
merging in the original and the pre-allocated copy. In this way the overhead of
creating and appending to lists is avoided. Coding either of these two optimizations
does not improve the computational complexity of the algorithm, but can improve
its overall performance slightly. One criticism of the merge sort algorithm is that
the elements of the two sublists cannot be merged without copying to a new list and
then back again. Other sorting methods, like Quicksort, have the same O(n log n)
complexity as merge sort and do not require an extra list.

The mergeSort function calls a helper function to get everything started. It calls
mergeSortRecursively function with the sequence and the start and stop values which
indicate the entire list should be sorted. The start and stop parameters are used when
splitting the list. The list is not physically split when calling mergeSortRecursively.
Instead, the start and stop values are used to compute the mid point between them
and then the two halves are recursively sorted. Since each sublist is smaller, we can
rest assured that the recursive call does its job and sorts the two sublists. Then we
are left to merge the two sorted sublists by calling the merge function. The base case
for the recursive function is when the sublist size is 1. At that point we have a sorted
sublist.

In Fig. 4.5 the entire left half of the list has been sorted. In addition, three sublists
in the right half have been sorted and the third and fourth sublist are in the process of
being merged together. The green dots represent the portions of the sequence that are
sorted and the black dots indicate the unsorted portion of the original sequence. The
red lines at the bottom reflect the recursive calls that are currently on the run-time
stack. The length of the red line shows the portion of the sequence that is being
sorted by its corresponding recursive call. The blue line underscores the two sublists
currently being merged together.

The argument that merge sort runs in O(n log n) time needs just a bit of expla-
nation. The repetitive splitting of the list results in O(log n) splits. In the end we
have lists of size 1. If we were to count every merge that occurs there would be n/2
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Fig. 4.5 Merge Sort Snapshot

merges at the bottom, followed by n/4 merges at the next level, and so on leading to
this sum.

T he number of merges ≥
�log2n�∑

i=0

2i = 2�log2n� − 1 ≈ n

This analysis would seem to suggest that the complexity of the merge sort algorithm
is O(n2) since there are roughly n merges each of which is O(n) itself. However, the
algorithm is not O(n2). To see why, consider sorting the list [5 8 2 6 9 1 0 7]. After
repeatedly splitting the lists we get down to lists of size one as depicted in the first
list of Fig. 4.6. The individual items are merged two at a time to form sorted lists of
two, shown in the second list of items. While there are four merges that take place at
the lowest level of the merge sort, the four merges are each for lists of two elements
(i.e. one from each list) and together they form a list of n items. So we can group all
these four merges together to find that all the merges at that deepest level take O(n)
time. Not each, but all of the merges at the deepest level when combined are O(n).

In the second version of the list, two merges are done for the lists of length two.
However, each merge is done on one half the list. The purple half is one merge,
the green half includes the items that are in the second merge. Together, these two
merges include all n items again. So, at the second deepest level again at most n
items are merged in O(n) time.
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Fig. 4.6 Merge Sort Merges

Finally, the last merge is of all the items in yellow from the two sorted sublists.
This merge also takes O(n) time since it merges all the items in the list, resulting in
the sorted list seen in the last version of the list.

So, while merging is a O(n) operation, the merges take place on sublists of the n
items in the list which means that we can count the merging at each level as O(n) and
don’t have to count each individual merge operation as O(n). Since there are log n
levels to the merge sort algorithm and each level takes O(n) to merge, the algorithm
is O(n log n).

4.7 Quicksort

In a sense, the quicksort algorithm is the exact opposite of themerge sort algorithm. It
is also the most widely used and one of the most efficient sorting algorithms known.
Quicksort is again a divide and conquer algorithm and is usually written recursively.
But, where merge sort splits the list until we reach a size of 1 and then merges sorted
lists, the quicksort algorithm does the merging first and then splits the list. We can’t
merge an unsorted list. Instead, we partition it into two lists. What we want is to
prepare the list so quicksort can be called recursively. But, if we are to be successful,
the two sublists must somehow be easier to sort than the original. This preparation
for splitting is called partitioning. To partition a list we pick a pivot element. Think
of quicksort partitioning a list into all the items bigger than the pivot and all the
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elements smaller than the pivot. We put all the bigger items to the right of the pivot
and all the littler items to the left of the pivot. Once we have done this, two things
are true:

• The pivot is in its final location in the list.
• The two sublists are now smaller and can therefore be quicksorted. Once the two
sublists are sorted this will cause the entire list to be in sorted order, because the
left will be the values ascending up to the pivot, the pivot is in the right spot, and
the values greater than the pivot will all be in their correct locations, too.

Quicksort is a divide and conquer algorithm. To get the best performance, we
would like to divide the sequence right down the middle into two equal sized
sequences. This would mean that we would have to pick the value exactly in the
middle to be the pivot since the pivot is used to divide the two lists. Unfortunately
this isn’t possible if we are to do it efficiently. For quicksort to have O(n log n)
complexity, like merge sort, it must partition the list in O(n) time. We must choose
a pivot quickly and we must choose it well. If we don’t choose a pivot close to the
middle, we will not get the O(n log n) complexity we hope for. It turns out that
choosing a random pivot from the list is good enough. One way to guarantee a ran-
dom choice of the pivot is to have the quicksort algorithm start by randomizing the
sequence. The quicksort algorithm is given in Listing4.18.

1 import random
2
3 def partition(seq, start, stop):
4 # pivotIndex comes from the start location in the list.
5 pivotIndex = start
6 pivot = seq[pivotIndex]
7 i = start+1
8 j = stop-1
9
10 while i <= j:
11 #while i <= j and seq[i] <= pivot:
12 while i <= j and not pivot < seq[i]:
13 i+=1
14 #while i <= j and seq[j] > pivot:
15 while i <= j and pivot < seq[j]:
16 j-=1
17
18 if i < j:
19 tmp = seq[i]
20 seq[i] = seq[j]
21 seq[j] = tmp
22 i+=1
23 j-=1
24
25 seq[pivotIndex] = seq[j]
26 seq[j] = pivot
27
28 return j
29



4.7 Quicksort 111

30 def quicksortRecursively(seq, start, stop):
31 if start >= stop-1:
32 return
33
34 # pivotIndex ends up in between the two halves
35 # where the pivot value is in its final location.
36 pivotIndex = partition(seq, start, stop)
37
38 quicksortRecursively(seq, start, pivotIndex)
39 quicksortRecursively(seq, pivotIndex+1, stop)
40
41 def quicksort(seq):
42 # randomize the sequence first
43 for i in range(len(seq)):
44 j = random.randint(0,len(seq)-1)
45 tmp = seq[i]
46 seq[i] = seq[j]
47 seq[j] = tmp
48
49 quicksortRecursively(seq, 0, len(seq))

Listing 4.18 The Quicksort Code

Once the list is randomized, picking a random pivot becomes easier. The partition
function picks the first item in the sequence as the pivot. The partitioning starts from
both ends and works it way to the middle. Essentially every time a value bigger
than the pivot is found on the left side and a value smaller than the pivot is found
on the right side, the two values are swapped. Once we reach the middle from both
sides, the pivot is swapped into place. Once the sequence is partitioned, the quicksort
algorithm is called recursively on the two halves. Variables i and j are the indices of
the left and right values, respectively, during the partitioning process.

If you look at the partition code, the two commented while loop conditions are
probably easier to understand than the uncommented code. However, the uncom-
mented code only uses the less than operator. Quicksort is the sorting algorithm used
by the sort method on lists. It only requires that the less than operator be defined
between items in the sequence. By writing the two while loops as we have, the only
required ordering is defined by the less than operator just as Python requires.

The snapshot in Fig. 4.7 shows the effect of partitioning on a sequence. In this
figure, the sequence has been partitioned twice already. The first partitioning picked
a pivot that was almost dead center. However, the second partitioning picked a pivot
that was not so good. The red line indicates the part of the sequence that is currently
being partitioned. See how the left-most value in that sub-sequence is the pivot value.
The two green dots are the pivot values that are already in their correct locations.
All values above the pivot will end up in the partition to the right of the pivot and all
values to the left of the pivot are less than the pivot. This is the nature of quicksort.
Again, by amortized complexity we can find that the quicksort algorithm runs in
O(n log n) time.

Consider sorting the list [5 8 2 6 9 1 0 7] using quicksort. Figure4.8 depicts the
list after each call to the partition function. The pivot in each call is identified by the
orange colored item. The partition function partitions the list extending to the right
of its pivot. After partitioning, the pivot is moved to its final location by swapping
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Fig. 4.7 Quicksort Snapshot

it with the last item that is less than the pivot. Then partitioning is performed on the
resulting two sublists.

The randomization done in the first step of quicksort helps to pick a more random
pivot value. This has real consequences in the quicksort algorithm, especially when
the sequence passed to quicksort has a chance of being sorted already. If the sequence
given to quicksort is sorted, or almost sorted, in either ascending or descending
order, then quicksort will not achieve O(n log n) complexity. In fact, the worst case
complexity of the algorithm is O(n2). If the pivot chosen is the next least or greatest
value, then the partitioning will not divide the problem into to smaller sublists as
occurred when 9 was chosen as a pivot for a sublist in Fig. 4.8. The algorithm will
simply put one value in place and end up with one big partition of all the rest of
the values. If this happened each time a pivot was chosen it would lead to O(n2)

complexity. Randomizing the list prior to quicksorting it will help to ensure that this
does not happen.

Merge sort is not affected by the choice of a pivot, since no choice is necessary.
Therefore,merge sort does not have aworst case or best case to consider. Itwill always
achieve O(n log n) complexity. Even so, quicksort performs better in practice than
merge sort because the quicksort algorithmdoes not need to copy to a new list and then
back again. The quicksort algorithm is the defacto standard of sorting algorithms.
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Fig. 4.8 Quicksorting a List

4.8 Two-Dimensional Sequences

Sometimes programmers need to represent two-dimensional sequences in a program.
This can be done quite easily by creating a list of lists. The main list can represent
either the columns or the rows of the matrix. If the main list contains references to
the rows, then the matrix is said to be in row major form. If the main list contains
references to the columns of the matrix, then it is in column major form. Most of the
time, matrices are constructed in row major form. In Fig. 4.9 a matrix is drawn with
a row major orientation, but the matrix could represent either row major or column
major form. The actual organization of the data is the same either way. The items
reference points at the main list. The items list contains references to each of the
rows of the matrix.

For example, consider a program that plays tic tac toe against a human opponent.
Wewouldneed to represent the board that tic tac toe is playedon.Todo so,we’ll create
a Board class that mimics our PyList class in the previous section. The organization
of our board class is shown graphically in Fig. 4.9. The outline for the Board class is
given in Listing4.19.
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Fig. 4.9 A 2-Dimensional Matrix

1 class Board:
2 # When a board is constructed, you may want to make a copy of the board.
3 # This can be a shallow copy of the board because Turtle objects are
4 # Immutable from the perspective of a board object.
5 def __init__(self,board=None):
6 self.items = []
7 for i in range(3):
8 rowlst = []
9 for j in range(3):
10 if board==None:
11 rowlst.append(Dummy())
12 else:
13 rowlst.append(board[i][j])
14
15 self.items.append(rowlst)
16
17 # The getitem method is used to index into the board. It should
18 # return a row of the board. That row itself is indexable (it is just
19 # a list) so accessing a row and column in the board can be written
20 # board[row][column] because of this method.
21 def __getitem__(self,index):
22 return self.items[index]
23
24 # This method should return true if the two boards, self and other,
25 # represent exactly the same state.
26 def __eq__(self,other):
27 pass
28
29 # This method will mutate this board to contain all dummy
30 # turtles. This way the board can be reset when a new game
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31 # is selected. It should NOT be used except when starting
32 # a new game.
33 def reset(self):
34 screen.tracer(1)
35 for i in range(3):
36 for j in range(3):
37 self.items[i][j].goto(-100,-100)
38 self.items[i][j] = Dummy()
39
40 screen.tracer(0)
41
42 # This method should return an integer representing the
43 # state of the board. If the computer has won, return 1.
44 # If the human has won, return -1. Otherwise, return 0.
45 def eval(self):
46 pass
47
48 # This method should return True if the board
49 # is completely filled up (no dummy turtles).
50 # Otherwise, it should return false.
51 def full(self):
52 pass
53
54 # This method should draw the X’s and O’s
55 # Of this board on the screen.
56 def drawXOs(self):
57 for row in range(3):
58 for col in range(3):
59 if self[row][col].eval() != 0:
60 self[row][col].st()
61 self[row][col].goto(col*100+50, row*100+50)
62
63 screen.update()

Listing 4.19 The Board Class

Because each row is itself a list in the Board class, we can just use the built-in list
class for the rows of the matrix. Each location in each row of the matrix can hold
either an X, an O, or a Dummy object. The Dummy objects are there for convenience
and represent an open location in the board. The equal, eval, and full methods are
left as an exercise for the student. The purpose of each will be described in the next
section.

Many games, both animated and otherwise, are easy to implement using Tkinter
and turtle graphics. Animated characters or tokens in a game can be implemented as
a turtle that moves around on the screen as necessary. For the tic tac toe game the X’s
and O’s can be implemented as RawTurtles. A RawTurtle is just like a Turtle object
except that we must provide the canvas where a RawTurtle moves around. The code
in Listing4.20 contains the three classes that define the X’s, the O’s, and the special
Dummy class that is a placeholder for open locations in the board.
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1 Human = -1

2 Computer = 1

3
4 # This class is just for placeholder objects when no move has been made

5 # yet at a position in the board. Having eval() return 0 is convenient when no

6 # move has been made.

7 class Dummy:

8 def __init__(self):

9 pass

10
11 def eval(self):

12 return 0

13
14 def goto(self,x,y):

15 pass

16
17 # In the X and O classes below the constructor begins by initializing the

18 # RawTurtle part of the object with the call to super().__init__(canvas). The

19 # super() call returns the class of the superclass (the class above the X or O

20 # in the class hierarchy). In this case, the superclass is RawTurtle. Then,

21 # calling __init__ on the superclass initializes the part of the object that is

22 # a RawTurtle.

23 class X(RawTurtle):

24 def __init__(self, canvas):

25 super().__init__(canvas)

26 self.ht()

27 self.getscreen().register_shape("X",((-40,-36),(-40,-44),(0,-4),(40,-44),(40,-36), \

28 (4,0),(40,36),(40,44),(0,4),(-40,44),(-40,36),(-4,0),(-40,-36)))

29 self.shape("X")

30 self.penup()

31 self.speed(5)

32 self.goto(-100,-100)

33
34 def eval(self):

35 return Computer

36
37 class O(RawTurtle):

38 def __init__(self, canvas):

39 super().__init__(canvas)

40 self.ht()

41 self.shape("circle")

42 self.penup()

43 self.speed(5)

44 self.goto(-100,-100)

45
46 def eval(self):

47 return Human

Listing 4.20 The X, O, and Dummy Classes

4.9 TheMinimax Algorithm

The Dummy, X, and O classes all have an eval method that returns either a 1 for a
Computer move, a –1 for a Human move, or a 0 for no move yet. The values for
these moves are used in an algorithm called minimax. The minimax algorithm is a
recursive algorithm that is used in two person game playing where one player is the
computer and each player has a choice of some number of moves that can be made
while taking turns. The minimax algorithm is simple. The idea is that when it is
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the computer’s turn it should pick the move that will be best for the computer. Each
possible move is analyzed to find the value that would be best for the computer.We’ll
let a 1 represent the best move for the computer. The worst move the computer could
make will be represented by a –1. Move values can range between 1 and –1. When it
is the computer’s turn it will pick the move that results in the maximum move value.
That’s the max portion of minimax.

To find the best move, the computer will play out the game, alternating between
the best move it could make and the best move the human could make. A best move
for a human would be a –1. When it is the human’s turn, the computer will assume
that the human will make the best move he/she can make. This is the min part of
minimax.

The minimax function is given two arguments, the player (either a –1 for human
or a 1 for computer) and the board for the game. The base case for this recursive
function checks to see if one of three things has occurred.

1. The current board is a win for the computer. In that case minimax returns a 1 for
a computer win.

2. The current board is a win for the human. In that case minimax returns a –1 for a
human win.

3. The current board is full. In that case, since neither human or computer won,
minimax returns a 0.

The recursive part of the minimax function examines the player argument. If the
player is the computer, then the function tries each possible move in the board by
making a computermove. It places a computermove in that spot in a copy of the board
and calls minimax with the human as the next player on that board. The algorithm
uses the guess and check pattern to find themaximum of all possible values that come
back from the recursive calls to minimax. The minimax function then returns that
maximum value.

Whenminimax is called with the human as the next player to make amove, it does
the same thing as when the computer is called as the player. It makes a human move
in a copy of the board and recursively calls minimax on the copy of the board with the
computer as the next player to play. The algorithm uses the guess and check pattern
to find the minimum of all possible values that come back from calling minimax
recursively.

There is one little tricky part to minimax. The minimax algorithm is called with a
board and the next player to make a move. It returns a number somewhere between
–1 and 1 indicating how likely it is that the computer or the human will win given
that board. However, it does not tell you which move is the best to make. To deal
with this we can have the code that executes the computer’s turn do a little of the
work. For the computer turn code to find the best move it makes a move in a copy
of the board, calls minimax with the human as the next player to make a move, and
then records the value that comes back from the call to minimax. The computer turn
code uses the guess and check pattern to find the maximum value for all possible
moves and the associated move which resulted in that value. After finding the best
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move, the computer’s turn ends by the computer making that move in the board and
returning so the human can make their next move. The tic tac toe code, which can be
found on the text’s accompanying website or in Sect. 22.5, contains the outline for
the game. The minimax function and the computerTurn code are left as an exercise
for the reader.

Minimax can be used in many two person games of perfect information such as
checkers and connect four. The term perfect information means that both players
can see the whole state of the game [3]. Poker is a game of imperfect information so
would not be suitable for the minimax algorithm. It should be noted that tic tac toe
has a small enough search space that the computer can solve the game. That means
it will never lose. Most games however are not solvable, at least with the average
computer. For instance, connect four has a much larger search space and can’t be
completely solved. Heuristics are applied to games like connect four to estimate how
good or bad a board is after the minimax algorithm has searched as deep as it can
given its time constraints. Games like these are often studied in the field of Artificial
Intelligence [3]. Artificial Intelligence includes the study of search algorithms that
may be used even when the search space is too large to use an exhaustive search.
In this text, Chap.12 covers a few heuristic search algorithms along with a heuristic
applied to the minimax algorithm for the game of connect four.

4.10 Linked Lists

Sequences can be organized in several different ways. The PyList sequence was a
randomly accessible list. This means that we can access any element of the list in
O(1) time to either store or retrieve a value. Appending an item was possible in
O(1) time using amortized complexity analysis, but inserting an item took O(n)
time where n was the number of items after the location where the new item was
being inserted.

If a programmer wants to insert a large number of items towards the beginning of
a list, a different organization for a sequence might be better suited to their needs.
A linked list is an organization of a list where each item in the list is in a separate
node. Linked lists look like the links in a chain. Each link is attached to the next
link by a reference that points to the next link in the chain. When working with a
linked list, each link in the chain is called a Node. Each node consists of two pieces
of information, an item, which is the data associated with the node, and a link to the
next node in the linked list, often called next. The code in Listing4.21 defines the
Node class that can be used to create the nodes in a linked list.
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1 class Node:
2 def __init__(self,item,next=None):
3 self.item = item
4 self.next = next
5
6 def getItem(self):
7 return self.item
8
9 def getNext(self):
10 return self.next
11
12 def setItem(self, item):
13 self.item = item
14
15 def setNext(self,next):
16 self.next = next

Listing 4.21 The Node Class

In the Node class there are two pieces of information: the item is a reference to a
value in the list, and the next reference which points to the next node in the sequence.
Figure4.10 is a linked list with three elements added to it. There are four nodes in
this figure. The first node is a dummy node. Having one extra dummy node at the
beginning of the sequence eliminates a lot of special cases that must be considered
whenworkingwith the linked list. An empty sequence still has a dummy node. Nodes
in linked lists are represented as a rounded rectangle with two halves. The left half
of a node is a reference to the item or value for that node in the sequence. The right
half is a reference to the next node in the sequence or to the special value None if it
is the last node in the sequence.

Figure4.10 depicts a linked list consisting of three pieces of information. We
keep a reference to the first node in the sequence so we can traverse the nodes when
necessary. The reference to the last node in the list makes it possible to append an
item to the list in O(1) time. We also keep track of the number of items so we don’t
have to count when someone wants to retrieve the list size.

Fig. 4.10 A Sample LinkedList Object
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Fig. 4.11 Complexity of LinkedList Operations

The table of operations in Fig. 4.11 contains the computational complexity of
various list operations on the LinkedList datatype presented in this section. Many
of the operations appear to have the same complexity as the list datatype operations
presented in Fig. 4.11. There are some important differences though. The following
sections will provide the implementations for some of these operations and point out
the differences as compared to the list datatype operations given in Fig. 4.11.

1 class LinkedList:
2
3 # This class is used internally by the LinkedList class. It is
4 # invisible from outside this class due to the two underscores
5 # that precede the class name. Python mangles names so that they
6 # are not recognizable outside the class when two underscores
7 # precede a name but aren’t followed by two underscores at the
8 # end of the name (i.e. an operator name).
9 class __Node:
10 def __init__(self,item,next=None):
11 self.item = item
12 self.next = next
13
14 def getItem(self):
15 return self.item
16
17 def getNext(self):
18 return self.next
19
20 def setItem(self, item):
21 self.item = item
22
23 def setNext(self,next):
24 self.next = next
25
26 def __init__(self,contents=[]):
27 # Here we keep a reference to the first node in the linked list
28 # and the last item in the linked list. They both point to a
29 # dummy node to begin with. This dummy node will always be in
30 # the first position in the list and will never contain an item.
31 # Its purpose is to eliminate special cases in the code below.
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32 self.first = LinkedList.__Node(None,None)
33 self.last = self.first
34 self.numItems = 0
35
36 for e in contents:
37 self.append(e)

Listing 4.22 The LinkedList Constructor

From Listing4.22 you can see that creating a LinkedList object has exactly the
same complexity as constructing a list object. If an empty list is created, then the
time taken is O(1) and if a list is copied, then it is a O(n) operation. A LinkedList
object has references to both ends of the linked list. The reference to the head of
the list points to a dummy node. Having a dummy node at the beginning eliminates
many special cases that would exist when the list was empty if no dummy node were
used.

Declaring the Node class within the LinkedList class, and preceeding the name
with two underscores, hides the __Node class from any code outside the LinkedList
class. The idea here is that only the LinkedList class needs to know about the __Node
class. Initially, both the first and the last references point to the dummy node. The
append method is used to add elements to the LinkedList should a list be passed to
the constructor.

1 def __getitem__(self,index):
2 if index < self.numItems:
3 cursor = self.first
4 for i in range(index):
5 cursor = cursor.getNext()
6
7 return cursor.getItem()
8
9 raise IndexError("LInkedList index out of range")
10
11 def __setitem__(self,index,val):
12 if index < self.numItems:
13 for i in range(index):
14 cursor = cursor.getNext()
15
16 cursor.setItem(val)
17
18 raise IndexError("LinkedList assignment index out of range")

Listing 4.23 LinkedList Get and Set

Implementations for the indexed get and set operations are included in Listing4.23
largely as an example of traversing a linked list. They are of little practical value. If
random access to a list is desired, then the list class should be used. Linked lists are
not randomly accessible. They require linear search through the datatype to access a
particular location in the list. Each of these operations is O(n) where n is the value
of the index.
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4.10.1 LinkedList Concatenate

1 def __add__(self,other):
2 result = LinkedList()
3
4 cursor = self.first.getNext()
5
6 while cursor != None:
7 result.append(cursor.getItem())
8 cursor = cursor.getNext()
9
10 cursor = other.first.getNext()
11
12 while cursor != None:
13 result.append(cursor.getItem())
14 cursor = cursor.getNext()
15
16 return result

Listing 4.24 LinkedList Concatenate

Concatenation is an accessor method that returns a new list comprised of the two
original lists as shown in Listing4.24. The operation is once again O(n) for linked
lists as it was for the PyList datatype presented in Fig. 4.1. In this concatenation code
a variable called cursor is used to step through the nodes of the two lists. This is the
common method of stepping through a linked list. Set the cursor to the first element
of the linked list. Then use a while loop that terminates when the cursor reaches
the end (i.e. the special value None). Each time through the while loop the cursor is
advanced by setting it to the next node in the sequence.

Notice in the code that the dummy node from both lists (i.e. self and other) is
skipped when concatenating the two lists. The dummy node in the new list was
created when the constructor was called.

1 def append(self,item):
2 node = LinkedList.__Node(item)
3 self.last.setNext(node)
4 self.last = node
5 self.numItems += 1

Listing 4.25 LinkedList Append

The code in Listing4.25 is the first time we see a small advantage of a LinkedList
over a list. The append operation has a complexity of O(1) for LinkedLists where
with lists the complexity was an amortized O(1) complexity. Each append will
always take the same amount of time with a LinkedList. A LinkedList is also never
bigger than it has to be. However, LinkedLists take up about twice the space of a
randomly accessible list since there has to be room for both the reference to the item
and the reference to the next node in the list.

The code for the append method is quite simple. Since the self.last reference
points at the node immediately preceding the place where we want to put the new
node, we just create a new node and make the last one point at it. Then we make the
new node the new self.last node and increment the number of items by 1.
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1 def insert(self,index,item):
2 cursor = self.first
3
4 if index < self.numItems:
5 for i in range(index):
6 cursor = cursor.getNext()
7
8 node = LinkedList.__Node(item, cursor.getNext())
9 cursor.setNext(node)
10 self.numItems += 1
11 else:
12 self.append(item)

Listing 4.26 LinkedList Insert

Listing4.26 provides an insert implementation on linked lists. While it has the
same complexity as insert on a list, is quite a bit different for linked lists. Inserting
into a list is a O(n) operation where n is the number of elements that are in the list
after the insertion point since theymust all be moved down tomake room for the new
item. When working with a LinkedList the n is the number of elements that appear
before the insertion point because we must search for the correct insertion point.

This means that while inserting at the beginning of a list is a O(n) operation,
inserting at the beginning of a LinkedList is a O(1) operation. If you will have to do
many inserts near the beginning of a list, then a linked list may be better to use than
a randomly accessible list.

4.10.2 Other Linked List Operations

The other linked list operations are left as an exercise for the reader. In many cases,
the key to working with a linked list is to get a reference to the node that preceeds
the location you want to work with. For instance, to delete a node from a linked list
you merely want to make the next field of the preceeding node point to the node
following the node you wish to delete. Consider the sample linked list in Fig. 4.10.
To delete the second item (i.e. the “b”) from this list we want to remove the node
that contains the reference to the “b”. To do this we can use a cursor to find the node
preceding the one that references the “b”. Once found, the next field of the cursor
can be made to point to the node after the “b” as shown in Fig. 4.12.

Changing the next pointer of the cursor’s node to point to the node after the “b”
results in the node containing the “b” dropping out of the list. Since there are no
other references to the node containing the “b”, and actually to the “b” itself, the two
objects are garbage collected.

Finally, the sort operation is not applicable on linked lists. Efficient sorting algo-
rithms require random access to a list. Insertion sort, a O(n2) algorithm, would work,
but it would be highly inefficient. If sorting were required, it would be much more
efficient to copy the linked list to a randomly accessible list, sort it, and then build a
new sorted linked list from the sorted list.
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Fig. 4.12 Deleting a Node from a Linked List

4.11 Stacks and Queues

There are two other sequential data structures that are very common in computer
programming. A stack is a data structure where access is only at one end of the
sequence. New values are pushed onto the stack to add them to the sequence and
popped off the stack to remove them from the sequence.The run-time stack, described
in Chap.3, was one such instance of a stack. Stacks are used in many algorithms
in computer science. Stacks can be used to evaluate numeric expressions. They are
useful when parsing information. They can be used tomatch parenthesis in programs
and expressions. The operations on a stack are given in Fig. 4.13.

Stacks are called Last In/First Out or LIFO data structures. The last item pushed is
the first item popped. A Stack class can be implemented in at least a couple different
ways to achieve the computation complexities outlined in this table. Either a list or a
linked list will suffice. The code in Listing4.27 is an implementation of a stack with a
list. The implementation is pretty straight-forward. Themain program in Listing4.27
tests the stack datatype with a couple tests to make sure the code operates correctly.

Fig. 4.13 Complexity of Stack Operations
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1 class Stack:
2 def __init__(self):
3 self.items = []
4
5 def pop(self):
6 if self.isEmpty():
7 raise RuntimeError("Attempt to pop an empty stack")
8
9 topIdx = len(self.items)-1
10 item = self.items[topIdx]
11 del self.items[topIdx]
12 return item
13
14 def push(self,item):
15 self.items.append(item)
16
17 def top(self):
18 if self.isEmpty():
19 raise RuntimeError("Attempt to get top of empty stack")
20
21 topIdx = len(self.items)-1
22 return self.items[topIdx]
23
24 def isEmpty(self):
25 return len(self.items) == 0
26
27 def main():
28 s = Stack()
29 lst = list(range(10))
30 lst2 = []
31
32 for k in lst:
33 s.push(k)
34
35 if s.top() == 9:
36 print("Test 1 Passed")
37 else:
38 print("Test 1 Failed")
39
40 while not s.isEmpty():
41 lst2.append(s.pop())
42
43 lst2.reverse()
44
45 if lst2 != lst:
46 print("Test 2 Failed")
47 else:
48 print("Test 2 Passed")
49
50 try:
51 s.pop()
52 print("Test 3 Failed")
53
54 except RuntimeError:
55 print("Test 3 Passed")
56 except:
57 print("Test 3 Failed")
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58
59 try:
60 s.top()
61 print("Test 4 Failed")
62
63 except RuntimeError:
64 print("Test 4 Passed")
65 except:
66 print("Test 4 Failed")
67
68 if __name__=="__main__":
69 main()

Listing 4.27 The Stack Class Code

This code, if saved in a file called stack.py can be imported into other modules.
When this module is run by itself, the test main function will execute. When this
module is imported into another program, the main function will not execute because
the __name__ variable will not be equal to “__main__”.

A queue is like a stack in many ways except that instead of being a LIFO data
structure, queues areFIFO orFirst In/First Out data structures. The first item pushed,
is the first item popped. When we are working with a queue we talk of enqueueing
an item, instead of pushing it. When removing an item from the queue we talk of
dequeueing the item instead of popping it aswe did froma stack. The table in Fig. 4.14
provides details of the queue operations and their complexities.

Implementing a queue with the complexities given in this table is a bit trickier
than implementing the stack. To implement a queue with these complexities we need
to be able to add to one end of a sequence and remove from the other end of the
sequence in O(1) time. This suggests the use of a linked list. Certainly, a linked list
would work to get the desired complexities. However, we can still use a list if we
are willing to accept an amortized complexity of O(1) for the dequeue operation.
The Queue class code in Listing4.28 implements a queue with a list and achieves an
amortized complexity of O(1) for the dequeue operation.

Fig. 4.14 Complexity of Queue Operations
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1 class Queue:
2 def __init__(self):
3 self.items = []
4 self.frontIdx = 0
5
6 def __compress(self):
7 newlst = []
8 for i in range(self.frontIdx,len(self.items)):
9 newlst.append(self.items[i])
10
11 self.items = newlst
12 self.frontIdx = 0
13
14 def dequeue(self):
15 if self.isEmpty():
16 raise RuntimeError("Attempt to dequeue an empty queue")
17
18 # When queue is half full, compress it. This
19 # achieves an amortized complexity of O(1) while
20 # not letting the list continue to grow unchecked.
21 if self.frontIdx * 2 > len(self.items):
22 self.__compress()
23
24 item = self.items[self.frontIdx]
25 self.frontIdx += 1
26 return item
27
28 def enqueue(self,item):
29 self.items.append(item)
30
31 def front(self):
32 if self.isEmpty():
33 raise RuntimeError("Attempt to access front of empty queue")
34
35 return self.items[self.frontIdx]
36
37 def isEmpty(self):
38 return self.frontIdx == len(self.items)
39
40 def main():
41 q = Queue()
42 lst = list(range(10))
43 lst2 = []
44
45 for k in lst:
46 q.enqueue(k)
47
48 if q.front() == 0:
49 print("Test 1 Passed")
50 else:
51 print("Test 1 Failed")
52
53 while not q.isEmpty():
54 lst2.append(q.dequeue())
55
56 if lst2 != lst:
57 print("Test 2 Failed")
58 else:
59 print("Test 2 Passed")
60
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61 for k in lst:
62 q.enqueue(k)
63
64 lst2 = []
65
66 while not q.isEmpty():
67 lst2.append(q.dequeue())
68
69 if lst2 != lst:
70 print("Test 3 Failed")
71 else:
72 print("Test 3 Passed")
73
74 try:
75 q.dequeue()
76 print("Test 4 Failed")
77
78 except RuntimeError:
79 print("Test 4 Passed")
80 except:
81 print("Test 4 Failed")
82
83 try:
84 q.front()
85 print("Test 5 Failed")
86
87 except RuntimeError:
88 print("Test 5 Passed")
89 except:
90 print("Test 5 Failed")
91
92 if __name__=="__main__":
93 main()

Listing 4.28 The Queue Class Code

4.11.1 Infix Expression Evaluation

An infix expression is an expression where operators appear in between their
operands. For example, (6 + 5) * 4 is an infix expression because + appears between
the 6 and 5 and * appears between its operands. Python, being a programming lan-
guage, can evaluate infix expressions. However, let’s say we would like to write a
program that would evaluate expressions entered by the user. Can we do this in a
Python program? It turns out we can, and very easily. Python includes a function
that will treat a string like an expression to be evaluated and will return the result
of that evaluation. The function is called eval. Listing4.29 provides an example that
uses the eval function.
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1 def main():
2 expr = input("Please enter an infix expression: ")
3 result = eval(expr)
4 print("The result of",expr,"is",result)
5
6 if __name__ == "__main__":
7 main()

Listing 4.29 Demonstration of the eval Function

This is certainly a very interesting, albeit short, program. The eval function does
an awful lot of work for us. But, how does it work? It turns out we can write our own
eval function using a couple of stacks. In this section we describe an infix expression
evaluator. To make our job a bit easier, we’ll insist that the user enter spaces between
all operators (including parens) and operands. So for instance, the user might interact
as follows.

Please enter an infix expression: ( 6 + 5 ) * 4 - 9
The result of ( 6 + 5 ) * 4 - 9 = 35.0

The infix evaluator algorithm uses two stacks, an operator stack and an operand
stack. The operator stack will hold operators and left parens. The operand stack holds
numbers.

The algorithm proceeds by scanning the tokens of the infix expression from left
to right. You can do this quite easily in Python by splitting the input string and then
iterating over the list of strings from the input. The tokens are operators (including
parens) and numbers.

Each operator has a precedence associated with it. Multiplication and division
operators have the highest precedencewhile addition and subtraction are next. Finally
the left paren and right paren precedence are the lowest. A function called precedence
can be written so that given an operator, the precendence function returns the proper
precedence value. You can decide on your precedence values given the prescribed
restrictions.

To begin the operand stack and the operator stack are initialized to empty stacks
and a left paren is pushed on the operator stack.

For each token in the input we do the following:

1. If the token is an operator then we need to operate on the two stacks with the
given operator. Operating is described in Sect. 4.11.1.1.

2. If the token is a number then we push it on the number stack.

After scanning all the input and operating when required we operate on the stacks
one more time with an extra right paren operator. After operating the final time the
operator stack should be empty and the operand stack should have one number on it
which is the result. You pop the operand stack and print the number as your result.



130 4 Sequences

4.11.1.1 The Operate Procedure
The operate procedure should be a separate function. The operate procedure is given
an operator, the operator stack, and operand stack as arguments. To operate we do
the following:

• If the given operator is a left paren we push it on the operator stack and return.
• Otherwise, while the precedence of the given operator is less than or equal to the
precedence of the top operator on the operator stack proceed as follows:

1. Pop the top operator from the operator stack. Call this the topOp.
2. if topOp is a +,−, ∗, or/then operate on the number stack by popping the

operands, doing the operation, and pushing the result.
3. if topOp is a left paren then the given operator should be a right paren. If so, we

are done operating and we return immediately.

When the precedence of the given operator is greater than the precedence of
topOp we terminate the loop and push the given operator on the operator stack
before returning from operating.

4.11.1.2 Example
To see how this algorithm works it will help to look at an example. In the figures
the right-most underlined token is the token currently being processed and all tokens
to the left have already be processed. The operand stack and the operator stack are
labeled in the diagrams. The topOp operator and the current operator are given as
well.

In Fig. 4.15 the tokens (6 + 5 have been processed and pushed onto their respective
stacks. The right paren is now being processed and operate was called to process this
operator. In the operate procedure the topOp is a “+” and “+” has higher precendence
than “)” so the right paren cannot be pushed on top of the addition operator. So, we
pop the operator stack and operate. Since we popped a “+” we then pop the two

Fig. 4.15 Infix Evaluation
Step 1
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Fig. 4.16 Infix Evaluation
Step 2

Fig. 4.17 Infix Evaluation
Step 3

numbers from the operand stack, add them together, and push the result as shown in
Fig. 4.16.

After pushing the 11 on the stack we found that the top operator was a left paren.
In that case we popped the left paren and returned immediately leaving just the
single left paren on the operator stack. Then the evaluator proceeded by finding the
“*” operator and pushing it and then finding the 4 and pushing it on the operand
stack. Next, the “–” operator cannot be pushed onto the operator stack because its
precedence is lower then “*”. Operate is called and the topOp dictates that we pop
two numbers, multiply them, and push the result as shown in Fig. 4.17. The “–”
operator has higher precedence than the “(” so it is just pushed onto the operator
stack. The 9 is processed and pushed onto the operand stack as shown in Fig. 4.17.

To finish up the evaluation of the infix expression, operate is called one more time
with “)” as the operator. This forces the 9 to be subtracted from the 44 leaving 35
on the operand stack and the operator stack empty. The final result is 35 and the
evaluator pops the result from the operand stack and returns it as the result and that
is how the Python eval function works. It turns out that the Python eval function is
a bit more sophisticated than this example. However, the effect of evaluating simple
infix expressions is the same.
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4.11.2 Radix Sort

The radix sort algorithm sorts a sequence of strings lexicographically, as they would
appear in a phonebook or dictionary. To implement this algorithm the strings are read
from the source (e.g. a file or the internet) and they are placed in a queue called the
mainQueue. As the strings are read and placed in the queue the algorithm keeps track
of the length of the longest string that will be sorted. We’ll call this length longest.

For the radix sort algorithm to work correctly, all the strings in the mainQueue
need to be the same length, which is not likely of course. If a string is shorter than the
longest string it can be padded with blanks. To assist, it is handy to have a function
that returns a character of a string like the charAt function in Listing4.30.

1 def charAt(s,i):
2 if len(s) - 1 < i:
3 return " "
4
5 return s[i]

Listing 4.30 The charAt Function

The charAt function returns the ith character of the string s and a blank if i is
greater than or equal to the length of s. With the use of this function the strings in the
mainQueue can be different lengths and the charAt function will make them look
like they are the same length.

In addition to the mainQueue, there are 256 queues created and placed into a list
of queues, called queueList. There are 256 different possible ASCII values and one
queue is created for each ASCII letter. Since most ASCII characters are in the range
of 0–127 the algorithm probably won’t use the queues at indices 128–255.

The sorting algorithmworks by removing a string frommainQueue. It looks at the
last character, starting at longest-1, in each string and placing the string on a queue
that corresponds to the character’s ASCII value. So, all strings ending with ‘a’ go on
the ‘a’ queue and so on. To find the index into queueList the ord function is used.
For instance, writing ord(“a”) would return a 65 which is the index to use into the
queueList for the character “a”.

Then, starting with the first queue in the queueList, all strings are dequeued from
each queue and placed on the main queue. We empty each queue first before pro-
ceeding to the next queue in the queueList. This is repeated until all letter queues are
empty.

Then, we go back to removing all elements from the main queue again, this time
looking at the second to the last letter of each word. Each string is placed on a queue
in the queueList depending on its second to last letter. The process is repeated until
we get to the first letter of each string. When we are done, all strings are on the main
queue in sorted order. To complete the algorithm all strings are removed from the
mainQueue one more time in sorted order.
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4.11.2.1 Radix Sort Example
To see how radix sort works we’ll consider an example where the words bat, farm,
barn, car, hat, and cat are sorted alphabetically. In the figures in this section each
queue is drawn vertically with the front of the queue being at the bottom of the box
and the rear of the queue being at the top of each box. While there are 256 queues
plus a mainQueue created by radix sort, the example will show just the queues that
are used while sorting these words. The first queue in the list is the queue for spaces
in a string. Figure4.18 depicts the strings on the mainQueue after they have been
read from their source.

The first step of the algorithmprocesses themainQueue by emptying it and placing
each string in the queue that corresponds to its fourth letter (the maximum string
length). This results in farm and barn being placed on the m and n queues. The other
strings are placed on the space queue as shown in Fig. 4.19.

Then, all the strings are dequeued from the three non-empty queues and placed
back on the mainQueue in the order that they were dequeued as shown in Fig. 4.20.

Once again, the process is repeated for the third letter in each string. This results
in using the r and t queues as shown in Fig. 4.21.

Fig. 4.18 Radix Sort Step 1

Fig. 4.19 Radix Sort Step 2 - 4th letter
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Fig. 4.20 Radix Sort Step 3

Fig. 4.21 Radix Sort Step 4—3rd letter

Again, the strings are brought back to the mainQueue in the order they were
dequeued as depicted in Fig. 4.22.

And the process is repeated again for the second letter in each string. All strings
have an a as their second character so they all end up on the a queue (Fig. 4.23).

And they all go back to the mainQueue as shown in Fig. 4.24. No change from
step 5 in this case.

Finally, we look at the first letter in each string and the sort is almost complete as
shown in Fig. 4.25.

Bringing all the strings back to themainQueue results in themainQueue containing
all the strings in sorted order. The mainQueue can be emptied at this point and the
strings can be processed in sorted order as depicted in Fig. 4.26.

Radix sort is pretty simple. It is called radix sort because a radix is like a decimal
pointmoving backwards through the string.Wemove the decimal point one character
at a time until we get to the first character in each string.
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Fig. 4.22 Radix Sort Step 5

Fig. 4.23 Radix Sort Step 6—2nd letter

Fig. 4.24 Radix Sort Step 7
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Fig. 4.25 Radix Sort Step 8—1st letter

Fig. 4.26 Radix sort step 9

4.12 Chapter Summary

Chapter four explored the use of linear sequences in computer programming. These
sequences come in many forms including randomly accessible lists, matrices, linked
lists, stacks, and queues. We also saw that a two-dimensional matrix is just a list
of lists. The chapter also explored operations as related to these datatypes and the
complexity of these operations.

Algorithms were also an important part of chapter four. The selection sort, merge
sort, and quicksort algorithms were studied along with their computational complex-
ities. Minimax was presented as an interesting case study on using two-dimensional
matrices and recursion in a program. The infix evaluator and radix sort algorithms
were also presented as examples of using stacks and queues.

Having read this chapter you should have an understanding of abstract data types
like lists, stacks, and queues. You should understand how an abstract data type is
implemented, how the implementation can affect the complexity of its operations,
and at least a few algorithms that use these data types in their implementations.
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4.13 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. What is the best case, worst case, and average case complexity of selection sort,
merge sort, and the quicksort algorithms?

2. How can the append operation achieve O(1) complexity when it sometimes runs
out of space to append another item?

3. What is the complexity of the concatenation operator, the + operator, for lists?
4. What is the complexity of the deletion operator for lists?
5. When sorting items in a list, what method must be defined for those elements?

Why?
6. Why does quicksort perform better than merge sort?
7. Under what conditions would it be possible for merge sort to perform better than

quicksort?
8. Summarize what happens when a list is partitioned.
9. Summarize what happens when two lists are merged in the merge sort algorithm.

10. What is the purpose of the start parameter to the select function of the selection
sort algorithm?

11. What are the advantages of a linked list over a randomly accessible list imple-
mentation of a list data type?

12. What are the advantages of a randomly accessible list over a linked list imple-
mentation of a list data type?

13. How does a stack differ from a queue in how we access it?
14. What is the complexity of the radix sort algorithm?

4.14 Programming Problems

1. Write a program that times the quicksort, the merge sort, and the built-in sort
algorithms in Python to discover which one is better and to see their relative
speeds. To do this you should implement two sequence classes, a QSequence
and a MSequence. The QSequence can inherit from the PyList class and should
implement its own sort algorithm using the quicksort code presented in this
chapter. TheMSequence should be a similar class using themerge sort algorithm.
You can sort anything you like. If you choose to sort objects of some class you
define, remember that you must implement the __lt__ method for that class.
Be sure to randomize the elements in the sequence prior to sorting them using
quicksort. Generate an XML file in the plot format to plot three sequences. Plot
the time it takes to both randomize and quicksort a sequence. Then plot the
time it takes to merge sort a sequence. Finally, plot the time it takes to sort the
same sequence using the built-in sort method. The complexity of merge sort and
quicksort is O(n log n) so by computational complexity the three algorithms are
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equivalent. What does the experimental data reveal about the two algorithms?
Put a comment at the top of your program giving your answer.
To effectively test these three sorting algorithms you should sort items up to a
list size of at least 1000 elements. You can time the sorts in increments of 100.
Depending on your computer, you may need to play with the exact numbers to
some degree to get a good looking graph.

2. The merge sort algorithm is not as commonly used as the quicksort algorithm
because quicksort is an inplace sort while merge sort requires at least space for
one extra copy of the list. In fact, merge sort can be implemented with exactly
one extra copy of the list. In this exercise you are to re-implement the merge sort
algorithm to use one extra copy of the list instead of allocating a new list each
time two lists are merged.
The extra list is allocated prior to calling the recursive part of the merge sort
algorithm. Then,with each alternating level of recursion themerge sort algorithm
copies to the other list, flipping between the two lists. To accomplish this, the
mergeSortRecursively function should be given a new list of lists called lists
instead of the seq list. At lists[0] is the seq list and at lists[1] is the extra copy of
the list. One extra parameter is given to the mergeSortRecursively function. The
index of the list to merge from is also provided. This index will flip back and
forth between 0 and 1 as each recursive call tomergeSortRecursively occurs. This
flipping of 0 to 1 to 0 and so on can be accomplished using modular arithmetic
by writing:
listToMergeFromIndex = (listToMergeFromIndex + 1) % 2

The percent sign is the remainder after dividing by 2. Adding 1 and finding the
remainder after dividing by twomeans that listToMergeFromIndex flips between
0 and 1. So, the call is made as mergeSortRecursively(listToMergeFromIndex,
lists, start, stop). The mergeSortRecursively function must return the new index
of the list to merge from.
One part of this new mergeSortRecursively function is a little tricky. There may
be one more level of recursion on the left or right side for the two recursive calls
to mergeSortRecursively. If this is the case, then the result from either the left
or right half must be copied into the same list as the other half before the two
halves can be successfully merged.
When mergeSortRecursively returns to the mergeSort function the result of sort-
ing may be in the original sequence or it may be in the copy. If it is in the copy,
then the result must be copied back to the original sequence before returning.
Complete this two list version of merge sort as described in this exercise and test
it thoroughly. Then time this version of merge sort and compare those timings
with the version of merge sort presented in the chapter and with the quicksort
implementation presented in this chapter. Construct an XML file in the format
read by the PlotData.py program and plot their corresponding timing diagrams
to see how this algorithm performs when compared to the other two.

3. Complete the tic tac toe program described in the section on 2-dimensional
mactrices. Use the code from Sect. 22.5 as your starting point. Then complete
the sections that say they are left as an exercise for the student.
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4. Complete the LinkedList datatype by implementing the delete, equality, iterate,
length, andmembership operations.Make sure they have the complexity given in
the LinkedList complexities table. Then, implement a test program in your main
function to thoroughly test the operations you implemented. Call the module
linkedlist.py so that you can import this into other programs that may need it.

5. Implement a queue data type using a linked list implementation. Create a set of
test cases to throroughly test your datatype. Place the datatype in a file called
queue.py and create a main function that runs your test cases.

6. Implement a priority queue data type using a linked list implementation. In a
priority queue, elements on the queue each have a priority where the lower
the number the higher the priority. The priorities are usually just numbers. The
priority queue has the usual enqueue, dequeue, and empty methods. When a
value is enqueued it is compared to the priority of other items and placed in front
of all items that have lower priority (i.e. a higher priority number).

7. Implement a stack data type using a linked list implementation. Create a set of
test cases to throroughly test your datatype. Place the datatype in a file called
stack.py and create a main function that runs your test cases.

8. Implement the infix evaluator program described in the chapter. You should
accept input and produce output as described in that section of the text. The
input tokens should will all be separated by blanks to make retrieval of the
tokens easy. Don’t forget to convert your number tokens from strings to floats
when writing the program.

9. Implement the radix sort algorithm described in the chapter. Use the algorithm to
sort a list of words you find on the internet or elsewhere. Write a main program
that tests your radix sort algorithm.

10. Searching a sequence of items for a particular item takes O(n) time on average
where n is the number of items in the list. However, if the list is sorted first,
then searching for an item within the list can be done in O(log n) time by
using a divide and conquer approach. This type of search is called binary search.
The binary search algorithm starts by looking for the item in the middle of the
sequence. If it is not found there then because the list is sorted the binary search
algorithm knows whether to look in the left or right side of the sequence. Binary
search reports True or False depending on whether the item is found. It is often
written recursively being given a sequence and the beginning and ending index
values in which to search for the item. For instance, to search an entire sequence
called seq, binary search might be called as binarySearch(seq, 0, len(seq)–1).
Write a program that builds a PyList or just a Python list of values, sorts them,
and then looks up random values within the list. Compute the lookup times for
lists of various sizes and record your results in the PlotData.py format so you
can visualize your results. You should see a O(log n) curve if you implemented
binary search correctly.
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In the last chapter we studied sequences which are used to keep track of lists of
things where duplicate values are allowed. For instance, there can be two sixes in a
sequence or list of integers. In this chapter we look at sets where duplicate values
are not allowed. After examining sets we’ll move on to talk about maps. Maps may
also be called dictionaries or hash tables.

The term hash table actually suggests an implementation of a set or map. The
primary focus of this chapter is in understanding hashing. Hashing is a very important
concept in Computer Science because it is a very efficient method of searching for a
value. To begin the chapterwe’llmotivate our interest in hashing, thenwe’ll develop a
hashing algorithm for finding values in a set. We’ll also apply hashing to the building
of sets and maps. Then we’ll look at an important technique that uses hashing called
memoization and we’ll apply that technique to a couple of problems.

5.1 Chapter Goals

In this chapter you learn how to implement a couple of abstract datatypes: sets and
maps. You will read about the importance of hashing for both of these datatypes.
You’ll also learn about the importance of understanding the difference between mu-
table and immutable data. By the end of the chapter you should be able to answer
these questions.

• What is the complexity of finding a value in a set?
• What is the load factor and how does it affect the overall efficiency of lookup in
a hash table?

• When would you use an immutable set?
• When might you want a mutable set?
• When is there an advantage to using memoization in a problem?
• Under what circumstances can it be useful to use a map or dictionary?
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Again, therewill be some interestingprogrammingproblemchallenges in this chapter
including optimization of the tic tac toe game first presented in the last chapter and
a Sudoku puzzle solver. Read on to discover what you need to know to solve these
interesting problems.

5.2 Playing Sudoku

Many people enjoy solving Sudoku puzzles. To solve a sudoku puzzle you must find
the correct numbers to fill a 9× 9matrix. All numbers must be 1 through 9. Each row
must have one each of 1 through 9 in it. The same is true for each column. Finally,
there are nine 3× 3 squares within the 9× 9 matrix that must also have each of 1
through 9 in them. To begin, you are given a puzzle with some of the locations known
as shown in Fig. 5.1. Your job is to find the rest of the numbers given the numbers
that already appear in the puzzle.

A common way to solve these puzzles is by the process of elimination. It helps to
write down the possible values for a puzzle and then eliminate the possible values

Fig. 5.1 A Sudoku Puzzle
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Fig. 5.2 Annotated Sudoku Puzzle

one by one. For instance, the puzzle above can be annotated with possible values in
for the unknowns as shown in Fig. 5.2.

To begin solving the puzzle, we can immediately eliminate 8, 3, and 9 from the
second column of the puzzle for those cells that do not contain 8, 3, or 9. None of
those numbers could appear in any other cell in the second column because they are
already known. Likewise, the numbers 8, 6, and 4 can be eliminated from some cells
in the third row in the puzzle because those numbers already appear in other cells.
Applying rules like these reduces the number of possible values for each cell in the
puzzle. Figure5.3 shows the puzzle after applying some of these rules.

If we spend some time thinking about Sudoku and how to solve it we can derive
two rules that can be used to solve many sudoku puzzles. These two rules can be
applied to any group within the puzzle. A group is a collection of nine cells that
appear in a row, column, or square within the puzzle. Within each cell is a set of
numbers representing the possible values for the cell at some point in the process of
reducing the puzzle. Here are the two rules.

• RULE 1—The first rule is a generalization of the process that we used above to
remove some values from cells. Within a group look for cells that contain the same
set of possible values. If the cardinality of the set (i.e. the number of items in the
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Fig. 5.3 Sudoku Puzzle After One Pass

set) matches the number of duplicate sets found, then the items of the duplicate
sets may safely be removed from all non-duplicate sets in the group. This rule
applies even in the degenerative case where the number of duplicate sets is 1 and
the size of that set is 1. The degenerative case is what we used above to remove
single items from other sets. This rule can be applied to Fig. 5.3 to remove the
2 from all cells in the seventh row of the puzzle except the 7th column where 2
appears by itself.

• RULE 2—The second rule looks at each cell within a group and throws away all
items that appear in other cells in the group. If we are left with only one value in
the chosen cell, then it must appear in this cell and the cell may be updated by
throwing away all other values that appear in the chosen cell. Applying this rule to
the fifth row in Fig. 5.3 results in the fourth column being reduced to containing a
1 because 1 does not appear in any other cell in the 5th row. This rule also applies
in the last row of the puzzle where 2 is only possible in the second column after
removing 1, 5, and 6 from that cell because they appear within other cells in that
row.

Note that the puzzle in Fig. 5.3 is not fully reduced. The reduction process can be
applied iteratively until nomore reductions are possible. The sudoku solver algorithm
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keeps applying this reduction process until no more changes are made during a pass
of reductions on all the groups within the puzzle. Applying these two rules in this
manner will fully reduce many sudoku puzzles.

5.3 Sets

The reduction algorithm for sudoku puzzles manipulates sets of numbers and elimi-
nates possible values from those sets as the reduction progresses. A set is a collection
that does not allow duplicate values. Sets can be composed of any values. Integers,
employee objects, characters, strings, literally any object in Python could be an ele-
ment of some set. A set has a cardinality. The cardinality of a set is the number of
items in it.

Sets are objects that have several commonly defined operations on them. These op-
erations are sometimes binary operations involvingmore than one set, and sometimes
retrieve information about just one set. The table in Fig. 5.4 describes commonly de-
fined operations on sets and their associated computational complexities. Python has
built-in support for two types of sets, the set and frozenset classes. The frozenset
class is immutable. Objects of the set class can be mutated. In Fig. 5.4 the variable s
must be a set and the variable t must be an iterable sequence, which would include
sets.

Infix operators are also defined as syntactic sugar for some of the operations
defined in Fig. 5.4. For subset containment you can write s < = t. For proper subset
you can write s < t. A proper subset is a subset that has at least one less element than
its superset. For superset you can write s > = t or s > t for proper superset. For the
union operation, writing s | t is equivalent to writing s.union(t). And for intersection,
s & t is equivalent to writing s.intersection(t). Writing s-t is the same as writing
s.difference(t) and s^t is equivalent to the symmetric difference operator.

The operations in Fig. 5.5 are not defined on the frozenset class since they mutate
the set s. They are only defined on the set class.

Again, there are operators for some of the methods presented in Fig. 5.5. The
mutator union method can be written s |= t. Intersection update can be written as
s &= t. Finally, the symmetric difference update operator is written s^ = t. While
these operators are convenient, they are not well-known and code written by calling
the methods in the table above will be more descriptive.

The computational complexities presented above are surprising! How can set
membership be tested in O(1) time? From what has been presented so far, it should
take O(n) time to test set membership. After all, we would have to look at all the
elements in the set, or at least half on average, to know if an item was in the set. How
can the union of two sets be computed in O(n) time if we are to insure there are
no duplicates in the set? It would seem that the union of two sets would take O(n2)

time to compute unless the set could be sorted in some way. But sorting elements of
a set is not always possible since not all elements of sets have an ordering.
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Fig. 5.4 Set and Frozen Set Operations

Fig. 5.5 Mutable Set Operations

5.4 Hashing

If it is possible to implement a set membership test in O(1) time, then we can imple-
ment the other operations above with the complexities we have indicated. Without a
O(1) membership test, taking the union of two sets would take a lot longer as indi-
cated above. Testing set membership in O(1) time is accomplished using hashing.
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Hashing is an extremely important concept in Computer Science and is related to
random access in a computer. As we saw back in Chap. 2, accessing any location
within a list can be accomplished in O(1) time. This is the principle of random ac-
cess. A randomly accessible list means any location within the list can be accessed
in O(1) time. To access a location in a list we need the index of the location we wish
to access. The index serves as the address of an item in the list. Once we have stored
an item in the list, we must remember its index if we wish to retrieve it in O(1) time.
Without the index we would have to search for the item in the list which would take
O(n) time, not O(1) time.

So, if we wanted to implement a set where we could test membership in O(1)
time we might think of storing the items of the set in a list. We would somehow have
to remember the index where each item was stored to find it again in O(1) time. This
seems improbable at first. However, what if the item could be used to figure out its
address? This is the insight that led to hashing. Each object in the computer must
be stored as a string of zeroes and ones since computers speak binary. These zeroes
and ones can be interpreted however we like, including as the index into a list. This
concept is so important that Python (andmany other modern languages) has included
a function called hash that can be called on any object to return an integer value for
an object. We’ll call this value the object’s hash code or hash value. Consider these
calls to the hash function.

Python 3.2 (r32:88452, Feb 20 2011, 10:19:59)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> hash("abc")
-1600925533
>>> hash("123")
1911471187
>>> hash(45)
45
>>> hash(45.0)
45
>>> hash(45.3)
1503225491
>>> hash(True)
1
>>> hash(False)
0
>>> hash([1,2,3])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: ’list’
>>>

While most objects are hashable, not every object is. In particular, mutable objects
like lists may not be hashable because when an object is mutated its hash value may
also change. This has consequenceswhen using hash values in data structures aswe’ll
see later in this chapter. In addition to built-in types, Python let’s the programmer
have some control over hash codes by implementing a __hash__method on a class. If
you write a __hash__ method for a class you can return whatever hash value integer
you like for instances of that class.
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Notice that calling hash on the string “abc” returned a negative value while other
calls to hash returned extremely large integers. Clearly some work has to be done
to convert this hash integer into an acceptable index into a list. Read on to discover
how hash values are converted into list indices.

5.5 The HashSet Class

We can use a hash value to compute an index into a list to obtain O(1) item lookup
complexity. To hide the details of the list and the calling of the hash function to find
the index of the item, a set class can be written. We’ll call our set class HashSet,
not to be confused with the built-in set class of Python. The built-in set class uses
hashing, too. The HashSet class presented in this section shows you how the set
class is implemented. To begin, HashSet objects will contain a list and the number
of items in the list. Initially the list will contain a bunch of None values. The list
must be built with some kind of value in it. None serves as a null value for places
in the list where no value has been stored. The list isn’t nearly big enough to have
a location for every possible hash value. Yet, the list can’t possibly be big enough
for all possible hash values anyway. In fact, as we saw in the last section, some hash
values are negative and clearly indices into a list are not negative. The conversion of
a hash value to a list index is explained in more detail in Sect. 5.5.1. The HashSet
constructor is given in Listing 5.1.

1 class HashSet:
2 def __init__(self,contents=[]):
3 self.items = [None] * 10
4 self.numItems = 0
5
6 for item in contents:
7 self.add(item)

Listing 5.1 The HashSet Constructor

5.5.1 Storing an Item

To store an item in a hash set we first compute its index using the hash function.
There are two problems that must be dealt with. First, the list that items are stored
in must be finite in length and definitely cannot be as long as the unique hash values
we would generate by calling the hash function. Since the list must be shorter than
the maximum hash value, we pick a size for our list and then divide hash values by
the length of this list. The remainder (i.e. the result of the % operator, called the mod
operator) is used as the index into the list. The remainder after dividing by the length
of the list will always be between 0 and the length of the list minus one even if the
hash value is a negative integer. Using the mod operator will give us valid indices
into a list of whatever size we choose.
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There is another problem we must deal with. Hash values are not necessarily
unique. Hash values are integers and there are only finitely many integers possible in
a computer. In addition, because we divide hash values by the length of the list, the
remainders, or list indices, will be even less unique than the original hash values. If
the list length is 10, then a hash value of 44 and –6 will both result in trying to store
a value at index 4 in the list. This isn’t possible of course.

5.5.2 Collision Resolution

Consider trying to store both “Cow” and “Fox” using hashing in a list whose length
is 10. The hash value of “Cow” is –1432160826 and the hash value of “Fox” is
1462539404. When we mod both values by 10 the remainder is 4 for both hash
values indicating they should both be stored at the fifth location in a list.

When two objects need to be stored at the same index within the hash set list,
because their computed indices are identical, we call this a collision. It is necessary
to define a collision resolution scheme to deal with this. There are many different
schemes that are possible. We’ll explore a scheme called Linear Probing. When a
collision occurs while using linear probing, we advance to the next location in the
list to see if that location might be available. We can tell if a location is available if
we find a None value in that spot in the list. It turns out that there is one other value
we might find in the list that means that location is available. A special type of object
called a __Placeholder object might also be stored in the list. The reason for this
class will become evident in the next section. For now, a None or a __Placeholder
object indicates an open location within the hash set list. The code in Listing 5.1
takes care of adding an item into the HashSet list and is a helper function for the
actual add method.

1 def __add(item,items):
2 idx = hash(item) % len(items)
3 loc = -1
4
5 while items[idx] != None:
6 if items[idx] == item:
7 # item already in set
8 return False
9
10
11 if loc < 0 and type(items[idx]) == HashSet.__Placeholder:
12 loc = idx
13
14 idx = (idx + 1) % len(items)
15
16 if loc < 0:
17 loc = idx
18
19 items[loc] = item
20
21 return True

Listing 5.2 HashSet Add Helper Function
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The code in Listing 5.2 does not add an item that is already in the list. The while
loop is the linear probing part of the code. The index idx is incremented, mod the
length of the list, until either the item is found or aNone value is encountered. Finding
a None value indicates the end of the linear chain and hence the end of any linear
searching that must be done to determine if the item is already in the set. If the item is
not in the list, then the item is added either at the location of the first __Placeholder
object found in the search, or at the location of the None value at the end of the chain.

There is one more issue that must be dealt with when adding a value. Imagine
that only one position was open in the hash set list. What would happen in the code
above? The linear search would result in searching the entire list. If the list were full,
the result would be an infinite loop. We don’t want either to happen. In fact, we want
to be able to add an item in amortized O(1) time. To insure that we get an amortized
complexity of O(1), the list must never be full or almost full.

5.5.3 The Load Factor

The fullness of the hash set list is called its load factor.We can find the load factor of a
hash set by dividing the number of items stored in the list by its length. A really small
load factor means the list is much bigger than the number of items stored in it and
the chance there is a collision is small. A high load factor means more efficient space
utilization, but higher chance of a collision. Experimentation can help to determine
optimal load factors, but a reasonablemaximum load factor is 75% full.When adding
a value into the list, if the resulting load factor is greater than 75% then all the values
in the list must be transferred to a new list. To transfer the values to a new list the
values must be hashed again because the new list is a different length. This process
is called rehashing. In the hash set implementation we chose to double the size of
the list when rehashing was necessary.

The code in Listing 5.3 calls the __add function from Listing 5.2. This code and
the __add method are in the HashSet class. The __add and __rehash functions are
hidden helper functions used by the publicly accessible add method.

1 def __rehash(oldList, newList):
2 for x in oldList:
3 if x != None and type(x) != HashSet.__Placeholder:
4 HashSet.__add(x,newList)
5
6 return newList
7
8 def add(self, item):
9 if HashSet.__add(item,self.items):
10 self.numItems + = 1
11 load = self.numItems / len(self.items)
12 if load > = 0.75:
13 self.items = HashSet.__rehash(self.items,[None]*2*len(self.items))

Listing 5.3 HashSet Add
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Since the load factor is managed, the amortized complexity of adding a value to
the list is O(1). This means the length of any chain within the list will be a finite
length independent of the number of items in the hash set.

5.5.4 Other HashSet Operations

Deleting a value from a hash set means first finding the item. This may involve doing
a linear search in the chain of values that reside at a location in the list. If the value
to be deleted is the last in a chain then it can be replaced with a None. If it is in the
middle of a chain then we cannot replace it with None because this would cut the
chain of values. Instead, the item is replaced with a __Placeholder object. A place
holder object does not break a chain and a linear probe continues to search skipping
over placeholder objects when necessary. The remove helper function is given in
Listing 5.4.

1 class __Placeholder:
2 def __init__(self):
3 pass
4
5 def __eq__(self,other):
6 return False
7
8 def __remove(item,items):
9 idx = hash(item) % len(items)
10
11 while items[idx] != None:
12 if items[idx] == item:
13 nextIdx = (idx + 1) % len(items)
14 if items[nextIdx] == None:
15 items[idx] = None
16 else:
17 items[idx] = HashSet.__Placeholder()
18 return True
19
20 idx = (idx + 1) % len(items)
21
22 return False

Listing 5.4 HashSet Remove Helper Function

When removing an item, the load factor may get too low to be efficiently using
space in memory. When the load factor dips below 25%, the list is again rehashed to
decrease the list size by one half to increase the load factor. The remove method is
provided in Listing 5.5.
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1 def remove(self, item):
2 if HashSet.__remove(item,self.items):
3 self.numItems -= 1
4 load = max(self.numItems, 10) / len(self.items)
5 if load <= 0.25:
6 self.items = HashSet.__rehash(self.items,[None]*int(len(self.items)/2))
7 else:
8 raise KeyError("Item not in HashSet")

Listing 5.5 HashSet Remove

For the same reason that adding a value can be done in O(1) time, deleting a
value can also be done with an amortized complexity of O(1). The discard method
is nearly the same of the remove method presented in Listing 5.5 except that no
exception is raised if the item is not in the set when it is discarded.

To find an item in a hash set involves hashing the item to find its address and then
searching the possible chain of values. The chain terminates with a None. If the item
is in the chain somewhere then the __contains__ method will return True and False
will be returned otherwise. The method in Listing 5.6 is called when item in set is
written in a program.

1 def __contains__(self, item):
2 idx = hash(item) % len(self.items)
3 while self.items[idx] != None:
4 if self.items[idx] == item:
5 return True
6
7 idx = (idx + 1) % len(self.items)
8
9 return False

Listing 5.6 HashSet Membership

Finding an item results in O(1) amortized complexity as well. The chains are kept
short as long as most hash values are evenly distributed and the load factor is kept
from approaching 1.

To iterate over the items of a set we need to define the __iter__ method to yield
the elements of the HashSet. The method traverses the list of items skipping over
placeholder elements and None references. Listing 5.7 provides the code for the
iterator.

1 def __iter__(self):
2 for i in range(len(self.items)):
3 if self.items[i] != None and type(self.items[i]) != HashSet.__Placeholder:
4 yield self.items[i]

Listing 5.7 Set Iteration

Many of the other set operations on the HashSet are left as an exercise for the
reader. However, most of them can be implemented in terms of the methods already
presented in this chapter. Consider the difference_update method. It can be imple-
mented using the iterator, the membership test, and the discard method. The code in
Listing 5.8 provides the implementation for the difference_update method.
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1 def difference_update(self, other):
2 # make a copy of the list because we can’t
3 # modify the list as we iterate over it.
4 items = list(self.items)
5 for x in items:
6 if x != None and type(x)!= HashSet.__Placeholder and x in other:
7 self.discard(x)

Listing 5.8 HashSet Difference Update

The difference_update method presented in Listing 5.8 is a mutator method be-
cause it alters the sequence referenced by self. Compare that with the difference
method in Listing 5.9 which does not mutate the object referenced by self. Instead,
the difference method returns a new set which consists of the difference of self and
the other set.

1 def difference(self, other):
2 result = HashSet(self)
3 result.difference_update(other)
4 return result

Listing 5.9 HashSet Difference

The difference method is implemented using the difference_update method on the
result HashSet. Notice that a new set is returned. The hash set referenced by self is
not updated. The code is simple and it has the added benefit that if difference_update
is correctly written, so will this method. Programmers should always avoid writing
duplicate code when possible and difference and difference_udpate are nearly identi-
cal except that the difference method performs the difference on a newly constructed
set instead of the set that self references.

5.6 Solving Sudoku

Using a set or a HashSet datatype, we now have the tools to solve most sudoku
puzzles. A puzzle can be read from a file where known values are represented by
their digit and unknown values are X’s as in the puzzle below.

x x x x x x x x x
x x x x 1 x x 9 2
x 8 6 x x x x 4 x
x x 1 5 6 x x x x
x x x x x 3 6 2 x
x x x x x x 5 x 7
x 3 x x x x x 8 x
x 9 x 8 x 2 x x x
x x 7 x x 4 3 x x

Reading the datafile can be done a line at a time. Splitting the line will provide
a string with each known and unknown value as a separate item in the list. When
an X is encountered a set containing all values 1–9 can be constructed, just as you
would if solving sudoku by hand. When a known value is found a set with the known
number in it can be constructed.
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The sets are added to a two-dimensional matrix. The matrix is a list of lists. So
reading a line corresponds to reading a row of the matrix. Each line becomes a list
of sets. Each list of sets is added to a list we’ll call the matrix. So, matrix[row][col]
is one set within the sudoku puzzle.

There are 81 sets within a sudoku puzzle. However, each set is a member of three
groups: the row, the column, and the square in which it resides. The rules presented
in the sudoku puzzle description above each deal with reducing a set within one of
these groups. After reading the input from the file and forming the matrix with the
81 sets, 27 groups are formed by creating a list of groups.

A shallow copy of each row is first appended to the list of groups. A shallow copy
means that each of the sets is the same set that was created when the puzzle was read.
A deep copy would create a copy of each of the 81 sets. A shallow copy of a list does
not copy the sets within the list. Calling list on a list will make a shallow copy.

Another group is formed for each column and those groups are appended to the list
of groups. Finally, a group is formed for each square and those groups are appended
to the list of groups. When all done, there is one groups list with 27 groups in it.
When forming these groups it is critical that the same set appears in each of three
groups. This is because when a row is reduced, we want the changes in that row to
be reflected in the columns and squares where the elements of the row also appear.

Solving a sudoku puzzle means reducing the number of items in each set of
a group according to the two rules presented in Sect. 5.2. Writing a function called
reduceGroup that is given a list of 9 sets to reduce can help. The function reduceGroup
should return True if it was able to reduce the group and False if it was not. Given
this reduceGroup function, the reduce function is as defined in Listing 5.10.

1 def reduce(matrix):
2 changed = True
3 groups = getGroups(matrix)
4
5 while changed:
6 changed = reduceGroups(groups)

Listing 5.10 The Sudoku Reduce Function

This algorithm is quite simple, and yet very powerful. It is different than any
other algorithms that have been presented so far in this text. The concept is quite
simple: keep reducing until no more reductions are possible. We are guaranteed that
it will terminate since each iteration of the algorithm reduces the number of items in
some of the sets of the puzzle. We never increase the size of any of these sets. Once
we return from this function we may or may not have a solution. There are some
puzzles that will not be solved by this sudoku solver because the two rules that are
presented above are not powerful enough for all puzzles. There are some situations
where the number of items in a set cannot be reduced by looking at just one group.
You would have to look at more than one group at the same time to figure out how
to reduce the number of sets. Hold on, you don’t need to figure out any more rules.
The next chapter will present an algorithm for solving all sudoku puzzles, even the
very hardest of them.
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The rules presented in this chapter will solve the sudoku puzzle given in this
section and many others. Sudoku puzzles one through six on the text’s website can
be solved by this sudoku solver. The reduceGroups function abovewould presumably
call reduceGroup on each of the groups in its list and it would return True if any of
the groups are reduced and False otherwise.

5.7 Maps

Amap in computer science is not like themap you used to readwhen going someplace
in your car. The term map is a more mathematical term referring to a function that
maps a domain to a range. You may have already used a map in Python. Maps are
called by many names including dictionaries, hash tables, and hash maps. They are
all the same data structure.

A map or dictionary maps a set of unique keys to their associated values much the
way a function maps a value in the domain to the range. A key is what we provide
to a map when we want to look for the key/value pair. The keys of a map are unique.
There can only be one copy of a specific key value in the dictionary at a time. As
we saw in chapter one, Python has built-in support for dictionaries or maps. Here is
some sample interaction with a dictionary in the Python shell.

Python 3.2 (r32:88452, Feb 20 2011, 10:19:59)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> d = {}
>>> d["dog"] = "cat"
>>> d["batman"] = "joker"
>>> d["superman"] = "lex luther"
>>> for key in d:
... print(key)
...
batman
dog
superman
>>> for key in d:
... print(key,d[key])
...
batman joker
dog cat
superman lex luther
>>> len(d)
3
>>> d["dog"] = "skunk"
>>> d["dog"]
’skunk’
>>>

Amap, or dictionary, is a lot like a set. A set and a dictionary both contain unique
values. The set datatype contains a group of unique values. A map contains a set of
unique keys that map to associated values. Like sets, we can look up a key in the
map, and its associated value, in O(1) time. As you might expect, maps, like sets, are
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implemented using hashing.While the underlying implementation is the same, maps
and sets are used differently. The table below provides the methods and operators of
maps or dictionaries and their associated complexities.

The operations in the table above have the expected complexities given a hash-
ing implementation as was presented in Sect. 5.5. The interesting difference is that
key/value pairs are stored in the dictionary as opposed to just the items of a set. The
key part of the key/value pair is used to determine if a key is in the dictionary as you
might expect. The value is returned when appropriate.

5.7.1 The HashMap Class

A HashMap class, like the dict class in Python, uses hashing to achieve the complex-
ities outlined in the table in Fig. 5.6. A private __KVPair class is defined. Instances
of __KVPair hold the key/value pairs as they are added to the HashMap object. With
the addition of a __getitem__ method on the HashSet class, the HashSet class could
be used for the HashMap class implementation. The additional __getitem__ method
for the HashSet is given in Listing 5.11.

Fig. 5.6 Dictionary Operations
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1 # One extra HashSet method for use with the HashMap class.
2 def __getitem__(self, item):
3 idx = hash(item) % len(self.items)
4 while self.items[idx] != None:
5 if self.items[idx] == item:
6 return self.items[idx]
7
8 idx = (idx + 1) % len(self.items)
9
10 return None

Listing 5.11 HashSet Get Item

Then, to implement the HashMap we can use a HashSet as shown in Listing 5.12.
In the __KVPair class definition it is necessary to define the __eq__ method so that
keys are comparedwhen comparing two items in the hashmap.The__hash__method
of __KVPair hashes only the key value since keys are used to look up key/value pairs
in the hash map. The implementation provided in Listing 5.12 is partial. The other
methods are left as an exercise for the reader.

1 class HashMap:
2 class __KVPair:
3 def __init__(self,key,value):
4 self.key = key
5 self.value = value
6
7 def __eq__(self,other):
8 if type(self) != type(other):
9 return False
10
11 return self.key == other.key
12
13 def getKey(self):
14 return self.key
15
16 def getValue(self):
17 return self.value
18
19 def __hash__(self):
20 return hash(self.key)
21
22 def __init__(self):
23 self.hSet = hashset.HashSet()
24
25 def __len__(self):
26 return len(self.hSet)
27
28 def __contains__(self,item):
29 return HashSet.__KVPair(item,None) in self.hSet
30
31 def not__contains__(self,item):
32 return item not in self.hSet
33
34 def __setitem__(self,key,value):
35 self.hSet.add(HashMap.__KVPair(key,value))
36
37 def __getitem__(self,key):
38 if HashMap.__KVPair(key,None) in self.hSet:
39 val = self.hSet[HashMap.__KVPair(key,None)].getValue()
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40 return val
41
42 raise KeyError("Key" + str(key) + "not in HashMap")
43
44 def __iter__(self):
45 for x in self.hSet:
46 yield x.getKey()

Listing 5.12 The HashMap Class

The provided implementation in Listing 5.12 helps to demonstrate the similar-
ities between the implementation of the HashSet class and the HashMap class, or
between the set and dict classes in Python. The two types of data structures are both
implemented using hashing. Both rely heavily on a O(1) membership test. While
understanding how the HashMap class is implemented is important, most program-
ming languages include some sort of hash map in their library of built-in types, as
does Python. It is important to understand the complexity of the methods on a hash
map, but just as important is understanding when to use a hash map and how it can
be used. Read on to see how you can use a hash map in code you write to make it
more efficient.

5.8 Memoization

Memoization is an interesting programming technique that can be employed when
you write functions that may get called more than once with the same arguments.
The idea behind memoization is to do the work of computing a value in a function
once. Then, we make a note to ourselves so when the function is called with the same
arguments again, we return the value we just computed again. This avoids going to
the work of computing the value all over again.

A powerful example of this is the recursive Fibonacci function. The Fibonacci
sequence is defined as follows.

• Fib(0) = 0
• Fib(1) = 1
• Fib(n) = Fib(n-1) + Fib(n-2)

This sequence can be computed recursively bywriting a Python function as shown
in Listing 5.13.

1 def fib(n):
2 if n == 0:
3 return 0
4
5 if n == 1:
6 return 1
7
8 return fib(n-1) + fib(n-2)

Listing 5.13 The Fibonacci Function
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Fig. 5.7 Computing fib(5)

However, we would never want to use this function for anything but a simple
demonstration of a small Fibonacci number. The function cannot be used to comput-
ing something as big as fib(100) even. Running the function with an argument of 100
will take a very long time on even the fastest computers. Consider what happens to
compute fib(5). To do that fib(4) and fib(3) must first be computed. Then the two re-
sults can be added together to find fib(5). But, to compute fib(4) the values fib(3) and
fib(2) must be computed. Now we are computing fib(3) twice to compute fib(5), But
to compute fib(3) we must compute fib(2) and fib(1). But, fib(2) must be computed
to find fib(4) as well. Figure5.7 shows all the calls to fib to compute fib(5).

As you can see from Fig. 5.7, it takes a lot of calls to the fib function to compute
fib(5). Now imagine how many calls it would take to compute fib(6). To compute
fib(6) we first have to compute fib(5) and then compute fib(4). It took 15 calls to fib to
compute fib(5) and from the figure we can see that it takes 9 calls to compute fib(4).
Including the call to fib(6) it will take 25 calls to fib to compute fib(6). Computing
fib(7) will take 15 + 25 + 1 calls or 41 calls. Computing fib(n) this way more than
doubles the number of calls to compute fib(n–2). This is called exponential growth.
The complexity of the fib function is O(2n). A function with exponential complexity
is worthless except for very small values of n.

All is not lost. There are better ways of computing the Fibonacci sequence. The
way to improve the efficiency is to avoid all that unnecessary work. Once fib(2) has
been computed, we shouldn’t compute it again. We already did that work. There are
at least a couple of ways of improving the efficiency. One method involves removing
the recursion and computing fib(n) with a loop, which is probably the best option.
However, the recursive function is closer to the original definition. We can improve
the recursive version of the function with memoization. In Listing 5.14, the memo
dictionary serves as our mapping from values of n to their fib(n) result.
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1 memo = {}
2
3 def fib(n):
4 if n in memo:
5 return memo[n]
6
7 if n == 0:
8 memo[0] = 0
9 return 0
10
11 if n == 1:
12 memo[1] = 1
13 return 1
14
15 val = fib(n-1) + fib(n-2)
16
17 memo[n] = val
18
19 return val
20
21 def main():
22 print(fib(100))
23
24 if __name__ == "__main__":
25 main()

Listing 5.14 A Memoized Fibonacci Function

The memoized fib function in Listing 5.14 records any value returned by the
function in its memo. The memo variable is accessed from the enclosing scope.
The memo is not created locally because we want it to persist from one call of fib
to the next. Each time fib is called with a new value of n the answer is recorded
in the memo. When fib(n) is called a subsequent time for some n, the memoized
result is looked up and returned. The result: the memoized fib function now has
O(n) complexity and it can compute fib(100) almost instantly.Withoutmemoization,
it would take 1,146,295,688,027,634,168,201 calls to the fib function to compute
fib(100). Assuming each function call completed in 10µs, it would take roughly 363
million years to compute fib(100). With memoization it takes 100 calls to fib and
assuming 10µs per call, that’s 1000µs or 1/1000 of a second.

This is an extreme example of the benefit ofmemoization, but it can come in handy
in many situations. For instance, in the tic tac toe problem of Chap. 4 the minimax
function is called on many boards that are identical. The minimax function does not
care if an X is placed in the upper-right corner first followed by the lower-left corner
or vice-versa. Yet, the way minimax is written it will be called to compute the value
of the same board multiple times. Memoizing minimax speeds up the playing of tic
tac toe.
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5.9 Correlating Two Sources of Information

Another use of a map or dictionary is in correlating data from different sources.
Assume you are given a list of cities and the zip code or codes within those cities.
You want to provide a service where people can look up the zip code for a city in the
USA. So, you’ll be given a city by the web page that provides you the information.
You have to use that city to find a list of possible zip codes. You could search the list
of cities to find the corresponding list of zip codes. Or, you could create a dictionary
from city name to zip code list. Then when given a city name you check to see if it
is in the dictionary and if so, you can look up the corresponding list of zip codes in
O(1) time.

5.10 Chapter Summary

In this chapter we explored the implementation and some uses of sets and maps in
Python. Hashing is an important concept. Hashing data structures must be able to
handle collisions within the hash table by a collision resolution strategy. The reso-
lution strategy explored in this chapter was linear probing. There are other collision
resolution strategies possible. Any collision resolution strategy must have a way of
handling new values being added to a chain and existing values being deleted from
a chain.

The key feature of hashing is the amortized O(1) complexity for membership
testing and lookup within the table. The ability to test membership or lookup a value
in O(1) timemakesmany algorithms efficient that otherwisemight not run efficiently
on large data sets.

Memoization is one important use of a dictionary ormap.Bymemoizing a function
we avoid doing any redundant work. Another important use of maps or dictionaries
is in correlating sources of information. When we are given information from two
different sources and must match those two sources, a map or dictionary will make
that correlation efficient.

5.11 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. What type of value is a hash code?
2. Hash codes canbeboth positive andnegative.Howdoes a hash codeget converted

into a value that can be used in a hash table?
3. Once you find the proper location with a hash table, how do you know if the item

you are looking for is in the table or not? Be careful to answer this completely.
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4. Why is a collision resolution strategy needed when working with a hash table?
5. What is the difference between a map and a set?
6. In this chapter the HashSet was used to implement the HashMap class. What if

we turned things around?How could a dictionary in Python be used to implement
a set? Describe how this might be done by describing the add and membership
methods of a set and how they would be implemented if internally the set used
a dictionary.

7. How does the load factor affect the complexity of the membership test on the
set datatype?

8. What is rehashing?
9. When is memoization an effective programming technique?

10. True or False: Memoization would help make the factorial function run faster?
Justify your answer.

def fact(n):
if n == 0:

return 1

return n * fact(n-1)

def main():
x = fact(10)
print("10! is",x)

if __name__ == "__main__":
main()

5.12 Programming Problems

1. Complete the sudoku puzzle as described in the chapter. The program should read
a text file. Prompt the user for the name of the text file. The text file should be
placed in the same directory or folder as the program so it can easily be found by
your program. There are six sample sudoku puzzles that you can solve available
on the text’s website. Write the program to read a text file like those you find on
the text’s website. Print both the unsolved and solved problem to the screen as
shown below.

Please enter a sudoku puzzle file name: sudoku2.txt Solving this
puzzle
-----------------
x x x x x x x x x
x x x x 1 x x 9 2
x 8 6 x x x x 4 x
x x 1 5 6 x x x x
x x x x x 3 6 2 x
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x x x x x x 5 x 7
x 3 x x x x x 8 x
x 9 x 8 x 2 x x x
x x 7 x x 4 3 x x

Solution
-----------------
4 1 2 9 8 5 7 6 3
7 5 3 4 1 6 8 9 2
9 8 6 3 2 7 1 4 5
2 7 1 5 6 8 9 3 4
5 4 9 1 7 3 6 2 8
3 6 8 2 4 9 5 1 7
6 3 4 7 5 1 2 8 9
1 9 5 8 3 2 4 7 6
8 2 7 6 9 4 3 5 1
Valid Solution!

2. Complete the HashSet class found in the chapter by implementing the methods
described in the two tables of set operations. Then, write a main function to test
these operations. Save the class in a file called hashset.py so it can be imported into
other programs. If you call your main function in hashset.py with the if __name__
== “__main__” statement, then when you import it into another program your
hashset.py main function will not be executed, but when you run hashset.py on
its own, its main function will run to test your HashSet class.

3. Memoize the tic tac toe program from Chap. 3 to improve its performance. To do
this each boardmust have a hash value. You should implement a __hash__method
for the Board class. The hash value should be unique to a board’s configuration.
In other words, the X’s, O’s, and Dummy objects should factor into the hash
value for the board so that each board has its own unique hash value. Then
memoize the minimax function to remember the value found for a particular
board’s configuration. The minimax function should start by checking whether or
not the value for this board has already been computed and the function should
return it if it has.

4. Write a version of the HashSet class that allows you to specify the maximum and
minimum allowable load factor. Then run a number of tests where you plot the
average time taken to add an item to a set given different maximum load factors.
Also gather information about the average time it takes to test the membership of
an item in a set for different maximum load factors. From this information you
should be able to see some of the space/time trade-off in hash tables. Generate
XML data in the plot format from these experimental results and plot the data to
see what it tells you. From the gathered information, express your opinion about
the optimal load factor for the HashSet class. Comment on the optimal maximum
load factor at the top of the program that performs your tests.
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When we see a tree in our everyday lives the roots are generally in the ground and
the leaves are up in the air. The branches of a tree spread out from the roots in a more
or less organized fashion. The word tree is used in Computer Science when talking
about a way data may be organized. Trees have some similarities to the linked list
organization found in Chap. 4. In a tree there are nodes which have links to other
nodes. In a linked list each node has one link, to the next node in the list. In a tree
each node may have two or more links to other nodes. A tree is not a sequential
data structure. It is organized like a tree, except the root is at the top of tree data
structures and the leaves are at the bottom. A tree in computer science is usually
drawn inverted when compared to the trees we see in nature. There are many uses for
trees in computer science. Sometimes they show the structure of a bunch of function
calls as we saw when examining the Fibonacci function as depicted in Fig. 6.1.

Figure6.1 depicts a call tree of the fib function for computing fib(5). Unlike real
trees it has a root (at the top) and leaves at the bottom. There are relationships between
the nodes in this tree. The fib(5) call has a left sub-tree and a right sub-tree. The fib(4)
node is a child of the fib(5) node. The fib(4) node is a sibling to the fib(3) node to
the right of it. A leaf node is a node with no children. The leaf nodes in Fig. 6.1
represent calls to the fib function which matched the base cases of the function.

In this chapterwe’ll explore trees andwhen itmakes sense to build and or use a tree
in a program. Not every program will need a tree data structure. Nevertheless, trees
are used in many types of programs. A knowledge of them is not only a necessity,
proper use of them can greatly simplify some types of programs.

6.1 Chapter Goals

This chapter introduces trees and some algorithms that use trees. By the end of the
chapter you should be able to answer these questions.
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Fig. 6.1 The Call Tree for Computing fib(5)

• How are trees constructed?
• How can we traverse a tree?
• How are expressions and trees related?
• What is a binary search tree?
• Under what conditions is a binary search tree useful?
• What is depth first search and how does it relate to trees and search problems?
• What are the three types of tree traversals we can do on binary trees?
• What is a grammar and what can we do with a grammar?

Read on to discover trees and their uses in Computer Science.

6.2 Abstract Syntax Trees and Expressions

Trees have many applications in Computer Science. They are used in many different
types of algorithms. For instance, every Python program you write is converted to a
tree, at least for a littlewhile, before it is executed by thePython interpreter. Internally,
a Python program is converted to a tree-like structure called an Abstract Syntax Tree,
often abbreviated AST, before it is executed. We can build our own abstract syntax
trees for expressions so we can see how a tree might be evaluated and why we would
want to evaluate a tree.

In Chap. 4 linked lists were presented as a way of organizing a list. Trees may be
stored using a similar kind of structure. If a node in a tree has two children, then that
node would have two links to its children as opposed to a linked list which has one
link to the next node in the sequence.

Consider the expression (5 + 4) * 6 + 3. We can construct an abstract syntax tree
for this expression as shown in Fig. 6.2. Since the + operation is the last operation
performed when evaluating this function, the + node will be at the root of the tree.
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Fig.6.2 The AST for (5 + 4)
* 6 + 3

It has two subtrees, the expression to the left of the + and then 3 to the right of the
+. Similarly, nodes for the other operators and operands can be constructed to yield
the tree shown in Fig. 6.2.

To represent this in the computer, we could define one class for each type of node.
We’ll define a TimesNode, a PlusNode, and a NumNode class. So we can evaluate
the abstract syntax tree, each node in the tree will have one eval method defined on it.
The code in Listing 6.1 defines these classes, the eval methods, and a main function
that builds the example tree in Fig. 6.2.

1 class TimesNode:
2 def __init__(self, left, right):
3 self.left = left
4 self.right = right
5
6 def eval(self):
7 return self.left.eval() * self.right.eval()
8
9 class PlusNode:
10 def __init__(self, left, right):
11 self.left = left
12 self.right = right
13
14 def eval(self):
15 return self.left.eval() + self.right.eval()
16
17 class NumNode:
18 def __init__(self, num):
19 self.num = num
20
21 def eval(self):
22 return self.num
23
24 def main():
25 x = NumNode(5)
26 y = NumNode(4)
27 p = PlusNode(x,y)
28 t = TimesNode(p, NumNode(6))
29 root = PlusNode(t, NumNode(3))
30
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31 print(root.eval())
32
33 if __name__ == "__main__":
34 main()

Listing 6.1 Constructing ASTs

In Listing 6.1 the tree is built from the bottom (i.e. the leaves) up to the root.
The code above contains an eval function for each node. Calling eval on the root
node will recursively call eval on every node in the tree, causing the result, 57, to be
printed to the screen.

Once an AST is built, evaluating such a tree is accomplished by doing a recursive
traversal of the tree. The eval methods together are the recursive function in this
example. We say that the eval methods are mutually recursive since all the eval
methods together form the recursive function.

6.3 Prefix and Postfix Expressions

Expressions, as we normally write them, are said to be in infix form. An infix expres-
sion is an expression written with the binary operators in between their operands.
Expressions can be written in other forms though. Another form for expressions is
postfix. In a postfix expression the binary operators are written after their operands.
The infix expression (5 + 4) * 6 + 3 can be written in postfix form as 5 4 + 6 * 3 +.
Postfix expressions are well-suited for evaluation with a stack. When we come to an
operand we push the value on the stack. When we come to an operator, we pop the
operands from the stack, do the operation, and push the result. Evaluating expressions
in this manner is quite easy for humans to do with a little practice. Hewlett-Packard
has designed many calculators that use this postfix evaluation method. In fact, in the
early years of computing, Hewlett-Packard manufactured a whole line of computers
that used a stack to evaluate expressions in the same way. The HP 2000 was one
such computer. In more recent times many virtual machines are implemented as
stack machines including the Java Virtual Machine, or JVM, and the Python virtual
machine.

As another example of a tree traversal, consider writing a method that returns a
string representation of an expression. The string is built as the result of a traversal of
the abstract syntax tree. To get a string representing an infix version of the expression,
you perform an inorder traversal of the AST. To get a postfix expression you would
do a postfix traversal of the tree. The inorder methods in Listing 6.2 perform an
inorder traversal of an AST.

1 class TimesNode:
2 def __init__(self, left, right):
3 self.left = left
4 self.right = right
5
6 def eval(self):
7 return self.left.eval() * self.right.eval()
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8
9 def inorder(self):
10 return "(" + self.left.inorder() + " * " + self.right.inorder() + ")"
11
12 class PlusNode:
13 def __init__(self, left, right):
14 self.left = left
15 self.right = right
16
17 def eval(self):
18 return self.left.eval() + self.right.eval()
19
20 def inorder(self):
21 return "(" + self.left.inorder() + " + " + self.right.inorder() + ")"
22
23 class NumNode:
24 def __init__(self, num):
25 self.num = num
26
27 def eval(self):
28 return self.num
29
30 def inorder(self):
31 return str(self.num)

Listing 6.2 AST Tree Traversal

The inorder methods in Listing 6.2 provide for an inorder traversal because each
binary operator is added to the string in between the two operands. To do a postorder
traversal of the tree we would write a postorder method that would add each binary
operator to the string after postorder traversing the two operands. Note that because
of the way a postorder traversal is written, parentheses are never needed in postfix
expressions.

One other traversal is possible, called a preorder traversal. In a preorder traversal,
each binary operator is added to the string before its two operands. Given the infix
expression (5 + 4) * 6 + 3 the prefix equivalent is + * + 5 4 6 3. Again, because
of the way a prefix expression is written, parentheses are never needed in prefix
expressions.

6.4 Parsing Prefix Expressions

Abstract syntax trees are almost never constructed by hand. They are often built
automatically by an interpreter or a compiler. When a Python program is executed
the Python interpreter scans it and builds an abstract syntax tree of the program.
This part of the Python interpreter is called a parser. A parser is a program, or part
of a program, that reads a file and automatically builds an abstract syntax tree of
the expression (i.e. a source program), and reports a syntax error if the program or
expression is not properly formed. The exact details of how this is accomplished
is beyond the scope of this text. However, for some simple expressions, like prefix
expressions, it is relatively easy to build a parser ourselves.
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In middle school we learned when checking to see if a sentence is properly formed
we should use the English grammar. A grammar is a set of rules that dictate how
a sentence in a language can be put together. In Computer Science we have many
different languages and each language has its own grammar. Prefix expressions make
up a language. We call them the language of prefix expressions and they have their
own grammar, called a context-free grammar. A context-free grammar for prefix
expressions is given in Sect. 6.4.1.

6.4.1 The Prefix Expression Grammar

G = (N ,T ,P, E) where
N = {E}
T = {identi f ier, number,+, ∗}
P is defined by the set of productions

E → + E E | ∗ E E | number

A grammar, G, consists of three sets: a set of non-terminals symbols denoted by
N , a set of terminals or tokens called T , and a set, P , of productions. One of the non-
terminals is designated the start symbol of the grammar. For this grammar, the special
symbol E is the start symbol and only non-terminal of the grammar. The symbol
E stands for any prefix expression. In this grammar there are three productions that
provide the rules for how prefix expressions can be constructed. The productions
state that any prefix expression is composed of (you can read → as is composed of )
a plus sign followed by two prefix expressions, a multiplication symbol followed by
two prefix expressions, or just a number. The grammar is recursive so every time you
see E in the grammar, it can be replaced by another prefix expression. This grammar
is very easy to convert to a function that given a queue of tokens will build an abstract
syntax tree of a prefix expression. A function, like the E function in Listing 6.3, that
reads tokens and returns an abstract syntax tree is called a parser. Since the grammar
is recursive, the parsing function is recursive as well. It has a base case first, followed
by the recursive cases. The code in Listing 6.3 provides that function.

1 import queue
2
3 def E(q):
4 if q.isEmpty():
5 raise ValueError("Invalid Prefix Expression")
6
7 token = q.dequeue()
8
9 if token == "+":
10 return PlusNode(E(q),E(q))
11
12 if token == "*":
13 return TimesNode(E(q),E(q))
14
15 return NumNode(float(token))



6.4 Parsing Prefix Expressions 171

16
17 def main():
18 x = input("Please enter a prefix expression: ")
19
20 lst = x.split()
21 q = queue.Queue()
22
23 for token in lst:
24 q.enqueue(token)
25
26 root = E(q)
27
28 print(root.eval())
29 print(root.inorder())
30
31 if __name__ == "__main__":
32 main()

Listing 6.3 A Prefix Expression Parser

In Listing 6.3 the parameter q is a queue of the tokens read from the file or string.
Code to call this function is provided in the main function of Listing 6.3. The main
function gets a string from the user and enqueues all the tokens in the string (tokens
must be separated by spaces) on a queue of tokens. Then the queue is passed to
the function E. This function is based on the grammar given above. The function
looks at the next token and decides which rule to apply. Each call to the E function
returns an abstract syntax tree. Calling E from the main function results in parsing
the prefix expression and building its corresponding tree. This example gives you a
little insight into how Python reads a program and constructs an abstract syntax tree
for it. A Python program is parsed according to a grammar and an abstract syntax tree
is constructed from the program. The Python interpreter then interprets the program
by traversing the tree.

This parser in Listing 6.3 is called a top-down parser. Not all parsers are con-
structed this way. The prefix grammar presented in this text is a grammar where the
top-down parser construction will work. In particular, a grammar cannot have any
left-recursive rules if we are to create a top-down parser for it. Left recursive rules
occur in the postfix grammar given in Sect. 6.4.2.

6.4.2 The Postfix Expression Grammar

G = (N ,T ,P, E) where
N = {E}
T = {identi f ier, number,+, ∗}
P is defined by the set of productions

E → E E + | E E ∗ | number

In this grammar the first and second productions have an expression composed
of an expression, followed by another expression, followed by an addition or mul-
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tiplication token. If we tried to write a recursive function for this grammar, the
base case would not come first. The recursive case would come first and hence the
function would not be written correctly since the base case must come first in a
recursive function. This type of production is called a left-recursive rule. Grammars
with left-recursive rules are not suitable for top-down construction of a parser. There
are other ways to construct parsers that are beyond the scope of this text. You can
learn more about parser construction by studying a book on compiler construction
or programming language implementation.

6.5 Binary Search Trees

A binary search tree is a tree where each node has up to two children. In addition, all
values in the left subtree of a node are less than the value at the root of the tree and
all values in the right subtree of a node are greater than or equal to the value at the
root of the tree. Finally, the left and right subtrees must also be binary search trees.
This definition makes it possible to write a class where values may be inserted into
the tree while maintaining the definition. The code in Listing 6.4 accomplishes this.

1 class BinarySearchTree:

2 # This is a Node class that is internal to the BinarySearchTree class.

3 class __Node:

4 def __init__(self, val, left = None, right = None):

5 self.val = val

6 self.left = left

7 self.right = right

8
9 def getVal(self):

10 return self.val

11
12 def setVal(self, newval):

13 self.val = newval

14
15 def getLeft(self):

16 return self.left

17
18 def getRight(self):

19 return self.right

20
21 def setLeft(self, newleft):

22 self.left = newleft

23
24 def setRight(self, newright):

25 self.right = newright

26
27 # This method deserves a little explanation. It does an inorder traversal

28 # of the nodes of the tree yielding all the values. In this way, we get

29 # the values in ascending order.

30 def __iter__(self):

31 if self.left != None:

32 for elem in self.left:

33 yield elem

34
35 yield self.val

36
37 if self.right != None:

38 for elem in self.right:



6.5 Binary Search Trees 173

39 yield elem

40
41 # Below are the methods of the BinarySearchTree class.

42 def __init__(self):

43 self.root = None

44
45 def insert(self,val):

46
47 # The __insert function is recursive and is not a passed a self parameter. It is a

48 # static function (not a method of the class) but is hidden inside the insert

49 # function so users of the class will not know it exists.

50
51 def __insert(root, val):

52 if root == None:

53 return BinarySearchTree.__Node(val)

54
55 if val < root.getVal():

56 root.setLeft(__insert(root.getLeft(),val))

57 else:

58 root.setRight(__insert(root.getRight(),val))

59
60 return root

61
62 self.root = __insert(self.root,val)

63
64 def __iter__(self):

65 if self.root != None:

66 return self.root.__iter__()

67 else:

68 return [].__iter__()

69
70 def main():

71 s = input("Enter a list of numbers: ")

72 lst = s.split()

73
74 tree = BinarySearchTree()

75
76 for x in lst:

77 tree.insert(float(x))

78
79 for x in tree:

80 print(x)

81
82 if __name__ == "__main__":

83 main()

Listing 6.4 The BinarySearchTree Class

When the program in Listing 6.4 is run with a list of values (they must have an
ordering) it will print the values in ascending order. For instance, if 5 8 2 1 4 9 6 7
is entered at the keyboard, the program behaves as follows.

Enter a list of numbers: 5 8 2 1 4 9 6 7
1.0
2.0
4.0
5.0
6.0
7.0
8.0
9.0

From this example it appears that a binary search tree can produce a sorted list
of values when traversed. How? Let’s examine how this program behaves with this
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input. Initially, the tree reference points to a BinarySearchTree object where the root
pointer points to None as shown in Fig. 6.3.

Into the tree in Fig. 6.3 we insert the 5. The insert method is called which imme-
diately calls the __insert function on the root of the tree. The __insert function is
given a tree, which in this case is None (i.e. an empty tree) and the __insert function
returns a new tree with the value inserted. The root instance variable is set equal to
this new tree as shown in Fig. 6.4 which is the consequence of line 62 of the code in
Listing 6.4. In the following figures the dashed line indicates the new reference that
is assigned to point to the new node. Each time the __insert function is called a new
tree is returned and the root instance variable is re-assigned on line 62. Most of the
time it is re-assigned to point to the same node.

Now, the next value to be inserted is the 8. Inserting the 8 calls __insert on the root
node containing 5.When this is done, it recursively calls __insert on the right subtree,
which is None (and not pictured). The result is a new right subtree is created and the
right subtree link of the node containing 5 is made to point to it as shown in Fig. 6.5
which is the consequence of line 58 in Listing 6.4. Again the dashed arrows indicate
the new references that are assigned during the insert. It doesn’t hurt anything to
reassign the references and the code works very nicely. In the recursive __insert we
always reassign the reference on lines 56 and 58 after inserting a new value into the
tree. Likewise, after inserting a new value, the root reference is reassigned to the
new tree after inserting the new value on line 62 of the code in Listing 6.4.

Next, the 2 is inserted into the tree as shown in Fig. 6.6. The 8 ended up to the
right of the 5 to preserve the binary search tree property. The 2 is inserted into the
left subtree of the 5 because 2 is less than 5.

Fig. 6.3 An empty
BinarySearchTree object

Fig. 6.4 The Tree After
Inserting 5
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Fig. 6.5 The Tree After Inserting 8

Fig. 6.6 The Tree After Inserting 2

Fig. 6.7 The Tree After Inserting 1

The 1 is inserted next and because it is less than the 5, it is inserted into the left
subtree of the node containing 5. Because that subtree contains 2 the 1 is inserted
into the left subtree of the node containing 2. This is depicted in Fig. 6.7.

Inserting the 4 next means the value is inserted to the left of the 5 and to the right
of the 2. This preserves the binary search tree property as shown in Fig. 6.8.

To insert the 9 it must go to the right of all nodes inserted so far since it is greater
than all nodes in the tree. This is depicted in Fig. 6.9.

The 6 goes to the right of the 5 and to the left of the 8 in Fig. 6.10.
The only place the 7 can go is to the right of the 5, left of the 8, and right of the 6

in Fig. 6.11.
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Fig. 6.8 The Tree After Inserting 4

Fig. 6.9 The Tree After Inserting 9

Fig. 6.10 The Tree After Inserting 6
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Fig. 6.11 The Tree After Inserting 7

Fig. 6.12 The Final BinarySearchTree Object Contents

The final tree is pictured in Fig. 6.12. This is a binary search tree since all nodes
with subtrees have values less than the node in the left subtree and values greater
than or equal to the node in the right subtree while both subtrees also conform to the
binary search tree property.

The final part of the program in Listing 6.4 iterates over the tree in the main
function. This calls the __iter__method of theBinarySearchTree class. This __iter__
method returns an iterator over the root’s __Node object. The __Node’s __iter__
method is interesting because it is a recursive traversal of the tree. When for elem
in self.left is written, this calls the __iter__ method on the left subtree. After all the
elements in the left subtree are yielded, the value at the root of the tree is yielded,
then the values in the right subtree are yielded by writing for elem in self.right. The
result of this recursive function is an inorder traversal of the tree.
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Binary search trees are of some academic interest. However, they are not used
much in practice. In the average case, inserting into a binary search tree takes
O(log n) time. To insert n items into a binary search tree would take O(n log n)
time. So, in the average case we have an algorithm for sorting a sequence of ordered
items. However, it takes more space than a list and the quicksort algorithm can sort a
list with the same big-O complexity. In the worst case, binary search trees suffer from
the same problem that quicksort suffers from. When the items are already sorted,
both quicksort and binary search trees perform poorly. The complexity of inserting
n items into a binary search tree becomes O(n2) in the worst case. The tree becomes
a stick if the values are already sorted and essentially becomes a linked list.

There are a couple of nice properties of binary search trees that a random access
list does not have. Inserting into a tree can be done in O(log n) time in the average
case while inserting into a list would take O(n) time. Deleting from a binary search
tree can also be done in O(log n) time in the average case. Looking up a value in a
binary search tree can also be done in O(log n) time in the average case. If we have
lots of insert, delete, and lookup operations for some algorithm, a tree-like structure
may be useful. But, binary search trees cannot guarantee the O(log n) complexity. It
turns out that there are implementations of search tree structures that can guarantee
O(log n) complexity or better for inserting, deleting, and searching for values. A
few examples are Splay Trees, AVL-Trees, and B-Trees which are all studied later
in this text.

6.6 Search Spaces

Sometimes we have a problem that may consist of many different states. We may
want to find a particular state of the problem which we’ll call the goal. Consider
Sudoku puzzles. A Sudoku puzzle has a state, reflecting how much of it we have
solved.We are seeking a goal which is the solution of the puzzle.We could randomly
try a value in a cell of the puzzle and try to solve the puzzle after having made that
guess. The guess would lead to a new state of the puzzle. But, if the guess were
wrong we may have to go back and undo our guess. A wrong guess could lead to a
dead end.

This process of guessing, trying to finish the puzzle, and undoing bad guesses is
called depth first search. Looking for a goal by making guesses is called a depth first
search of a problem space. When a dead end is found we may have to backtrack.
Backtracking involves undoing bad guesses and then trying the next guess to see if
the problem can be solved by making the new guess. The description here leads to
the depth first search algorithm in Listing 6.5.

1 def dfs(current, goal):
2 if current == goal:
3 return [current]
4
5 for next in adjacent(current):
6 result = dfs(next)
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7 if result != None:
8 return [current] + result
9
10 return None

Listing 6.5 Depth-First Search Algorithm

The depth first search algorithmmay be written recursively. In this code the depth
first search algorithm returns the path from the current node to the goal node. The
backtracking occurs if the for loop completes without finding an appropriate adjacent
node. In that case, None is returned and the previous recursive call of dfs goes on to
the next adjacent node to look for the goal on that path.

In the last chapter an algorithm was presented for solving Sudoku puzzles that
works for many puzzles, but not all. In these cases, depth first search can be applied
to the puzzle after reducing the problem as far as possible. It is important to first
apply the rules of the last chapter to reduce the puzzle because otherwise the search
space is too big to search in a reasonable amount of time. The solve function in
Listing 6.6 includes a depth first search that will solve any Sudoku puzzle assuming
that the reduce function applies the rules of the last chapter to all the groups within
a puzzle. The copy module must be imported for this code to run correctly.

1 def solutionViable(matrix):
2 # Check that no set is empty
3 for i in range(9):
4 for j in range(9):
5 if len(matrix[i][j]) == 0:
6 return False
7
8 return True
9
10 def solve(matrix):
11 reduce(matrix)
12 if not solutionViable(matrix):
13 return None
14 if solutionOK(matrix):
15 return matrix
16
17 print("Searching...")
18
19 for i in range(9):
20 for j in range(9):
21 if len(matrix[i][j]) > 1:
22 for k in matrix[i][j]:
23 mcopy = copy.deepcopy(matrix)
24 mcopy[i][j] = set([k])
25 result = solve(mcopy)
26 if result != None:
27 return result
28
29 return None

Listing 6.6 Sudoku Depth-First Search

In the solve function of Listing 6.6, reduce is called to try to solve the puzzle with
the rules of the last chapter. After calling reduce we check to see if the puzzle is
still solvable (i.e. no empty sets). If not, the solve function returns None. The search
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proceeds by examining each location within the matrix and each possible value that
the location could hold. The for k loop tries all possible values for a cell with more
than one possibility. If the call to reduce solves the puzzle, the solutionOK function
will return True and the solve function will return the matrix. Otherwise, the depth
first search proceeds by looking for a cell in the matrix with more than one choice.
The function makes a copy of the matrix called mcopy and makes a guess as to the
value in that location in mcopy. It then recursively calls solve on mcopy.

The solve function returns None if no solution is found and the solved puzzle
if a solution is found. So, when solve is called recursively, if None is returned, the
function continues to search by trying another possible value. Initially calling solve
can be accomplished as shown in Listing 6.7 assuming that matrix is a 9× 9 matrix
of sets representing a Sudoku puzzle.

1 print("Begin Solving")
2
3 matrix = solve(matrix)
4
5 if matrix == None:
6 print("No Solution Found!!!")
7 return

Listing 6.7 Calling Sudoku’s Solve Function

If a non-Nonematrix is returned, then the puzzle is solved and the solution may be
printed. This is one example where no tree is ever constructed, yet the search space
is shaped like a tree and depth first search can be used to search the problem space.

6.7 Chapter Summary

Tree-like structures appear in many problems in Computer Science. A tree datatype
can hold information and allow quick insert, delete, and search times. While binary
search trees are not used in practice, the principles governing them are used in many
advanced data structures like B-trees, AVL-trees, and Splay Trees. Understanding
how references point to objects and how this can be used to build a datatype like a
tree is an important concept for computer programmers to understand.

Search spaces are often tree-like when making a decision between several choices
leads to another decision. A search space is not a datatype, so in this case no tree
is built. However, the space that is searched has a tree-like structure. The key to
doing a depth first search of a space is to remember where you were so you can
backtrack when a choice leads to a dead end. Backtracking is often accomplished
using recursion.

Many algorithms that deal with trees are naturally recursive. Depth first search,
tree traversals, parsing, and abstract syntax evaluation may all be recursively imple-
mented. Recursion is a powerful mechanism to have in your toolbox for solving
problems.
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6.8 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. Is the root of a tree in Computer Science at the top or bottom of a tree?
2. How many roots can a tree have?
3. A full binary tree is a tree that is full at each level of the tree, meaning there is no

room for another node at any level of the tree, except at the leaves. How many
nodes are in a full binary tree with three levels? How about 4 levels? How about
5 levels?

4. In a full binary tree, what is the a relationship between the number of leaves in
the tree and the total number of nodes in the tree?

5. When constructing a tree, for which is it easiest to write code, a bottom-up or
top-down construction of the tree?

6. What term is used when a wrong choice is made and another choice must be
attempted when searching for a value in a tree?

7. How does a search space differ from a tree datatype?
8. Describe a non-recursive algorithm for doing an inorder traversal of a tree. HINT:

Your algorithm will need a stack to get this to work.
9. Write some code to build a tree for the infix expression 5 * 4 + 3 * 2. Be sure

to follow the precedence of operators and in your tree. You may assume the
PlusNode and TimesNode classes from the chapter are already defined.

10. Provide the prefix and postfix forms of 5 * 4 + 3 * 2.

6.9 Programming Problems

1. Write a program that asks the user to enter a prefix expression. Then, the program
should print out the infix and postfix forms of that expression. Finally, it should
print the result of evaluating the expression. Interacting with the program should
look like this.

Please enter a prefix expression: + + * 4 5 6 7
The infix form is: (((4 * 5) + 6) + 7)
The postfix form is: 4 5 * 6 + 7 +
The result is: 33

If the prefix expression ismalformed, the program should print that the expression
is malformed and it should quit. It should not try to print the infix or postfix forms
of the expression in this case.

2. Write a program that reads a list of numbers from the user and lets the user
insert, delete, and search for values in the tree. The program should be menu
driven allowing for inserting, searching, and deleting from a binary search tree.
Inserting into the tree should allow for multiple inserts as follows.
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Binary Search Tree Program
--------------------------
Make a choice...
1. Insert into tree.
2. Delete from tree.
3. Lookup Value.
Choice? 1
insert? 5
insert? 2
insert? 8
insert? 6
insert? 7
insert? 9
insert? 4
insert? 1
insert?

Make a choice...
1. Insert into tree.
2. Delete from tree.
3. Lookup Value.
Choice? 3
Value? 8
Yes, 8 is in the tree.

Make a choice...
1. Insert into tree.
2. Delete from tree.
3. Lookup Value.
Choice? 2
Value? 5
5 has been deleted from the tree.

Make a choice...
1. Insert into tree.
2. Delete from tree.
3. Lookup Value.
Choice? 2
Value? 3
3 was not in the tree.

The hardest part of this program is deleting from the tree.You canwrite a recursive
function to delete a value. In some ways, the delete from tree function is like the
insert function given in the chapter. You will want to write two functions, one
that is a method to call on a binary search tree to delete a value, the other would
be a hidden recursive delete from tree function. The recursive function should
be given a tree and a value to delete. It should return the tree after deleting the
value from the tree. The recursive delete function must be handled in three cases
as follows.

• Case 1—The value to delete is in a node that has no children. In this case, the
recursive function can return an empty tree (i.e. None) because that is the tree
after deleting the value from it. This would be the case if the 9 were deleted
from the binary search tree in Fig. 6.12. In Fig. 6.13 the right subtree of the
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Fig. 6.13 The Tree After Deleting 9

Fig. 6.14 The Tree After Deleting 6

node containing 8 is now None and therefore the node containing 9 is gone
from the tree.

• Case 2—The value to delete is in a node that has one child. In this case, the
recursive function can return the child as the tree after deleting the value. This
would be the case if deleting 6 from the tree in Fig. 6.13. In this case, to delete
the node containing 6 from the tree you simply return the tree for the node
containing 7 so it ends up being linked to the node containing 8. In Fig. 6.14
the node containing 6 is eliminated by making the left subtree of the node
containing 8 point at the right subtree of the node containing 6.

• Case 3—This is hardest case to implement. When the value to delete is in a
node that has two children, then to delete the node we want to use another
function, call it getRightMost, to get the right-most value of a tree. Then you
use this function to get the right-most value of the left subtree of the node to
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Fig. 6.15 The Tree After Deleting 5

delete. Instead of deleting the node, you replace the value of the node with the
right-most value of the left subtree. Then you delete the right-most value of
the left subtree from the left subtree. In Fig. 6.15 the 5 is eliminated by setting
the node containing 5–4, the right-most value of the left subtree. Then 4 is
deleted from the left subtree.

3. Complete the Sudoku program as described in Chap. 5 and augment it with the
depth first search described in Listing 6.6 to complete a sudoku program that
is capable of solving any sudoku puzzle. It should solve these puzzles almost
instantly. If it is taking a long time to solve a puzzle it is likely because your
reduce function is not reducing the puzzle as described in Chap. 5.
To complete this exercise you will need two functions, the solutionOK func-
tion and the solutionViable function. The solutionViable function is given in the
chapter and returnsTrue if none of the sets in thematrix are empty.The solutionOK
function returns True if the solution is a valid solution. This can be checked very
easily. If any of the sets in the matrix do not contain exactly 1 element then the
solution is not okay andFalse should be returned. If the union of any group within
a sudoku puzzle does not contain 9 elements then the solution is not okay and
False should be returned. Otherwise, the solution is okay and True should be
returned.
After completing this program you should be able to solve sudoku problems like
sudoku7.txt or sudoku8.txtwhich are available for download on the text’swebsite.

4. Design an OrderedTreeSet class which can be used to insert items, delete items,
and lookup items in an average case of O(log n) time. Implement the in operator
on this class for set containment. Also implement an iterator that returns the items
of the set in ascending order. The design of this set should allow items of any
type to be added to the set as long as they implement the __lt__ operator. This
OrderedTreeSet class should bewritten in a file called orderedtreeset.py. Themain
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function of this module should consist of a test program for your OrderedTreeSet
class that thoroughly tests your code. The main function should be called using
the standard if statement that distinguishes between the module being imported
or run itself.

5. Design an OrderedTreeMap class which uses an OrderedTreeSet class in its
implementation. To organize this correctly you should create two modules: an
orderedtreeset.py module and an orderedtreemap.py module. Have the
OrderedTreeMap class use the OrderedTreeSet class in its implementation the
way HashSet and HashMap were implemented in Chap. 5. Design test cases to
thoroughly test your OrderedTreeMap class.
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Many problems in Computer Science and Mathematics can be reduced to a set of
states and a set of transitions between these states. A graph is a mathematical repre-
sentation of problems like these. In the last chapter we saw that trees serve a variety of
purposes in Computer Science. Trees are graphs. However, graphs are more general
than trees. Abstracting away the details of a problem and studying it in its simplest
form often leads to new insight. As a result, many algorithms have come out of the
research in graph theory. Graph theory was first studied by mathematicians. Many
of the algorithms in graph theory are named for the mathematician that developed or
discovered them. Dijkstra and Kruskal are two such mathematicians and this chapter
covers algorithms developed by them.

Representing a graph can be done one of several different ways. The correct way
to represent a graph depends on the algorithm being implemented. Graph theory
problems include graph coloring, finding a path between two states or nodes in a
graph, or finding a shortest path through a graph amongmany others. There are many
algorithms that have come from the study of graphs. To understand the formulation
of these problems it is good to learn a little graph notation which is presented in this
chapter as well.

7.1 Chapter Goals

This chapter covers the representation of graphs. It also covers a few graph algo-
rithms. Depth first search of a graph is presented, along with breadth first search.
Dijkstra’s algorithm is famous in Computer Science and has many applications from
networking to construction planning. Kruskal’s algorithm is another famous algo-
rithm used to find a minimum weighted spanning tree. By the end of the chapter
you should have a basic understanding of graph theory and how many problems in
Computer Science can be posed in the form of graphs.
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Fig. 7.1 An Undirected Graph

To begin we’ll study some notation and depth first search of a graph. Then we’ll
examine a couple ofGreedy Algorithms that answer some interesting questions about
graphs. Greedy algorithms are algorithms that never make a wrong choice in finding
a solution. We’ll examine two of these algorithms called Kruskal’s Algorithm and
Dijkstra’s Algorithm, both named for the people that formulated the algorithm to
solve their respective problems.

7.2 Graph Notation

A little notationwill help in the graph definitions in this chapter. A set is an unordered
collection of items. For instance, V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is the set
of the first 13 natural numbers. A subset of a set is some collection, possibly empty,
of items from its superset. The set U = {5, 8, 2} is a subset of V. The cardinality of
a set is its size or number of elements. The cardinality of the set V is written as |V |.
The cardinality of V is 13 and U is 3, so |V | = 13 and |U | = 3.

A graph G = (V, E) is defined by a set of vertices, named V, and a set of edges,
namedE. The set of edges are subsets ofV where eachmember ofE has cardinality 2.
In otherwords, edges are denoted bypairs of vertices.Consider the simple, undirected
graph given in Fig. 7.1. The sets V={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and E =
{{0, 1}, {0, 3}, {0, 10}, {1, 10}, {1, 4}, {2, 3}, {2, 8}, {2, 6}, {3, 9}, {5, 4},
{5, 12}, {5, 7}, {11, 12}, {11, 10}, {9, 10}} define this graph. Since each edge is
itself a set of cardinality 2, the order of the vertices in each edge set does not matter.
For instance, {1, 4} is the same edge as {4, 1}.

Many problems can be formulated in terms of a graph. For instance, we might ask
how many colors it would take to color a map so that no two countries that shared a
border were colored the same. In this problem the vertices in Fig. 7.1 would represent
countries and two countries that share a border would have an edge between them.
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Fig. 7.2 A Directed Graph

The problem can then be restated as finding the minimum number of colors required
to color each vertex in the graph so that no two vertices that share an edge have the
same color.

A directed graph G = (V, E) is defined in the same way as an undirected graph
except that the set of edges, E, is a set of tuples instead of subsets. By defining
E={(vi,vj) where vi,vj∈ V} means that edges can be traversed in one direction only.
In Fig. 7.2 we can move from vertex 10 to vertex 0 along the edge (10, 0), but
we cannot move from vertex 0–10, at least not without going through some other
vertices, because the edge (0, 10) is not in the set E.

A path in a graph is a series of edges, none repeated, that can be traversed in order
to travel from one vertex to another in a graph. A cycle in a graph is a path which
begins and ends with the same vertex. The last chapter covered trees in computer
science. Now armed with some notation from graph theory we can give a formal
definition of a tree. A tree is a directed, connected acyclic graph. An acyclic graph
is a graph without any cycles.

Sometimes in graph theory a tree is defined as anacyclic connectedgraph dropping
the requirement that it be a directed graph. In this case, a tree may be defined as a
graph which is fully connected, but has only one path between any two vertices.

Both directed and undirected graphs can be used to model many different kinds
of problems. The graph in Fig. 7.1 might represent register allocation in a CPU. The
vertices could represent symbolically named registers and two registers that were
both in use at the same time would have an edge between them. The question that
might be asked is, “How many physical registers of the machine are required for the
symbolic registers of this computation?”.

It turns out that register allocation and map coloring represent the same prob-
lem. When we abstract away the details, the problem boils down to a graph col-
oring problem. An answer to “How many colors are required to color the map?”
would answer “Howmany physical registers are required for this computation?” and
vice-versa.
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Fig. 7.3 A Weighted, Undirected Graph

A weighted graph is a graph where every edge has a weight assigned to it. More
formally, a weighted graph G = (V, E, w) is a graph with the given set of vertices, V,
and edges, E. In addition, a weighted graph has a weight function,w, that maps edges
to real numbers. So the signature of w is given by E → Real. Weighted graphs can
be used to represent the state of many different problems. For instance, a weighted
graphmight provide information about roads and intersections. Cost/benefit analysis
can sometimes be expressed in terms of a weighted graph. The weights can repre-
sent the available capacity of network connections between nodes in a network. A
weighted graph can be used to represent the state ofmany different kinds of problems.
Figure7.3 depicts a weighted graph which represents roads and intersections.
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7.3 Searching a Graph

Many problems have been formulated in terms of graph theory. One of the more
common problems is discovering a path from one vertex to another in a graph. The
question might be, does a path exist from vertex vi to vj and if so, what edges must
you traverse to get there? Performing depth first search on a graph is similar to the
algorithm first presented in Chap. 6, but we must be wary of getting stuck in a cycle
within a graph.

Consider searching for a path from vertex 0 to vertex 1 in the directed graph of
Fig. 7.2. The blue lines in Fig. 7.4 highlight the path between these vertices. In the
graph, there seems to be only one choice in most cases. However, when the search
reaches vertex 10 we must choose between two edges. One edge takes us back to
vertex 0 which we have already visited. The other edge takes us closer to the final
path. Another choice is made at vertex 5. If the edge to 7 is wrongly examined, we
must have a way of backing up and trying the other edge to vertex 4.

Searching a graph in this manner is also called depth first search, as first discussed
in Chap. 6, and requires the ability to backtrack. Consider when vertex 5 is encoun-
tered. If a choice is made to go to vertex 7, we must be able to back up to fix that
choice and go to vertex 4 instead. A stack data structure or recursion handles the
backtracking.

Depth first searchmust also avoid possible cycles within the graph. The avoidance
of cycles is accomplished by maintaining a set of visited vertices. When a vertex is
visited, it is added to the visited set. If a vertex is in the visited set, then it is not
examined again later in the search should a cycle take the search back to the same
vertex.

An iterative (i.e. non-recursive) graph depth first search algorithm begins by ini-
tializing the visited set to the empty set and by creating a stack for backtracking.
The start vertex is pushed onto the stack to begin the algorithm. Steps similar to

Fig. 7.4 A Path from Vertex 0 to Vertex 1
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those taken in Listing 7.1 are executed to find the goal. This code is pseudo-code,
but presents the necessary details.

1 def graphDFS(G, start, goal):
2 # G = (V,E) is the graph with vertices, V, and edges, E.
3 V,E = G
4 stack = Stack()
5 visited = Set()
6 stack.push(start)
7
8 while not stack.isEmpty():
9 # A vertex is popped from the stack. This is called the current vertex.
10 current = stack.pop()
11 # The current vertex is added to the visited set.
12 visited.add(current)
13
14 # If the current vertex is the goal vertex, then we discontinue the
15 # search reporting that we found the goal.
16 if current == goal:
17 return True # or return path to goal perhaps
18
19 # Otherwise, for every adjacent vertex, v, to the current vertex
20 # in the graph, v is pushed on the stack of vertices yet to search
21 # unless v is already in the visited set in which case the edge
22 # leading to v is ignored.
23 for v in adjacent(current,E):
24 if not v in visited:
25 stack.push(v)
26
27 # If we get this far, then we did not find the goal.
28 return False # or return an empty path

Listing 7.1 Iterative Depth First Search of a Graph

If the while loop in Listing 7.1 terminates the stack was empty and therefore
no path to the goal exists. This algorithm implements depth first search of a graph.
It can also be implemented recursively if pushing on the stack is replaced with a
recursive call to depth first search. When implemented recursively, the depth first
search function is passed the current vertex and a mutable visited set and it returns
either the path to the goal or alternatively a boolean value indicating that the goal or
target was found. Given the graph in Fig. 7.4 the search returned True.

The iterative version of depth first search can be modified to do a breadth first
search of a graph if the stack is replaced with a queue. Breadth first search is an
exhaustive search, meaning that it looks at all paths at the same time, but will also
find the shortest path, with the least number of edges, between any two vertices in
a graph. Performing breadth first search on large graphs may take too long to be of
practical use.
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7.4 Kruskal’s Algorithm

Consider for a moment a county which is responsible for plowing roads in the winter
but is running out of money due to an unexpected amount of snow. The county
supervisor has been told to reduce costs by plowing only the necessary roads for the
rest of the winter. The supervisor wants to find the shortest number of total miles
that must be plowed so any person can travel from one point to any other point in
the county, but not necessarily by the shortest route. The county supervisor wants to
minimize the miles of plowed roads, while guaranteeing you can still get anywhere
you need to in the county.

Joseph Kruskal was an American computer scientist and mathematician who
lived from 1928 to 2010. He imagined this problem, formalized it in terms of a
weighted graph, and devised an algorithm to solve this problem. His algorithm was
first published in the Proceedings of the American Mathematical Society [7] and is
commonly called Kruskal’s Algorithm.

The last chapter introduced trees by using them in various algorithms like binary
search. The definition doesn’t change from the last chapter. But trees, in the context
of graph theory, are a subset of the set of all possible graphs. A tree is just a graph
without any cycles. In addition, it is relatively easy to prove that a tree must contain
one less edge than its number of vertices. Otherwise, it would not be a tree.

Clearly the graph in Fig. 7.3 is not a tree. There are many cycles within the graph.
Kruskal’s paper presented an algorithm to find aminimumweighted spanning tree for
such a graph. Figure7.5 contains a minimum weighted spanning tree for the graph
in Fig. 7.3 with the tree edges highlighted in orange. We don’t say the minimum
weighted spanning tree because in general there could be more than one minimum
weighted spanning tree. In this case, there is likely only one possible.

Kruskal’s algorithm is a greedy algorithm. The designation greedymeans that the
algorithm always chooses the first alternative when presented with a list of alterna-
tives and never makes a mistake, or wrong choice, when choosing. In other words,
no backtracking is required in Kruskal’s algorithm.

The algorithm begins by sorting all the edges in ascending order of their weights.
Assuming that the graph is fully connected, the spanning tree will contain |V |–1
edges. The algorithm forms sets of all the vertices in the graph, one set for each
vertex, initially containing just that vertex that corresponds to the set. In the example
in Fig. 7.3 there are initially 30 sets each containing one vertex.

The algorithm proceeds as follows until |V |–1 edges have been added to the set
of spanning tree edges.

1. The next shortest edge is examined. If the two vertex end points of the edge are in
different sets, then the edge may be safely added to the set of spanning tree edges.
A new set is formed from the union of the two vertex sets and the two previous
sets are dropped from the list of vertex sets.

2. If the two vertex endpoints of the edge are already in the same set, the edge is
ignored.
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Fig. 7.5 A Minimum Weighted Spanning Tree

That’s the entire algorithm. The algorithm is greedy because it always chooses the
next smallest edge unless doing so would form a cycle. If a cycle would be formed
by adding an edge, it is known right away without having to undo any mistake or
backtrack.

Consider Fig. 7.6. In this snapshot the algorithm has already formed a forest of
trees, but not a spanning tree yet. The edges in orange are part the spanning tree. The
next shortest edge, the edge from vertex 3 to vertex 9 is currently being considered.
The set containing 3 and 9 is the set {3, 0, 1, 4, 5, 12, 11, 10, 9}. Adding the edge with
end points 3 and 9 cannot be done because vertices 3 and 9 are already in the same
set. So, this edge is skipped. It cannot be a part of the minimum weighted spanning
tree.

The next shortest edge is the edge between vertices 2 and 3. Since 2 is a member
of {8, 2, 6} and 3 is a member of its set in the previous paragraph, the edge {2, 3}
is added to the minimum weighted spanning tree edges and the new set {8, 2, 6, 3,
0, 1, 4, 5, 12, 11, 10, 9} is formed replacing its previous two subsets as depicted in
Fig. 7.7.
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Fig. 7.6 Kruskal’s: Snapshot 1

The next shortest edge is the edge between vertices 1 and 10. This edge again
cannot be added since 1 and 10 are in the same set and therefore adding the edge
would form a cycle. The next shortest edge is the edge between vertices 18 and 25,
but again adding it would form a cycle so it is skipped. The algorithm proceeds in
this manner until the resulting spanning tree is formed with |V |–1 edges (assuming
the graph is fully connected).

7.4.1 Proof of Correctness

Proving Kruskal’s algorithm correctly finds a minimum weighted spanning tree can
be donewith a proof by contradiction. The proof starts by recognizing that theremust
be |V |–1 edges in the spanning tree. Then we assume that some other edge would be
better to add to the spanning tree than the edges picked by the algorithm. The new
edge must be a part of one and only one cycle. If adding the new edge formed two
or more cycles then there would have had to be a cycle in the tree before adding the
new edge. One of the edges in this newly formed cycle must be deleted from the
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Fig. 7.7 Kruskal’s: Snapshot 2

minimumweighted spanning tree to once again make it a tree. And, the deleted edge
must have weight greater than the newly added edge. This is only possible if the new
edge and the deleted old edge have exactly the same weight since all the old edges
in the cycle were chosen before the new edge and the new edge was skipped because
choosing it would have formed a cycle. So dropping the same weighted edge of the
older edges will result in a minimum weighted spanning tree with the same weight.
Therefore, the new spanning tree has the same weight as the original spanning tree
and that contradicts our assumption that a better edge could be found.

7.4.2 Kruskal’s Complexity Analysis

The complexity of Kruskal’s algorithm depends on sorting the list of edges and then
forming the union of sets as the algorithm proceeds. Sorting a list, as was shown in
Chap. 4 when we looked at the complexity of quicksort, is O(|E |log|E |).

Sorting the list is one half of Kruskal’s algorithm. The other half is choosing the
correct edges. Recall that each edge starts in a set by itself and that an edge belongs
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to the minimum weighted spanning tree if the two endpoint vertices are in separate
sets. If so, then the union is formed for the two sets containing the endpoints and this
union of two sets replaces the previous two sets going forward.

Three operations are required to implement this part of the algorithm.

1. First we must discover the set for each endpoint of the edge being considered for
addition to the spanning tree.

2. Then the two sets must be compared for equality.
3. Finally, the union of the two sets must be formed and any necessary updates must

be performed so the two endpoint vertices now refer to the union of the two sets
instead of their original sets.

One way to implement these operations would be to create a list of sets where
each position in the list corresponded to one vertex in the graph. The vertices are
conveniently numbered 0–29 in the example in the text but vertices can be reassigned
integer identifiers starting at 0 otherwise. The set corresponding to a vertex can be
determined in O(1) time since indexed lookup in a list is a constant time operation.

If we make sure there is only one copy of each set, we can determine if two sets
are the same or not in O(1) time as well. We can just compare their references to
see whether they are the same set or not. The keyword is in Python will accomplish
this. So if we want to know that x and y refer to the same set we can write x is y and
this operation is O(1).

The third operation requires forming a new set from the previous two. This op-
eration will be performed |V |–1 times. In the worst case the first time this operation
occurs 1 vertex will be added to an existing set. The second time, two vertices will be
added to an existing set, and so on. So in the end, the overall worst case complexity of
this operation is O(|V |2) assuming once again that the graph is connected. Clearly,
this is the expensive operation of this algorithm. The next section presents a data
structure that improves on this considerably.

7.4.3 The Partition Data Structure

To improve on the third required operation, the merging of two sets into one set, a
specialized data structure called a Partitionmay be used. The partition data structure
contains a list of integers with one entry for each vertex. Initially, the list simply
contains a list of integers which match their indices:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29]

Think of this list as a list of trees, representing the sets of connected edges in
the spanning forest constructed so far. A tree’s root is indicated when the value at a
location within the list matches its index. Initially, each vertex within the partition is
in its own set because each vertex is the root of its own tree.
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Discovering the set for a vertex means tracing a tree back to its root. Consider
what happens when the edge from vertex 3 to vertex 9 is considered for adding to the
minimum weighted spanning tree as pictured in Fig. 7.6. The partition at that time
looks like this.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[ 4 , 4 , 2 , 7 , 5 ,11 , 2 , 7 , 2 ,11 ,11 , 7 ,11 ,16 ,16 ,16 ,16 ,19 ,19 ,19 ,19 ,22 ,22 ,24 ,26 ,26 ,19 ,26 ,29 ,29]

Vertex 3 is not the root of its own tree at this time. Since 7 is found at index 3 we
next look at index 7 of the partition list. That position in the partition list matches
its value. The 3 is in the set (i.e. tree) rooted at location 7. Looking at vertex 9 next,
index 9 in the list contains 11. Index 11 in the list contains 7. Vertex 9 is also in the
set (i.e. tree) rooted at index 7. Therefore vertex 3 and 9 are already in the same set
and the edge from 3 to 9 cannot be added to the minimum spanning tree since a cycle
would be formed.

The next edge to be considered is the edge between vertices 2 and 3. The root of
the tree containing 2 is at index 2 of the partition. The root of the vertex containing
3 is at index 7 as we just saw. These two vertices are not in the same set so the edge
from 2 to 3 is added to the minimum spanning tree edges.

The third operation that must be performed is the merging of the sets containing
2 and 3. This is where the partition comes in handy. Having found the root of the
two trees, we simply make the root of one of the trees point to the root of the other
tree. We end up with this partition after merging these two sets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[ 4 , 4 , 2 , 7 , 5 ,11 , 2 , 2 , 2 ,11 ,11 , 7 ,11 ,16 ,16 ,16 ,16 ,19 ,19 ,19 ,19 ,22 ,22 ,24 ,26 ,26 ,19 ,26 ,29 ,29]

At this point in the algorithm, the tree rooted at 7 has been altered to be rooted at
2 instead. That’s all that was needed to merge the two sets containing vertex 2 and
3! The root of one tree can be made to point to the root of the other tree when two
sets are merged into one.

Thepartitiondata structure combines the three requiredoperations fromSect. 7.4.2
into onemethod called sameSetAndUnion. This method is given two vertex numbers.
The method returns true if the two vertices are in the same set (i.e. have the same
root). If they do not have the same root, then the root of one tree is made to point to
the other and the method returns false.

The sameSetAndUnion method first finds the roots of the two vertices given to
it. In the worst case this could take O(|V |) time leading to an overall complexity
of O(|V |2). However, in practice these set trees are very flat. For instance, in the
example presented in this chapter, the averagedepthof the set trees is 1.7428,meaning
that on average it takes 1.7428 comparisons to find the root of a set tree in a graph
with 30 vertices and 45 edges to consider adding to the minimumweighted spanning
tree. Another example containing 133 vertices and 8778 edges had an average set
tree depth of 7.5656. The average complexity of this sameSetAndUnion method is
much better than the solution considered in Sect. 7.4.2. The average case complexity
of sameSetAndUnion is much closer to O(log|V |). This means that the second part
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of Kruskal’s algorithm, using this partition data structure, exhibits O(|E |log|V |)
complexity in the average case.

In a connected graph the number of edges must be no less than one less than the
total number of vertices. Sorting the edges takes O(|E |log|E |) time and the second
part of Kruskal’s algorithm takes O(|E |log|V |) time. Since the number of edges
is at least on the same order as the number of vertices in a connected graph the
complexity O(|E |log|V |) ≤ O(|E |log|E |). So we can say that the overall average
complexity of Kruskal’s algorithm is O(|E |log|E |). In practice, Kruskal’s algorithm
is very efficient and finds a minimum weighted spanning tree quickly even for large
graphs with many edges.

7.5 Dijkstra’s Algorithm

Edsger Dijkstra was a Dutch computer scientist who lived from 1930 to 2002. In
1959 he published a short paper [4] that commented on Kruskal’s solution to the
minimum spanning tree problem and provided an alternative that might in some
cases be more efficient. More importantly, he provided an algorithm for finding the
minimum cost path between any two vertices in a weighted graph. This algorithm
can be, and sometimes is, generalized to find the minimum cost path between a
source vertex and all other vertices in a graph. This algorithm is known as Dijkstra’s
algorithm. Figure7.8 shows the result of running Dijkstra’s algorithm on the graph
first presented in Fig. 7.3. The purple edges show the minimum cost paths from
source vertex 0 to all other vertices in the graph. The orange values are the minimum
cost of reaching each vertex from source vertex 0.

Efficiently finding a minimum cost path from one vertex to another is used in
all kinds of problems including network routing, trip planning, and other planning
problems where vertices represent intermediate goals and edges represent the cost of
transitioning between intermediate goals. These kind of planning problems are very
common.

Dijkstra’s algorithm proceeds in a greedy fashion from the single source vertex.
Each vertex, v, in the graph is assigned a cost which is the sum of the weighted edges
on the path from the source to v. Initially the source vertex is assigned cost 0. All
other vertices are initially assigned infinite cost. Anything greater than the sum of
all weights in the graph can serve as an infinite value.

Dijkstra’s algorithm shares some commonality with depth first search. The algo-
rithm proceeds as depth first search proceeds, but starts with a single source eventu-
ally visiting every node within the graph. There are two sets that Dijkstra’s algorithm
maintains. The first is an unvisited set. This is a set of vertices that yet need to be
considered while looking for minimum cost paths. The unvisited set serves the same
purpose as the stack when performing depth first search on a graph. The visited set
is the other set used by the algorithm. The visited set contains all vertices which
already have their minimum cost and path computed. The visited set serves the same
purpose as the visited set in depth first search of a graph.
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Fig. 7.8 Minimum Cost Paths and Total Cost from Source Vertex 0

To keep track of the minimum cost path from the source to a vertex, v, it is only
necessary to keep track of the previous vertex on the path to v. For each vertex, v,
we keep track of the previous vertex on its path from the source.

Initially the source vertex, with its cost of 0, is added to the unvisited set. Then the
algorithm proceeds as follows as long as there is at least one vertex in the unvisited
set.

1. Remove the vertex we’ll call current from the unvisited set with the least cost. All
other paths to this vertex must have greater cost because otherwise they would
have been in the unvisited set with smaller cost.

2. Add current to the visited set.
3. For every vertex, adjacent, that is adjacent to current, check to see if adjacent is in

the visited set or not. If adjacent is in the visited set, then we know the minimum
cost of reaching this vertex from the source so don’t do anything.

4. If adjacent is not in the visited set, compute a new cost for arriving at adjacent
by traversing the edge, e, from current to adjacent. A new cost can be found by
adding the cost of getting to current and e’s weight. If this new cost is better than
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the current cost of getting to adjacent, then update adjacent’s cost and remember
that current is the previous vertex of adjacent. Also, add adjacent to the unvisited
set.

When this algorithm terminates the cost of reaching all vertices in the graph has
been computed assuming that all vertices are reachable from the source vertex. In
addition, the minimum cost path to each vertex can be determined from the previous
vertex information that was maintained as the algorithm executed.

7.5.1 Dijkstra’s Complexity Analysis

In the first step of Dijkstra’s algorithm, the next current vertex is always the unvisited
vertex with smallest cost. By always picking the vertex with smallest cost so far, we
can be guaranteed that no other cheaper path exists to this vertex since we always
proceed by considering the next cheapest vertex on our search to find cheapest paths
in the graph.

The number of edges of any vertex in a simple, undirected graph will always be
less than the number of total vertices in the graph. Each vertex becomes the current
vertex exactly once in the algorithm in step 1. Assume finding the next current takes
O(|V |) time. Since this happens |V | times, the complexity of the first step is O(|V |2)
over the course of running the algorithm. The rest of the steps consider those edges
adjacent to current. Since the number of edges of any vertex in a simple, undirected
graph will alway be less than |V |, the rest of the algorithm runs in less than O(|V |2)
time. So, the complexity of Dijkstra’s Algorithm is O(|V |2) assuming that the first
step takes O(|V |) to find the next current vertex.

It turns out that selecting the next current can be done in O(log|V |) time if we
use a priority queue for our unvisited set. Priority queues and their implementation
are discussed in Chap. 9. Using a priority queue, Dijkstra’s Algorithm will run in
O(|V |log|V |) time.

7.6 Graph Representations

Howagraph,G=(V,E), is representedwithin a programdepends onwhat the program
needs to do. Consider the directed graph in Fig. 7.2. The graph itself can be stored
in an XML file containing vertices and edges as shown in Listing 7.2. A weighted
graph would include a weight attribute for each edge in the graph. In this XML file
format the vertexId is used by the edges to indicate which vertices they are attached
to. The labels, which appear in Fig. 7.2 are only labels and are not used within the
XML file to associate edges with vertices.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Graph width="595.80" height="229.20" directed="True" weighted="False">
3 <Vertices>
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4 <Vertex vertexId="12" x="343.15" y="156.10" label="10"/>
5 <Vertex vertexId="11" x="246.15" y="161.10" label="9"/>
6 <Vertex vertexId="10" x="288.15" y="58.10" label="0"/>
7 <Vertex vertexId="9" x="374.15" y="58.10" label="1"/>
8 <Vertex vertexId="8" x="135.15" y="156.10" label="6"/>
9 <Vertex vertexId="7" x="49.65" y="83.10" label="2"/>
10 <Vertex vertexId="6" x="167.15" y="83.05" label="3"/>
11 <Vertex vertexId="5" x="121.15" y="19.10" label="8"/>
12 <Vertex vertexId="4" x="419.15" y="204.10" label="11"/>
13 <Vertex vertexId="3" x="426.15" y="87.10" label="4"/>
14 <Vertex vertexId="2" x="546.15" y="96.10" label="5"/>
15 <Vertex vertexId="1" x="546.15" y="210.10" label="7"/>
16 <Vertex vertexId="0" x="485.15" y="161.10" label="12"/>
17 </Vertices>
18 <Edges>
19 <Edge tail="12" head="10"/>
20 <Edge tail="10" head="6"/>
21 <Edge tail="6" head="11"/>
22 <Edge tail="7" head="6"/>
23 <Edge tail="7" head="8"/>
24 <Edge tail="7" head="5"/>
25 <Edge tail="11" head="12"/>
26 <Edge tail="12" head="4"/>
27 <Edge tail="4" head="0"/>
28 <Edge tail="0" head="2"/>
29 <Edge tail="2" head="1"/>
30 <Edge tail="2" head="3"/>
31 <Edge tail="3" head="9"/>
32 <Edge tail="9" head="10"/>
33 <Edge tail="9" head="12"/>
34 </Edges>
35 </Graph>

Listing 7.2 A Graph XML File

The x and y vertex attributes are not required in any graph representation, but
to draw a graph it is nice to have location information for the vertices. All this
information is stored in the XML file, but what about the three algorithms presented
in this chapter? What information is actually needed by each algorithm.

When searching a graph by depth first search vertices are pushed onto a stack
as the search proceeds. In that case the vertex information must be stored for use
by the search. In this case, since edges have the vertexId of their edge endpoints, it
would be nice to have a method to quickly lookup vertices within the graph. A map
or dictionary from vertexId to vertices would be convenient. It makes sense to create
a class to hold the vertex information like the class definition of Listing 7.3.

1 class Vertex:
2 def __init__(self, vertexId, x, y, label):
3 self.vertexId = vertexId
4 self.x = x
5 self.y = y
6 self.label = label
7 self.adjacent = []
8 self.previous = None

Listing 7.3 A Vertex Class
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In this Vertex class definition for directed graphs it makes sense to store the edges
with the vertex since edges connect vertices. The adjacent list can hold the list of
adjacent vertices. When running depth first search a map of vertexId to Vertex for
each of the vertices in the graph provides the needed information for the algorithm.

When implementing Kruskal’s algorithm, a list of edges is the important feature
of the graph. The class definition of Listing 7.4 provides a less-than method which
allows edge objects to be sorted,which is crucial forKruskal’s algorithm.The vertices
themselves are not needed by the algorithm. A list of edges and the partition data
structure suffice for running Kruskal’s algorithm.

1 class Edge:
2 def __init__(self,v1,v2,weight=0):
3 self.v1 = v1
4 self.v2 = v2
5 self.weight = weight
6
7 def __lt__(self,other):
8 return self.weight < other.weight

Listing 7.4 An Edge Class

Running Dijkstra’s algorithm benefits from having both the edge and vertex ob-
jects. The weight of each edge is needed by the algorithm so storing the weight in
the edge and associating vertices and edges is useful.

There are other potential representations for graphs. For instance, a
two-dimensional matrix could be used to represent edges between vertices. The
rows and columns of the matrix represent the vertices. The weight of an edge from
vertex vi to vertex vj would be recorded at matrix[i][j]. Such a representation is
called an adjacency matrix. Adjacency matrices tend to be sparsely populated and
there are approaches to storing sparse matrices more compactly that are not covered
in this text.

The chosen graph representation depends on the work being done. Vertices with
adjacency information may be enough. An edge list is enough for the Kruskal’s
algorithm. Vertex and edge information is required for Dijskstra’s algorithm. An
adjacency matrix may be required for some situations. As programmers we need to
be mindful about wasted space, algorithm needs, and efficiency of our algorithms
and the implications that the choice of data representation has on our programs.

7.7 Chapter Summary

Graph notation was covered in this chapter. Several terms and definitions were given
for various types of graphs including weighted and directed graphs. The chapter
presented three graph theory algorithms: depth first search, Kruskal’s algorithm, and
Dijkstra’s algorithm. Through looking at those algorithms we also explored graph
representations and their use in these various algorithms.

After reading this chapter you should know the following.
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• A graph is composed of vertices and edges.
• A graph may be directed or undirected.
• A tree is a graph where one path exists between any two vertices.
• A spanning tree is a subset of a graph which includes all the vertices in a connected
graph.

• A minimum weighted spanning tree is found by running Kruskal’s algorithm.
• Dijkstra’s algorithm finds the minimum cost of reaching all vertices in a graph
from a given source vertex.

• Choosing a graph representation depends on the work to be done.
• Some typical graph representations are a vertex list with adjacency information,
an edge list, or an adjacency matrix.

7.8 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. In the definition of a graph, G = (V,E), what does the V and the E stand for?
2. What is the difference in the definition of E in directed and undirected graphs?
3. In depth first search, what is the purpose of the visited set?
4. How is backtracking accomplished in depth first search of a graph? Explain how

the backtracking happens.
5. What is a path in a graph and how does that differ from a cycle?
6. What is a tree? For the graph in Fig. 7.2 provide three trees that include the

vertices 0, 1, and 10.
7. Why does Kruskal’s algorithm never make a mistake when selecting edges for

the minimum weighted spanning tree?
8. Why does Dijkstra’s algorithm never make a mistake when computing the cost

of paths to vertices?
9. What graph representation is best for Kruskal’s algorithm? Why?

10. Why is the previous vertex stored by Dijkstra’s algorithm? What purpose does
the previous vertex have and why is it stored?

7.9 Programming Problems

1. Write a program to find a path between vertex 9 and 29 in the graph shown in
Fig. 7.9. Be sure to print the path (i.e. the sequence of vertices) that must be
traversed in the path between the two vertices. An XML file describing this graph
can be found on the text website.
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Fig. 7.9 A Sample Weighted, Directed Graph

2. Modify the first problem to find the shortest path between vertices 9 and 29 in
terms of the number of edges traversed. In other words, ignore the weights in this
problem. Use breadth first search to find this solution.

3. Write the code and perform Dijkstra’s algorithm on the graph in Fig. 7.9 to find
the minimum cost of visiting all other vertices from vertex 9 of the graph.

4. Write the code and perform Kruskal’s algorithm on either the directed graph in
Fig. 7.9 or the undirected example found in the chapter. XML files for both graphs
can be found on the text website.

5. Not every graph must be represented explicitly. Sometimes it is just as easy to
write a function that given a vertex, will compute the vertices that are adjacent to it
(that have edges between them). For instance, consider the water bucket problem.
There are two buckets in this problem: a 3 gallon bucket and a 5 gallon bucket.
Your job is to put exactly 4 gallons in the 5 gallon bucket. The rules of the game
say that you can completely fill a bucket of water, you can pour one bucket into
another, and you can completely dump a bucket out on the ground. You cannot
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partially fill up a bucket, but you can pour one bucket into another. You are to
write a program that tells you how to start with two empty buckets and end with
4 gallons in the 5 gallon bucket.

To complete this problem you must implement depth first search of a graph.
The vertices in this problem consist of the state of the problem which is given
by the amount of water in each bucket. Along with the search algorithm you
must also implement an adjacent function that given a vertex containing this state
information will return a list of states that may be adjacent to it. It may be easier
to generate some extra adjacent states and then filter out the unreasonable ones
before returning the list from adjacent. For instance, it may be easier to generate
a state with 6 gallons in the 5 gallon bucket and then throw that state out later
by removing states from the list which have more gallons than allowed in that
bucket.

The program should print out the list of actions to take to get from no water in
either bucket to four gallons in the five gallon pail. The solution may not be the
absolute best solution, but it should be a valid solution that is printed when the
program is completed.

6. A bipartite graph is a graph where the vertices may be divided into two sets such
that no two vertices in the same set have an edge between them. All edges in the
graph go between vertices that appear in different sets. A program can test to see
if a graph is bipartite by doing a traversal of the graph, like a depth first search,
and looking for odd cycles. A graph is bipartite if and only if it does not contain
an odd cycle. Write a program that given a graph decides if it is bipartite or not.
The program need only print Yes, it is bipartite, or No, it is not bipartite.

7. Extend the program from the previous exercise to print the set of vertices in each
of the two bipartite sets if the graph is found to be bipartite.
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In Chap.5 we covered data structures that support insertion, deletion, membership
testing, and iteration. For some applications testing membership may be enough.
Iteration and deletion may not be necessary. The classic example is that of a spell
checker. Consider the job of a spell checker. A simple one may detect errors in
spelling while a more advanced spell checker may suggest alternatives of correctly
spelled words.

Clearly a spell checker is provided with a large dictionary of words. Using the list
of words the spell checker determines whether a word you have is in the dictionary
and therefore a correct word. If the word does not appear in the dictionary the word
processor or editor may underline the word indicating it may be incorrectly spelled.
In some cases the word processor may suggest an alternative, correctly spelled word.
In some cases, the word processor may simply correct the misspelling. How do these
spell checkers/correctors work? What kind of data structures do they use?

8.1 Chapter Goals

At first glance, a hash set (i.e. a Python dictionary) might seem an appropriate data
structure for spell checking. Lookup time within the set could be done in O(1) time.
However, the tradeoff is in the size of this hash map. A typical English dictionary
might contain over 100,000 words. The amount of space required to store that many
words would be quite large.

In this chapter we’ll cover two data structures that are designed to test membership
within a set. The first, a bloom filter, has significantly smaller space requirements
and provides a very fast membership test. The other is a trie (pronounced try) data
structure which has features that would not be readily available to a hash set imple-
mentation and may take up less space than a hash set.

© Springer Nature Switzerland AG 2024
K. D. Lee and S. Hubbard, Data Structures and Algorithms with Python,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-42209-6_8

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42209-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-42209-6_8


208 8 Membership Structures

8.2 Bloom Filters

Bloom filters are named for their creator, Burton Howard Bloom, who originally pro-
posed this idea in 1970. Since then many authors have covered the implementations
of bloom filters including Tharp [14]. Wikipedia, while not always the authoritative
source, has a very good discussion of bloom filters as well [16].

A bloom filter shares some ideas with hash sets while using considerably less
space. A bloom filter is a data structure employing statistical probability to determine
if an item is a member of a set of values. Bloom filters are not 100% accurate. A
bloom filter will never report a false negative for set membership, meaning that they
will never report that an item doesn’t belong to a set when it actually does. However,
a bloom filter will sometimes report a false positive. It may report an item is in a set
when it is actually not.

Consider the problem of spell checking. A spell checker needs to know if a typed
word is correctly typed by looking it up in the dictionary. With a bloom filter, the
typed word can be given to the bloom filter which will report that it is or is not a
correctly typed word. In some cases it may report a word is correct when it is not.

A bloom filter is an array of bits along with a set of hashing functions. The number
of bits in the filter and the number of hashing functions influences the accuracy of
the bloom filter. The exact number of bits and hash functions will be discussed later.
Consider a bloom filter with 20 bits and 3 independent hash functions. Initially all
the bits in the filter are set to 0 as shown in Fig. 8.1.

Consider adding the word cow to the bloom filter. Assume that three independent
hash functions hash the word cow, modulo 20, to 18, 9, and 3 respectively. The bits
at indices 18, 9, and 3 are set to 1 to remember that cow has been added to the filter
as shown in Fig. 8.2.

Now consider adding the word cat to the same filter. Assume the hash values
from the three hash functions, modulo 20, are 0, 3, and 9. Inserting cat into the filter
results in setting the bit at index 0 to a 1. The other two were already set by inserting

Fig. 8.1 An Empty Bloom Filter

Fig. 8.2 After Inserting cow into the Bloom Filter
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Fig. 8.3 After Inserting cow, cat, and dog into the Bloom Filter

cow. Finally, inserting dog into the filter results in the bloom filter shown in Fig. 8.3.
The hash values for dog are 10, 9, and 8.

Looking up an item in a bloomfilter requires hashing the value againwith the same
hash functions generating the indices into the bit array. If the value at all indices in
the bit array are one, then the lookup function reports success and otherwise failure.

Consider looking up a value that is not in the bloom filter of Fig. 8.3. If we look
up fox the three hash function calls return 3, 12, and 18. The digit at indices 3 and
18 is a 1. However, the digit at index 12 is a 0 and the lookup function reports that
fox is not in the bloom filter.

Consider looking up the value rabbit in the same bloom filter. Hashing rabbit
with the three hash functions results in values 8, 9, and 18. All three of the digits at
these locations within the bloom filter contain a 1 and the bloom filter incorrectly
reports that rabbit has been added to the filter. This is a false positive and while not
desirable, must be acceptable if a bloom filter is to be used.

If a bloom filter is to be useful, it must never report a false negative. From these
examples it should be clear that false negatives are impossible. False positives must
be kept to a minimum. In fact, it is possible to determine on average how often a
bloom filter will report a false positive. The probability calculation depends on three
factors: the hashing functions, the number of items added to the bloom filter, and the
number of bits used in the bloom filter. The analysis of these factors are covered in
the next sections.

8.2.1 The Hashing Functions

Each item added to a bloom filter must be hashed by some number of hash functions
which are completely independent of each other. Each hashing function must also
be evenly distributed over the range of bit indices in the bit array. This second
requirement is true of hashing functions for hash sets and hash tables aswell. Uniform
distribution is guaranteed by the built-in hash functions of Python and most other
languages.

In the examples above, three hashing functions were required. Sometimes the
required number of hashing functions can be much higher, depending on the number
of items being inserted and the number of bits in the bit array. Creating the required
number of independent, uniformly distributed hashing functions might seem like a
daunting problem, but it can be solved in at least a couple of ways. Some hashing
functions allow a seed value to be provided. In this case, different seed values could
be used to create different hashing functions.
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Another equally effective way of generating independent hashing functions is to
append some known value to the end of each item before it is hashed. For instance,
a 0 might be appended to the item before hashing it to get the first hash function.
A 1 could be appended to the item before hashing to get the second hash function.
Likewise, a 2 might be appended to get the third hash function value. So looking
up rabbit in the bloom filter is accomplished by first hashing rabbit0, rabbit1, and
rabbit2 with the same hashing function. Since the hashing function is uniformly
distributed, the values returned by the three hashed values will be independent of
each other. And, all items with 0 appended will themselves be uniformly distributed.
Likewise for items with 1 appended and with 2 appended.

8.2.2 The Bloom Filter Size

It is possible to find the required bloom filter size given a number of items to insert
and a desired false positive probability. The probability of any one location within a
bloom filter not being set by a hash function while inserting an item is given by the
following formula where the filter consists of m bits.

1− 1

m
If the bloom filter uses k hash functions, then the probability that a bit in the bit array
is not set by any of the hash functions required for inserting an item is given by this
formula. (

1− 1

m

)k

If n items are inserted into the bloom filter then raising this formula to nwill provide
the probability that a bit within the bloom filter’s bit array is still a zero after inserting
all n items. So we have (

1− 1

m

)nk

So, the probability that a bit in the bloom filter is a 1 after inserting n items while
using k hashing functions is given by this formula.

1−
(
1− 1

m

)nk

Now consider looking up an item that was not added to the bloom filter. The prob-
ability that it will report a false positive can be found by computing the likelihood
that each location within the bloom filter is a 1 for all k hashing functions. This is
expressed as follows.

p =
(
1−

(
1− 1

m

)nk
)k

This formula contains a sequence that can be approximated using the natural log
[16] as
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p =
(
1− ekn/m

)k
Using this formula it is possible to solve for m given an n and desired probability, p,
of false positives. The formula is as follows.

m = − n ln p

(ln 2)2

Finally, solving for k above results in the following formula.

k = m

n
ln 2

These two formulas tell us how many bits are required in our filter to guarantee a
maximum specified rate of false positives. We can also compute the required number
of hash functions. For instance, for an English dictionary containing 109583 words
and a desired false postive percentage of no more than 1% (expressed as 0.01 in the
formula) requires a bit array of 1,050,360 bits and seven hashing functions.

The number of bits in this example may seem excessive. However, recall that
they are bits. An efficient implementation requires roughly 128 KB of storage. The
number of characters in the English dictionary used in these examples totals 935171.
Assuming 1 byte per character, storing all these words would require a minimum
of 914 KB. The bloom filter represents quite a savings in space. In addition, during
experiments the lookup time using the bloom filter never took longer than 160µs.
The lookup time is bounded by the number and efficiency of the hash functions used
to compute the desired values. Assuming that the hash functions are dependent on
the length of the string being hashed, then the lookup time is O(lk) where l is given
by the length of the item being looked up and k is the number of hash functions.

8.2.3 Drawbacks of a Bloom Filter

Besides the obvious false positive potential, the bloomfilter can only report yes or no.
It can’t suggest alternatives for items that might be close to being spelled correctly.
A bloom filter has no memory of which bits were set by which items so a yes or
no answer is the best we can get with even a yes answer not being correct in some
circumstances. The next section presents a Trie data structure that will not report
false positives and can be used to find alternatives for incorrectly spelled words.

8.3 TheTrie Datatype

A trie is a data structure that is designed for reTRIEval. The data structure is pro-
nounced like the word try. A trie is not meant to be used when deleting values from a
data structure is required. It is meant only for retrieval of items based on a key value.

Tries are appropriate when key values are made up of more than one unit and
when the individual units of a key may overlap with other item keys. In fact, the
more overlap the key units have, the more compact the trie data structure.
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In the problem of spell checking, words are made up of characters. These charac-
ters are the individual units of the keys. Many words overlap in a dictionary like a,
an, and ant. A trie may be implemented in several different ways. In this text we’ll
concentrate on the linked trie which is a series of link lists making up amatrix.Matrix
implementations lead to sparsely populated arrays which take up much more room
with empty locations. A linked trie has overhead for pointers, but is not sparsely
populated.

The trie data structure begins with an empty linked list. Each node in the linked
trie list contains three values: a unit of the key (in the spellchecker instance this is a
character of the word), a next pointer that points to the next node in the list which
would contain some other unit (i.e. character) appearing at the same position within
a key (i.e. word), and a follows pointer which points at a node that contains the next
unit within the same key. In Fig. 8.4 the follows pointer is in yellow while the next
pointer field is in red.

When items are inserted into the trie a sentinel unit is added. In the case of the
spell checker, a ‘$’ character is appended to the end of every word. The sentinel is
needed because words like rat are prefixes to words like ratchet. Without the sentinel
character it would be unclear whether a word ended or was only a prefix of some
other word.

Listing8.1 provides an outline of the Trie class. In a trie keys with a common
prefix share that prefix and are not repeated. The next pointer is used when more
than one possible next character is possible. This saves space in the data structure.
The trade-off is that the next and follows pointers take extra space in each node.

1 class Trie:
2 def __insert(node,item):
3 # This is the recursive insert function.
4
5 def __contains(node,item):
6 # This is the recursive membership test.
7
8 class TrieNode:
9 def __init__(self,item,next = None, follows = None):
10 self.item = item
11 self.next = next
12 self.follows = follows
13
14 def __init__(self):
15 self.start = None
16
17 def insert(self,item):
18 self.start = Trie.__insert(self.start,item)
19
20 def __contains__(self,item):
21 return Trie.__contains(self.start,item)

Listing 8.1 The Trie Class



8.3 The Trie Datatype 213

Fig. 8.4 After Inserting cow, cat, rat, rabbit, and dog into a Trie

8.3.1 Inserting into a Trie

Inserting values into a trie can be done either iteratively, with a loop, or recursively.
To recursively insert into a trie the insert method can call an __insert function. It is
easier to write the recursive code as a function and not a method of the Trie class
because the node value passed to the function may be None. To insert into the trie,
the __insert function operates as follows.

1. If the key is empty (i.e. no units are left in the key), return None as the empty
node.

2. If the node is None then a new node is created with the next unit of the key and
the rest of the key is inserted and added to the follows link.
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3. If the first unit of the key matches the unit of the current node, then the rest of the
key is inserted into the follows link of the node.

4. Otherwise, the key is inserted into the next link of the node.

Building the trie recursively is simple. However, an iterative version would work
just as well. The iterative version would require a loop and a pointer to the current
node along with remaining key to insert. The iterative insert algorithm would behave
in a similar fashion to the step outlined above but would need to keep track of the
previous node as well as the current node so that links could be set correctly.

8.3.2 Membership in a Trie

Checking membership in a trie can also be accomplished recursively. The steps
include a base case which might not be completely intuitive at first. The empty key is
reported as a member of any trie because it works when checking membership. With
the sentinel unit added to the trie, returning True for an empty key is completely safe
because any real key will at least consist of the sentinel character. In the algorithm
outlined here the sentinel is assumed to have already been added to the key. The steps
for membership testing are as follows.

1. If the length of the key is 0, then report success by returning True.
2. If the node we are looking at is None then report failure by returning False.
3. If the first unit of the key matches the unit in the current node, then check mem-

bership of the rest of the key starting with the follows node.
4. Otherwise, check membership of the key starting with the next node in the trie.

Again, this code might be implemented iteratively with a while loop keeping
track of the current node and the remainder of the key. Either a recursive or iterative
implementation will work equally well.

8.3.3 Comparing Tries and Bloom Filters

Bloom filters are clearly faster for testing membership than a trie. However, the
trie works acceptably well. While the longest bloom filter lookup time in a simple
experiment was 160µs, the longest trie lookup was 217µs. Of course the trie takes
more space, but common prefixes share nodes in a trie saving some space over storing
each word distinctly in a data structure, as in a hash set.

For purposes of spell checking a trie has distinct advantages, since spelling al-
ternatives can be easily found. Common typographical errors fall into one of four
categories.

• Transposition of characters like teh instead of the
• Dropped characters like thei instead of their
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• Extra characters like thre instead of the
• Incorrect characters like thare instead of there.

If in searching in a trie a word is not found, these alternatives can also be searched
for to find a selection of alternative spellings.What’smore, these alternative spellings
can be searched in parallel in a trie to quickly put together a list of alternatives. A
bloom filter cannot be used to find alternative spellings since that information is lost
once entered into the filter. Of course, a trie will never report a false positive either
as is possible with a bloom filter.

8.4 Chapter Summary

Tries and bloom filters are two data structures for testing membership. Bloom filters
are relatively small and will produce false positives some percentage of the time.
Tries are larger, don’t produce false positives, and can be used to find alternative key
values that are close to the key being sought. While either data structure will work
for spell checking, spelling correction would be aided by a trie while a bloom filter
would not help.

As far as efficiency goes, bloom filters more efficiently test set membership,
subject to the false positives that are sometimes produced. However, a trie also
operates efficiently while also taking more space than a bloom filter. Both the bloom
filter and the trie tested membership of words in the dictionary in microseconds. The
bloom filter’s worst time was 160µs while the trie’s worst time was 217µs for the
informal test performed on both.

Size requirements are also a concern of course. The example dictionary used in
the development of both the bloom filter and the trie in this chapter contained 109583
words. The bloom filter for this dictionary of words was approximately 128 KB in
size. Assuming that the next and follows pointers take 4 bytes each and the key units
(i.e. word characters) take 1 byte each, the size of the trie is roughly 3.1 MB in size.
While the bloom filter is much smaller than the trie, both are well within the limits
of what computers are capable of storing.

8.5 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. Which datatype, the trie or the bloom filter, is susceptible to false positives?
2. What is a false positive in this context?
3. A bloom filter requires more or less storage than a trie?
4. When spell checking, which data type can be used for spelling correction?
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5. How can you generate more than one hashing function for use in a bloom filter?
6. Add the words “a”, “an”, “ant”, “bat”, and “batter” to a trie. Draw the trie data

structure showing its structure after inserting the words in the order given here.
7. Why is a sentinel needed in a trie?
8. Why is a sentinel not needed in a bloom filter?
9. What must be true of keys to be able to store them in a trie?

10. Which datatype, trie or bloom filter, is more efficient in terms of space? Which
is more efficient in terms of speed?

8.6 Programming Problems

1. Go to the text website and download the dictionary of words. Build a bloom filter
for this list of words and use it to spellcheck the declaration of independence,
printing all the misspelled words to the screen.

2. Go to the text website and download the dictionary of words. Build a trie datatype
for this list of words and use it to spellcheck the declaration of independence,
printing all misspelled words to the screen.

3. Create a trie as in the previous exercise, but also print suggested replacements for
all misspelled words. This is a tough assignment. Suggested replacements should
not differ from the original in more than one of the ways suggested in the chapter.
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The word heap is used in a couple of different contexts in Computer Science. A heap
sometimes refers to an area of memory used for dynamic (i.e. run-time) memory
allocation. Another meaning, and the topic of this chapter, is a data structure that is
conceptually a complete binary tree. Heaps are used in implementing priority queues,
the heapsort algorithm, and some graph algorithms. Heaps are somewhat like binary
search trees in that they maintain an ordering of the items within the tree. However, a
heap does not maintain a complete ordering of its items. This has some implications
for how a heap may be used.

9.1 Chapter Goals

By the end of this chapter you should be able to answer the following questions:

• What is a heap and how is it used?
• What is the computational complexity of adding and deleting items from a heap?
• Would you use a heap to look up items or not?
• When would you use a heap?
• In the heapsort algorithm, why is it advantageous to construct a largest-on-top
heap?

9.2 Key Ideas

To understand heaps we’ll start with a definition. A largest-on-top heap is a complete
ordered tree such that every node is ≥ all of its children (if it has any). An example
will help illustrate this definition. Conceptually, a heap is a tree that is full on all
levels except possibly the lowest level which is filled in from left to right. It takes
the general shape shown in Fig. 9.1.
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Fig. 9.1 Heap Shape

Fig. 9.2 Sample Heap

Fig. 9.3 Heap Organization

Conceptually a heap is a tree, but heaps are generally not stored as trees. A
complete tree is a tree that is full on all levels except the lowest level which is
filled in from left to right. Because heaps are complete trees, they may be stored in
an array. An example will help in understanding heaps and the complete property
better. Consider a largest on top heap with the root node stored at index 0 in an array.
Conceptually, Fig. 9.2 is a heap containing integers.

The data in this conceptual version is stored in an array by traversing the tree
level by level starting from the root node to the heap. The conceptual heap in Fig. 9.2
would be stored in an array as organized in Fig. 9.3.

There are two properties that a heap exhibits. They are:

• Heap Structure Property - The elements of the heap form a complete ordered tree.
• Heap Order Property - Every parent ≥ all children (including all descendants).
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The heap in Fig. 9.2 maintains these two properties. The array implementation of
this heap in Fig. 9.3 also maintains these properties. To see how the properties are
maintained in the array implementation we need to be able to compute the location
of children and parents. The children of any element of the array can be calculated
from the index of the parent.

le f tChild Index = 2 ∗ parent I ndex + 1

rightChild Index = 2 ∗ parent I ndex + 2

Using these formulae on Fig. 9.3 we can see that the children of the root node (i.e.
index 0) are 98 (at index 1) and 85 (at index 2). Likewise, the children of 85 are
located at index 5 and 6 which are the values 27 and 78, which we can verify are the
same children as in the conceptual model.

Of course, not every node has a child or even two children. If the computed
leftChildIndex or rightChildIndex are greater than or equal to the number of values
in the heap, then the node in question is a leaf node.

It is also possible to go in the other direction. Given a child’s index, we can
discover where the parent is located.

parent I ndex = (child Index − 1)//2

The // in the previous formula represents integer division. It means that the result is
always an integer. If there were a fractional part we round down to the next lower
integer. So, the index of the parent of the 34 in Fig. 9.3 is computed as

parent I ndex = (8 − 1)//2 = 3

Consulting the conceptual model in Fig. 9.2, we see that the value at index 3 in the
array, the 58, is indeed the parent of the 34. It should be noted that not every node in
a heap has a parent. In particular, the root node, at index 0, does not have a parent.
All other nodes in a heap have parents.

9.3 Building a Heap

Now that we’ve seen what a heap looks like, we’ll investigate building a heap. Heaps
can be built either largest on top or smallest on top. We’ll build a largest on top
heap. A Heap class will encapsulate the data and methods needed to build a heap.
Heap objects contain a list and count of the number of items currently stored in the
heap. We’ll call this count the size of the heap. To encapsulate the data we’ll want a
method that will take a sequence of values and build a heap from it. We’ll call this
method buildFrom. A private method will also be useful. The buildFrom method of
Listing9.1 will call the _siftUpFrom to get each successive element of the sequence
into its correct position within the heap.
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1 def buildFrom(self, aSequence):
2 ’’’aSequence is an instance of a sequence collection which
3 understands the comparison operators. The elements of
4 aSequence are copied into the heap and ordered to build
5 a heap. ’’’
6
7 def __siftUpFrom(self, childIndex):
8 ’’’childIndex is the index of a node in the heap. This method sifts
9 that node up as far as necessary to ensure that the path to the root
10 satisfies the heap condition. ’’’

Listing 9.1 The buildFrom Method

The sequence of values passed to the buildFrommethod will be copied into the heap.
Then, each subsequent value in the list will be sifted up into its final location in
the heap. Consider the list of values [71, 15, 36, 57, 101]. We’ll trace this through
showing the resulting heap at each stage. To begin the list is copied into the heap
object in the order given here. Then siftUpFrom is called on each subsequent element.
To begin, siftUpFrom is called on the second element, the 57 in this case. Calling
siftUpFrom on the root of the heap would have no effect. Normally, the parent index
of the node is computed. The parent will already be greater than the other child (if
there is one). If the value at the current child index is greater than the value at the
parent index, then the two are swapped and the process repeats. This process repeats
as many times as are necessary: either until the root node is reached (i.e. index 0 of
the list) or until the new node is in the proper location to maintain the heap property.

The first time some movement occurs is when 57 is added to the heap. The 57 is
swapped with the 15 to arrive at its final location resulting in the heap in Fig. 9.4.

Fig. 9.4 Building a Heap Part One
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Fig. 9.5 Building a Heap Part Two

The first four elements of the list now make up a heap. But, the 101 is not in its
final position. We need to sift it up in the heap to get it to its final position. Looking
at the conceptual view of the heap (i.e. the tree), you can see that 101 is a child of
the node containing 57. Clearly, that violates the heap property. So, 101 and 57 are
swapped to sift the 101 up as shown in Fig. 9.5.

Without looking at the conceptual model you can still compute the parent of the
node containing 101 in part one of Fig. 9.5. When 101 was at index 4 in the list, the
parent index was computered as follows.

parent I ndex = (4 − 1)//2 = 1

So, the 101 is compared to the 57 at index 1 in part one above. Then, the swap is
made because 101 is greater than 57 in part two. However, the 101 is still not in the
right place.

parent I ndex = (1 − 1)//2 = 0

We compare 101 with the 71 and swap the two elements. This is the last iteration
of sifting up because 101 has now reached the root (i.e. index 0) of the heap. After
swapping the two values we get the heap in Fig. 9.6.
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Fig. 9.6 Building a Heap Part Three

9.4 The Heapsort AlgorithmVersion 1

Heaps have two basic operations. You can add a value to a heap. You can also delete,
and retrieve, the maximum value from a heap if the heap is a largest on top heap.
Using these two operations, or variations of them, we can devise a sorting algorithm
by building a heap with a list of values and then removing the values one by one in
descending order. We’ll call these two parts of the algorithm phase I and phase II.
To implement phase I we’ll need one new method in our Heap class.

1 def addToHeap(self,newObject):
2 ’’’If the heap is full, double its current capacity.
3 Add the newObject to the heap, maintaining it as a
4 heap of the same type. Answer newObject.’’’

Listing 9.2 The addToHeap Method

The new method in listing 9.2 can use the __siftUpFrom private method of listing
9.1 to get the new element to its final destination within the heap. Version 1 of Phase
I calls addToHeap n times. This results in O(n log n) complexity. The specific steps
of phase I include:

1. double the capacity of the heap if necessary.
2. data[size] = newObject
3. __siftUpFrom(size)
4. size += 1.
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Fig. 9.7 Adding 98 to the Heap

Fig. 9.8 Conceptual View While Adding 98 to the Heap

As you can see, __siftUpFrom will be called n times, once for each element of
the heap. Each time __siftUpFrom is called, the heap will have grown by 1 element.
Consider the heap in Fig. 9.7 just before pass #9.

We are about to sift the 98 up to its rightful location within the heap. Conceptually
we have the picture of the heap shown in Fig. 9.8.

To move the 98 to the correct location we must compute the parent index from
the child indices as follows.

childIndex parentIndex = (childIndex-1)//2

8 3 (swap)
3 1 (swap)
1 0 (stop)

Sifting up the 98 in the heap’s list results in two swaps before it reaches its final
location. Figure9.9 shows the 98 is swappedwith the 34 at index 3. Then it is swapped
again with the 58 at index 1. At this point no more swaps are done because 101 is
greater than 98. The 98 has reached its proper position within the heap.
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Fig. 9.9 Heap After Moving 98 to Correct Location

9.5 Analysis of Version 1 Phase I

The approach taken in version 1 of phase I is slow as we shall see. Consider a perfect
complete binary tree. One which is completely full on all levels with h levels as
shown in Fig. 9.10.

Consider the relationship between the number of levels and the number of items
in the heap as shown in this table.

Level # of Nodes at Level

1 21−1 = 1
2 22−1 = 2
3 23−1 = 4
... ...
h 2h−1

For a heap with n items in it, the value of n can be computed by adding up all the
nodes at each level in the heap’s tree. To simplify our argument we’ll assume that

Fig. 9.10 A Perfect Binary Tree
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the heap is a full binary tree.

n = 1 + 21 + 22 + · · · + 2h−1 f or some h

This is the sum of a geometric sequence. The sum of a geometric sequence can be
computed as follows.

1 + r + r2 + r3 + · · · + rm = rm+1 − 1

r − 1
i f r �= 1

Applying this formula to our equation above the number of nodes in a complete
binary tree (i.e. a full binary heap) with h levels is given by this formula below.

n = 1 + 21 + 22 + · · · + 2h−1 = 2h − 1

2 − 1
= 2h − 1

This implies that n + 1 = 2h . We can solve this equation for h. Doing so we get

h = �log2(n + 1)�
The brackets above are the ceiling operator and it simply means that we should round
up to the next highest integer. Rounding up takes into account that not every heap
tree is completely full so there may be some values of n that won’t give us an integer
for h if we didn’t round up. The following inequality will be useful in determining
the computational complexity of phase I of the heapsort algorithm.

log2 I ≤ �log2(I + 1)� ≤ log2 I + 1 ∀I ≥ 2

So far we have been able to determine that the height of a complete binary tree
(i.e. the number of levels) is equivalent to the ceiling of the log, base 2, of the number
of elements in the tree + 1. Phase I of our algorithm appends each value to the end of
the list where it is sifted up to its final location within the heap. Since sifting up will
go through at most h levels and since the heap grows by one each time, the following
summation describes an upper limit of a value that is proportional to the amount of
work that must be done in Phase I.

N∑

I=2

�log2(I + 1)�

But applying the inequality presented above we have the following. The N-1 term
comes from the last summation from 2 to N. From the inequality above there are N-1
ones that are a part of the summation. These can be factored out as N-1.

n∑

I=2

log2 I ≤
N∑

I=2

�log2(I + 1)� ≤
N∑

I=2

(log2 I + 1) = (

n∑

I=2

log2 I ) + (N − 1)
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Fig. 9.11 Plot of log(n)

We now have a lower and upper bound for our sum. The same summation appears in
both the lower and upper bound. But what does

∑n
I=2 log2 I equal? The following

equivalences will help in determining this summation.

y = log2 x ⇔ 2y = x ⇔ y ln 2 = ln x ⇔ log2 x = y = 1

ln 2
ln x

To determine what the summation above is equal to we can establish a couple of
inequalities that bound the sum from above and below. In Fig. 9.11, the summation
can be visualized as the green area. The first term in the summation would provide
the first green rectangle, the second green rectangle corresponds to the second term
in the summation and so on. The black line in the figure is the plot of the log base 2
of x. Clearly the area covered by the green rectangles is bigger than the area under
the curve of the log. The area under the curve can be found by taking the definite
integral from 1 to N, which in the picture is 9 but in general would be N. From this
we get the following inequality.



9.5 Analysis of Version 1 Phase I 227

∫ n

1
log2 x dx ≤

n∑

I=2

log2 I

Now, consider shifting the entire green area to the right by one. In the figure above,
that’s the orange area. The orange and green areas are exactly the same size. The
orange is just shifted right by one. Now look at the plot of the log base 2 of x. The
area below the curve is now clearly bigger than the orange area. If we imagine this
graph going out to N, then we’ll have to include N+1 in our definite integral (since
we shifted the orange area to the right). So we get the following inequality.

n∑

I=2

log2 I ≤
∫ N+1

2
log2 x dx

Putting the two inequalities together we have a lower and upper bound for our
summation. ∫ n

1
log2 x dx ≤

n∑

I=2

log2 I ≤
∫ N+1

2
log2 x dx

It is easier to integrate using natural log so we’ll rewrite the integral as follows.
∫ n

1
log2 x dx =

∫ N

1

1

ln 2
ln x dx

The constant term in the integral can be factored out. So we’ll look at the following
integral. ∫ N

1
ln x dx

We can find the result of the definite integral that appears above by doing integration
by parts. The integration by parts rule is as follows.

∫ b

a
u dv = uv

∣∣∣
b

a
−

∫ b

a
v du

Applying this to our integral we have the following

u = ln x and dv = dx

du = 1

x
dx and v = x

⇒
∫ N

1
ln x dx = x ln x

∣∣∣
N

1
−

∫ N

1
x
1

x
dx

= x ln x
∣∣∣
N

1
−

∫ N

1
1dx = x ln x

∣∣∣
N

1
−x

∣∣∣
N

1

= N ln N − (N − 1)

We have proved that the lower bound is proportional to n log n. Similarly, we could
prove that the upper bound is also proportional to n log n. Therefore the work done by
insertingN elements into a heap using the __siftUpFrommethod is θ (n log n).We can
do better! If the values in the heap were in the correct order we could achieve O(n)

complexity. Using a different approach we will be able to achieve O(n) complexity
in all cases.
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9.6 Phase II

Later, we will investigate how to improve the performance of phase I. Recall that
phase I of the heapsort algorithm builds a heap from a list of values. Phase II takes the
elements out of the heap, one at a time, and places them in a list. To save space, the
same list that was used for the heap may be used for the list of values to be returned.
Each pass of phase II takes one item from the list and places it where it belongs and
the size of the heap is decremented by one. The key operation in phase II is provided
in listing 9.3: the __siftDownFromTo method.

1 def __siftDownFromTo(self, fromIndex, lastIndex):
2 ’’’fromIndex is the index of an element in the heap.
3 Pre: data[fromIndex..lastIndex] satisfies the heap condition,
4 except perhaps for the element data[fromIndex].
5 Post: That element is sifted down as far as neccessary to
6 maintain the heap structure for data[fromIndex..lastIndex].’’’

Listing 9.3 The siftDownFromTo Method

To illustrate this method, let’s take our small heap example and start extracting
the values from it. Consider the heap in Fig. 9.13 where both the conceptual view
and the organization of that heap are shown. 101 is at the top of the heap and is also
the largest value (Fig. 9.12).

If sorted, the 101 would go at the end of the list. Since there are 5 elements in the
heap, we’ll swap the 57 and the 101. By doing this, 101 is at its final position within
a sorted list. The 57 is not in the correct location within the heap. So, we call the
__siftDownFromTo method to sift the 57 down from the 0 position within the heap
to at most the size-1 location.

Fig. 9.12 Just Before Phase II
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Fig. 9.13 After Swapping First and Last Values

Fig. 9.14 After the First Pass of Phase II

The __siftDownFromTo method does its work and swaps the 57 with the bigger
of the two children, the 71. The 57 does not need to sift down any further since it is
bigger than the 15. So we have the view of the heap in Fig. 9.14 after the first pass
of Phase II.
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Fig. 9.15 After the Second Pass of Phase II

Fig. 9.16 After the Third Pass of Phase II

The second pass of Phase II swaps the 15 and the 71, moving the 71 to its final
location in the sorted list. It then sifts the 15 down to its rightful location within the
heap, producing the picture you see in Fig. 9.15.

During the third pass of Phase II the 57 is put in its final location and swappedwith
the 36 to make room for it. Although __siftDownFromTo is called, no movement of
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Fig. 9.17 After the Fourth and Final Pass of Phase II

values within the heap occurs because the 36 is at the top and is the largest value in
the heap (Fig. 9.16).

During the fourth and final pass, the 36 is swapped with the 15. No call to _sift-
DownFromTo is necessary this time since the heap is only of size 1 after the swap.
Since a heap of size 1 is already sorted and in the right place, we can decrement the
size to 0. The list is now sorted in place without using an additional array as shown
in Fig. 9.17.

9.7 Analysis of Phase II

The work of Phase II is in the calls to the __siftDownFromTomethod which is called
N-1 times. Each call must sift down an element in a tree that shrinks by one element
each time. Earlier in this chapter we did the analysis to determine that the amount of
work in the average and worst case is proportional to

N∑

I=2

�log2(I + 1)� ≡ θ(n log n)

The best case of Phase II would require that all values in the heap are identical. In that case
the computational complexity would be O(n) since the values would never sift down. This
best case scenario brings up a good point. If we could limit how far down the value is sifted,
we might be able to speed up Phase I. That’s the topic or our next section.



232 9 Heaps

9.8 The Heapsort AlgorithmVersion 2

In version one, the heapsort algorithm attained O(n log n) complexity during Phase I and
Phase II. In version two, we will be able to speed up Phase I of the heapsort algorithm up to
O(n) complexity. We do this by limiting how far each newly inserted value must be sifted
down. The idea is pretty simple, but yet a powerful technique. Rather than inserting each
element at the top of the heap, we’ll build the heap, or heaps, from the bottom up. This means
that we’ll approach the building of our heap by starting at the end of the list rather than the
beginning. An example will help make this more clear. Consider the list of values in Fig. 9.18
that we wish to sort using heapsort.

Rather than starting from the first element of the list, we’ll start from the other
end of the list. There is no need to start with the last element as we will see. We
need to pick a node that is a parent of some node in the tree. Since the final heap is
a binary heap, the property we have is that half the nodes of the tree are leaf nodes
and cannot be parents of any node within the heap. We can compute the first parent
index as follows.

parent I ndex = (si ze − 2)//2

The size above is the size of the list to be sorted. Note that because the list has indices
0 to size-1 we must subtract two to compute the proper parentIndex in all cases. In
this case, that parentIndex is 2. We need to start with index 2 in the list to start
building our heaps from the bottom up. Index 2 will be the first parent and we’ll sift
it down as far as necessary.

child Index1 = 2 ∗ parent I ndex + 1 = 2 ∗ 2 + 1 = 5

child Index2 = 2 ∗ parent I ndex + 2 = 2 ∗ 2 + 2 = 6

Fig. 9.18 A List to be
Heapsorted
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Fig. 9.19 After Forming a
Sub-Heap

Fig. 9.20 After Forming a
Second Sub-Heap

Since the second of these indices is beyond the last index of the list, the __siftDown-
FromTo method will not consider childIndex2. After considering the 20 and the 23
we see that those two nodes do in fact form a heap as shown in Fig. 9.19. We will
show this in the following figures by joining them with an arrow. We now have 5
heaps, one less than we started with. More importantly, we only had to sift the parent
down one position at the most.

Next, we move back one more in the list to index 1. We call __siftDownFromTo
specifying to start from this node. Doing so causes the sift down method to pick the
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Fig. 9.21 Sifting the 15
Down

Fig. 9.22 The Final Heap
using Version 2 of Phase I

larger of the two children to swap with, forming a heap out of the three values -34,
46, and 24 as a result. This is depicted in Fig. 9.20.

Finally, we move backward in the list one more element to index 0. This time
we only need to look at the values of the two children because they will already be
the largest values in their respective heaps. Calling __siftDownFromTo on the first
element of the list will pick the maximum value from 15, 46, and 23 and will swap
the 15 with that value resulting in the situation in Fig. 9.21.
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This doesn’t form a complete heap yet. We still need to move the 15 down again
and __siftDownFromTo takes care of moving the 15 to the bottom of the heap as
shown in Fig. 9.22.

9.9 Analysis of Heapsort Version 2

Recall that Phase II is when the values are in a heap and extracted one at a time
to form the sorted list. Version 2 Phase II of the heapsort algorithm is identical to
version 1 and has the same complexity, O(n log n).

Version 2 Phase I on the other hand has changed from a top down approach to
building the heap in version 1 to building the heap from the bottom up in version 2.
We claimed that the complexity of this new phase I is O(n) where n is the number
of nodes in the list. Stated more formally we have this claim. For a perfect binary
tree of height h, containing 2h − 1 nodes, the sums of the lengths of its maximum
comparison paths is 2h − 1 − h.

Consider binary heaps of heights 1, 2, etc. up to height h. From the example for
version 2 of the algorithm it should be clear the maximum path length for any call
to __siftDownFromTo will be determined by this table.

Level Max Path Length # of Nodes at Level

1 h − 1 1
2 h − 2 2
3 h − 3 4
... ... ...
h − 2 2 2h−3

h − 1 1 2h−2

h 0 2h−1

Notice that 2h−1 represents half the nodes in the final heap (the leaf nodes) and
that the max path length for half the nodes in the heap will be 0. It is this observation
that leads to a more efficient algorithm for building a heap from the bottom up. If we
could add up all these maximum path lengths, then we would have an upper bound
for the amount of work to be done during phase I of version 2 of this algorithm.

S = 1 ∗ (h − 1) + 2 ∗ (h − 2) + 22 ∗ (h − 3) + · · · + 2h−3 ∗ 2 + 2h−2 ∗ 1

The value Swould be an upper bound of thework to be done, the sumof themaximum
path lengths.We can eliminatemost of the terms in this sumwith a littlemanipulation
of the formula. The value of S could be computed as 2S - S = S. Using this formula
we can write it as

S = 2 ∗ S − S =2 ∗ (h − 1) + 22 ∗ (h − 2) + · · · + 2h−2 ∗ 2 + 2h−1 ∗ 1

−[(h − 1)+2 ∗ (h − 2) + 22 ∗ (h − 3) + · · · + 2h−2 ∗ 1]
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Fig. 9.23 A Binary Heap of Height 4

If we line up the terms in the equation above (as they are lined up right now), we can
subtract like terms. In the first like term we see h - 1 - (h - 2). This simplifies to h - h
- 1 + 2 = 1. Similarly, the other like terms simplify so we end up with the following
formula for S.

S = 2 ∗ S − S = 2 + 22 + · · · + 2h−2 + 2h−1 − (h − 1)

= 1 + 2 + 22 + · · · + 2h−2 + 2h−1 − h

= 2h − 1 − h ≡ O(n) where N = 2h − 1 nodes.

In the last step of the simplification above we have the sum of the first h-1 powers
of 2, also known as the sum of a geometric sequence. This sum is equal to 2 raised
to the h power, minus one. This can be proven with a simple proof by induction. So,
we have just proved that version 2 of phase I is O(n). Phase II is still O(n log n) so
the overall complexity of heap sort is O(n log n).

Consider a binary heap of height 4 (Fig. 9.23).
In such a heap, using the sift down method the first sifting occurs at height 2 in

the tree where we have four nodes that may travel down one level in the tree. At
height 3 we have two nodes that may travel down two levels. Finally, the root node
may travel down three levels. We have the following sum of maximum path lengths.

1 + 1 + 1 + 1 + 2 + 2 + 3 =
11 =

24 − 1 − 4 =
2h − 1 − h

9.10 Comparison to Other Sortling Algorithms

The heapsort algorithm operates in O(n log n) time, the same complexity as the
quicksort algorithm. A key difference is in the movement of individual values. In
quicksort, values are always moved toward their final location. Heapsort moves
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Fig. 9.24 Comparison of Several Sorting Algorithms

values first to form a heap, then moves them again to arrive at their final location
within a sorted list. Quicksort is more efficient than heapsort even though they have
the same computational complexity.

Examining Fig. 9.24we see selection sort operatingwith θ (N2) complexity, which
is not acceptable except for very short lists. The quicksort algorithm behaves more
favorably than the heapsort algorithm as is expected. The built-in sort, which is
quicksort implemented in C, runs the fastest, due to being implemented in C.

9.11 Chapter Summary

This chapter introduced heaps and the heapsort algorithm. Building a heap can be
done efficiently in O(n) time complexity. A heap guarantees the top element will
be either the biggest or smallest element of an ordered collection of values. Using
this principle we can implement many algorithms and datatypes using heaps. The
heapsort algorithm was presented in this chapter as one example of a use for heaps.

Heaps are not good for looking up values. Looking up a value in a heap would
take O(n) time and would be no better than linear search of a list for a value. This is
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because there is no ordering of the elements within a heap except that the largest (or
smallest) value is on top. You cannot determine where in a heap a value is located
without searching the entire heap, unless it happens to be equal or greater to the
largest value and you have a largest on top heap. Likewise, if you have a smallest on
top heap and are looking for a value, you would have to look at all values unless the
value you are searching for is equal or smaller than the smallest value.

Commonly, heaps are used to implement priority queues where the elements of
a queue are ordered according to some kind of priority value. An element can be
added to an existing heap in O(log n) time. An element can be removed from a
heap in O(log n) time as well. This makes a heap the logical choice for a priority
queue implementation. Priority queues are useful in message passing frameworks
and especially in some graph algorithms and heuristic search algorithms.

9.12 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. State the heap property for a largest on top heap.
2. When removing a value from a heap, which value are you likely to remove?

Why?
3. After removing a value from a heap, what steps do you have to take to ensure

you still have a heap?
4. If you had a heap of height 6, what would be the total maximum travel distance

for all nodes in the heap as you built it using version 2, phase I of the heapsort
algorithm.

5. Use __siftUpFrom() from version 1 of the heapsort algorithm, adding a new
element to a growing heap on each pass to construct a largest-on-top heap from
the following integers:

70, 30, 25, 90, 15, 85, 35, 87, 100

Sketch a new picture of the binary heap each time the structure changes.
6. Use __siftDownFromTo() from version 2 of the heapsort algorithm on the same

data as in the previous problem, sketching a new picture of the binary tree each
time the structure changes.

7. Using the final heap from problem 6, execute phase II version 2 of the heapsort
algorithm, using __siftDownFromTo to sort the data in increasing order. Sketch
a new picture of the binary tree each time the structure changes.

8. Redo problems 6 and 7, this time showing the data in arrays (i.e. lists) with
starting index 0, rather than drawing the tree structures. Show the new values of
the structure after each pass. Use the following data:

37, 45, 91, 5, 57, 74, 83, 45, 99
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9. Why does heapsort operate less efficiently than quicksort?
10. When is a heap commonly used?

9.13 Programming Problems

1. Implement version 2 of the heapsort algorithm. Run your own tests using heapsort
and quicksort to compare the execution time of the two sorting algorithms. Output
your data in the plot format and plot your data using the PlotData.py program
provided on the text website.

2. Implement version 1 and version 2 of the program and compare the execution
times of the two heapsort variations. Gather experimental data in the XML format
accepted by the PlotData.py program and plot that data to see the difference
between using version 1 and version 2 of the heap sort algorithm.

3. Implement a smallest on top heap and use it in implementing a priority queue. A
priority queue has enqueue and dequeue methods. When enqueueing an item on
a priority queue, a priority is provided. Elements enqueued on the queue include
both the data item and the priority.Write a test program to test your priority queue
data structure.

4. Use the priority queue from the last exercise to implement Dijkstra’s algorithm
from chapter 7. The priority queue implementation of Dijkstra’s algorithm is
more efficient. The priority of each element is the cost so far of each vertex added
to the priority queue. By dequeueing from the priority queue we automatically
get the next lowest cost vertex from the queue without searching, resulting in a
O(|V |log|V |) complexity instead of O(|V |2).

5. Use the heapsort algorithm, either version 1 or version 2, to implement Kruskal’s
algorithm from chapter 7. Use one of the sample graph XML files found on the
text website as your input data to test your program.
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In Chap.6 binary search trees were defined along with a recursive insert algorithm.
The discussion of binary search trees pointed out they have problems in some cases.
Binary search trees can become unbalanced, actually quite often. When a tree is
unbalanced the complexity of insert, delete, and lookup operations can get as bad
as �(n). This problem with unbalanced binary search trees was the motivation for
the development of height-balanced AVL trees by G. M. Adelson-Velskii and E. M.
Landis, two Soviet computer scientists, in 1962. AVL trees were named for these two
inventors. Their paper on AVL trees [1] described the first algorithm for maintaining
balanced binary search trees.

Balanced binary search trees provide �(log n) insert, delete, and lookup opera-
tions. In addition, a balanced binary search tree maintains its items in sorted order.
An infix traversal of a binary search tree will yield its items in ascending order and
this traversal can be accomplished in �(n) time assuming the tree is already built.

TheHashSet andHashMap classes provide very efficient insert, delete, and lookup
operations as well, more efficient than the corresponding binary search tree opera-
tions. Heaps also provide �(log n) insert and delete operations. But neither hash
tables nor heaps maintain their elements as an ordered sequence. If you want to
perform many insert and delete operations and need to iterate over a sequence in
ascending or descending order, perhaps many times, then a balanced binary search
tree data structure may be more appropriate.

10.1 Chapter Goals

This chapter describes why binary search trees can become unbalanced. Then it goes
on to describe several implementations of two types of height-balanced trees, AVL
trees and splay trees. By the end of this chapter you should be able to implement your
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own AVL or splay tree datatype, with either iteratively or recursively implemented
operations.

10.2 Binary Search Trees

Abinary search tree comes in handywhen a large number of insert, delete, and lookup
operations are required by an application while at times it is necessary to traverse
the items in ascending or descending order. Consider a website like Wikipedia that
provides access to a large set of onlinematerials. Imagine the designers of thewebsite
want to keep a log of all the users that have accessed the website within the last hour.
The website might operate as follows.

• Each visitor accesses the website with a unique cookie.
• When a visitor accesses the site their cookie along with a date and time is recorded
in a log on the site’s server.

• If they have accessed the site within the last two hours their cookie and access time
may already be recorded. In that case, their last access date and time is updated.

• Every hour a snapshot is generated as to who is currently accessing the site.
• The snapshot is to be generated in ascending order of the unique cookie numbers.
• After a patron has been inactive for at least an hour, according to the snapshot,
their information is deleted from the record of website activity log.

Since the site is quite large with thousands, if not tens of thousands or more,
people accessing it every hour, the data structure to hold this information must be
fast. It must be fast to insert, lookup, and delete entries. It must also be quick to take
snapshot since the website will hold up all requests while the snapshot is taken.

If the number of users that come and go during an hour on a site like Wikipedia is
typically higher than the number that stay around for long periods of time, if may be
most efficient to rebuild the tree from the activity log rather than delete each entry
after it has been inactive for at least an hour. This would be true if the number of
people still active on the site is much smaller than the number of inactive entries in
the snapshot of the log. In this case, rebuilding the log after deleting inactive patrons
must be fast as well.

A binary search tree is a logical choice for the organization of this log if we
could guarantee �(log n) lookup, insert, and delete along with �(n) time to take
a snapshot. However, a binary search tree has one big problem. Recall that as the
snapshot is taken the log may be rebuilt with only the recently active users and
furthermore the cookies will be accessed in ascending order while rebuilding the
log.

Consider the insert operation on binary search trees shown in Listing10.1. When
the binary search tree is rebuilt the items to insert into the new tree will be added in
ascending order. The result is an unbalanced tree.
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1 def __insert(root,val):
2 if root == None:
3 return BinarySearchTree.__Node(val)
4 if val < root.getVal():
5 root.setLeft(BinarySearchTree.__insert(root.getLeft(),val))
6 else:
7 root.setRight(BinarySearchTree.__insert(root.getRight(),val))
8 return root

Listing 10.1 Binary Search Tree Insert

If items are inserted into a binary search tree in ascending order the effect is that
execution always progresses from line 2, to 4, 6, 7 and 8. The result on line 7 puts
the new value in the right most location of the binary search tree, since it is the
largest value inserted so far. The resulting tree is a stick extending down and to the
right. Without any balance to the tree, inserting the next bigger value will result in
traversing each and every value that has already been inserted to find the location
of the new value. This means that the first value takes zero comparisons to insert,
while the second requires one comparison to find its final location, the third value
requires two comparisons, and so on. The total number of comparisons to build the
tree is �(n2) as proved in Chap.2. This complexity will be much too slow for any
site getting a reasonable amount of activity in an hour. In addition, when the height
of the binary search tree is n, where n is the number of values in the tree, the look
up, insert, and delete times are �(n) for both the worst and average cases. When the
tree is a stick or even close to being a stick the efficiency characteristics of a binary
search tree are no better than that of a linked list.

10.3 AVLTrees

A binary search tree that stays balanced would provide everything that is required
by the website log described in the last section. AVL trees are binary search trees
with additional information to maintain their balance. The height of an AVL tree is
guaranteed to be�(log n) thus guaranteeing that lookup, insert, and delete operations
will all complete in�(log n) time.With these guarantees, an AVL tree can be built in
�(n log n) time from a sequence of n items. Moreover, AVL trees, like binary search
trees, can be traversed using an inorder traversal, yielding their items in ascending
order in �(n) time.

10.3.1 Definitions

To understand how AVL trees work, a few definitions are in order.
Height(Tree): The height of a tree is one plus the maximum height of its subtrees.
The height of a leaf node is one.
Balance(Tree): The balance of a node in a binary tree is height(right subtree)—
height(left subtree).
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AVL Tree: An AVL tree is a binary tree in which the balance of every node in the tree
is −1, 0, or 1.

10.3.2 Implementation Alternatives

Looking back at Chap.6 and the implementation of binary search trees, inserting a
value into a tree can be written recursively. Inserting into an AVL tree can also be
implemented recursively. It is also possible to implement inserting a value into an
AVL tree iteratively, using a loop and a stack. This chapter explores both alternatives.

Additionally, the balance of an AVL tree can be maintained using either the height
of each node in the tree or the balance of each node in the tree. Implementations of
AVL tree nodes store either their balance or their height. As values are inserted into
the tree, the balance or height values of affected nodes are updated to reflect the
addition of the new item in the tree.

1 class AVLTree:
2 class AVLNode:
3 def __init__(self,item,balance=0,left=None,right=None):
4 self.item = item
5 self.left = left
6 self.right = right
7 self.balance = balance
8
9 def __repr__(self):
10 return "AVLTree.AVLNode("+repr(self.item)+",balance="+
11 repr(self.balance)+",left="+repr(self.left)+
12 ",right="+repr(self.right)+")"

Listing 10.2 AVLNode with Stored Balance

Whether implementing insert recursively or iteratively, the Node class of List-
ing6.4 must be extended slightly to accommodate either the balance or the height
of the node. Consider the code fragment in Listing10.2. The first implementation of
AVLTree that we’ll explore is a balance storing iterative version of the algorithm.
Notice that the AVLNode implementation is buried inside the AVLTree class to hide
it from users of the AVLTree class. While Python does not actually prevent access
to the AVLNode class from outside the AVLTree class, by convention users of the
AVLTree data structure should know to leave the internals of the tree alone. AVL
trees are created by users of this data structure, but not AVL nodes. The creation of
nodes is handled by the ALVTree class.

The AVLNode constructor has default values for balance, left, and right which
makes it easy to construct AVLTrees when debugging code. The __repr__ function
prints the AVLNode in a form that can be used to construct such a node. Calling
print(repr(node)) will print a node so it can be provided to Python to construct a
sample tree. The repr(self.left) and repr(self.right) are recursive calls to the __repr__
function, so the entire tree is printed rooted at self. From Chap.6 the same __iter__
function will work to traverse an AVLTree. The iterator function will yield all the
values of the tree in ascending order.
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Examples in this chapter will refer to balance of nodes in an AVLTree. It turns out
that storing the balance of a node is sufficient to correctly implement height balanced
AVL Trees, but perhaps a bit more difficult to maintain than maintaining the height
of each node in the tree. Later in the chapter modifications to these algorithms are
discussed that maintain the height of each node. Whether storing height or balance
in AVL Trees, the complexity of the tree operations is not affected.

10.3.3 AVLTree Iterative Insert

Asdescribed in the last section, there are twovariants to the insert algorithm for height
balanced AVL trees. Insert can be performed iteratively or recursively. The balance
can also be stored explicitly or it can be computed from the height of each subtree.
This section describes how to maintain the balance explicitly without maintaining
the height of each node.

Iteratively inserting a new value in a height balanced AVL tree requires keeping
track of the path to the newly inserted value. To maintain that path, a stack is used.
We’ll call this stack the path stack in the algorithm. To insert a new node, we follow
the unique search path from the root to the new node’s location, pushing each node
on the path stack as we proceed, just as if we were adding it to a binary search tree.

As we proceed along the path to the new node’s destination, we push all the nodes
we encounter onto the path stack. We insert the new item where it should be accord-
ing to the binary search tree property. Then, the algorithm proceeds popping values
from the path stack and adjusting their balances until a node is found that has a bal-
ance not equal to zero before being adjusted. This node, which is the closest ancestor
with non-zero balance, is called the pivot. Based on the pivot and the location of the
new value there are three mutually exclusive cases to consider which are described
below. After making the adjustments in case 3 below there may be a new root node
for the subtree rooted at the pivot. If this is the case, the parent of the pivot is the
next node on the path stack and can be linked to the new subtree. If the path stack is
empty after popping the pivot, then the root of the tree was the pivot. In this case, the
root node of the AVL tree can be made to point to the new root node in the tree. As
mentioned above, one of three caseswill arisewhen inserting a newvalue into the tree.

Case 1: No Pivot There is no pivot node. In other words the balance of each node
along the path was 0. In this case just adjust the balance of each node on the search
path based on the relative value of the new key with respect to the key of each node.
You can use the path stack to examine the path to the new node.

This case is depicted in Fig. 10.1 where 39 is to be added to the AVL tree. In
each node the value is on the left and the balance is given on the right. Each of the
nodes containing 10, 18, and 40 are pushed onto the path stack. The balance of the
new node containing 39 is set to 0. The new balance of the node containing 40 is
−1. The node containing 18 has a new balance of 1. The balance of the root node
after the insert is 1 because 39 is inserted to the right of it and therefore its balance
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Fig. 10.1 AVL Tree Case 1
(No Pivot Node)

Fig. 10.2 AVL Tree Case 2
(No Rotate)

increases by one. The new value is inserted to the left of the node containing 40, so
its balance decreases by one. Figure10.2 depicts the tree after inserting the newvalue.

Case 2: Adjust BalancesThe pivot node exists. Further, the subtree of the pivot node
in which the new node was added has the smaller height. In this case, just change the
balance of the nodes along the search path from the new node up to the pivot node.
The balances of the nodes above the pivot node are unaffected. This is true because
the height of the subtree rooted at the pivot node is not changed by the insertion of
the new node.

Figure10.2 depicts this case. The itemwith key 12 is about to be added to the AVL
tree. The node containing the 18 is the pivot node. Since the value to be inserted is
less than 18 and the balance of the node containing 18 is 1, the new node could
possibly help to better balance the tree. The AVL tree remains an AVL tree. The
balance of nodes up to the pivot must be adjusted. Balances above the pivot need not
be adjusted because they are unaffected. Figure10.3 depicts what the tree looks like
after inserting 12 into the tree.

Case 3: The pivot node exists. This time, however, the new node is added to the sub-
tree of the pivot of larger height (the subtree in the direction of the imbalance). This
will cause the pivot node to have a balance of −2 or 2 after inserting the new node,
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Fig. 10.3 AVL Tree Case
3A (Single Rotation)

so the tree will no longer be an AVL tree. There are two subcases here, requiring
either a single rotation or a double rotation to restore the tree to AVL status. Call the
child of the pivot node in the direction of the imbalance the bad child.

Subcase A: Single Rotation This subcase occurs when the new node is added to the
subtree of the bad child which is also in the direction of the imbalance. The solution
is a rotation at the pivot node in the opposite direction of the imbalance. After the
rotation the tree is still a binary search tree. In addition, the subtree rooted at the
pivot will be balanced once again, decreasing its overall height by one.

Figure10.3 illustrates this subcase. The value 38 is to be inserted into the tree to
the left of the node containing 39. However, doing so would result in the balance of
the node containing 40 to decrease to−2, which is the closest ancestor with improper
balance and the pivot node. The yellow node is the bad child. In addition, the 38 is
being inserted in the same direction as the imbalance. The imbalance is on the left
and new new value is being inserted on the left. The solution is to rotate the subtree
rooted at 40 to the right, resulting in the tree pictured in Fig. 10.4.

Subcase B: Double Rotation This subcase occurs when the new node is added to
the subtree of the bad child which is in the opposite direction of the imbalance. For
this subcase, call the child node of the bad child which lies on the search path the
bad grandchild. In some cases, there may not be a bad grandchild. In Fig. 10.4 the
bad grandchild is the purple node. The solution is as follows:

1. Perform a single rotation at the bad child in the direction of the imbalance.
2. Perform a single rotation at the pivot away from the imbalance.

Again, the tree is still a binary search tree and the height of the subtree in the
position of the original pivot node is not changed by the double rotation. Figure10.4
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Fig. 10.4 AVL Tree Case 3B (Double Rotation)

Fig. 10.5 AVL Tree Case 3B Step 1 (Rotate Toward)

illustrates this situation. The pivot in this case is the root of the tree. The node
containing 18 is the bad child. The bad grandchild is the node containing 13.

The imbalance in the tree is to the right of the pivot. Yet the 11 is being inserted
to the left of the bad child. The first step is a rotation to the right at the bad child.
This brings the 11 up (Fig. 10.5), somewhat helping to balance the right side of the
tree. The second step, depicted in Fig. 10.6 rotates to the left at the pivot bringing
the whole tree into balance again.

The trickiest part of this algorithm is updating the balances correctly. First, the
pivot, bad child, and bad grandchild contain the balances that may change. If there is
no bad grandchild then the pivot’s and bad child’s balances will be zero. If there is a
bad grandchild, as is the case here, then there is a little more work to determining the
balances of the pivot and the bad child. When the bad grandchild exists, its balance
is 0 after the double rotation. The balances of the bad child and pivot depend on
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Fig. 10.6 AVL Tree Case 3B Step 2 (Rotate Away)

the direction of the rotation and the value of the new item and the bad grandchild’s
item. This can be analyzed on a case by case basis to determine the balances of both
the pivot and bad grandchild in these cases. In the next section we examine how the
balances are calculated.

10.3.4 Rotations

Both cases 1 and 2 are trivial to implement as they simply adjust balances. Case 3 is
by far the hardest of the cases to implement. Rotating a subtree is the operation that
keeps the tree balanced as new nodes are inserted into it. For case 3A the tree is in
a state where a new node is going to be added to the tree causing an imbalance that
must be dealt with. There are two possibilities. Figure10.7 depicts the first of these
possible situations and Fig. 10.8 the second. The new node may be inserted to the left
of the bad child, A, when the subtree anchored at the pivot node is already weighted
to the left. The pivot node, B, is the nearest ancestor with a non-zero balance. For
node B to have balance−1 before inserting the new node its right subtree must have
height h while its left subtree has height h+1. Adding the new node into the subtree
of the bad child would result in the pivot having balance −2 which is not allowed.
The right rotation resolves the problem andmaintains the binary search tree property.
The subtree T2 moves in the rotation but before the rotation all values in T2 must
have been less then B and greater than A. After the rotation this would also be true
which means it remains a binary search tree.

Inserting a value to the right of the bad child when the imbalance is to the right
results in an analogous situation requiring a left rotation. Notice that in either rotation
the balance of nodes A and B are zero. This only applies to case 3A and does not
hold in the case of a double rotation.

Again, the balance of both nodes, the pivot and the bad child, become zero after the
rotation in either direction. Case 3A is not possible under any other circumstances.

For case 3B we must deal not only with a pivot and bad child, but also a bad
grandchild. As described in the previous section, this case occurs when inserting a
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Fig. 10.7 AVL Tree Case 3A (Right Rotation)

new value under a bad child in the opposite direction of the imbalance. For instance,
the subtree in Fig. 10.9 is weighted to the left and the new node is inserted to the
right of the bad child. An analogous situation occurs when the subtree is weighted
to the right and the new node is inserted into the left subtree of the bad child. When
either situation occurs a double rotation is needed to bring it back into balance.

Figure10.9 show that there are two possible subcases. There are actually three
possible subcases. It is possible there is no bad grandchild. In that case, the newly
inserted node will end up in the location that would have been occupied by the bad
grandchild. Otherwise the new node might be inserted to the left or right of the bad
grandchild, which is node C in Fig. 10.9. Either way, the first step in Fig. 10.9 is
to rotate left at the bad child, node A. Then a right rotation at the pivot, node B,
completes the rebalancing of the tree.

Again, the trickiest part of this implementation is the calculation of the balance of
each node. The bad grandchild and new pivot node, node C in Fig. 10.9, always has
a balance of 0. If there is no bad grandchild, then the new pivot node is the newly
inserted value. If there was a bad grandchild, and if the new item was less than the
bad grandchild’s item, the balance of the bad child is 0 and the balance of the old
pivot is 1. If the new item was inserted to the right of the bad grandchild then the
balance of the bad child is−1 and the balance of the old pivot is 0. All other balances
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Fig. 10.8 AVL Tree Case 3A (Left Rotation)

remain the same including balances above the pivot because the overall height of the
tree before inserting the new value and after inserting the new value has not changed.

Again, an analogous situation occurs in the mirror image of Fig. 10.9. When a
new value is inserted into a left subtree of a bad child which is in the right subtree
of the pivot and which is already weighted more heavily to the right, then a double
rotation is also required, rotating first right at the bad child and then left at the pivot.

10.3.5 AVLTree Recursive Insert

When implementing a recursive function it is much easier to write as a stand-alone
function as opposed to a method of a class. This is because a stand-alone method
may be called on nothing (i.e. None in the case of Python) while a method must
always have a non-null self reference. Writing recursive functions as methods leads
to special cases for self. For instance, the insertmethod, ifwritten recursively, is easier
to implement if it calls __insert as its recursive function. The __insert function of
Listing10.1 won’t suffice for height balanced AVL trees. The insert algorithm must
take into account the current balance of the tree and operate to maintain the balance
as we discussed in the three cases presented in the previous section.
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Fig. 10.9 AVL Tree Case
3B (Steps 1 & 2)
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1 class AVLTree:
2 class AVLNode:
3 def __init__(self,item,balance=0,left=None,right=None):
4 self.item = item
5 self.left = left
6 self.right = right
7 self.balance = balance
8
9 # Other methods to be written here like __iter__ and
10 # __repr__. See chapter 6
11
12 def __init__(self,root=None):
13 self.root = root
14
15 def insert(self, item):
16
17 def __insert(root,item):
18 ... # Code to be written here
19
20 return root
21
22 self.pivotFound = False
23 self.root = __insert(self.root,item)
24
25 def __repr__(self):
26 return "AVLTree(" + repr(self.root) + ")"
27
28 def __iter__(self):
29 return iter(self.root)

Listing 10.3 The Recursive Insert AVL Tree Class Declaration

The shell of the recursive implementation is given in Listing10.3. The algorithm
proceeds much like a combination of the three cases presented above along with
the implementation of insert presented in Listing10.1. There is no path stack in the
recursive implementation. Instead, the run-time stack serves that purpose. Between
lines 5 and 6 or lines 7 and 8 of Listing10.1 there is an opportunity to rebalance
the tree as the code returns and works its way back up from the recursive calls. As
each call returns, the balances of each node can be adjusted accordingly. Adjusting
balances before returning implements cases one and two as described earlier in the
chapter. Case three is detected when a balance of −2 or 2 results from rebalancing.
In that case the pivot is found and rebalancing according to case 3 can occur.

Should a pivot be found, no balancing need occur above the pivot. This is the
use of the self.pivotFound variable initialized on line 22 of the code in Listing10.3.
This flag can be set to True to avoid any balancing above the pivot node, should it
be found. Balances are adjusted just as described in the case by case analysis earlier
in the chapter. In the worst case the balances of the pivot and bad child will need to
be adjusted.

Implementing both the iterative and the recursive versions of insert into AVL trees
helps illustrate the special cases that must be handled in the iterative version, while
the recursive version will not need special cases. The recursive version does not need
special case handling because of the way the __insert works. The function always is
given the root node of a tree in which to insert the new item and returns the root node
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of the tree after inserting that item. Since it works in such a regular way, special case
handling is not necessary.

10.3.6 Maintaining BalanceVersus Height

The two implementations presented in this chapter, the recursive and iterative insert
algorithms for AVL trees, maintained the balance of each node. As an alternative,
the height of each node could be maintained. In this case, the height of a leaf node
is 1. The height of any other node is 1 plus the maximum height of its two subtrees.
The height of an empty tree or None is 0.

1 class AVLNode:
2 def __init__(self,item,height=1,left=None,right=None):
3 self.item = item
4 self.left = left
5 self.right = right
6 self.height = height
7
8 def balance(self):
9 return AVLTree.height(self.right) - AVLTree.height(self.left)

Listing 10.4 AVLNode with Stored Height

If the height of nodes is maintained instead of balances, all heights on the path to
the new item’s inserted location must be adjusted on the way back up the tree. Unlike
balances, it is not possible to stop adjusting heights at the pivot node. After rotation
the height of the pivot and bad child must also be recomputed as the rotation may
change their height. Since heights are computed bottom-up, all heights on the path,
including the heights of the pivot and bad child should be recomputed in a bottom-
up fashion. The code in Listing10.4 provides a partial declaration of an AVLNode
storing the height of the tree tree rooted at the node. In this implementation the
balance of any node can be computed from the heights of the two subtrees.

10.3.7 Deleting an Item from an AVLTree

Deleting a value from anAVL tree can be accomplished in the sameway as described
in programming problem 2 from Chap.6. However, it is necessary to adjust balances
on the way back from deleting the final leaf node. This can be done either by main-
taining a path stack if delete is implemented iteratively or by adjusting balances or
heights while returning from the recursive calls in a recursive implementation of
delete.

In either case, when adjusted balance of a node on the path reaches 2, a left rotation
is required to rebalance the tree. If the adjusted balance of a node on the path results
in−2, then a right rotation is required. These rotations may cascade back up the path
to the root of the tree.
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10.4 Splay Trees

AVL trees are always balanced since the balance of each node is computed andmain-
tained to be either −1, 1, or 0. Because they are balanced they guarantee �(log n)

lookup, insert, and delete time. An AVL tree is a binary search tree so it also main-
tains its items in sorted order allowing iteration from the smallest to largest item in
�(n) time. While there doesn’t seem to be many downsides to this data structure
there is a possible improvement in the form of splay trees.

One of the criticisms of AVL trees is that each node must maintain its balance.
The extra work and extra space that are required for this balance maintenance might
be unnecessary. What if a binary search tree could maintain its balance good enough
without storing the balance in each node. Storing the balance of each node or the
height of each node increases the size of the data in memory. This was a bigger
concern when memory sizes were smaller. But, maintaining the extra information
takes extra time as well. What if we could not only reduce the overall data size but
eliminate some of the work in maintaining the balance of a binary search tree.

The improvement to AVL trees incorporates the concept of spatial locality. This
idea reflects the nature of interaction with large data sets. Access to a large data set
is often localized, meaning that the same piece or several pieces of data might be
accessed several times over a short period of time and then may not be accessed
for some time while some other relatively small subset of the data is accessed by
either inserting new values or looking up old values. Spatial Locality means that a
relatively small subset of data is accessed over a short period of time.

In terms of our example at the beginning of this chapter, a tree containing cookies
may have cookies that are assigned when a user first visits a website. A user coming
into the website will interact for a while and then leave, probably not coming back
soon again. The set of users who are interacting with the web server will change
over time but it is always a relatively small subset compared to the overall number of
entries in the tree. If we could store the cookies of the recent users closer to the top
of the tree, we might be able to improve the overall time for looking up and inserting
a new value in the tree. The complexity won’t improve. Inserting an item will still
take �(log n) time. But the overall time to insert or lookup an item might improve
a little bit. This is the motivation for a splay tree.

In a splay tree, each insert or lookup moves the inserted or looked up value to
the root of the tree through a process called splaying. When deleting a value, the
parent may be splayed to the root of the tree. A splay tree is still a binary search tree.
Splay trees usually remain well-balanced but unlike an AVL tree, a splay tree does
not contain any balance or height information. Splaying a node to the root involves
a series of rotates, much like the rotates of AVL trees, but with a slight difference.

It is interesting to note that while splay trees are designed to exploit spatial locality
in the data, they are not dependent on spatial locality to perform well. Splay trees
function as well or better than AVL trees in practice on completely random data sets.

There are several things that are interesting about splay trees.



256 10 Balanced Binary Search Trees

• First, the splaying process does not require the balance or any other information
about the height of subtrees. The binary search tree structure is good enough.

• Splay trees don’t stay perfectly balanced all the time. However, because they stay
relatively balanced, they are balanced enough to get an average case complexity
of �(log n) for insert, lookup, and delete operations. This idea that they are good
enough is the basis for what is called amortized complexity which is discussed
later in Chap.2 and later in this chapter.

• Splaying is relatively simple to implement.

In this text we cover two bottom-up splay tree implementations. Splay trees can be
implemented either iteratively or recursively and we examine both implementations.
In Chap.6 binary search tree insert was implemented recursively. If splaying is to be
done recursively, the splay can be part of the insert function. If written iteratively,
a stack can be used in the splaying process. The following sections cover both the
iterative and recursive implementations. But first we examine the rotations that are
used in splaying.

10.4.1 Splay Rotations

Each time a value is inserted or looked up the node containing that value is splayed to
the top through a series of rotate operations. Unlike AVL trees, a splay tree employs
a double rotation to move a node up to the level of its grandparent if a grandparent
exists. Through a series of double rotations the node will either make it to the root or
to the child of the root. If the splayed node makes it to the child of the root, a single
rotation is used to bring it to the root.

The single rotate functions are often labelled a zig or a zag while the double
rotations are called zig-zig or zig-zag operations depending on the direction of the
movement of the splayed node. Sometimes the node moves with a zig-zag motion
while other times it moves with a zig-zig motion.

Splaying happens when a value is inserted into, looked up, or deleted from a splay
tree. When a value is looked up either the searched value is splayed to the top or the
would-be parent of the value if the value is not found in the tree. Deletion from the
tree can be implemented like delete from any other binary search tree as described
in problem 2 of Chap.6. When a value is deleted from a binary search tree the parent
of the deleted node is splayed to the root of the tree.

The example in Fig. 10.14 depicts the splay operations that result from inserting
the green nodes into a splay tree. When 30 is inserted, it is splayed to the root of the
tree as appears in the second version of the tree (the red nodes). When 5 is inserted, it
is splayed to the root as well. Moving 5 to the root is accomplished through a zig-zig
rotation called a double-right rotation. Splaying the 8 to the root is the result of a
zig-zag rotation called a right-left rotation. When the 42 is splayed to the root it is a
double-left rotation followed by a single left rotation.

Splaying the 15 to the root is accomplished by doing a double-right rotation
followed by a left-right rotation. The double-right is often called a zig-zig rotation
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Fig. 10.10 Splay Tree
Double-Right Rotate

as is the double-left rotation. The left-right and right-left rotations are often called
zig-zag rotations. The end result in each case has the newly inserted node, or looked
up node, splayed to the root of the tree.

Figures10.10, 10.11, 10.12 and 10.13 depict these splay operations. Figures10.12
and 10.13 give some intuitive understanding of why splay trees work as well as they
do. After the rotate operations depicted in Figs. 10.12 and 10.13 the subtree rooted
at the child appears to be more balanced than before those rotations.

Notice that doing a left-right rotation is not the same as doing a left rotation
followed by a right rotation. The splay left-right rotate yields a different result.
Likewise, the splay right-left rotate yields a different result than a right followed by
a left rotation. Splay zig-zag rotates are designed this way to help balance they tree.
Figures10.12 and 10.13 depict trees that might be slightly out of balance before the
rotation, brought into much better balance by the right-left rotation or the left-right
rotation.
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Fig. 10.11 Splay Tree
Double-Left Rotate

10.5 Iterative Splaying

Each time a value is inserted or looked up it is splayed to the root of the splay tree
through a series of rotations as described in the previous section. The double rotation
operations will either move the value to the root or the child of the root of the tree.
If the double rotates result in the newly inserted value at the child of the root of the
tree, a single rotate is used to move the newly inserted value to the root as depicted
in Fig. 10.14 when 30 and 15 are inserted into the splay tree.

Inserting a new value into a binary search tree without recursion is possible using
a while loop. The while loop moves from the root of the tree to the leaf node which
will become the new node’s parent at which point the loop terminates, the new node
is created, and the parent is hooked up to its new child.
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Fig. 10.12 Splay Tree
Right-Left Rotate

After inserting the new node, it must be splayed to the top. To splay it is necessary
to know the path that was taken through the tree to the newly inserted node. This
path can be recorded using a stack. As the insert loop passes through another node
in the tree, it is pushed onto the stack. The end result is that all nodes, from the root
to the new child, on the path to the new child are pushed onto this path stack.

Finally, splaying can occur by emptying this path stack. First the child is popped
from the stack. Then, the rest of the stack is emptied as follows.

• If two more nodes are available on the stack they are the parent and grandparent of
the newly inserted node. In that case a double rotate can be performed resulting in
the root of the newly rotated subtree being the newly inserted node. Which double
rotation is required can be determined from the values of the grandparent, parent,
and child.

• If only one node remains on the stack it is the parent of the newly inserted node.
A single rotation will bring the newly inserted node to the root of the splay tree.

Implementing splay in the manner described here works well when looking up a
value in the tree, whether it is found or not. When a value is found it will be added
to the path stack. When a value is not found, the parent should be splayed to the top,
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Fig. 10.13 Splay Tree
Left-Right Rotate

which naturally occurs when the looked up value is not found because the parent
will be left on the top of the path stack when splaying is performed.

One method of deleting a node from a splay tree is accomplished by deleting just
as you would in a binary search tree. If the node to delete has zero or one child it
is trivial to delete the node. If the node to delete has two children, then the leftmost
value in its right subtree can replace the value in the node to delete and the leftmost
value can be deleted from the right subtree. The parent of the deleted node is splayed
to the top of the tree.

Another method of deletion requires splaying the deleted node to the root of the
tree first. Then the rightmost value of the left subtree is splayed to the root. After
splaying the left subtree, its root node’s right subtree is empty and the original right
subtree can be added to it. The original left subtree becomes the root of the newly
constructed splay tree.
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Fig. 10.14 Splay Tree Example

10.6 Recursive Splaying

Implementing splaying recursively follows the recursive insert operation on binary
search trees. The splaying is combined with this recursive insert function. As the
recursive insert follows the path down the tree it builds a rotate string of “R” and
“L”. If the new item is inserted to the right of the current root node, then a left rotate
will be required to splay the newly inserted node up the tree and an “L” is added to
the rotate string. Otherwise, a right rotate will be required and an “R” is added to the
rotate string.

As the recursive insert function returns, the path to the newly inserted node is
retraced by the returning function. The last two characters in the rotate string dictate
what double rotation is required. A dictionary or hash table takes care of mapping
“RR”, “RL”, “LR”, and “LL” to the appropriate rotate functions. The hash table
lookup is used to call the appropriate rotation and the rotate string is truncated (or
re-initialized to the empty string depending on when “R” and “L” are added to the
rotate string). When the recursive insert is finished, any required single rotation will
be recorded in the rotate string and can be performed.

It should be noted that implementing splaying using a rotate string and hash table
like this requires about one half the conditional statements to determine the required
rotations as compared to the iterative algorithm described above. When inserting a
new node the path must be determined by comparing the value to insert to each node
on the path to its location in the tree. In the iterative description above, the values
on the path are again compared during splaying. In this recursive description the
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new item is only compared to each item on the path once. This has an impact on
performance as shown later in the chapter.

Looking up a value using this recursive implementation works similarly to insert
either splaying the found value or its parent if it is not found to the root of the tree.
Deleting a value again can be done recursively by first looking up the value to delete
resulting in it being splayed to the root of the tree and then performing the method
of root removal described in the previous section.

10.7 Performance Analysis

In the worst case a splay tree may become a stick resulting in �(n) complexity for
each lookup, insert, and delete operation while AVL trees guarantee �(log n) time
for lookup, insert, and delete operations. It would appear that AVL trees might have
better performance. However, this does not seem to be the case in practice. Close
to 100,000 insert and 900,000 random lookup were performed in an experiment
using a pre-generated dataset. The insert and lookup operations were identified in
the dataset with all looked up values being found in the tree. The average combined
insert and lookup time were recorded in Fig. 10.15 for an AVL tree, a splay tree
implemented iteratively, and the recursive implementation of splay tree insert and
lookup. The results show that the recursive splay tree implementation performs better
on a randomset of values than theAVL tree implementation. The experiment suggests
that splay trees also exhibit �(log n) complexity in practice for insert and lookup
operations.

In Figs. 10.12 and 10.13 we got an intuitive understanding of how splay trees
maintain balance through their specialized double rotations. However, it is not a
very convincing argument to say that the double rotations appear to make the tree
more balanced. This idea is formalized using amortized complexity. Amortization,
first encountered in Chap.2, is an accounting term used when an expense is spread
over a number of years as opposed to expensing it all in one year. This same principle
can be applied to the expense in finding or inserting a value in a Splay Tree. The
complete analysis of this is done on a case by case basis and is not present in
this text but may be found in texts on-line. These proofs show that splay trees do
indeed operate as efficiently as AVL trees on randomly accessed data. In addition,
the splaying operation used when inserting or looking up a value exploits spatial
locality in the data. Data values that are frequently looked up will make their way
toward the top of the tree so as to be more efficiently looked up in the future. While
taking advantage of spatial locality is certainly desirable if present in the data, it does
not improve the overall computational complexity of splay tree insert and lookup
operations.

However, this does not happen in the average case on randomly inserted and
looked up values. In fact, the recursive implementation of splay trees presented in
the previous section exhibits�(log n) average insert and lookup time on a randomly



10.7 Performance Analysis 263

Fig. 10.15 Average Insert/Lookup Time

distributed set of values and performs better in a random sample than the AVL tree
implementation.

Insert, lookup, and delete operations on anAVL tree can be completed in�(log n)

time. In the average case this holds for splay trees as well. Traversal of an AVL or
splay tree runs in �(n) time and yields its items in ascending or descending order
(depending on how the iterator is written). While the quicksort algorithm can sort
the items of a list just as efficiently, AVL and splay trees are data structures that
allow many insert and delete operations while still maintaining the ordering of their
elements. An AVL or splay tree may be a practical choice if a data structure is needed
that efficiently implements lookup, delete, and insert operations while also allowing
the sequence of values to be iterated over in ascending or descending order. The
advantage of AVL trees lies in their ability to maintain the ordering of elements while
guaranteeing efficient lookup, insert, and delete complexity. Splay trees work just as
well in almost all cases and in the case of the recursive splay tree implementation
described in this chapter it performs even better than the AVL Tree implementation
on random data sets. The difference in performance between the AVL tree and the
recursive splay tree performance numbers is the difference between maintaining the
balance explicitly in the AVL tree and getting good enough balance in the splay tree.
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10.8 Chapter Summary

This chapter presented several implementations of height-balanced AVL trees and
splay trees. Recursive and iterative insert algorithms were presented. Both balance
maintaining and height maintaining AVL nodes were discussed. The recursive insert
algorithms for both AVL and splay trees result in very clean code without many spe-
cial cases, while the iterative versions needs a fewmore if statements to handle some
conditions. In some instance the iterative version may be slightly more efficient than
the recursive version since there is a cost associated with function calls in any lan-
guage, but the experimental results obtained from the experiments performed in this
chapter seem to suggest that the recursive implementations operate very efficiently
when written in Python.

10.9 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. What is the balance of a node in an AVL tree?
2. How does the balance of a node relate to its height?
3. How does an AVL tree make use of the balance of a node?
4. What is a pivot node?
5. What is a bad child in relationship to AVL trees?
6. What is the path stack and when is it necessary?
7. After doing a right rotation, where is the pivot node and the bad child in the

subtree that was originally rooted at the pivot?
8. Why is the balance of the root of a subtree always 0 after code for case 3 is

executed?
9. In the two subcases for case 3, what node becomes the root node of the subtree

rooted at the pivot after executing the algorithm on each of the subcases?
10. Why does the AVL tree insert algorithm always completes in �(log n) time?

Do a case by case analysis to justify your answer for each of the three cases
involved in inserting a value.

11. What is the purpose of the rotate string in the recursive insert splay tree imple-
mentation?

12. Why does it seem that the recursive splay tree insert and lookup implementation
operates faster than the AVL tree implementation?
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10.10 Programming Problems

1. Write an AVL tree implementation that maintains balances in each node and
implements insert iteratively.Write a test program to thoroughly test your program
on some randomly generated data.

2. Write an AVL tree implementation that maintains balances in each node and im-
plements insert recursively. Write a test program to thoroughly test your program
on some randomly generated data.

3. Write an AVL tree implementation that maintains heights in each node and im-
plements insert recursively. Write a test program to thoroughly test your program
on some randomly generated data.

4. Write an AVL tree implementation that maintains heights in each node and im-
plements insert iteratively. Write a test program to thoroughly test your program
on some randomly generated data.

5. Complete programming problem 3. Then implement the delete operation for AVL
Trees. Finally,write a test program to thoroughly test your data structure.Asvalues
are inserted and deleted from your tree you should test your code to make sure it
maintains all heights correctly and the ordering of all values in the tree.

6. Implement two of the programming problems 1–4 in this chapter and then write
a test program that generates a random list of integers. Time inserting the values
into the first implementation and then time inserting each value into the second
implementation. Record all times in the XML format needed by the PlotData.py
program from chapter two. Plot the timing of the two algorithms to compare their
relative efficiency.

7. Write a splay tree implementation with recursive insert and lookup functions.
Implement an AVL tree either iteratively or recursively where the height of each
node is maintained. Run a test where trees are built from the same list of values.
When you generate the list of values, duplicate values should be considered a
lookup. Write the data file with an L or an I followed by a value which indicates
either a lookup or insert operation should be performed. Generate an XML file in
the format used by the PlotData.py program to compare your performance results.

8. Write a splay tree implementation with recursive insert and lookup functions.
Compare it to one of the other balanced binary tree implementations detailed in
this chapter. Run a test where trees are built from the same list of values. When
you generate the list of values, duplicate values should be considered a lookup.
Write the data file with an L or an I followed by a value which indicates either
a lookup or insert operation should be performed. Generate an XML file in the
format used by the PlotData.py program to compare your performance results.
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This chapter covers one of the more important data structures of the last thirty years.
B-Trees are primarily used by relational databases to efficiently implement an op-
eration called join. B-Trees have other properties that are also useful for databases
including ordering of rowswithin a table, fast delete capability, and sequential access.

11.1 Chapter Goals

This chapter introduces some terminology from relational databases to motivate the
need for B-Trees. The chapter goes on to introduce the B-Tree data structure and
its implementation. By the end of this chapter you should have an understanding
of B-Trees, their advantages over other data structures, and you should be able
to demonstrate your understanding by implementing a B-Tree that can be used to
efficiently process joins in relational databases.

11.2 Relational Databases

While this is not a database text we will cover a bit of database terminology to
demonstrate the need for a B-Tree and its use in a relational database. A relational
database consists of entities and relationships between these entities. A database
schema is a collection of entities and their relationships. A schema is specified by
a Entity Relationship diagram, often abbreviated ER-diagram, or a Logical Data
Structure [2]. Figure11.1 provides an ER-diagram for a database called the Dairy
Database. It is used to formulate rations for dairy cattle tomaximizemilk production.

Each box in Fig. 11.1 represents an entity in the database. Of particular interest
in this text are the Feed, FeedAttribute, and FeedAttribType entities. A feed, like
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Fig. 11.1 Dairy Database Entity Relationship Diagram

corn silage or alfalfa, is composed of many different nutrients. Nutrients are things
like calcium, iron, phosphorus, protein, sugar, and so on. In the Dairy Database
these nutrients are called FeedAttribTypes. There is a many-to-many relationship
between Feeds and FeedAttribTypes. A feed has many feed attributes, or nutrients.
Each nutrient or feed attribute type appears in more than one feed. This relationship
is depicted in Fig. 11.2. The forks on the two ends of the line represent the many-to-
many relationship between feeds and feed attribute types.

Many-to-Many relationships cannot be represented in a relational database with-
out going through a process called reification.Reification introduces new entities that
remove many-to-many relationships. When a many-to-many relationship appears
within a logical data structure it indicates there may be missing attributes. In this
case, the quantity of each nutrient within a feed was missing. The new FeedAttribute
entity eliminates the many-to-many relationship by introducing two one-to-many
relationships. One-to-many relationships can be represented in relational databases.
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Fig. 11.2 A Many to Many Relationship

Fig. 11.3 Logical Data Structure

Every entity in a relational database must have a unique identifier. In Fig. 11.3 the
Feed entities are uniquely identified by theirFeedID attribute. The other attributes are
important, but do not have to be unique. Each FeedID must be unique and it cannot
be null or empty for any feed. Likewise, a FeedAttribTypeID field uniquely identifies
each feed nutrient. There is a unique FeedAttribTypeID for calcium, iron, and so on.
The FeedAttribute entity has a unique id made up of two fields. Together, the FeedID
and the FeedAttribTypeID identify a unique instance of a nutrient for a particular
feed. The Valuewas the missing attribute in Fig. 11.2 that was introduced by reifying
the many-to-many relationship as depicted in Fig. 11.3. The Logical Data Structure
in Fig. 11.3 describes the schema for feeds and nutrients in the Dairy Database.

A relational database is composed of tables and the schema provides the definition
of these tables. The Feed table consists of rows and columns. Each row in the Feed
table describes one feed. The columns of the Feed table are each of the attributes of a
feed provided in Fig. 11.3. The example in Listing11.1 provides a subset of this table
with a subset of the columns of this table. The ellipses (i.e. the ...) indicate omitted
rows within the database. The full table is available as Feed.tbl on the text website.

1 ...
2 1316 512 10'Corn Silag' 2/28/2002 12:00:00 AM
3 1317 512 11'Almond Hul' 7/15/1989 12:00:00 AM
4 1318 512 12'MolassWet' 5/19/1989 12:00:00 AM
5 1319 512 13'LIQ CIT PL' 3/2/2002 12:00:00 AM
6 1320 512 14'Whey' 9/4/1997 12:00:00 AM
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7 1321 512 16'SF CORN' 9/29/1998 12:00:00 AM
8 1322 512 18'Dry Min' 10/17/2002 12:00:00 AM
9 1323 512 19'Min Plts' 11/17/2002 12:00:00 AM
10 1324 512 20'Mineral' 2/28/2002 12:00:00 AM
11 1372 525 1'Hay lact' 9/15/2003 12:00:00 AM
12 1373 525 2'DRY HAY' 11/30/1999 12:00:00 AM
13 1374 525 3'Oat hay' 11/10/1998 12:00:00 AM
14 1375 525 4'Hlg' 4/12/2004 12:00:00 AM
15 1376 525 5'CUPHay' 9/17/2003 12:00:00 AM
16 1377 525 6'Hay #1' 3/27/2001 12:00:00 AM
17 1378 525 8'BMR CSilage' 4/1/2004 12:00:00 AM
18 1379 525 9'Wheat Sil' 9/15/2003 12:00:00 AM
19 1380 525 10'Corn Silag' 10/30/2003 12:00:00 AM
20 1381 525 11'Almond Hul' 7/10/2000 12:00:00 AM
21 1382 525 14'ClosePlt' 1/13/2003 12:00:00 AM
22 1383 525 16'Corn1%fat' 9/3/2002 12:00:00 AM
23 1384 525 18'Dry Min' 7/12/2000 12:00:00 AM
24 1385 525 19'Comm Mix' 12/13/2003 12:00:00 AM
25 1386 525 20'On Farm' 10/30/2003 12:00:00 AM
26 1438 529 1'Big Sq155' 6/21/1999 12:00:00 AM
27 1439 529 2'Hay#1-200' 2/1/2000 12:00:00 AM
28 1440 529 3'Hay#2-145' 2/1/2000 12:00:00 AM
29 ...

Listing 11.1 The Feed table

Normally a relational database would store a table like the Feed table in a binary
format that would be unreadable except by a computer. The Feed.tbl file is written in
ASCII format to be human readable with a simple text editor, but the principles are
the same. Each row within the table represents one record of the table which is one
instance of a feed in this case. The records are each the same size to make reading
the table easy. Within any record we can find the name of the feed by going to the
correct column for feed name, which is the fourth field within each record and starts
30 bytes or characters into each record. Ten bytes or characters are allocated to each
integer field (the first column was edited to better fit on the page). There are 107
records or feeds within the sample Feed.tbl table provided on the text website.

1 ...
2 10'P' 'Phosphorus as % of DM' 15
3 11'Ca' 'Calcium as % of DM' 16
4 12'RFV' 'Relative Feed Value (calculated)' 17
5 13'S' 'Sulfur as % of DM' 18
6 14'K' 'Potassium as % of DM' 19
7 15'Mg' 'Magnesium as % of DM' 20
8 16'Fat' 'Fat as % of DM' 14
9 ...

Listing 11.2 The FeedAttribType table

The table in Listing11.2 contains a subset of the records in the FeedAttribType
table, available as FeedAttribType.tbl on the text website. The full table has 57 differ-
ent rows each containing 7 fields. As with the Feed table, the FeedAttribType table
is organized into rows and columns.
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A subset of the FeedAttribute table is provided in Listing11.3. Each feed attribute
is comprised of the corresponding FeedID, the FeedAttribTypeID, and the amount
of that nutrient for the given feed which is called the Value column within the table.

1 ...
2 1316 10 0.250000
3 1316 11 0.210000
4 1316 12 128.000000
5 1316 13 0.150000
6 1316 14 1.200000
7 1316 15 0.200000
8 1316 16 3.000000
9 ...
10 1317 10 0.110000
11 1317 11 0.220000
12 1317 12 129.000000
13 1317 13 0.110000
14 1317 14 0.530000
15 1317 15 0.130000
16 1317 16 2.000000
17 ...

Listing 11.3 The FeedAttribute table

Storing the feed data this way is flexible. New nutrients can easily be added.
Feeds can be added as well. Feed attributes can be stored if available or omitted.
Occasionally, programs that use relational databases need access to data from more
than one table but need to correlate the data between the tables. For instance, it may
be convenient to temporarily construct a table that contains the feed number, feed
name, nutrient name, and value of that nutrient for the corresponding feed into a
table like that in Listing11.4. We may want to compute the average phosphorous
content within all feeds. In fact, we may wish to calculate the average content for
each nutrient type within the database. In that case a table like the one in listiong
11.4 would be very useful.

1 ...
2 10 Corn Silag P 0.25
3 10 Corn Silag Ca 0.21
4 10 Corn Silag RFV 128.0
5 10 Corn Silag S 0.15
6 10 Corn Silag K 1.2
7 10 Corn Silag Mg 0.2
8 10 Corn Silag Fat 3.0
9 ...
10 11 Almond Hul P 0.11
11 11 Almond Hul Ca 0.22
12 11 Almond Hul RFV 129.0
13 11 Almond Hul S 0.11
14 11 Almond Hul K 0.53
15 11 Almond Hul Mg 0.13
16 11 Almond Hul Fat 2.0
17 ...

Listing 11.4 A temporary table
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Relational databases are often called SQL databases. SQL stands for SystemQuery
Language. SQL is a language for querying relational databases. SQL can be used to
build temporary tables like the one in Listing11.4. The SQL statement to build this
table would be written as

SELECT Feed.FeedNum, Feed.Name, FeedAttribType.Name, FeedAttribute.Value WHERE
Feed.FeedID = FeedAttribute.FeedID AND
FeedAttribute.FeedAttribTypeID = FeedAttribType.FeedAttribTypeID

This SQL statement is known as a join of three tables because three tables will
be joined together to form the result. It is up to the relational database to translate
this query into commands that read the three tables and efficiently construct a new
temporary table as the result of the join.

If we were to implement our own relational database, the join operation for these
three tables might be programmed similarly to the code appearing in Listing11.5.
Don’t be misled. Relational databases don’t program specific joins like this one, but
the joining of the three tablesmight be functionally equivalent to this code. The entire
program is available as joinquery.py on the text’s website. The readField function
here in the text is abbreviated for space, but reads any type of field from a table file.
The join algorithm picks one of the tables and read it from beginning to end. In this
case, the FeedAttribute table is read from beginning to end. For each feed attribute,
the matching feed id from the feed table must be located. In the code in Listing11.5
this involves reading, on average, half the feed table to supply the feed number and
feed name for each line of the query. Likewise, to supply the feed attribute name, on
average half the FeedAttribType table is read to supply the feed attribute name for
each line of the query output.

The complexity of this operation is O(n ∗ m) where n is the number of records
in FeedAttribute.tbl and m is the maximum of the number of records in FeedAttrib-
Type.tbl and Feed.tbl. This is O(n2) performance if n is roughly equivalent to m.
Whether the two are roughly equivalent or not, the performance of this query, even
on our small sample table, is not great. It takes about 4.993s to run the query as
written on a 2.66 GHz Intel Core i7 processor with 8GB of RAM and a solid state
hard drive.

1 import datetime

2 def readField(record,colTypes,fieldNum):

3 # fieldNum is zero based

4 # record is a string containing the record

5 # colTypes is the types for each of the columns in the record

6 offset = 0

7 for i in range(fieldNum):

8 colType = colTypes[i]

9
10 if colType == "int":

11 offset+=10

12 elif colType[4] == "char":

13 size = int(colType[])

14 offset += size

15 elif colType == "float":

16 offset+=20

17 ...

18 return val

19
20 def main():

21 # SELECT Feed.FeedNum, Feed.Name, FeedAttribType.Name, FeedAttribute.Value WHERE
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22 # Feed.FeedID = FeedAttribute.FeedID AND

23 # FeedAttribute.FeedAttribTypeID = FeedAttribType.FeedAttribTypeID

24 attribTypeCols = ["int","char20","char60","int","int","int","int"]

25 feedCols = ["int","int","int","char50","datetime","float","float","int","char50","int"]

26 feedAttributeCols = ["int","int","float"]

27 before = datetime.datetime.now()

28 feedAttributeTable = open("FeedAttribute.tbl","r")

29 for record in feedAttributeTable:

30 feedID = readField(record,feedAttributeCols,0)

31 feedAttribTypeID = readField(record,feedAttributeCols,1)

32 value = readField(record,feedAttributeCols,2)

33 feedTable = open("Feed.tbl","r")

34 feedFeedID = -1

35 while feedFeedID != feedID:

36 feedRecord = feedTable.readline()

37 feedFeedID = readField(feedRecord,feedCols,0)

38 feedNum = readField(feedRecord,feedCols,2)

39 feedName = readField(feedRecord,feedCols,3)

40 feedAttribTypeTable = open("FeedAttribType.tbl", "r")

41 feedAttribTypeIDID = -1

42 while feedAttribTypeIDID != feedAttribTypeID:

43 feedAttribTypeRecord = feedAttribTypeTable.readline()

44 feedAttribTypeIDID = readField(feedAttribTypeRecord,attribTypeCols,0)

45 feedAttribTypeName = readField(feedAttribTypeRecord,attribTypeCols,1)

46 print(feedNum,feedName,feedAttribTypeName,value)

47 after = datetime.datetime.now()

48 deltaT = after - before

49 milliseconds = deltaT.total_seconds() * 1000

50 print("Done. The total time for the query without indexing was",milliseconds,"milliseconds.")

51
52 if __name__ == "__main__":

53 main()

Listing 11.5 Programming the joining of tables

The code in Listing11.5 suffers because the two tables, Feed.tbl and FeedAttrib-
Type.tbl are read sequentially each time through the outer loop to find the matching
feed and feed attribute type, respectively.We can improve the efficiency of this query
if we recognize that disk drives are random access devices. That means that we can
position the read head of a disk drive anywhere within a file. We don’t have to start at
the beginning of a table to begin looking for a matching feed or feed attribute type.
We can jump around within the table to find the matching record.

1 def readRecord(file,recNum,recSize):
2 file.seek(recNum*recSize)
3 record = file.read(recSize)
4 return record

Listing 11.6 The readRecord function

Python includes a seek method on files to position the read head of a disk to a
byte offset within a file as shown in Listing11.6. The read method on files reads a
given number of bytes and returns them as a string. To test this readRecord function,
and the functionality of the seek method, a program was written to randomly access
the records in the FeedAttribute.tbl file. The results of that experiment are shown in
Fig. 11.4. The data shows that accessing any record within the file took about the
same amount of time regardless of its positionwithin the file.Aswith any experiment,
there were a few anomalies. But, the vast majority of records were accessed in the
same amount of time or nearly the same amount of time.
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Fig. 11.4 Access Time for Randomly Read Records in a File

Let’s say we were to organize the Feed.tbl and the FeedAttribType.tbl files so that
the records were sorted in increasing order by their keys. The Feed.tbl file would be
sorted by FeedID and the FeedAttribType.tbl would be sorted by FeedAttribTypeID.
Then we could use binary search on these two files to find the matching records
for each feed attribute in the code of Listing11.5. Since the tables are randomly
accessible, the query time could be reduced from O(n*m) to O(n log m). However,
we can’t assume that a database table will always, or ever, be sorted according to one
field. Databases can have new records added and old records deleted at any time.

This is where the need for a B-Tree comes from. A B-Tree is a tree structure that
is built over the top, so to speak, of a database table to provide O(log n) lookup time
to any record within the database table. While the records themselves may be in any
order, the B-Tree provides the O(log n) search complexity into the table.

A B-Tree is built by inserting records or items into the tree. Once built, the index
provides the efficient lookup of any record based on the key value stored in the B-
Tree. Consider the code in Listing11.7. Lines 18–23 build the Feed.tbl index and
lines 39–44 build the FeedAttribType.tbl index. Once built, the indices are used when
programming the query. The loop beginning on line 55 no longer contains two while
loops to lookup the corresponding records in the two tables. Instead, the B-Trees are
consulted to find the corresponding records in the two tables.When programmed this
way, the query in Listing11.7 runs in approximately 1.628s, three times faster than
the original, non-indexed query. The sample query here uses relatively small tables.
Imagine the speed up possible when either of the Feed.tbl or FeedAttribType.tbl
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tables contained millions of records. In that case, the original query would not have
completed in an acceptable amount of timewhile the indexed query given here would
have completed in roughly the same amount of time or perhaps a second longer at
worst.

1 def main():

2 # Select Feed.FeedNum, Feed.Name, FeedAttribType.Name, FeedAttribute.Value where

3 # Feed.FeedID = FeedAttribute.FeedID and FeedAttribute.FeedAtribTypeID = FeedAttribType.ID

4 attribTypeCols = ["int","char20","char60","int","int","int","int"]

5 feedCols = ["int","int","int","char50","datetime","float","float","int","char50","int"]

6 feedAttributeCols = ["int","int","float"]

7
8 feedAttributeTable = open("FeedAttribute.tbl","r")

9
10 if os.path.isfile("Feed.idx"):

11 indexFile = open("Feed.idx","r")

12 feedTableRecLength = int(indexFile.readline())

13 feedIndex = eval(indexFile.readline())

14 else:

15 feedIndex = BTree(3)

16 feedTable = open("Feed.tbl","r")

17 offset = 0

18 for record in feedTable:

19 feedID = readField(record,feedCols,0)

20 anItem = Item(feedID,offset)

21 feedIndex.insert(anItem)

22 offset+=1

23 feedTableRecLength = len(record)

24
25 print("Feed Table Index Created")

26 indexFile = open("Feed.idx","w")

27 indexFile.write(str(feedTableRecLength)+"\n")

28 indexFile.write(repr(feedIndex)+"\n")

29 indexFile.close()

30
31 if os.path.isfile("FeedAttribType.idx"):

32 indexFile = open("FeedAttribType.idx","r")

33 attribTypeTableRecLength = int(indexFile.readline())

34 attribTypeIndex = eval(indexFile.readline())

35 else:

36 attribTypeIndex = BTree(3)

37 attribTable = open("FeedAttribType.tbl","r")

38 offset = 0

39 for record in attribTable:

40 feedAttribTypeID = readField(record,attribTypeCols,0)

41 anItem = Item(feedAttribTypeID,offset)

42 attribTypeIndex.insert(anItem)

43 offset+=1

44 attribTypeTableRecLength = len(record)

45
46 print("Attrib Type Table Index Created")

47 indexFile = open("FeedAttribType.idx","w")

48 indexFile.write(str(attribTypeTableRecLength)+"\n")

49 indexFile.write(repr(attribTypeIndex)+"\n")

50 indexFile.close()

51
52 feedTable = open("Feed.tbl","rb")

53 feedAttribTypeTable = open("FeedAttribType.tbl", "rb")

54 before = datetime.datetime.now()

55 for record in feedAttributeTable:

56
57 feedID = readField(record,feedAttributeCols,0)

58 feedAttribTypeID = readField(record,feedAttributeCols,1)

59 value = readField(record,feedAttributeCols,2)

60
61 lookupItem = Item(feedID,None)

62 item = feedIndex.retrieve(lookupItem)

63 offset = item.getValue()
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64 feedRecord = readRecord(feedTable,offset,feedTableRecLength)

65 feedNum = readField(feedRecord,feedCols,2)

66 feedName = readField(feedRecord,feedCols,3)

67
68 lookupItem = Item(feedAttribTypeID,None)

69 item = attribTypeIndex.retrieve(lookupItem)

70 offset = item.getValue()

71 feedAttribTypeRecord = readRecord(feedAttribTypeTable,offset,attribTypeTableRecLength)

72 feedAttribTypeName = readField(feedAttribTypeRecord,attribTypeCols,1)

73
74 print(feedNum,feedName,feedAttribTypeName,value)

75 after = datetime.datetime.now()

76 deltaT = after - before

77 milliseconds = deltaT.total_seconds() * 1000

78 print("Done. The total time for the query with indexing was",milliseconds,"milliseconds.")

Listing 11.7 Efficient Join

Clearlyweneed the functionality of aB-Tree tomake queries possible and efficient
in relational database joins. The next section goes on to explain the organization of
a B-Tree, the advantages of B-Trees, and how they are implemented.

11.3 B-Tree Organization

A B-Tree is a balanced tree. Each node in a B-Tree consists of alternating pointers
and items as shown in Fig. 11.5. B-Trees consist of nodes. Each node in a B-Tree
contains pointers to other nodes and items in an alternating sequence. The items in a
node are arranged sequentially in order of their keys. In Fig. 11.5 the key is the first
value in each tuple. A pointer to the left of an item points to another B-Tree node
that contains items that are all less than the item to the right of the pointer. A pointer
to the right of an item points to a node where all the items are greater than the item.
In Fig. 11.5 the items in node 1 are all less than 12 while the items in node 2 are all
greater than 12.

B-Trees are always balanced, meaning that all the leaf nodes appear on the same
level of the tree. A B-Tree may contain as many items and pointers as desired in each
node. There will always be one more pointer than items in a node. B-Trees don’t
have to fill each node. The degree of a B-Tree is the minimum number of items that a
B-Tree node may contain, except for the root node. The capacity of a node is always
twice its degree. In Fig. 11.5 the degree is 2 and the capacity is 4.
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Fig. 11.5 A Sample B-Tree

The requirements of a B-Tree are as follows:

1. Every node except the root nodemust contain between degree and 2*degree items.
2. Every node contains one more pointer than the number of items in the node.
3. All leaf nodes are at the same level within a B-Tree.
4. The items within a B-Tree node are ordered in ascending (or descending) order.

All nodes have their items in the same order, either ascending or descending.
5. The items in the subtree to the left of an item are all less than that item.
6. The items in the subtree to the right of an item are all greater than that item.

To maintain these properties, inserting and deleting items from the tree must be
done with some care. Inserting an item can cause splitting of a node. Deleting from
a tree sometimes requires rebalancing of the tree. Looking up an item in a B-Tree
is performed much the same way lookup is performed in a binary search tree. The
node is examined to find the item. If it is not found, then the pointer is followed that
lies between the items that are less than and greater than the item to be found. If this
leads to a leaf node and the item is not found in the leaf node, the item is reported as
not in the tree.
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11.4 The Advantages of B-Trees

A B-Tree may contain entire records instead of just key/value pairs as appear in
Fig. 11.5 where the key/value pairs are the FeedID and record number of each record
in theFeed table. For instance, the entire record for FeedID10might be stored directly
in the B-Tree where (10, 0) currently appears. In the examples in this text the B-Tree
and the database table are stored separately. This has the advantage that more than
one B-Tree index could be built over the Feed table. The B-Tree in Fig. 11.5 is built
over the FeedID field. Some other unique field might be used to build another B-
Tree over the table if desired. By storing the B-Tree and the table separately, multiple
indices are possible.

As mentioned earlier in the chapter, B-Trees provide O(logd n) lookup time where
d is the degree of the B-Tree and n is the number of items in the tree. Hash tables
provide faster lookup time than a B-Tree. So why not use a hash table instead?

Unlike a hash table, a B-Tree provides ordered sequential access to the index.
You can iterate over the items in a B-Tree much like binary trees provide iteration.
Iteration over a B-Tree provides the items or keys in ascending (or descending) order.
A hash table does not provide an ordering of its keys.

B-Trees provide O(log n) insert, delete, and lookup time as well. While not as
efficient as hash tables in this regard, B-Trees nodes are often quite large providing
a very flat tree. In this case, the time for these three operations often comes close to
that of a hash table.

B-Trees are often constructed with literally millions of items. When a B-Tree
reaches this size, holding all the nodes in memory at one time may consume a lot
of RAM. This is a great advantage of B-Trees over hash tables. A B-Tree may be
stored in a file itself. Since files are randomly accessible on a disk, a B-Tree’s node
may be thought of as a record in a file. Consider the B-Tree in Fig. 11.5. The nodes
1, 2, and 3 could be thought of as three records within a file. The record number
are the pointer values, so to search the B-Tree it is only necessary to start with the
root node in memory. Then, to search when a pointer is followed during search,
the record corresponding to the new node is read into memory during the search. A
search can proceed in this way, reading one record at a time from disk. Typically a
pool of records would be held in memory for a B-Tree and records would be replaced
in memory using some sort of node replacement scheme. In this way a fixed amount
of RAM can be allocated to hold a B-Tree that would typically be much smaller than
the total size of the tree.

In addition, since a B-Tree can be stored in a file, it is not necessary to reconstruct
the B-Tree each time it is needed. The code in Listing11.7 stores the B-Trees in two
files named Feed.idx and FeedAttribType.idx and reads the index from the file the
next time the program is run.

Deleting a record from a table with a million records or more in it could be an
expensive operation if the table has to be completely rewritten. If sequential access
to the underlying table is handled through the B-Tree or if the entire file is stored in
the nodes of the B-Tree, deletion of a row or record in the table gets much simpler.
For instance, in Fig. 11.6 the feed with FeedID of 10 remains in the Feed.tbl file, but
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Fig. 11.6 A Sample B-Tree with Key 10 deleted

has been deleted from the B-Tree. If sequential access is always handled through the
B-Tree, it would appear that the feed with FeedID 10 has been deleted from the table.
Deleting an item from the table in this way is a O(log n) operation while deleting
by rewriting the entire file would take O(n) time. When n is millions of records, the
difference between O(log n) and O(n) is significant.

The same goes for inserting a new row or record within the Feed table. Adding
one new record to the end of a file can be done quickly, without rewriting the entire
file.When a B-Tree is used the newly inserted item automaticallymaintains its sorted
position within the file.

To summarize, B-Trees have several characteristics that make them attractive to
use in relational databases and for providing access to large quantities or ordered
data. These properties include:

• Ordered sequential access over the key value on O(n) time.
• O(log n) insert time, while maintaining the ordering of the items.
• O(log n) delete time of items within the B-Tree.
• If sequential access is handled through the B-Tree then O(log n) delete time is
provided for the underlying table as well.

• B-Trees can be stored in a file and B-Tree nodes can be read on an as needed basis
allowing B-Trees to be larger than available memory.

• A B-Tree index stored in a file does not have to be rebuilt each time it is needed
in a program.

It is this final point thatmakeB-Trees and their derivatives so valuable to relational
database implementations. Relational databases need B-Trees and their derivative
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implementations to efficiently process join operations while also providing many of
the advantages listed above.

11.5 B-Tree Implementation

Looking up a value in a B-Tree is relatively simple and is left as an exercise for the
reader. Inserting and deleting values are where all the action is. Alan Tharp [14] pro-
vides a great discussion of both inserting and deleting values in a B-Tree. In this text
we provide new examples and suggest both iterative and recursive implementations
of both operations.

11.6 B-Tree Insert

Inserting an item in a B-Tree involves finding the leaf node which should contain
the item. It may also involve splitting if no room is left in the leaf node. When a
leaf node reaches its capacity, which is two times its degree and a new item is being
inserted, the 2*degree+1 items are sorted and themedian value (i.e. themiddle value)
is promoted up the tree to the parent node. In this way, splitting may cascade up the
tree.

To see the splitting process in action, consider building the tree given in Fig. 11.5
with the keys given in this order: [10, 8, 22, 14, 12, 18, 2, 50, 15]. The first item to
be inserted is the 10. When this occurs, the B-Tree is empty, consisting of one empty
node. The (10, 4) item is added into that node as shown in Fig. 11.7.

The items with keys 8, 14, and 22 are inserted in a similar fashion as shown in
Fig. 11.8. The node is now full. The next item to be inserted will cause a split.

Fig. 11.7 Inserting 10 into an Empty B-Tree

Fig. 11.8 After Inserting 8, 14, and 22
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Fig. 11.9 After Splitting as a Result of Inserting 12

Fig. 11.10 After Inserting 18, 2, and 50

Fig. 11.11 Inserting 18 into the B-Tree Causes Splitting

The next item inserted is a 12 causing the node to split into two nodes. The left
subtree node is the original node. The right subtree contains the new node. The
middle value, 12 in this case, is promoted up to the parent. In this case, there is no
parent since we split the root node. In this special case a new root node is created
to hold the promoted value. After taking these steps, the tree appears as shown in
Fig. 11.9.

The three values 18, 2, and 50 are inserted resulting in the tree as shown in
Fig. 11.10.

When 15 is inserted B-Tree node number 2 is going to split and promote the
middle value, 18 in this case, up to the parent. This time there is room in the parent
so the new item is added resulting in the tree shown in Fig. 11.11.

Inserting an item causes one of two possible outcomes. Either the leaf node has
room in it to add the new item or the leaf node splits resulting in a middle value and
a new node being promoted to the parent. This suggests a recursive implementation
is appropriate for inserting a new item. The recursive algorithm is given an item to
insert and returns two values, the promoted key and the new right node if there is
one and proceeds as follows.



282 11 B-Trees

1. If this is a leaf node and there is room for it, make room and store the item in the
node.

2. Otherwise. if this is a leaf node, make a new node. Sort the new item and old
items. Choose the middle item to promote to the parent. Take the items after the
middle and put them into the new node. Return a tuple of the middle item and
new right node.

3. If this is a non-leaf node, call insert recursively on the appropriate subtree. Consult
the return value of the recursive call to see if there is a newly promoted key and
right subtree. If so, take the appropriate action to store the new item and subtree
pointer in the node. If there is no room to store the promoted value, split again as
described in step 2.

Step 3 above automatically handles any cascading splits that must occur. After
the recursive call the algorithm looks for any promoted value and handles it by either
adding it into the node or by splitting again. An iterative version of insert would
proceed in a similar manner as the recursive version except that the path to the newly
inserted itemwould have to bemaintained on a stack. Then, after inserting or splitting
the leaf node, the stack of nodes on the path to the leaf would be popped one at a
time, handling any promoted values, until the stack was emptied.

When writing insert as a recursive function it makes sense to implement it as a
method of a B-Tree node class. Then the insert method on a B-Tree class can call
the recursive insert on the B-Tree node class. In this way, if the root node is split,
the B-Tree insert method can deal with this by creating a new root node from the
promoted value and the left and right subtrees. Recall that the old root is the new left
subtree in the newly created node.

11.7 B-Tree Delete

Deleting from a B-Tree can be written recursively or iteratively like the insert algo-
rithm. When an item is deleted from a B-Tree there may be rebalancing required.
Recall that every node, except the root node, of a B-Tree must contain at least degree
items. There are just a few rules that can be followed to delete items from the tree
while maintaining the balance requirements.

1. If the node containing the item is a leaf node and the node has more than degree
items in it then the item may simply be deleted.

2. If the node containing the item is a leaf node and has degree or fewer items in it
before deleting the value, then rebalancing is required.

3. If the node is a non-leaf node then the least value of the right subtree can replace
the item in the node.

Rebalancing can be accomplished in one of two ways.
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Fig. 11.12 After Deleting the Item Containing 14

Fig. 11.13 After Deleting the Item Containing 50

1. If a sibling of the unbalanced node contains more than degree items, then some
of those items can be rotated into the current node.

2. If no rotation from a sibling is possible, then a sibling and the unbalanced node,
along with the item that separates them in the parent, can be coalesced into one
node. This reduces by one the number of items in the parent which in turn may
cause cascading rotations or coalescing to occur.

Another example will help to illustrate the delete and rebalancing algorithm.
Consider deleting the item containing 14 from the B-Tree in Fig. 11.11. This causes
the node containing 14 to become unbalanced. Rebalancing is accomplished by
borrowing items from its left sibling. This is depicted in Fig. 11.12.

In Fig. 11.12 notice that the 10 rotates to the parent and the item containing 12
rotates into node 2 of the tree. This is necessary to maintain the ordering within
the nodes. The rotation travels through the parent to redistribute the items between
the two nodes. Next, consider deleting the item containing 50. In this case there
is no sibling on the right and the sibling on the left doesn’t have enough items to
redistribute them. So, nodes 2 and 4 are coalesced into one node along with the item
containing 18 from the root node, producing the B-Tree shown in Fig. 11.13.

Next, 8 is deleted from the B-Tree. This causes a left rotation with the right sibling
resulting in the B-Tree depicted in Fig. 11.14.

Continuing the example assume that the item containing a key of 12 is deleted
from the tree. The item is in a non-leaf node so in this case the least value from the
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Fig. 11.14 After Deleting the Item Containing 8

Fig. 11.15 After Deleting the Item Containing 12

Fig. 11.16 After Deleting the Item Containing 18

right subtree replaces the item containing 12. This must be followed up with deleting
that value, the item containing 15 in this case, from the right subtree. The result is
depicted in Fig. 11.15.

Deleting 18 next causes the two sibling nodes to coalesce alongwith the separating
item in the parent (the root in this case). The result is an empty root node as shown
in Fig. 11.16. In this case, the delete method in the B-Tree class must recognize this
situation and update the root node pointer to point to the correct node. B-Tree node
3 is no longer the root node of the B-Tree. Deleting any more of the nodes simply
reduces the number of items in the root node.

Again, the delete method on B-Tree nodes may be implemented recursively. The
B-Tree node delete method is given the item to delete and does not need to return
anything. The recursive algorithm proceeds as follows.
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1. If the item to delete is in the current node then we do one of two things depending
on whether it is a leaf node or not.

(a) If the node is a leaf node, the item is deleted from the node without regard
to rebalancing.

(b) If the node is a non-leaf node, then the smallest valued item from the right
subtree replaces the item and the smallest valued item is deleted from the
right subtree.

2. If the item is not in the current node then delete is called recursively on the correct
subtree.

3. After delete returns, rebalancing of the child on the path to the deleted item may
be needed. If the child node is out of balance first try rotating a value from a left
or right sibling. If that can’t be done, then coalesce the child node with a left or
right sibling.

If the algorithm is implemented iteratively instead of recursively a stack is needed
to keep track of the path from the root node to the node containing the item to delete.
After deleting the item the stack is emptied and as each node is popped from the
stack rebalancing of the child node on the path may be required as described in the
steps above.

11.8 Chapter Summary

B-Trees are very important data structures, especially for relational databases. In
order for join operations to be implemented efficiently, indices are needed over at
least some tables in a relational database. B-Trees are also important because they
can be stored in record format on disk meaning that the entire index does not need
to be present in RAM at any one time. This means that B-Trees can be created even
for tables that consist of millions of records.

B-Trees have many important properties including O(log n) lookup, insert, and
delete time. B-Trees always remain balanced, regardless of the order of insertions
and deletions. B-Trees can also provide sequential access of records within a table
in a sorted order, either ascending or descending.

Due to the balance requirement in B-Trees splitting of nodes may be required
during item insertion. Rebalancing of nodes may be required during item deletion.
Rebalancing takes the form of rotation of items or coalescing of nodes. Rotation to
redistribute items is the preferred method of rebalancing.

Both the insert and delete operations may be implemented either recursively or
iteratively. In either case the splitting or rebalancing may result in cascading splitting
or rebalancing as the effects ripple up through the tree on the path taken to insert
or delete the item. If implemented iteratively, both the insert and delete algorithms
require a stack to record the path from the root node to the inserted or deleted item
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so that this ripple affect can be handled. In the recursive case no stack is required
since the run-time stack remembers the path from the root node to the inserted or
deleted item.

There are derivative implementations of B-Trees that have been created. B+-Trees
and B#-Trees are two other variations that are not covered in this text. Alan Tharp
[14], among others, covers both these derivative implementations.

11.9 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. How does the use of an index improve the efficiency of the sample join operation
presented in Listing11.7?

2. What advantages does a B-Tree have over a hash table implementation of an
index?

3. What advantages does a hash table have over a B-Tree implementation of an
index?

4. How can a B-Tree index be created over a table with millions of records and still
be usable? What challenges could this pose and how does a B-Tree provide a
means to deal with those challenges?

5. Starting with Fig. 11.13 insert an item with key 13 and draw a picture of the
resulting B-Tree.

6. Starting with Fig. 11.10 delete the item containing 12 and draw a picture of the
resulting B-Tree.

7. When does a node get coalesced?What does that mean? Provide a short example
different from any example in the text.

8. When does a rotation correct imbalance in a node? Provide a short example
different from any example in the text.

9. Insert the values 1 through 10 into an empty B-Tree of degree 4 to demonstrate
your understanding of the insert algorithm. Draw pictures, but you can combine
pictures that don’t require splitting. At each split be sure to draw a completely
new picture.

10. Delete the values 7, 8 and 9 from the tree you constructed in the previous review
question showing the rebalanced tree after each deletion.

11.10 Programming Problems

1. Write a B-Tree class and a B-Tree node class. Implement the insert and delete
algorithms described in this chapter. Implement a lookup method as well. Use
this implementation to efficiently run the join operation presented in Listing11.7.
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Compare the time this algorithm takes to run to the time the non-indexed join,
from Listing11.5, takes to run. Write the two methods recursively.

2. Write the B-Tree class with iterative, non-recursive, implementations of insert
and delete. In this case the insert and delete methods of the B-Tree class don’t
necessarily have to call insert and delete on B-Tree nodes.

3. Since the example tables in this chapter are rather small, after completing exer-
cise 1 or 2, run the query code again using a dictionary for the index. Compare
the amount of time taken to implement the query in this way with the B-tree
implementation. Comment on the experiment results.
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This text has focused on the interaction of algorithms with data structures. Many of
the algorithms presented in this text deal with search and how to organize data so
searching can be done efficiently. Many problems involve searching for an answer
among many possible solutions, not all of which are correct. Sometimes, there are
so many possibilities, no algorithm can be written that will efficiently find a correct
solution amongst all the possible solutions. In these cases, we may be able to use a
rule of thumb, most often called a heuristic in computer science, to eliminate some of
these possibilities from our search space. If the heuristic does not eliminate possible
solutions, it may at least help us order the possible solutions so we look at better
possible solutions first, whatever better might mean.

InChap.7 depth first search of a graphwas presented. Sometimes search spaces for
graphs or other problems grow to such an enormous size, it is impossible to blindly
search for a goal node. This is where a heuristic can come in handy. This chapter
uses searching a maze, which is really just a type of graph, as an example to illustrate
several search algorithms that are related to depth first or breadth first search. Several
applications of these search algorithms are also presented or discussed.

Heuristic search is often covered in texts onArtificial Intelligence [3].As problems
in AI are better understood, algorithms arise that become more commonplace over
time. The heuristic algorithms presented in this chapter are covered in more detail
in an AI text, but as data sizes grow, heuristic search will become more and more
necessary in all sorts of applications. AI techniques may be useful in many search
problems and so are covered in this chapter to provide an introduction to search
algorithms designed to deal with large or infinite search spaces.
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12.1 Chapter Goals

By the end of this chapter you will have been presented with examples of depth first
and breadth first search. Hill climbing, best first search, and the A* (pronounced A
star) algorithm will also be presented. In addition, heuristics will be applied to the
search in two person game playing as well.

While heuristic search is not the solution to every problem, as data sizes grow, the
use of heuristics will become more important. This chapter provides the necessary
information to choose between at least some of these techniques to improve perfor-
mance and solve some interesting large problems that would otherwise be unsolvable
in a reasonable amount of time.

12.2 Depth First Search

Wefirst encountered depth first search in Chap.6 where we discuss search spaces and
using depth first search to find a solution to some sudoku puzzles. Then, in Chap.7
the depth first search algorithm was generalized a bit to handle search spaces that
include cycles. To prevent getting stuck in a cycle, a visited set was used to avoid
looking at vertices that had already been considered. A slightly modified version of
the depth first search for graphs is presented in Listing12.1. In this version the path
from the start to the goal is returned if the goal is found. Otherwise, the empty list is
returned to indicate the goal was not found.

1 def graphDFS(G, start, goal):
2 # G = (V,E) is the graph with vertices, V, and edges, E.
3 V,E = G
4 stack = Stack()
5 visited = Set()
6 stack.push(start)
7
8 while not stack.isEmpty():
9 # A vertex is popped from the stack. This is called the current vertex.
10 current = stack.pop()
11 # The current vertex is added to the visited set.
12 visited.add(current)
13
14 # If the current vertex is the goal vertex, then we discontinue the
15 # search reporting that we found the goal.
16 if current == goal:
17 return True # or return path to goal perhaps
18
19 # Otherwise, for every adjacent vertex, v, to the current vertex
20 # in the graph, v is pushed on the stack of vertices yet to search
21 # unless v is already in the visited set in which case the edge
22 # leading to v is ignored.
23 for v in adjacent(current,E):
24 if not v in visited:
25 stack.push(v)
26
27 # If we get this far, then we did not find the goal.
28 return False # or return an empty path

Listing 12.1 Iterative Depth First Search of a Graph
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The algorithm in Listing12.1 consists of a while loop that finds a path from a start
node to a goal node. When there is a choice of direction on this path, all choices
are pushed onto the stack. By pushing all choices, if a path leads to a dead end, the
algorithm just doesn’t push anything new onto the stack. The next time through the
loop, the next path is popped from the stack, resulting in the algorithm backtracking
to a point where it last made a decision on the direction it was going.

12.2.1 Maze Representation

How should the maze be represented? Data representation is such an important part
of any algorithm. The maze consists of rows and columns. We can think of each
location in the maze as a tuple of (row, column). These tuples can be added to a
hash set for lookup in O(1) time. By using a hash set we can determine the adjacent
(row,column) locations in O(1) time as well for any location within the maze. When
a maze is read from a file, the (row, column) pairs can be added to a hash set. The
adjacent function then must be given a location and the maze hash set to determine
the adjacent locations.

12.2.2 DFS Example

Consider searching the maze in Fig. 12.1. Let’s assume that our depth first search
algorithm prefers to go up if possible when searching a maze. If it can’t go up, then
it prefers to go down. Next preference is given to going left in the maze, followed
lastly by going right. Assume we start at the top of the maze and want to exit at the
bottom. Note that going on the diagonal is not considered in the examples presented
in this chapter since otherwise moves where two corners in the maze meet would be
possible. Diagonal moves would have the affect of moving through what looks like
walls in the maze in some circumstances.

According to our direction preference, the algorithm proceeds by making steps 1
and 2 in red. Then it proceeds to travel to the left into region A. When it gets to 10 in
region A, there are no possible moves adjacent to step 10 that have not already been
visited. The code in lines 23–25 cannot find anything to push onto the stack.

However, when step 2was originally considered, all the other choiceswere pushed
onto the stack including the red three that appears to the right of step 2.When nothing
is pushed onto the stack while looking at step 10 in region A, the next top value on
the stack is the red step 3. The unvisited nodes adjacent to the red step 3 are then
pushed onto the stack. The last location pushed is the red step 4, which leads to the
red step 5 being pushed and considered next. Then the depth first search proceeds to
the left again, examining all the locations in region B.

When region B is exhausted, backtracking occurs again, resulting in taking the red
step 6. This leads to the search entering region D next, exhausting the possibilities on
this path and backtracking occurring to take the search to step 12 in red. Likewise,
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Fig. 12.1 Depth First Search of a Maze

regions E, F, and G are explored. When the search gets to red step 21 the depth first
search prefers to go up and proceeds to the top of the maze and enters region H.

We can tell by looking at the maze that entering region H will lead nowhere. But
depth first search does not know or care about this. It just blindly considers the next
possible path to the goal until that path leads to the goal or we have exhausted all
possible next steps and backtrack. Backtracking out of region H leads to step 34 in
red. When we reach step 44 the algorithm prefers to go down first and proceeds on a
wild goose chase leading from region I to region J where it runs out of possible next
steps and backtracks to the red step 44. Finally, that path leads to the goal.

There are some things to notice about this search. First, as mentioned before, it
was a blind search that uses backtracking to eventually find the goal. In this example
the depth first search examined every location in the maze, but that is not always the
case. Depth first search did find a solution, but it wasn’t the optimal solution. If the
depth first search were programmed to go right first it would have found a solution
much faster and found the optimal solution for this maze. Unfortunately of course,
that won’t work for all mazes.

While the maze search space is finite, what if the maze was infinite in size and
we went to the left while we should have started going right? The algorithm would
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blindly proceed going left forever, never finding a solution. The drawbacks of depth
first search are as follows.

• Depth first search cannot handle infinite search spaces unless it gets lucky and
proceeds down a path that leads to the goal.

• It does not necessarily find an optimal solution.
• Unless we are lucky, the search order in a finite space may lead to exhaustively
trying every possible path.

We may be able to do better using either breadth first search or a heuristic search.
Read on to see how these algorithms work.

12.3 Breadth First Search

Breadth First Search was first mentioned in Chap.7. The code for breadth first search
differs in a small way from depth first search. Instead of a stack, a queue is used to
store the alternative choices. The change to the code is small, but the impact on the
performance of the algorithm is quite big.

Depth first search goes down one path until the path leads to the goal or no
more steps can be taken. When a path is exhausted and does not end at the goal,
backtracking occurs. In contrast, breadth first search explores all paths from the
starting location at the same time. This is because each alternative is enqueued onto
the queue and then each alternative is dequeued too. This has an effect on how the
search proceeds.

12.3.1 BFS Example

Breadth first search takes a step on each path each time through the while loop in
Listing6.5. So, after step 2 in Fig. 12.1 the two step 3’s occur next. Then the three
step 4’s occur. The three step 5’s are next. The five step 6’s are all done on the next
five iterations of the while loop.

You can see that the number of alternatives is growing in this maze. There were
2 step 2’s on up to five step 6’s. The number of choices at each step is called the
branching factor of a problem. A branching factor of one would mean that there is
no choice from one step to the next. A branching factor of two means the problem
doubles in size at each step.

Since breadth first search takes a step in each direction at each step, a branching
factor of two would be bad. A branching factor of two means the size of the search
space grows exponentially (assuming no repeated states). Breadth first search is not
a good search in this case unless the goal node is very near the start node.

The breadth first search shown in Fig. 12.2 covers nearly as much of the maze as
the blind depth first search did. Only a few locations are left unvisited. The breadth
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Fig. 12.2 Breadth First Search of a Maze

first search found the optimal solution to this maze. In fact, breadth first search will
always find the optimal solution if it is given enough time.

Breadth first search also deals well with infinite search spaces. Because breadth
first search branches out from the source exploring all possible paths simultaneously,
it will never get stuck going down some infinite path forever. It may help to visualize
pouring water into the maze. The water will fill the maze from the source and find
the shortest way to the goal.

The advantages and disadvantages of breadth first search are as follows.

• Breadth first search can deal with infinite search spaces.
• Breadth first search will always find the optimal goal.
• It may not perform well at all when the problem has too high a branching factor.
In fact, it may take millions of years or more to use breadth first search on some
problems.

While it would be nice to be able to find optimal solutions to problems, breadth
first search is not really all that practical to use. Most interesting problems have high
enough branching factors that breadth first search is impractical.
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12.4 Hill Climbing

Depth first search was impractical because it blindly searched for a solution. If the
search is truly blind then sometimes we’ll get lucky and find a solution quickly while
other times we might not find a solution at all depending on the size of the search
space, especially when there are infinite branches.

If we had some more information about where the goal is, then we might be able
to improve the depth first search algorithm. Think of trying to summit a mountain.
We can see the peak of the mountain so we know the general direction we want to
take to get there. We want to climb the hill. That’s where the name of this algorithm
comes from.

Anyone who has climbed mountains knows that sometimes what appears to be a
route up the mountain leads to a dead end. Sometimes what appears to be a route to
the top only leads to a smaller peak close by. These false peaks are called localized
maxima and hill climbing can suffer from finding a localized maximum and thinking
that it is the overall goal that was sought.

12.4.1 Hill Climbing Example

Figure12.3 features the samemaze with hill climbing applied to the search. To climb
the hill we apply a heuristic to help. In searching a maze, if we know the exit point of
the maze we can employ the Manhattan distance as a heuristic to guide us towards
the goal. We don’t know the length of the path that will lead to the solution since we
don’t know all the details of the maze, but we can estimate the distance from where
we are to the goal if we know the location of the goal and our current location.

The Manhattan distance is a measure of the number of rows and columns that
separate any two locations on a maze or map. In Fig. 12.3 the Manhattan distance
from the start to the goal is 36. We have to go down one row, then right 20 columns,
and down 15 rows. This distance is called the Manhattan distance because it would
be like walking between buildings in Manhattan or city blocks in any city.

The Manhattan distance would be either exact or an under-estimate of the total
distance to the goal. In Fig. 12.3 it is an exact estimate, but in general a direct route
to the goal may not be possible in which case the Manhattan distance would be an
under-estimate. This is important because over-estimating the distance will mean
that hill climbing will end up working like depth first search again. The heuristic
would not affect the performance of the algorithm. For instance, if we took the easy
approach and said that our distance was always 100 from the goal, hill climbing
would not really occur.

The example in Fig. 12.3 shows that the algorithm chooses to go down first if
possible. Then it goes right. The goal location is known and the minimumManhattan
distance orders the choices to be explored. Going left or up is not an option unless
nothing else is available. So the algorithm proceeds down and to the right until it
reaches step 25 where it has no choice on this path but to go up.
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Fig. 12.3 Hill Climbing Search of a Maze

Hill climbing performs like depth first search in that it won’t give up on a path
until it reaches a dead end. While hill climbing does not find the optimal solution in
Fig. 12.3, it does find a solution and examines far fewer locations in this case than
breadth first or depth first search. The advantages and disadvantages of hill climbing
are as follows.

• The location of the goal must be known prior to starting the search.
• You must have a heuristic that can be applied that will either under-estimate or
provide an exact length of the path to the goal. The better the heuristic, the better
the hill climbing search algorithm.

• Hill climbing can perform well even in large search spaces.
• Hill climbing can handle infinite search branches if the heuristic can avoid them.
• Hill climbing may suffer from local maxima or peaks.
• Hill climbing may not find an optimal solution like breadth first search.

To implement hill climbing the alternative choices at each step are sorted according
to the heuristic before they are placed on the stack. Otherwise, the code is exactly
the same as that of depth first search.

12.4.2 Closed Knight’s Tour

Hill climbing can be used in solving the closed Knight’s Tour problem. Solving this
problem involves moving a knight from the game of chess around a chess board (or
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any size board). The knight must be moved two squares followed by one square in
the perpendicular direction, forming an L on the chessboard. The closed knight tour
problem is to find a path that visits every location on the board through a sequence
of legal knight moves that starts and ends in the same location with no square being
visited twice except the starting and ending location.

Since we want to find a path through the board, the solution can be represented
as a path from start to finish. Each node in the path is a move on the board. A move
is valid if it is on the board and is not already in the path. In this way, the board itself
never has to be explicitly built.

Generating possible moves for a knight could be rather complex if you try to
write code to deal with the edges of the board. In general, when adjacent nodes have
to be generated and special cases occur on boundaries, it is far easier to generate a
set of possibly invalid moves along with the valid moves. In the case of moving a
knight around, there are eight possible moves in the general case. After generating
all possible moves, the invalid moves are obvious and can be filtered out. Using this
technique, boundary conditions are handled in a uniform manner once instead of
with each separate possible move. The code is much cleaner and the logic is much
easier to understand.

Figure12.4 provides a solution to the closed knight’s tour problem for a 12×12
board. The tour starts in the lower left corner where two edges were not drawn so
you can see where the tour began and ended while it was being computed. The tour
took a few minutes to find using a heuristic to sort the choices of next location. A
least constrained heuristic was applied to sort the new choices before adding them
to the stack. The least constrained next choice was the choice that would have the
most choices next. Sorting the next moves in this fashion avoids looking at paths
that lead to dead ends by generally staying closer to the edges of the board where
the next move has the most choices. In other words, it avoids moving to the middle
and getting stuck in the middle of the board. This heuristic is not perfect and some
backtracking is still required to find the solution. Nevertheless, without this heuristic
there would be no hope in solving the problem in a reasonable amount of time for
a 12×12 board. In fact, the 8×8 solution can’t be found in a reasonable amount of
time with simple depth first search, unless you get lucky and search in the correct
direction at each step. With the heuristic and hill climbing applied, the 8×8 solution
can be found in just a few seconds.

12.4.3 The N-Queens Problem

To solve the N-Queens problem, N queens must be placed on an NxN chess board so
that no two queens are in the same column, row, or diagonal. Solving this using depth
first search would not work. The search space is too large and you would simply have
to get very lucky to find a solution using brute force.

The N-Queens problem does have the unique feature that when a queen is placed
on the board, all other locations in the row, column, or the diagonals it was placed in
are no longer possible candidates for future moves. Removing these possible moves
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Fig. 12.4 A Closed 12×12 Knight’s Tour

from the list of available locations is called forward checking. This forward checking
decreases the size of the search space at each step.

The choice of the next row to place a queen is another unique feature of the N-
Queens problem. The solution won’t be easier to find if a random row is picked or if
we simply pick the next row in the sequence of rows. So the search for the solution
is only what column to place the next queen in.

To aide in forward checking, the board can be represented as a tuple: (queen
locations, available locations). The first item in the tuple is the list of placed queens.
The second item of the tuple is the list of available locations on the board. The
forward checking can pick one of the available locations for the next row. At this
point all locations in the second part of the tuple that conflict with the choice of
the next queen placement can be eliminated. Thus forward checking removes all the
possible locations that are no longer viable given a choice of placement for a queen.

The hill climbing part of solving the N-Queens problem comes into play when
the choice of which column to place a queen is made. The column chosen is the one
that least constrains future choices. Like the Knight’s Tour, the N-Queens problem
benefits when the next choice made leaves the maximum number of choices later.
Using this heuristic, forward checking, and the simple selection of the next row in
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Fig. 12.5 A 25-Queens Solution

which to place a queen, it is possible to solve the 25-Queens problem in a reasonable
amount of time. One solution is shown in Fig. 12.5.

To review, implementing hill climbing requires the alternative choices at each step
be sorted according to the heuristic before they are placed on the stack. Otherwise,
the code is exactly the same as that of depth first search. In some cases, like the
Knight’s Tour and the N-Queens problem, any solution is an optimal solution. But,
as noted above when searching a maze, hill climbing does not necessarily find an
optimal solution. Wouldn’t it be nice if we could combine breadth first search and
hill climbing.

12.5 Best First Search

So, breadth first search can find an optimal solution and deal with infinite search
spaces, but it is not very efficient and can only be used in some smaller problems.
Hill climbing is more efficient, but may not find an optimal solution. Combining the
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two we get best first search. In best first search we order the entire queue according to
the distance of each current node to the goal using the same heuristic as hill climbing.

12.5.1 Best First Example

Consider the example in Fig. 12.6. Step 3 moves closer by moving down one row to
step 4. Now, to the right of step 3 is an equally good move (actually better knowing
the optimal solution), but the next step is better at step 5 than to the right of 3 because
it is closer to the eventual goal. So best first proceeds down and to the right like hill
climbing until it gets to step 26 in red. At this step it is forced to move up and away
from the goal. In this case red step 28 looks just as good as blue step 24 along the
bottom. The Manhattan distance of both is 14. When we reach red step 29 then blue
step 22 in the middle of the maze looks just as good. The effect of heading away
from the goal is to start search all paths simultaneously. That’s how best first works.
It explores one path while it is moving towards the goal and multiple paths when
moving away from the goal.

The code for best first search is a lot like breadth first except that a priority queue is
used to sort the possible next steps on the queue according to their estimated distance
from the goal. Best first has the advantage of considering multiple paths, like breadth
first search, when heading away from the goal while performing like hill climbing
when heading toward the goal.

Fig. 12.6 Best First Search of a Maze
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In the example shown here we did not do better than hill climbing. Of course,
that is only this example. In general hill climbing may do worse than best first. It
all depends on the order that locations are searched in the search space. However,
neither hill climbing or best first found the optimal solution like breadth first search.
They both got stuck heading into the long path in the middle of the maze.

12.6 A* Search

Wouldn’t it be nice to be able to give up on some paths if they seem too long? That’s
the idea behind the A* algorithm. In this search, the next choices are sorted by their
estimate of the distance to the goal (the Manhattan distance in our maze examples)
and the distance of the path so far. The effect of this is that paths are abandoned (for
a while anyway) if they appear to be taking too long to reach the goal.

12.6.1 A* Example

In Fig. 12.7 the same path is first attempted by going down and to the right until step
25 at the bottom of the maze is reached. Then that path is abandoned because the
length of the path plus the Manhattan distance at step 4 in red is better than taking
another step (step 26) at the bottom of the maze. Again the search goes down and to

Fig. 12.7 A-Star Search of a Maze
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the right eventually filling the same region H from Fig. 12.1. At this point the search
continues across the top to step 19 where it again goes down to step 33 at which
point step 20 in red looks better than taking step 34 to the left. The search gives up
on the blue path at step 33 and then proceeds to the goal from red step 20.

The A* algorithm finds an optimal solution in this example because it gives up
on two paths that are getting too long according to the heuristic plus total cost so far.
Of course the optimality of the solution depends on the heuristic and the total cost.
For instance, the heuristic should be good enough to return 0 as the cost of getting
from the goal to the goal. The heuristic cannot over-estimate the cost of getting to
the goal from the current node.

TheA*algorithmwasused to solve a problem in the InfiniteMarioAI competition.
In this competition programmers fromaround theworldwere given the task ofwriting
code that would guide Mario through a programmable version of the Nintendo game
Mario Brothers. The idea was that machine learning techniques would be employed
to teach Mario to make good decisions while navigating the game’s world. Instead
of using machine learning, Robin Baumgarten solved the problem of getting Mario
through the game by implementing the A* algorithm. In Robin’s solution Mario
makes choices based on the path length so far plus a heuristically computed cost
to get to the goal. The A* implementation solved the problem and was a hit on the
internet. You can readmore about Robin’s solution and how he developed it at https://
github.com/jumoel/mario-astar-robinbaumgarten.

12.7 Minimax Revisited

In Chap.4 tic tac toe was presented as a demonstration of two dimensional arrays.
The outline of the minimax algorithmwas presented. The minimax algorithm is used
by computer games to provide a computer opponent. Minimax only applies in two
person games of what is called perfect information. These are games where everyone
can see everything. Poker is not a game of perfect information. Tic tac toe is a game
of perfect information.

The game of tic tac toe is small enough that adults can generally look far enough
ahead so they never lose, unless they make a careless mistake. Children on the other
hand sometimes can’t get enough! If you don’t have children or younger brothers and
sisters, someday you will understand. Tic tac toe is also small enough to be solvable
by a computer. The minimax algorithm can play the game to its conclusion to insure
that it never loses, just like an adult.

The game of connect four is a bit different. In this game, black and red checkers
are dropped down slots in a vertically positioned board. The board is seven checkers
wide by six checkers tall. Checkers always drop as far down as possible so there
are at most seven choices at each turn in the game. The goal is to get four of your
checkers in a row, a column, or on a diagonal. In Fig. 12.8 the computer has won
with the four black checkers on the diagonal.

https://github.com/jumoel/mario-astar-robinbaumgarten
https://github.com/jumoel/mario-astar-robinbaumgarten
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Fig. 12.8 The Connect Four Game

Playing connect four is not as easy as playing tic tac toe. With a branching factor
of approximately seven at each turn, the number of possible boards quickly grows
past what can be considered exhaustively in a reasonable amount of time. In these
situations a heuristic must be added to the minimax algorithm to cut off the search.
The algorithm is not repeated here. See Sect. 4.9 for a complete description of the
algorithm. The base cases for minimax are then modified as follows to incorporate
the search cutoff heuristic.

1. The current board is a win for the computer. In that case minimax returns a 1 for
a computer win.

2. The current board is a win for the human. In that case minimax returns a −1 for
a human win.

3. The current board is full. In that case, since neither human or computer won,
minimax returns a 0.

4. The maximum depth has been reached. Evaluate the board with no more search
and report a number between−1.0 and 1.0. A negative value indicates the human
is more likely to win given this board. A positive value indicates the computer is
more likely to win.
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To implement this last base case for the algorithm, a new depth parameter is passed
to the minimax algorithm and possibly some other parameters as well. Early in a
game the maximum depth may not be very deep. However, later in a game, when
less choices are available, the maximum depth may be deeper. Increasing the depth
of search is the best way to improve the computer’s ability to win at games like this.
A good heuristic can also help in earlier stages of the game when deeper search is
not possible. Coming up with a good heuristic is a challenge. The trick is to keep it
relatively simple to compute while encouraging moves in some fashion on the board.

We have developed a connect four implementation based on these ideas that
runs on standard hardware without any special multiprocessing. Our version beats
all commercially available apps and applications presently available when playing
against them. Your challenge, should you care to take it on, is to build a better one.
A front-end for this game is available in Sect. 22.6 or on the text’s website so you
can build your own connect four game.

12.8 Chapter Summary

This chapter covered heuristics and how they play a part in problems when the
search space grows too large for an exhaustive search. Many problems that would
otherwise be unsolvable are solvablewhenheuristics are applied.However, the nature
of a heuristic is that sometimes they work well and other times they may not. If a
heuristic worked every time, it would be called a technique and not a heuristic.

We must think carefully about whether heuristic search is really required or not
when solving problems. Choosing the right problem representation, data structure,
or algorithm is much more important than a brute force approach and applying a
heuristic. It may be that a problem that seems too big to solve can be reduced to
something that can be solved by the right algorithm.When there is no such reduction
possible, heuristic search may be the answer.

The search algorithms hill climbing, best first, and A* are best remembered by
comparing their algorithms to depth first search and breadth first search.Hill climbing
is like depth first search except that a heuristic is applied to order the newly added
nodes to the stack. Best first is like breadth first search except that all the nodes on the
queue are ordered according to the heuristic. It is often implemented with a priority
queue. The A* algorithm is like best first except that the queue is ordered by the sum
of the heuristically estimated distance to the goal plus the distance travelled so far.

The minimax algorithm too uses a heuristic when the search space is too large. An
effective game engine will always search as deep as possible, but when the search
must be cut off, a good heuristic will help in estimating the worth of a move in the
game.
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12.9 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. Which is faster, depth first search or breadth first search?
2. Which search, depth first or breadth first, may not complete in some situations?

When could that happen?
3. When hill climbing, what could prevent the algorithm from finding a goal node?
4. Will the best first search algorithm find an optimal solution? Why or why not?
5. Will the A* algorithm find an optimal solution? Why or why not?
6. When would hill climbing be better to use than the A* algorithm?
7. What is forward checking and how does that help solve a problem?
8. Describe what happens in the depth first search algorithmwhen backtracking oc-

curs. Be specific about how the algorithmbehaves at the pointwhen backtracking
occurs in Listing6.5.

9. Name a game that cannot use the minimax algorithm other than poker.
10. What is the best way to insure that minimax behaves as desired: a really good

heuristic or deeper search?

12.10 Programming Problems

1. Write a program that uses the five search algorithms in this chapter to search a
maze as shown in the examples. Construct sample mazes by writing a text file
where each space represents an open location in the maze and each non-space
character represents a wall in the maze. Start the maze with the number of rows
and columns of the maze on the first two lines of the file. Assume that you search
the maze from top to bottom to find a way through it. There should be only one
entry and one exit from your maze. Compare and contrast the different algorithms
and their performance on your sample mazes. Be sure to download the maze
searching front-end from the text’s website so you can visualize your results. The
architecture for communication between the front-end and your back-end code is
provided in the front-end program file.

2. Write a program to solve the Knight’s Tour problem. Be sure to use a heuristic in
your search to narrow the search space. Make sure you can solve the tour quickly
for an 8×8 board. Draw your solution using turtle graphics.

3. Write a program to solve the N-Queens problem. Use forward checking and a
heuristic to solve the N-Queens problem for an 8×8 board. For an extra challenge
try to solve it for a 25×25 board. The programwill likely need to run for a while (a
half hour?) to solve this one. Be sure to use the N-Queens front-end code provided
on the text’s website to visualize your result. The back-end code you write should
follow the architecture presented at the top of the front-end program file.
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4. Write the connect four program to challenge another student’s connect four. You
both must write programs that have a pass button. A flip of a coin can determine
who goes first. The one who goes first should begin by pressing their pass button.
Then you and the other student can flip back and forth while your computer pro-
grams compete. To keep things moving, your gamemust make a move within 30s
or it forfeits. You can use the front-end code presented in Sect. 22.6 as your front-
end. You must write the back-end code. Follow the architecture to communicate
with the front-end code presented at the top of the front-end program file.

5. For an extra challenge, write the connect four program and beat the program
provided by the authors on text website. To run the author’s code you must have
Python version 3 and Common Lisp installed. Both the front-end code and the
author’s back-end code must be in the same directory or folder to run the author’s
version of the program. You can get the author’s front-end and back-end code
from the text’s website.
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Gordon Moore, an Intel co-founder, described a principle that came to be known as
Moore’s Law. It said that every two years the number of transistors on a chip doubled.
In doubling the number of transistors, the sizes of memory doubled as well. And in
conjunction with this doubling of capacity, the performance of processors roughly
doubled every two years as well. Moore’s Law held up from the late 1950’s all the
way through the new millennium. As of about 2010 the pace has slowed [17].

David Patterson is an expert in the area of Computer Architecture, having written
textbooks on the subject, worked as a university professor, and as a Google engineer.
His work in designing the MIPS processor was fundamental in the design of modern
pipelined architectures. In September of 2018 Patterson said, “We are now a factor
of 15 behind where we should be if Moore’s Law were still operative. We are in the
post-Moore’s Law era.” [11].

According to Patterson it is time for new software languages and computer archi-
tectures. We need new languages and architectures to take advantage of parallelism
in problems. That’s where the speedup is going to come from. Serial speedup is
nearing its limits and we must evolve how we write programs to take advantage of
parallelism.

Much is happening in the world of supercomputer programming and more gener-
ally in theworld of parallel programming.As it relates to this text, efficient algorithms
and data structures are very important as it relates to writing supercomputer appli-
cations. Without efficient algorithms and data structures, you cannot hope that a
supercomputer application will scale up gracefully. It is critically important that we
avoid bad big-o complexities in our applications.

With the end of Moore’s Law and the problems we solve getting bigger, with
greater amounts of data, the need to solve problems using parallel techniques has
never been greater. In writing parallel programs it is essential that we write code
that scales well which means we have to be cognizant not only of the computational
complexity of our code, but we must also think about how to write code without
bottlenecks and with an awareness of computer architecture and how the choices we
make impact the performance of our programs.
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This chapter provides you with an introduction to parallel programming. Specif-
ically, this chapter presents several types of parallel applications with the goal of
finding common patterns in the types of applications that are most commonly writ-
ten. Important topics relating to both the big picture and the more subtle details of
parallel programming concepts and issues are presented here in a concise format.
There are many, many details that aren’t covered in this text, but after reading this
you will have an introduction to types of parallel applications through real-world
examples. The chapter also draws a few conclusions from the types of problems
being solved.

13.1 Chapter Goals

After reading this chapter you should understand a bit about what parallel applica-
tions can and cannot do for you. You should understand there are two classes of
parallel applications that center primarily on legacy simulation programs and the
newer machine learning pipeline examples. You’ll be acquainted with a few spe-
cific applications and you should understand some of the challenges that parallel
application developers have to face when writing distributed, parallel applications.

13.2 What Parallel Programs Can’t Do

Computational complexity is the study of how programs perform as the amount of
data they process scales up. In Sect. 2.8, Fig. 2.5 was first presented. Here we provide
the same picture again in Fig. 13.1 because of its importance to parallel computation.

A good place to start iswith confrontingwhat parallel programming is not. Parallel
programming is not a solution to a poorly written program or an intractable problem.
For large inputs, you can’t parallelize your way out of a problem that isn’t solvable in
at least O(n log n) time. For some small quantities of data, parallel algorithms with
O(n2) or worse complexities will run faster, but they cannot scale to large amounts
of data. O(n2) or bigger won’t scale and would only be solvable for small, trivial,
toy problems.

A parallel application does not change the computational complexity of its al-
gorithm. Parallel computation, like sequential computation, is measured in terms of
how the time for running it scales as the data scales. Said in another way, the speed up
of parallel computation is measured in a constant, divided by the time taken to run a
similar sequential computation. At best you get a constant factor of k speedup, which
does not affect the computational complexity of the parallel algorithm. A parallel
algorithm has the same computational complexity as the same serialized algorithm.

O(sequential(n)/k) ≡ O(parallel(n)) ≡ O(sequential(n))
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Fig. 13.1 Common Computational Complexities

The constant, k, can be pretty big, but it is still a constant. For instance, the
Frontier supercomputer of Oak Ridge National Laboratory contains 9,408 CPUs,
eachwith a capacity of 64 cores. In addition, there are 37,632GPUs for doing floating
point calculations. Without the GPUs being factored in, that’s 602,112 cores. Each
core supports 2 threads simultaneously, so that comes to 1,204,224 possible active
threads of control in an application. The constant speed up possible from a sequential
application to a parallel application that does the same computation is bounded by
these numbers on Frontier.

While theoretically it would be possible for a sequential application to speed up
by 1,204,224 when run on Frontier, it would take a very special program that is
embarrassingly parallel. This is a technical term that describes a program that has
no dependencies on what other parts of the program are doing. No synchronization
or communication is necessary in an embarrassingly parallel application until the
very end. Other than some simple example applications, these kind of applications
generally don’t exist in the wild.

All interesting parallel algorithms must communicate their results at some point.
Theymay also need to wait to compute their results until some action or event occurs.
Parallel applications need to communicate and synchronize. All communication and
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synchronization in a program reduces the potential speedup that parallel computation
provides.At one extremewe have the embarrassingly parallel algorithm.At the other
extreme we have an application that needs to be in lock step throughout its run, in
which case it is not parallelizable.

The trick/skill in parallel programming is to discover those parts of a program
that can be independently computed and to minimize the need for synchronization
and communication. But, the lesson in this section is that no matter how well you
master this skill, the computational complexity of your algorithm will not change
by parallelizing it. It will only improve by some constant factor. Nevertheless, that
constant factor of improvement, might be the difference between getting some work
done in a year or getting it done in 1,204,224 years. You can see why we might be
interested in parallelizing applications!

So there are two primary reasons to parallelize an application. We just mentioned
one reason: we can get the work done faster. The other reason to parallelize an appli-
cation is to allow it to run on larger datasets. The motivation may be a combination of
the two aswell of course. Scaling and speed are the two primary reasons to parallelize
applications.

In the next section,we’ll look at some applications from theworld of supercomput-
ing to better understand the types of problems that benefit from parallel computation
and what these types of applications have in common.

13.3 Parallel Applications

Sowhat kinds of problems are solved by parallel algorithms?Really, any problem that
can be divided into independent parts and then perhaps uses those independent results
to arrive at a final result. Sometimes people want to run many instances of a program
in parallel in what is called an ensemble. In ensemble computations a program is
run more than once because there is some statistical nature to the calculation and
running more than one instance helps to determine an optimal solution. At other
times a parallel computation just divides up a really large dataset into small quantities
because they can then be solved in a reasonable amount of time and the results can
be stitched back together. In still other examples there are multiple stages to the
computation where laters stages can use partial results from an earlier stages in a
pipeline fashion. Let’s consider some real life examples.

13.3.1 Nuclear Fusion

A tokomak [5] is a device that shows promise to contain hot plasma that one day
may create a sustained nuclear fusion reaction. In pursuit of clean, unlimited energy
there are many experiments being conducted at a few places in the world. These
experiments, including the K-Star Tokomak [13], gather large quantities of data that
must be analyzed to see how theymight modify the tokomak for the next experiment.

https://www.energy.gov/science/doe-explainstokamaks
https://www.newscientist.com/article/2336385-korean-nuclear-fusion-reactor-achieves-100-millionc-for-30-seconds
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Time between experiments is critical when running the tokomak. Data analysis must
be fast to give scientists maximum feedback with minimal wait.

In this environment, supercomputing is useful in the analysis of experimental
data. Fast turnaround is necessary to help direct the experiments being conducted in
the tokomak. So there is a lot of incentive to do that processing and analysis of the
experimental data as quickly as possible. The analysis helps to guide which variables
to adjust for the next experiment and by what amounts. The goal is to make faster
progress towards sustained reactions.

This is an example where pipelining the data is helpful. In fact, it may be the
case that the analysis isn’t strictly a pipeline. A dependence graph is likely more
representative of the data flow within the parallel application used to process and
analyze the experimental data. The code to communicate between these stages was
written by these scientists. Any coordination between stages must be orchestrated
by some means. A great amount of the effort in writing these types of applications is
in building the infrastructure for communication and synchronization between parts
of the program.

13.3.2 Covid-19

HPCWire is an excellent source of news in theworld of supercomputing. Thewebsite
has a dedicated site to just the fight against Covid-19 [15] and all supercomputing
news related to the disease.

One of the big challenges in finding a vaccine for Covid-19 was the verification
and elimination of literally billions of candidate molecules to use in a vaccine. Scien-
tists were able to use AI and a parallel pipeline to speed up the process of considering
these molecules by 50,000 times [6,12]. In this case a collection of different tech-
niqueswere applied together to help find vaccine candidates. The techniques included
data processing, modeling, simulation, and machine learning. The IMPECCABLE
software pipeline was built to integrate and automate these techniques to speed up
the tasks that went into evaluating candidate vaccines. IMPECCABLE stands for
Integrated Modeling PipelinE for COVID Cure by Assessing Better Leads.

One interesting point about IMPECCABLE and the previous K-Star experiments
is that to scale beyond what can be computed on one node, there had to be infras-
tructure to coordinate between the various processes that were needed to accomplish
these large and complex programs. In both cases they also had to craft communi-
cation channels between the various processes. The programmers of these complex
systems were solving some of the same problems more than once. Frequently the
solutions these programmers have available to them don’t scale well when large
numbers of nodes are involved, relying on some centralized coordinator, often a
database server of some sort. Programming communication, synchronization, and
coordination of processes across nodes is a large problem that has not been solved
in a scalable fashion except in very specific circumstances until very recently. The
next section provides some background about what distributed supercomputing has
looked like before the advent of the latest AI and some of these advanced pipelines.

https://hpcwire.com
https://www.hpcwire.com/2021/03/09/the-history-of-supercomputing-vs-covid-19
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13.3.3 CFD Simulations

In the world of Physics and engineering, understanding the world around us often in-
volves running simulations. Simulations are corroborated with observational data to
validate their results. The simulation itself helps us understand how something hap-
pened. For instance, Computational Fluid Dynamics (CFD) applications are widely
used to perform fluid flow simulations. Consider the flow of air over an airplane
wing. A simulation helps predict how air will behave given the construction of the
wing. Rogers, et al., wrote an interesting paper describing the challenges in writing
a CFD for this purpose [10]. This paper is interesting because it was written during
the transition from vector processor supercomputing to today’s distributed super-
computing. The paper provides a little insight into the challenges and optimizations
for both architectures and mentions some early distributed computing libraries that
were used in distributed supercomputing.

Magnetohydrodynamic (MHD) simulation focuses on understanding how elec-
trically conducting fluids behave. MHD solvers are specialized versions of CFD
solvers. The concept of electrical current also applies to gravitational properties in
astrophysics. One such application, theWombat application was written as a scalable
MHD application [9].

Many, if not most, of these simulation algorithms where a large number of ranks
(i.e. processes) are running the same code, but working on different parts of the data,
are written using an API called MPI (message passing interface). The MPI API pro-
vides communication and synchronization primitives that can be used to coordinate
between all the ranks of the program. MPI programs don’t have a centralized coor-
dinator. They operate by sharing data with neighbors where those neighbors meet in
the simulation. MPI has a progress engine that runs under all of the ranks to make
sure it is both sending and receiving data as the user’s program advances. MPI itself
does not have any processes that help manage the program. MPI is not a run-time
at all. It is a library that runs completely under the user’s application. The progress
engine helps to make sure that the user’s program using MPI keeps the message
passing moving toward the final solution.

MPI programs are much different than the programs that were discussed in the
previous two sections. MPI helps solve one specific class of algorithms and AI
pipelines do not fall in that class. The next section dives deeper into the structure
of an AI application. It is interesting to note that applications like Wombat can also
take advantage of the lessons learned from building AI pipelines.

13.3.4 AI

What is AI? It seems that AI is really all about problems we don’t understand well.
When we finally have a good grasp of how to solve a problem, it isn’t AI anymore.
Recently, the problem has been Machine Learning which is presently about training
a model to recognize a pattern and then respond with an expected outcome from its
observation. So AI has become training these models to get the expected outcomes
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from them. Actually running the model later on a real set of new inputs isn’t that
interesting. It is rather mechanical.

Getting input data, sampling input data, preparing the data for model training, and
model training itself are all tasks that can be parallelized. Consider the Alpha Zero
program. Andrew Young has an excellent article on how they parallelized some of
the Alpha Zero training [19].

13.3.5 Large LanguageModels

While machine learning has become pretty well understood and has been applied
to a plethora of situations, recently the models being tackled are so large that su-
percomputers are needed to handle the large amounts of data on which they are
trained.

Recent advances in building large language models have resulted in interesting
tools like ChatGPT, Bard, and a host of other natural language processing applica-
tions. The training data for these types of models is huge. To train them there is some
preprocessing that occurs called an embedding. Part of the embedding process is to
tokenize the vocabulary used to train the model. In simplified terms this involves
assigning a unique integer to each word in the vocabulary of the LLM. Additional
information is also gathered during the embedding process to take into account the
context of the words as well since words that look the same often have wildly dif-
ferent meanings given their context. For example a cloud bank is a lot different then
a piggy bank. Training LLMs means coordinating and writing code that scales well
and can work in parallel to handle these large amounts of data. And the training of
LLMs has become even more pipeline like. More generally, a dataflow graph could
be used to describe the parallelization opportunities within one of these applications.

LLM’s often require ensembles to make predictions. Predictions are more accu-
rate when more than one model is employed to help predict the right responses.
Ensemble execution is dynamic and requires a programming environment that can
support processes running on demand, the ability to set up new communication and
synchronization between processes in this environment.

Like tokomak experiment analysis and the Covid 19 system, IMPECCABLE,
once again programmers are writing code to coordinate among a non-homogenous
set of processes, and because it is not an MPI application, they are writing code to
synchronize and communicate between nodes. These same software needs appear
over and over in recent supercomputing applications.

13.4 Chapter Summary

This chapter introduced parallel programming from an application perspective and
provides perspective on what parallel programs cannot do. A parallel version of an
application does not overcome bad computational complexity or intractable prob-
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lems. Parallel programs can speed up a sequential non-parallel program only by a
constant factor. Parallel versions of programs also enable programs to run on bigger
data sets than may be achievable with sequential versions since the data is often
distributed over many nodes.

In addition, the chapter introduces several types of HPC applications like Ma-
chine Learning and CFD simulations and includes a few real life examples of those
applications. Machine learning and CFD simulations are common types of appli-
cations in the world of supercomputing. While supercomputers have been solving
CFD simulations for some time, machine learning and AI pipelines are a relatively
new area. The types of applications running on supercomputers is evolving too. The
next chapter discusses some of the challenges that were pointed out in this chapter
and it presents a framework for solving many of these problems. And, the best part
is that this framework includes support for Python!

13.5 Review Questions

These are all short answer questions, but requiremore thanoneword answers.Answer
each question with a short paragraph. The best answers will include a little research
that you can do on the internet. Be curious!

1. Explain what a CFD application is. If you do a bit of research, you can describe
the details of such an algorithm in a bit more detail than is provided in the text.

2. If a sequential program is rewritten as a parallel application and the sequential
version takes X time to execute, how fast will a parallel version of it be? The
point of this question is for you to qualify your answer with some comments to
demonstrate your understanding of what parallel programs can and can’t do.

3. What are the two primary needs of any parallel program?
4. What were the lessons learned by the Alpha Zero project? Name at least three

lessons.
5. In the struggle to control the Covid-19 pandemic, what were three contributions

that were made possible by supercomputers? Write a short paragraph for each
contribution summarizing the result and provide references for your summary.

6. This will require a bit of research. What computer system is slated to help with
the Iter Fusion work? What are some facts about this system that would be
interesting to share?

7. What supercomputers are on the Top 500 top 5 right now? Include companies
and three interesting facts about each system.

8. What is unique about Large Language Models that more traditional supercom-
puter applications don’t have to manage?

9. What exactly is an embedding as it related to Large Language Models? Do a
little research to answer this question.

10. What is MPI and what kind of programming environment does it provide?
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There are several ways to achieve parallelism in programs. Compiler, interpreter,
and library implementors have tried to design automated methods to detect paral-
lelism with some success. Other methods require the programmer to explicitly write
their programs to run in parallel. Specifically, approaches to program parallelization
include:

• Vectorization
• Multithreading and multiprocessing
• MPI Applications
• More Generalized Message Passing

Automated methods include older optimizations like vectorization, where opera-
tions on arrays of values are determined to be independent of each other and therefore
determined to be something that can be done in parallel. These vector operations
typically are done with vectorizing compilers available for compiled languages like
C, C++, and Fortran. They are not typically available to interpreted languages like
Python.Vectorization occurs on a computerwith a sharedmemory architecturewhere
the CPU may contain vector instructions that can run in parallel to speed up the ex-
ecution of vectorizable loops. This was the role of early supercomputers like the
Cray-1 [18].

There are limits to vectorization. Vectorization is for numerical operations on
arrays of data often using some kind of loop. Not every loop is vectorizable. Not
every loop does numerical operations. In addition, some applications have a great
deal of possible parallelism thatmay not be easily expressible as a loop ormay require
that the programmer explicitly lay out the program to take advantage of parallelism.

© Springer Nature Switzerland AG 2024
K. D. Lee and S. Hubbard, Data Structures and Algorithms with Python,
Undergraduate Topics in Computer Science,
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14.1 Chapter Goals

This chapter presents a runtime and API for developing distributed, parallel ap-
plications. It introduces you to multiprocessing and more specifically to the the
DragonHPC implementation of multiprocessing. You’ll learn where to gather more
information and be introduced to synchronization and communication primitives in
multiprocessing with examples that show how they may be used.

14.2 Sequential ProgrammingModel

For serial code execution, the programming model is as depicted in Fig. 14.1. Func-
tion calls result in pushing activation records on a run-time stack. Activation records
contain local variables (or at least references to them in the case of Python) and
parameters. Returning from a function pops its activation record from the run-time
stack. Objects are created on the heap. If your program contains static data that is
likely stored separately from the run-time stack. And of course the program is also
stored in memory.

Fig. 14.1 The Serial Programming Model
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14.3 SharedMemory Parallel ProgrammingModel

Multithreaded applications require a shared memory architecture where there is one
memory shared between all the threads of an application. Figure14.2 depicts a con-
ceptual view of a shared memory multiprocessor. The programming model for mul-
tithreaded applications is similar to that depicted in Fig. 14.1. Each thread in a mul-
tithreaded application has its own run-time stack. The program is shared between
threads, as is static data. In a multithreaded application all variables share the same
heap so all dynamically allocated objects are shared between all threads.

On larger shared memory multiprocessors, which may run many threads simul-
taneously, the cores that run them may be grouped together since they cannot all
access the shared memory at the same time. For instance in Fig. 14.2 the four cores
are arranged into two groups. Shared memory hardware configurations might use
non-uniform memory access (NUMA) where communication between a core and
memory must pass through a network. Such configurations have some cores closer
to memory than others, resulting in the NUMA designation. There are many nuances
of putting lots of cores on one shared memory. The end result is that parallel appli-
cations written for shared memory architectures are limited in their speedup since
access to the shared memory becomes a bottleneck.

Writing code that communicates with other threads is extremely easy. You can
write classes and objects and all threads can share that data. However, writing correct
multithreaded code is difficult. The libraries you use must be thread-safe when they
are used in a multithreading environment. If you are writing code that uses lower
level primitives like semaphores and other synchronization primitives, covering all
edge cases of synchronization windows is not an easy job. Anyone that has written
parallel code at this level will attest to that.

Fig. 14.2 A Shared Memory
Computer Architecture
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14.4 Distributed Parallel ProgrammingModel

More recently, parallelism on distributed architectures may employ vectorization,
but with or without vectorization they add an additional layer of complexity by using
frameworks like MPI (Message Passing Interface) for the distribution and synchro-
nization of work on a distributed system. Minimally described in the last chapter,
distributed systems are sets of nodes that each are stand-alone computers with their
own memory, but are networked together, usually with a high-speed network inter-
connecting them as shown in Fig. 14.3. Distributed architectures can scale to large
numbers of nodes, but these nodes do not share a common memory, so traditional
multithreading is limited to on-node only and will not work between nodes.

Traditionally, parallelism in distributed architectures has centered around solving
complex engineering tasks. For example, running simulations, complex verification
programs, or finding the right combination of materials for a complex construction
project. From the last chapter, Wombat is an example of one of a simulation program
that studies the nature of complex gravitational systems. All these types of problems
revolve around writing complex programs that run on distributed computer systems,
do their computation, and exit after writing their results to disk. Programs in this
realm are very static. They read their data, compute, and write their results to disk.
MPI was designed to provide an API for applications that fall into this category.

MPI is a very important API for a large class of parallel applications. MPI hides
the extremely difficult job of writing correct parallel code by providing facilities
for message passing. Message passing is the primary means of synchronization and
communication in distributed parallel applications. However, writing a good MPI
program is not easy for those that are not already MPI experts. There is a learning

Fig. 14.3 A Distributed
Memory Computer
Architecture
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curve and as stated earlier, MPI was designed for a very specific set of parallel
applications that perform the same algorithm on a large amount of data.

Given the rise in machine learning, data pipelines have become much more
widespread and necessary for solving complex problems. Today’s application needs
are often much more dynamic: part of a program may need to run for a while, then
another part might take over. In fact, it is much more common in a data pipeline for
many parts of a program to cooperate. A data intake programmight want to feed data
as it becomes available to a data cleaning stage and then to a model training stage.
Parallel programs in the modern era need a framework that supports this dynamic
nature of programs.

There are other reasons to consider distributed computing other than the shared
memory bottleneck. There are problems that just won’t fit onto any single node. Con-
sider large language model (LLM) pipelines and other similarly complex problems.
The only way to solve these large problems is for multiple computing nodes to work
together on a solution. And as pointed in the last chapter, the programmers of such
systems are then stuck trying to implement all the communication and coordination
to get multiple nodes of a supercomputer to talk to each other and cooperate on the
solution sinceMPI is not designed for these types of problems. Programmers of these
types of applications are faced with solving the same problem for each application
that is written.

14.5 DragonHPCMultiprocessing

One of the major issues with distributed computing is the need to coordinate across
several different processes or logical parts of a program. This has been solved more
than once by starting some sort of database server which can be accessed from
multiple processes. While database servers are great for many applications, they
were not designed to scale to the sizes of some supercomputer applications and
using a database server becomes a bottleneck itself in large distributed applications.

There is a real need for a scalable run-time that supports distributed computing on
supercomputers and clusters. In fact, wouldn’t it be nice if you could write a program
that runs on your laptop or a supercomputer. From laptop to exaflop as the saying
might go! It turns out that Python has the right API. It’s called multiprocessing.
The multiprocessing API supports distributed multiprocessing right out of the box.
However, until now the implementation ofmultiprocessing had only supported single
node execution. That all changes with the introduction of a new multi-node capable
implementation of multiprocessing. DragonHPC is an open source implementation
that has been under development since 2018 when it was initiated by Cray, Inc. and is
now being released byHewlett Packard Enterprise (HPE) in 2023 after its acquisition
of Cray, Inc. in late 2019. The release of DragonHPC is a major development for
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writers of distributed parallel applications. I am excited to have been a part of its
development and very appreciative to HPE for its continued support of this important
work. You can find more about this project, including how to install it on your laptop
or cluster, at http://dragonhpc.org.

DragonHPC (referred to as just Dragon in the rest of this text), via the Python
multiprocessing API, provides complete transparency of location for synchroniza-
tion and communication primitives as defined by the multiprocessing API. At its
core, Dragon provides multiprocessing capable queues called channels. On top of
channels are built higher level synchronization and communication classes. In addi-
tion, Dragon provides run-time services, including a transport service, that makes all
these synchronization and communication objects work across nodes on a cluster,
supercomputer, or even on your laptop without needing to rewrite your program. A
program, once written will run in both a single node or multi node setting.

The last chapter showed that communication and synchronization across nodes
was a common problem that was being solved, many times in not very scalable ways,
for each parallel application. DragonHPC provides a run-time that supports scalable
multi-node communication and synchronization so programmers can concentrate on
the problem they are trying to solve instead of rebuilding this infrastructure for each
application. In addition, DragonHPC does this without the need for a centralized
database for coordination in an application. DragonHPC also provides a distributed
key-value store (i.e. dictionary) for managing scalable coordination between all pro-
cesses in a distributed application.

DragonHPC requires Linux or a Docker container to run. On Windows you will
need the WSL (Windows Subsystem for Linux), available in Docker, to run Dragon
programs. Thankfully installing Docker and running in a container is easy to do and
the DragonHPC website has directions for doing just that.

To learn to write multiprocessing programs, you can consult the API documen-
tation at http://docs.python.org/3/library/multiprocessing.html. Dragon works with
nearly all of multiprocessing as described there. For the very latest, check the Drag-
onHPC documentation for the supported API. For purposes of this text, let’s begin
by studying a very simple hello world program.

1 import dragon
2 import multiprocessing as mp
3 import socket
4
5 def helloworld(i):
6 print(f'Hello world from proc={i} on host {socket.gethostname()}')
7
8 def main():
9 mp.set_start_method('dragon')
10 processes = []
11 for i in range(4):
12 proc = mp.Process(target=helloworld, args=(i,))
13 proc.start()
14 processes.append(proc)
15
16 for proc in processes:
17 proc.join()
18

http://dragonhpc.org
http://docs.python.org/3/library/multiprocessing.html
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19 print('Goodbye!')
20
21 if __name__ == '__main__':
22 main()

Listing 14.1 A Dragon Hello World

The output from running the code in Listing14.1 depends on where you run it. If
you run it on your laptop you’ll get the same hostname for each process. If you run it
on a cluster, you’ll get a separate hostname for each node from the cluster. Dragon,
by default, uses a round-robin policy for placing processes on your cluster so each
instance of the process will see a different hostname assuming you have at least four
nodes in your cluster. If you have less nodes, Dragon will automatically assign more
than one process to whatever nodes you have available.

Listing14.2 shows running this program with Dragon. However, the program will
run with standard multiprocessing as well. If you don’t have Dragon installed yet,
you can still try this program out on your laptop. You simply comment out the import
dragon on line 1 and the set_start_method call on line 9. Then you use python3 to
run it instead. The only difference between Dragon and standard multiprocessing is
the necessary one import of dragon and setting the start method to dragon once at
the beginning of the program.

Using the dragon command to run the program is actually using Python internally.
Running with Dragon is running with Python. The only difference is that using
dragon starts the necessary run-time services needed by the Dragon implementation
of multiprocessing for transparent multi-node communication and synchronization.
In addition, even on-node, the Dragon implementation of multiprocessing will scale
better than standard multiprocessing, though that won’t be noticeable until you push
the limits of standard multiprocessing.

$ dragon hellomp.py
Hello world from proc=0 on host node1
Hello world from proc=3 on host node4
Hello world from proc=2 on host node3
Hello world from proc=1 on host node2
Goodbye!
$

Listing 14.2 Output from running the Dragon Hello World

There are a couple of nuances in the code of Listing14.1. The code is actually read
by an interpreter five times, once when the program is started. When it is started the
variable __name__ is equal to the string "__main__" and the main function is called
on lines 21 and 22. Then when the processes are created, the Python interpreter is
started up four more times and the same code is imported. When code is imported
by Python the __name__ is variable is not equal to "__main__", which means that
main is not called for the four processes, but the functions main and helloworld are
defined. Python’s multiprocessing requires you to use the if name is main idiom to
prevent the main code from executing when it is imported. The helloworld function
is then called when the process is started. The proc.join call waits for each process
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it is called on to exit. This provides some synchronization in the program so that
Goodbye! is printed after all the processes terminate. The order that the processes
run and print is not determined in the program, so there is a degree of randomness
in the order of execution of the processes since they are truly running in parallel.

14.6 Serialization

The other nuance in the program of Listing14.1 is that each process is able to print
its value of i from the main function’s loop. There is more to this than meets the
eye. The main function is running in one process and other instances of the Python
interpreter, located somewhere else in the Dragon cluster, are running the other four
processes. The main process and the helloworld processes don’t share any memory.
They truly are distributed processes. Yet, the value of i is communicated from the
main process four different times. For this to work, the value of i is serialized. This
means a byte representation of the value is communicated via a communication
mechanism called channels in Dragon. The base multiprocessing that comes with
Python is not as sophisticated, but does the same thing. It also serializes values, but
in a different, less scalable way. Dragon channels, along with a transport agent, take
care of moving serialized values between distributed locations in a Dragon cluster.
Dragon is also able to move serialized data on-node in a very efficient manner.

The Dragon code actually serializes the value of i, puts the value into a queue
which is shared between the main process and one of the child processes. Then
the child process, before it calls the helloworld function, deserializes the received
argument, and passes the value into the helloworld function when it is called. To the
user, it looks like the value of i is just passed from parent to child process, but as
mentioned a lot more is going on.

1 import dragon
2 import multiprocessing as mp
3
4 def pingpong(queue, ping=True):
5 val = 0
6 if ping:
7 queue.put(val)
8
9 for i in range(100):
10 val = queue.get()
11 print(f'Value is: {val}')
12 val += 1
13 queue.put(val)
14
15 def main():
16 mp.set_start_method('dragon')
17 queue = mp.Queue()
18 proc1 = mp.Process(target=pingpong, args=(queue,))
19 proc1.start()
20 proc2 = mp.Process(target=pingpong, args=(queue, False))
21 proc2.start()
22 proc1.join()
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23 proc2.join()
24 val = queue.get()
25 print(f'The final value is: {val}')
26
27 if __name__ == '__main__':
28 main()

Listing 14.3 A Dragon Ping Pong

It is possible to serialize pretty much any value in Python. Consider the code in
Listing14.3. Values are serialized by calling a __getstate__ function and deserialized
by calling a __setstate__ function. These two methods are a part (or at least can be)
of every object in Python. Most of the time the default get and set state functions
will work with no extra effort. In fact, Queue objects can also be shared between
processes. Queues encapsulate Dragon channels with extra code that makes passing
serialized objects through them very easy.

DragonHPC is implemented in such a way that the location of a Queue is com-
pletely independent from where it is used. The queue object exists locally on some
node on the distributed system. If it is serialized and sent to another process on an-
other node, then a representation of it is actually sent, not the original queue, and
that serialized representation can be used to both get and put items from/to the queue
without your program having to change depending on its location. Your program
interacts with queues and other multiprocessing objects identically, whether they
exist on-node or off-node. That’s very powerful and pretty cool.

The code in Listing14.3 serializes the tuple containing the value of ping in the
second case along with the serialized representation of the queue for both processes.
The two processes communicate and synchronize by passing a value back and forth
while incrementing it. Each time the value is passed through the queue it is serialized
and deserialized to copy the value between processes. The output from running the
program is shown in Listing14.4 in abbreviated form.

$ dragon pingpong.py
Value is: 0
Value is: 1
...
Value is: 198
Value is: 199
The final value is: 200
$

Listing 14.4 Output from running the Ping Pong program

A queue can hold a finite number of objects, but put and get operations are
blocking. This means that when a queue is full there is back pressure applied to the
process that is filling it. The put operation blocks and suspends the process that is
putting the value. The process itself has no knowledge that it is suspended unless a
timeout is specified and the timeout expires. When a queue is empty, a get operation
suspends the process executing it. In this way multiprocessing provides a means for
coordinating execution between processes as they execute in a parallel application.
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Fig. 14.4 A Distributed
Merge

Serialization is used for the movement of data in a distributed parallel application.
Data movement should be minimized to achieve the best parallel speedup. It is
because of data movement and data copying that a parallel application, run on a
small amount of data, may very well not perform as well as its serial counterpart.
Parallel applications work best when they don’t have to move data or when the data
is so large that a serial application, running on one node, will not suffice.

Consider the problem of sorting a vast amount of ordered data. Because all data
might not fit on a single node, or because we may be sorting data from multiple
sources, we may want to employ an algorithm like a distributed merge as depicted in
Fig. 14.4. The algorithm begins by having the merge process take one element from
each of the input queues and place it in a smallest on top (or bottom in the picture)
heap (i.e. a priority queue). Each element in the heap keeps track of which queue it
came from as shown in Listing14.5.
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1 class PQEntry:
2 def __init__(self, value, queue_index):
3 self._value = value
4 self._queue_index = queue_index
5
6 def __lt__(self, other):
7 return self.value < other.value
8
9 @property
10 def queue_index(self):
11 return self._queue_index
12
13 @property
14 def value(self):
15 return self._value
16
17 def __repr__(self):
18 return 'PQEntry('+str(self.value)+','+str(self.queue_index)+')'
19
20 def __str__(self):
21 return repr(self)

Listing 14.5 The Priority Queue’s Items

The merge algorithm assumes that all values written into the input queues are
locally sorted, but not relative to each other. The algorithm proceeds by priming
the heap with one item from each of the n input queues. It then removes values
from the priority queue, one by one, and replaces them with the next value from its
corresponding input queue. When an input queue is exhausted of values, the queue
it is drawing from will be closed and no more items will replace the one removed
from the heap for this queue. The SentinelQueue code is provided in Listing14.6.

1 class SentinelQueue:
2 _SENTINEL = 'sentinel_queue_sentinel'
3
4 def __init__(self, maxsize=10):
5 self.queue = mp.Queue(maxsize)
6
7 def get(self):
8 item = self.queue.get()
9 if item == SentinelQueue._SENTINEL:
10 raise EOFError('At EOF')
11
12 return item
13
14 def put(self, item):
15 self.queue.put(item)
16
17 def close(self):
18 self.queue.put(SentinelQueue._SENTINEL)
19 self.queue.close()

Listing 14.6 The Sentinel Queue
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Initially, but not shown here, the heap is primed with one PQEntry object for each
queue. As themerging proceeds, the heap grows smaller as queues are emptied. Once
the size of the heap, called priority_queue in the code below, reaches 0 then the loop
exits and all values from all sources are merged in sorted order.

1 class MergePool:

2 # portions omitted for brevity

3
4 def _start_merge_pool(sink_queue, source_functions, source_args, fanin_size, queue_depth):

5 pool = MergePool._init(sink_queue, source_functions, source_args, fanin_size, queue_depth)

6 pool._merge()

7
8 def _merge(self):

9 while len(self.priority_queue) > 0:

10 item = heapq.heappop(self.priority_queue)

11 self.sink_queue.put(item.value)

12
13 try:

14 next = self._sources[item.queue_index].get()

15 heapq.heappush(self.priority_queue, PQEntry(next, item.queue_index))

16 except EOFError:

17 pass

18
19 self.sink_queue.close()

20 for proc in self._procs:

21 proc.join()

22
23 def start(source_functions, source_args=None, fanin_size=10, queue_depth=10):

24 sink_queue = SentinelQueue(queue_depth)

25 proc = mp.Process(target=MergePool._start_merge_pool,

26 args=(sink_queue, source_functions, source_args, fanin_size, queue_depth))

27 proc.start()

28 return (proc, sink_queue)

Listing 14.7 Merge Code

Thinking about the scalability of this algorithm, there are a couple of things to
consider. Each process should do a significant amount of sorting work on its own.We
can efficiently sort many items using quicksort, so this algorithm is really for sorting
more items than will fit in memory. We might have each process in this algorithm
originally sort hundreds of thousands of items. What this algorithm offers is the
ability to bring together, in ascending or descending order, a sequence that cannot fit
on one node in a cluster or supercomputer.

The other thing that this algorithm provides is a way of distributing the merging
work. The diagram in Fig. 14.4 shows how to get input into the merge, but the results
are also put to a queue. Having thousands or even hundreds of queues all feeding into
one process will work, but it might be more efficient to distribute some of that work
to other nodes. To distribute this work even more, think of chaining these merges,
pictured in the diagram, together where the result of one merge is used as one of the
inputs to another merge. In this way this distributed merge algorithm could be scaled
to whatever size was necessary.
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14.7 Sharing State

Distributing work is always in tension with data movement. Moving data around
in a distributed system quite literally takes computing power, time, and energy. So
doing as little data movement as possible is desired. DragonHPC is designed around
minimizing data movement when possible. When processes on the same node share
data, they access that data via shared memory so near zero copy sharing is possible.
For instance, sharing data on-node, through a queue in Python copies data that is put
into the queue and copies data on a get from a queue, but as it moves through the
queue no copies are made. When moving between nodes copies of data are made
at the source and destination, but otherwise it is as efficient as on-node interprocess
sharing.

DragonHPC provides multi-node implementations of most of multiprocessing’s
communication primitives. Queues. Pipes, Connections, Value, and Array are avail-
able for sharing state between processes. DragonHPC does not implement managers,
but an object can be passed from one process to another by serializing the object and
sending it to another process. By default, Pythonwill serialize and deserialize objects
using the default serialization and deserialization process. If more control is needed,
writing a __getstate__ and __setstate__ creates a user-customizable serialization and
deserialization protocol.

One of the useful features provided by DragonHPC, and not by base multipro-
cessing, is a distributed key-value store. A distributed dictionary class can be used to
create a shared dictionary between all nodes of a distributed cluster or supercomputer.
In this way multiple processes can coordinate by placing values into the distributed
dictionary for other processes to consult. A key-value store is useful in replacing
the coordination needed in distributed applications before the availability of Drag-
onHPC. You can find examples of using a DistributedDictionary in the DragonHPC
documentation.

14.8 Pool

1 import dragon
2 import multiprocessing as mp
3 NUM_COLS = 5
4 NUM_ROWS = 3
5
6 def convolve_2D(image, row, col):
7 print(f'Called convolve with {row, col}')
8
9 def main():
10 mp.set_start_method('dragon')
11 image = None # Normally would be an image object of some sort.
12 pairs = []
13 for row in range(NUM_ROWS):
14 for col in range(NUM_COLS):
15 pairs.append((image, row, col))
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16
17 pool = mp.Pool(64)
18 pool.starmap(convolve_2D, pairs)
19
20 if __name__ == "__main__":
21 main()

Listing 14.8 Image Convolution

DragonHPC has a scalable implementation of Pool. A Pool is a pool of worker
processes that can be assigned work via a call to a function likemap or starmap. The
starmap function is given a function and a list of tuples on which to call the function.
Then starmap function call builds a new list from the results of calling the function
on all the argument tuples. With DragonHPC the pool can exist across all the nodes
in a cluster or supercomputer allocation.

$ dragon pooltest.py
Called convolve with (0, 0)
Called convolve with (0, 1)
Called convolve with (0, 2)
Called convolve with (0, 3)
Called convolve with (0, 4)
Called convolve with (1, 0)
Called convolve with (1, 2)
Called convolve with (1, 1)
Called convolve with (1, 4)
Called convolve with (1, 3)
Called convolve with (2, 1)
Called convolve with (2, 0)
Called convolve with (2, 2)
Called convolve with (2, 3)
Called convolve with (2, 4)
$

Listing 14.9 Output from running the Pool example program

When running at scale, meaning with a large number of processes, the processes
are started in parallel as well to minimize the startup time in creating a pool. This
means a pool can have thousands of workers. Of course, much more data can be
handled by a call to map. When there is more data than pool workers, the pool
workers will keep working on chunks of data until it is done.

Consider, for example a program like that shown in Listing14.8 that needs to
perform a convolution on a large image or 2D grid. The grid can be divided up
into patches. Each patch can be assigned as a work item using a Pool. Let’s says
the patches are assigned row and column indices. The result of running this small
example program is shown in Listing14.9.
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14.9 Synchronization Primitives

Dragon also implementsmulti-node versions of the synchronization primitives found
in multiprocessing. Barrier, Condition, Event, Lock, and RLock are all implemented
in Dragon with more of the synchronization primitives planned. Documentation
and examples can be found in the multiprocessing documentation, but Listing14.10
contains an example of using barrier.

1 import dragon
2 import multiprocessing as mp
3
4 def count(n, pause_times, barrier):
5 sum = 0
6 modnum = n // pause_times
7 print(f'modnum is {modnum}')
8 for i in range(n):
9 sum+=i
10 if i % modnum == 0:
11 print(f'sum is {sum} at iteration {i}', flush=True)
12 barrier.wait()
13
14 def main():
15 mp.set_start_method('dragon')
16 barrier = mp.Barrier(5)
17 procs = []
18 for i in range(5):
19 proc = mp.Process(target=count, args=(10**(i+1), 10, barrier))
20 proc.start()
21 procs.append(proc)
22
23 for proc in procs:
24 proc.join()
25
26 if __name__ == '__main__':
27 main()

Listing 14.10 Example of Barrier

This program counts in each process, but by different amounts. The barrier helps
to keep the output from it organized. No order is guaranteed in the order of the
processes printing, but all the output from each of the processes is printed at the
same time due to the barrier waits as shown (in abbreviated form) in Listing14.11.

$ dragon barriertest.py
modnum is 1
sum is 0 at iteration 0
modnum is 10
sum is 0 at iteration 0
modnum is 100
sum is 0 at iteration 0
modnum is 1000
sum is 0 at iteration 0
modnum is 10000
sum is 0 at iteration 0
sum is 1 at iteration 1
sum is 55 at iteration 10
sum is 500500 at iteration 1000
sum is 5050 at iteration 100
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sum is 50005000 at iteration 10000
...
sum is 45 at iteration 9
sum is 4095 at iteration 90
sum is 405450 at iteration 900
sum is 40504500 at iteration 9000
sum is 4050045000 at iteration 90000
$

Listing 14.11 Output from running the Barrier program

The barrier insures that all processes wait until they all have waited on the barrier
at once. A Barrier object can be used over and over as shown in this program. In
addition, like other objects, barriers can be serialized and passed as arguments to
processes. The program is deceptively simple because these multiprocessing objects
can be serialized and passed to other processes. It makes life simple to be able to
pass synchronization and communication objects so intuitively in a program.

14.10 Chapter Summary

Parallel computation has needed a run-time like DragonHPC for some time. There
are many projects that have tried to solve many of the same problems that Dragon
solves. Cross-node communication and synchronization is a difficult problem to
solve. Unfortunately, for so many of these projects, the solutions these developers
were able to implement do not scale very well. Building a run-time that scales and
performs well is a huge undertaking and DragonHPC is that solution.

What’s more, libraries that have used multiprocessing in their implementations
were limited to one node since the previous implementation was not multi-node.
With one import of dragon and one call to set the start method to dragon, many of
these libraries automatically get a multi-node implementation.While some tweaking
might be done to get the best performance, DragonHPC enables these libraries to
scale to multiple nodes, in some cases with zero work other than the import and
setting the start method. Since you only need to set the start method once in an
application, commonly the library using multiprocessing doesn’t have to change at
all.

DragonHPC, on systems that support it, will also allow you to run MPI jobs right
from an MPIPool. This is pretty significant since then MPI jobs can also use all the
DragonHPC services or MPI jobs can be integrated into larger Dragon jobs. At the
time of this writing, MPI jobs are supported on HPE hardware only. But support will
likely extend to open source variations of MPI and when that is available you’ll be
able to run MPI jobs within Dragon on any cluster of nodes.

TheDragon library can run on your laptop in single nodemode. The same program
can run multi-node on a cluster or supercomputer. For efficient data transfer a high-
speed variant of the transport agent of DragonHPC is available. The High Speed
Transport Service (HSTS) will only run on HPE hardware at the time of this writing,
and for the best performance you would want to run on a high-speed interconnection
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like HPE’s Slingshot, but there is a TCP based transport service that will work on any
cluster of nodes, even a group of computers connected to the internet. DragonHPC
is easy to use, versatile, and runs on a laptop, cluster, or supercomputer!

14.11 Review Questions

Answer these short answer, multiple choice, and true/false questions to test your
mastery of the chapter.

1. What is the difference between multithreaded programming and multiprocess
programming? What is the difference between these types of programs that
changes the way you program?

2. What does NUMA refer to and what does it mean for a computer to have a
NUMA architecture?

3. What does it mean that DragonHPC is a dynamic run-time environment as op-
posed to a static run-time environment? Youmight need to compare and contrast
DragonHPC with a library like MPI to understand the difference.

4. When arguments are passed between processes, what happens to them?Describe
the steps involved in passing an argument from one process to another using the
DragonHPC library.

5. What does it mean to join on a process?
6. What is a pool in multiprocessing? What can you do with one?
7. In any parallel application, what are the two primary things it must do beyond

what a serial version of the program does?
8. What is a barrier? What do you provide to a barrier when you create one.
9. If you needed to notify one process that another, sibling process was exiting,

what communication primitive might you use?
10. What is the difference between map and starmap in the pool implementation in

multiprocessing?

14.12 Programming Problems

1. Write a multiprocessing program that passes a token around a ring of processes.
Time the amount of time it takes to send the token around the Ring. Take the
average time for sending it around the ring divided by the number of queue puts.
Two times that value is the average latency of sending a message. If you have
access to more than one machine you can try this multi-node to see how it differs
from single node. You should see a slowdown when switching to multi-node
mode. Report your results. HINT: You may want to get around the ring more than
once to get a good average time.
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2. Write a multiprocessing program to implement the Sieve of Eratosthenes. If you
look, you will find a solution to this one in the DragonHPC examples. Try to do
it first without looking at the solution. Then you can consult the solution to see a
scalable solution. Compare and contrast your solution to the examples solution.
What do you like about your solution? What was better in the provided solution?

3. Write a multiprocessing Pool implementation using multiprocessing processes
and queues. Write a simple sample program that uses your pool implementation
to do some simple calculation like computing the squares of the numbers from
0 to 25. For instance, you might use it in the implementation of a dot product.
Neither of these are great examples except that they are small enough to make it
easy to test your pool.

4. Use multiprocessing to write a shared dictionary. This will involve being able to
serialize a dictionary and passing it to other processes. The getstate and setstate
dunder functions will need to be implemented to pass along queues that can be
used from multiple processes. There is a distributed dictionary that is part of
DragonHPC. After you have written your distributed dictionary, compare it with
your shared dictionary. What is the same? What is different? Which might scale
the best?

5. For any of the programs in this chapter devise a benchmark that compares the
performance of your application to that of another implementation. Use the plot
program to plot gathered data from running the benchmark.

6. At the heart of DragonHPC there is a BCast class (written in C) that has a payload
that may be set. The payload is just some data. One or more waiters may wait on
the BCast.When a trigger process comes along it may trigger one ormore of these
processeswhich all get a copy of the payload of theBCast. Usingmultiprocessing,
write your own BCast object and a test program that shares the BCast between
processes.

7. The image convolution presented in this chapter is very inefficient. It could be
made more efficient for some images on a shared memory multiprocessor by
using shared memory, which is available in Python. You might use PillowPIL in
this program along with the shared memory library. You can fire up a pool to
convolve an image. For instance you can do some edge detection using the Sobel
edge detection algorithm. All convolve methods apply a kernel to an image. You
can look up the Sobel kernel. This is a bigger project and you should give yourself
ample time to complete it.
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This documentation was generated from the Python documentation available by
typing help(int) in the Python shell. In this documentation the variables x, y, and
z refer to integers. The official Python 3 documentation is at //docs.python.org/.
Please refer to the online documentation for the most up to date version of this
documentation.

Operator Returns Comments
x+y int Returns the sum of x and y
x−y int Returns the difference of x and y
x*y int Returns the product of x and y
x/y float Returns the quotient of x divided by y
x//y int Returns the integer quotient of x divided by y
x%y int Returns x modulo y. This is the remainder of dividing x by y
−x int Returns the negation of x
x&y int Returns the bit-wise and of x and y
x | y int Returns the bit-wise or of x and y
x∧y int Returns the bit-wise exclusive or of x and y
x<<y int Returns a bit-wise shift left of x by y bits. Shifting left by 1 bit

multiplies x by 2
x>>y int Returns a bit-wise right shift of x by y bits
∼x int Returns an integer where each bit in the x has been inverted.

x + x = −1 for all x
abs(x) int Returns the absolute value of x
float(x) float Returns the float representation of x
hex(x) str Returns a hexadecimal representation of x as a string
int(x) int Returns x

(continued)
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(continued)
divmod(x, y) (q, r) Returns the quotient q and the remainder r as a tuple
oct(x) str Return an octal representation of x as a string
pow(x, y[, z]) int Returns x to the y power modulo z. If z is not specified then it

returns x to the y power
repr(x) str Returns a string representation of x
str(x) str Returns a string representation of x
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This documentation was generated from the Python documentation available by
typing help(float) in the Python shell. In this documentation at least one of the
variables x and y refer to floats. The official Python 3 documentation is at
//docs.python.org/. Please refer to the online documentation for the most up to date
version of this documentation.

Operator Returns Comments
x+y float Returns the sum of x and y
x−y float Returns the difference of x and y
x*y float Returns the product of x and y
x/y float Returns the quotient of x divided by y
x//y float Returns the quotient of integer division of x divided by y. However,

the result is still a float
x%y float Returns x modulo y. This is the remainder of dividing x by y
abs(x) int Returns the absolute value of x
divmod(x, y) (q,r) Returns the quotient q and the remainder r as a tuple. Both q and r

are floats, but integer division is performed. The value r is the whole
and fractional part of any remainder. The value q is a whole number

float(x) float Returns the float representation of x
int(x) int Returns the floor of x as an integer
pow(x, y) float Returns x to the y power
repr(x) str Returns a string representation of x
str(x) str Returns a string representation of x
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andMethods

This documentation was generated from the Python documentation available by
typing help(str) in the Python shell. In the documentation found here the vari-
ables s and t are references to strings. The official Python 3 documentation is at
http://docs.python.org/3/. Please refer to the online documentation for the most up to
date version of this documentation.

Operator Returns Comments

s+t str Return a new string which is the concatenation of s and t

s in t bool Returns True if s is a substring of t and False otherwise

s==t bool Returns True if s and t refer to strings with the same sequence of characters

s>=t bool Returns True if s is lexicographically greater than or equal to t

s<=t bool Returns True if s is lexicographically less than or equal to t

s>t bool Returns True if s is lexicographically greater than t

s<t bool Returns True if s is lexicographically less than t

s!=t bool Returns True if s is lexicographically not equal to t

s[i] str Returns the character at index i in the string. If i is negative then it returns the character
at index len(s)-i

s[[i]:[j]] str Returns the slice of characters starting at index i and extending to index j-1 in the string.
If i is omitted then the slice begins at index 0. If j is omitted then the slice extends to
the end of the list. If i is negative then it returns the slice starting at index len(s)+i (and
likewise for the slice ending at j)

s ∗ i str Returns a new string with s repeated i times

i ∗ s str Returns a new string with s repeated i times

chr(i) str Return the ASCII character equivalent of the integer i

float(s) float Returns the float contained in the string s

int(s) int Returns the integer contained in the string s

len(s) int Returns the number of characters in s

ord(s) int Returns the ASCII decimal equivalent of the single character string s

repr(s) Returns a string representation of s. This adds an extra pair of quotes to s

str(s) str Returns a string representation of s. In this case you get just the string s

s.capitalize() str Returns a copy of the string s with the first character upper case

s.center(width[, fillchar]) str Returns s centered in a string of length width. Padding is done using the specified fill
character (default is a space)

s.count(sub[, start[, end]]) int Returns the number of non-overlapping occurrences of substring sub in string s[end].
Optional arguments start and end are interpreted as in slice notation

(continued)
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(continued)
Operator Returns Comments

s.encode([encoding[, errors]]) bytes Encodes s using the codec registered for encoding. Encoding defaults to the default
encoding.Errorsmaybegiven to set a different error handling scheme.Default is ’strict’
meaning that encoding errors raise a UnicodeEncodeError. Other possible values are
’ignore’, ’replace’ and ’xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors

s.endswith(suffix[, start[, end]]) bool Returns True if s ends with the specified suffix, False otherwise. With optional start,
test s beginning at that position. With optional end, stop comparing s at that position.
Suffix can also be a tuple of strings to try

s.expandtabs([tabsize]) str Returns a copy of s where all tab characters are expanded using spaces. If tabsize is
not given, a tab size of 8 characters is assumed

s.find(sub[, start[, end]]) int Returns the lowest index in s where substring sub is found, such that sub is contained
within s[end]. Optional Arguments start and end are interpreted as in slice notation
Return -1 on failure

s.format(*args, **kwargs) str

s.index(sub[, start[, end]]) int Like s.find() but raise ValueError when the substring is not found

s.isalnum() bool Returns True if all characters in s are alphanumeric and there is at least one character
in s, False otherwise

s.isalpha() bool Returns True if all characters in s are alphabetic and there is at least one character in
s, False otherwise

s.isdecimal() bool Returns True if there are only decimal characters in s, False otherwise

s.isdigit() bool Returns True if all characters in s are digits and there is at least one character in s,
False otherwise

s.isidentifier() bool Returns True if s is a valid identifier according to the language definition

s.islower() bool Returns True if all cased characters in s are lowercase and there is at least one cased
character in s, False otherwise

s.isnumeric() bool Returns True if there are only numeric characters in s, False otherwise

s.isprintable() bool Returns True if all characters in s are considered printable in repr() or s is empty, False
otherwise

s.isspace() bool Returns True if all characters in s are whitespace and there is at least one character in
s, False otherwise

s.istitle() bool Returns True if s is a titlecased string and there is at least one character in s, i.e. upper-
and titlecase characters may only follow uncased characters and lowercase characters
only cased ones. Return False otherwise

s.isupper() bool Returns True if all cased characters in s are uppercase and there is at least one cased
character in s, False otherwise

s.join(sequence) str Returns a stringwhich is the concatenation of the strings in the sequence. The separator
between elements is s

s.ljust(width[, fillchar]) str Returns s left-justified in a Unicode string of length width. Padding is done using the
specified fill character (default is a space)

s.lower() str Returns a copy of the string s converted to lowercase

s.lstrip([chars]) str Returns a copy of the string s with leading whitespace removed. If chars is given and
not None, remove characters in chars instead

s.partition(sep) (h, sep, t) Searches for the separator sep in s, and returns the part before it, the separator itself,
and the part after it. If the separator is not found, returns s and two empty strings

s.replace (old, new[, count]) str Returns a copy of swith all occurrences of substring old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced

s.rfind(sub[, start[, end]]) int Returns the highest index in s where substring sub is found, such that sub is contained
within s[end]. Optional Arguments start and end are interpreted as in slice notation
Returns –1 on failure

s.rindex(sub[, start[, end]]) int Like s.rfind() but raise ValueError when the substring is not found

s.rjust(width[, fillchar]) str Returns s right-justified in a string of length width. Padding is done using the specified
fill character (default is a space)

s.rpartition(sep) (t, sep, h) Searches for the separator sep in s, starting at the end of s, and returns the part before
it, the separator itself, and the part after it. If the separator is not found, returns two
empty strings and s

(continued)
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(continued)
Operator Returns Comments

s.rsplit([sep[, maxsplit]]) string list Returns a list of the words in s, using sep as the delimiter string, starting at the end
of the string and working to the front. If maxsplit is given, at most maxsplit splits are
done. If sep is not specified, any whitespace string is a separator

s.rstrip([chars]) str Returns a copy of the string s with trailing whitespace removed. If chars is given and
not None, removes characters in chars instead

s.split([sep[, maxsplit]]) string list Returns a list of the words in s, using sep as the delimiter string. If maxsplit is given, at
most maxsplit splits are done. If sep is not specified or is None, any whitespace string
is a separator and empty strings are removed from the result

s.splitlines([keepends]) string list Returns a list of the lines in s, breaking at line boundaries. Line breaks are not included
in the resulting list unless keepends is given and true

s.startswith(prefix[, start[, end]]) bool Returns True if s starts with the specified prefix, False otherwise. With optional start,
test s beginning at that position. With optional end, stop comparing s at that position.
Prefix can also be a tuple of strings to try

s.strip([chars]) str Returns a copy of the string s with leading and trailing whitespace removed. If chars
is given and not None, removes characters in chars instead

s.swapcase() str Returns a copy of s with uppercase characters converted to lowercase and vice versa

s.title() str Returns a titlecased version of s, i.e. words start with title case characters, all remaining
cased characters have lower case

s.translate(table) str Returns a copy of the string s, where all characters have beenmapped through the given
translation table, which must be a mapping of Unicode ordinals to Unicode ordinals,
strings, or None. Unmapped characters are left untouched. Characters mapped to None
are deleted

s.upper() str Returns a copy of s converted to uppercase

s.zfill(width) str Pad a numeric string s with zeros on the left, to fill a field of the specified width. The
string s is never truncated



18AppendixD:ListOperators and
Methods

This documentation was generated from the Python documentation available by
typing help(list) in the Python shell. In the documentation found here the vari-
ables x and y are references to lists. The official Python 3 documentation is at
//docs.python.org/3/. Please refer to the online documentation for the most up to
date version of this documentation.

Method Returns Comments
list() list Returns a new empty list. You can also use [] to initialize a new

empty list
list(sequence) list Returns new list initialized from sequence’s items
[ item [,item]+ ] list Writing a number of comma-separated items in square brackets con-

structs a new list of those items
x+y list Returns a new list containing the concatenation of the items in x and

y
e in x bool Returns True if the item e is in x and False otherwise
del x[i] Deletes the item at index i in x. This is not an expression and does

not return a value
x==y bool Returns True if x and y contain the same number of items and each

of those corresponding items are pairwise equal
x>=y bool Returns True if x is greater than or equal to y according to a lex-

icographical ordering of the elements in x and y. If x and y have
different lengths their items are == up to the shortest length, then
this returns True if x is longer than y

x<=y bool Returns True if x is lexicographically before y or equal to y and
False otherwise

x>y bool Returns True if x is lexicographically after y and False otherwise
x<y bool Returns True if x is lexicographically before y and False otherwise
x!=y bool Returns True if x and y are of different length or if some item of x

is not == to some item of y. Otherwise it returns False
x[i] item Returns the item at index i of x

(continued)
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(continued)
Method Returns Comments
x[[i]:[j]] list Returns the slice of items starting at index i and extending to index

j-1 in the string. If i is omitted then the slice begins at index 0. If j is
omitted then the slice extends to the end of the list. If i is negative
then it returns the slice starting at index len(x)+i (and likewise for
the slice ending at j)

x[i]=e Assigns the position at index i the value of e in x. The list x must
already have an item at index i before this assignment occurs. In
other words, assigning an item to a list in this way will not extend
the length of the list to accommodate it

x+=y This mutates the list x to append the items in y
x*=i This mutates the list x to be i copies of the original x
iter(x) iterator Returns an iterator over x
len(x) int Returns the number of items in x
x*i list Returns a new list with the items of x repeated i times
i*x list Returns a new list with the items of x repeated i times
repr(x) str Returns a string representation of x
x.append(e) None This mutates the value of x to add e as its last element. The function

returns None, but the return value is irrelevant since it mutates x
x.count(e) int Returns the number of occurrences of e in x by using == equality
x.extend(iter) None Mutates x by appending elements from the iterable, iter
x.index(e,[i,[j]]) int Returns the first index of an element that == e between the the

start index, i, and the stop index, j-1. It raises ValueError if the
value is not present in the specified sequence. If j is omitted then it
searches to the end of the list. If i is omitted then it searches from
the beginning of the list

x.insert(i, e) None Insert e before index i in x, mutating x
x.pop([index]) item Remove and return the item at index. If index is omitted then the

item at len(x)-1 is removed. The pop method returns the item and
mutates x. It raises IndexError if list is empty or index is out of
range

x.remove(e) None remove first occurrence of e in x, mutating x. It raises ValueError
if the value is not present

x.reverse() None Reverses all the items in x, mutating x
x.sort() None Sorts all the items of x according to their natural ordering as deter-

mined by the item’s __cmp__ method, mutating x. Two keyword
parameters are possible: key and reverse. If reverse=True is spec-
ified, then the result of sorting will have the list in reverse of the
natural ordering. If key=f is specified then f must be a function that
takes an item of x and returns the value of that item that should be
used as the key when sorting



19Appendix E:DictionaryOperators and
Methods

This documentation was generated from the Python documentation available by
typing help(dict) in the Python shell. In the documentation found here the variable
D is a reference to a dictionary. A few methods were omitted here for brevity. The
official Python 3 documentation is at //docs.python.org/3/. Please refer to the online
documentation for the most up to date version of this documentation.

Method Returns Comments
dict() dict new empty dictionary
dict(mapping) dict new dictionary initialized from a mapping object’s (key,

value) pairs
dict(seq) dict new dictionary initialized as if via:

D = {}
for k, v in seq:
D[k] = v

dict(**kwargs) dict new dictionary initialized with the name=value pairs
in the keyword arg list. For example: dict(one=1, two=2)

k in D bool True if D has key k, else False
del D[k] Deletes key k from dictionary D
D1== D2 bool Returns True if dictionaries D1 and D2 have same keys

mapped to same values
D[k] value Returns value k maps to in D. If k is not mapped, it

type raises a KeyError exception
iter(D) iterator Returns an iterator over D
len(D) int Returns the number of keys in D
D1!=D2 bool Returns True if D1 and D2 have any different keys or keys

map to different values
repr(D) str Returns a string representation of D

(continued)
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(continued)
Method Returns Comments
D[k]=e Stores the key,value pair k,e in D
D.clear() None Remove all items from D
D.copy() dict a shallow copy of D
D.get(k[,e]) value D[k] if k in D, else e. e defaults to None.

type
D.items() items a set-like object providing a view on D’s items
D.keys() keys a set-like object providing a view on D’s keys
D.pop(k[,e]) v remove specified key and return the corresponding value. If

key is not found, e is returned if given, otherwise KeyError
is raised

D.popitem() (k, v) remove and return some (key, value) pair as a 2-tuple; but
raise KeyError if D is empty

D.setdefault(k[,e]) D.get(k,e) Returns D.get(k,e) and also sets d[k]=e if k not in D
D.update(E, **F) None Update D from dict/iterable E and F

If E has a .keys() method, does: for k in E: D[k] = E[k]
If E lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

D.values() values an object providing a view on D’s values
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This documentation was generated from the Python documentation available by
typing
from turtle import *
help(Turtle)

in the Python shell. In the documentation found here the variable turtle is a reference
to a Turtle object. This is a subset of that documentation. The official Python 3 doc-
umentation is at http://docs.python.org/3/. Please refer to the online documentation
for the most up to date version of this documentation.

Method description

turtle.back(distance)
Aliases: backward bk

Argument:
distance—a number

Move the turtle backward by distance, opposite to the direction the
turtle is headed. Do not change the turtle’s heading.

Example (for a Turtle instance named turtle):
>>> turtle.position()
(0.00, 0.00)
>>> turtle.backward(30)
>>> turtle.position()
(–30.00, 0.00)

turtle.begin_fill()
Called just before drawing a shape to be filled.

Example (for a Turtle instance named turtle):
>>> turtle.color(“black”, “red”)
>>> turtle.begin_fill()
>>> turtle.circle(60)
>>> turtle.end_fill()

turtle.begin_poly()
Start recording the vertices of a polygon. Current turtle position
is first point of polygon.

Example (for a Turtle instance named turtle):
>>> turtle.begin_poly()
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Method description
turtle.circle(radius, extent = None, steps = None)

Arguments:
radius—a number
extent (optional)—a number
steps (optional)—an integer

Draw a circle with given radius. The center is radius units left
of the turtle; extent—an angle—determines which part of the
circle is drawn. If extent is not given, draw the entire circle
If extent is not a full circle, one endpoint of the arc is the
current pen position. Draw the arc in counterclockwise direction
if radius is positive, otherwise in clockwise direction. Finally
the direction of the turtle is changed by the amount of extent.

As the circle is approximated by an inscribed regular polygon,
steps determines the number of steps to use. If not given,
it will be calculated automatically. Maybe used to draw regular
polygons.

call: circle(radius) # full circle
–or: circle(radius, extent) # arc
–or: circle(radius, extent, steps)
–or: circle(radius, steps = 6) # 6-sided polygon

Example (for a Turtle instance named turtle):
>>> turtle.circle(50)
>>> turtle.circle(120, 180) # semicircle

turtle.clear()
Delete the turtle’s drawings from the screen. Do not move turtle
State and position of the turtle as well as drawings of other
turtles are not affected.

Examples (for a Turtle instance named turtle):
>>> turtle.clear()

turtle.color(*args)
Arguments:
Several input formats are allowed
They use 0, 1, 2, or 3 arguments as follows:

color()
Return the current pencolor and the current fillcolor
as a pair of color specification strings as are returned
by pencolor and fillcolor
color(colorstring), color((r, g, b)), color(r, g, b)
inputs as in pencolor, set both, fillcolor and pencolor,
to the given value.
color(colorstring1, colorstring2),
color((r1, g1, b1), (r2, g2, b2))
equivalent to pencolor(colorstring1) and fillcolor(colorstring2)
and analogously, if the other input format is used.



20 Appendix F: Turtle Methods 347

Method description
If turtleshape is a polygon, outline and interior of that polygon
is drawn with the newly set colors.
For mor info see: pencolor, fillcolor

Example (for a Turtle instance named turtle):
>>> turtle.color(’red’, ’green’)
>>> turtle.color()
(’red’, ’green’)
>>> colormode(255)
>>> color((40, 80, 120), (160, 200, 240))
>>> color()
(’#285078’, ’#a0c8f0’)

turtle.degrees()
Set the angle measurement units to degrees.

Example (for a Turtle instance named turtle):
>>> turtle.heading()
1.5707963267948966
>>> turtle.degrees()
>>> turtle.heading()
90.0

turtle.dot(size = None, *color)
Optional arguments:
size—an integer > = 1 (if given)
color—a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color.
If size is not given, the maximum of pensize+4 and 2*pensize is used.

Example (for a Turtle instance named turtle):
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, “blue”); turtle.fd(50)

turtle.end_fill()
Fill the shape drawn after the call begin_fill().

Example (for a Turtle instance named turtle):
>>> turtle.color(“black”, “red”)
>>> turtle.begin_fill()
>>> turtle.circle(60)
>>> turtle.end_fill()

turtle.end_poly()
Stop recording the vertices of a polygon. Current turtle position is
last point of polygon. This will be connected with the first point.

Example (for a Turtle instance named turtle):
>>> turtle.end_poly()
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Method description
turtle.filling()

Return fillstate (True if filling, False else)
Example (for a Turtle instance named turtle):
>>> turtle.begin_fill()
>>> if turtle.filling():

turtle.pensize(5)
else:
turtle.pensize(3)

turtle.fillcolor(*args)
Return or set the fillcolor
Arguments:
Four input formats are allowed:
–fillcolor()
Return the current fillcolor as color specification string,
possibly in hex-number format (see example)
May be used as input to another color/pencolor/fillcolor call
–fillcolor(colorstring)
s is a Tk color specification string, such as “red” or “yellow”
–fillcolor((r, g, b))
*a tuple* of r, g, and b, which represent, an RGB color,
and each of r, g, and b are in the range 0..colormode,
where colormode is either 1.0 or 255
—fillcolor(r, g, b)
r, g, and b represent an RGB color, and each of r, g, and b
are in the range 0..colormode
If turtleshape is a polygon, the interior of that polygon is drawn
with the newly set fillcolor
Example (for a Turtle instance named turtle):
>>> turtle.fillcolor(‘violet’)
>>> col = turtle.pencolor()
>>> turtle.fillcolor(col)
>>> turtle.fillcolor(0, .5, 0)

turtle.forward(distance)
Aliases: fd
Argument:
distance—a number (integer or float)
Move the turtle forward by the specified distance, in the direction
the turtle is headed
Example (for a Turtle instance named turtle):
>>> turtle.position()
(0.00, 0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(–50.00,0.00)
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Method description
turtle.get_poly()

Return the lastly recorded polygon.

Example (for a Turtle instance named turtle):
>>> p = turtle.get_poly()
>>> turtle.register_shape(“myFavouriteShape”, p)

turtle.get_shapepoly()
Return the current shape polygon as tuple of coordinate pairs.

Examples (for a Turtle instance named turtle):
>>> turtle.shape(“square”)
>>> turtle.shapetransform(4, –1, 0, 2)
>>> turtle.get_shapepoly()
((50, –20), (30, 20), (–50, 20), (–30, –20))

turtle.getscreen()
Return the TurtleScreen object, the turtle is drawing on.
So TurtleScreen-methods can be called for that object.

Example (for a Turtle instance named turtle):
>>> ts = turtle.getscreen()
>>> ts
<turtle.TurtleScreen object at 0× 0106B770>
>>> ts.bgcolor(“pink”)

turtle.goto(x, y = None)
Aliases: setpos setposition

Arguments:
x—a number or a pair/vector of numbers
y—a number None

call: goto(x, y) # two coordinates
–or: goto((x, y)) # a pair (tuple) of coordinates
–or: goto(vec) # e.g. as returned by pos()

Move turtle to an absolute position. If the pen is down,
a line will be drawn. The turtle’s orientation does not change.

Example (for a Turtle instance named turtle):
>>> tp = turtle.pos()
>>> tp
(0.00, 0.00)
>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)
>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)
>>> turtle.setpos(tp)
>>> turtle.pos()
(0.00,0.00)
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Method description
turtle.heading()

Return the turtle’s current heading.

Example (for a Turtle instance named turtle):
>>> turtle.left(67)
>>> turtle.heading()
67.0

turtle.hideturtle()
Makes the turtle invisible.

Aliases: ht
It’s a good idea to do this while you’re in the
middle of a complicated drawing, because hiding
the turtle speeds up the drawing observably.

Example (for a Turtle instance named turtle):
>>> turtle.hideturtle()

turtle.isdown()
Return True if pen is down, False if it’s up.

Example (for a Turtle instance named turtle):
>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

turtle.isvisible()
Return True if the Turtle is shown, False if it’s hidden.

Example (for a Turtle instance named turtle):
>>> turtle.hideturtle()
>>> print(turtle.isvisible())
False

turtle.left(angle)
Aliases: lt

Argument:
angle—a number (integer or float)

Turn turtle left by angle units. (Units are by default degrees,
but can be set via the degrees() and radians() functions.)
Angle orientation depends on mode. (See this.)
Example (for a Turtle instance named turtle):
>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0
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Method description
turtle.onclick(fun, btn = 1, add = None)

Bind fun to mouse-click event on this turtle on canvas.

Arguments:
fun—a function with two arguments, to which will be assigned
the coordinates of the clicked point on the canvas.
num—number of the mouse-button defaults to 1 (left mouse button).
add—True or False. If True, new binding will be added, otherwise
it will replace a former binding.

Example for the anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):
turtle.left(360)

>>> onclick(turn) # Now clicking into the turtle will turn it
>>> onclick(None) # event-binding will be removed

turtle.ondrag(fun, btn = 1, add = None)
Bind fun to mouse-move event on this turtle on canvas.

Arguments:
fun—a function with two arguments, to which will be assigned
the coordinates of the clicked point on the canvas
num—number of the mouse-button defaults to 1 (left mouse button).

Every sequence of mouse-move-events on a turtle is preceded by a
mouse-click event on that turtle.

Example (for a Turtle instance named turtle):
>>> turtle.ondrag(turtle.goto)

### Subsequently clicking and dragging a Turtle will
### move it across the screen thereby producing handdrawings
### (if pen is down).

turtle.onrelease(fun, btn = 1, add = None)
Bind fun to mouse-button-release event on this turtle on canvas.

Arguments:
fun—a function with two arguments, to which will be assigned
the coordinates of the clicked point on the canvas.
num—number of the mouse-button defaults to 1 (left mouse button).

turtle.pencolor(*args)
Return or set the pencolor.
Arguments:
Four input formats are allowed:
–pencolor()
Return the current pencolor as color specification string,
possibly in hex-number format (see example).
May be used as input to another color/pencolor/fillcolor call.
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Method description
–pencolor(colorstring)
s is a Tk color specification string, such as “red” or “yellow”
–pencolor((r, g, b))
*a tuple* of r, g, and b, which represent, an RGB color,
and each of r, g, and b are in the range 0..colormode,
where colormode is either 1.0 or 255
–pencolor(r, g, b)
r, g, and b represent an RGB color, and each of r, g, and b
are in the range 0..colormode

If turtleshape is a polygon, the outline of that polygon is drawn
with the newly set pencolor.

Example (for a Turtle instance named turtle):
>>> turtle.pencolor(’brown’)
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
’#33cc8c’

turtle.pendown()
Pull the pen down—drawing when moving

Aliases: pd down

Example (for a Turtle instance named turtle):
>>> turtle.pendown()

turtle.pensize(width = None)
Set or return the line thickness.

Aliases: width
Argument:
width—positive number

Set the line thickness to width or return it. If resizemode is set
to “auto” and turtleshape is a polygon, that polygon is drawn with
the same line thickness. If no argument is given, current pensize
is returned.

Example (for a Turtle instance named turtle):
>>> turtle.pensize()
1
turtle.pensize(10) # from here on lines of width 10 are drawn

turtle.penup()
Pull the pen up—no drawing when moving

Aliases: pu up

Example (for a Turtle instance named turtle):
>>> turtle.penup()
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Method description
turtle.radians()

Set the angle measurement units to radians.

Example (for a Turtle instance named turtle):
>>> turtle.heading()
90
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

turtle.reset()
Delete the turtle’s drawings from the screen, re-center the turtle
and set variables to the default values.

Example (for a Turtle instance named turtle):
>>> turtle.position()
(0.00, –22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

turtle.setheading(to_angle)
Set the orientation of the turtle to_angle

Aliases: seth

Argument:
to_angle—a number (integer or float)

Set the orientation of the turtle to_angle.
Here are some common directions in degrees:

standard—mode: logo-mode:
—————————————
0–east 0–north
90–north 90–east
180–west 180–south
270–south 270–west

Example (for a Turtle instance named turtle):
>>> turtle.setheading(90)
>>> turtle.heading()
90

turtle.shape(name = None)
Set turtle shape to shape with given name/return current shapename.

Optional argument:
name—a string, which is a valid shapename
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Method description
Set turtle shape to shape with given name or, if name is not given,
return name of current shape
Shape with name must exist in the TurtleScreen’s shape dictionary
Initially there are the following polygon shapes:
‘arrow’, ‘turtle’, ‘circle’, ‘square’, ‘triangle’, ‘classic’
To learn about how to deal with shapes see Screen-method register_shape.

Example (for a Turtle instance named turtle):
>>> turtle.shape()
‘arrow’
>>> turtle.shape(“turtle”)
>>> turtle.shape()
‘turtle’

turtle.showturtle()
Makes the turtle visible.

Aliases: st

Example (for a Turtle instance named turtle):
>>> turtle.hideturtle()
>>> turtle.showturtle()

turtle.speed(speed = None)
Return or set the turtle’s speed.

Optional argument:

speed—an integer in the range 0..10 or a speedstring (see below)

Set the turtle’s speed to an integer value in the range 0..10
If no argument is given: return current speed.

If input is a number greater than 10 or smaller than 0.5,
speed is set to 0
Speedstrings are mapped to speedvalues in the following way:
‘fastest’ : 0
‘fast’ : 10
‘normal’ : 6
‘slow’ : 3
‘slowest’ : 1
speeds from 1 to 10 enforce increasingly faster animation of
line drawing and turtle turning.

Attention:
speed = 0 : *no* animation takes place. Forward/back makes turtle jump
and likewise left/right make the turtle turn instantly.

Example (for a Turtle instance named turtle):
>>> turtle.speed(3)
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Method description
turtle.undo()

Undo (repeatedly) the last turtle action
Number of available undo actions is determined by the size of
the undobuffer.

Example (for a Turtle instance named turtle):
>>> for i in range(4):
turtle.fd(50); turtle.lt(80)

>>> for i in range(8):
turtle.undo()

turtle.write(arg, move = False, align = ‘left’, font = (‘Arial’, 8, ‘normal’))
Write text at the current turtle position.

Arguments:
arg—info, which is to be written to the TurtleScreen
move (optional)—True/False
align (optional)—one of the strings “left”, “center” or “right”
font (optional)—a triple (fontname, fontsize, fonttype)

Write text—the string representation of arg—at the current
turtle position according to align (“left”, “center” or “right”)
and with the given font
If move is True, the pen is moved to the bottom-right corner
of the text. By default, move is False.

Example (for a Turtle instance named turtle):
>>> turtle.write(‘Home = ’, True, align = “center”)
>>> turtle.write((0,0), True)

turtle.xcor()
Return the turtle’s x coordinate.

Example (for a Turtle instance named turtle):
>>> reset()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print(turtle.xcor())
50.0

turtle.ycor()
Return the turtle’s y coordinate

Example (for a Turtle instance named turtle):
>>> reset()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print(turtle.ycor())
86.6025403784
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This documentation was generated from the Python documentation available by
typing

from turtle import *
help(TurtleScreen)

in the Python shell. In the documentation found here the variable turtle is a reference
to a Turtle object and screen is a reference to the TurtleScreen object. This is a subset
of that documentation. The official Python 3 documentation is at http://docs.python.
org/3/. Please refer to the online documentation for the most up to date version of
this documentation.

Method description

Screen.addshape(name)
Same thing as screen.register_shape(name)

Screen.bgcolor(*args)
Set or return backgroundcolor of the TurtleScreen
Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers
Example (for a TurtleScreen instance named screen):
>>> screen.bgcolor(“orange”)
>>> screen.bgcolor()
‘orange’
>>> screen.bgcolor(0.5,0,0.5)
>>> screen.bgcolor()
‘#800080’

Screen.bgpic(picname = None)
Set background image or return name of current backgroundimage
Optional argument:
picname—a string, name of a gif-file or “nopic”
If picname is a filename, set the corresponding image as background
If picname is “nopic”, delete backgroundimage, if present
If picname is None, return the filename of the current backgroundimage
Example (for a TurtleScreen instance named screen):
>>> screen.bgpic()
‘nopic’
>>> screen.bgpic(“landscape.gif”)
>>> screen.bgpic()
‘landscape.gif’
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Method description
Screen.clear()

Delete all drawings and all turtles from the TurtleScreen
Reset empty TurtleScreen to its initial state: white background,
no backgroundimage, no eventbindings and tracing on
Example (for a TurtleScreen instance named screen):
screen.clear()
Note: this method is not available as function

Screen.colormode(cmode = None)
Return the colormode or set it to 1.0 or 255
Optional argument:
cmode—one of the values 1.0 or 255
r, g, b values of colortriples have to be in range 0..cmode
Example (for a TurtleScreen instance named screen):
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> turtle.pencolor(240,160,80)

Screen.delay(delay = None)
Return or set the drawing delay in milliseconds
Optional argument:
delay—positive integer
Example (for a TurtleScreen instance named screen):
>>> screen.delay(15)
>>> screen.delay()
15

Screen.getcanvas()
Return the Canvas of this TurtleScreen
Example (for a Screen instance named screen):
>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas instance at 0× 010742D8>

Screen.getshapes()
Return a list of names of all currently available turtle shapes
Example (for a TurtleScreen instance named screen):
>>> screen.getshapes()
[‘arrow’, ‘blank’, ‘circle’, ..., ‘turtle’]



21 Appendix G: TurtleScreen Methods 359

Method description
Screen.listen(xdummy = None, ydummy = None)

Set focus on TurtleScreen (in order to collect key-events)
Dummy arguments are provided in order
to be able to pass listen to the onclick method
Example (for a TurtleScreen instance named screen):
>>> screen.listen()

Screen.mode(mode = None)
Set turtle-mode (‘standard’, ‘logo’ or ‘world’) and perform reset
Optional argument:
mode—on of the strings ‘standard’, ‘logo’ or ‘world’
Mode ‘standard’ is compatible with turtle.py
Mode ‘logo’ is compatible with most Logo-Turtle-Graphics
Mode ‘world’ uses userdefined ‘worldcoordinates’. *Attention*: in
this mode angles appear distorted if x/y unit-ratio doesn’t equal 1
If mode is not given, return the current mode
Mode Initial turtle heading positive angles
——————————————————–
‘standard’ to the right (east) counterclockwise
‘logo’ upward (north) clockwise
Examples:
>>> mode(‘logo’) # resets turtle heading to north
>>> mode()
‘logo’

Screen.onclick(fun, btn = 1, add = None)
Bind fun to mouse-click event on canvas
Arguments:
fun—a function with two arguments, the coordinates of the
clicked point on the canvas
num—the number of the mouse-button, defaults to 1
Example (for a TurtleScreen instance named screen
and a Turtle instance named turtle):
>>> screen.onclick(turtle.goto)
### Subsequently clicking into the TurtleScreen will
### make the turtle move to the clicked point
>>> screen.onclick(None)
### event-binding will be removed
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Method description
Screen.onkey(fun, key)

Bind fun to key-release event of key
Arguments:
fun—a function with no arguments
key—a string: key (e.g. “a”) or key-symbol (e.g. “space”)
In order to be able to register key-events, TurtleScreen
must have focus. (See method listen.)
Example (for a TurtleScreen instance named screen
and a Turtle instance named turtle):
>>> def f():

turtle.fd(50)
turtle.lt(60)

>>> screen.onkey(f, “Up”)
>>> screen.listen()
### Subsequently the turtle can be moved by
### repeatedly pressing the up-arrow key,
### consequently drawing a hexagon

Screen.onkeypress(fun, key = None)
Bind fun to key-press event of key if key is given,
or to any key-press-event if no key is given
Arguments:
fun—a function with no arguments
key—a string: key (e.g. “a”) or key-symbol (e.g. “space”)
In order to be able to register key-events, TurtleScreen
must have focus. (See method listen.)
Example (for a TurtleScreen instance named screen
and a Turtle instance named turtle):
>>> def f():

turtle.fd(50)
>>> screen.onkey(f, “Up”)
>>> screen.listen()
### Subsequently the turtle can be moved by
### repeatedly pressing the up-arrow key,
### or by keeping pressed the up-arrow key
### consequently drawing a hexagon
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Method description
Screen.ontimer(fun, t = 0)

Install a timer, which calls fun after t milliseconds
Arguments:
fun—a function with no arguments
t—a number > = 0
Example (for a TurtleScreen instance named screen):
>>> running = True
>>> def f():
if running:

turtle.fd(50)
turtle.lt(60)
screen.ontimer(f, 250)

>>> f() ### makes the turtle marching around
>>> running = False

Screen.register_shape(name, shape = None)
Adds a turtle shape to TurtleScreen’s shapelist
Arguments:
(1) name is the name of a gif-file and shape is None
Installs the corresponding image shape
!! Image-shapes DO NOT rotate when turning the turtle,
!! so they do not display the heading of the turtle!
(2) name is an arbitrary string and shape is a tuple
of pairs of coordinates. Installs the corresponding
polygon shape
(3) name is an arbitrary string and shape is a
(compound) Shape object. Installs the corresponding
compound shape
To use a shape, you have to issue the command shape(shapename)
call: register_shape(“turtle.gif”)
–or: register_shape(“tri”, ((0, 0), (10, 10), (–10, 10)))
Example (for a TurtleScreen instance named screen):
>>> screen.register_shape(“triangle”, ((5, –3), (0, 5), (–5, –3)))

Screen.reset()
Reset all Turtles on the Screen to their initial state
Example (for a TurtleScreen instance named screen):
>>> screen.reset()
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Method description
Screen.screensize(canvwidth = None, canvheight = None, bg = None)

Resize the canvas the turtles are drawing on
Optional arguments:
canvwidth—positive integer, new width of canvas in pixels
canvheight—positive integer, new height of canvas in pixels
bg—colorstring or color-tupel, new backgroundcolor
If no arguments are given, return current (canvaswidth, canvasheight)
Do not alter the drawing window. To observe hidden parts of
the canvas use the scrollbars. (Can make visible those parts
of a drawing, which were outside the canvas before!)
Example (for a Turtle instance named turtle):
>>> turtle.screensize(2000, 1500)
### e.g. to search for an erroneously escaped turtle;-)

Screen.setworldcoordinates(llx, lly, urx, ury)
Set up a user defined coordinate-system
Arguments:
llx—a number, x-coordinate of lower left corner of canvas
lly—a number, y-coordinate of lower left corner of canvas
urx—a number, x-coordinate of upper right corner of canvas
ury—a number, y-coordinate of upper right corner of canvas
Set up user coodinat-system and switch to mode ‘world’ if necessary
This performs a screen.reset. If mode ‘world’ is already active,
all drawings are redrawn according to the new coordinates
But ATTENTION: in user-defined coordinatesystems angles may appear
distorted. (see Screen.mode())
Example (for a TurtleScreen instance named screen):
>>> screen.setworldcoordinates(–10, –0.5, 50, 1.5)
>>> for _ in range(36):

turtle.left(10)
turtle.forward(0.5)

Screen.title(titlestr)
Set the title of the Turtle Graphics screen. The title appears in the title bar
of the window
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Method description
Screen.tracer(n = None, delay = None)

Turns turtle animation on/off and set delay for update drawings
Optional arguments:
n—nonnegative integer
delay—nonnegative integer
If n is given, only each n-th regular screen update is really performed
(Can be used to accelerate the drawing of complex graphics.)
Second arguments sets delay value (see RawTurtle.delay())
Example (for a TurtleScreen instance named screen):
>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):

turtle.fd(dist)
turtle.rt(90)
dist + = 2

Screen.turtles()
Return the list of turtles on the screen
Example (for a TurtleScreen instance named screen):
>>> screen.turtles()
[<turtle.Turtle object at 0× 00E11FB0 >]

Screen.update()
Perform a TurtleScreen update

Screen.window_height()
Return the height of the turtle window
Example (for a TurtleScreen instance named screen):
>>> screen.window_height()
480

Screen.window_width()
Return the width of the turtle window
Example (for a TurtleScreen instance named screen):
>>> screen.window_width()
640

Screen.mainloop()
Starts event loop—calling Tkinter’s mainloop function
Must be last statement in a turtle graphics program
Must NOT be used if a script is run from within IDLE in –n mode
(No subprocess)—for interactive use of turtle graphics
Example (for a TurtleScreen instance named screen):
>>> screen.mainloop()
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Method description
Screen.numinput(title, prompt, default = None, minval = None, maxval = None)

Pop up a dialog window for input of a number
Arguments: title is the title of the dialog window,
prompt is a text mostly describing what numerical information to input
default: default value
minval: minimum value for imput
maxval: maximum value for input
The number input must be in the range minval .. maxval if these are
given. If not, a hint is issued and the dialog remains open for
correction. Return the number input
If the dialog is canceled, return None
Example (for a TurtleScreen instance named screen):
>>> screen.numinput(“Poker”, “Your stakes:”, 1000, minval = 10, maxval = 10000)

Screen.textinput(title, prompt)
Pop up a dialog window for input of a string
Arguments: title is the title of the dialog window,
prompt is a text mostly describing what information to input
Return the string input
If the dialog is canceled, return None
Example (for a TurtleScreen instance named screen):
>>> screen.textinput(“NIM”, “Name of first player:”)
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22.1 The Draw Program

This is the sample drawing application from the first chapter. It illustrates the use of
the tkinter library including many widgets and mouse handling. This program can
be downloaded from the text’s website.
# The imports include turtle graphics and tkinter modules.

# The colorchooser and filedialog modules let the user

# pick a color and a filename.

import turtle

import tkinter

import tkinter.colorchooser

import tkinter.filedialog

import xml.dom.minidom

# The following classes define the different commands that

# are supported by the drawing application.

class GoToCommand:

def __init__(self,x,y,width=1,color="black"):

self.x = x

self.y = y

self.width = width

self.color = color

# The draw method for each command draws the command

# using the given turtle

def draw(self,turtle):

turtle.width(self.width)

turtle.pencolor(self.color)

turtle.goto(self.x,self.y)

# The __str__ method is a special method that is called

# when a command is converted to a string. The string

# version of the command is how it appears in the graphics

# file format.

def __str__(self):

return '<Command x="' + str(self.x) + '" y="' + str(self.y) + \

'" width="' + str(self.width) \

+ '" color="' + self.color + '">GoTo</Command>'

class CircleCommand:

def __init__(self,radius, width=1,color="black"):
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self.radius = radius

self.width = width

self.color = color

def draw(self,turtle):

turtle.width(self.width)

turtle.pencolor(self.color)

turtle.circle(self.radius)

def __str__(self):

return '<Command radius="' + str(self.radius) + '" width="' + \

str(self.width) + '" color="' + self.color + '">Circle</Command>'

class BeginFillCommand:

def __init__(self,color):

self.color = color

def draw(self,turtle):

turtle.fillcolor(self.color)

turtle.begin_fill()

def __str__(self):

return '<Command color="' + self.color + '">BeginFill</Command>'

class EndFillCommand:

def __init__(self):

pass

def draw(self,turtle):

turtle.end_fill()

def __str__(self):

return "<Command>EndFill</Command>"

class PenUpCommand:

def __init__(self):

pass

def draw(self,turtle):

turtle.penup()

def __str__(self):

return "<Command>PenUp</Command>"

class PenDownCommand:

def __init__(self):

pass

def draw(self,turtle):

turtle.pendown()

def __str__(self):

return "<Command>PenDown</Command>"

# This is the PyList container object. It is meant to hold a

class PyList:

def __init__(self):

self.gcList = []

# The append method is used to add commands to the sequence.

def append(self,item):

self.gcList = self.gcList + [item]

# This method is used by the undo function. It slices the sequence

# to remove the last item

def removeLast(self):

self.gcList = self.gcList[-1]

# This special method is called when iterating over the sequence.
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# Each time yield is called another element of the sequence is returned

# to the iterator (i.e. the for loop that called this.)

def __iter__(self):

for c in self.gcList:

yield c

# This is called when the len function is called on the sequence.

def __len__(self):

return len(self.gcList)

# This class defines the drawing application. The following line says that

# the DrawingApplication class inherits from the Frame class. This means

# that a DrawingApplication is like a Frame object except for the code

# written here which redefines/extends the behavior of a Frame.

class DrawingApplication(tkinter.Frame):

def __init__(self, master=None):

super().__init__(master)

self.pack()

self.buildWindow()

self.graphicsCommands = PyList()

# This method is called to create all the widgets, place them in the GUI,

# and define the event handlers for the application.

def buildWindow(self):

# The master is the root window. The title is set as below.

self.master.title("Draw")

# Here is how to create a menu bar. The tearoff=0 means that menus

# can't be separated from the window which is a feature of tkinter.

bar = tkinter.Menu(self.master)

fileMenu = tkinter.Menu(bar,tearoff=0)

# This code is called by the "New" menu item below when it is selected.

# The same applies for loadFile, addToFile, and saveFile below. The

# "Exit" menu item below calls quit on the "master" or root window.

def newWindow():

# This sets up the turtle to be ready for a new picture to be

# drawn. It also sets the sequence back to empty. It is necessary

# for the graphicsCommands sequence to be in the object (i.e.

# self.graphicsCommands) because otherwise the statement:

# graphicsCommands = PyList()

# would make this variable a local variable in the newWindow

# method. If it were local, it would not be set anymore once the

# newWindow method returned.

theTurtle.clear()

theTurtle.penup()

theTurtle.goto(0,0)

theTurtle.pendown()

screen.update()

screen.listen()

self.graphicsCommands = PyList()

fileMenu.add_command(label="New",command=newWindow)

# The parse function adds the contents of an XML file to the sequence.

def parse(filename):

xmldoc = xml.dom.minidom.parse(filename)

graphicsCommandsElement = xmldoc.getElementsByTagName("GraphicsCommands")[0]

graphicsCommands = graphicsCommandsElement.getElementsByTagName("Command")

for commandElement in graphicsCommands:

print(type(commandElement))

command = commandElement.firstChild.data.strip()

attr = commandElement.attributes

if command == "GoTo":

x = float(attr["x"].value)
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y = float(attr["y"].value)

width = float(attr["width"].value)

color = attr["color"].value.strip()

cmd = GoToCommand(x,y,width,color)

elif command == "Circle":

radius = float(attr["radius"].value)

width = int(attr["width"].value)

color = attr["color"].value.strip()

cmd = CircleCommand(radius,width,color)

elif command == "BeginFill":

color = attr["color"].value.strip()

cmd = BeginFillCommand(color)

elif command == "EndFill":

cmd = EndFillCommand()

elif command == "PenUp":

cmd = PenUpCommand()

elif command == "PenDown":

cmd = PenDownCommand()

else:

raise RuntimeError("Unknown Command: " + command)

self.graphicsCommands.append(cmd)

def loadFile():

filename = tkinter.filedialog.askopenfilename(title="Select a Graphics File")

newWindow()

# This re-initializes the sequence for the new picture.

self.graphicsCommands = PyList()

# calling parse will read the graphics commands from the file.

parse(filename)

for cmd in self.graphicsCommands:

cmd.draw(theTurtle)

# This line is necessary to update the window after the picture is drawn.

screen.update()

fileMenu.add_command(label="Load...",command=loadFile)

def addToFile():

filename = tkinter.filedialog.askopenfilename(title="Select a Graphics File")

theTurtle.penup()

theTurtle.goto(0,0)

theTurtle.pendown()

theTurtle.pencolor("#000000")

theTurtle.fillcolor("#000000")

cmd = PenUpCommand()

self.graphicsCommands.append(cmd)

cmd = GoToCommand(0,0,1,"#000000")

self.graphicsCommands.append(cmd)

cmd = PenDownCommand()

self.graphicsCommands.append(cmd)

screen.update()

parse(filename)

for cmd in self.graphicsCommands:

cmd.draw(theTurtle)
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screen.update()

fileMenu.add_command(label="Load Into...",command=addToFile)

# The write function writes an XML file to the given filename

def write(filename):

file = open(filename, "w")

file.write('<?xml version="1.0" encoding="UTF-8" standalone="no" ?>\n')

file.write('<GraphicsCommands>\n')

for cmd in self.graphicsCommands:

file.write('    '+str(cmd)+"\n")

file.write('</GraphicsCommands>\n')

file.close()

def saveFile():

filename = tkinter.filedialog.asksaveasfilename(title="Save Picture As...")

write(filename)

fileMenu.add_command(label="Save As...",command=saveFile)

fileMenu.add_command(label="Exit",command=self.master.quit)

bar.add_cascade(label="File",menu=fileMenu)

# This tells the root window to display the newly created menu bar.

self.master.config(menu=bar)

# Here several widgets are created. The canvas is the drawing area on

# the left side of the window.

canvas = tkinter.Canvas(self,width=600,height=600)

canvas.pack(side=tkinter.LEFT)

# By creating a RawTurtle, we can have the turtle draw on this canvas.

# Otherwise, a RawTurtle and a Turtle are exactly the same.

theTurtle = turtle.RawTurtle(canvas)

# This makes the shape of the turtle a circle.

theTurtle.shape("circle")

screen = theTurtle.getscreen()

# This causes the application to not update the screen unless

# screen.update() is called. This is necessary for the ondrag event

# handler below. Without it, the program bombs after dragging the

# turtle around for a while.

screen.tracer(0)

# This is the area on the right side of the window where all the

# buttons, labels, and entry boxes are located. The pad creates some empty

# space around the side. The side puts the sideBar on the right side of the

# this frame. The fill tells it to fill in all space available on the right

# side.

sideBar = tkinter.Frame(self,padx=5,pady=5)

sideBar.pack(side=tkinter.RIGHT, fill=tkinter.BOTH)

# This is a label widget. Packing it puts it at the top of the sidebar.

pointLabel = tkinter.Label(sideBar,text="Width")

pointLabel.pack()

# This entry widget allows the user to pick a width for their lines.

# With the widthSize variable below you can write widthSize.get() to get

# the contents of the entry widget and widthSize.set(val) to set the value

# of the entry widget to val. Initially the widthSize is set to 1. str(1) is

# needed because the entry widget must be given a string.

widthSize = tkinter.StringVar()

widthEntry = tkinter.Entry(sideBar,textvariable=widthSize)

widthEntry.pack()
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widthSize.set(str(1))

radiusLabel = tkinter.Label(sideBar,text="Radius")

radiusLabel.pack()

radiusSize = tkinter.StringVar()

radiusEntry = tkinter.Entry(sideBar,textvariable=radiusSize)

radiusSize.set(str(10))

radiusEntry.pack()

# A button widget calls an event handler when it is pressed. The circleHandler

# function below is the event handler when the Draw Circle button is pressed.

def circleHandler():

# When drawing, a command is created and then the command is drawn by calling

# the draw method. Adding the command to the graphicsCommands sequence means the

# application will remember the picture.

cmd = CircleCommand(int(radiusSize.get()), int(widthSize.get()), penColor.get())

cmd.draw(theTurtle)

self.graphicsCommands.append(cmd)

# These two lines are needed to update the screen and to put the focus back

# in the drawing canvas. This is necessary because when pressing "u" to undo,

# the screen must have focus to receive the key press.

screen.update()

screen.listen()

# This creates the button widget in the sideBar. The fill=tkinter.BOTH causes the button

# to expand to fill the entire width of the sideBar.

circleButton = tkinter.Button(sideBar, text = "Draw Circle", command=circleHandler)

circleButton.pack(fill=tkinter.BOTH)

# The color mode 255 below allows colors to be specified in RGB form (i.e. Red/

# Green/Blue). The mode allows the Red value to be set by a two digit hexadecimal

# number ranging from 00-FF. The same applies for Blue and Green values. The

# color choosers below return a string representing the selected color and a slice

# is taken to extract the #RRGGBB hexadecimal string that the color choosers return.

screen.colormode(255)

penLabel = tkinter.Label(sideBar,text="Pen Color")

penLabel.pack()

penColor = tkinter.StringVar()

penEntry = tkinter.Entry(sideBar,textvariable=penColor)

penEntry.pack()

# This is the color black.

penColor.set("#000000")

def getPenColor():

color = tkinter.colorchooser.askcolor()

if color != None:

penColor.set(str(color)[-9:-2])

penColorButton = tkinter.Button(sideBar, text = "Pick Pen Color", command=getPenColor)

penColorButton.pack(fill=tkinter.BOTH)

fillLabel = tkinter.Label(sideBar,text="Fill Color")

fillLabel.pack()

fillColor = tkinter.StringVar()

fillEntry = tkinter.Entry(sideBar,textvariable=fillColor)

fillEntry.pack()

fillColor.set("#000000")

def getFillColor():

color = tkinter.colorchooser.askcolor()

if color != None:

fillColor.set(str(color)[-9:-2])

fillColorButton = \

tkinter.Button(sideBar, text = "Pick Fill Color", command=getFillColor)

fillColorButton.pack(fill=tkinter.BOTH)
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def beginFillHandler():

cmd = BeginFillCommand(fillColor.get())

cmd.draw(theTurtle)

self.graphicsCommands.append(cmd)

beginFillButton = tkinter.Button(sideBar, text = "Begin Fill", command=beginFillHandler)

beginFillButton.pack(fill=tkinter.BOTH)

def endFillHandler():

cmd = EndFillCommand()

cmd.draw(theTurtle)

self.graphicsCommands.append(cmd)

endFillButton = tkinter.Button(sideBar, text = "End Fill", command=endFillHandler)

endFillButton.pack(fill=tkinter.BOTH)

penLabel = tkinter.Label(sideBar,text="Pen Is Down")

penLabel.pack()

def penUpHandler():

cmd = PenUpCommand()

cmd.draw(theTurtle)

penLabel.configure(text="Pen Is Up")

self.graphicsCommands.append(cmd)

penUpButton = tkinter.Button(sideBar, text = "Pen Up", command=penUpHandler)

penUpButton.pack(fill=tkinter.BOTH)

def penDownHandler():

cmd = PenDownCommand()

cmd.draw(theTurtle)

penLabel.configure(text="Pen Is Down")

self.graphicsCommands.append(cmd)

penDownButton = tkinter.Button(sideBar, text = "Pen Down", command=penDownHandler)

penDownButton.pack(fill=tkinter.BOTH)

# Here is another event handler. This one handles mouse clicks on the screen.

def clickHandler(x,y):

# When a mouse click occurs, get the widthSize entry value and set the width of the

# pen to the widthSize value. The int(widthSize.get()) is needed because

# the width is an integer, but the entry widget stores it as a string.

cmd = GoToCommand(x,y,int(widthSize.get()),penColor.get())

cmd.draw(theTurtle)

self.graphicsCommands.append(cmd)

screen.update()

screen.listen()

# Here is how we tie the clickHandler to mouse clicks.

screen.onclick(clickHandler)

def dragHandler(x,y):

cmd = GoToCommand(x,y,int(widthSize.get()),penColor.get())

cmd.draw(theTurtle)

self.graphicsCommands.append(cmd)

screen.update()

screen.listen()

theTurtle.ondrag(dragHandler)

# the undoHandler undoes the last command by removing it from the

# sequence and then redrawing the entire picture.

def undoHandler():

if len(self.graphicsCommands) > 0:

self.graphicsCommands.removeLast()

theTurtle.clear()

theTurtle.penup()

theTurtle.goto(0,0)

theTurtle.pendown()
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for cmd in self.graphicsCommands:

cmd.draw(theTurtle)

screen.update()

screen.listen()

screen.onkeypress(undoHandler, "u")

screen.listen()

# The main function in our GUI program is very simple. It creates the

# root window. Then it creates the DrawingApplication frame which creates

# all the widgets and has the logic for the event handlers. Calling mainloop

# on the frames makes it start listening for events. The mainloop function will

# return when the application is exited.

def main():

root = tkinter.Tk()

drawingApp = DrawingApplication(root)

drawingApp.mainloop()

print("Program Execution Completed.")

if __name__ == "__main__":

main()

22.2 The Scope Program

This is the sample program from the first chapter that illustrates the use of scope
within a program. This program can be downloaded from the text’s website.

import math

PI = math.pi

def area(radius):
global z
z = 6
theArea = PI * radius ** 2

return theArea

def main():
global z

historyOfPrompts = []
historyOfOutput = []

def getInput(prompt):
x = input(prompt)
historyOfPrompts.append(prompt)

return x

def showOutput(val):
historyOfOutput.append(val)
print(val)

rString = getInput("Please enter the radius of a circle: ")
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r = float(rString)

val = area(r)
print(z)
showOutput("The area of the circle is " + str(val))

if __name__ == "__main__":
main()

22.3 The Sort Animation

import tkinter

import turtle

import random

import time

import math

class Point(turtle.RawTurtle):

def __init__(self, canvas, x, y):

super().__init__(canvas)

canvas.register_shape("dot",((3,0),(2,2),(0,3),(-2,2),(-3,0),(-2,-2),(0,-3),(2,-2)))

self.shape("dot")

self.speed(0)

self.penup()

self.goto(x,y)

def __str__(self):

return "("+str(self.xcor())+","+str(self.ycor())+")"

def __lt__(self, other):

return self.ycor() < other.ycor()

# This class defines the animation application. The following line says that

# the SortAnimation class inherits from the Frame class.

class SortAnimation(tkinter.Frame):

def __init__(self, master=None):

super().__init__(master)

self.pack()

self.buildWindow()

self.paused = False

self.stop = False

self.running = False

def buildWindow(self):

def partition(seq, start, stop):

pivotIndex = start

pivot = seq[pivotIndex]

theTurtle.color("red")

theTurtle.penup()

theTurtle.goto(start,pivot.ycor())

theTurtle.pendown()

theTurtle.goto(stop,pivot.ycor())

screen.update()

# Why twice? Because once doesn't seem to display

# the line the first time through for some reason
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theTurtle.color("red")

theTurtle.penup()

theTurtle.goto(start,pivot.ycor())

theTurtle.pendown()

theTurtle.goto(stop,pivot.ycor())

screen.update()

i = start+1

j = stop-1

while i <= j:

while i <= j and not pivot < seq[i]:

i+=1

while i <= j and pivot < seq[j]:

j-=1

if i < j:

tmp = seq[i]

seq[i] = seq[j]

seq[i].goto(i,seq[i].ycor())

seq[j] = tmp

seq[j].goto(j,seq[j].ycor())

screen.update()

i+=1

j-=1

seq[pivotIndex] = seq[j]

seq[pivotIndex].goto(pivotIndex,seq[pivotIndex].ycor())

seq[j] = pivot

seq[j].goto(j,seq[j].ycor())

seq[j].color("green")

screen.update()

theTurtle.color("white")

theTurtle.penup()

theTurtle.goto(0,pivot.ycor())

theTurtle.pendown()

theTurtle.goto(len(seq),pivot.ycor())

screen.update()

return j

def quicksortRecursively(seq, start, stop):

if start >= stop:

return

if stopping():

return

pivotIndex = partition(seq, start, stop)

if stopping():

return

quicksortRecursively(seq, start, pivotIndex)

if stopping():

return

quicksortRecursively(seq, pivotIndex+1, stop)

def quicksort(seq):

quicksortRecursively(seq, 0, len(seq))

def merge(seq, start, mid, stop):

length = stop - start
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log = math.log(length,2)

theTurtle.color("blue")

theTurtle.penup()

theTurtle.goto(start,-3*log)

theTurtle.pendown()

theTurtle.forward(length)

screen.update()

lst = []

i = start

j = mid

# Merge the two lists while each has more elements

while i < mid and j < stop:

if seq[i] < seq[j]:

lst.append(seq[i])

seq[i].goto(i,seq[i].ycor())

i+=1

else:

lst.append(seq[j])

seq[j].goto(j,seq[j].ycor())

j+=1

#screen.update()

# Copy in the rest of the start to mid sequence

while i < mid:

lst.append(seq[i])

seq[i].goto(i,seq[i].ycor())

i+=1

#screen.update()

# Copy in the rest of the mid to stop sequence

while j < mid:

lst.append(seq[j])

seq[j].goto(j,seq[j].ycor())

j+=1

#screen.update()

# Copy the elements back to the original sequence

for i in range(len(lst)):

seq[start+i]=lst[i]

lst[i].goto(start+i,lst[i].ycor())

lst[i].color("green")

screen.update()

def mergeSortRecursively(seq, start, stop):

# We must use >= here only when the sequence we are sorting

# is empty. Otherwise start == stop-1 in the base case.

if start >= stop-1:

return

mid = (start + stop) // 2

if stopping():

return

length = stop-start

log = math.log(length,2)

theTurtle.color("red")

theTurtle.penup()

theTurtle.goto(start,-3*log)

theTurtle.pendown()

theTurtle.forward(length)

screen.update()
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# Why twice? Because once doesn't seem to display

# the line the first time through for some reason

theTurtle.color("red")

theTurtle.penup()

theTurtle.goto(start,-3*log)

theTurtle.pendown()

theTurtle.forward(length)

screen.update()

mergeSortRecursively(seq, start, mid)

if stopping():

return

mergeSortRecursively(seq, mid, stop)

if stopping():

return

theTurtle.color("blue")

theTurtle.penup()

theTurtle.goto(start,-3*log)

theTurtle.pendown()

theTurtle.forward(length)

screen.update()

merge(seq, start, mid, stop)

screen.update()

theTurtle.color("white")

theTurtle.goto(start-1,-3*log)

theTurtle.pendown()

theTurtle.forward(length+2)

screen.update()

def mergeSort(seq):

mergeSortRecursively(seq, 0, len(seq))

def select(seq, start):

minIndex = start

seq[minIndex].color("green")

for i in range(start, len(seq)):

if seq[minIndex] > seq[i]:

seq[minIndex].color("black")

minIndex = i

seq[minIndex].color("green")

return minIndex

def selectionSort(seq):

for i in range(len(seq)):

minIndex = select(seq, i)

if stopping():

return

tmp = seq[i]

seq[i] = seq[minIndex]

seq[minIndex] = tmp

seq[i].goto(i,seq[i].ycor())

seq[minIndex].goto(minIndex,seq[minIndex].ycor())

seq[i].color("green")

def pause():

while self.paused:

time.sleep(1)

screen.update()

screen.listen()
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def stopping():

if self.paused:

pause()

if self.stop:

self.pause = False

self.running = False

screen.update()

screen.listen()

return True

return False

self.master.title("Sort Animations")

bar = tkinter.Menu(self.master)

fileMenu = tkinter.Menu(bar,tearoff=0)

def clear():

screen.clear()

screen.update()

screen.listen()

def newWindow():

clear()

if self.running:

self.stop = True

fileMenu.add_command(label="Clear",command=newWindow)

fileMenu.add_command(label="Exit",command=self.master.quit)

bar.add_cascade(label="File",menu=fileMenu)

self.master.config(menu=bar)

canvas = tkinter.Canvas(self,width=600,height=600)

canvas.pack(side=tkinter.LEFT)

theTurtle = turtle.RawTurtle(canvas)

theTurtle.ht()

theTurtle.speed(0)

screen = theTurtle.getscreen()

screen.tracer(0)

sideBar = tkinter.Frame(self,padx=5,pady=5)

sideBar.pack(side=tkinter.RIGHT, fill=tkinter.BOTH)

speedLabel = tkinter.Label(sideBar,text="Animation Speed")

speedLabel.pack()

speed = tkinter.StringVar()

speedEntry = tkinter.Entry(sideBar,textvariable=speed)

speedEntry.pack()

speed.set("10")

def selSortHandler():

self.running = True

clear()

screen.setworldcoordinates(0,0,200,200)

screen.tracer(0)

self.master.title("Selection Sort Animation")

seq = []

for i in range(200):

if stopping():

return

p = Point(screen,i,i)

p.color("green")

seq.append(p)
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screen.update()

screen.tracer(1)

for i in range(200):

if stopping():

return

j = random.randint(0,199)

p = seq[i]

seq[i] = seq[j]

seq[j] = p

seq[i].goto(i,seq[i].ycor())

seq[j].goto(j,seq[j].ycor())

seq[i].color("black")

seq[j].color("black")

selectionSort(seq)

self.running = False

self.stop = False

button = tkinter.Button(sideBar, text = "Selection Sort", command=selSortHandler)

button.pack(fill=tkinter.BOTH)

def mergeSortHandler():

self.running = True

clear()

screen.setworldcoordinates(0,-25,200,200)

theTurtle.width(5)

screen.tracer(0)

self.master.title("Merge Sort Animation")

seq = []

for i in range(200):

if stopping():

return

p = Point(screen,i,i)

p.color("green")

seq.append(p)

screen.update()

screen.tracer(1)

for i in range(200):

if stopping():

return

j = random.randint(0,199)

p = seq[i]

seq[i] = seq[j]

seq[j] = p

seq[i].goto(i,seq[i].ycor())

seq[j].goto(j,seq[j].ycor())

seq[i].color("black")

seq[j].color("black")

screen.tracer(0)

mergeSort(seq)

self.running = False

self.stop = False

button = tkinter.Button(sideBar, text = "Merge Sort", command=mergeSortHandler)

button.pack(fill=tkinter.BOTH)

def quickSortHandler():

self.running = True
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clear()

screen.setworldcoordinates(0,0,200,200)

theTurtle.width(5)

screen.tracer(0)

self.master.title("Quicksort Animation")

seq = []

for i in range(200):

if stopping():

return

p = Point(screen,i,i)

p.color("green")

seq.append(p)

screen.update()

screen.tracer(1)

for i in range(200):

if stopping():

return

j = random.randint(0,199)

p = seq[i]

seq[i] = seq[j]

seq[j] = p

seq[i].goto(i,seq[i].ycor())

seq[j].goto(j,seq[j].ycor())

seq[i].color("black")

seq[j].color("black")

screen.tracer(1)

quicksort(seq)

self.running = False

self.stop = False

button = tkinter.Button(sideBar, text = "Quicksort", command=quickSortHandler)

button.pack(fill=tkinter.BOTH)

def pauseHandler():

self.paused = not self.paused

button = tkinter.Button(sideBar, text = "Pause", command=pauseHandler)

button.pack(fill=tkinter.BOTH)

def stopHandler():

if not self.paused and self.running:

self.stop = True

button = tkinter.Button(sideBar, text = "Stop", command=stopHandler)

button.pack(fill=tkinter.BOTH)

screen.listen()

# The main function in our GUI program is very simple. It creates the

# root window. Then it creates the SortAnimation frame which creates

# all the widgets and has the logic for the event handlers. Calling mainloop

# on the frames makes it start listening for events. The mainloop function will

# return when the application is exited.

def main():

root = tkinter.Tk()

anim = SortAnimation(root)

anim.mainloop()

if __name__ == "__main__":

main()
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22.4 The PlotData Program

This is the plot program that is used throughout the text to plot experimentally
gathered data so it can be visualized. This program can be downloaded from the
text’s website.
import turtle

import tkinter

import tkinter.colorchooser

import tkinter.filedialog

import xml.dom.minidom

import math

import sys

class PlotApplication(tkinter.Frame):

def __init__(self, master=None, datafile=None):

super().__init__(master)

self.datafile = datafile

self.pack()

self.buildWindow()

def buildWindow(self):

self.master.title("Plot")

bar = tkinter.Menu(self.master)

fileMenu = tkinter.Menu(bar,tearoff=0)

def loadFile(filename=None):

if filename == None:

filename = tkinter.filedialog.askopenfilename(title="Select a Plot File")

theTurtle.clear()

theTurtle.penup()

theTurtle.goto(0,0)

theTurtle.pendown()

screen.update()

theTurtle.color("black")

xmldoc = xml.dom.minidom.parse(filename)

plotElement = xmldoc.getElementsByTagName("Plot")[0]

attr = plotElement.attributes

self.master.title(attr["title"].value)

axesElement = plotElement.getElementsByTagName("Axes")[0]

xAxisElement = axesElement.getElementsByTagName("XAxis")[0]

xAxisLabel = xAxisElement.firstChild.data.strip()

yAxisElement = axesElement.getElementsByTagName("YAxis")[0]

yAxisLabel = yAxisElement.firstChild.data.strip()

xAttr = xAxisElement.attributes

yAttr = yAxisElement.attributes

minX = float(xAttr["min"].value)

maxX = float(xAttr["max"].value)

minY = float(yAttr["min"].value)

maxY = float(yAttr["max"].value)

xSize = maxX - minX

ySize = maxY - minY

xCenter = xSize / 2.0 + minX

yCenter = ySize / 2.0 + minY
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xPlaces = max(4-round(math.log(xSize,10)),0)

yPlaces = max(4-round(math.log(ySize,10)),0)

labelYVal = maxY - 0.10 * ySize

screen.setworldcoordinates(minX-0.20 * xSize,minY - 0.20 * ySize, \

maxX + 0.20 * xSize,maxY + 0.20 * ySize)

theTurtle.ht()

theTurtle.penup()

theTurtle.goto(minX,minY)

theTurtle.pendown()

theTurtle.goto(maxX,minY)

theTurtle.penup()

theTurtle.goto(minX,minY)

theTurtle.pendown()

theTurtle.goto(minX,maxY)

theTurtle.penup()

theTurtle.goto(xCenter, minY - ySize * 0.10)

theTurtle.write(xAxisLabel,align="center",font=("Arial",14,"bold"))

theTurtle.goto(minX, maxY + 0.05 * ySize)

theTurtle.write(yAxisLabel,align="center",font=("Arial",14,"bold"))

for i in range(0,101,10):

x = minX + xSize * i / 100.0

y = minY + ySize * i / 100.0

theTurtle.penup()

theTurtle.goto(x,minY+ySize * 0.025)

theTurtle.pendown()

theTurtle.goto(x,minY-ySize * 0.025)

theTurtle.penup()

theTurtle.goto(x,minY-ySize * 0.05)

theTurtle.write(("%1."+str(xPlaces)+"f")%x,align="center",font=("Arial",12,"normal"))

theTurtle.penup()

theTurtle.goto(minX+xSize * 0.025, y)

theTurtle.pendown()

theTurtle.goto(minX-xSize * 0.025, y)

theTurtle.goto(minX-xSize * 0.001, y)

theTurtle.write(("%1."+str(yPlaces)+"f")%y,align="right",font=("Arial",12,"normal"))

sequences = plotElement.getElementsByTagName("Sequence")

for sequence in sequences:

attr = sequence.attributes

label = attr["title"].value.strip()

color = attr["color"].value

theTurtle.color(color)

theTurtle.penup()

theTurtle.goto(xCenter,labelYVal)

labelYVal = labelYVal - 0.10 * ySize

theTurtle.write(label,align="center",font=("Arial",14,"bold"))

dataPoints = sequence.getElementsByTagName("DataPoint")

first = dataPoints[0]

attr = first.attributes

x = float(attr["x"].value)

y = float(attr["y"].value)

theTurtle.goto(x,y)

theTurtle.dot()

theTurtle.pendown()

for dataPoint in dataPoints:
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attr = dataPoint.attributes

x = float(attr["x"].value)

y = float(attr["y"].value)

theTurtle.goto(x,y)

theTurtle.dot()

screen.update()

fileMenu.add_command(label="Load Plot Data...",command=loadFile)

fileMenu.add_command(label="Exit",command=self.master.quit)

bar.add_cascade(label="File",menu=fileMenu)

self.master.config(menu=bar)

canvas = tkinter.Canvas(self,width=1000,height=800)

canvas.pack(side=tkinter.LEFT)

theTurtle = turtle.RawTurtle(canvas)

screen = theTurtle.getscreen()

screen.tracer(0)

if self.datafile != None:

loadFile(self.datafile.strip())

def main():

root = tkinter.Tk()

datafile = None

if len(sys.argv) > 1:

datafile = sys.argv[1]

plotApp = PlotApplication(root, datafile)

plotApp.mainloop()

print("Program Execution Completed.")

if __name__ == "__main__":

main()

22.5 TheTic Tac Toe Application

This is the starter code for an exercise in constructing a tic tac toe game. This program
can be downloaded from the text’s website.

from turtle import *

import tkinter.messagebox

import tkinter

import random

import math

import datetime

import time

import sys

screenMin = 0

screenMax = 300

Human = -1

Computer = 1

class Board:
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# When a board is constructed, you may want to make a copy of the board.

# This can be a shallow copy of the board because Turtle objects are

# Immutable from the perspective of a board object.

def __init__(self, board=None, screen=None):

self.screen = screen

if screen == None:

if board!=None:

self.screen = board.screen

self.items = []

for i in range(3):

rowlst = []

for j in range(3):

if board==None:

rowlst.append(Dummy())

else:

rowlst.append(board[i][j])

self.items.append(rowlst)

# Accessor method for the screen

def getscreen(self):

return self.screen

# The getitem method is used to index into the board. It should

# return a row of the board. That row itself is indexable (it is just

# a list) so accessing a row and column in the board can be written

# board[row][column] because of this method.

def __getitem__(self,index):

return self.items[index]

# This method should return true if the two boards, self and other,

# represent exactly the same state.

# READER EXERCISE: YOU MUST COMPLETE THIS FUNCTION

def __eq__(self,other):

pass

# This method will mutate this board to contain all dummy

# turtles. This way the board can be reset when a new game

# is selected. It should NOT be used except when starting

# a new game.

def reset(self):

self.screen.tracer(1)

for i in range(3):

for j in range(3):

self.items[i][j].goto(-100,-100)

self.items[i][j] = Dummy()

self.screen.tracer(0)

# This method should return an integer representing the

# state of the board. If the computer has won, return 1.

# If the human has won, return -1. Otherwise, return 0.

# READER EXERCISE: YOU MUST COMPLETE THIS FUNCTION

def eval(self):

pass

# This method should return True if the board

# is completely filled up (no dummy turtles).

# Otherwise, it should return False.

# READER EXERCISE: YOU MUST COMPLETE THIS FUNCTION

def full(self):

pass

# This method should draw the X's and O's

# Of this board on the screen.
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def drawXOs(self):

for row in range(3):

for col in range(3):

if self[row][col].eval() != 0:

self[row][col].st()

self[row][col].goto(col*100+50,row*100+50)

self.screen.update()

# This class is just for placeholder objects when no move has been made

# yet at a position in the board. Having eval() return 0 is convenient when no

# move has been made.

class Dummy:

def __init__(self):

pass

def eval(self):

return 0

def goto(self,x,y):

pass

# In the X and O classes below the constructor begins by initializing the

# RawTurtle part of the object with the call to super().__init__(canvas). The

# super() call returns the class of the superclass (the class above the X or O

# in the class hierarchy). In this case, the superclass is RawTurtle. Then,

# calling __init__ on the superclass initializes the part of the object that is

# a RawTurtle.

class X(RawTurtle):

def __init__(self, canvas):

super().__init__(canvas)

self.ht()

self.getscreen().register_shape("X",((-40,-36),(-40,-44),(0,-4),(40,-44),(40,-36), \

(4,0),(40,36),(40,44),(0,4),(-40,44),(-40,36),(-4,0),(-40,-36)))

self.shape("X")

self.penup()

self.speed(5)

self.goto(-100,-100)

def eval(self):

return Computer

class O(RawTurtle):

def __init__(self, canvas):

super().__init__(canvas)

self.ht()

self.shape("circle")

self.penup()

self.speed(5)

self.goto(-100,-100)

def eval(self):

return Human

# The minimax function is given a player (1 = Computer, -1 = Human) and a

# board object. When the player = Computer, minimax returns the maximum

# value of all possible moves that the Computer could make. When the player =

# Human then minimax returns the minimum value of all possible moves the Human

# could make. Minimax works by assuming that at each move the Computer will pick

# its best move and the Human will pick its best move. It does this by making a

# move for the player whose turn it is, and then recursively calling minimax.

# The base case results when, given the state of the board, someone has won or

# the board is full.

# READER EXERCISE: YOU MUST COMPLETE THIS FUNCTION

def minimax(player,board):

pass
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class TicTacToe(tkinter.Frame):

def __init__(self, master=None):

super().__init__(master)

self.pack()

self.buildWindow()

self.paused = False

self.stop = False

self.running = False

self.turn = Human

self.locked = False

def buildWindow(self):

cv = ScrolledCanvas(self,600,600,600,600)

cv.pack(side = tkinter.LEFT)

t = RawTurtle(cv)

screen = t.getscreen()

screen.tracer(100000)

screen.setworldcoordinates(screenMin,screenMin,screenMax,screenMax)

screen.bgcolor("white")

t.ht()

frame = tkinter.Frame(self)

frame.pack(side = tkinter.RIGHT,fill=tkinter.BOTH)

board = Board(None, screen)

def drawGrid():

screen.clear()

screen.tracer(1000000)

screen.setworldcoordinates(screenMin,screenMin,screenMax,screenMax)

screen.bgcolor("white")

screen.tracer(0)

t = RawTurtle(cv)

t.ht()

t.pu()

t.width(10)

t.color("green")

for i in range(2):

t.penup()

t.goto(i*100+100,10)

t.pendown()

t.goto(i*100+100,290)

t.penup()

t.goto(10,i*100+100)

t.pendown()

t.goto(290,i*100+100)

screen.update()

def newGame():

#drawGrid()

self.turn = Human

board.reset()

self.locked =False

screen.update()

def startHandler():

newGame()

drawGrid()
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startButton = tkinter.Button(frame, text = "New Game", command=startHandler)

startButton.pack()

def quitHandler():

self.master.quit()

quitButton = tkinter.Button(frame, text = "Quit", command=quitHandler)

quitButton.pack()

def computerTurn():

# The locked variable prevents another event from being

# processed while the computer is making up its mind.

self.locked = True

# Call Minimax to find the best move to make.

# READER EXERCISE: YOU MUST COMPLETE THIS CODE

# After writing this code, the maxMove tuple should

# contain the best move for the computer. For instance,

# if the best move is in the first row and third column

# then maxMove would be (0,2).

row, col = maxMove

board[row][col] = X(cv)

self.locked = False

def mouseClick(x,y):

if not self.locked:

row = int(y // 100)

col = int(x // 100)

board[row][col] = O(cv)

self.turn = Computer

board.drawXOs()

if not board.full() and not abs(board.eval())==1:

computerTurn()

self.turn = Human

board.drawXOs()

else:

self.locked = True

if board.eval() == 1:

tkinter.messagebox.showwarning("Game Over","X wins!!!")

if board.eval() == -1:

tkinter.messagebox.showwarning("Game Over","O wins. How did that happen?")

if board.full():

tkinter.messagebox.showwarning("Game Over","It was a tie.")

screen.onclick(mouseClick)

screen.listen()

def main():

root = tkinter.Tk()

root.title("Tic Tac Toe")

application = TicTacToe(root)

application.mainloop()

if __name__ == "__main__":

main()
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22.6 The Connect Four Front-End

This provides theGUI front-end to the connect four game presented in the last chapter
of the text. This can serve as a front-end for a computer opponent back-end. This
program can be downloaded from the text’s website.
import turtle

import subprocess

import tkinter

import sys

import time

# The following program will play connect four. This

# program and a another program communicate through pipes (both input and output)

# according to this architecture. When a command is sent it is indicated

# with a right arrow indicating something is written to the other program's

# standard input. When the other program sends something to this Python Program

# it is indicated with a left arrow. That means it is written to the standard

# output of the other program.

# Python Other

# 0 -----------> # New Game is initiated by the Other Code

# <----------- 0 # Other Code says OK.

# 2 M ---------> # Human Move followed by Move Value M which is 0-6.

# # Move Value M will be on separate line.

# <----------- 0 # Other Code says OK.

# 1 -----------> # Computer Move is indicated to Other Code

# <--------- 0 M # Status OK and Move Value M which is 0-6.

# 3 -----------> # Game Over?

# <--------- Val # Val is 0=Not Over, 1=Computer Won, 2=Human Won, 3=Tie.

# This architecture must be adhered to strictly for this program to work. Here

# is sample Lisp code that will handle this interaction. However, the other

# program may be written in any programming language, including Python.

#(defun play ()

#(let ((gameBoard (make-hash-table :size 10))

#(memo (make-hash-table :size 27 :test #'equalp))

#(lastMove nil))

#(do () (nil nil)

#;(printBoard gameBoard)

#(let ((msgId (read)))

#(cond ((equal msgId 2) ;; Human turn to call human turn function

#(setf lastMove (humanTurn gameBoard)))

#((equal msgId 0) ;; New Game message

#(progn

#(setf gameBoard (make-hash-table :size 10))

#(setf memo (make-hash-table :size 27 :test #'equalp))

#(format t "0~%")))

#;; Return a 0 to indicate the computer is ready

#((equal msgId 1) ;; Computer Turn message

#(setf lastMove (computerTurn gameBoard)))

#((equal msgId 3) ;; Get Game Status

#(cond ((equal (evalBoard gameBoard lastMove) 1) (format t "1~%"))

#;; The Computer Won

#((equal (evalBoard gameBoard lastMove) -1) (format t "2~%"))

#;; The Human Won

#((fullBoard gameBoard) (format t "3~%"))

#;; It's a draw
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#(t (format t "0~%"))))

#;; The game is not over yet.

#(t (format t "-1~%")))))))

Computer = 1

Human = -1

class Tile(turtle.RawTurtle):

def __init__(self,canvas,row,col,app):

super().__init__(canvas)

self.val = 0

self.row = row

self.col = col

self.tttApplication = app

self.penup()

self.ht()

self.goto(col*100+50,row*100+50)

def setShape(self,horc,screen):

self.val = horc

if horc == Computer:

self.shape("blackchecker.gif")

else:

self.shape("redchecker.gif")

self.drop(screen)

def getOwner(self):

return self.val

def clicked(self):

print(self.row,self.col)

def drop(self,screen):

self.goto(self.col*100+50,0)

screen.tracer(1)

self.speed(5)

self.st()

self.goto(self.col*100+50,self.row*100+55)

self.goto(self.col*100+50,self.row*100+45)

self.goto(self.col*100+50,self.row*100+50)

screen.tracer(0)

class Connect4Application(tkinter.Frame):

def __init__(self, master=None):

super().__init__(master)

self.pack()

self.buildWindow()

self.running = False

def buildWindow(self):

self.master.title("Connect Four")

bar = tkinter.Menu(self.master)

fileMenu = tkinter.Menu(bar,tearoff=0)

fileMenu.add_command(label="Exit",command=self.master.quit)

bar.add_cascade(label="File",menu=fileMenu)

self.master.config(menu=bar)

canvas = tkinter.Canvas(self,width=700,height=600)
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canvas.pack(side=tkinter.LEFT)

theTurtle = turtle.RawTurtle(canvas)

theTurtle.ht()

screen = theTurtle.getscreen()

screen.setworldcoordinates(0,600,700,0)

screen.register_shape("blackchecker.gif")

screen.register_shape("redchecker.gif")

screen.tracer(0)

screen.bgcolor("yellow")

theTurtle.width(5)

for k in range(6):

theTurtle.penup()

theTurtle.goto(k*100+100,0)

theTurtle.pendown()

theTurtle.goto(k*100+100,600)

theTurtle.ht()

screen.update()

def checkStatus():

toOther.write("3\n")

toOther.flush()

status = int(fromOther.readline().strip())

if status == 1:

tkinter.messagebox.showinfo("Game Over", "I Won!!!!!")

elif status == 2:

tkinter.messagebox.showinfo("Game Over", "You Won!!!!!")

elif status == 3:

tkinter.messagebox.showinfo("Game Over", "It's a tie.")

#print("Status is ", status)

return status

def ComputerTurn():

toOther.write("1\n")

toOther.flush()

status = int(fromOther.readline().strip())

#print("Computer Turn Other Status = ", status)

if status == 0:

move = int(fromOther.readline())

#print("Move is", move)

row = move // 7

col = move % 7

matrix[row][col].setShape(Computer,screen)

screen.update()

def HumanTurn(x,y):

if self.running:

return

#status = checkStatus()

#if status != 0:

#return

self.running = True

col = int(x) // 100

row = 5

while row >= 0 and matrix[row][col].isvisible():

row = row - 1
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if row < 0:

#Then we clicked in a column that was already full.

self.running = True

return

val = row * 7 + col

# Do the Human Turn

toOther.write("2\n")

toOther.flush()

toOther.write(str(val) + "\n")

toOther.flush()

status = fromOther.readline().strip()

#print("Status is ",status)

matrix[row][col].setShape(Human,screen)

screen.update()

# Check the status of the game

status = checkStatus()

if status == 0:

# Do a Computer Turn

ComputerTurn()

checkStatus()

self.running = False

matrix = []

for i in range(6):

row = []

for j in range(7):

t = Tile(canvas,i,j,self)

row.append(t)

matrix.append(row)

screen.update()

screen.onclick(HumanTurn)

sideBar = tkinter.Frame(self,padx=5,pady=5, relief=tkinter.RAISED,borderwidth="5pt")

sideBar.pack(side=tkinter.RIGHT, fill=tkinter.BOTH)

def NewGame():

toOther.write("0\n")

toOther.flush()

status = int(fromOther.readline().strip())

for row in matrix:

for token in row:

token.ht()

screen.update()

kb = tkinter.Button(sideBar,text="Pass",command=ComputerTurn)

kb.pack()

ng = tkinter.Button(sideBar,text="New Game",command=NewGame)

ng.pack()

proc = subprocess.Popen(["clisp","c4.fas"],stdout=subprocess.PIPE, \

stdin=subprocess.PIPE,universal_newlines=True)

fromOther = proc.stdout

toOther = proc.stdin
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# To write to the other program you should use commands like this

# toOther.write(val+"\n")

# Don't forget to flush the buffer

# toOther.flush()

# To read from the other program you write

# line = fromOther.readline().strip()

def main():

root = tkinter.Tk()

animApp = Connect4Application(root)

animApp.mainloop()

print("Program Execution Completed.")

if __name__ == "__main__":

main()
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