

Create GUI Applications with Python & Qt6
The hands-on guide to making apps with Python

Martin Fitzpatrick

Version 5.0, 2022-05-25

Table of Contents

Introduction. 1

1. A very brief history of the GUI . 3

2. A bit about Qt . 5

Basic PySide6 Features . 7

3. My first Application. 8

4. Signals & Slots. 19

5. Widgets. 33

6. Layouts . 66

7. Actions, Toolbars & Menus . 94

8. Dialogs . 118

9. Windows . 168

10. Events. 180

Qt Designer . 190

11. Installing Qt Designer. 191

12. Getting started with Qt Designer . 196

13. The Qt Resource system. 215

Theming . 226

14. Styles . 227

15. Palettes. 229

16. Icons . 238

17. Qt Style Sheets (QSS) . 246

Model View Architecture . 301

18. The Model View Architecture — Model View Controller 302

19. A simple Model View — a Todo List . 304

20. Tabular data in ModelViews, with numpy & pandas 322

21. Querying SQL databases with Qt models . 347

Custom Widgets . 379

22. Bitmap Graphics in Qt . 380

23. Creating Custom Widgets . 412

24. Using Custom Widgets in Qt Designer . 447

Concurrent Execution . 456

25. Introduction to Threads & Processes . 457

26. Using the thread pool . 464

27. QRunnable examples . 476

28. Long-running threads . 542

29. Running external commands & processes . 560

Plotting . 570

30. Plotting with PyQtGraph . 571

31. Plotting with Matplotlib. 593

Further PySide6 Features. 611

32. Timers . 612

33. Extending Signals . 619

34. Working with Relative Paths . 630

35. System tray & macOS menus . 636

36. Enums & the Qt Namespace . 647

37. Working with command-line arguments . 658

38. Pythonic PySide6 . 663

Packaging & Distribution . 666

39. Packaging with PyInstaller . 667

40. Creating a Windows installer with InstallForge . 696

41. Creating a macOS Disk Image Installer . 708

42. Creating a Linux Package with . 712

Example applications . 723

43. Mozzarella Ashbadger . 724

44. Moonsweeper. 745

Appendix A: Installing PySide6. 771

Appendix B: Translating C++ Examples to Python. 774

Appendix C: PyQt6 and PySide6 — What’s the difference? 787

Appendix D: What next?. 800

45. Thank you . 801

Index . 802

Introduction
If you want to create GUI applications with Python it can be tricky to know where

to start. There are a lot of new concepts you need to understand to get anything to

work. But, like any coding problem, the first step is learning to approach the

problem in the right way. In this book I take from the basic principles of GUI

development to creating your own, fully functional, desktop apps with PySide6.

The first edition of this book was released in 2016. Since then it has been updated

14 times, adding and expanding chapters in response to reader feedback. There

are more PySide resources available now than when I started, but there is still a

shortage of in-depth, practical guides to building complete apps. This book fills

that gap!

The book is formatted as a series of chapters exploring different aspects of

PySide6 in turn. They are arranged to put the simpler chapters toward the

beginning, but if you have specific requirements for your project, don’t be afraid

to jump around. Each chapter will guide you through learning the fundamental

concepts before taking you through a series of coding examples to gradually

explore and learn how to apply the ideas yourself.

You can download source code and resources for all examples in this book from

http://www.pythonguis.com/d/pyside6-source.zip

It is not possible to give you a complete overview of the entire Qt ecosystem in a

book of this size, so there are links to external resources — both on the

pythonguis.com website and elsewhere. If you find yourself thinking "I wonder if

I can do that?" the best thing you can do is put this book down, then go and find

out! Just keep regular backups of your code along the way so you always have

something to come back to if you royally mess it up.

1

http://www.pythonguis.com/d/pyside6-source.zip

Throughout this book there are boxes like this, giving info, tips

and warnings. All of them can be safely skipped over if you are

in a hurry, but reading them will give you a deeper and more

rounded knowledge of the Qt framework.

2

1. A very brief history of the GUI

The Graphical User Interface has a long and venerable history dating back as

far as the 1960s. Stanford’s NLS (oN-Line System) introduced the mouse and

windows concepts, first demonstrated publicly in 1968. This was followed by the

Xerox PARC Smalltalk system GUI 1973, which is the foundation of most modern

general purpose GUIs.

These early systems already had many of the features we take for granted in

modern desktop GUIs, including windows, menus, radio buttons, check boxes

and icons. This combination of features gave us the early acronym used for these

types of interfaces: WIMP (windows, icons, menus, pointing device — a mouse).

In 1979 the first commercial system featuring a GUI was released — the PERQ

workstation. This spurred a number of other GUI efforts including, notably, the

Apple Lisa (1983), which added the concept of the menu bar and window

controls, as well as other systems from Atari (GEM) and Amiga. On UNIX, the X

Window System emerged in 1984 while the first version of Windows for PC was

released in 1985.

Figure 1. The desktop on Microsoft Windows 3.1 (1992) and Apple System 7 (1991)

Early GUIs were not the instant hit you might think, due to the lack of compatible

software at launch and expensive hardware requirements — particularly for

home users. However, slowly, but steadily, the GUI paradigm become the

3

preferred way to interact with computers and the WIMP metaphor became

firmly established as the standard. That’s not to say there haven’t been attempts

to replace the WIMP metaphor on the desktop. Microsoft Bob (1995), for example,

was Microsoft’s much maligned attempt to replace the desktop with a house.

Figure 2. Microsoft Bob — Discarding the desktop metaphor for a cartoon house.

There has been no shortage of user interfaces hailed as revolutionary in their

time, from the launch of Windows 95 (1995) through to Mac OS X (2001), GNOME

Shell (2011) and Windows 10 (2015). Each of these overhauled the UI of their

respective systems, often with much fanfare, but fundamentally nothing really

changed. These user interfaces are still very much WIMP systems and function in

much the same way as GUIs have since the 1980s.

When the revolution came, it was mobile — the mouse has been replaced by

touch, and windows by full-screen apps. But even in a world where we all walk

around with smartphones in our pocket, a huge amount of daily work is still

done on desktop computers. WIMP has survived 40 years of innovation and looks

to survive many more.

4

2. A bit about Qt

Qt is a free and open-source widget toolkit for creating cross-platform GUI

applications, allowing applications to target multiple platforms from Windows,

macOS, Linux and Android with a single codebase. But Qt is much more than a

widget toolkit and features built in support for multimedia, databases, vector

graphics and MVC interfaces, it is more accurate to think of it as an application

development framework.

Qt was started by Eirik Chambe-Eng and Haavard Nord in 1991, founding the

first Qt company Trolltech in 1994. Qt is currently developed by The Qt Company

and continues to be regularly updated, adding features and extending mobile

and cross-platform support.

Qt and PySide6

PySide6, also known as Qt for Python is a Python binding of the Qt toolkit,

currently developed by The Qt Company. When you write applications using

PySide6 what you are really doing is writing applications in Qt. The PySide6

library is actually a wrapper around the C++ Qt library, which makes it possible

to use it in Python.

Because this is a Python interface to a C++ library, the naming conventions used

within PySide6 do not adhere to PEP8 standards. For example, functions and

variables are named using mixedCase rather than snake_case. Whether you adhere

to this standard in your own applications is entirely up to you, however I find it

helpful to continue to follow Python standards for my own code, to help clarify

where the PySide6 code ends and your own begins.

Lastly, while there is PySide6 specific documentation available, you will often

find yourself reading the Qt documentation itself as it is more complete. If you

need advice on converting Qt C++ code to Python, take a look at Translating C++

Examples to Python.

5

with DR.MARTIN FITZPATRICK
ACADEMY

Updates & Additional Resources
This book is regularly updated. If you bought this book from me directly you’ll
receive automatic digital updates as they are released. If you bought the book
elsewhere, send your receipt to register@pythonguis.com to get the latest digital
edition & register for future updates.

You may also be interested in joining my Python GUI Academy where I have video
tutorials covering the topics in this book & beyond!

Join me at academy.pythonguis.com

Basic PySide6 Features
It’s time to take your first steps in creating GUI applications with PySide6!

In this chapter you will be introduced to the basics of PySide6 that are the

foundations of any application you create. We will develop a simple windowed

application on your desktop. We’ll add widgets, arrange them using layouts and

connect these widgets to functions, allowing you to trigger application behavior

from your GUI.

Use the provided code as your guide, but always feel free to experiment. That’s

the best way to learn how things work.

Before you get started, you need a working installation of

PySide6. If you don’t have one yet, check out Installing PySide6.

Don’t forget to download the source code that accompanies this

book from http://www.pythonguis.com/d/pyside6-source.zip

7

http://www.pythonguis.com/d/pyside6-source.zip

3. My first Application

Let’s create our first application! To start create a new Python file — you can call

it whatever you like (e.g. myapp.py) and save it somewhere accessible. We’ll write

our simple app in this file.

We’ll be editing within this file as we go along, and you may

want to come back to earlier versions of your code, so

remember to keep regular backups.

Creating your App

The source code for your very first application is shown below. Type it in

verbatim, and be careful not to make mistakes. If you do mess up, Python will let

you know what’s wrong. If you don’t feel like typing it all in, the file is included in

the source code with this book.

8

Listing 1. basic/creating_a_window_1.py

from PySide6.QtWidgets import QApplication, QWidget

Only needed for access to command line arguments

import sys

You need one (and only one) QApplication instance per application.

Pass in sys.argv to allow command line arguments for your app.

If you know you won't use command line arguments QApplication([])

works too.

app = QApplication(sys.argv)

Create a Qt widget, which will be our window.

window = QWidget()

window.show() # IMPORTANT!!!!! Windows are hidden by default.

Start the event loop.

app.exec()

Your application won't reach here until you exit and the event

loop has stopped.

First, launch your application. You can run it from the command line like any

other Python script, for example — 

python MyApp.py

Or, for Python 3 — 

python3 MyApp.py

From now on, you’ll see the following box as a hint to run your application and

test it out, along with an indication of what you’ll see.

9

 Run it! You will now see your window. Qt automatically creates a window

with the normal window decorations and you can drag it around and resize

it like any window.

What you’ll see will depend on what platform you’re running this example on.

The image below shows the window as displayed on Windows, macOS and Linux

(Ubuntu).

Figure 3. Our window, as seen on Windows, macOS and Linux.

Stepping through the code

Let’s step through the code line by line, so we understand exactly what is

happening.

First, we import the PySide6 classes that we need for the application. Here we’re

importing QApplication, the application handler and QWidget, a basic empty GUI

widget, both from the QtWidgets module.

from PySide6.QtWidgets import QApplication, QWidget

The main modules for Qt are QtWidgets, QtGui and QtCore.

You could use from <module> import * but this kind of global

import is generally frowned upon in Python, so we’ll avoid it

here.

10

Next we create an instance of QApplication, passing in sys.arg, which is Python

list containing the command line arguments passed to the application.

app = QApplication(sys.argv)

If you know you won’t be using command line arguments to control Qt you can

pass in an empty list instead, e.g.

app = QApplication([])

Next we create an instance of a QWidget using the variable name window.

window = QWidget()

window.show()

In Qt all top level widgets are windows — that is, they don’t have a parent and are

not nested within another widget or layout. This means you can technically

create a window using any widget you like.

I can’t see my window!

Widgets without a parent are invisible by default. So, after

creating the window object, we must always call .show() to make

it visible. You can remove the .show() and run the app, but you’ll

have no way to quit it!

What is a window?

• Holds the user-interface of your application

• Every application needs at least one (…but can have more)

• Application will (by default) exit when last window is closed

Finally, we call app.exec() to start up the event loop.

11

What’s the event loop?

Before getting the window on the screen, there are a few key concepts to

introduce about how applications are organised in the Qt world. If you’re already

familiar with event loops you can safely skip to the next section.

The core of every Qt Application is the QApplication class. Every application

needs one — and only one — QApplication object to function. This object holds

the event loop of your application — the core loop which governs all user

interaction with the GUI.

Figure 4. The event loop in Qt.

Each interaction with your application — whether a press of a key, click of a

mouse, or mouse movement — generates an event which is placed on the event

queue. In the event loop, the queue is checked on each iteration and if a waiting

event is found, the event and control is passed to the specific event handler for

the event. The event handler deals with the event, then passes control back to the

event loop to wait for more events. There is only one running event loop per

application.

12

The QApplication class

• QApplication holds the Qt event loop

• One QApplication instance required

• Your application sits waiting in the event loop until an action

is taken

• There is only one event loop at any time

QMainWindow

As we discovered in the last part, in Qt any widgets can be windows. For example,

if you replace QtWidget with QPushButton. In the example below, you would get a

window with a single push-able button in it.

Listing 2. basic/creating_a_window_2.py

import sys

from PySide6.QtWidgets import QApplication, QPushButton

app = QApplication(sys.argv)

window = QPushButton("Push Me")

window.show()

app.exec()

This is neat, but not really very useful — it’s rare that you need a UI that consists

of only a single control! But, as we’ll discover later, the ability to nest widgets

within other widgets using layouts means you can construct complex UIs inside

an empty QWidget.

But, Qt already has a solution for you — the QMainWindow. This is a pre-made

widget which provides a lot of standard window features you’ll make use of in

your apps, including toolbars, menus, a statusbar, dockable widgets and more.

13

We’ll look at these advanced features later, but for now, we’ll add a simple empty

QMainWindow to our application.

Listing 3. basic/creating_a_window_3.py

from PySide6.QtWidgets import QApplication, QMainWindow

import sys

app = QApplication(sys.argv)

window = QMainWindow()

window.show() # IMPORTANT!!!!! Windows are hidden by default.

Start the event loop.

app.exec()

 Run it! You will now see your main window. It looks exactly the same as

before!

So our QMainWindow isn’t very interesting at the moment. We can fix that by adding

some content. If you want to create a custom window, the best approach is to

subclass QMainWindow and then include the setup for the window in the __init__

block. This allows the window behavior to be self contained. We can add our own

subclass of QMainWindow — call it MainWindow to keep things simple.

14

Listing 4. basic/creating_a_window_4.py

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QPushButton,

) ①

Subclass QMainWindow to customize your application's main window

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 # Set the central widget of the Window.

 self.setCentralWidget(button) ③

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① Common Qt widgets are always imported from the QtWidgets namespace.

② We must always call the __init__ method of the super() class.

③ Use .setCentralWidget to place a widget in the QMainWindow.

When you subclass a Qt class you must always call the super

__init__ function to allow Qt to set up the object.

15

In our __init__ block we first use .setWindowTitle() to change the title of our

main window. Then we add our first widget — a QPushButton — to the middle of

the window. This is one of the basic widgets available in Qt. When creating the

button you can pass in the text that you want the button to display.

Finally, we call .setCentralWidget() on the window. This is a QMainWindow specific

function that allows you to set the widget that goes in the middle of the window.

 Run it! You will now see your window again, but this time with the

QPushButton widget in the middle. Pressing the button will do nothing, we’ll

sort that next.

Figure 5. Our QMainWindow with a single QPushButton on Windows, macOS and Linux.

Hungry for widgets?

We’ll cover more widgets in detail shortly but if you’re impatient

and would like to jump ahead you can take a look at the

QWidget documentation. Try adding the different widgets to

your window!

Sizing windows and widgets

The window is currently freely resizable — if you grab any corner with your

mouse you can drag and resize it to any size you want. While it’s good to let your

users resize your applications, sometimes you may want to place restrictions on

16

http://doc.qt.io/qt-5/widget-classes.html#basic-widget-classes

minimum or maximum sizes, or lock a window to a fixed size.

In Qt sizes are defined using a QSize object. This accepts width and height

parameters in that order. For example, the following will create a fixed size

window of 400x300 pixels.

Listing 5. basic/creating_a_window_end.py

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

Subclass QMainWindow to customize your application's main window

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 self.setFixedSize(QSize(400, 300)) ①

 # Set the central widget of the Window.

 self.setCentralWidget(button)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① Setting the size of the window.

 Run it! You will see a fixed size window — try and resize it, it won’t work.

17

Figure 6. Our fixed-size window, notice that the maximize control is disabled on

Windows & Linux. On macOS you can maximize the app to fill the screen, but the

central widget will not resize.

As well as .setFixedSize() you can also call .setMinimumSize() and

.setMaximumSize() to set the minimum and maximum sizes respectively.

Experiment with this yourself!

 You can use these size methods on any widget.

In this section we’ve covered the QApplication class, the QMainWindow class, the

event loop and experimented with adding a simple widget to a window. In the

next section we’ll take a look at the mechanisms Qt provides for widgets and

windows to communicate with one another and your own code.

 Save a copy of your file as myapp.py as we’ll need it again later.

18

4. Signals & Slots

So far we’ve created a window and added a simple push button widget to it, but

the button doesn’t do anything. That’s not very useful at all — when you create

GUI applications you typically want them to do something! What we need is a

way to connect the action of pressing the button to making something happen. In

Qt, this is provided by signals and slots.

Signals are notifications emitted by widgets when something happens. That

something can be any number of things, from pressing a button, to the text of an

input box changing, to the text of the window changing. Many signals are

initiated by user action, but this is not a rule.

In addition to notifying about something happening, signals can also send data to

provide additional context about what happened.

You can also create your own custom signals, which we’ll

explore later in Extending Signals.

Slots is the name Qt uses for the receivers of signals. In Python any function (or

method) in your application can be used as a slot — simply by connecting the

signal to it. If the signal sends data, then the receiving function will receive that

data too. Many Qt widgets also have their own built-in slots, meaning you can

hook Qt widgets together directly.

Let’s take a look at the basics of Qt signals and how you can use them to hook

widgets up to make things happen in your apps.

Load up a fresh copy of myapp.py and save it under a new name

for this section.

QPushButton Signals

Our simple application currently has a QMainWindow with a QPushButton set as the

19

central widget. Let’s start by hooking up this button to a custom Python method.

Here we create a simple custom slot named the_button_was_clicked which

accepts the clicked signal from the QPushButton.

Listing 6. basic/signals_and_slots_1.py

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QPushButton,

) ①

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 button.setCheckable(True)

 button.clicked.connect(self.the_button_was_clicked)

 # Set the central widget of the Window.

 self.setCentralWidget(button)

 def the_button_was_clicked(self):

 print("Clicked!")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

20

 Run it! If you click the button you’ll see the text "Clicked!" on the console.

Console output

Clicked!

Clicked!

Clicked!

Clicked!

Receiving data

That’s a good start! We’ve heard already that signals can also send data to

provide more information about what has just happened. The .clicked signal is

no exception, also providing a checked (or toggled) state for the button. For

normal buttons this is always False, so our first slot ignored this data. However,

we can make our button checkable and see the effect.

In the following example, we add a second slot which outputs the checkstate.

21

Listing 7. basic/signals_and_slots_1b.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QPushButton,

) ①

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 button.setCheckable(True)

 button.clicked.connect(self.the_button_was_clicked)

 button.clicked.connect(self.the_button_was_toggled)

 # Set the central widget of the Window.

 self.setCentralWidget(button)

 def the_button_was_clicked(self):

 print("Clicked!")

 def the_button_was_toggled(self, checked):

 print("Checked?", checked)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

22

 Run it! If you press the button you’ll see it highlighted as checked. Press it

again to release it. Look for the check state in the console.

Console output

Clicked!

Checked? True

Clicked!

Checked? False

Clicked!

Checked? True

Clicked!

Checked? False

Clicked!

Checked? True

You can connect as many slots to a signal as you like and can respond to different

versions of signals at the same time on your slots.

Storing data

Often it is useful to store the current state of a widget in a Python variable. This

allows you to work with the values like any other Python variable and without

accessing the original widget. You can either store these values as individual

variables or use a dictionary if you prefer. In the next example we store the

checked value of our button in a variable called button_is_checked on self.

23

Listing 8. basic/signals_and_slots_1c.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button_is_checked = True ①

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 button.setCheckable(True)

 button.clicked.connect(self.the_button_was_toggled)

 button.setChecked(self.button_is_checked) ②

 # Set the central widget of the Window.

 self.setCentralWidget(button)

 def the_button_was_toggled(self, checked):

 self.button_is_checked = checked ③

 print(self.button_is_checked)

① Set the default value for our variable.

② Use the default value to set the initial state of the widget.

③ When the widget state changes, update the variable to match.

You can use this same pattern with any PySide6 widgets. If a widget does not

provide a signal that sends the current state, you will need to retrieve the value

from the widget directly in your handler. For example, here we’re checking the

checked state in a pressed handler.

24

Listing 9. basic/signals_and_slots_1d.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button_is_checked = True

 self.setWindowTitle("My App")

 self.button = QPushButton("Press Me!") ①

 self.button.setCheckable(True)

 self.button.released.connect(

 self.the_button_was_released

) ②

 self.button.setChecked(self.button_is_checked)

 # Set the central widget of the Window.

 self.setCentralWidget(self.button)

 def the_button_was_released(self):

 self.button_is_checked = self.button.isChecked() ③

 print(self.button_is_checked)

① We need to keep a reference to the button on self so we can access it in our

slot.

② The released signal fires when the button is released, but does not send the

check state.

③ .isChecked() returns the check state of the button.

Changing the interface

So far we’ve seen how to accept signals and print output to the console. But how

about making something happen in the interface when we click the button? Let’s

update our slot method to modify the button, changing the text and disabling the

button so it is no longer clickable. We’ll also remove the checkable state for now.

25

Listing 10. basic/signals_and_slots_2.py

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 self.button = QPushButton("Press Me!") ①

 self.button.clicked.connect(self.the_button_was_clicked)

 # Set the central widget of the Window.

 self.setCentralWidget(self.button)

 def the_button_was_clicked(self):

 self.button.setText("You already clicked me.") ②

 self.button.setEnabled(False) ③

 # Also change the window title.

 self.setWindowTitle("My Oneshot App")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① We need to be able to access the button in our the_button_was_clicked method,

so we keep a reference to it on self.

② You can change the text of a button by passing a str to .setText().

③ To disable a button call .setEnabled() with False.

26

 Run it! If you click the button the text will change and the button will

become unclickable.

You’re not restricted to changing the button that triggers the signal, you can do

anything you want in your slot methods. For example, try adding the following

line to the_button_was_clicked method to also change the window title.

self.setWindowTitle("A new window title")

Most widgets have their own signals and the QMainWindow we’re using for our

window is no exception.

In the following more complex example, we connect the .windowTitleChanged

signal on the QMainWindow to a custom slot method the_window_title_changed. This

slot also receives the new window title.

Listing 11. basic/signals_and_slots_3.py

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

import sys

from random import choice

window_titles = [①

 "My App",

 "My App",

 "Still My App",

 "Still My App",

 "What on earth",

 "What on earth",

 "This is surprising",

 "This is surprising",

 "Something went wrong",

]

class MainWindow(QMainWindow):

27

 def __init__(self):

 super().__init__()

 self.n_times_clicked = 0

 self.setWindowTitle("My App")

 self.button = QPushButton("Press Me!")

 self.button.clicked.connect(self.the_button_was_clicked)

 self.windowTitleChanged.connect(

 self.the_window_title_changed

) ②

 # Set the central widget of the Window.

 self.setCentralWidget(self.button)

 def the_button_was_clicked(self):

 print("Clicked.")

 new_window_title = choice(window_titles)

 print("Setting title: %s" % new_window_title)

 self.setWindowTitle(new_window_title) ③

 def the_window_title_changed(self, window_title):

 print("Window title changed: %s" % window_title) ④

 if window_title == "Something went wrong":

 self.button.setDisabled(True)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① A list of window titles we’ll select from using random.choice().

② Hook up our custom slot method the_window_title_changed to the windows

.windowTitleChanged signal.

28

③ Set the window title to the new title.

④ If the new window title equals "Something went wrong" disable the button.

 Run it! Click the button repeatedly until the title changes to "Something

went wrong" and the button will become disabled.

There are a few things to notice in this example.

Firstly, the windowTitleChanged signal is not always emitted when setting the

window title. The signal only fires if the new title is a change from the previous

one. If you set the same title multiple times, the signal will only be fired the first

time.

It is important to double-check the conditions under which

signals fire, to avoid being surprised when using them in your

app.

Secondly, notice how we are able to chain things together using signals. One thing

happening — a button press — can trigger multiple other things to happen in

turn. These subsequent effects do not need to know what caused them, but

simply follow as a consequence of simple rules. This decoupling of effects from

what triggered them is one of the key considerations when building GUI

applications. We’ll come back to this throughout the book!

In this section we’ve covered signals and slots. We’ve demonstrated some simple

signals and how to use them to pass data and state around your application. Next

we’ll look at the widgets which Qt provides for use in your

applications — together with the signals they provide.

Connecting widgets together directly

So far we’ve seen examples of connecting widget signals to Python methods.

When a signal is fired from the widget, our Python method is called and receives

29

the data from the signal. But you don’t always need to use a Python function to

handle signals — you can also connect Qt widgets directly to one another.

In the following example, we add a QLineEdit widget and a QLabel to the window.

In the __init__ for the window we connect our line edit .textChanged signal to the

.setText method on the QLabel. Now any time the text changes in the QLineEdit

the QLabel will receive that text to it’s .setText method.

30

Listing 12. basic/signals_and_slots_4.py

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QLabel,

 QLineEdit,

 QVBoxLayout,

 QWidget,

)

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 self.label = QLabel()

 self.input = QLineEdit()

 self.input.textChanged.connect(self.label.setText) ①

 layout = QVBoxLayout() ②

 layout.addWidget(self.input)

 layout.addWidget(self.label)

 container = QWidget()

 container.setLayout(layout)

 # Set the central widget of the Window.

 self.setCentralWidget(container)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

31

① Note that to connect the input to the label, the input and label must both be

defined.

② This code adds the two widgets to a layout, and sets that on the window. We’ll

cover this in detail in the following chapters, you can ignore it for now.

 Run it! Type some text in the upper box, and you’ll see it appear

immediately on the label.

Figure 7. Any text typed in the input immediately appears on the label

Most Qt widgets have slots available, to which you can connect any signal that

emits the same type that it accepts. The widget documentation has the slots for

each widget listed under "Public Slots". For example, see QLabel.

32

https://doc.qt.io/qt-5/qlabel.html#public-slots

5. Widgets

In Qt widget is the name given to a component of the UI that the user can interact

with. User interfaces are made up of multiple widgets, arranged within the

window. Qt comes with a large selection of widgets available, and even allows

you to create your own custom widgets.

In the code examples for the book there is a file basic/widgets_list.py which you

can run to display a collection of widgets in a window. It uses a few complex

tricks which we’ll cover later, so don’t worry about the code just now.

 Run it! You will see a window with multiple, interactive, widgets.

Figure 8. The example widgets app shown on Windows, macOS and Linux (Ubuntu).

33

The widgets shown in the example are given below, from top to bottom.

Widget What it does

QCheckbox A checkbox

QComboBox A dropdown list box

QDateEdit For editing dates

QDateTimeEdit For editing dates and datetimes

QDial Rotatable dial

QDoubleSpinbox A number spinner for floats

QFontComboBox A list of fonts

QLCDNumber A quite ugly LCD display

QLabel Just a label, not interactive

QLineEdit Enter a line of text

QProgressBar A progress bar

QPushButton A button

QRadioButton A group with only one active choice

QSlider A slider

QSpinBox An integer spinner

QTimeEdit For editing times

There are far more widgets than this, but they don’t fit so well! For a full list see

the Qt documentation. Here we’re going to take a closer look at some of the most

useful.

Load up a fresh copy of myapp.py and save it under a new name

for this section.

34

https://doc.qt.io/qt-5/qtwidgets-module.html

QLabel

We’ll start the tour with QLabel, arguably one of the simplest widgets available in

the Qt toolbox. This is a simple one-line piece of text that you can position in your

application. You can set the text by passing in a string as you create it — 

widget = QLabel("Hello")

Or, by using the .setText() method — 

widget = QLabel("1") # The label is created with the text 1

widget.setText("2") # The label now shows 2

You can also adjust font parameters, such as the size or alignment of text in the

widget.

35

Listing 13. basic/widgets_1.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLabel("Hello")

 font = widget.font() ①

 font.setPointSize(30)

 widget.setFont(font)

 widget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter) ②

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① We get the current font, using <widget>.font(), modify it and then apply it

back. This ensures the font face remains in keeping with the desktop

conventions.

② The alignment is specified by using a flag from the Qt. namespace.

 Run it! Adjust the font parameters and see the effect.

36

Figure 9. A QLabel on Windows, macOS and Ubuntu

The Qt namespace (Qt.) is full of all sorts of attributes that you

can use to customize and control Qt widgets. We’ll cover that in

detail later in Enums & the Qt Namespace.

37

The flags available for horizontal alignment are — 

Flag Behavior

Qt.AlignLeft Aligns with the left edge.

Qt.AlignRight Aligns with the right edge.

Qt.AlignHCenter Centers horizontally in the available

space.

Qt.AlignJustify Justifies the text in the available space.

The flags available for vertical alignment are — 

Flag Behavior

Qt.AlignTop Aligns with the top.

Qt.AlignBottom Aligns with the bottom.

Qt.AlignVCenter Centers vertically in the available

space.

You can combine flags together using pipes (|), however note that you can only

use one vertical or horizontal alignment flag at a time.

align_top_left = Qt.AlignLeft | Qt.AlignTop

 Run it! Try combining the different alignment flags and seeing the effect

on text position.

38

Qt Flags

Note that you use an OR pipe (|) to combine the two flags by

convention. The flags are non-overlapping bitmasks. e.g.

Qt.AlignLeft has the binary value 0b0001, while Qt.AlignBottom is

0b0100. By ORing together we get the value 0b0101 representing

'bottom left'.

We’ll take a more detailed look at the Qt namespace and Qt flags

later in Enums & the Qt Namespace.

Finally, there is also a shorthand flag that centers in both directions

simultaneously — 

Flag Behavior

Qt.AlignCenter Centers horizontally and vertically

Weirdly, you can also use QLabel to display an image using the .setPixmap()

method. This accepts an pixmap (a pixel array), which you can create by passing

an image filename to QPixmap. In the example files provided with this book you

can find a file otje.jpg which you can display in your window as follows:

39

Listing 14. basic/widgets_2a.py

import sys

from PySide6.QtGui import QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLabel("Hello")

 widget.setPixmap(QPixmap("otje.jpg"))

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

Figure 10. Otje the cat. What a lovely face.

40

 Run it! Resize the window, and the image will be surrounded by empty

space.

 Don’t see the image? Keep reading!

In the example above, we’ve given the name of the file to load using just the

filename otje.jpg. This means that the file will be loaded from the current folder

when the app is run. However, the current folder isn’t necessarily the folder the

script is in — you can run a script from anywhere.

If you change to the folder above cd .. and run the script again the file will not

be found and the image will not load. Oh dear.

Figure 11. Otje the cat has vanished.

This is also a common problem when running scripts from IDEs

which set the paths based on the active project.

To fix this we can get the path of the current script file and use that to determine

the folder the script is in. Since our image is stored in the same folder (or in a

41

folder relative to this location) that also gets us the location of the file.

The file built-in variable gives us the path of the current file. The os.dirname()

function gets the folder (or directory name) from that path, and then we use

os.path.join to build the new path for the file.

Listing 15. basic/widgets_2b.py

import os

import sys

from PySide6.QtGui import QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

basedir = os.path.dirname(__file__)

print("Current working folder:", os.getcwd()) ①

print("Paths are relative to:", basedir) ②

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLabel("Hello")

 widget.setPixmap(QPixmap(os.path.join(basedir, "otje.jpg")))

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① Current working directory.

② Our base path (relative to this file).

42

Don’t worry if you don’t understand this completely yet, we’ll go

into more detail later.

If you run this now, the image will appear as expected — no matter where you

run the script from. The script will also output the path (and current working

directory) to help debug issues. Keep this in mind when loading any external files

from your apps. For a more in depth look at dealing with paths for data files see

Working with Relative Paths.

By default the image scales while maintaining its aspect ratio. If you want it to

stretch and scale to fit the window completely you can set

.setScaledContents(True) on the QLabel.

Modify the code to add .setScaledContents(True) to the label  — 

Listing 16. basic/widgets_2c.py

 widget.setPixmap(QPixmap(os.path.join(basedir, "otje.jpg")))

 widget.setScaledContents(True)

 Run it! Resize the window and the picture will deform to fit.

Figure 12. Showing a pixmap with QLabel on Windows, macOS and Ubuntu

43

QCheckBox

The next widget to look at is QCheckBox which, as the name suggests, presents a

checkable box to the user. However, as with all Qt widgets there are a number of

configurable options to change the widget behaviors.

Listing 17. basic/widgets_3.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QCheckBox, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QCheckBox("This is a checkbox")

 widget.setCheckState(Qt.Checked)

 # For tristate: widget.setCheckState(Qt.PartiallyChecked)

 # Or: widget.setTristate(True)

 widget.stateChanged.connect(self.show_state)

 self.setCentralWidget(widget)

 def show_state(self, s):

 print(s == Qt.Checked)

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

44

 Run it! You’ll see a checkbox with label text.

Figure 13. QCheckBox on Windows, macOS and Ubuntu

You can set a checkbox state programmatically using .setChecked or

.setCheckState. The former accepts either True or False representing checked or

unchecked respectively. However, with .setCheckState you also specify a partially

checked state using a Qt. namespace flag — 

Flag Behavior

Qt.Checked Item is checked

Qt.Unchecked Item is unchecked

Qt.PartiallyChecked Item is partially checked

A checkbox that supports a partially-checked (Qt.PartiallyChecked) state is

commonly referred to as 'tri-state', that is being neither on nor off. A checkbox in

this state is commonly shown as a greyed out checkbox, and is commonly used in

hierarchical checkbox arrangements where sub-items are linked to parent

checkboxes.

If you set the value to Qt.PartiallyChecked the checkbox will become tri-

state — that is have three possible states. You can also set a checkbox to be tri-

state without setting the current state to partially checked by using

.setTristate(True)

45

You may notice that when the script is running the current state

number is displayed as an int with checked = 2, unchecked = 0,

and partially checked = 1. You don’t need to remember these

values — they are just the internal value of these respective

flags. You can test state using state == Qt.Checked.

46

QComboBox

The QComboBox is a drop down list, closed by default with an arrow to open it. You

can select a single item from the list, with the currently selected item being

shown as a label on the widget. The combo box is suited to selection of a choice

from a long list of options.

You have probably seen the combo box used for selection of font

faces, or size, in word processing applications. Although Qt

actually provides a specific font-selection combo box as

QFontComboBox.

You can add items to a QComboBox by passing a list of strings to .addItems(). Items

will be added in the order they are provided.

47

Listing 18. basic/widgets_4.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QComboBox, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QComboBox()

 widget.addItems(["One", "Two", "Three"])

 widget.currentIndexChanged.connect(self.index_changed)

 widget.currentTextChanged.connect(self.text_changed)

 self.setCentralWidget(widget)

 def index_changed(self, i): # i is an int

 print(i)

 def text_changed(self, s): # s is a str

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a combo box with 3 entries. Select one and it will be

shown in the box.

48

Figure 14. QComboBox on Windows, macOS and Ubuntu

The .currentIndexChanged signal is triggered when the currently selected item is

updated, by default passing the index of the selected item in the list. There is also

a .currentTextChanged signal which instead provides the label of the currently

selected item, which is often more useful.

QComboBox can also be editable, allowing users to enter values not currently in the

list and either have them inserted, or simply used as a value. To make the box

editable:

widget.setEditable(True)

You can also set a flag to determine how the insert is handled. These flags are

stored on the QComboBox class itself and are listed below — 

Flag Behavior

QComboBox.NoInsert No insert

QComboBox.InsertAtTop Insert as first item

QComboBox.InsertAtCurrent Replace currently selected item

QComboBox.InsertAtBottom Insert after last item

QComboBox.InsertAfterCurrent Insert after current item

QComboBox.InsertBeforeCurrent Insert before current item

49

Flag Behavior

QComboBox.InsertAlphabetically Insert in alphabetical order

To use these, apply the flag as follows:

widget.setInsertPolicy(QComboBox.InsertAlphabetically)

You can also limit the number of items allowed in the box by using .setMaxCount,

e.g.

widget.setMaxCount(10)

50

QListWidget

Next up is QListWidget. This widget is similar to QComboBox, except options are

presented as a scrollable list of items. It also supports selection of multiple items

at once. A QListWidget offers an currentItemChanged signal which sends the

QListItem (the element of the list widget), and a currentTextChanged signal which

sends the text of the current item.

51

Listing 19. basic/widgets_5.py

import sys

from PySide6.QtWidgets import QApplication, QListWidget, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QListWidget()

 widget.addItems(["One", "Two", "Three"])

 widget.currentItemChanged.connect(self.index_changed)

 widget.currentTextChanged.connect(self.text_changed)

 self.setCentralWidget(widget)

 def index_changed(self, i): # Not an index, i is a QListItem

 print(i.text())

 def text_changed(self, s): # s is a str

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see the same three items, now in a list. The selected item (if

any) is highlighted.

52

Figure 15. A QListWidget on Windows, macOS and Ubuntu

53

QLineEdit

The QLineEdit widget is a simple single-line text editing box, into which users can

type input. These are used for form fields, or settings where there is no restricted

list of valid inputs. For example, when entering an email address, or computer

name.

Listing 20. basic/widgets_6.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QLineEdit, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLineEdit()

 widget.setMaxLength(10)

 widget.setPlaceholderText("Enter your text")

 # widget.setReadOnly(True) # uncomment this to make readonly

 widget.returnPressed.connect(self.return_pressed)

 widget.selectionChanged.connect(self.selection_changed)

 widget.textChanged.connect(self.text_changed)

 widget.textEdited.connect(self.text_edited)

 self.setCentralWidget(widget)

 def return_pressed(self):

 print("Return pressed!")

 self.centralWidget().setText("BOOM!")

 def selection_changed(self):

 print("Selection changed")

 print(self.centralWidget().selectedText())

54

 def text_changed(self, s):

 print("Text changed...")

 print(s)

 def text_edited(self, s):

 print("Text edited...")

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a simple text entry box, with a hint.

Figure 16. QLineEdit on Windows, macOS and Ubuntu

As demonstrated in the above code, you can set a maximum length for the text

field by using .setMaxLength. Placeholder text, which is text shown until

something is entered by the user can be added using .setPlaceholderText.

The QLineEdit has a number of signals available for different editing events

including when return is pressed (by the user), when the user selection is

changed. There are also two edit signals, one for when the text in the box has

been edited and one for when it has been changed. The distinction here is

55

between user edits and programmatic changes. The textEdited signal is only sent

when the user edits text.

Additionally, it is possible to perform input validation using an input mask to

define which characters are supported and where. This can be applied to the

field as follows:

widget.setInputMask('000.000.000.000;_')

The above would allow a series of 3-digit numbers separated with periods, and

could therefore be used to validate IPv4 addresses.

56

QSpinBox and QDoubleSpinBox

QSpinBox provides a small numerical input box with arrows to increase and

decrease the value. QSpinBox supports integers, while the related widget

QDoubleSpinBox supports floats.

A double or double float is a C++ type which is equivalent to

Python’s own float type, hence the name of this widget.

Listing 21. basic/widgets_7.py

import sys

from PySide6.QtWidgets import QApplication, QMainWindow, QSpinBox

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QSpinBox()

 # Or: widget = QDoubleSpinBox()

 widget.setMinimum(-10)

 widget.setMaximum(3)

 # Or: widget.setRange(-10,3)

 widget.setPrefix("$")

 widget.setSuffix("c")

 widget.setSingleStep(3) # Or e.g. 0.5 for QDoubleSpinBox

 widget.valueChanged.connect(self.value_changed)

 widget.textChanged.connect(

 self.value_changed_str

) # Qt 5.14 or later.

 self.setCentralWidget(widget)

 def value_changed(self, i):

57

 print(i)

 def value_changed_str(self, s):

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a numeric entry box. The value shows pre and post fix

units, and is limited to the range +3 to -10.

Figure 17. QSpinBox on Windows, macOS and Ubuntu

The demonstration code above shows the various features that are available for

the widget.

To set the range of acceptable values you can use setMinimum and setMaximum, or

alternatively use setRange to set both simultaneously. Annotation of value types is

supported with both prefixes and suffixes that can be added to the number, e.g.

for currency markers or units using .setPrefix and .setSuffix respectively.

Clicking on the up and down arrows on the widget will increase or decrease the

value in the widget by an amount, which can be set using .setSingleStep. Note

58

that this has no effect on the values that are acceptable to the widget.

Both QSpinBox and QDoubleSpinBox have a .valueChanged signal which fires

whenever their value is altered. The .valueChanged signal sends the numeric

value (either an int or a float) while there is a separate .textChanged signal (Qt

5.14 and later) which sends the value as a string, including both the prefix and

suffix characters.

59

QSlider

QSlider provides a slide-bar widget, which functions internally much like a

QSpinBox. Rather than display the current value numerically, it is represented by

the position of the slider handle along the length of the widget. This is often

useful when providing adjustment between two extremes, but where absolute

accuracy is not required. The most common use of this type of widget is for

volume controls.

There is an additional .sliderMoved signal that is triggered whenever the slider

moves position and a .sliderPressed signal that emits whenever the slider is

clicked.

Listing 22. basic/widgets_8.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QMainWindow, QSlider

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QSlider()

 widget.setMinimum(-10)

 widget.setMaximum(3)

 # Or: widget.setRange(-10,3)

 widget.setSingleStep(3)

 widget.valueChanged.connect(self.value_changed)

 widget.sliderMoved.connect(self.slider_position)

 widget.sliderPressed.connect(self.slider_pressed)

 widget.sliderReleased.connect(self.slider_released)

60

 self.setCentralWidget(widget)

 def value_changed(self, i):

 print(i)

 def slider_position(self, p):

 print("position", p)

 def slider_pressed(self):

 print("Pressed!")

 def slider_released(self):

 print("Released")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a slider widget. Drag the slider to change the value.

Figure 18. QSlider on Windows, macOS and Ubuntu. On Windows the handle expands

to the size of the widget.

You can also construct a slider with a vertical or horizontal orientation by

passing the orientation in as you create it. The orientation flags are defined in the

61

Qt. namespace. For example — 

widget.QSlider(Qt.Vertical)

Or — 

widget.QSlider(Qt.Horizontal)

62

QDial

Finally, the QDial is a rotatable widget that functions just like the slider, but

appears as an analogue dial. This looks nice, but from a UI perspective is not

particularly user friendly. However, they are often used in audio applications as

representation of real-world analogue dials.

Listing 23. basic/widgets_9.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QDial, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QDial()

 widget.setRange(-10, 100)

 widget.setSingleStep(1)

 widget.valueChanged.connect(self.value_changed)

 widget.sliderMoved.connect(self.slider_position)

 widget.sliderPressed.connect(self.slider_pressed)

 widget.sliderReleased.connect(self.slider_released)

 self.setCentralWidget(widget)

 def value_changed(self, i):

 print(i)

 def slider_position(self, p):

 print("position", p)

 def slider_pressed(self):

 print("Pressed!")

63

 def slider_released(self):

 print("Released")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a dial, rotate it to select a number from the range.

Figure 19. QDial on Windows, macOS and Ubuntu

The signals are the same as for QSlider and retain the same names (e.g.

.sliderMoved).

This concludes our brief tour through the Qt widgets available in PySide6. To see

the full list of available widgets, including all their signals and attributes, take a

look at the Qt documentation.

64

http://doc.qt.io/qt-5/

QWidget

There is a QWidget in our demo, but you can’t see it. We previously used QWidget in

our first example to create an empty window. But QWidget can also be used as a

container for other widgets, together with Layouts, to construct windows or

compound widgets. We’ll cover Creating Custom Widgets in more detail later.

Keep QWidget in mind, as you’ll be seeing a lot of it!

65

6. Layouts

So far we’ve successfully created a window and we’ve added a widget to it.

However, you will usually want to add more than one widget to a window, and

have some control over where the widgets you add end up. To arrange widgets

together in Qt we use layouts. There are 4 basic layouts available in Qt, which are

listed in the following table.

Layout Behavior

QHBoxLayout Linear horizontal layout

QVBoxLayout Linear vertical layout

QGridLayout In indexable grid XxY

QStackedLayout Stacked (z) in front of one another

There are three 2-dimensional layouts available in Qt. The QVBoxLayout,

QHBoxLayout and QGridLayout. In addition there is also QStackedLayout which

allows you to place widgets one on top of the other within the same space, yet

showing only one widget at a time.

In this chapter we’ll go through each of these layouts in turn, showing how we

can use them to position widgets in our applications.

Qt Designer

You can actually design and lay out your interface graphically

using the Qt Designer, which we will cover later. Here we’re

using code, as it’s simpler to understand and experiment with

the underlying system.

66

Placeholder widget

Load up a fresh copy of myapp.py and save it under a new name

for this section.

To make it easier to visualize the layouts, we’ll first create a simple custom

widget that displays a solid color of our choosing. This will help to distinguish

widgets that we add to the layout. Create a new file in the same folder as your

script named layout_colorwidget.py and add the following code. We’ll import this

into our app in the next example.

Listing 24. basic/layout_colorwidget.py

from PySide6.QtGui import QColor, QPalette

from PySide6.QtWidgets import QWidget

class Color(QWidget):

 def __init__(self, color):

 super().__init__()

 self.setAutoFillBackground(True)

 palette = self.palette()

 palette.setColor(QPalette.Window, QColor(color))

 self.setPalette(palette)

In this code we subclass QWidget to create our own custom widget Color. We

accept a single parameter when creating the widget — color (a str). We first set

.setAutoFillBackground to True to tell the widget to automatically fill it’s

background with the window color. Next we change the widget’s QPalette.Window

color to a new QColor described by the value color we provided. Finally we apply

this palette back to the widget. The end result is a widget that is filled with a solid

color, that we specify when we create it.

If you find the above confusing, don’t worry too much! We cover Creating

Custom Widgets and Palettes in detail later. For now it’s sufficient that you

67

understand that you can create a solid-filled red widget by with the following

code — 

Color('red')

First let’s test our new Color widget by using it to fill the entire window in a

single color. Once it’s complete we can add it to the main window using

.setCentralWidget and we get a solid red window.

Listing 25. basic/layout_1.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QMainWindow

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = Color("red")

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

68

 Run it! The window will appear, filled completely with the color red.

Notice how the widget expands to fill all the available space.

Figure 20. Our Color widget, filled with solid red color.

Next we’ll look at each of the available Qt layouts in turn. Note that to add our

layouts to the window we will need a dummy QWidget to hold the layout.

69

QVBoxLayout vertically arranged widgets

With QVBoxLayout you arrange widgets one above the other linearly. Adding a

widget adds it to the bottom of the column.

Figure 21. A QVBoxLayout, filled from top to bottom.

Lets add our widget to a layout. Note that in order to add a layout to the

QMainWindow we need to apply it to a dummy QWidget. This allows us to then use

.setCentralWidget to apply the widget (and the layout) to the window. Our

colored widgets will arrange themselves in the layout, contained within the

QWidget in the window. First we just add the red widget as before.

70

Listing 26. basic/layout_2a.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QVBoxLayout()

 layout.addWidget(Color("red"))

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! Notice the border now visible around the red widget. This is the

layout spacing — we’ll see how to adjust that later.

71

Figure 22. Our Color widget, in a layout.

Next add a few more colored widgets to the layout:

72

Listing 27. basic/layout_2b.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QVBoxLayout()

 layout.addWidget(Color("red"))

 layout.addWidget(Color("green"))

 layout.addWidget(Color("blue"))

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

As we add widgets they line themselves up vertically in the order they are added.

73

Figure 23. Three Color widgets arranged vertically in a QVBoxLayout.

74

QHBoxLayout horizontally arranged widgets

QHBoxLayout is the same, except moving horizontally. Adding a widget adds it to

the right hand side.

Figure 24. A QHBoxLayout, filled from left to right.

To use it we can simply change the QVBoxLayout to a QHBoxLayout. The boxes now

flow left to right.

75

Listing 28. basic/layout_3.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QHBoxLayout()

 layout.addWidget(Color("red"))

 layout.addWidget(Color("green"))

 layout.addWidget(Color("blue"))

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

76

 Run it! The widgets should arrange themselves horizontally.

Figure 25. Three Color widgets arranged horizontally in a QHBoxLayout.

77

Nesting layouts

For more complex layouts you can nest layouts inside one another using

.addLayout on a layout. Below we add a QVBoxLayout into the main QHBoxLayout. If

we add some widgets to the QVBoxLayout, they’ll be arranged vertically in the first

slot of the parent layout.

Listing 29. basic/layout_4.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout1 = QHBoxLayout()

 layout2 = QVBoxLayout()

 layout3 = QVBoxLayout()

 layout2.addWidget(Color("red"))

 layout2.addWidget(Color("yellow"))

 layout2.addWidget(Color("purple"))

 layout1.addLayout(layout2)

 layout1.addWidget(Color("green"))

78

 layout3.addWidget(Color("red"))

 layout3.addWidget(Color("purple"))

 layout1.addLayout(layout3)

 widget = QWidget()

 widget.setLayout(layout1)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! The widgets should arrange themselves in 3 columns horizontally,

with the first column also containing 3 widgets stacked vertically.

Experiment!

Figure 26. Nested QHBoxLayout and QVBoxLayout layouts.

You can set the spacing around the layout using .setContentMargins or set the

spacing between elements using .setSpacing.

layout1.setContentsMargins(0,0,0,0)

layout1.setSpacing(20)

The following code shows the combination of nested widgets and layout margins

79

and spacing.

Listing 30. basic/layout_5.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout1 = QHBoxLayout()

 layout2 = QVBoxLayout()

 layout3 = QVBoxLayout()

 layout1.setContentsMargins(0, 0, 0, 0)

 layout1.setSpacing(20)

 layout2.addWidget(Color("red"))

 layout2.addWidget(Color("yellow"))

 layout2.addWidget(Color("purple"))

 layout1.addLayout(layout2)

 layout1.addWidget(Color("green"))

 layout3.addWidget(Color("red"))

 layout3.addWidget(Color("purple"))

80

 layout1.addLayout(layout3)

 widget = QWidget()

 widget.setLayout(layout1)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You should see the effects of spacing and margins. Experiment

with the numbers until you get a feel for them.

Figure 27. Nested QHBoxLayout and QVBoxLayout layouts with spacing and margins

around the widgets.

81

QGridLayout widgets arranged in a grid

As useful as they are, if you try and use QVBoxLayout and QHBoxLayout for laying

out multiple elements, e.g. for a form, you’ll find it very difficult to ensure

differently sized widgets line up. The solution to this is QGridLayout.

Figure 28. A QGridLayout showing the grid positions for each location.

QGridLayout allows you to position items specifically in a grid. You specify row

and column positions for each widget. You can skip elements, and they will be

left empty.

Figure 29. A QGridLayout with unfilled slots.

82

Listing 31. basic/layout_6.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QGridLayout,

 QLabel,

 QMainWindow,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QGridLayout()

 layout.addWidget(Color("red"), 0, 0)

 layout.addWidget(Color("green"), 1, 0)

 layout.addWidget(Color("blue"), 1, 1)

 layout.addWidget(Color("purple"), 2, 1)

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

83

 Run it! You should see the widgets arranged in a grid, aligned despite

missing entries.

Figure 30. Four Color widgets in a QGridLayout.

84

QStackedLayout multiple widgets in the same
space

The final layout we’ll cover is the QStackedLayout. As described, this layout allows

you to position elements directly in front of one another. You can then select

which widget you want to show. You could use this for drawing layers in a

graphics application, or for imitating a tabbed interface. Note there is also

QStackedWidget which is a container widget that works in exactly the same way.

This is useful if you want to add a stack directly to a QMainWindow with

.setCentralWidget.

Figure 31. QStackedLayout — in use only the uppermost widget is visible, which is by

default the first widget added to the layout.

85

Figure 32. QStackedLayout, with the 2nd (1) widget selected and brought to the front.

86

Listing 32. basic/layout_7.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QStackedLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QStackedLayout()

 layout.addWidget(Color("red"))

 layout.addWidget(Color("green"))

 layout.addWidget(Color("blue"))

 layout.addWidget(Color("yellow"))

 layout.setCurrentIndex(3)

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

87

 Run it! You will see only the last widget you added.

Figure 33. A stack widget, showing one widget only (the last-added widget).

QStackedWidget is how tabbed views in applications work. Only one view ('tab') is

visible at any one time. You can control which widget to show at any time by

using .setCurrentIndex() or .setCurrentWidget() to set the item by either the

index (in order the widgets were added) or by the widget itself.

Below is a short demo using QStackedLayout in combination with QButton to

provide a tab-like interface to an application — 

Listing 33. basic/layout_8.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QPushButton,

 QStackedLayout,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

88

 super().__init__()

 self.setWindowTitle("My App")

 pagelayout = QVBoxLayout()

 button_layout = QHBoxLayout()

 self.stacklayout = QStackedLayout()

 pagelayout.addLayout(button_layout)

 pagelayout.addLayout(self.stacklayout)

 btn = QPushButton("red")

 btn.pressed.connect(self.activate_tab_1)

 button_layout.addWidget(btn)

 self.stacklayout.addWidget(Color("red"))

 btn = QPushButton("green")

 btn.pressed.connect(self.activate_tab_2)

 button_layout.addWidget(btn)

 self.stacklayout.addWidget(Color("green"))

 btn = QPushButton("yellow")

 btn.pressed.connect(self.activate_tab_3)

 button_layout.addWidget(btn)

 self.stacklayout.addWidget(Color("yellow"))

 widget = QWidget()

 widget.setLayout(pagelayout)

 self.setCentralWidget(widget)

 def activate_tab_1(self):

 self.stacklayout.setCurrentIndex(0)

 def activate_tab_2(self):

 self.stacklayout.setCurrentIndex(1)

 def activate_tab_3(self):

 self.stacklayout.setCurrentIndex(2)

app = QApplication(sys.argv)

window = MainWindow()

89

window.show()

app.exec()

 Run it! You’ll can now change the visible widget with the button.

Figure 34. A stack widget, with buttons to control the active widget.

Helpfully, Qt provides a built-in tab widget that provides this kind of layout out of

the box - although it’s actually a widget, not a layout. Below the tab demo is

recreated using QTabWidget — 

90

Listing 34. basic/layout_9.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QTabWidget,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 tabs = QTabWidget()

 tabs.setTabPosition(QTabWidget.West)

 tabs.setMovable(True)

 for n, color in enumerate(["red", "green", "blue", "yellow"]):

 tabs.addTab(Color(color), color)

 self.setCentralWidget(tabs)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

As you can see, it’s a little more straightforward — and a bit more attractive! You

91

can set the position of the tabs using the cardinal directions and toggle whether

tabs are moveable with .setMoveable.

Figure 35. The QTabWidget containing our widgets, with tabs shown on the left (West).

Screenshots show Windows, macOS and Ubuntu appearance.

You’ll notice that the macOS tab bar looks quite different from the others — by

default on macOS tabs take on a pill or bubble style. On macOS this is typically

used for tabbed configuration panels. For documents, you can turn on document

mode to give slimline tabs similar to what you see on other platforms. This option

has no effect on other platforms.

Listing 35. basic/layout_9b.py

 tabs = QTabWidget()

 tabs.setDocumentMode(True)

92

Figure 36. QTabWidget with document mode set to True on macOS.

93

7. Actions, Toolbars & Menus

Next we’ll look at some of the common user interface elements, that you’ve

probably seen in many other applications — toolbars and menus. We’ll also

explore the neat system Qt provides for minimising the duplication between

different UI areas — QAction.

Toolbars

One of the most commonly seen user interface elements is the toolbar. Toolbars

are bars of icons and/or text used to perform common tasks within an

application, for which accessing via a menu would be cumbersome. They are one

of the most common UI features seen in many applications. While some complex

applications, particularly in the Microsoft Office suite, have migrated to

contextual 'ribbon' interfaces, the standard toolbar is sufficient for the majority

of applications you will create.

Figure 37. Standard GUI elements - The toolbar

Qt toolbars support display of icons, text, and can also contain any standard Qt

widget. However, for buttons the best approach is to make use of the QAction

system to place buttons on the toolbar.

Let’s start by adding a toolbar to our application.

Load up a fresh copy of myapp.py and save it under a new name

for this section.

In Qt toolbars are created from the QToolBar class. To start you create an

instance of the class and then call .addToolbar on the QMainWindow. Passing a

string in as the first parameter to QToolBar sets the toolbar’s name, which will be

used to identify the toolbar in the UI.

94

Listing 36. basic/toolbars_and_menus_1.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! You’ll see a thin grey bar at the top of the window. This is your

toolbar. Right click and click the name to toggle it off.

Figure 38. A window with a toolbar.

I can’t get my toolbar back!?

Unfortunately once you remove a toolbar there is now no place

to right click to re-add it. So as a general rule you want to either

keep one toolbar un-removeable, or provide an alternative

interface to turn toolbars on and off.

95

Let’s make the toolbar a bit more interesting. We could just add a QButton widget,

but there is a better approach in Qt that gets you some cool features — and that is

via QAction. QAction is a class that provides a way to describe abstract user

interfaces. What this means in English, is that you can define multiple interface

elements within a single object, unified by the effect that interacting with that

element has. For example, it is common to have functions that are represented in

the toolbar but also the menu — think of something like Edit→Cut which is

present both in the Edit menu but also on the toolbar as a pair of scissors, and

also through the keyboard shortcut Ctrl-X (Cmd-X on macOS).

Without QAction you would have to define this in multiple places. But with

QAction you can define a single QAction, defining the triggered action, and then

add this action to both the menu and the toolbar. Each QAction has names, status

messages, icons and signals that you can connect to (and much more).

See the code below for how to add your first QAction.

96

Listing 37. basic/toolbars_and_menus_2.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 button_action = QAction("Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 toolbar.addAction(button_action)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

To start with we create the function that will accept the signal from the QAction so

we can see if it is working. Next we define the QAction itself. When creating the

instance we can pass a label for the action and/or an icon. You must also pass in

any QObject to act as the parent for the action — here we’re passing self as a

reference to our main window. Strangely for QAction the parent element is passed

in as the final parameter.

Next, we can opt to set a status tip — this text will be displayed on the status bar

once we have one. Finally we connect the .triggered signal to the custom

function. This signal will fire whenever the QAction is 'triggered' (or activated).

97

 Run it! You should see your button with the label that you have defined.

Click on it and the our custom function will emit "click" and the status of the

button.

Figure 39. Toolbar showing our QAction button.

Why is the signal always false?

The signal passed indicates whether the action is checked, and

since our button is not checkable — just clickable — it is always

false. This is just like the QPushButton we saw earlier.

Let’s add a statusbar.

We create a status bar object by calling QStatusBar and passing the result into

.setStatusBar. Since we don’t need to change the statusBar settings we can just

pass it in as we create it. We can create and define the status bar in a single line:

98

Listing 38. basic/toolbars_and_menus_3.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 button_action = QAction("Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 toolbar.addAction(button_action)

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! Hover your mouse over the toolbar button and you will see the

status text appear in the status bar at the bottom of the window.

99

Figure 40. Status bar text is updated as we hover our actions.

Next we’re going to turn our QAction toggleable — so clicking will turn it on,

clicking again will turn it off. To do this, we simple call setCheckable(True) on the

QAction object.

100

Listing 39. basic/toolbars_and_menus_4.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 button_action = QAction("Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! Click on the button to see it toggle from checked to unchecked

state. Note that custom slot function we create now alternates outputting

True and False.

Figure 41. The toolbar button toggled on.

101

The .toggled signal

There is also a .toggled signal, which only emits a signal when

the button is toggled. But the effect is identical so it is mostly

pointless.

Things look pretty boring right now, so let’s add an icon to our button. For this I

recommend the fugue icon set by designer Yusuke Kamiyamane. It’s a great set of

beautiful 16x16 icons that can give your apps a nice professional look. It is freely

available with only attribution required when you distribute your application —

although I am sure the designer would appreciate a contribution too if you are

able.

Figure 42. Fugue Icon Set — Yusuke Kamiyamane

Select an image from the set (in the examples here I’ve selected the file bug.png)

and copy it into the same folder as your source code. We can create a QIcon object

by passing the path of the file to the class. We’re loading the icon using the

basedir technique we learnt in the Widgets chapter. This ensures the file can be

found no matter where you run the script from. Finally, to add the icon to the

QAction (and therefore the button) we simply pass it in as the first parameter

when creating the QAction.

102

http://p.yusukekamiyamane.com/

You also need to let the toolbar know how large your icons are, otherwise your

icon will be surrounded by a lot of padding. You can do this by calling

.setIconSize() with a QSize object.

Listing 40. basic/toolbars_and_menus_5.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtGui import QAction, QIcon

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QStatusBar,

 QToolBar,

)

basedir = os.path.dirname(__file__)

tag::MainWindow[]

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "Your button",

 self,

103

)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

end::MainWindow[]

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! The QAction is now represented by an icon.

Everything should function exactly as it did before.

Figure 43. Our action button with an icon.

Note that Qt uses your operating system default settings to determine whether to

show an icon, text or an icon and text in the toolbar. But you can override this by

using .setToolButtonStyle. This slot accepts any of the following flags from the

Qt. namespace:

104

Flag Behavior

Qt.ToolButtonIconOnly Icon only, no text

Qt.ToolButtonTextOnly Text only, no icon

Qt.ToolButtonTextBesideIcon Icon and text, with text beside

the icon

Qt.ToolButtonTextUnderIcon Icon and text, with text under

the icon

Qt.ToolButtonFollowStyle Follow the host desktop style

Which style should I use?

The default value is Qt.ToolButtonFollowStyle, meaning that

your application will default to following the standard/global

setting for the desktop on which the application runs. This is

generally recommended to make your application feel as native

as possible.

Next we’ll add a few more bits and bobs to the toolbar. We’ll add a second button

and a checkbox widget. As mentioned you can literally put any widget in here, so

feel free to go crazy.

Listing 41. basic/toolbars_and_menus_6.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

105

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "Your button",

 self,

)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "Your button2",

 self,

)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action2)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! Now you see multiple buttons and a checkbox.

106

Figure 44. Toolbar with an action and two widgets.

Menus

Menus are another standard component of UIs. Typically they are on the top of

the window, or the top of a screen on macOS. They allow access to all standard

application functions. A few standard menus exist — for example File, Edit, Help.

Menus can be nested to create hierarchical trees of functions and they often

support and display keyboard shortcuts for fast access to their functions.

Figure 45. Standard GUI elements - Menus

To create a menu, we create a menubar we call .menuBar() on the QMainWindow.

We add a menu on our menu bar by calling .addMenu(), passing in the name of

the menu. I’ve called it '&File'. The ampersand defines a quick key to jump to

this menu when pressing Alt.

107

Quick Keys on macOS

This won’t be visible on macOS. Note that this is different from a

keyboard shortcut — we’ll cover that shortly.

This is where the power of actions comes in to play. We can reuse the already

existing QAction to add the same function to the menu. To add an action you call

.addAction passing in one of our defined actions.

Listing 42. basic/toolbars_and_menus_7.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "&Your button",

 self,

)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "Your &button2",

108

 self,

)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action2)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 file_menu.addAction(button_action)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

Click the item in the menu and you will notice that it is toggleable — it inherits

the features of the QAction.

109

Figure 46. Menu shown on the window — on macOS this will be at the top of the screen.

Let’s add some more things to the menu. Here we’ll add a separator to the menu,

which will appear as a horizontal line in the menu, and then add the second

QAction we created.

Listing 43. basic/toolbars_and_menus_8.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

110

 button_action = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "&Your button",

 self,

)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "Your &button2",

 self,

)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action2)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 file_menu.addAction(button_action)

 file_menu.addSeparator()

 file_menu.addAction(button_action2)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! You should see two menu items with a line between them.

111

Figure 47. Our actions showing in the menu.

You can also use ampersand to add accelerator keys to the menu to allow a single

key to be used to jump to a menu item when it is open. Again this doesn’t work

on macOS.

To add a submenu, you simply create a new menu by calling addMenu() on the

parent menu. You can then add actions to it as normal. For example:

Listing 44. basic/toolbars_and_menus_9.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "&Your button",

 self,

112

)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(

 QIcon(os.path.join(basedir, "bug.png")),

 "Your &button2",

 self,

)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action2)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 file_menu.addAction(button_action)

 file_menu.addSeparator()

 file_submenu = file_menu.addMenu("Submenu")

 file_submenu.addAction(button_action2)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

If you run the example now, and hover your mouse over the Submenu entry in

the File menu, you’ll see a single-entry submenu appear containing our 2nd

action. You can continue to add entries to this submenu, the same way you did

for the top level menu.

113

Figure 48. Submenu nested in the File menu.

Finally we’ll add a keyboard shortcut to the QAction. You define a keyboard

shortcut by passing setKeySequence() and passing in the key sequence. Any

defined key sequences will appear in the menu.

Hidden shortcuts

Note that the keyboard shortcut is associated with the QAction

and will still work whether or not the QAction is added to a

menu or a toolbar.

Key sequences can be defined in multiple ways - either by passing as text, using

key names from the Qt namespace, or using the defined key sequences from the

Qt namespace. Use the latter wherever you can to ensure compliance with the

operating system standards.

The completed code, showing the toolbar buttons and menus is shown below.

Listing 45. basic/toolbars_and_menus_end.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

114

 # The `Qt` namespace has a lot of attributes to customize

 # widgets. See: http://doc.qt.io/qt-5/qt.html

 label.setAlignment(Qt.AlignCenter)

 # Set the central widget of the Window. Widget will expand

 # to take up all the space in the window by default.

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "&Your button",

self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 # You can enter keyboard shortcuts using key names (e.g.

Ctrl+p)

 # Qt.namespace identifiers (e.g. Qt.CTRL + Qt.Key_P)

 # or system agnostic identifiers (e.g. QKeySequence.Print)

 button_action.setShortcut(QKeySequence("Ctrl+p"))

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(

 QIcon("bug.png"), "Your &button2", self

)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

115

 file_menu.addAction(button_action)

 file_menu.addSeparator()

 file_submenu = file_menu.addMenu("Submenu")

 file_submenu.addAction(button_action2)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

116

If your users can’t find your application’s actions, they can’t use your app to it’s full
potential. Making actions discoverable is key to creating a user-friendly application. It is a
common mistake to try and address this by adding actions everywhere and end up
overwhelming and confusing your users.

Place common and necessary actions first, making sure they are
easy to find and recall. Think of the File › New in most editing
applications. Quickly accessible at the top of the File menu and
bound with a simple keyboard shortcut Ctrl + N . If New
document… was accessible through File › Common operations ›
File operations › Active document › New or the shortcut Ctrl +
Alt + J users would have a much harder time finding it.

If you hid File › Save away like this, your users would be less likely
to save their work & more likely to lose it — literally and
figuratively! Look at existing applications you have on
your computer to get inspiration. But keep a critical eye,
there is plenty of poorly designed software out there.

Use logical groups in menus & toolbars to make it easier to find something. It is easier to find
something among a small number of alternatives, than in a long list.

Avoid replicating actions in multiple menus, as this will make their purpose ambiguous —
"do these do the same thing?"— even if they have an identical label. Lastly, don’t be tempted
to simplify menus by hiding/removing entries dynamically. This leads to confusion as users
hunt for something that doesn’t exist "…it was here a minute ago". Different states should
be indicated by disabling menu items or using separate windows, clearly distinguishable
interface modes or dialogs.

DO Organize your menus into a hierarchy & group actions logically.
DO Replicate themost common functions onto your toolbars.
DO Disable items in menus when they can’t be used.
DON’T Add the same action to multiple menus.
DON’T Add all your menu actions onto the toolbar.
DON’T Use different names or icons for the same action in different places.
DON’T Remove items from your menus — disable them instead.

Organising Menus & Toolbars

Grouped toolbars in Qt Designer.

File menu sections in Qt Creator,
notice common actions are at the
top, less common further down.

8. Dialogs

Dialogs are useful GUI components that allow you to communicate with the user

(hence the name dialog). They are commonly used for file Open/Save, settings,

preferences, or for functions that do not fit into the main UI of the application.

They are small modal (or blocking) windows that sit in front of the main

application until they are dismissed. Qt actually provides a number of 'special'

dialogs for the most common use-cases, allowing you to provide a platform-

native experience for a better user experience.

Figure 49. Standard GUI features — A search dialog

Figure 50. Standard GUI features — A file Open dialog

In Qt dialog boxes are handled by the QDialog class. To create a new dialog box

simply create a new object of QDialog type passing in a parent widget, e.g.

QMainWindow, as its parent.

Let’s create our own QDialog. We’ll start with a simple skeleton app with a button

to press hooked up to a slot method.

118

Listing 46. basic/dialogs_start.py

import sys

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button = QPushButton("Press me for a dialog!")

 button.clicked.connect(self.button_clicked)

 self.setCentralWidget(button)

 def button_clicked(self, s):

 print("click", s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

In the slot button_clicked (which receives the signal from the button press) we

create the dialog instance, passing our QMainWindow instance as a parent. This will

make the dialog a modal window of QMainWindow. This means the dialog will

completely block interaction with the parent window.

119

Listing 47. basic/dialogs_1.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QDialog,

 QMainWindow,

 QPushButton,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button = QPushButton("Press me for a dialog!")

 button.clicked.connect(self.button_clicked)

 self.setCentralWidget(button)

 def button_clicked(self, s):

 print("click", s)

 dlg = QDialog(self)

 dlg.setWindowTitle("?")

 dlg.exec()

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! Click the button and you’ll see an empty dialog appear.

Once we have created the dialog, we start it using exec() — just like we did for

120

QApplication to create the main event loop of our application. That’s not a

coincidence: when you exec the QDialog an entirely new event loop — specific for

the dialog — is created.

One event loop to rule them all

Remember I said there can only be one Qt event loop running at

any time? I meant it! The QDialog completely blocks your

application execution. Don’t start a dialog and expect anything

else to happen anywhere else in your app.

We’ll see later how you can use multithreading to get you out of

this pickle.

Figure 51. Our empty dialog overlaying the window.

Like our very first window, this isn’t very interesting. Let’s fix that by adding a

dialog title and a set of OK and Cancel buttons to allow the user to accept or reject

the modal.

To customize the QDialog we can subclass it.

121

Listing 48. basic/dialogs_2a.py

class CustomDialog(QDialog):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("HELLO!")

 buttons = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

 self.buttonBox = QDialogButtonBox(buttons)

 self.buttonBox.accepted.connect(self.accept)

 self.buttonBox.rejected.connect(self.reject)

 self.layout = QVBoxLayout()

 message = QLabel("Something happened, is that OK?")

 self.layout.addWidget(message)

 self.layout.addWidget(self.buttonBox)

 self.setLayout(self.layout)

In the above code, we first create our subclass of QDialog which we’ve called

CustomDialog. As for the QMainWindow we apply our customizations in the class

__init__ block so our customizations are applied as the object is created. First we

set a title for the QDialog using .setWindowTitle(), exactly the same way we did

for our main window.

The next block of code is concerned with creating and displaying the dialog

buttons. This is probably a bit more involved than you were expecting. However,

this is due to Qt’s flexibility in handling dialog button positioning on different

platforms.

122

Easy way out?

You could of course choose to ignore this and use a standard

QButton in a layout, but the approach outlined here ensures that

your dialog respects the host desktop standards (OK on left vs.

right for example). Messing around with these behaviors can be

incredibly annoying to your users, so I wouldn’t recommend it.

The first step in creating a dialog button box is to define the buttons you want to

show, using namespace attributes from QDialogButtonBox. The full list of buttons

available is below:

123

Table 1. QDialogButtonBox available button types.

Button types

QDialogButtonBox.Ok

QDialogButtonBox.Open

QDialogButtonBox.Save

QDialogButtonBox.Cancel

QDialogButtonBox.Close

QDialogButtonBox.Discard

QDialogButtonBox.Apply

QDialogButtonBox.Reset

QDialogButtonBox.RestoreDefaults

QDialogButtonBox.Help

QDialogButtonBox.SaveAll

QDialogButtonBox.Yes

QDialogButtonBox.YesToAll

QDialogButtonBox.No

QDialogButtonBox.NoToAll

QDialogButtonBox.Abort

QDialogButtonBox.Retry

QDialogButtonBox.Ignore

QDialogButtonBox.NoButton

These should be sufficient to create any dialog box you can think of. You can

construct a line of multiple buttons by OR-ing them together using a pipe (|). Qt

will handle the order automatically, according to platform standards. For

example, to show an OK and a Cancel button we used:

buttons = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

124

The variable buttons now contains an integer value representing those two

buttons. Next, we must create the QDialogButtonBox instance to hold the buttons.

The flag for the buttons to display is passed in as the first parameter.

To make the buttons have any effect, you must connect the correct

QDialogButtonBox signals to the slots on the dialog. In our case we’ve connected

the .accepted and .rejected signals from the QDialogButtonBox to the handlers for

.accept() and .reject() on our subclass of QDialog.

Lastly, to make the QDialogButtonBox appear in our dialog box we must add it to

the dialog layout. So, as for the main window we create a layout, and add our

QDialogButtonBox to it (QDialogButtonBox is a widget), and then set that layout on

our dialog.

Finally, we launch the CustomDialog in our MainWindow.button_clicked slot.

Listing 49. basic/dialogs_2a.py

 def button_clicked(self, s):

 print("click", s)

 dlg = CustomDialog()

 if dlg.exec():

 print("Success!")

 else:

 print("Cancel!")

 Run it! Click to launch the dialog and you will see a dialog box with

buttons in it.

125

Figure 52. Our dialog with a label and buttons.

When you click the button to launch the dialog, you may notice that it appears

away from the parent window — probably in the center of the screen. Normally

you want dialogs to appear over their launching window to make them easier for

users to find. To do this we need to give Qt a parent for the dialog. If we pass our

main window as the parent, Qt will position the new dialog so that the center of

the dialog aligns with the center of the window.

We can modify our CustomDialog class to accept a parent parameter.

126

Listing 50. basic/dialogs_2b.py

class CustomDialog(QDialog):

 def __init__(self, parent=None): ①

 super().__init__(parent)

 self.setWindowTitle("HELLO!")

 buttons = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

 self.buttonBox = QDialogButtonBox(buttons)

 self.buttonBox.accepted.connect(self.accept)

 self.buttonBox.rejected.connect(self.reject)

 self.layout = QVBoxLayout()

 message = QLabel("Something happened, is that OK?")

 self.layout.addWidget(message)

 self.layout.addWidget(self.buttonBox)

 self.setLayout(self.layout)

① We set a default value of None so we can omit the parent if we wish.

Then, when we create our instance of CustomDialog we can pass the main window

in as a parameter. In our button_clicked method, self is our main window object.

Listing 51. basic/dialogs_2b.py

 def button_clicked(self, s):

 print("click", s)

 dlg = CustomDialog(self)

 if dlg.exec():

 print("Success!")

 else:

 print("Cancel!")

 Run it! Click to launch the dialog and you should see the dialog pop up

right in the middle of the parent window.

127

Figure 53. Our dialog, centered over the parent window.

Congratulations! You’ve created your first dialog box. Of course, you can continue

to add any other content to the dialog box that you like. Simply insert it into the

layout as normal.

There are many common dialogs that are needed in most applications. While you

can construct these dialogs yourself, Qt also provides a number of built-in dialogs

which you can use instead. These dialogs take care of a lot of the work for you,

are well-designed and follow platform standards.

128

Message dialogs with QMessageBox

The first built-in dialog type we’ll look at is QMessageBox. This can be used to

create information, warning, about or question dialogs — similar to the dialogs

we’ve hand-built ourselves. The example below creates a simple QMessageBox and

shows it.

Listing 52. basic/dialogs_3.py

 def button_clicked(self, s):

 dlg = QMessageBox(self)

 dlg.setWindowTitle("I have a question!")

 dlg.setText("This is a simple dialog")

 button = dlg.exec()

 if button == QMessageBox.Ok:

 print("OK!")

 Run it! You’ll see a simple dialog with an OK button.

Figure 54. A QMessageBox dialog.

As with the dialog button box we looked at already, the buttons shown on a

QMessageBox are also configured with a set of constants which can be combined

with | to show multiple buttons. The full list of available button types is shown

below.

Table 2. QMessageBox available button types.

129

Button types

QMessageBox.Ok

QMessageBox.Open

QMessageBox.Save

QMessageBox.Cancel

QMessageBox.Close

QMessageBox.Discard

QMessageBox.Apply

QMessageBox.Reset

QMessageBox.RestoreDefaults

QMessageBox.Help

QMessageBox.SaveAll

QMessageBox.Yes

QMessageBox.YesToAll

QMessageBox.No

QMessageBox.NoToAll

QMessageBox.Abort

QMessageBox.Retry

QMessageBox.Ignore

QMessageBox.NoButton

You can also tweak the icon shown on the dialog by setting the icon with one of

the following.

Table 3. QMessageBox icon constants.

Icon state Description

QMessageBox.NoIcon The message box does not have an icon.

QMessageBox.Question The message is asking a question.

130

Icon state Description

QMessageBox.Information The message is informational only.

QMessageBox.Warning The message is warning.

QMessageBox.Critical The message indicates a critical

problem.

For example, the following creates a question dialog with Yes and No buttons.

Listing 53. basic/dialogs_4.py

from PySide6.QtWidgets import (

 QApplication,

 QDialog,

 QMainWindow,

 QMessageBox,

 QPushButton,

)

class MainWindow(QMainWindow):

 # __init__ skipped for clarity

 def button_clicked(self, s):

 dlg = QMessageBox(self)

 dlg.setWindowTitle("I have a question!")

 dlg.setText("This is a question dialog")

 dlg.setStandardButtons(QMessageBox.Yes | QMessageBox.No)

 dlg.setIcon(QMessageBox.Question)

 button = dlg.exec()

 if button == QMessageBox.Yes:

 print("Yes!")

 else:

 print("No!")

 Run it! You’ll see a question dialog with Yes and No buttons.

131

Figure 55. Question dialog created using QMessageBox.

Standard QMessageBox dialogs

To make things even simpler the QMessageBox also has a number of static methods

which can be used to show these types of message dialog without first

constructing a QMessageBox instance. These methods are shown below — 

QMessageBox.about(parent, title, message)

QMessageBox.critical(parent, title, message)

QMessageBox.information(parent, title, message)

QMessageBox.question(parent, title, message)

QMessageBox.warning(parent, title, message)

The parent parameter is the window which the dialog will be a child of. If you’re

launching your dialog from your main window, you can use self to refer to the

main window object. The following example creates a question dialog, as before,

with Yes and No buttons.

132

Listing 54. basic/dialogs_5.py

 def button_clicked(self, s):

 button = QMessageBox.question(

 self, "Question dialog", "The longer message"

)

 if button == QMessageBox.Yes:

 print("Yes!")

 else:

 print("No!")

 Run it! You’ll see the same result, this time using the built in .question()

method.

Figure 56. The built-in question dialog.

Notice that rather than call exec() we now simply call the dialog method and the

dialog is created. The return value of each of the methods is the button which

was pressed. We can detect what has been pressed by comparing the return

value to the standard button constants.

The four information, question, warning and critical methods also accept optional

buttons and defaultButton arguments which can be used to tweak the buttons

shown on the dialog and select one by default. Generally though you don’t want

to change this from the default.

133

Listing 55. basic/dialogs_6.py

 def button_clicked(self, s):

 button = QMessageBox.critical(

 self,

 "Oh dear!",

 "Something went very wrong.",

 buttons=QMessageBox.Discard

 | QMessageBox.NoToAll

 | QMessageBox.Ignore,

 defaultButton=QMessageBox.Discard,

)

 if button == QMessageBox.Discard:

 print("Discard!")

 elif button == QMessageBox.NoToAll:

 print("No to all!")

 else:

 print("Ignore!")

 Run it! You’ll see a critical dialog with customized buttons.

Figure 57. Critical error! This is a terrible dialog.

134

Asking for single values

Sometimes you need to get a single parameter from the user and want to be able

to display a simple input dialog to get it. For this use-case PySide6 provides the

QInputDialog. This class can be used to get different types of data, as well as

setting limits on the value returned by the user.

The static methods all accept a parent argument for the parent widget (usually

self), a title argument for the dialog window title and a label to show next to

the input, along with other type-specific controls. When called the methods show

a dialog and once closed return a tuple of the value and ok which informs you

whether the OK button was pressed. If ok is False then the dialog was closed.

Let’s first look at the simplest example possible — a button launching a dialog to

get a single integer value from the user. This uses the QDialog.get_int() static

method, passing in the parent self, a window title and a prompt to show next to

the input widget.

135

Listing 56. basic/dialogs_input_1.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QInputDialog,

 QMainWindow,

 QPushButton,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button1 = QPushButton("Integer")

 button1.clicked.connect(self.get_an_int)

 self.setCentralWidget(button1)

 def get_an_int(self):

 my_int_value, ok = QInputDialog.getInt(

 self, "Get an integer", "Enter a number"

)

 print("Result:", ok, my_int_value)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a single button. Press it and you’ll be prompted for a

number.

136

So far so exciting. Let’s extend this example to add a few more buttons, together

with their handler methods. We’ll hook the button’s signals up to the method

slots first and then step through implementing each input method.

Listing 57. basic/dialogs_input_2.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QInputDialog,

 QLineEdit,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QVBoxLayout()

 button1 = QPushButton("Integer")

 button1.clicked.connect(self.get_an_int)

 layout.addWidget(button1)

 button2 = QPushButton("Float")

 button2.clicked.connect(self.get_a_float)

 layout.addWidget(button2)

 button3 = QPushButton("Select")

 button3.clicked.connect(self.get_a_str_from_a_list)

 layout.addWidget(button3)

 button4 = QPushButton("String")

 button4.clicked.connect(self.get_a_str)

 layout.addWidget(button4)

137

 button5 = QPushButton("Text")

 button5.clicked.connect(self.get_text)

 layout.addWidget(button5)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 def get_an_int(self):

 my_int_value, ok = QInputDialog.getInt(

 self, "Get an integer", "Enter a number"

)

 print("Result:", ok, my_int_value)

 def get_a_float(self):

 pass

 def get_a_str_from_a_list(self):

 pass

 def get_a_str(self):

 pass

 def get_text(self):

 pass

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a list of push buttons which you can use to launch

inputs, but only the integer input works for now.

138

Figure 58. Dialog launcher demo. Click the buttons to launch dialogs to enter values.

Pressing on a button will call one of the input methods we’ve defined, let’s

implement them next. We’ll step through each of the QInputDialog methods in

turn, looking at the configuration options available and adding them to the

example.

Integers

As we’ve already seen, to get a int value from the user, you can use the

QInputDialog.getInt() method. This displays a standard Qt QDoubleSpinBox in a

dialog. You can specify the initial value, as well as the minimum and maximum

value range for the input, as well as the step size when using the arrow controls.

139

Listing 58. basic/dialogs_input_3.py

 def get_an_int(self):

 title = "Enter an integer"

 label = "Type your integer here"

 my_int_value, ok = QInputDialog.getInt(

 self,

 title,

 label,

 value=0,

 minValue=-5,

 maxValue=5,

 step=1,

)

 print("Result:", ok, my_int_value)

Figure 59. Integer input dialog

The value entered will be returned even if the user clicks

"Cancel" to exit the dialog. You should always check the value of

the ok return parameter before using the value.

Floats

For float types you can use the QInputDialog.getDouble() method — the double

type is the C++ equivalent of float in Python. This is identical to the getInt input

140

above, with the addition of a decimals argument to control the number of decimal

places shown.

Listing 59. basic/dialogs_input_3.py

 def get_a_float(self):

 title = "Enter a float"

 label = "Type your float here"

 my_float_value, ok = QInputDialog.getDouble(

 self,

 title,

 label,

 value=0,

 minValue=-5.3,

 maxValue=5.7,

 decimals=2,

)

 print("Result:", ok, my_float_value)

Figure 60. Float input dialog

Select from a list of strings

To select an item from a list of strings, you can use the QInputDialog.getItem()

method. The list of strings to select from is given using the items argument. You

can select which of the provided items is initially selected by setting the current

argument to the index of the selected item. By default the list is editable, meaning

141

that users can add new items to the list if they wish. You can disable this behavior

by passing editable=False.

Listing 60. basic/dialogs_input_3.py

 def get_a_str_from_a_list(self):

 title = "Select a string"

 label = "Select a fruit from the list"

 items = ["apple", "pear", "orange", "grape"]

 initial_selection = 2 # orange, indexed from 0

 my_selected_str, ok = QInputDialog.getItem(

 self,

 title,

 label,

 items,

 current=initial_selection,

 editable=False,

)

 print("Result:", ok, my_selected_str)

Figure 61. Input dialog for selection from a list of strings

Single line of text

To get a single line of text from the user you can use QInputDialog.getText. You

142

can provide the initial contents of the input by passing it as the text argument.

The mode argument lets you switch between normal and password modes where

the entered text is shown as asterisks, by passing QLineEdit.EchoMode.Normal or

QLineEdit.EchoMode.Password respectively.

Listing 61. basic/dialogs_input_3.py

 def get_a_str(self):

 title = "Enter a string"

 label = "Type your password"

 text = "my secret password"

 mode = QLineEdit.Password

 my_selected_str, ok = QInputDialog.getText(

 self, title, label, mode, text

)

 print("Result:", ok, my_selected_str)

Figure 62. Single line of text input dialog, in password mode.

Multi-line text

Finally, to enter multi-line text you can use the QLineEdit.getMultiLineText().

This accepts only the initial state of the text.

143

Listing 62. basic/dialogs_input_3.py

 def get_text(self):

 title = "Enter text"

 label = "Type your novel here"

 text = "Once upon a time..."

 my_selected_str, ok = QInputDialog.getMultiLineText(

 self, title, label, text

)

 print("Result:", ok, my_selected_str)

Figure 63. Multi-line text input dialog

 Run it! With all the input methods implemented, you can now click on

each button to see the different input dialogs appear.

144

Working with QInputDialog instances

The static methods described above are fine for most use-cases. However, if you

want finer control over how the QInputDialog behaves you can create an instance

of the QInputDialog and configure it before display — just like other dialog classes.

Below is the same example, but using this approach instead.

Listing 63. basic/dialogs_input_instance.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QInputDialog,

 QLineEdit,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QVBoxLayout()

 button1 = QPushButton("Integer")

 button1.clicked.connect(self.get_an_int)

 layout.addWidget(button1)

 button2 = QPushButton("Float")

 button2.clicked.connect(self.get_a_float)

 layout.addWidget(button2)

 button3 = QPushButton("Select")

 button3.clicked.connect(self.get_a_str_from_a_list)

 layout.addWidget(button3)

145

 button4 = QPushButton("String")

 button4.clicked.connect(self.get_a_str)

 layout.addWidget(button4)

 button5 = QPushButton("Text")

 button5.clicked.connect(self.get_text)

 layout.addWidget(button5)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 def get_an_int(self):

 dialog = QInputDialog(self)

 dialog.setWindowTitle("Enter an integer")

 dialog.setLabelText("Type your integer here")

 dialog.setIntValue(0)

 dialog.setIntMinimum(-5)

 dialog.setIntMaximum(5)

 dialog.setIntStep(1)

 ok = dialog.exec()

 print("Result:", ok, dialog.intValue())

 def get_a_float(self):

 dialog = QInputDialog(self)

 dialog.setWindowTitle("Enter a float")

 dialog.setLabelText("Type your float here")

 dialog.setDoubleValue(0.1)

 dialog.setDoubleMinimum(-5.3)

 dialog.setDoubleMaximum(5.7)

 dialog.setDoubleStep(1.4)

 dialog.setDoubleDecimals(2)

 ok = dialog.exec()

 print("Result:", ok, dialog.doubleValue())

 def get_a_str_from_a_list(self):

 dialog = QInputDialog(self)

 dialog.setWindowTitle("Select a string")

 dialog.setLabelText("Select a fruit from the list")

 dialog.setComboBoxItems(["apple", "pear", "orange", "grape"])

146

 dialog.setComboBoxEditable(False)

 dialog.setTextValue("orange")

 ok = dialog.exec()

 print("Result:", ok, dialog.textValue())

 def get_a_str(self):

 dialog = QInputDialog(self)

 dialog.setWindowTitle("Enter a string")

 dialog.setLabelText("Type your password")

 dialog.setTextValue("my secret password")

 dialog.setTextEchoMode(QLineEdit.Password)

 ok = dialog.exec()

 print("Result:", ok, dialog.textValue())

 def get_text(self):

 dialog = QInputDialog(self)

 dialog.setWindowTitle("Enter text")

 dialog.setLabelText("Type your novel here")

 dialog.setTextValue("Once upon a time...")

 dialog.setOption(

 QInputDialog.UsePlainTextEditForTextInput,

 True,

)

 ok = dialog.exec()

 print("Result:", ok, dialog.textValue())

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! It should work as before — feel free to play around with the

parameters to adjust how it behaves!

147

There are a few things to notice. Firstly, when you call exec() the return value is

the equivalent to the ok value returned earlier (with 1 for True or 0 for False). To

get the actual entered value, you need to use the type-specific methods, for

example .doubleValue(), on the dialog object. Secondly, for the QComboBox selection

from a list of strings, you use the same .setTextValue() (to set) and .textValue()

(to get) methods as for the line or text inputs.

148

File dialogs

One of the most common use-cases for dialogs in applications is for working with

files — whether documents that your application produces, or configuration

settings that you want to persist between uses of your app. Helpfully, PySide6

comes with built-in dialogs for opening files, selecting folders and saving files.

As we’ve mentioned, if you use Qt’s built-in dialog tools then your app will follow

platform standards. In the case of file dialogs, PySide6 goes a step further and

will use the platform’s built-in dialogs for these operations, ensuring that your

application is familiar to your users.

Creating good file dialogs is hard, so I wouldn’t recommend you

try and roll your own.

In PySide6 file dialogs are created using the QFileDialog class. For convenience it

provides a number of static methods which you can call to display specific dialogs

with minimal configuration. Below is a small demo using the

QFileDialog.getOpenFileName() static method to get a filename to open.

149

Listing 64. basic/dialogs_file_1.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QFileDialog,

 QMainWindow,

 QPushButton,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button1 = QPushButton("Open file")

 button1.clicked.connect(self.get_filename)

 self.setCentralWidget(button1)

 def get_filename(self):

 filename, selected_filter = QFileDialog.getOpenFileName(self)

 print("Result:", filename, selected_filter)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! Click the button to launch the file open dialog. Select a file and

[ OK ] or [ Cancel ] the dialog to see what is returned.

As you can see the QFileDialog.getOpenFilename() returns two values. The first is

150

the name of the file selected (or an empty string if the dialog is cancelled). The

second is the currently active file filter — used for filtering visible files in the

dialog. By default this will be All Files (*) and all files will be visible.

The file-based dialogs (open & save) all take a filter argument which is a ;;

-separated list of filter definition strings — this is a bit strange! There is also an

initialFilter which is the string of the filter which is active when the dialog first

opens. Let’s take a look at how these filters are defined and how you can best

work with them.

File filters

The Qt standard for file filters is a string consisting of the following format, where

User-friendly name can be any text and the *.ext is the file-matching filter and

extension. This should be included in brackets at the end of the filter string.

"User-friendly name (*.ext)"

If you want to provide multiple filters, you can separate them with ;; double-

semicolons. An example is shown below, including an * All files filter.

"Portable Network Graphics Image (*.png);;Comma Separated files

(*.csv);;All files (*)"

Below is our example updated to provide the above example filters to the

QFileDialog.getOpenFilename() method.

151

Listing 65. basic/dialogs_file_2.py

 def get_filename(self):

 filters = "Portable Network Graphics files (*.png);;Comma

Separated Values (*.csv);;All files (*)"

 print("Filters are:", filters)

 filename, selected_filter = QFileDialog.getOpenFileName(

 self,

 filter=filters,

)

 print("Result:", filename, selected_filter)

You commonly see *.* used for the all-files filter, however in Qt

this will not match files without an extension.

You can write your filters into a string like this, but it can get a bit unwieldly. If

you want to select a given filter for the initial state, then you need to duplicate

the text (or extract it) from this string. Instead, I recommend you store your file

filter definitions as a list of strings, and then join the list using ;; before passing

to the dialog method. This has the advantage that the initialFilter can be

selected from this list by index.

FILE_FILTERS = [

 "Portable Network Graphics files (*.png)",

 "Text files (*.txt)",

 "Comma Separated Values (*.csv)",

 "All files (*.*)",

]

initial_filter = FILE_FILTERS[2] # *.csv

construct the ;; separated filter string

filters = ';;'.join(FILE_FILTERS)

Our example is updated below to use this approach, with the FILE_FILTERS

defined at the top of the file so they can be used by all the file methods.

Listing 66. basic/dialogs_file_2b.py

152

import sys

from PySide6.QtWidgets import (

 QApplication,

 QFileDialog,

 QMainWindow,

 QPushButton,

)

FILE_FILTERS = [

 "Portable Network Graphics files (*.png)",

 "Text files (*.txt)",

 "Comma Separated Values (*.csv)",

 "All files (*)",

]

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button1 = QPushButton("Open file")

 button1.clicked.connect(self.get_filename)

 self.setCentralWidget(button1)

 def get_filename(self):

 initial_filter = FILE_FILTERS[3] # Select one from the list.

 filters = ";;".join(FILE_FILTERS)

 print("Filters are:", filters)

 print("Initial filter:", initial_filter)

 filename, selected_filter = QFileDialog.getOpenFileName(

 self,

 filter=filters,

 initialFilter=initial_filter,

)

 print("Result:", filename, selected_filter)

app = QApplication(sys.argv)

153

window = MainWindow()

window.show()

app.exec()

Configuring file dialogs

Now we understand the filters, let’s extend our example to add handlers for

more types of file operations. We’ll then step through each of the QFileDialog

methods to see the other configuration options available. Below we’ve added a

series of buttons and hooked them up to file method slots to handle showing the

different dialogs.

Listing 67. basic/dialogs_file_3.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QFileDialog,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

FILE_FILTERS = [

 "Portable Network Graphics files (*.png)",

 "Text files (*.txt)",

 "Comma Separated Values (*.csv)",

 "All files (*)",

]

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

154

 layout = QVBoxLayout()

 button1 = QPushButton("Open file")

 button1.clicked.connect(self.get_filename)

 layout.addWidget(button1)

 button2 = QPushButton("Open files")

 button2.clicked.connect(self.get_filenames)

 layout.addWidget(button2)

 button3 = QPushButton("Save file")

 button3.clicked.connect(self.get_save_filename)

 layout.addWidget(button3)

 button4 = QPushButton("Select folder")

 button4.clicked.connect(self.get_folder)

 layout.addWidget(button4)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 def get_filename(self):

 initial_filter = FILE_FILTERS[3] # Select one from the list.

 filters = ";;".join(FILE_FILTERS)

 print("Filters are:", filters)

 print("Initial filter:", initial_filter)

 filename, selected_filter = QFileDialog.getOpenFileName(

 self,

 filter=filters,

 initialFilter=initial_filter,

)

 print("Result:", filename, selected_filter)

 def get_filenames(self):

 pass

 def get_save_filename(self):

 pass

 def get_folder(self):

155

 pass

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see a list of buttons which can be used to run the file

methods — only the open file works for now.

Figure 64. File dialog launcher demo.

Let’s step through each of the file methods in turn and add them to our example.

156

Open a file

To select a single filename to open you can use the QFileDialog.getOpenFileName()

method.

The static methods all accept a parent argument for the parent widget (usually

self), and a caption argument for the dialog title. They also accept a directory

argument which is the initial directory that the dialog will open in. Both caption

and directory can be empty strings, in which case a default caption will be used

and the dialog will open in the current folder.

In addition to the caption and directory this accepts filter and initialFilter

arguments to configure the file filters. When it completes it returns the selected

file as a string — containing the complete path — and the currently selected filter.

Listing 68. basic/dialogs_file_4.py

 def get_filename(self):

 caption = "" # Empty uses default caption.

 initial_dir = "" # Empty uses current folder.

 initial_filter = FILE_FILTERS[3] # Select one from the list.

 filters = ";;".join(FILE_FILTERS)

 print("Filters are:", filters)

 print("Initial filter:", initial_filter)

 filename, selected_filter = QFileDialog.getOpenFileName(

 self,

 caption=caption,

 directory=initial_dir,

 filter=filters,

 initialFilter=initial_filter,

)

 print("Result:", filename, selected_filter)

157

Figure 65. Standard Windows Open dialog, in dark mode.

Once you have the filename you can load it using standard Python. If the dialog

was closed, the filename variable will be an empty string.

Listing 69. basic/dialogs_file_4b.py

 if filename:

 with open(filename, "r") as f:

 file_contents = f.read()

Open multiple files

Sometimes you want your users to be able to load multiple files at once — for

example to load a collection of data files into your app. The

QFileDialog.getOpenFileNames() method allows you to do this. It takes the same

arguments as the single-file method above, the only difference being that it

returns a list of strings for the selected file paths.

158

Listing 70. basic/dialogs_file_4.py

 def get_filenames(self):

 caption = "" # Empty uses default caption.

 initial_dir = "" # Empty uses current folder.

 initial_filter = FILE_FILTERS[1] # Select one from the list.

 filters = ";;".join(FILE_FILTERS)

 print("Filters are:", filters)

 print("Initial filter:", initial_filter)

 filenames, selected_filter = QFileDialog.getOpenFileNames(

 self,

 caption=caption,

 directory=initial_dir,

 filter=filters,

 initialFilter=initial_filter,

)

 print("Result:", filenames, selected_filter)

You can load the files from filenames by iterating and loading them just as in the

previous example. Selecting a single file is still possible and will return a list with

a single entry. If the dialog is closed without selecting a file filenames will be an

empty list.

Listing 71. basic/dialogs_file_4b.py

 for filename in filenames:

 with open(filename, "r") as f:

 file_contents = f.read()

Save a file

To save a file you can use QFileDialog.getSaveFileName()

159

Listing 72. basic/dialogs_file_4.py

 def get_save_filename(self):

 caption = "" # Empty uses default caption.

 initial_dir = "" # Empty uses current folder.

 initial_filter = FILE_FILTERS[2] # Select one from the list.

 filters = ";;".join(FILE_FILTERS)

 print("Filters are:", filters)

 print("Initial filter:", initial_filter)

 filename, selected_filter = QFileDialog.getSaveFileName(

 self,

 caption=caption,

 directory=initial_dir,

 filter=filters,

 initialFilter=initial_filter,

)

 print("Result:", filename, selected_filter)

Again, you can use the filename variable to save to the file using standard Python.

If the dialog was closed without selecting a file, the filename variable will be an

empty string. If the file exists it will be overwritten and the existing content lost.

You should always check to ensure that the user wants to overwrite a file. In the

example below, we use os.path.exists() to check if the file exists and then show

a QMessageBox to ask the user if they want to proceed to overwrite the existing file.

If they answer No, the file will not be written. If the file doesn’t exist, or the user

answers Yes we write the file.

160

Listing 73. basic/dialogs_file_4b.py

import os

 if filename:

 if os.path.exists(filename):

 # Existing file, ask the user for confirmation.

 write_confirmed = QMessageBox.question(

 self,

 "Overwrite file?",

 f"The file {filename} exists. Are you sure you

want to overwrite it?",

)

 else:

 # File does not exist, always-confirmed.

 write_confirmed = True

 if write_confirmed:

 with open(filename, "w") as f:

 file_content = "YOUR FILE CONTENT"

 f.write(file_content)

Always try to consider the mistakes your users may

make — such as clicking on the wrong file in the save

dialog — and give them the opportunity to save themselves.

Select a folder

To select an existing folder you can use QFileDialog.getExistingDirectory()

folder_path = QFileDialog.getExistingDirectory(parent, caption="",

directory="", options=ShowDirsOnly)

By default the QFileDialog.getExistingDirectory will only show folders. You can

change this by passing in .

161

There are also static methods available for loading remote files,

which return QUrl objects instead. These are

QFileDialog.getSaveFileUrl(), QFileDialog.getOpenFileUrls(),

QFileDialog.getOpenFileUrl() and for folders

QFileDialog.getExistingDirectoryUrl(). See the Qt

documentation for details.

If you want more control over how the file dialogs work you can create a

QFileDialog instance and use the configuration methods instead. Below is the

same file dialog demo but, rather than use the static methods above, we’ve

created a QFileDialog instance and configured it before launching the dialog.

Listing 74. basic/dialogs_file_2.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QFileDialog,

 QLineEdit,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

FILE_FILTERS = [

 "Portable Network Graphics files (*.png)",

 "Text files (*.txt)",

 "Comma Separated Values (*.csv)",

 "All files (*)",

]

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

162

 layout = QVBoxLayout()

 button1 = QPushButton("Open file")

 button1.clicked.connect(self.get_filename)

 layout.addWidget(button1)

 button2 = QPushButton("Open files")

 button2.clicked.connect(self.get_filenames)

 layout.addWidget(button2)

 button3 = QPushButton("Save file")

 button3.clicked.connect(self.get_save_filename)

 layout.addWidget(button3)

 button4 = QPushButton("Select folder")

 button4.clicked.connect(self.get_folder)

 layout.addWidget(button4)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 def get_filename(self):

 caption = "Open file"

 initial_dir = "" # Empty uses current folder.

 initial_filter = FILE_FILTERS[3] # Select one from the list.

 dialog = QFileDialog()

 dialog.setWindowTitle(caption)

 dialog.setDirectory(initial_dir)

 dialog.setNameFilters(FILE_FILTERS)

 dialog.selectNameFilter(initial_filter)

 dialog.setFileMode(QFileDialog.ExistingFile)

 ok = dialog.exec()

 print(

 "Result:",

 ok,

 dialog.selectedFiles(),

 dialog.selectedNameFilter(),

)

163

 def get_filenames(self):

 caption = "Open files"

 initial_dir = "" # Empty uses current folder.

 initial_filter = FILE_FILTERS[1] # Select one from the list.

 dialog = QFileDialog()

 dialog.setWindowTitle(caption)

 dialog.setDirectory(initial_dir)

 dialog.setNameFilters(FILE_FILTERS)

 dialog.selectNameFilter(initial_filter)

 dialog.setFileMode(QFileDialog.ExistingFiles)

 ok = dialog.exec()

 print(

 "Result:",

 ok,

 dialog.selectedFiles(),

 dialog.selectedNameFilter(),

)

 def get_save_filename(self):

 caption = "Save As"

 initial_dir = "" # Empty uses current folder.

 initial_filter = FILE_FILTERS[1] # Select one from the list.

 dialog = QFileDialog()

 dialog.setWindowTitle(caption)

 dialog.setDirectory(initial_dir)

 dialog.setNameFilters(FILE_FILTERS)

 dialog.selectNameFilter(initial_filter)

 dialog.setFileMode(QFileDialog.FileMode.AnyFile)

 ok = dialog.exec()

 print(

 "Result:",

 ok,

 dialog.selectedFiles(),

 dialog.selectedNameFilter(),

)

 def get_folder(self):

 caption = "Select folder"

 initial_dir = "" # Empty uses current folder.

164

 dialog = QFileDialog()

 dialog.setWindowTitle(caption)

 dialog.setDirectory(initial_dir)

 dialog.setFileMode(QFileDialog.FileMode.Directory)

 ok = dialog.exec()

 print(

 "Result:",

 ok,

 dialog.selectedFiles(),

 dialog.selectedNameFilter(),

)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see the same dialog launcher with buttons as before.

You’ll see that using this approach there is very little difference between the

dialogs — you just need to set the appropriate mode and window title. In every

case we retrieve the selected files using dialog.selectedFiles() which returns a

list, even when only a single file is selected. Finally, note that using this approach

you can pass the filters as a list of strings using dialog.setNameFilters() rather

than joining them using ;; although that is still an option using

dialog.setNameFilter() if you prefer.

You can use whichever approach you prefer. As before, the custom QFileDialog

instances are much more configurable (we’ve only scratched the surface here)

however the static methods have perfectly sensible defaults which will save you

some time.

165

With all these methods at your disposal you should be able to create any dialogs

that your application needs!

Qt also provides some less-commonly used dialogs for showing

progress bars (QProgressDialog), one-off error messages

(QErrorMessage), selecting colors (QColorDialog), selecting fonts

(QFontDialog) and displaying wizards to guide users through

tasks (QWizard). See the Qt documentation for details.

166

It’s particularly easy to create bad dialogs. From dialogs that trap users with confusing
options to nested never-ending popups. There are plenty of ways to hurt your users.

Dialog buttons are defined by system standards. You may never have noticed that the OK
& Cancel buttons are reversed on macOS & Linux vs. Windows, but your brain did!

If you do not follow standards, you’ll confuse your users and cause them to make mistakes.
With Qt you get this consistency for free when using the built-in controls. Use them!

Error dialogs always annoy users. When you
show an error dialog you are giving your users
bad news. When you give someone bad news,
you need to consider the impact it will have on
them.

On the left is a real error dialog from Adobe Acrobat Reader. Notice how it explains that
there is an error, what the consequences may be and potentially how to resolve it. But it still
isn’t perfect. The error is shown as an information dialog and the dialog is fired on every
page. There is no way to suppress the repeated messages whenmoving around a document.
The dialog text could also be improved to make it clear that the error is unrecoverable.

DO Take the time to make sure your dialogs are well designed.
DO Test error messages with real users & act on feedback.
DON’T Assume your users will understand programming terms or errors.

User-friendly Dialogs

Some examples of bad dialogs. (*)

* Did you spot what’s wrong with number 4? The default action is destructive!

Dialog button order is platform dependent.

A real dialog from Adobe Acrobat Reader.

An improved version of the Adobe
Acrobat Reader DC dialog)

Good error messages should explain —
• What happened
• What was affected
• What are the consequences of it
• What can be done about it

9. Windows

In the previous chapter we looked at how to open dialog windows. These are

special windows which (by default) grab the focus of the user, and run their own

event loop, effectively blocking the execution of the rest of your app.

However, quite often you will want to open a second window in an application,

without blocking the main window – for example, to show the output of some

long-running process, or to display graphs or other visualizations. Alternatively,

you may want to create an application that allows you to work on multiple

documents at once, all in their own windows.

It’s relatively straightforward to open new windows in PySide6, but there are a

few things to keep in mind to make sure they work well. In this tutorial we’ll step

through how to create a new window and how to show and hide external

windows on demand.

Creating a new window

To create a new window in PySide6 you just need to create a new instance of a

widget object without a parent. This can be any widget (technically any subclass

of QWidget) including another QMainWindow if you prefer.

There is no restriction on the number of QMainWindow instances

you can have, and if you need toolbars or menus on your second

window you will need to use QMainWindow for that too.

As with your main window, creating a window is not sufficient, you must also

show it.

Listing 75. basic/windows_1.py

import sys

from PySide6.QtWidgets import (

168

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window")

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

 w = AnotherWindow()

 w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

If you run this, you’ll see the main window. Clicking the button may show the

second window, but if you see it it will only be visible for a fraction of a second.

169

What’s happening?

 def show_new_window(self, checked):

 w = AnotherWindow()

 w.show()

We are creating our second window inside this method, storing it in the variable

w and showing it. However, once we leave this method the w variable will be

cleaned up by Python, and the window destroyed. To fix this we need to keep a

reference to the window somewhere — on the main window self object, for

example.

Listing 76. basic/windows_1b.py

 def show_new_window(self, checked):

 self.w = AnotherWindow()

 self.w.show()

Now, when you click the button to show the new window, it will persist.

Figure 66. The second window persisting.

However, what happens if you click the button again? The window will be re-

created! This new window will replace the old in the self.w variable, and the

previous window will be destroyed. You can see this more clearly if you change

the AnotherWindow definition to show a random number in the label each time it is

created.

170

Listing 77. basic/windows_2.py

from random import randint

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window % d" % randint(0, 100))

 layout.addWidget(self.label)

 self.setLayout(layout)

The __init__ block is only run when creating the window. If you keep clicking the

button the number will change, showing that the window is being re-created.

Figure 67. The number will change if the button is pressed again.

171

One solution is to simply check whether the window has already being created

before creating it. The full example below shows this in action

Listing 78. basic/windows_3.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = None # No external window yet.

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

 if self.w is None:

 self.w = AnotherWindow()

 self.w.show()

This approach is fine for windows that you create temporarily, or need to change

dependent on the current state of the program – for example if you want to show

a particular plot, or log output. However, for many applications you have a

number of standard windows that you want to be able to show/hide on demand.

In the next part we’ll look at how to work with these types of windows.

Closing a window

As we previously saw, if no reference to a window is kept, it will be discarded

(and closed). We can use this behavior to close a window, replacing the

show_new_window method from the previous example with –

172

Listing 79. basic/windows_4.py

 def show_new_window(self, checked):

 if self.w is None:

 self.w = AnotherWindow()

 self.w.show()

 else:

 self.w = None # Discard reference, close window.

By setting self.w to None (or any other value) the existing reference to the window

will be lost, and the window will close. However, if we set it to any other value

than None the first test will not pass anymore, and we will not be able to recreate

a window.

This will only work if you have not kept a reference to this window somewhere

else. To make sure the window closes regardless, you may want to explicitly call

.close() on it.

Listing 80. basic/windows_4b.py

 def show_new_window(self, checked):

 if self.w is None:

 self.w = AnotherWindow()

 self.w.show()

 else:

 self.w.close()

 self.w = None # Discard reference, close window.

Persistent windows

So far we’ve looked at how to create new windows on demand. However,

sometimes you have a number of standard application windows. In this case it

can often make more sense to create the additional windows first, then use

.show() to display them when needed.

173

In the following example we create our external window in the __init__ block

for the main window, and then our show_new_window method simply calls

self.w.show() to display it.

Listing 81. basic/windows_5.py

import sys

from random import randint

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window % d" % randint(0, 100))

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

174

 self.w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

If you run this, clicking on the button will show the window as before. Note that

the window is only created once and calling .show() on an already visible

window has no effect.

Showing & hiding windows

Once you have created a persistent window you can show and hide it without

recreating it. Once hidden the window still exists, but will not be visible and

accept mouse or other input. However you can continue to call methods on the

window and update it’s state – including changing it’s appearance. Once re-

shown any changes will be visible.

Below we update our main window to create a toggle_window method which

checks, using .isVisible() to see if the window is currently visible. If it is not, it is

shown using .show() , if it is already visible we hide it with .hide().

175

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.toggle_window)

 self.setCentralWidget(self.button)

 def toggle_window(self, checked):

 if self.w.isVisible():

 self.w.hide()

 else:

 self.w.show()

The complete working example of this persistent window and toggling the

show/hide state is shown below.

Listing 82. basic/windows_6.py

import sys

from random import randint

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window.

 """

 def __init__(self):

176

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window % d" % randint(0, 100))

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.toggle_window)

 self.setCentralWidget(self.button)

 def toggle_window(self, checked):

 if self.w.isVisible():

 self.w.hide()

 else:

 self.w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

Again, the window is only created once – the window’s __init__ block is not re-

run (so the number in the label does not change) each time the window is re-

shown.

Connecting signals between windows

In the signals chapter we saw how it was possible to connect widgets together

directly using signals and slots. All we needed was for the destination widget to

have been created and to have a reference to it via a variable. The same principle

applies when connecting signals across windows — you can hook up signals in

one window to slots in another, you just need to be able to access the slot.

177

In the example below, we connect a text input on our main window to a QLabel

on a sub-window.

Listing 83. basic/windows_7.py

import sys

from random import randint

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

 QLineEdit,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window") ②

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.toggle_window)

 self.input = QLineEdit()

 self.input.textChanged.connect(self.w.label.setText) ①

178

 layout = QVBoxLayout()

 layout.addWidget(self.button)

 layout.addWidget(self.input)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 def toggle_window(self, checked):

 if self.w.isVisible():

 self.w.hide()

 else:

 self.w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

① The AnotherWindow window object is available via the variable self.w. The

QLabel via self.w.label and the .setText slot by self.w.label.setText.

② When we create the QLabel we store a reference to it on self as self.label, so

it is accessible externally on the object.

 Run it! Type some text in the upper box, and you’ll see it appear

immediately on the label. The text will be updated even while the window is

hidden — updating the state of widgets is not dependent on them being

visible.

Of course, you’re also free to connect signals on one window to methods on

another. Anything goes, as long as it is accessible. Ensuring components are

importable and accessible to one another is a good motivation for building a

logical project structure. It often makes sense to hook up components centrally, in

your main window/module to avoid cross-importing everything.

179

10. Events

Every interaction the user has with a Qt application is an event. There are many

types of event, each representing a different type of interaction. Qt represents

these events using event objects which package up information about what

happened. These events are passed to specific event handlers on the widget

where the interaction occurred.

By defining custom event handlers you can alter the way your widgets respond to

these events. Event handlers are defined just like any other method, but the

name is specific for the type of event they handle.

One of the main events which widgets receive is the QMouseEvent. QMouseEvent

events are created for each and every mouse movement and button click on a

widget. The following event handlers are available for handling mouse events — 

Event handler Event type moved

mouseMoveEvent Mouse moved

mousePressEvent Mouse button pressed

mouseReleaseEvent Mouse button released

mouseDoubleClickEvent Double click detected

For example, clicking on a widget will cause a QMouseEvent to be sent to the

.mousePressEvent event handler on that widget. This handler can use the event

object to find out information about what happened, such as what triggered the

event and where specifically it occurred.

You can intercept events by sub-classing and overriding the handler method on

the class. You can choose to filter, modify, or ignore events, passing them up to

the normal handler for the event by calling the parent class function with

super(). These could be added to your main window class as shown in the

example below. In each case the argument e will receive the incoming event.

180

Listing 84. basic/events_1.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QTextEdit,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel("Click in this window")

 self.setCentralWidget(self.label)

 def mouseMoveEvent(self, e):

 self.label.setText("mouseMoveEvent")

 def mousePressEvent(self, e):

 self.label.setText("mousePressEvent")

 def mouseReleaseEvent(self, e):

 self.label.setText("mouseReleaseEvent")

 def mouseDoubleClickEvent(self, e):

 self.label.setText("mouseDoubleClickEvent")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

181

 Run it! Try moving and clicking (and double-clicking) in the window and

watch the events appear.

You’ll notice that mouse move events are only registered when you have the

button pressed down. You can change this by calling self.setMouseTracking(True)

on the window. You may also notice that the press (click) and double-click events

both fire when the button is pressed down. Only the release event fires when the

button is released. Typically to register a click from a user you should watch for

both the mouse down and the release.

Inside the event handlers you have access to an event object. This object contains

information about the event and can be used to respond differently depending

on what exactly has occurred. We’ll look at the mouse event objects next.

Mouse events

All mouse events in Qt are tracked with the QMouseEvent object, with information

about the event being readable from the following event methods.

Method Returns

.button() Specific button that triggered this event

.buttons() State of all mouse buttons (OR’ed flags)

.globalPos() Application-global position as a QPoint

.globalX() Application-global horizontal X position

.globalY() Application-global vertical Y position

.pos() Widget-relative position as a QPoint

integer

.posF() Widget-relative position as a QPointF

float

182

You can use these methods within an event handler to respond to different

events differently, or ignore them completely. The positional methods provide

both global and local (widget-relative) position information as QPoint objects,

while buttons are reported using the mouse button types from the Qt namespace.

For example, the following allows us to respond differently to a left, right or

middle click on the window.

183

Listing 85. basic/events_2.py

 def mousePressEvent(self, e):

 if e.button() == Qt.LeftButton:

 # handle the left-button press in here

 self.label.setText("mousePressEvent LEFT")

 elif e.button() == Qt.MiddleButton:

 # handle the middle-button press in here.

 self.label.setText("mousePressEvent MIDDLE")

 elif e.button() == Qt.RightButton:

 # handle the right-button press in here.

 self.label.setText("mousePressEvent RIGHT")

 def mouseReleaseEvent(self, e):

 if e.button() == Qt.LeftButton:

 self.label.setText("mouseReleaseEvent LEFT")

 elif e.button() == Qt.MiddleButton:

 self.label.setText("mouseReleaseEvent MIDDLE")

 elif e.button() == Qt.RightButton:

 self.label.setText("mouseReleaseEvent RIGHT")

 def mouseDoubleClickEvent(self, e):

 if e.button() == Qt.LeftButton:

 self.label.setText("mouseDoubleClickEvent LEFT")

 elif e.button() == Qt.MiddleButton:

 self.label.setText("mouseDoubleClickEvent MIDDLE")

 elif e.button() == Qt.RightButton:

 self.label.setText("mouseDoubleClickEvent RIGHT")

The button identifiers are defined in the Qt namespace, as follows — 

184

Identifier Value

(binar

y)

Represents

Qt.NoButton 0 (000) No button pressed, or the event

is not related to button press.

Qt.LeftButton 1 (001) The left button is pressed

Qt.RightButton 2 (010) The right button is pressed.

Qt.MiddleButton 4 (100) The middle button is pressed.

On right-handed mice the left and right button positions are

reversed, i.e. pressing the right-most button will return

Qt.LeftButton. This means you don’t need to account for the

mouse orientation in your code.

For a more in-depth look at how this all works check out Enums

& the Qt Namespace later.

Context menus

Context menus are small context-sensitive menus which typically appear when

right clicking on a window. Qt has support for generating these menus, and

widgets have a specific event used to trigger them. In the following example

we’re going to intercept the .contextMenuEvent a QMainWindow. This event is fired

whenever a context menu is about to be shown, and is passed a single value event

of type QContextMenuEvent.

To intercept the event, we simply override the object method with our new

method of the same name. So in this case we can create a method on our

MainWindow subclass with the name contextMenuEvent and it will receive all events

of this type.

185

Listing 86. basic/events_3.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtGui import QAction

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QMenu,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 def contextMenuEvent(self, e):

 context = QMenu(self)

 context.addAction(QAction("test 1", self))

 context.addAction(QAction("test 2", self))

 context.addAction(QAction("test 3", self))

 context.exec(e.globalPos())

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

If you run the above code and right-click within the window, you’ll see a context

menu appear. You can set up .triggered slots on your menu actions as normal

(and re-use actions defined for menus and toolbars).

186

When passing the initial position to the exec() method, this must

be relative to the parent passed in while defining. In this case

we pass self as the parent, so we can use the global position.

For completeness, there is also a signal-based approach to creating context

menus.

Listing 87. basic/events_4.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.show()

 self.setContextMenuPolicy(Qt.CustomContextMenu)

 self.customContextMenuRequested.connect(self.on_context_menu)

 def on_context_menu(self, pos):

 context = QMenu(self)

 context.addAction(QAction("test 1", self))

 context.addAction(QAction("test 2", self))

 context.addAction(QAction("test 3", self))

 context.exec(self.mapToGlobal(pos))

It’s entirely up to you which you choose.

Event hierarchy

In pyside6 every widget is part of two distinct hierarchies: the Python object

hierarchy, and the Qt layout hierarchy. How you respond or ignore events can

affect how your UI behaves.

Python inheritance forwarding

Often you may want to intercept an event, do something with it, yet still trigger

the default event handling behavior. If your object is inherited from a standard

widget, it will likely have sensible behavior implemented by default. You can

187

trigger this by calling up to the parent implementation using super().

 This is the Python parent class, not the pyside6 .parent().

def mousePressEvent(self, event):

 print("Mouse pressed!")

 super(self, MainWindow).contextMenuEvent(event)

The event will continue to behave as normal, yet you’ve added some non-

interfering behavior.

Layout forwarding

When you add a widget to your application, it also gets another parent from the

layout. The parent of a widget can be found by calling .parent(). Sometimes you

specify these parents manually, such as for QMenu or QDialog, often it is automatic.

When you add a widget to your main window for example, the main window will

become the widget’s parent.

When events are created for user interaction with the UI, these events are passed

to the uppermost widget in the UI. If you click a button in a window, the button

will receive the event before the window. If the first widget cannot handle the

event, or chooses not to, the event will bubble up to the parent widget, which will

be given a turn. This bubbling continues all the way up nested widgets, until the

event is handled or it reaches the main window.

In your own event handlers you can choose to mark an event as handled by

calling .accept() — 

 class CustomButton(Qbutton)

 def mousePressEvent(self, e):

 e.accept()

Alternatively, you can mark it as unhandled by calling .ignore() on the event

188

object. In this case the event will continue to bubble up the hierarchy.

 class CustomButton(Qbutton)

 def event(self, e):

 e.ignore()

If you want your widget to appear transparent to events, you can safely ignore

events which you’ve actually responded to in some way. Similarly, you can

choose to accept events you are not responding to in order to silence them.

This is potentially confusing, since you might expect that calling

.ignore() will ignore the event completely. This is not the case:

your are ignoring the event for this widget only!

189

Qt Designer
So far we have been creating apps using Python code. This works great in many

cases, but as your applications get larger, or interfaces more complicated, it can

get a bit cumbersome to define all widgets programmatically. The good news is

that Qt comes with a graphical editor — Qt Designer — which contains a drag-

and-drop UI editor. Using Qt Designer you can define your UIs visually and then

simply hook up the application logic later.

In this chapter we’ll cover the basics of creating UIs with Qt Designer. The

principles, layouts and widgets are identical, so you can apply everything you’ve

already learnt. You’ll also need your knowledge of the Python API to hook up

your application logic later.

190

11. Installing Qt Designer

Qt Designer is available in the installation packages for Qt available from the Qt

downloads page. Download and run the appropriate installer for your system

and follow the platform-specific instructions below. Installing Qt Designer will

not affect your PySide6 installation.

Qt Creator vs. Qt Designer

You may also see mentions of Qt Creator. Qt Creator a fully-

fledged IDE for Qt projects, while Qt Designer is the UI design

component. Qt Designer is available within Qt Creator so you

can install that instead if you wish, although it doesn’t provide

any added value for Python projects.

Command line launcher

In recent versions of PySide6 Qt Designer is installed automatically when you

install PySide6 with pip. After installation you can run Qt Designer from the

command line using the built-in launcher.

pyside6-designer

If this doesn’t work check your Python scripts folder is in your

PATH.

If the above installation does not work for you, you can instead follow the

instructions below to install a standalone version of Qt Creator or Qt Designer

depending on your platform.

Windows

Qt Designer is not mentioned in the Windows Qt installer, but is automatically

installed when you install any version of the Qt core libraries. For example, in the

191

https://www.qt.io/download-qt-installer
https://www.qt.io/download-qt-installer

following screenshot we’ve opted to install the MSVC 2017 64-bit version of

Qt — what you choose will have no effect on your Designer install.

Figure 68. Installing Qt, will also install Qt Designer.

If you want to install Qt Creator it is listed under "Developer and Designer Tools".

Rather confusingly, Qt Designer isn’t in here.

Figure 69. Installing the Qt Creator component.

192

macOS

Qt Designer is not mentioned in the macOS Qt installer, but is automatically

installed when you install any version of the Qt core libraries. Download the

installer from the Qt website — you can opt for the open source version.

Figure 70. Inside the downloaded .dmg file you’ll find the installer.

Open the installer to start the installation. Go through to where it asks you to

choose which components to install. Select the macOS package under the latest

version of Qt.

Figure 71. You only need the macOS package under the latest version.

193

Once the installation is complete, open the folder where you installed Qt. The

launcher for Designer is under <version>/clang_64/bin. You’ll notice that Qt

Creator is also installed in the root of the Qt installation folder.

Figure 72. You can find the Designer launcher under the <version>/clang_64/bin folder.

You can run Designer from where it is located, or move it into your Applications

folder so it is available to launch from the macOS Launchpad.

Linux (Ubuntu & Debian)

You can install Qt Designer using your package manager. Depending on your

distribution and version you will have either Qt5 Designer or Qt6 Designer

available. You can use either to develop UI designs for PySide6.

Install Qt5 Designer with

sudo apt-get install qttools5-dev-tools

Or Qt6 Designer with

sudo apt-get install designer-qt6

Once installed, Qt Designer will be available in the launcher.

194

Figure 73. Qt Designer in Ubuntu launcher.

195

12. Getting started with Qt
Designer

In this chapter we’ll take a quick tour through using Qt Designer to design a UI

and exporting that UI for use in your PySide6 application. We’ll only scratch the

surface of what you can do with Qt Designer here. Once you’ve got the basics

down, feel free to experiment more yourself.

Open up Qt Designer and you will be presented with the main window. The

designer is available via the tab on the left hand side. However, to activate this

you first need to start creating a .ui file.

Qt Designer

Qt Designer starts up with the New Form dialog. Here you can choose the type of

interface you’re building — this decides the base widget you will build your

interface on. If you are starting an application then Main Window is usually the

right choice. However, you can also create .ui files for dialog boxes and custom

compound widgets.

Form is the technical name given to a UI layout, since many UIs

resemble a paper form with various input boxes.

196

Figure 74. The Qt Designer interface

Click Create and a new UI will be created with a single empty widget in it. You’re

now ready to start designing your app.

Figure 75. The Qt Designer editor interface, with an empty QMainWindow widget.

Qt Creator

If you’ve installed Qt Creator, the interface and process is slightly different. The

left-hand side has a tab-like interface where you can select from the various

components of the application. One of these is Design, which shows Qt Designer

197

in the main panel.

Figure 76. The Qt Creator interface, with the Design section selected on the left. The Qt

Designer interface is identical to the nested Designer.

All the features of Qt Designer are available in Qt Creator but

some aspects of the user interface are different.

To create a .ui file go to File → New File or Project… In the window that appears

select Qt under Files and Classes on the left, then select Qt Designer Form on the

right. You’ll notice the icon has "ui" on it, showing the type of file you’re creating.

198

Figure 77. Create a new Qt .ui file.

In the next step you’ll be asked what type of UI you want to create. For most

applications Main Window is the right choice. However, you can also create .ui

files for other dialog boxes or build custom widgets using QWidget (listed as

"Widget").

199

Figure 78. Select the type of widget to create, for most applications this will be Main

Window.

Next choose a filename and save folder for your file. Save your .ui file with the

same name as the class you’ll be creating, just to make make subsequent

commands simpler.

200

Figure 79. Choose save name and folder your your file.

Finally, you can choose to add the file to your version control system if you’re

using one. Feel free to skip this step — it doesn’t affect your UI.

201

Figure 80. Optionally add the file to your version control, e.g. Git.

Laying out your Main Window

You’ll be presented with your newly created main window in the UI designer.

There isn’t much to see to begin with, just a grey working area representing the

window, together with the beginnings of a window menu bar.

202

Figure 81. The initial view of the created main window.

You can resize the window by clicking the window and dragging the blue handles

on each corner.

Figure 82. The main window resized to 300 x 300 pixels.

The first step in building an application is to add some widgets to your window.

In our first applications we learnt that to set the central widget for a QMainWindow

203

we need to use .setCentralWidget(). We also saw that to add multiple widgets

with a layout, we need an intermediary QWidget to apply the layout to, rather

than adding the layout to the window directly.

Qt Designer takes care of this for you automatically, although it’s not particularly

obvious about it.

To add multiple widgets to the main window with a layout, first drag your

widgets onto the QMainWindow. Here we’ve dragged a QLabel and a QPushButton, it

doesn’t matter where you drop them.

Figure 83. Main window with 1 labels and 1 button added.

We’ve created 2 widgets by dragging them onto the window, which made them

children of that window. We can now apply a layout.

Find the QMainWindow in the right hand panel (it should be right at the top).

Underneath you see centralwidget representing the window’s central widget. The

icon for the central widget shows the current layout applied. Initially it has a red

circle-cross through it, showing that there is no layout active. Right click on the

QMainWindow object, and find 'Layout' in the resulting dropdown.

204

Figure 84. Right click on the main window, and choose layout.

Next you’ll see a list of layouts which you can apply to the window. Select Lay Out

Horizontally and the layout will be applied to the widget.

Figure 85. Select layout to apply to the main window.

The selected layout is applied to the centralwidget of the QMainWindow and the

widgets are then added to the layout, being laid out according to the layout in

place.

Note that you can drag and re-order the widgets within the layout, which will

switch and move them around according to the layouts constraints. You can also

select a different layout entirely, which is handy for prototyping and trying ideas

out.

205

Don’t try and add a layout without having widgets to go in it.

The layout will collapse to zero size and will not be selectable!

Figure 86. Vertical layout applied to widgets on the main window.

We’ve created a very simple UI in Qt Designer. The next step is to get this UI into

our Python code and use it to construct a working application.

First save your .ui file — by default it will save at the location you chosen while

creating it, although you can choose another location if you like. The .ui file is in

XML format. To use our UI in Python, we can either load it directly from Python

or first convert it to a Python .py file using the pyside6-uic tool.

Loading your .ui file in Python

To load a UI file you can use the QUiLoader available with PySide6.

206

Listing 88. designer/example_1.py

import os

import sys

from PySide6 import QtWidgets

from PySide6.QtUiTools import QUiLoader

basedir = os.path.dirname(__file__)

loader = QUiLoader()

app = QtWidgets.QApplication(sys.argv)

window = loader.load(os.path.join(basedir, "mainwindow.ui"), None)

window.show()

app.exec()

As the loader.load() method turns an instance object you cannot attach custom

__init__() code. You can however handle this through a custom setup function as

shown below.

207

Listing 89. designer/example_2.py

import os

import sys

from PySide6 import QtWidgets

from PySide6.QtUiTools import QUiLoader

loader = QUiLoader()

basedir = os.path.dirname(__file__)

def mainwindow_setup(w):

 w.setWindowTitle("MainWindow Title")

app = QtWidgets.QApplication(sys.argv)

window = loader.load(os.path.join(basedir, "mainwindow.ui"), None)

mainwindow_setup(window)

window.show()

app.exec()

Another alternative is to create a wrapper class and load the UI inside that. The

main window itself is stored as self.ui — you can safely hook signals from this to

methods on your wrapper class.

208

Listing 90. designer/example_3.py

import os

import sys

from PySide6 import QtCore, QtWidgets

from PySide6.QtUiTools import QUiLoader

loader = QUiLoader()

basedir = os.path.dirname(__file__)

class MainUI(QtCore.QObject): # Not a widget.

 def __init__(self):

 super().__init__()

 self.ui = loader.load(

 os.path.join(basedir, "mainwindow.ui"), None

)

 self.ui.setWindowTitle("MainWindow Title")

 self.ui.show()

app = QtWidgets.QApplication(sys.argv)

ui = MainUI()

app.exec()

Converting your .ui file to Python

To generate a Python output file we can use the PySide6 command line utility

pyside6-uic. We run this, passing in the filename of the .ui file and the target file

for output, with a -o parameter. The following will generate a Python file named

MainWindow.py which contains our created UI. I use CamelCase on the filename to

remind myself that it is a PySide6 class file.

pyside6-uic mainwindow.ui -o MainWindow.py

You can open the resulting MainWindow.py file in an editor to take a look, although

you should not edit this file — if you do, any changes will be lost if you regenerate

209

the UI from Qt Designer. The power of using Qt Designer is being able to edit and

update your application as you go.

Building your application

Importing the resulting Python file works as for any other. You can import your

class as follows. The pyside6-uic tool appends Ui_ to the name of the object

defined in Qt Designer, and it is this object you want to import.

from MainWindow import Ui_MainWindow

To create the main window in your application, create a class as normal but

subclassing from both QMainWindow and your imported Ui_MainWindow class. Finally,

call self.setupUi(self) from within the __init__ to trigger the setup of the

interface.

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self, *args, obj=None, **kwargs):

 super(MainWindow, self).__init__(*args, **kwargs)

 self.setupUi(self)

That’s it. Your window is now fully set up.

Adding application logic

You can interact with widgets created through Qt Designer just as you would

those created with code. To make things simpler, pyside6-uic adds all widgets to

the window object.

The name used for objects can be found through Qt Designer.

Simply click on it in the editor window, and then look for

objectName in the properties panel.

In the following example we use the generated main window class to build a

210

working application.

Listing 91. designer/compiled_example.py

import random

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QMainWindow

from MainWindow import Ui_MainWindow

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.show()

 # You can still override values from your UI file within your

code,

 # but if possible, set them in Qt Creator. See the properties

panel.

 f = self.label.font()

 f.setPointSize(25)

 self.label.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)

 self.label.setFont(f)

 # Signals from UI widgets can be connected as normal.

 self.pushButton.pressed.connect(self.update_label)

 def update_label(self):

 n = random.randint(1, 6)

 self.label.setText("%d" % n)

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

Notice that because we haven’t set font size and alignment in the Qt Designer .ui

211

definition, we must do so manually with code. You can change any widget

parameters in this way, just as before. However, it is usually better to configure

these things within Qt Designer itself.

You can set any widget properties through the properties panel on the bottom

right of the window. Most widget properties are exposed here, for example,

below we are updating the font size on the QLabel widget — 

Figure 87. Setting the font size for the QLabel.

You can also configure alignment. For compound properties (where you can set

multiple values, such as left + middle) they are nested.

212

Figure 88. Detailed font properties.

All object properties are able to be edited from both places — it’s up to you

whether you make a particular modification in code or in Qt Designer. As a

general rule, it makes sense to keep dynamic changes in your code and the base

or default state in your designed UI.

This introduction has only scratched the surface of what Qt Designer is capable

of. I highly recommend you dig a little deeper and experiment — remember you

can still add or adjust widgets from code afterwards.

213

If you’re not a designer, it can be difficult to create attractive and intuitive interfaces, or
even know what they are. Thankfully there are simple rules you can follow to create
interfaces that, if not necessarily beautiful, at least aren’t ugly. The key concepts are —
alignment, groups and space.

Alignment is about reducing visual noise. Think of the corners of widgets as alignment
points and aim to minimize the number of unique alignment points in the UI. In practice,
this means making sure the edges of elements in the interface line up with one another.

If you have differently sized inputs, align them against the edge you read from.

Groups of related widgets gain
context making them easier to
understand. Structure your interface so related things are found together.

Space is key to creating visually distinct regions in your interface —without space between
groups, there are no groups! Keep spacing consistent and meaningful.

DO Use alignment to reduce visual noise in your interface.
DO Group related widgets together into logical sets.
DO Add consistent spacing between groups to clarify structure.

Aesthetics

The effect of alignment on interface clarity

English is a left-to-right
language, so if your application
is in English, align the left.

Group elements and add space between groups

13. The Qt Resource system

Building applications takes more than just code. Usually your interface will need

icons for actions, you may want to add illustrations or branding logos, or perhaps

your application will need to load data files to pre-populate widgets. These data

files are separate from the source code of your application but will ultimately

need to be packaged and distributed with it in order for it to work.

Distributing data files with applications is a common cause of problems. If you

reference data files with paths, your application won’t work properly unless the

exact same paths are available on the target computer. This can get even trickier

when packaging applications for cross-platform (Windows, macOS and Linux)

use. Thankfully, Qt comes to the rescue with its resource system.

Since we’re using Qt for our GUI we can make use of Qt Resource system to

bundle, identify and load resources in our application. Resources are bundled

into Python files which can be distributed along with your source code,

guaranteeing they will continue to work on other platforms. You can manage Qt

resources through Qt Designer (or Qt Creator) and use resource library to add

icons (and other graphics) to your apps.

The QRC file

The core of the Qt Resources system is the resource file or QRC. The .qrc file is a

simple XML file, which can be opened in any text editor.

You can also create QRC files and add and remove resources

using Qt Designer, which we’ll cover later.

Simple QRC example

A very simple resource file is shown below, containing a single resource (a single

icon animal-penguin.png we might add to a button).

215

<!DOCTYPE RCC>

<RCC version="1.0">

 <qresource prefix="icons">

 <file alias="animal-penguin.png">animal-penguin.png</file>

 </qresource>

</RCC>

The name between the <file> </file> tags is the path to the file, relative to the

resource file. The alias is the name which this resource will be known by from

within your application. You can use this to rename icons to something more

logical or simpler in your app, while keeping the original name externally.

For example, if we wanted to use the name penguin.png internally, we could

change this line to.

<file alias="penguin.png">animal-penguin.png</file>

This only changes the name used inside your application, the

filename remains unchanged.

Outside this tag is the qresource tag which specifies a prefix. This is a namespace

which can be used to group resources together. This is effectively a virtual folder,

under which nested resources can all be found.

Using a QRC file

To use a .qrc file in your application you first need to compile it to Python.

PySide6 comes with a command line tool to do this, which takes a .qrc file as

input and outputs a Python file containing the compiled data. This can then be

imported into your app as for any other Python file or module.

To compile our resources.qrc file to a Python file named resources.py we can

use — 

216

pyside6-rcc resources.qrc -o resources.py

To use the resource file in our application we need to make a few small changes.

Firstly, we need to import resources at the top of our app, to load the resources

into the Qt resource system, and then secondly we need to update the path to the

icon file to use the resource path format as follows:

:/icons/penguin.png

The prefix :/ indicates that this is a resource path. The first name "icons" is the

prefix namespace and the filename is taken from the file alias, both as defined in

our resources.qrc file.

The updated application is shown below.

217

Listing 92. /designer/qresource.py

import sys

from PySide6 import QtGui, QtWidgets

import resources # Import the compiled resource file.

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 b = QtWidgets.QPushButton("My button")

 icon = QtGui.QIcon(":/icons/penguin.png")

 b.setIcon(icon)

 self.setCentralWidget(b)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec()

Resources in Qt Designer and Qt Creator

While it’s fairly straightforward to manage your resources by editing the QRC file

directly, Qt Designer can also be used to edit the resource library. This allows

you to see all the icons (and other data) visually, rearrange them and edit them

by drag-and-drop. If you are building your application UI in Qt Designer you can

also select icons from the resource file directly, by browsing and selecting them.

The UI file will keep a reference to the resource file and resources will be loaded

automatically.

218

Adding Resources in Qt Designer

If you’re using the standalone Qt Designer, the resource browser is available as a

dockable widget, visible in the bottom right by default. If the Resource Browser is

hidden you can show it through the "View" menu on the toolbar.

To add, edit and remove resource files click on the pencil icon in the Resource

browser panel. This will open the resource editor.

Figure 89. Standalone Qt Designer view

In the resource editor view you can open an existing resource file by clicking on

the document folder icon (middle icon) on the bottom left.

219

Figure 90. Edit Resources in Qt Designer

On the left hand panel you can also create and delete resource files from your UI.

While on the right you can create new prefixes, add files to the prefix and delete

items. Changes to the resource file are saved automatically.

Adding Resources in Qt Creator

In order to be able to add icons using the Qt Resource system from within Qt

Creator you need to have an active Qt Project, and add both your UI and resource

files to it.

If you don’t have a Qt Creator project set up you can create one

in your existing source folder. Qt Creator will prompt before

overwriting any of your files. Click on "+ New", choose "Qt for

Python - Empty" for project type. Select the folder above your

source folder for "Create in", and provide the name of your

source folder as the project name. You can delete any files

created, except the .pyproject which holds the project settings.

220

Figure 91. Select the location

To add resources to your existing project, select the "Edit" view on the left hand

panel. You will see a file tree browser in the left hand panel. Right-click on the

folder and choose "Add existing files…" and add your existing .qrc file to the

project.

221

Figure 92. The Edit view, showing the added files

The UI doesn’t update when you add/remove things here, this

seems to be a bug in Qt Creator. If you close and re-open Qt

Creator the files will be there.

Once you have added the QRC file to the file listing you should be able to expand

the file as if it were a folder, and browse the resources within. You can also add

and remove resources using this interface.

Using resources in Qt Creator and Qt
Designer

Once the Resource file is loaded you will be able to access it from the designer

properties. The screenshot below shows the Designer with our counter app open,

and the increment button selected. The icon for the button can be chosen by

clicking the small black down arrow and selecting "Choose Resource…"

222

Figure 93. Select the location

The Resource chooser window that appears allows you to pick icons from the

resource file(s) in the project to use in your UI.

223

Figure 94. Select the location

Selecting the icons from the resource file in this way ensures that they will

always work, as long as you compile and bundle the compiled resource file with

your app.

Using a QRC file with compiled UI files

If you’re designing your UIs in Qt Designer and compiling the resulting UI file to

Python, then UI compiler automatically adds imports to a compiled version of

your Qt Resource file for you. For example, if you run the following — 

pyside6-uic mainwindow.ui -o MainWindow.py

This build process also adds imports to MainWindow.py for the compiled version of

the resources used in the UI, in our case resources.qrc. This means you do not

need to import the resources separately into your app. However, we still need to

build them, and use the specific name that is used for the import in

MainWindow.py, here resources_rc.

224

pyside6-rcc resources.qrc -o resources_rc.py

pyside6-uic follows the pattern <resource name>_rc.py when

adding imports for the resource file, so you will need to follow

this when compiling resources yourself. You can check your

compiled UI file (e.g. MainWindow.py) to double check the name of

the import if you have problems.

When to use QResource?

You may be wondering when (or even whether) you should use the QResource

system.

The main advantage of this method is that your data files are guaranteed to work

cross-platform when distributed. The downside of course is you need to re-

compile your resources any time you add/remove new resources. Whether this

trade-off is worth it for your project is up to you, but if you plan to distribute

your application to other people it almost always is.

225

Theming
Out of the box Qt applications look platform native. That is, they take on the look

and feel of the operating system they are running on. This means they look at

home on any system and feel natural to users. But it can also mean they look a bit

boring. Helpfully, Qt gives you complete control over the appearance of widgets

in your application.

Whether you want your application to stand out, or you are designing custom

widgets and want them to fit in, this chapter will explain how to do that in

PySide6.

226

14. Styles

Styles are Qt’s way of making broad look and feel changes to applications,

modifying how widgets are displayed and behave. Qt automatically applies

platform-specific styles when running your application on a given

platform — this is why your application looks like an macOS application when

run on macOS and a Windows application on Windows. These platform-specific

styles make use of native widgets on the host platform, meaning they are not

available to use on other platforms.

However, the platform styles are not the only options you have for styling your

applications. Qt also ships with a cross-platform style called Fusion, which

provides a consistent cross-platform, modern, style for your applications.

Fusion

Qt’s Fusion style gives you the benefit of UI consistency across all systems, at the

expense of some consistency with the operating system standards. Which is more

important will depend on how much control you need over the UI you are

creating, how much you are customizing it and which widgets you are using.

The Fusion style is a platform-agnostic style that offers a

desktop-oriented look’n’feel. It implements the same design

language as the Fusion style for Qt Widgets.

— Qt Documentation

To enable the style, call .setStyle() on the QApplication instance, passing in the

name of the style (in this case Fusion) as a string.

227

app = QApplication(sys.argv)

app.setStyle('Fusion')

#...

app.exec()

The widgets list example from earlier, but with the Fusion style applied, is shown

below.

Figure 95. "Fusion" style widgets. They look identical on all platforms.

There are more examples of widgets with Fusion style applied in

the Qt documentation.

228

https://doc.qt.io/archives/qt-5.8/gallery-fusion.html

15. Palettes

The selection of colors used to draw the user interface in Qt are termed palettes.

Both application level and widget-specific palettes are managed through QPalette

objects. Palettes can be set at both the application and widget level, allowing you

to set a global standard palette and override this on a per-widget basis. The

global palette is normally defined by the Qt theme (itself normally dependent on

the OS) but you can override this to change the look of your entire app.

The active global palette can be accessed from QApplication.palette() or by

creating a new empty QPalette instance. For example — 

from PySide6.QtGui import QPalette

palette = QPalette()

You can modify the palette by calling palette.setColor(role, color) where role

determines what the color is used for, QColor the color to use. The color used can

either be a custom QColor object, or one of the built-in basic colors from the Qt

namespace.

palette.setColor(QPalette.Window, QColor(53,53,53))

palette.setColor(QPalette.WindowText, Qt.white)

There are some limitations when using palettes on Windows 10

and macOS platform-specific themes.

There are rather a lot of different roles. The main roles are shown in the table

below — 

Table 4. Main roles

Constant Value Description

QPalette.Window 10 Background color for windows.

229

Constant Value Description

QPalette.WindowText 0 Default text color for windows.

QPalette.Base 9 Background of text entry widgets, combobox

drop down lists and toolbar handles. Usually

white or light

QPalette.AlternateBase 16 Second Base color used in striped (alternating)

rows — e.g.

QAbstractItemView.setAlternatingRowColors()

QPalette.ToolTipBase 18 Background color for QToolTip and QWhatsThis

hover indicators. Both tips use the Inactive

group (see later) because they are not active

windows.

QPalette.ToolTipText 19 Foreground color for QToolTip and QWhatsThis.

Both tips use the Inactive group (see later)

because they are not active windows.

QPalette.PlaceholderTe

xt

20 Color for placeholder text in widgets.

QPalette.Text 6 Text color for widgets colored with Base

background. Must provide a good contrast with

both Window and Base.

QPalette.Button 1 Default button background color. This can

differ from Window but must provide good

contrast with ButtonText.

QPalette.ButtonText 8 Text color used on buttons, must contrast with

Button color.

QPalette.BrightText 7 Text color which is very different from

WindowText, contrasts well with black. Used

were other Text and WindowText colors would

give poor contrast. Note: Not just used for text.

230

You don’t necessarily have to modify or set all of these in your

custom palette, depending on widgets used in your application

some can be omitted.

There are also smaller sets of roles used for 3D beveling on widgets and

highlighting selected entries or links.

Table 5. 3D bevel roles

Constant Value Description

QPalette.Light 2 Lighter than Button color.

QPalette.Midlight 3 Between Button and Light.

QPalette.Dark 4 Darker than Button.

QPalette.Mid 5 Between Button and Dark.

QPalette.Shadow 11 A very dark color. By default, the shadow color

is Qt.black.

Table 6. Highlighting & links

Constant Value Description

QPalette.Highlight 12 A color to indicate a selected item or the

current item. By default, the highlight color is

Qt.darkBlue.

QPalette.HighlightedTe

xt

13 A text color that contrasts with Highlight. By

default, the highlighted text Qt.white.

QPalette.Link 14 A text color used for unvisited hyperlinks. By

default, the link color is Qt.blue.

QPalette.LinkVisited 15 A text color used for already visited hyperlinks.

By default, the link-visited color is Qt.magenta.

231

There is also technically a QPalette.NoRole value for widget

drawing states where no role is assigned, this can be ignored

when creating palettes.

For parts of the UI which change when a widget is active, inactive or disabled you

must set a color for each of these states. To do this, you can call

palette.setColor(group, role, color) passing additional group parameter. The

available groups are shown below — 

Constant Value

QPalette.Disabled 1

QPalette.Active 0

QPalette.Inactive 2

QPalette.Normal synonym for Active 0

For example, the following will set the WindowText color for a disabled window to

white in the palette.

palette.setColor(QPalette.Disabled, QPalette.WindowText, Qt.white)

Once the palette is defined, you can use .setPalette() to set it onto the

QApplication object to apply it to your application, or to a single widget. For

example, the following example will change the color of the window text and

background (here text is added using a QLabel).

232

Listing 93. themes/palette_test.py

from PySide6.QtWidgets import QApplication, QLabel

from PySide6.QtGui import QPalette, QColor

from PySide6.QtCore import Qt

import sys

app = QApplication(sys.argv)

palette = QPalette()

palette.setColor(QPalette.Window, QColor(0, 128, 255))

palette.setColor(QPalette.WindowText, Qt.white)

app.setPalette(palette)

w = QLabel("Palette Test")

w.show()

app.exec()

When run, this gives the following output. The background of the window is

changed to a light blue, and the window text is white.

Figure 96. Changing the Window and WindowText colors.

To show palette use in practice and see some limitations of it, we’ll now create an

application using a custom dark palette.

Using this palette all widgets will be drawn with a dark

background, regardless of the dark mode state of your app. See

later for using system dark modes.

While you should avoid overriding user settings in general, it can make sense in

certain classes of applications such as photo viewers or video editors, where a

233

bright UI will interfere with the users ability to judge color. The following app

skeleton uses a custom palette by Jürgen Skrotzky to give the application a global

dark theme.

from PySide6.QtWidgets import QApplication, QMainWindow

from PySide6.QtGui import QPalette, QColor

from PySide6.QtCore import Qt

import sys

darkPalette = QPalette()

darkPalette.setColor(QPalette.Window, QColor(53, 53, 53))

darkPalette.setColor(QPalette.WindowText, Qt.white)

darkPalette.setColor(

 QPalette.Disabled, QPalette.WindowText, QColor(127, 127, 127)

)

darkPalette.setColor(QPalette.Base, QColor(42, 42, 42))

darkPalette.setColor(QPalette.AlternateBase, QColor(66, 66, 66))

darkPalette.setColor(QPalette.ToolTipBase, Qt.white)

darkPalette.setColor(QPalette.ToolTipText, Qt.white)

darkPalette.setColor(QPalette.Text, Qt.white)

darkPalette.setColor(

 QPalette.Disabled, QPalette.Text, QColor(127, 127, 127)

)

darkPalette.setColor(QPalette.Dark, QColor(35, 35, 35))

darkPalette.setColor(QPalette.Shadow, QColor(20, 20, 20))

darkPalette.setColor(QPalette.Button, QColor(53, 53, 53))

darkPalette.setColor(QPalette.ButtonText, Qt.white)

darkPalette.setColor(

 QPalette.Disabled, QPalette.ButtonText, QColor(127, 127, 127)

)

darkPalette.setColor(QPalette.BrightText, Qt.red)

darkPalette.setColor(QPalette.Link, QColor(42, 130, 218))

darkPalette.setColor(QPalette.Highlight, QColor(42, 130, 218))

darkPalette.setColor(

 QPalette.Disabled, QPalette.Highlight, QColor(80, 80, 80)

)

darkPalette.setColor(QPalette.HighlightedText, Qt.white)

darkPalette.setColor(

 QPalette.Disabled,

 QPalette.HighlightedText,

234

https://github.com/Jorgen-VikingGod/Qt-Frameless-Window-DarkStyle/blob/master/DarkStyle.cpp

 QColor(127, 127, 127),

)

app = QApplication(sys.argv)

app.setPalette(darkPalette)

w = QMainWindow() # Replace with your QMainWindow instance.

w.show()

app.exec()

As before, once the palette is constructed it must be applied to take effect. Here

we apply it to the application as a whole by calling app.setPalette(). All widgets

will adopt the theme once applied. You can use this skeleton to construct your

own applications using this theme.

In the code examples with this book you can also find

themes/palette_dark_widgets.py which reproduces the widgets demo, using this

palette. The result on each platform is shown below.

Figure 97. Custom dark palette on different platforms and themes

You’ll notice that when using the default Windows and macOS themes some

widgets do not have their colors applied correctly. This is because these themes

235

make use of platform-native controls to give a true native feel. If you want to use

a dark or heavily customized theme on Windows 10, it is recommended to use

the Fusion style on these platforms.

Dark Mode

Dark mode is becoming popular as people spend more and more time on screens.

Darker themed OS and applications help to minimize eye strain and reduce sleep

disturbance if working in the evening. On macOS, PySide6 applications get dark

mode support automatically. On other platforms you will need to use platform-

specific solutions to detect dark mode and enable an appropriate custom theme

yourself. Remember to test your application with dark mode enabled and

disabled on all your target platforms — colorful icons and enabled/disabled states

of QActions can cause usability issues in dark mode.

236

As you start to building your own applications, you may be tempted to start fiddling with
colors in the design — but wait! Your operating system has a standard theme which is
respected by most software. Qt picks up this color scheme automatically and will apply it to
your applications to help them fit in. Using these colors has some advantages —

1. Your app will look at home on your user’s desktop
2. Your users are familiar with the meaning of contextual colors
3. Somebody else has spent time designing colors that work

If you want to replace the standard desktop color scheme, make
sure that the benefits outweigh the costs & you’ve explored other
options such as built-in dark modes on your target platforms.
.

For data visualization applications I recommend
using the Color Brewer color sets from Cynthia
Brewer, which have both qualitative and quantitative
schemes & are designed for maximum clarity.

For contextual colors & highlights or any other
situation where you only need a few colors — e.g.
status indicators — the coolors.co website lets you
generate custom well-matched 4-color themes.

Consistency makes the most of your palette. Use colors simply and effectively, restricting
your palette as far as possible. If particular colors have meaning somewhere, use the same
meaning everywhere. Avoid
using multiple shades unless
those shades have meaning.

DO Consider using GUI-standard colors in your app.
DOWhen using custom colors, define a color scheme and stick to it.
DO Keep color-blind users in mind when choosing colors and contrasts.
DON’T Use standard colors for non-standard purposes, e.g. Red = OK.

Accessible Colors

Example color scheme from coolors.co

Don’t underestimate the value of #3! Designing good color
schemes is hard, especially if you take accessibility issues
into account — and you should!

Colorbrewer2.org has quantitative
and qualitative color schemes

16. Icons

Icons are small pictures which are used to aid navigation or understanding

within a user interface. They are commonly found on buttons, either alongside or

in place of text, or alongside actions in menus. By using easily recognizable

indicators you can make your interface easier to use.

In PySide6 you have a number of different options for how to source and

integrate icons into your application. In this section we’ll look at those options

and the pros and cons of each.

Qt Standard Icons

The easiest way to add simple icons to your application is to use the built-in icons

which ship with Qt itself. This small set of icons covers a number of standard use

cases, from file operations, forward & backward arrows and message box

indicators.

The full list of built-in icons follows.

238

Figure 98. Qt Builtin icons

You’ll notice that this set of icons is a bit restrictive. If that’s not a problem for the

app you’re building, or if you only need a few icons for your app it might still be

a viable option for you.

The icons are accessible through the current application style using

QStyle.standardIcon(name) or QStyle.<constant>. The full table of built-in icon

names is shown below.

SP_ArrowBack SP_DirIcon SP_MediaSkipBackward

SP_ArrowDown SP_DirLinkIcon SP_MediaSkipForward

SP_ArrowForward SP_DirOpenIcon SP_MediaStop

SP_ArrowLeft SP_DockWidgetCloseButton SP_MediaVolume

SP_ArrowRight SP_DriveCDIcon SP_MediaVolumeMuted

SP_ArrowUp SP_DriveDVDIcon SP_MessageBoxCritical

239

SP_BrowserReload SP_DriveFDIcon SP_MessageBoxInformation

SP_BrowserStop SP_DriveHDIcon SP_MessageBoxQuestion

SP_CommandLink SP_DriveNetIcon SP_MessageBoxWarning

SP_ComputerIcon SP_FileDialogBack SP_TitleBarCloseButton

SP_CustomBase SP_FileDialogContentsVie

w

SP_TitleBarContextHelpBu

tton

SP_DesktopIcon SP_FileDialogDetailedVie

w

SP_TitleBarMaxButton

SP_DialogApplyButton SP_FileDialogEnd SP_TitleBarMenuButton

SP_DialogCancelButton SP_FileDialogInfoView SP_TitleBarMinButton

SP_DialogCloseButton SP_FileDialogListView SP_TitleBarNormalButton

SP_DialogDiscardButton SP_FileDialogNewFolder SP_TitleBarShadeButton

SP_DialogHelpButton SP_FileDialogStart SP_TitleBarUnshadeButton

SP_DialogNoButton SP_FileDialogToParent SP_ToolBarHorizontalExte

nsionButton

SP_DialogOkButton SP_FileIcon SP_ToolBarVerticalExtens

ionButton

SP_DialogResetButton SP_FileLinkIcon SP_TrashIcon

SP_DialogSaveButton SP_MediaPause SP_VistaShield

SP_DialogYesButton SP_MediaPlay SP_DirClosedIcon

SP_MediaSeekBackward SP_DirHomeIcon SP_MediaSeekForward

You can access these icons directly via the QStyle namespace, as follows.

icon = QStyle.standardIcon(QStyle.SP_MessageBoxCritical)

button.setIcon(icon)

You can also use the style object from a specific widget. It doesn’t matter which

you use, since we’re only accessing the built-ins anyway.

240

style = button.style() # Get the QStyle object from the widget.

icon = style.standardIcon(style.SP_MessageBoxCritical)

button.setIcon(icon)

If you can’t find an icon you need in this standard set, you will need to use one of

the other approaches outlined below.

While you can mix and match icons from different icon sets

together, it’s better to use a single style throughout to keep your

app feeling coherent.

Icon files

If the standard icons aren’t what you are looking for, or you need icons not

available, you can use any custom icons you like. Icons can be any of the Qt

supported image types on your platform, although for most use cases PNG or SVG

images are preferable.

To get list of supported image formats on your own platform

you can call QtGui.QImageReader.supportedImageFormats().

Icon sets

If you’re not a graphic designer you will save yourself a lot of time (and trouble)

by using one of the many available icon sets. There are thousands of these

available online, with varying licenses depending on their use in open source or

commercial software.

In this book and example apps I’ve used the Fugue icon set, which is also free to

use in your software with acknowledgement of the author. The Tango icon set is

a large icon set developed for use on Linux, however there are no licensing

requirements and it can be used on any platform.

241

http://p.yusukekamiyamane.com/

Resource Description License

Fugue by

p.yusukekamiyamane

3,570 16x16 icons in PNG

format

CC BY 3.0

Diagona by

p.yusukekamiyamane

400 16x16 and 10x10

icons in PNG format

CC BY 3.0

Tango Icons by The Tango

Desktop Project

Icons using the Tango

project color theme.

Public domain

While you do have control over the size of icons using in menus

and toolbars, in most cases you should leave these as-is. A good

standard icon size for menus is 20x20 pixels.

Sizes smaller than this are fine too, the icon will be centered

rather than scaled up.

Create your own

If you don’t like any of the available icon sets, or want a unique look to your

application, you can of course design your own icons. Icons can be created using

any standard graphics software and saved as PNG images with transparent

background. The icons should be square and of a resolution that they do not need

to be scaled up or down when used in your application.

Using icon files

Once you have your icon files — whether from icon sets or self-drawn — they can

be used in your Qt applications by creating instances of QtGui.QIcon, passing in

the filename of the icon directly.

QtGui.QIcon("<filename>")

While you can use both absolute (complete) and relative (partial) to point to your

242

http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://tango.freedesktop.org/Tango_Icon_Library
http://tango.freedesktop.org/Tango_Icon_Library

file, absolute paths are prone to break when distributing your applications.

Relative paths will work as long as the icon files are stored in the same location

relative to your script, although even this can be difficult to manage when

packaging. If you are using many icons in your application, or will be distributing

your application, you may want to use the The Qt Resource system.

In order to create icon instances you must have already created

a QApplication instance. To ensure this is the case, you can

create your app instance at the top of your source file, or create

your QIcon instances in the __init__ for the widget or window

that uses them.

Free Desktop Specification Icons (Linux)

On Linux desktops there is a thing called the Free Desktop Specification which

defines standard names for icons for specific actions.

If your application uses these specific icon names (and loads the icon from a

"theme") then on Linux your application will use the current icon set which is

enabled on the desktop. The goal here is to ensure that all applications have the

same look & feel while remaining configurable.

To use these within Qt Designer you would select the drop-down and choose "Set

Icon From Theme…"

Figure 99. Selecting an icon theme

You then enter the name of the icon you want to use, e.g. document-new (see the

full list of valid names).

243

https://specifications.freedesktop.org/icon-naming-spec/latest/ar01s04.html

Figure 100. Selecting an icon theme

In code, you can get icons from the active Linux desktop theme using icon =

QtGui.QIcon.fromTheme("document-new"). The following snippet produces a small

window (button) with the "new document" icon showing, from the active theme.

Listing 94. icons/linux.py

from PySide6.QtWidgets import QApplication, QPushButton

from PySide6.QtGui import QIcon

import sys

app = QApplication(sys.argv)

button = QPushButton("Hello")

icon = QIcon.fromTheme("document-new")

button.setIcon(icon)

button.show()

app.exec()

The resulting window will look like the following on Ubuntu, with the default

icon theme.

244

Figure 101. Linux Free Desktop Specification "document-new" icon

If you’re developing a cross-platform application you can still make use of these

standard icons on Linux. To do this, use your own icons for Windows and macOS

and create a custom theme in Qt Designer, using the Free Desktop Specification

names for the icons.

245

17. Qt Style Sheets (QSS)

So far we’ve looked at how you can apply custom colors to your PySide6 apps

using QPalette. However, there are many other customizations you can make to

the appearance of widgets in Qt5. The system provided to allow this

customization is called Qt Style Sheets (QSS).

QSS is conceptually very similar to Cascading Style Sheets (CSS) used to style the

web, sharing a similar syntax and approach. In this section we’ll look at some

examples of QSS and how you can use it to modify widget appearance.

Using QSS on widgets has a small performance impact, due to

the need to look up the appropriate rules when redrawing

widgets. However, unless you are doing very widget-heavy work

this is unlikely to be of consequence.

Style editor

To make experimenting with QSS rules a little bit easier, we can create a simple

demo app which allows rules to be input and applied to some example widgets.

We’ll use this to test out the various style properties and rules.

The source code for the style viewer is shown below, but it’s also

available in the source code with this book.

Listing 95. themes/qss_tester.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtGui import QColor, QPalette

from PySide6.QtWidgets import (

 QApplication,

 QCheckBox,

 QComboBox,

 QLabel,

246

 QLineEdit,

 QMainWindow,

 QPlainTextEdit,

 QPushButton,

 QSpinBox,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("QSS Tester")

 self.editor = QPlainTextEdit()

 self.editor.textChanged.connect(self.update_styles)

 layout = QVBoxLayout()

 layout.addWidget(self.editor)

 # Define a set of simple widgets.

 cb = QCheckBox("Checkbox")

 layout.addWidget(cb)

 combo = QComboBox()

 combo.setObjectName("thecombo")

 combo.addItems(["First", "Second", "Third", "Fourth"])

 layout.addWidget(combo)

 sb = QSpinBox()

 sb.setRange(0, 99999)

 layout.addWidget(sb)

 l = QLabel("This is a label")

 layout.addWidget(l)

 le = QLineEdit()

 le.setObjectName("mylineedit")

 layout.addWidget(le)

 pb = QPushButton("Push me!")

247

 layout.addWidget(pb)

 self.container = QWidget()

 self.container.setLayout(layout)

 self.setCentralWidget(self.container)

 def update_styles(self):

 qss = self.editor.toPlainText()

 self.setStyleSheet(qss)

app = QApplication(sys.argv)

app.setStyle("Fusion")

w = MainWindow()

w.show()

app.exec()

Running this app you’ll see the following window, with a text editor at the top

(where you can enter QSS rules) and a set of widgets to which these rules will be

applied — we’ll look at how applying rules and inheritance works in a bit.

Figure 102. QSS tester application, no rules applied.

Try entering the following style rules in the box at the top, and comparing the

result with the screenshots to make sure it’s working.

248

QLabel { background-color: yellow }

Figure 103. Applying background-color: yellow to QLabel

QLineEdit { background-color: rgb(255, 0, 0) }

Figure 104. Applying background-color: rgb(255, 0, 0) (red) to QLineEdit

249

QLineEdit {

 border-width: 7px;

 border-style: dashed;

 border-color: red;

}

Figure 105. Applying dashed red border to QLineEdit

Next we’ll look in some detail at how these QSS rules are styling the widgets,

gradually building up to some more complex rule sets.

A full list of styleable widgets is available in the Qt

documentation.

250

https://doc.qt.io/qt-5/stylesheet-reference.html
https://doc.qt.io/qt-5/stylesheet-reference.html

Styling properties

Next we’ll go through the properties available to style widgets with QSS. These

have been broken down into logical sections, containing properties that are

related to one another to make it easier to digest. You can use the QSS rule tester

app we just created to test these styles out on the various widgets.

The types used in the following tables are listed below. Some of these are

compound types, made up of other entries.

You can skip over this table for now, but will need it as a

reference for interpreting the valid values for each property.

Property Type Description

Alignment top | bottom | left |

right | center

Horizontal and/or vertical alignment.

Attachment scroll | fixed Scroll or fixed attachment.

Background Brush | Url | Repeat |

Alignment

Compound type of Brush, Url,Repeat,

andAlignment.

Boolean 0 | 1 True (1) or False (0).

Border Border Style | Length |

Brush

Shorthand border property.

Border Image none | Url Number

(stretch | repeat)

An image composed of nine parts (top

left, top center, top right, center left,

center, center right, bottom left, bottom

center, and bottom right).

251

Property Type Description

Border Style dashed | dot-dash |

dot-dot-dash | dotted |

double | groove | inset

| outset | ridge | solid

| none

The pattern used to draw a border.

Box Colors Brush Up to four values of Brush, specifying

the top, right, bottom, and left edges of

a box, respectively. If the left color is

omitted will use right, if bottom is

omitted will use top.

Box Lengths Length Up to four values of Length, specifying

the top, right, bottom, and left edges of

a box, respectively. If the left color is

omitted will use right, if bottom is

omitted will use top.

Brush Color | Gradient |

PaletteRole

A Color, Gradient or an entry in the

Palette.

Color rgb(r,g,b) |

rgba(r,g,b,a) |

hsv(h,s,v) |

hsva(h,s,v,a) | hsl(h,s,l)

| hsla(h,s,l,a) | #rrggbb

| Color Name

Specifies a color as RGB (red, green,

blue), RGBA (red, green, blue, alpha),

HSV (hue, saturation, value), HSVA

(hue, saturation, value, alpha), HSL

(hue, saturation, lightness), HSLA (hue,

saturation, lightness, alpha) or a named

color. The rgb() or rgba() syntax can be

used with integer values between 0 and

255, or with percentages.

Font (Font Style | Font

Weight) Font Size

Shorthand font property.

252

Property Type Description

Font Size Length The size of a font.

Font Style normal | italic |

oblique

The style of a font.

Font Weight normal | bold | 100 |

200… | 900

The weight of a font.

Gradient qlineargradient |

qradialgradient |

qconicalgradient

Lineargradients between start and end

points. Radialgradients between a focal

point and end points on a circle

surrounding it. Conical gradients

around a center point. See the

QLinearGradient documentation for

syntax.

Icon Url(disabled | active |

normal | selected) (on

| off)

A list of url,QIcon.ModeandQIcon.State.

e.g. file-icon: url(file.png),

url(file_selected.png) selected;

Length Number(px | pt | em |

ex)

A number followed by a measurement

unit. If no unit is given, uses pixels in

most contexts. One of px: pixels, pt: the

size of one point (i.e., 1/72 of an inch),

em: the em `width of the font (i.e., the

width of 'M'), ex: the ex width of the

font (i.e., the height of 'x')

Number A decimal integer or a

real number

e.g. 123, or 12.2312

Origin margin | border |

padding | content

See box model for more details.

253

https://doc.qt.io/qt-5/stylesheet-reference.html#gradient
https://doc.qt.io/qt-5/stylesheet-reference.html#gradient

Property Type Description

PaletteRole alternate-base | base |

bright-text | button |

button-text | dark |

highlight | highlighted-

text | light | link |

link-visited | mid |

midlight | shadow |

text | window |

window-text

These values correspond the Color

roles in the widget’s QPalette, e.g.

color: palette(dark);

Radius Length One or two occurrences of Length.

Repeat repeat-x | repeat-y |

repeat | no-repeat

repeat-x: Repeat horizontally. repeat-y:

Repeat vertically. repeat: Repeat

horizontally and vertically. no-repeat:

Don’t repeat.

Url url(filename) filename is the name of a file on disk or

stored using the Qt Resource System.

The full details of these properties and types are also available in the QSS

reference documentation.

Text styles

We’ll start with text properties which can be used to modify fonts, colors and

styles (bold, italic, underline) of text. These can be applied to any widget or

control.

Property Type (Default) Description

color Brush (QPalette

Foreground)

The color used to render

text.

254

https://doc.qt.io/Qt-5/stylesheet-reference.html#list-of-properties
https://doc.qt.io/Qt-5/stylesheet-reference.html#list-of-properties

Property Type (Default) Description

font Font Shorthand notation for

setting the text’s font.

Equivalent to specifying

font-family, font-size,

font-style, and/or font-

weight

font-family String The font family.

font-size Font Size The font size. In this

version of Qt, only pt and

px metrics are supported.

font-style normal | italic | oblique The font style.

font-weight Font Weight The weight of the font.

selection-background-

color

Brush (QPalette

Highlight)

The background of

selected text or items.

selection-color Brush (Palette

HighlightedText)

The foreground of

selected text or items.

text-align Alignment The alignment of text and

icon within the contents

of the widget.

text-decoration none | underline |

overline | line-through

Additional text effects

The example snippet below, sets the color on the QLineEdit to red, the background

color for selected text to yellow and the color of selected text to blue.

255

QLineEdit {

 color: red;

 selection-color: blue;

 selection-background-color: yellow;

}

Try this in the QSS tester to see the effect on the QLineEdit and it will give the

following result. Notice that only the targeted widget (QLineEdit) is affected by

the styles.

Figure 106. Applying text styles to a QLineEdit

We can apply this rule to two distinct types of widgets by giving them both as the

target, separated by a comma.

QSpinBox, QLineEdit {

 color: red;

 selection-color: blue;

 selection-background-color: yellow;

}

256

Figure 107. Applying text styles to a QLineEdit & QSpinBox

In this final example, we apply the styles to the QSpinBox, QLineEdit and

QPushButton, setting the font bold & italic and the text-align to right.

QSpinBox, QLineEdit, QPushButton {

 color: red;

 selection-color: blue;

 selection-background-color: yellow;

 font-style: italic;

 font-weight: bold;

 text-align: right;

}

This produces the result shown below. Notice that the text-align property has

not affected the alignment of the QSpinBox or QLineEdit. For both these widgets

alignment must be set using the .setAlignment() method, rather than styles.

257

Figure 108. Applying text styles to a QPushButton, QLineEdit & QSpinBox

Backgrounds

In addition to styling text you can also style the widget background, with both

solid colors and images. For images there are a number of additional properties

which define how the image is repeated and positioned within the widget area.

258

Property Type (Default) Description

background Background Shorthand notation for

setting the background.

Equivalent to specifying

background-color,

background-image,

background-repeat,

and/or background-

position. See also

background-origin,

selection-background-

color, background-clip,

background-attachment

and alternate-

background-color.

background-color Brush The background color

used for the widget.

background-image Url The background image

used for the widget. Semi-

transparent parts of the

image let the background-

color shine through.

background-repeat Repeat (both) Whether and how the

background image is

repeated to fill the

background-origin

rectangle.

259

Property Type (Default) Description

background-position Alignment (top-left) The alignment of the

background image within

the background-origin

rectangle.

background-clip Origin (border) The widget’s rectangle, in

which the background is

drawn.

background-origin Origin (padding) The widget’s background

rectangle, to use in

conjunction with

background-position and

background-image.

The following example will apply the specified image over the background of our

QPlainTextEdit which we are using to enter the rules.

QPlainTextEdit {

 color: white;

 background-image: url(../otje.jpg);

}

Images are referenced using the url() syntax, passing in the path to the file. Here

we’re using ../otje.jpg to point to a file in the parent directory. You can also use

resource path syntax, e.g. url(:/images/<imagename>.png) to select images from

the currently loaded resources.

260

Figure 109. A background image.

While this syntax is identical to that used in CSS, remote files

cannot be loaded with URLs.

To position the background in the widget you can use the background-position

property. This defines the point of the image which will be aligned with the same

point on the widget’s origin rectangle. By default the origin rectangle is the

padded area of the widget.

Figure 110. Examples of background position

A position of center, center therefore means the center of the image will be

aligned with the center of the widget, along both axes.

261

QPlainTextEdit {

 color: white;

 background-image: url(../otje.jpg);

 background-position: center center;

}

Figure 111. Centered background image.

To align the bottom-right of the image to the bottom-right of the origin rectangle

of the widget, you would use.

QPlainTextEdit {

 color: white;

 background-image: url(../otje.jpg);

 background-position: bottom right;

}

The origin rectangle can be modified using the background-origin property. This

accepts one of the values margin, border, padding or content which defines that

specific box as the reference of background position alignment.

To understand what this means we’ll need to take a look at the widget box model.

262

The widget Box Model

The term box model describes the relationships between the boxes (rectangles)

which surround each widget and the effect these boxes have on the size or layout

of widgets in relationship to one another. Each Qt widget is surrounded by four

concentric boxes — from inside out, these are content, padding, border and

margin.

Figure 112. The box model.

Increasing the size of the inner boxes, increases the size of the outer boxes. This

arrangement means, for example, that increasing the padding of a widget will

add space between the content and the border, while increasing the dimensions

of the border itself.

Figure 113. The effect on other boxes of adding padding to the right.

263

The properties available to modify the various boxes are given below.

Property Type (Default) Description

border Border Shorthand notation for setting the

widget’s border. Equivalent to

specifying border-color, border-style,

and/or border-width. Also border-top,

border-right, border-bottom and border-

left.

border-color Box Colors (QPalette

Foreground)

The color of all the border’s edges. Also

border-top-color, border-right-color,

border-bottom-color, border-left-color

for specific edges.

border-image Border Image The image used to fill the border. The

image is cut into nine parts and

stretched appropriately if necessary.

border-radius Radius The radius (curve) of the border’s

corners. Also border-top-left-radius,

border-top-right-radius, border-

bottom-right-radius and border-bottom-

left-radius for specific corners.

border-style Border Style (none) The style of all the border’s edges. Also

border-top-style, border-right-style,

border-bottom-style and border-left-

style for specific edges.

border-width Box Lengths The width of the border. Also border-

top-width, border-right-width, border-

bottom-width and border-left-width.

264

Property Type (Default) Description

margin Box Lengths The widget’s margins. Also margin-top,

margin-right, margin-bottom and margin-

left.

outline The outline drawn around the object’s

border.

outline-color Color The color of the outline. See also

border-color.

outline-offset Length The outline’s offset from the border of

the widget.

outline-style Specifies the pattern used to draw the

outline. See also border-style.

outline-radius Adds rounded corners to the outline.

Also outline-bottom-left-radius,

outline-bottom-right-radius, outline-

top-left-radius and outline-top-right-

radius`". `padding,Box Lengths,"The

widget’s padding. Also padding-top,

padding-right, padding-bottom and

padding-left.

The following example modifies the margin, border and padding of the

QPlainTextEdit widget.

QPlainTextEdit {

 margin: 10;

 padding: 10px;

 border: 5px solid red;

}

265

A note on units

In this example we’re using px or pixel units for the padding and

border The value for margin is also in pixels, as this is the

default unit when none is specified. You can also use one of the

following units — 

• px pixels

• pt the size of one point (i.e. 1/72 of an inch)

• em the em width of the font (i.e. the width of 'M')

• ex the ex width of the font (i.e. the height of 'x')

Looking at the result in the QSS tester, you can see the padding inside the red

border and the margin outside the red border.

Figure 114. The box model

You can also add a radius to the outline to add curved edges.

266

QPlainTextEdit {

 margin: 10;

 padding: 10px;

 border: 5px solid red;

 border-radius: 15px;

}

Figure 115. Borders with 15px radius (curve)

Sizing widgets

It is possible to control the size of widgets with QSS. However, while there are

specific width and height properties (see later) these are only used to specify the

sizes of sub-controls. To control widgets you must instead use the max- and min-

properties.

Property Type (Default) Description

max-height Length The widget’s or a subcontrol’s

maximum height.

max-width Length The widget’s or a subcontrol’s

maximum width.

min-height Length The widget’s or a subcontrol’s

minimum height.

267

Property Type (Default) Description

min-width Length The widget’s or a subcontrol’s

minimum width.

If you provide a min-height property larger than the widget usually is, then the

widget will be enlarged.

QLineEdit {

 min-height: 50;

}

Figure 116. Setting a min-height on a QLineEdit, to enlarge it.

However, when setting min-height the widget can of course be larger than this. To

specify an exact size for a widget, you can specify both a min- and max- value for

the dimension.

QLineEdit {

 min-height: 50;

 max-height: 50;

}

268

This will lock the widget to this height, preventing it from resizing in response to

changes in content.

Be careful about using this, as you can render widgets

unreadable!

Widget specific styles

The styles we’ve looked at so far are generic and can be used with most widgets.

However, there are also a number of widget-specific properties which can be set.

Property Type (Default) Description

alternate-background-

color

Brush (QPalette

AlternateBase)

The alternate background

color used in

QAbstractItemView

subclasses.

background-attachment Attachment (scroll) Determines whether the

background-image in a

QAbstractScrollArea is

scrolled or fixed with

respect to the viewport.

button-layout Number

(SH_DialogButtonLayout)

The layout of buttons in a

QDialogButtonBox or a

QMessageBox. The possible

values are 0 (Win), 1

(Mac), 2 (KDE), 3 (Gnome)

and 5 (Android).

269

Property Type (Default) Description

dialogbuttonbox-buttons-

have-icons

Boolean Whether the buttons in a

QDialogButtonBox show

icons. If this property is

set to 1, the buttons of a

QDialogButtonBox show

icons; if it is set to 0, the

icons are not shown.

gridline-color Color

(SH_Table_GridLineColor)

The color of the grid line

in a QTableView.

icon Url+ The widget icon. The only

widget currently

supporting this property

is QPushButton.

icon-size Length The width and height of

the icon in a widget.

lineedit-password-

character

Number

(SH_LineEdit_PasswordChar

acter)

The QLineEdit password

character as a Unicode

number.

lineedit-password-mask-

delay

Number

(SH_LineEdit_PasswordMask

Delay)

The QLineEdit password

mask delay in

milliseconds before

lineedit-password-

character is applied.

messagebox-text-

interaction-flags

Number

(SH_MessageBox_TextIntera

ctionFlags)

The interaction behavior

for text in a message box

(from

Qt.TextInteractionFlags).

270

Property Type (Default) Description

opacity Number

(SH_ToolTipLabel_Opacity)

The opacity for a widget

(tooltips only) 0-255.

paint-alternating-row-

colors-for-empty-area

bool Whether a QTreeView

paints alternating rows

past the end of the data.

show-decoration-selected Boolean

(SH_ItemView_ShowDecorati

onSelected)

Controls whether

selections in a QListView

cover the entire row or

just the extent of the text.

titlebar-show-tooltips-

on-buttons

bool Whether tool tips are

shown on window title

bar buttons.

widget-animation-

duration

Number How long an animation

should last (milliseconds).

These only apply to the widgets specified in the description (or their subclasses).

Targeting

We’ve seen a range of different QSS properties and applied them to widgets

based on their type. But how can you target individual widgets and how does Qt

decide which rules to apply to which widgets and when? Next, we’ll look at other

options for targeting QSS rules and the effect of inheritance.

Type Example Description

Universal * Matches all widgets.

Type QPushButton Instances of QPushButton or its

subclasses.

271

Type Example Description

Property QPushButton[flat="fals

e"]

Instances of QPushButton that

are not flat. Can compare with

any property that supports

.toString(). Can also use

class="classname"

Property contains QPushButton[property~=

"something"]

Instances of QPushButton where

property (a list of QString) does

not contain the given value.

Class `.QPushButton Instances of QPushButton but

not subclasses.

ID QPushButton#okButton A QPushButton instance whose

object name is okButton.

Descendant QDialog QPushButton Instances of QPushButton that

are descendants (children,

grandchildren, etc.) of a

QDialog.

Child QDialog > QPushButton Instances of QPushButton that

are immediate children of a

QDialog.

We’ll look at each of these targeting rules in turn now, trying them out with our

QSS tester.

Type

We’ve already seen type targeting in action in our QSS tester. Here we targeted

rules against the type name of the individual widgets, for example QComboBox or

QLineEdit.

272

Figure 117. Targeting a QComboBox does not affect other unrelated types.

However, targeting types in this way also targets any subclasses of that type. So

for example, we can target QAbstractButton to target any types that derive from it.

QAbstractButton {

 background: orange;

}

Figure 118. Targeting a QAbstractButton affects all child classes

This behavior means that all widgets can be targeted using QWidget. For example,

the following will set the background of all widgets to red.

273

QWidget {

 background: red;

}

Figure 119. QSS selection via parent classes.

Class .

Sometimes however you want to only target a specific class of widget, and not

any subclasses. To do this you can use class targeting — by prepending a . to the

name of the type.

The following targets instances of QWidget but not any classes derived from

QWidget. In our QSS tester the only QWidget we have is the central widget used for

holding the layout. So the following will change the background of that container

widget orange.

.QWidget {

 background: orange;

}

274

Figure 120. Targeting a class specifically will not target subclasses

ID targeting #

All Qt widgets have an object name which uniquely identifies them. When

creating widgets in Qt Designer you use the object name to specify the name that

the object is available under on the parent window. However, this relationship is

just for convenience — you can set any object name you want for a widget in your

own code. These names can then be used to target QSS rules directly to specific

widgets.

In our QSS tester app we’ve set IDs on our QComboBox and QLineEdit for testing.

combo.setObjectName('thecombo')

le.setObjectName('mylineedit')

Property [property="<value>"]

You can target widgets by any widget property which is available as a string (or

who’s value has a .toString() method). This can be used to define some quite

complex states on widgets.

The following is a simple example targeting a QPushButton by the text label.

275

QPushButton[text="Push me!"] {

 background: red;

}

Figure 121. Targeting a QPushButton by the label text

Targeting widgets by their visible text is a very bad idea in

general as it will introduce bugs as you try and translate your

application or change labels.

Rules are applied to widgets when the stylesheet is first set and will not respond

to changes in properties. If a property targeted by a QSS rule is modified, you

must trigger a stylesheet recalculation for it to take effect — for example by re-

setting the stylesheet again.

Descendant

To target descendants of a given type of widget, you can chain widgets together.

The following example targets any QComboBox which is a child of a

QMainWindow — whether it is an immediate child, or nested within other widgets or

layouts.

276

QMainWindow QComboBox {

 background: yellow;

}

Figure 122. Targeting a QComboBox which is a child of a QMainWindow

To target all descendants you can use the global selector as the final element in

the targeting. You can also chain many types together to target only those places

in your app where that hierarchy exists.

QMainWindow QWidget * {

 background: yellow;

}

In our QSS tester application we have an outer QMainWindow, with a QWidget central

widget holding the layout, and then our widgets in that layout. The rule above

therefore matches only the individual widgets (which all have QMainWindow

QWidget as parents, in that order).)

277

Figure 123. Targeting a QComboBox which is a child of a QMainWindow

Child >

You can also target a widget which is a direct child of another widget using the >

selector. This will only match where that exact hierarchy is in place.

For example, the following will only target the QWidget container which is a direct

child of the QMainWindow.

QMainWindow > QWidget {

 background: green;

}

But the following will not match anything, since in our QSS app the QComboBox

widget is not a direct child of the QMainWindow.

QMainWindow > QComboBox { /* matches nothing */

 background: yellow;

}

278

Figure 124. Targeting a QComboBox which is a direct child of a QWidget

Inheritance

Style sheets can be applied to QApplication and widgets and will apply to the

styled widget and all of its children. A widget’s effective style sheet is determined

by combining the style sheets of all it’s ancestors (parent, grandparent, …all the

way up to the window) plus style sheets on QApplication itself.

Rules are applied in order of specificity. That means, a rule which targets a

specific widget by ID, will override a rule which targets all widgets of that type.

For example, the following will set the background of the QLineEdit in our QSS

tester app to blue — the specific ID overrides the generic widget rule.

QLineEdit#mylineedit {

 background: blue;

}

QLineEdit {

 background: red;

}

279

Figure 125. Specific ID targeting overrules generic widget targeting.

In cases where there are two conflicting rules the widgets' own style sheet will be

preferred over inherited styles, and nearer ancestors will be preferred over more

distance — parents will be preferred to grandparents for example.

No inherited properties

Widgets are only affected by rules which target them specifically. While rules can

be set on a parent, they must still reference the target widget to affect it. Take the

following rule — 

QLineEdit {

 background: red;

}

If set on a QMainWindow all QLineEdit objects in that window will have a red

background (assuming no other rules). However, if the following is set…

QMainWindow {

 background: red;

}

…only the QMainWindow itself will be set with a red background. The background

280

color itself does not propogate to child widgets.

Figure 126. QSS properties do not propagate to children.

If the child widgets have transparent backgrounds, the red will

show through however.

Unless targeted by a matching rule, a widget will use its default system style

values for each property. Widgets do not inherit style properties from parent

widgets, even inside compound widgets, and widgets must be targeted by rules

directly to be affected by them.

This is in contrast with CSS, where elements can inherit values

from their parents.

Pseudo-selectors

So far we’ve looked at static styling, using properties to change the default

appearance of a widget. However, QSS also allows you to style in response to

dynamic widget states. An example of this is the highlight you see when buttons

are hovered with the mouse — the highlight helps to indicate that the widget has

focus and will respond if you click it.

There are many other uses for active styling, from usability (highlighting lines of

281

data, or specific tabs) to visualizing data hierarchies. These can all be achieved

using pseudo-selectors in QSS. Pseudo-selectors make QSS rules apply only in

particular circumstances.

There are a lot of different pseudo selectors which you can apply to widgets.

Some such as :hover are generic and can be used with all widgets, others are

widget-specific. The full list is given below — 

Pseudo-State Description

:active Widget is part of an active window.

:adjoins-item The ::branch of a QTreeView is adjacent to an item.

:alternate Set for every alternate row when painting the row of a

QabstractItemView

(QabstractItemView.alternatingRowColors() is True)

:bottom Positioned at the bottom, e.g. a QTabBar that has its tabs

at the bottom.

:checked Item is checked, e.g. the checked state of

QAbstractButton.

:closable Items can be closed, e.g. a QDockWidget has

QDockWidget.DockWidgetClosable enabled.

:closed Item is in the closed state, e.g. an non-expanded item in

a QtreeView.

:default Item is the default action, e.g. a default QPushButton or a

default action in a QMenu.

:disabled Item is disabled.

:editable QcomboBox is editable.

:enabled Item is enabled.

:exclusive Item is part of an exclusive item group, e.g. a menu item

in a exclusive QActionGroup.

282

Pseudo-State Description

:first Item is the first in a list, e.g. the first tab in a QtabBar.

:flat Item is flat, e.g. a flat QpushButton.

:floatable Items can be floated, e.g. the QDockWidget has

QDockWidget.DockWidgetFloatable enabled.

:focus Item has input focus.

:has-children Item has children, e.g. an item in a QTreeView with child

items.

:has-siblings Item has siblings, e.g. an item in a QTreeView with

siblings.

:horizontal Item has horizontal orientation

:hover Mouse is hovering over the item.

:indeterminate Item has indeterminate state, e.g. a QCheckBox or

QRadioButton is partially checked.

:last Item is the last (in a list), e.g. the last tab in a QTabBar.

:left Item is positioned at the left, e.g. a QTabBar that has its

tabs positioned at the left.

:maximized Item is maximized, e.g. a maximized QMdiSubWindow.

:middle Item is in the middle (in a list), e.g. a tab that is not in

the beginning or the end in a QTabBar.

:minimized Item is minimized, e.g. a minimized QMdiSubWindow.

:movable Item can be moved around, e.g. the QDockWidget has

QDockWidget.DockWidgetMovable enabled.

:no-frame Item has no frame, e.g. a frameless QSpinBox or

QLineEdit.

283

Pseudo-State Description

:non-exclusive Item is part of a non-exclusive item group, e.g. a menu

item in a non-exclusive QActionGroup.

:off Items that can be toggled, this applies to items in the

"off" state.

:on Items that can be toggled, this applies to widgets in the

"on" state.

:only-one Item is the only one (in a list), e.g. a lone tab in a

QTabBar.

:open Item is in the open state, e.g. an expanded item in a

QTreeView, or a QComboBox or` QPushButton` with an

open menu.

:next-selected Next item is selected, e.g. the selected tab of a QTabBar is

next to this item.

:pressed Item is being pressed using the mouse.

:previous-selected Previous item is selected, e.g. a tab in a QTabBar that is

next to the selected tab.

:read-only Item is marked read only or non-editable, e.g. a read

only QLineEdit or a non-editable QComboBox.

:right Item is positioned at the right, e.g. a QTabBar that has its

tabs positioned at the right.

:selected Item is selected, e.g. the selected tab in a QTabBar or the

selected item in a QMenu.

:top Item is positioned at the top, e.g. a QTabBar that has its

tabs positioned at the top.

:unchecked Item is unchecked.

:vertical Item has vertical orientation.

284

Pseudo-State Description

:window Widget is a window (i.e a top level widget).

We can use the QSS tester to see pseudo-selectors in action. For example, the

following will change the background of the QPushButton red when the mouse

hovers over the widget.

QPushButton:hover {

 background: red;

}

The following will change the background of all widgets when they are hovered.

*:hover {

 background: red;

}

Hovering a widget means all it’s parents are also hovered (the mouse is within

their bounding box) as the image below shows.

285

Figure 127. Left, QPushButton highlighted when hovered. Right, when a widget is

hovered all parent widgets are also hovered.

You can also negate pseudo-selectors using !. This means that the rule will

become active when that selector is inactive. For example the following…

QPushButton:!hover {

 background: yellow;

}

…will make the QPushButton yellow when it is not hovered.

You can also chain multiple pseudo-selectors together. For example, the following

will set the background of a QCheckBox green when it is checked and not hovered,

and yellow when it is checked and hovered.

QCheckBox:checked:!hover {

 background: green;

}

QCheckBox:checked:hover {

 background: yellow;

}

286

Figure 128. Chained pseudo selectors for hover state.

As for all other rules, you can also chain them using “,” separators to make the

defined rule apply to both (or many) cases. For example, the following will set a

checkbox background green when it is checked OR hovered.

QCheckBox:checked, QCheckBox:hover {

 background: yellow;

}

Styling Widget Sub controls

Many widgets are constructed from a combination of other sub-widgets or

controls. QSS provides syntax for addressing these sub-controls directly, so you

can make style changes to sub-controls individually. These sub-controls can be

addressed by using the :: (double-colon) selector, followed by an identifier for

the given sub control.

A good example of such a widget is the QComboBox. The following style snip applies

a custom style directly to the down-arrow on the right hand of the combo box.

287

QComboBox::drop-down {

 background: yellow;

 image: url('puzzle.png')

}

Figure 129. Setting background and icon for a QComboBox dropdown with QSS.

There are quite a few sub-control selectors available in QSS, which are listed

below. You’ll notice that many of them apply only to specific widgets (or types of

widgets).

Sub-Control Description

::add-line Button to move to next line on a QScrollBar.

::add-page Space between the handle and the add-line of a

QScrollBar.

::branch Branch indicator of a QTreeView.

::chunk Progress chunk of a QProgressBar.

::close-button Close button of a QDockWidget or tabs of QTabBar.

::corner Corner between two scrollbars in a

QAbstractScrollArea.

288

Sub-Control Description

::down-arrow Down arrow of a QComboBox, QHeaderView, QScrollBar or

QSpinBox.

::down-button Down button of a QScrollBar or a QSpinBox.

::drop-down Drop-down button of a QComboBox.

::float-button Float button of a QDockWidget.

::groove Groove of a QSlider.

::indicator Indicator of a QAbstractItemView, a QCheckBox, a

QRadioButton, a checkable QMenu item or a checkable

QGroupBox.

::handle Handle of a QScrollBar, a QSplitter, or a QSlider.

::icon Icon of a QAbstractItemView or a QMenu.

::item Item of a QAbstractItemView, a QMenuBar, a QMenu, or a

QStatusBar.

::left-arrow Left arrow of a QScrollBar.

::left-corner Left corner of a QTabWidget, e.g. control the left corner

widget in a QTabWidget.

::menu-arrow Arrow of a QToolButton with a menu.

::menu-button Menu button of a QToolButton.

::menu-indicator Menu indicator of a QPushButton.

::right-arrow Right arrow of a QMenu or a QScrollBar.

::pane The pane (frame) of a QTabWidget.

::right-corner The right corner of a QTabWidget. For example, this

control can be used to control the position the right

corner widget in a QTabWidget.

::scroller The scroller of a QMenu or QTabBar.

289

Sub-Control Description

::section The section of a QHeaderView.

::separator The separator of a QMenu or in a QMainWindow.

::sub-line The button to subtract a line of a QScrollBar.

::sub-page The region between the handle (slider) and the sub-line

of a QScrollBar.

::tab The tab of a QTabBar or QToolBox.

::tab-bar The tab bar of a QTabWidget. This subcontrol exists

only to control the position of the QTabBar inside the

QTabWidget. To style the tabs use the ::tab subcontrol.

::tear The tear indicator of a QTabBar.

::tearoff The tear-off indicator of a QMenu.

::text The text of a QAbstractItemView.

::title The title of a QGroupBox or a QDockWidget.

::up-arrow The up arrow of a QHeaderView (sort indicator),

QScrollBar or a QSpinBox.

::up-button The up button of a QSpinBox.

The following targets the up and down buttons of a QSpinBox turning the

background red and green respectively.

QSpinBox::up-button {

 background: green;

}

QSpinBox::down-button {

 background: red;

}

290

Figure 130. Setting background to the QSpinBox up and down buttons.

The arrows inside the up or down buttons are also separately targetable. Below

we’re setting them with custom plus and minus icons — note we also need to

resize the buttons to fit.

QSpinBox {

 min-height: 50;

}

QSpinBox::up-button {

 width: 50;

}

QSpinBox::up-arrow {

 image: url('plus.png');

}

QSpinBox::down-button {

 width: 50;

}

QSpinBox::down-arrow {

 image: url('minus.png')

}

291

Figure 131. Setting background to the QSpinBox up and down buttons.

Subcontrol pseudostates

You can use pseudostates to target subcontrols, just as for other widgets. To do

this, simply chain the pseudostate after the control. For example — 

QSpinBox::up-button:hover {

 background: green;

}

QSpinBox::down-button:hover {

 background: red;

}

292

Figure 132. Combining subcontrol selectors with pseudo-selectors.

Positioning Sub-controls

Using QSS you also get precise control over the position of subcontrols inside

widgets. These allow adjustment in position either relative to their normal

position, or in absolute reference to their parent widget. We’ll look at these

positioning methods below.

Property Type (Default) Description

position relative | absolute

(relative)

Whether offsets specified

using left, right, top, and

bottom are relative or

absolute coordinates.

293

Property Type (Default) Description

bottom Length If position is relative (the

default), moves a

subcontrol by a certain

offset up; specifying

bottom: y is then

equivalent to specifying

top: -y. If position is

absolute, the bottom

property specifies the

subcontrol’s bottom edge

in relation to the parent’s

bottom edge (see also

subcontrol-origin).

left Length If position=relative move

a subcontrol right by the

given offset (i.e. specifies

additional space on the

left). If position is

absolute, specifies the

distance from the left

edge of the parent.

right Length If position=relative move

a subcontrol left by the

given offset (i.e. specifies

additional space on the

right). If position is

absolute, specifies the

distance from the right

edge of the parent.

294

Property Type (Default) Description

top Length If position=relative move

a subcontrol down the

given offset (i.e. specifies

additional space on the

top). If position is

absolute, specifies the

distance from the top

edge of the parent.

By default, positioning is relative. In this mode, the left, right, top and bottom

properties define additional spacing to be added on the respective side. This

means, somewhat confusingly, that left moves widgets right.

To help you remember, think of these as "add space to the left"

and so on.

QSpinBox {

 min-height: 100;

}

QSpinBox::up-button {

 width: 50;

}

QSpinBox::down-button {

 width: 50;

 left: 5;

}

295

Figure 133. Adjusting the position of subcontrols with left.

When position is set to absolute, the left, right, top and bottom properties define

the spacing between the widget and and it’s parent’s identical edges. So, for

example, top: 5, left: 5 will position a widget so it’s top and left edges are 5

pixels from it’s parent’s top and left edge.

QSpinBox {

 min-height: 100;

}

QSpinBox::up-button {

 width: 50;

}

QSpinBox::down-button {

 position: absolute;

 width: 50;

 right: 25;

}

Below you can see the effect of positioning the down button using absolute,

placing it 25 pixels from the right.

296

Figure 134. Adjusting the position of subcontrols absolute.

This is not the most practical example, but it demonstrates one constraint on

positioning sub-controls in this way — you cannot position a subcontrol outside

it’s parent’s bounding box.

Subcontrol styles

Finally, there are number of QSS properties which specifically target sub-controls

for styling. These are shown below — see the description for the specific affected

widgets and controls.

Property Type (Default) Description

image Url+ The image that is drawn in the

contents rectangle of a

subcontrol. Setting the image

property on subcontrols

implicitly sets the width and

height of the sub-control

(unless the image is a SVG).

297

Property Type (Default) Description

image-position alignment The alignment of the image.

Image’s position can be

specified using relative or

absolute position. See relative

and absolute for explanation.

height Length The height of a subcontrol. If

you want a widget with a fixed

height, set the min-height and

max-height to the same value.

spacing Length Internal spacing in the widget.

subcontrol-origin Origin (padding) The origin rectangle of the

subcontrol within the parent

element.

subcontrol-position Alignment The alignment of the

subcontrol within the origin

rectangle specified by

subcontrol-origin.

width Length The width of a subcontrol. If

you want a widget with a fixed

width, set the min-width and

max-width to the same value.

Editing Stylesheets in Qt Designer

So far the examples we’ve seen have applied QSS to widgets using code.

However, you can also set stylesheets on widgets from within Qt Designer.

To set a QSS stylesheet on a widget in Qt Designer, right-click on the widget and

select "Change stylesheet…" from the context menu.

298

Figure 135. Accessing the QSS editor for a widget.

This will open up the following window, where you can enter QSS rules as text,

which will be applied to this widget (and any children which match the rules).

Figure 136. The QSS editor in Qt Designer.

As well as entering rules as text, the QSS editor in Qt Designer gives you access to

a resource lookup tool, color selection widget and a gradient designer. This tool

(shown below) provides a number of built-in gradients you can add to your rules,

but you can also define your own custom gradients if you prefer.

299

Figure 137. The QSS gradient designer in Qt Designer.

Gradients are defined using QSS rules so you can copy and paste them elsewhere

(including into your code) to re-use them if you like.

Listing 96. The Dutch flag using a QSS qlineargradient rule.

QWidget {

background: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0

rgba(255, 0, 0, 255), stop:0.339795 rgba(255, 0, 0, 255), stop

:0.339799 rgba(255, 255, 255, 255), stop:0.662444 rgba(255, 255, 255,

255), stop:0.662469 rgba(0, 0, 255, 255), stop:1 rgba(0, 0, 255, 255))

}

Figure 138. The "Dutch flag" QSS gradient applied to a QWidget in Qt Designer

300

Model View Architecture
…with proper design, the features come cheaply.

— Dennis Ritchie

As you start to build more complex applications with PySide6 you’ll likely come

across issues keeping widgets in sync with your data.

Data stored in widgets (e.g. a simple QListWidget) is not easy to manipulate from

Python — changes require you to get an item, get the data, and then set it back.

The default solution to this is to keep an external data representation in Python,

and then either duplicate updates to the both the data and the widget, or simply

rewrite the whole widget from the data. As you start to work with larger data this

approach can start to have performance impacts on your application.

Thankfully Qt has a solution for this — ModelViews. ModelViews are a powerful

alternative to the standard display widgets, which use a standardized model

interface to interact with data sources — from simple data structures to external

databases. This isolates your data, meaning you can keep it in any structure you

like, while the view takes care of presentation and updates.

This chapter introduces the key aspects of Qt’s ModelView architecture and uses

it to build a simple desktop Todo application in PySide6.

301

18. The Model View Architecture —
Model View Controller

Model–View–Controller (MVC) is an architectural pattern used for developing

user interfaces. It divides an application into three interconnected parts,

separating the internal representation of data from how it is presented to and

accepted from the user.

The MVC pattern splits the interface into the following components —

• Model holds the data structure which the app is working with.

• View is any representation of information as shown to the user, whether

graphical or tables. Multiple views of the same data are allowed.

• Controller accepts input from the user, transforms it into commands and

applies these to the model or view.

In Qt land the distinction between the View & Controller gets a little murky. Qt

accepts input events from the user via the OS and delegates these to the widgets

(Controller) to handle. However, widgets also handle presentation of their own

state to the user, putting them squarely in the View. Rather than agonize over

where to draw the line, in Qt-speak the View and Controller are instead merged

together creating a Model/ViewController architecture — called "Model View" for

simplicity.

302

Figure 139. Comparing the MVC model and the Qt Model/View architecture.

Importantly, the distinction between the data and how it is presented is

preserved.

The Model View

The Model acts as the interface between the data store and the ViewController.

The Model holds the data (or a reference to it) and presents this data through a

standardized API which Views then consume and present to the user. Multiple

Views can share the same data, presenting it in completely different ways.

You can use any "data store" for your model, including for example a standard

Python list or dictionary, or a database (via Qt itself, or SQLAlchemy) — it’s

entirely up to you.

The two parts are essentially responsible for —

1. The model stores the data, or a reference to it and returns individual or

ranges of records, and associated metadata or display instructions.

2. The view requests data from the model and displays what is returned on the

widget.

303

19. A simple Model View — a Todo
List

To demonstrate how to use the ModelViews in practice, we’ll put together a very

simple implementation of a desktop Todo List. This will consist of a QListView for

the list of items, a QLineEdit to enter new items, and a set of buttons to add,

delete, or mark items as done.

 The files for this example are in the source code.

The UI

The simple UI was laid out using Qt Creator and saved as mainwindow.ui. The .ui

file is included in the downloads for this book.

Figure 140. Designing the UI in Qt Creator

The .ui file was converted to a Python file as described previously using the

command-line tool.

This generates a MainWindow.py file which contains our custom window class as

304

designed in Qt Designer. This can be imported in our application code as

normal — a basic skeleton app to display our UI is shown below.

Listing 97. model-views/todo_skeleton.py

import sys

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

from MainWindow import Ui_MainWindow

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

 Run it! You’ll see the window appear, although nothing is functional yet.

305

Figure 141. The MainWindow

The widgets in the interface were given the IDs shown in the table below.

objectName Type Description

todoView QListView The list of current todos

todoEdit QLineEdit The text input for creating a new todo

item

addButton QPushButton Create the new todo, adding it to the

todos list

deleteButton QPushButton Delete the current selected todo,

removing it from the todos list

completeButton QPushButton Mark the current selected todo as done

We’ll use these identifiers to hook up the application logic later.

The Model

We define our custom model by subclassing from a base implementation,

allowing us to focus on the parts unique to our model. Qt provides a number of

306

different model bases, including lists, trees and tables (ideal for spreadsheets).

For this example we are displaying the result to a QListView. The matching base

model for this is QAbstractListModel. The outline definition for our model is

shown below.

Listing 98. model-views/todo_1.py

class TodoModel(QAbstractListModel):

 def __init__(self, todos=None):

 super().__init__()

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 status, text = self.todos[index.row()]

 return text

 def rowCount(self, index):

 return len(self.todos)

The`.todos` variable is our data store. The two methods rowcount() and data()

are standard Model methods we must implement for a list model. We’ll go

through these in turn below.

.todos list

The data store for our model is .todos, a simple Python list in which we’ll store a

tuple of values in the format [(bool, str), (bool, str), (bool, str)] where

bool is the done state of a given entry, and str is the text of the todo.

We initialize self.todo to an empty list on startup, unless a list is passed in via the

todos keyword argument.

307

self.todos = todos or [] will set self.todos to the provided

todos value if it is truthy (i.e. anything other than an empty list,

the bool ` False` or None the default value), otherwise it will be

set to the empty list [].

To create an instance of this model we can simply do —

model = TodoModel() # create an empty todo list

Or to pass in an existing list —

todos = [(False, 'an item'), (False, 'another item')]

model = TodoModel(todos)

.rowcount()

The .rowcount() method is called by the view to get the number of rows in the

current data. This is required for the view to know the maximum index it can

request from the data store (rowcount - 1). Since we’re using a Python list as our

data store, the return value for this is simply the len() of the list.

.data()

This is the core of your model, which handles requests for data from the view

and returns the appropriate result. It receives two parameters index and role.

index is the position/coordinates of the data which the view is requesting,

accessible by two methods .row() and .column() which give the position in each

dimension. For a list view, column can be ignored.

For our QListView, the column is always 0 and can be ignored.

But you would need to use this for 2D data, for example in a

spreadsheet view.

308

role is a flag indicating the type of data the view is requesting. This is because the

.data() method actually has more responsibility than just the core data. It also

handles requests for style information, tooltips, status bars, etc. — basically

anything that could be informed by the data itself.

The naming of Qt.DisplayRole is a bit weird, but this indicates that the view is

asking us "please give me data for display". There are other roles which the data

can receive for styling requests or requesting data in "edit-ready" format.

Role Value Description

Qt.DisplayRole 0 The key data to be rendered in the

form of text. QString

Qt.DecorationRole 1 The data to be rendered as a

decoration in the form of an icon.

QColor, QIcon or QPixmap

Qt.EditRole 2 The data in a form suitable for

editing in an editor. QString

Qt.ToolTipRole 3 The data displayed in the item’s

tooltip. QString

Qt.StatusTipRole 4 The data displayed in the status

bar. QString

Qt.WhatsThisRole 5 The data displayed for the item in

"What’s This?" mode. QString

Qt.SizeHintRole 13 The size hint for the item that will

be supplied to views. QSize

For a full list of available roles that you can receive see the Qt ItemDataRole

documentation. Our todo list will only be using Qt.DisplayRole and

Qt.DecorationRole.

309

https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qcolor.html
https://doc.qt.io/qt-5/qicon.html
https://doc.qt.io/qt-5/qpixmap.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qsize.html
https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum
https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum

Basic implementation

The code below shows the basic model we’ve created in the application skeleton,

which has the code necessary to take the model and display it — although it is

empty! We’ll add our model code and application logic to this base.

310

Listing 99. model-views/todo_1b.py

import sys

from PySide6.QtCore import QAbstractListModel, Qt

from PySide6.QtWidgets import QApplication, QMainWindow

from MainWindow import Ui_MainWindow

class TodoModel(QAbstractListModel):

 def __init__(self, todos=None):

 super().__init__()

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 status, text = self.todos[index.row()]

 return text

 def rowCount(self, index):

 return len(self.todos)

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.model = TodoModel()

 self.todoView.setModel(self.model)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

We define our TodoModel as before and initialize the MainWindow object. In the

__init__ for the MainWindow we create an instance of our todo model and set

this model on the todo_view. Save this file as todo.py and run it with —

311

python3 todo.py

While there isn’t much to see yet, the QListView and our model are actually

working — if you add some default data to the TodoModel in the MainWindow class

you’ll see it appear in the list.

self.model = TodoModel(todos=[(False, 'my first todo')])

Figure 142. QListView showing hard-coded todo item

You can keep adding items manually like this and they will show up in order in

the QListView. Next we’ll make it possible to add items from within the

application.

First create a new method on the MainWindow named add. This is our callback

312

which will take care of adding the current text from the input as a new todo.

Connect this method to the addButton.pressed signal at the end of the __init__

block.

Listing 100. model-views/todo_2.py

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.model = TodoModel()

 self.todoView.setModel(self.model)

 # Connect the button.

 self.addButton.pressed.connect(self.add)

 def add(self):

 """

 Add an item to our todo list, getting the text from the

QLineEdit .todoEdit

 and then clearing it.

 """

 text = self.todoEdit.text()

 # Remove whitespace from the ends of the string.

 text = text.strip()

 if text: # Don't add empty strings.

 # Access the list via the model.

 self.model.todos.append((False, text))

 # Trigger refresh.

 self.model.layoutChanged.emit() ①

 # Empty the input

 self.todoEdit.setText("")

① Here we’re emitting a model signal .layoutChanged to let the view know that

the shape of the data has been altered. This triggers a refresh of the entirety of

the view. If you omit this line, the todo will still be added but the QListView

won’t update.

If just the data is altered, but the number of rows/columns are unaffected you

can use the .dataChanged() signal instead. This also defines an altered region in

the data using a top-left and bottom-right location to avoid redrawing the entire

313

view.

Hooking up the other actions

We can now connect the rest of the button’s signals and add helper functions for

performing the delete and complete operations. We add the button signals to the

__init__ block as before.

 self.addButton.pressed.connect(self.add)

 self.deleteButton.pressed.connect(self.delete)

 self.completeButton.pressed.connect(self.complete)

Then define a new delete method as follows —

Listing 101. model-views/todo_3.py

class MainWindow(QMainWindow, Ui_MainWindow):

 def delete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 # Indexes is a single-item list in single-select mode.

 index = indexes[0]

 # Remove the item and refresh.

 del self.model.todos[index.row()]

 self.model.layoutChanged.emit()

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

We use self.todoView.selectedIndexes to get the indexes (actually a list of a single

item, as we’re in single-selection mode) and then use the .row() as an index into

our list of todos on our model. We delete the indexed item using Python’s del

operator, and then trigger a layoutChanged signal because the shape of the data

has been modified.

Finally, we clear the active selection since the item you selected is now gone and

the position itself could be out of bounds (if you had selected the last item).

314

You could make this smarter and select the adjacent item in the

list instead.

The complete method looks like this —

Listing 102. model-views/todo_4.py

class MainWindow(QMainWindow, Ui_MainWindow):

 def complete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 index = indexes[0]

 row = index.row()

 status, text = self.model.todos[row]

 self.model.todos[row] = (True, text)

 # .dataChanged takes top-left and bottom right, which are

equal

 # for a single selection.

 self.model.dataChanged.emit(index, index)

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

This uses the same indexing as for delete, but this time we fetch the item from

the model .todos list and then replace the status with True.

We have to do this fetch-and-replace, as our data is stored as

Python tuples which cannot be modified.

The key difference here vs. standard Qt widgets is that we make changes directly

to our data, and simply need to notify Qt that some change has occurred —

updating the widget state is handled automatically.

Using DecorationRole

If you run the application you should now find that adding and deleting both

work, but while completing items is working, there is no indication of it in the

315

view. We need to update our model to provide the view with an indicator to

display when an item is complete. The updated model is shown below.

Listing 103. model-views/todo_5.py

import os

basedir = os.path.dirname(__file__)

tick = QImage(os.path.join(basedir, "tick.png"))

class TodoModel(QAbstractListModel):

 def __init__(self, *args, todos=None, **kwargs):

 super(TodoModel, self).__init__(*args, **kwargs)

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 status, text = self.todos[index.row()]

 return text

 if role == Qt.DecorationRole:

 status, text = self.todos[index.row()]

 if status:

 return tick

 def rowCount(self, index):

 return len(self.todos)

We load the icons using the basedir technique introduced

earlier, to ensure the paths are correct however the script is run.

The icon I’m using is taken from the Fugue set by

p.yusukekamiyamane

We’re using a tick icon tick.png to indicate completed items, which we load into a

316

http://p.yusukekamiyamane.com/

QImage object named tick. In the model we’ve implemented a handler for the

Qt.DecorationRole which returns the tick icon for rows whose status is True (for

complete).

Instead of an icon you can also return a color, e.g.

QtGui.QColor('green') which will be drawn as solid square.

Running the app you should now be able to mark items as complete.

Figure 143. Todos complete

A persistent data store

Our todo app works nicely, but it has one fatal flaw — it forgets your todos as

soon as you close the application. While thinking you have nothing to do when

you do may help to contribute to short-term feelings of Zen, long term it’s

317

probably a bad idea.

The solution is to implement some sort of persistent data store. The simplest

approach is a simple file store, where we load items from a JSON or Pickle file at

startup and write back any changes.

To do this we define two new methods on our MainWindow class — load and save.

These load data from a JSON file name data.json (if it exists, ignoring the error if

it doesn’t) to self.model.todos and write the current self.model.todos out to the

same file, respectively.

Listing 104. model-views/todo_6.py

 def load(self):

 try:

 with open("data.json", "r") as f:

 self.model.todos = json.load(f)

 except Exception:

 pass

 def save(self):

 with open("data.json", "w") as f:

 data = json.dump(self.model.todos, f)

To persist the changes to the data we need to add the .save() handler to the end

of any method that modifies the data, and the .load() handler to the __init__

block after the model has been created.

The final code looks like this —

Listing 105. mode-views/todo_complete.py

import json

import os

import sys

from PySide6.QtCore import QAbstractListModel, Qt

from PySide6.QtGui import QImage

from PySide6.QtWidgets import QApplication, QMainWindow

318

from MainWindow import Ui_MainWindow

basedir = os.path.dirname(__file__)

tick = QImage(os.path.join(basedir, "tick.png"))

class TodoModel(QAbstractListModel):

 def __init__(self, todos=None):

 super().__init__()

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 status, text = self.todos[index.row()]

 return text

 if role == Qt.DecorationRole:

 status, text = self.todos[index.row()]

 if status:

 return tick

 def rowCount(self, index):

 return len(self.todos)

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.model = TodoModel()

 self.load()

 self.todoView.setModel(self.model)

 self.addButton.pressed.connect(self.add)

 self.deleteButton.pressed.connect(self.delete)

 self.completeButton.pressed.connect(self.complete)

 def add(self):

 """

 Add an item to our todo list, getting the text from the

QLineEdit .todoEdit

 and then clearing it.

319

 """

 text = self.todoEdit.text()

 # Remove whitespace from the ends of the string.

 text = text.strip()

 if text: # Don't add empty strings.

 # Access the list via the model.

 self.model.todos.append((False, text))

 # Trigger refresh.

 self.model.layoutChanged.emit()

 # Empty the input

 self.todoEdit.setText("")

 self.save()

 def delete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 # Indexes is a single-item list in single-select mode.

 index = indexes[0]

 # Remove the item and refresh.

 del self.model.todos[index.row()]

 self.model.layoutChanged.emit()

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

 self.save()

 def complete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 index = indexes[0]

 row = index.row()

 status, text = self.model.todos[row]

 self.model.todos[row] = (True, text)

 # .dataChanged takes top-left and bottom right, which are

equal

 # for a single selection.

 self.model.dataChanged.emit(index, index)

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

 self.save()

 def load(self):

 try:

 with open("data.json", "r") as f:

320

 self.model.todos = json.load(f)

 except Exception:

 pass

 def save(self):

 with open("data.json", "w") as f:

 data = json.dump(self.model.todos, f)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

If the data in your application has the potential to get large or more complex, you

may prefer to use an actual database to store it. Qt provides models for

interacting with SQL databases which we’ll cover shortly.

For another interesting example of a QListView see my example

media player application. This uses the Qt built-in

QMediaPlaylist as the datastore, with the contents displayed to a

QListView.

321

https://www.pythonguis.com/apps/failamp-multimedia-player/
https://www.pythonguis.com/apps/failamp-multimedia-player/

20. Tabular data in ModelViews,
with numpy & pandas

In the previous section we covered an introduction to the Model View

architecture. However, we only touched on one of the model views — QListView.

There are two other Model Views available in PySide6 — QTableView and

QTreeView which provide tabular (Excel-like) and tree (file directory browser-like)

views using the same QStandardItemModel.

In this part we’ll look at how to use QTableView from PySide6, including how to

model your data, format values for display and add conditional formatting.

You can use model views with any data source, as long as your model returns

that data in a format that Qt can understand. Working with tabular data in

Python opens up a number of possibilities for how we load and work with that

data. Here we’ll start with a simple nested list of lists and then move onto

integrating your Qt application with the popular numpy and pandas libraries.

This will provide you with a great foundation for building data-focused

applications.

Introduction to QTableView

QTableView is a Qt view widget which presents data in a spreadsheet-like table

view. Like all widgets in the Model View Architecture this uses a separate model to

provide data and presentation information to the view. Data in the model can be

updated as required, and the view notified of these changes to redraw/display the

changes. By customizing the model it is possible to have a huge amount of control

over how the data is presented.

To use the model we’ll need a basic application structure and some dummy data.

A simple working example is shown below, which defines a custom model with a

simple nested-list as a data store.

322

Listing 106. tableview_demo.py

import sys

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the nested-list data structure.

 # .row() indexes into the outer list,

 # .column() indexes into the sub-list

 return self._data[index.row()][index.column()]

 def rowCount(self, index):

 # The length of the outer list.

 return len(self._data)

 def columnCount(self, index):

 # The following takes the first sub-list, and returns

 # the length (only works if all rows are an equal length)

 return len(self._data[0])

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QtWidgets.QTableView()

 data = [

 [4, 1, 3, 3, 7],

 [9, 1, 5, 3, 8],

 [2, 1, 5, 3, 9],

]

 self.model = TableModel(data)

323

 self.table.setModel(self.model)

 self.setCentralWidget(self.table)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

As in our earlier model view examples, we create the QTableView widget, then

create an instance of our custom model (which we’ve written to accept the data

source as a parameter) and then we set the model on the view. That’s all we need

to do — the view widget now uses the model to get the data, and determine how

to draw it.

Figure 144. Basic table example

Nested list as a 2-dimensional data store

For a table you need a 2D data structure, with columns and rows. As shown in

the example above you can model a simple 2D data structure using a nested

Python list. We’ll take a minute to look at this data structure, and it’s limitations,

below —

324

table = [

 [4, 1, 3, 3, 7],

 [9, 1, 5, 3, 8],

 [2, 1, 5, 3, 9],

]

The nested list is a "list of lists of values" — an outer list containing a number of

sub-lists which themselves contain the values. With this structure, to index into

individual values (or "cells") you must index twice, first to return one of the inner

list objects and then again to index into that list.

The typical arrangement is for the outer list to hold the rows and each nested list

to contain the values for the columns. With this arrangement when you index,

you index first by row, then by column — making the example above a 3 row, 5

column table. Helpfully, this matches the visual layout in the source code.

The first index into the table will return a nested sub-list —

row = 2

col = 4

>>> table[row]

[2, 1, 5, 3, 9]

Which you then index again to return the value —

>>> table[row][col]

9

Note that using this type of structure you can’t easily return an entire column,

you would instead need to iterate all the rows. However, you are of course free to

flip things on their head and use the first index as column depending on whether

accessing by column or row is more useful to you.

325

table = [

 [4, 9, 2],

 [1, 1, 1],

 [3, 5, 5],

 [3, 3, 2],

 [7, 8, 9],

]

row = 4 # reversed

col = 2 # reversed

>>> table[col]

[3, 5, 5]

>>> table[col][row]

9

Nothing about this data structure enforces equal row or column

lengths — one row can be 5 elements long, another 200.

However, inconsistencies will lead to errors on the table view.

See the alternative data stores later if you’re working with large

or complex data tables.

Next we’ll look in a bit more detail at our custom TableModel and see how it works

with this simple data structure to display the values.

Writing a custom QAbstractTableModel

In the Model View Architecture the model is responsible for providing both the

data and presentation metadata for display by the view. In order to interface

between our data object and the view we need to write our own custom model,

which understands the structure of our data.

To write our custom model we can create a subclass of QAbstractTableModel. The

only required methods for a custom table model are data, rowCount and

columnCount. The first returns data (or presentation information) for given

326

locations in the table, while the latter two must return a single integer value for

the dimensions of the data source.

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super(TableModel, self).__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the nested-list data structure.

 # .row() indexes into the outer list,

 # .column() indexes into the sub-list

 return self._data[index.row()][index.column()]

 def rowCount(self, index):

 # The length of the outer list.

 return len(self._data)

 def columnCount(self, index):

 # The following takes the first sub-list, and returns

 # the length (only works if all rows are an equal length)

 return len(self._data[0])

QtCore.QAbstractTableModel is an abstract base class meaning it

does not have implementations for the methods. If you try and

use it directly, it will not work. You must sub-class it.

In the __init__ constructor we accept a single parameter data which we store as

the instance attribute self._data so we can access it from our methods. The

passed in data structure is stored by reference, so any external changes will be

reflected here.

To notify the model of changes you need to trigger the model’s

layoutChanged signal, using self.model.layoutChanged.emit().

327

The data method is called with two values index and role. The index parameter

gives the location in the table for which information is currently being requested,

and has two methods .row() and .column() which give the row and column

number in the view respectively. In our example, the data is stored as a nested

list, and the row and column indices are used to index as follows

data[row][column].

The view has no knowledge of the structure of the source data, and it is the

responsibility of the model to translate between the view’s row and column and

the relevant positions in your own data store.

The role parameter describes what kind of information the method should

return on this call. To get the data to display the view calls this model method

with the role of Qt.DisplayRole. However, role can have many other values

including Qt.BackgroundRole, Qt.CheckStateRole, Qt.DecorationRole, Qt.FontRole,

Qt.TextAlignmentRole and Qt.ForegroundRole, which each expect particular values

in response (see later).

Qt.DisplayRole actually expects a string to be returned, although

other basic Python types including float, int and bool will also

be displayed using their default string representations.

However, formatting these types to your strings is usually

preferable.

We’ll cover how to use these other role types later, for now it is only necessary to

know that you must check that the role type is Qt.DisplayRole before returning

your data for display.

The two custom methods columnCount and rowCount return the number of columns

and rows in our data structure. In the case of a nested list of lists in the

arrangement we’re using here, the number of rows is simply the number of

elements in the outer list, and the number of columns is the number of elements

in one of the inner lists — assuming they are all equal.

328

If these methods return values that are too high you will see out

of bounds errors, if they return values that are too low, you’ll

see the table cut off.

Formatting numbers and dates

The data returned by the model for display is expected to be a string. While int

and float values will also be displayed, using their default string representation,

complex Python types will not. To display these, or to override the default

formatting of float , int or bool values, you must format these to strings yourself.

You might be tempted to do this by converting your data to a table of strings in

advance. However, by doing this you make it very difficult to continue working

with the data in your table, whether for calculations or for updates.

Instead, you should use the model’s data method to perform the string

conversion on demand. By doing this you can continue to work with the original

data, yet have complete control over how it is presented to the user — including

changing this on the fly through configuration.

Below is a simple custom formatter which looks up the values in our data table,

and displays them in a number of different ways depending on the Python type

of the data.

329

Listing 107. tableview_format_1.py

import sys

from datetime import datetime ①

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # Get the raw value

 value = self._data[index.row()][index.column()]

 # Perform per-type checks and render accordingly.

 if isinstance(value, datetime):

 # Render time to YYY-MM-DD.

 return value.strftime("%Y-%m-%d")

 if isinstance(value, float):

 # Render float to 2 dp

 return "%.2f" % value

 if isinstance(value, str):

 # Render strings with quotes

 return '"%s"' % value

 # Default (anything not captured above: e.g. int)

 return value

 def rowCount(self, index):

 return len(self._data)

 def columnCount(self, index):

 return len(self._data[0])

330

① Note the additional import for from datetime import datetime at the top of the

file.

Use this together with the modified sample data below to see it in action.

data = [

 [4, 9, 2],

 [1, -1, 'hello'],

 [3.023, 5, -5],

 [3, 3, datetime(2017,10,1)],

 [7.555, 8, 9],

]

Figure 145. Custom data formatting

So far we’ve only looked at how we can customize how the data itself is

formatted. However, the model interface gives you far more control over the

display of table cells including colors and icons. In the next part we’ll look at how

to use the model to customize QTableView appearance.

Styles & Colors with Roles

Using colors and icons to highlight cells in data tables can help make data easier

to find and understand, or help users to select or mark data of interest. Qt allows

for complete control of all of these from the model, by responding to the relevant

role on the data method.

The types expected to be returned in response to the various role types are

shown below.

331

Role Type

Qt.BackgroundRole QBrush (also QColor)

Qt.CheckStateRole Qt.CheckState

Qt.DecorationRole QIcon, QPixmap, QColor

Qt.DisplayRole QString (also int, float, bool)

Qt.FontRole QFont

Qt.SizeHintRole QSize

Qt.TextAlignmentRole Qt.Alignment

Qt.ForegroundRole QBrush (also QColor)

By responding to a particular combination of role and index we can modify the

appearance of particular cells, columns or rows in the table — for example,

setting a blue background for all cells in the 3rd column.

Listing 108. tableview_format_2.py

 def data(self, index, role):

 if role == Qt.BackgroundRole and index.column() == 2:

 # See below for the data structure.

 return QtGui.QColor(Qt.blue)

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

By using the index to lookup values from our own data, we can also customize

appearance based on values in our data. We’ll go through some of the more

common use-cases below.

Text alignment

In our previous formatting examples we had used text formatting to display

float down to 2 decimal places. However, it’s also common when displaying

numbers to right-align them, to make it easier to compare across lists of

332

numbers. This can be accomplished by returning Qt.AlignRight in response to

Qt.TextAlignmentRole for any numeric values.

The modified data method is shown below. We check for role ==

Qt.TextAlignmentRole and look up the value by index as before, then determine if

the value is numeric. If it is we can return Qt.AlignVCenter + Qt.AlignRight to

align in the middle vertically, and on the right horizontally.

Listing 109. tableview_format_3.py

 def data(self, index, role):

 if role == Qt.TextAlignmentRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, int) or isinstance(value, float):

 # Align right, vertical middle.

 return Qt.AlignVCenter | Qt.AlignRight

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

Other alignments are possible, including Qt.AlignHCenter to

align center horizontally. You can combine them together by OR-

ing them together e.g. Qt.AlignBottom | Qt.AlignRight.

Figure 146. QTableView cell alignment

Text colors

If you’ve used spreadsheets like Excel you might be familiar with the concept of

333

conditional formatting. These are rules you can apply to cells (or rows, or

columns) which change text and background colors of cells depending on their

value.

This can be useful to help visualize data, for example using red for negative

numbers or highlighting ranges of numbers (e.g. low … high) with a gradient of

blue to red.

First, the below example implements a handler which checks if the value in the

indexed cell is numeric, and below zero. If it is, then the handler returns the text

(foreground) color red.

Listing 110. tableview_format_4.py

 def data(self, index, role):

 if role == Qt.ForegroundRole:

 value = self._data[index.row()][index.column()]

 if (

 isinstance(value, int) or isinstance(value, float)

) and value < 0:

 return QtGui.QColor("red")

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

If you add this to your model’s data handler, all negative numbers will now

appear red.

Figure 147. QTableView text formatting, with red negative numbers

334

Number range gradients

The same principle can be used to apply gradients to numeric values in a table to,

for example, highlight low and high values. First we define our color scale, which

is taken from colorbrewer2.org.

COLORS = ['#053061', '#2166ac', '#4393c3', '#92c5de', '#d1e5f0',

'#f7f7f7', '#fddbc7', '#f4a582', '#d6604d', '#b2182b', '#67001f']

Next we define our custom handler, this time for Qt.BackgroundRole. This takes

the value at the given index, checks that this is numeric then performs a series of

operations to constrain it to the range 0…10 required to index into our list.

Listing 111. tableview_format_5.py

 def data(self, index, role):

 if role == Qt.BackgroundRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, int) or isinstance(value, float):

 value = int(value) # Convert to integer for indexing.

 # Limit to range -5 ... +5, then convert to 0..10

 value = max(-5, value) # values < -5 become -5

 value = min(5, value) # valaues > +5 become +5

 value = value + 5 # -5 becomes 0, +5 becomes + 10

 return QtGui.QColor(COLORS[value])

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

The logic used here for converting the value to the gradient is very basic, cutting

off high/low values, and not adjusting to the range of the data. However, you can

adapt this as needed, as long as the end result of your handler is to return a

QColor or QBrush

335

http://colorbrewer2.org/#type=diverging&scheme=RdBu&n=11

Figure 148. QTableView with number-range color gradients

Icon & Image decoration

Each table cell contains a small decoration area which can be used to display

icons, images or a solid block of color, on the left hand side next to the data. This

can be used to indicate data type, e.g. calendars for dates, ticks and crosses for

bool values, or for a more subtle conditional-formatting for number ranges.

Below are some simple implementations of these ideas.

Indicating bool/date data types with icons

For dates we’ll use Python’s built-in datetime type. First, add the following import

to the top of your file to import this type.

from datetime import datetime

Then, update the data (set in the MainWindow.__init__) to add datetime and bool

(True or False values), for example.

data = [

 [True, 9, 2],

 [1, 0, -1],

 [3, 5, False],

 [3, 3, 2],

 [datetime(2019, 5, 4), 8, 9],

]

336

With these in place, you can update your model data method to show icons and

formatted dates for date types, with the following code.

Listing 112. tableview_format_6.py

import os

basedir = os.path.dirname(__file__)

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, datetime):

 return value.strftime("%Y-%m-%d")

 return value

 if role == Qt.DecorationRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, datetime):

 return QtGui.QIcon(

 os.path.join(basedir, "calendar.png")

)

 def rowCount(self, index):

 return len(self._data)

 def columnCount(self, index):

 return len(self._data[0])

We load the icons using the basedir technique introduced

earlier, to ensure the paths are correct however the script is run.

337

Figure 149. QTableView formatted dates with indicator icon

The following shows how to use ticks and cross for boolean True and False values

respectively.

Listing 113. tableview_format_7.py

 def data(self, index, role):

 if role == Qt.DecorationRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, bool):

 if value:

 return QtGui.QIcon("tick.png")

 return QtGui.QIcon("cross.png")

You can of course combine the above together, or any other mix of

Qt.DecorationRole and Qt.DisplayRole handlers. It’s usually simpler to keep each

type grouped under the same if branch, or as your model becomes more

complex, to create sub-methods to handle each role.

Figure 150. QTableView boolean indicators

338

Color blocks

If you return a QColor for Qt.DecorationRole a small square of color will be

displayed on the left hand side of the cell, in the icon location. This is identical to

the earlier Qt.BackgroundRole conditional formatting example, except now

handling and responding to Qt.DecorationRole.

Listing 114. tableview_format_8.py

 def data(self, index, role):

 if role == Qt.DecorationRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, datetime):

 return QtGui.QIcon(

 os.path.join(basedir, "calendar.png")

)

 if isinstance(value, bool):

 if value:

 return QtGui.QIcon(

 os.path.join(basedir, "tick.png")

)

 return QtGui.QIcon(os.path.join(basedir, "cross.png"))

 if isinstance(value, int) or isinstance(value, float):

 value = int(value)

 # Limit to range -5 ... +5, then convert to 0..10

 value = max(-5, value) # values < -5 become -5

 value = min(5, value) # valaues > +5 become +5

 value = value + 5 # -5 becomes 0, +5 becomes + 10

 return QtGui.QColor(COLORS[value])

339

Figure 151. QTableView color block decorations

Alternative Python data structures

So far in our examples we’ve used simple nested Python lists to hold our data for

display. This is fine for simple tables of data, however if you’re working with

large data tables there are some other better options in Python, which come with

additional benefits. In the next parts we’ll look at two Python data table libraries

— numpy and pandas — and how to integrate these with Qt.

Numpy

Numpy is a library which provides support for large multi-dimensional arrays or

matrix data structures in Python. The efficient and high-performance handling of

large arrays makes numpy ideal for scientific and mathematical applications. This

also makes numpy arrays a good data store for large, single-typed, data tables in

PySide6.

Using numpy as a data source

To support numpy arrays we need to make a number of changes to the model,

first modifying the indexing in the data method and then changing the row and

column count calculations for rowCount and columnCount.

The standard numpy API provides element-level access to 2D arrays, by passing

the row and column in the same slicing operation, e.g. _data[index.row(),

index.column()]. This is more efficient than indexing in two steps, as for the list

of list examples.

340

In numpy the dimensions of an array are available through .shape which returns

a tuple of dimensions along each axis in turn. We get the length of each axis by

selecting the correct item from this tuple, e.g. _data.shape[0] gets the size of the

first axis.

The following complete example shows how to display a numpy array using Qt’s

QTableView via a custom model.

Listing 115. model-views/tableview_numpy.py

import sys

import numpy as np

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # Note: self._data[index.row()][index.column()] will also

work

 value = self._data[index.row(), index.column()]

 return str(value)

 def rowCount(self, index):

 return self._data.shape[0]

 def columnCount(self, index):

 return self._data.shape[1]

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QtWidgets.QTableView()

341

 data = np.array(

 [

 [1, 9, 2],

 [1, 0, -1],

 [3, 5, 2],

 [3, 3, 2],

 [5, 8, 9],

]

)

 self.model = TableModel(data)

 self.table.setModel(self.model)

 self.setCentralWidget(self.table)

 self.setGeometry(600, 100, 400, 200)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

While simple Python types such as int and float are displayed

without converting to strings, numpy uses it’s own types (e.g.

numpy.int32) for array values. In order for these to be displayed

we must first convert them to strings.

Figure 152. QTableView with numpy array

342

With QTableView only 2D arrays can be displayed, however if you

have a higher dimensional data structure you can combine the

QTableView with a tabbed or scrollbar UI, to allow access to and

display of these higher dimensions.

Pandas

Pandas is a Python library commonly used for data manipulation and analysis. It

provides a nice API for loading 2D tabular data from various data sources and

performing data analysis on it. By using the numpy DataTable as your QTableView

model you can use these APIs to load and analyse your data from right within

your application.

Using Pandas as a data source

The modifications of the model to work with numpy are fairly minor, requiring

changes to the indexing in the data method and modifications to rowCount and

columnCount. The changes for rowCount and columnCount are identical to numpy

with pandas using a _data.shape tuple to represent the dimensions of the data.

For indexing we use the pandas .iloc method, for indexed locations — i.e. lookup

by column and/or row index. This is done by passing the row and then column to

the slice _data.iloc[index.row(), index.column()] .

The following complete example shows how to display a pandas data frame using

Qt QTableView via a custom model.

Listing 116. model-views/tableview_pandas.py

import sys

import pandas as pd

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class TableModel(QtCore.QAbstractTableModel):

343

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 value = self._data.iloc[index.row(), index.column()]

 return str(value)

 def rowCount(self, index):

 return self._data.shape[0]

 def columnCount(self, index):

 return self._data.shape[1]

 def headerData(self, section, orientation, role):

 if role == Qt.DisplayRole:

 if orientation == Qt.Horizontal:

 return str(self._data.columns[section])

 if orientation == Qt.Vertical:

 return str(self._data.index[section])

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QtWidgets.QTableView()

 data = pd.DataFrame(

 [

 [1, 9, 2],

 [1, 0, -1],

 [3, 5, 2],

 [3, 3, 2],

 [5, 8, 9],

],

 columns=["A", "B", "C"],

 index=["Row 1", "Row 2", "Row 3", "Row 4", "Row 5"],

)

 self.model = TableModel(data)

344

 self.table.setModel(self.model)

 self.setCentralWidget(self.table)

 self.setGeometry(600, 100, 400, 200)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

An interesting extension here is to use the table header of the QTableView to

display row and pandas column header values, which can be taken from

DataFrame.index and DataFrame.columns respectively.

Figure 153. QTableView pandas DataTable, with column and row headers

For this we need to implement a Qt.DisplayRole handler in a custom headerData

method. This receives section, the index of the row/column (0…n), orientation

which can be either Qt.Horizontal for the column headers, or Qt.Vertical for the

row headers, and role which works the same as for the data method.

The headerData method also receives other roles, which can be

used to customize the appearance of the headers further.

Conclusion

In this chapter we’ve covered the basics of using QTableView and a custom model

to display tabular data in your applications. This was extended to demonstrate

345

how to format data and decorate cells with icons and colors. Finally, we

demonstrated using QTableView with tabular data from numpy and pandas

structures including displaying custom column and row headers.

If you want to run calculations on your table data, take a look at

Using the thread pool.

346

21. Querying SQL databases with
Qt models

So far we’ve used table models to access data loaded or stored in the application

itself — from simple lists of lists to numpy and pandas tables. However, all of

these approaches have in common that the data that you are viewing must be

loaded entirely into memory.

To simplify interaction with SQL databases Qt provides a number of SQL models

which can be connected to views to display the output of SQL queries, or

database tables. In this chapter we’ll look at two alternatives — displaying

database data in a QTableView and with QDataWidgetMapper which allows you to

map database fields to Qt widgets.

Which model you use depends on whether you want read-only access to a

database, read-write access or read-only access with relationships (querying

more than one table). In the next sections we’ll look at each of those options in

turn.

The following examples start from this simple skeleton, showing a table view in a

window, but with no model set.

347

Listing 117. databases/tableview.py

import os

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QMainWindow, QTableView

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 # self.model = ?

 # self.table.setModel(self.model)

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

Before we connect a model, running this will just show an empty window.

For these examples we’re using a SQLite file database

demo.sqlite which is included in the downloads for this book.

You can use your own database if you prefer, including both

SQLite databases or database servers (PostgreSQL, MySQL, etc.).

See Authenticating with QSqlDatabase for instructions on how to

connect to remote servers.

348

Connecting to a database

To be able to display data from a database in your app, you must first connect

with it. Both server (IP, e.g. PostgreSQL or MySQL) and file-based (SQLite)

databases are supported by Qt, the only difference being in how you set them up.

For all these examples we’re using the Chinook sample database — a sample

database designed for testing and demos. The database represents a digital media

store, including tables for artists, albums, media tracks, invoices and customers.

A copy of the SQLite version of this database is included in the

code with this book, named chinook.sqlite. You can also

download the latest version from here.

import os

from PySide6.QtSql import QSqlDatabase

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

Where you place this code will depend on your application.

Often you want to create a single database connection and use it

throughout your app — in this case it’s best to create a separate

module, e.g. db.py to hold this (and other related functionality).

The process is the same for all databases — create the database object, set the

name and then open the database to initialize the connection. However, if you

want to connect to a remote database there are a few extra parameters. See

Authenticating with QSqlDatabase for more information.

349

https://github.com/lerocha/chinook-database
https://github.com/lerocha/chinook-database/raw/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite

Displaying a table with QSqlTableModel

The simplest thing you can do once you’ve connected your app to a database

store, is to display a single table in your application. To do this we can use

QSqlTableModel. This model displays data directly from the table, allowing editing.

First we need to create the instance of the table model, passing in the database

object we’ve created above. Then we need to set the source table to query data

from — this is the name of the table in the database, here <table name>. Finally

we need to call .select() on the model.

model = QSqlTableModel(db=db)

model.setTable('<table name>')

model.select()

By calling .select() we tell the model to query the database and keep the result,

ready for display. To display this data in a QTableView we simply need to pass it to

the views .setModel() method.

table = QTableView()

table.setModel(self.model)

The data will be displayed in the table model and can be browsed using the

scrollbar. See below for the full code, which loads the database and displays the

track table in the view.

350

Listing 118. tableview_tablemodel.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtSql import QSqlDatabase, QSqlTableModel

from PySide6.QtWidgets import QApplication, QMainWindow, QTableView

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlTableModel(db=db)

 self.table.setModel(self.model)

 self.model.setTable("Track")

 self.model.select()

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

This will give you the following window when run.

351

Figure 154. The tracks table displayed in a QTableView.

You can resize the columns by dragging the right hand edge.

Resize to fit the contents by double-clicking on the right hand

edge.

Editing the data

Database data displayed in a QTableView is editable by default — just double-click

on any cell and you will be able to modify the contents. The changes are persisted

back to the database immediately after you finish editing.

Qt provides some control over this editing behavior, which you may want to

change depending on the type of app you are building. Qt terms these behaviors

editing strategy and they can be one of the following -

Strategy Description

QSqlTableModel.OnFieldChange Changes are applied automatically, when the

user deselects the edited cell.

QSqlTableModel.OnRowChange Changes are applied automatically, when the

user selects a different row.

352

Strategy Description

QSqlTableModel.OnManualSubmit Changes are cached in the model, and written

to the database only when .submitAll() is

called, or discarded when revertAll() is called.

You can set the current edit strategy for the model by calling .setEditStrategy on

it. For example — 

self.model.setEditStrategy(QSqlTableModel.OnRowChange)

Sorting columns

To sort the table by a given column, we can call .setSort() on the model, passing

in the column index and Qt.AscendingOrder or Qt.DescendingOrder.

Listing 119. databases/tableview_tablemodel_sort.py

 self.model.setTable("Track")

 self.model.setSort(2, Qt.DescendingOrder)

 self.model.select()

This must be done before the call to .select(). If you want to sort after you’ve got

the data, you can perform another .select() call to refresh.

353

Figure 155. The tracks table sorted on column index 2, the album_id.

You may prefer to sort the table using the column name rather than the column

index. To do this, you can look up the column index with the name.

Listing 120. databases/tableview_tablemodel_sortname.py

 self.model.setTable("Track")

 idx = self.model.fieldIndex("Milliseconds")

 self.model.setSort(idx, Qt.DescendingOrder)

 self.model.select()

The table is now sorted on the milliseconds column.

354

Figure 156. The tracks table sorted on the milliseconds column.

Column titles

By default the column header titles on the table come from the column names in

the database. Often this isn’t very user-friendly, so you can replace them with

proper titles using .setHeaderData, passing in the column index, the

direction — horizontal (top) or vertical (left) header — and the label.

Listing 121. database/tableview_tablemodel_titles.py

 self.model.setTable("Track")

 self.model.setHeaderData(1, Qt.Horizontal, "Name")

 self.model.setHeaderData(2, Qt.Horizontal, "Album (ID)")

 self.model.setHeaderData(3, Qt.Horizontal, "Media Type (ID)")

 self.model.setHeaderData(4, Qt.Horizontal, "Genre (ID)")

 self.model.setHeaderData(5, Qt.Horizontal, "Composer")

 self.model.select()

355

Figure 157. The tracks table with nicer column titles.

As when sorting, it is not always convenient to use the column indexes for

this — if the column order changes in the database, the names set in your

application will be out of sync.

As before, we can use .fieldIndex() to lookup the index for a given name. You

can go a step further and define a Python dict of column name and title to apply

in one go, when setting up the model.

Listing 122. database/tableview_tablemodel_titlesname.py

 self.model.setTable("Track")

 column_titles = {

 "Name": "Name",

 "AlbumId": "Album (ID)",

 "MediaTypeId": "Media Type (ID)",

 "GenreId": "Genre (ID)",

 "Composer": "Composer",

 }

 for n, t in column_titles.items():

 idx = self.model.fieldIndex(n)

 self.model.setHeaderData(idx, Qt.Horizontal, t)

 self.model.select()

356

Selecting columns

Often you will not want to display all the columns from a table. You can select

which columns to display by removing columns from the model. To do this call

.removeColumns() passing in the index of the first column to remove and the

number of subsequent columns.

self.model.removeColumns(2, 5)

Once removed the columns will no longer be shown on the table. You can use the

same name-lookup approach used for column labelling to remove columns by

name.

columns_to_remove = ['name', 'something']

for cn in columns_to_remove:

 idx = self.model.fieldIndex(cn)

 self.model.removeColumns(idx, 1)

Removing columns in this way just removes them from the view.

If you want to filter the columns out with SQL see the query

models below.

Filtering a table

We can filter the table by calling .setFilter() on the model, passing in a

parameter which describes the filter. The filter parameter can be any valid SQL

WHERE clause without the WHERE prepended. For example name="Martin" to match

exactly, or name LIKE "Ma%" to match fields beginning with "Ma".

In case you’re not familiar with SQL, below are a few example search patterns

you can use to perform different types of searches.

357

Pattern Description

field="{}" Field matches the string exactly.

field LIKE "{}%" Field begins with the given string.

field LIKE "%{}" Field ends with the given string.

field LIKE "%{}%" Field contains the given string.

In each example {} is the search string, which you must interpolate using python

"{}".format(search_str). Unlike the sort, the filter will be applied automatically

to the data, without the need to call .select() again.

If .select() hasn’t been called yet, the filter will be applied the

first time it is.

In the following example we add a QLineEdit field and hook this up to search the

table on the track name field. We connect the line edit changed signal to construct

and apply the filter to the model.

Listing 123. databases/tableview_tablemodel_filter.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtSql import QSqlDatabase, QSqlTableModel

from PySide6.QtWidgets import (

 QApplication,

 QLineEdit,

 QMainWindow,

 QTableView,

 QVBoxLayout,

 QWidget,

)

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

358

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 container = QWidget()

 layout = QVBoxLayout()

 self.search = QLineEdit()

 self.search.textChanged.connect(self.update_filter)

 self.table = QTableView()

 layout.addWidget(self.search)

 layout.addWidget(self.table)

 container.setLayout(layout)

 self.model = QSqlTableModel(db=db)

 self.table.setModel(self.model)

 self.model.setTable("Track")

 self.model.select()

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(container)

 def update_filter(self, s):

 filter_str = 'Name LIKE "%{}%"'.format(s)

 self.model.setFilter(filter_str)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

359

Figure 158. Filtering the tracks table on the name.

 This is prone to SQL injection attacks.

While this works, this is really bad way to enable searching on a table, since the

user can construct invalid or malicious SQL statements. For example, try entering

the single character " in the search box — the filtering will stop working, and

won’t work again until you restart the app.

This is because you’ve created an invalid SQL statement e.g.

'name LIKE "%"%"'

The ideal way to work around this problem is to use parameterized

queries — leaving escaping of the input to the database, to ensure that nothing

dangerous or malformed is passed. However, this isn’t possible with the Qt filter

interface, we can only pass a string.

For simple plain-text searching we can instead simply strip out any non-

alphanumeric or space characters from the string. It will depend on your use

case whether this is appropriate.

360

import re

s = re.sub('[\W_]+', '', s)

query = 'field="%s"' % s

Putting that into our filter method from our example, we get the following code.

Listing 124. databases/tableview_tablemodel_filter_clean.py

 def update_filter(self, s):

 s = re.sub("[\W_]+", "", s)

 filter_str = 'Name LIKE "%{}%"'.format(s)

 self.model.setFilter(filter_str)

Try running the example again, and entering " — and any other garbage you can

think of. You should find that the search continues to work.

Displaying related data with
QSqlRelationalTableModel

In the previous examples we’ve used QSqlTableModel to display data from a single

table. However, in relational databases tables can have relationships with other

tables and it is often useful to be able to view that related data inline.

Relationships in relational databases are handled through foreign keys. These are

a (usually) numeric value, stored in a column of one table, which references the

primary key for a row in another table.

An example of a foreign key in our example tracks table would be album_id or

genre_id. Both are numeric values which point to records in the album and genre

table respectively. Displaying these values to the user (1, 2, 3.. etc.) is not helpful

because they have no meaning themselves.

What would be nicer, would be to pull through the name of the album, or the

genre and display it in our table view. For that, we can use

361

QSqlRelationalTableModel.

The setup for this model is identical for the previous. To define the relationships

we call .setRelation() passing the column index, and a QSqlRelation object.

from PySide6.QtSql import QSqlRelation, QSqlRelationalTableModel

self.model = QSqlRelationalTableModel(db=db)

relation = QSqlRelation('<related_table>',

'<related_table_foreign_key_column', '<column_to_display>')

self.model.setRelation(<column>, relation)

The QSqlRelation object accepts three arguments, first the related table we will be

pulling data from, the foreign key column on that table, and finally the column to

pull data from.

For our test database tracks table, the following will pull data from the related

tables for album ID, media_type ID and genre ID (columns 3, 4, 5 respectively).

Listing 125. databases/tableview_relationalmodel.py

 self.model.setTable("Track")

 self.model.setRelation(

 2, QSqlRelation("Album", "AlbumId", "Title")

)

 self.model.setRelation(

 3, QSqlRelation("MediaType", "MediaTypeId", "Name")

)

 self.model.setRelation(

 4, QSqlRelation("Genre", "GenreId", "Name")

)

 self.model.select()

When run you will see the three _id columns have been replaced by the data

pulled through from the related tables. The columns take the names of the

related fields, if they don’t clash, or have a name constructed for them.

362

Figure 159. Displaying data from related fields.

Using QSqlRelationalDelegate to edit related
fields.

If you try and edit fields in a QSqlRelationalTableModel you’ll notice a

problem — while you can edit the fields on the base table (here Tracks) any edits

you make to the related fields (e.g. Album Title) are not saved. These fields are

currently only views to the data.

Valid values for related fields are limited by the values in the related table — to

have more choices, we need to add another row to the related table. Since the

options are restricted, it often makes sense to display the choices in a QComboBox.

Qt comes with a model item delegate which can do this lookup and display for

us — QSqlRelationalDelegate.

363

Listing 126. databases/tableview_relationalmodel_delegate.py

 self.model.setTable("Track")

 self.model.setRelation(

 2, QSqlRelation("Album", "AlbumId", "Title")

)

 self.model.setRelation(

 3, QSqlRelation("MediaType", "MediaTypeId", "Name")

)

 self.model.setRelation(

 4, QSqlRelation("Genre", "GenreId", "Name")

)

 delegate = QSqlRelationalDelegate(self.table)

 self.table.setItemDelegate(delegate)

 self.model.select()

This delegate automatically handles the mapping for any relational fields. We

simply create the delegate passing in the QTableView instance, and then set the

resulting delegate on the model, everything is taken care of automatically.

Running this you will see drop-downs when you edit the related fields.

Figure 160. Making relatable fields editable through a drop-down with

QSqlRelationalDelegate

364

Generic queries with QSqlQueryModel

So far we’ve been displaying an entire database table on our QTableView with

some optional column filtering and sorting. However, Qt also allows for

displaying more complex queries using QSqlQueryModel. In this part we’ll look at

how we can use QSqlQueryModel to display an SQL query, starting first with a

simple single-table query and then relational and parameterized queries.

The process for querying with this model is slightly different. Rather than passing

the database to the model constructor, here we instead create a QSqlQuery object

which takes the database connection, and then pass that to the model.

query = QSqlQuery("SELECT name, composer FROM track ", db=db)

This means that you can use a single QSqlQueryModel and perform queries on

different databases if you like. The complete working example of this query is

shown below.

365

Listing 127. databases/tableview_querymodel.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PySide6.QtWidgets import QApplication, QMainWindow, QTableView

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlQueryModel()

 self.table.setModel(self.model)

 query = QSqlQuery("SELECT Name, Composer FROM track ", db=db)

 self.model.setQuery(query)

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

366

Figure 161. Performing a simple query.

In this first example we’ve performed a very simple query against our track

table, only returning two fields from that table. However, the QSqlQuery object

can be used for more complex queries, including cross-table joins and

parameterized queries — where we can pass values in to modify the query.

Parameterized queries protect your app from SQL injection

attacks.

In the following example we extend the simple query to add a related look up on

the album table. In addition we bind a album_title parameter which is used for a

contains search against the album table.

Listing 128. databases/tableview_querymodel_parameter.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PySide6.QtWidgets import QApplication, QMainWindow, QTableView

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

367

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlQueryModel()

 self.table.setModel(self.model)

 query = QSqlQuery(db=db)

 query.prepare(

 "SELECT Name, Composer, Album.Title FROM Track "

 "INNER JOIN Album ON Track.AlbumId = Album.AlbumId "

 "WHERE Album.Title LIKE '%' || :album_title || '%' "

)

 query.bindValue(":album_title", "Sinatra")

 query.exec()

 self.model.setQuery(query)

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

Now that we want to add parameters to the query, we cannot pass it to QSqlQuery

as it is created. Doing this would execute it immediately, without the parameter-

replacement. Instead we now need to pass the query into .prepare(), telling the

driver to identify parameters in the query and wait for the values.

Next, we bind each of our parameters using .bindValue() and finally call

query.exec() to actually perform the query on the database.

368

This parameterized query is the equivalent of the following SQL — 

SELECT Name, Composer, Album.Title FROM Track

INNER JOIN Album ON Track.AlbumId = Album.AlbumId

WHERE Album.Title LIKE '%Sinatra%'

This gives the following result — 

Figure 162. The result of the parameterised query.

In this last example we add three search fields — one for the track title, one for

the artist and one for the album title. We connect the .textChanged signals from

each of these to a custom method that updates the parameters for the query.

Listing 129. databases/tableview_querymodel_search.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLineEdit,

 QMainWindow,

 QTableView,

369

 QVBoxLayout,

 QWidget,

)

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 container = QWidget()

 layout_search = QHBoxLayout()

 self.track = QLineEdit()

 self.track.setPlaceholderText("Track name...")

 self.track.textChanged.connect(self.update_query)

 self.composer = QLineEdit()

 self.composer.setPlaceholderText("Artist name...")

 self.composer.textChanged.connect(self.update_query)

 self.album = QLineEdit()

 self.album.setPlaceholderText("Album name...")

 self.album.textChanged.connect(self.update_query)

 layout_search.addWidget(self.track)

 layout_search.addWidget(self.composer)

 layout_search.addWidget(self.album)

 layout_view = QVBoxLayout()

 layout_view.addLayout(layout_search)

 self.table = QTableView()

 layout_view.addWidget(self.table)

 container.setLayout(layout_view)

370

 self.model = QSqlQueryModel()

 self.table.setModel(self.model)

 self.query = QSqlQuery(db=db)

 self.query.prepare(

 "SELECT Name, Composer, Album.Title FROM Track "

 "INNER JOIN Album ON Track.AlbumId=Album.AlbumId WHERE "

 "Track.Name LIKE '%' || :track_name || '%' AND "

 "Track.Composer LIKE '%' || :track_composer || '%' AND "

 "Album.Title LIKE '%' || :album_title || '%'"

)

 self.update_query()

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(container)

 def update_query(self, s=None):

 # Get the text values from the widgets.

 track_name = self.track.text()

 track_composer = self.composer.text()

 album_title = self.album.text()

 self.query.bindValue(":track_name", track_name)

 self.query.bindValue(":track_composer", track_composer)

 self.query.bindValue(":album_title", album_title)

 self.query.exec()

 self.model.setQuery(self.query)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

If you run this you can search the database using each of the fields

independently, with the results updating automatically each time the search

query changes.

371

Figure 163. The result of the multi-parameter search query.

QDataWidgetMapper

In all the examples so far we’ve displayed the output data from the database in a

table, using QTableView. While this often makes sense for viewing data, for data

input or editing it is usually preferable to display the inputs as a form which can

be typed into and tabbed between.

These are called create, read, update and delete (CRUD)

operations and interfaces.

The full working example is shown below.

Listing 130. databases/widget_mapper.py

import os

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtSql import QSqlDatabase, QSqlTableModel

from PySide6.QtWidgets import (

 QApplication,

 QComboBox,

 QDataWidgetMapper,

 QDoubleSpinBox,

372

 QFormLayout,

 QLabel,

 QLineEdit,

 QMainWindow,

 QSpinBox,

 QWidget,

)

basedir = os.path.dirname(__file__)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName(os.path.join(basedir, "chinook.sqlite"))

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 form = QFormLayout()

 self.track_id = QSpinBox()

 self.track_id.setRange(0, 2147483647)

 self.track_id.setDisabled(True)

 self.name = QLineEdit()

 self.album = QComboBox()

 self.media_type = QComboBox()

 self.genre = QComboBox()

 self.composer = QLineEdit()

 self.milliseconds = QSpinBox()

 self.milliseconds.setRange(0, 2147483647) ①

 self.milliseconds.setSingleStep(1)

 self.bytes = QSpinBox()

 self.bytes.setRange(0, 2147483647)

 self.bytes.setSingleStep(1)

 self.unit_price = QDoubleSpinBox()

 self.unit_price.setRange(0, 999)

 self.unit_price.setSingleStep(0.01)

 self.unit_price.setPrefix("$")

373

 form.addRow(QLabel("Track ID"), self.track_id)

 form.addRow(QLabel("Track name"), self.name)

 form.addRow(QLabel("Composer"), self.composer)

 form.addRow(QLabel("Milliseconds"), self.milliseconds)

 form.addRow(QLabel("Bytes"), self.bytes)

 form.addRow(QLabel("Unit Price"), self.unit_price)

 self.model = QSqlTableModel(db=db)

 self.mapper = QDataWidgetMapper() ②

 self.mapper.setModel(self.model)

 self.mapper.addMapping(self.track_id, 0) ③

 self.mapper.addMapping(self.name, 1)

 self.mapper.addMapping(self.composer, 5)

 self.mapper.addMapping(self.milliseconds, 6)

 self.mapper.addMapping(self.bytes, 7)

 self.mapper.addMapping(self.unit_price, 8)

 self.model.setTable("Track")

 self.model.select() ④

 self.mapper.toFirst() ⑤

 self.setMinimumSize(QSize(400, 400))

 widget = QWidget()

 widget.setLayout(form)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① Widgets must be configured to accept all valid values from the table.

② One QDataWidgetMapper for all widgets.

③ Widgets are mapped to _columns.

④ Perform the select to populate the model.

374

⑤ Step the mapper forward to the first record.

If you run this example, you’ll see the following window. The

self.mapper.toFirst() call selects the first record in the table and this is then

displayed in the mapped widgets.

Figure 164. Viewing a record via mapped widgets.

We currently can’t change which record we are viewing or save any changes we

make to records. To make this possible we can add 3 buttons — one each for

browse previous and next through the records, and save to commit changes to the

database. To do this we can hook up some QPushButton widgets to the mapper slots

.toPrevious, .toNext and .submit.

Update the end of the __init__ method to add the following, adding the widgets

into the existing layout.

375

Listing 131. databases/widget_mapper_controls.py

 self.setMinimumSize(QSize(400, 400))

 controls = QHBoxLayout()

 prev_rec = QPushButton("Previous")

 prev_rec.clicked.connect(self.mapper.toPrevious)

 next_rec = QPushButton("Next")

 next_rec.clicked.connect(self.mapper.toNext)

 save_rec = QPushButton("Save Changes")

 save_rec.clicked.connect(self.mapper.submit)

 controls.addWidget(prev_rec)

 controls.addWidget(next_rec)

 controls.addWidget(save_rec)

 layout.addLayout(form)

 layout.addLayout(controls)

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

You will also need to update the imports at the top of the file to import

QPushButton and QHBoxLayout.

376

Listing 132. databases/widget_mapper_controls.py

from PySide6.QtWidgets import (

 QApplication,

 QComboBox,

 QDataWidgetMapper,

 QDoubleSpinBox,

 QFormLayout,

 QHBoxLayout,

 QLabel,

 QLineEdit,

 QMainWindow,

 QPushButton,

 QSpinBox,

 QVBoxLayout,

 QWidget,

)

Now you can browse between records in the Tracks table, make changes to the

track data and submit these changes to the database. The full source code for this

example is available at databases/widget_mapper_controls.py in the book source

code.

Figure 165. Viewing records, with previous/next controls and save to submit.

377

Authenticating with QSqlDatabase

In the examples so far we’ve used SQLite database files. But often you’ll want to

connect to a remote SQL server instead. That requires a few additional

parameters, including the hostname (where the database is located) and a

username and password if appropriate.

Create database connection.

db = QSqlDatabase('<driver>')

db.setHostName('<localhost>')

db.setDatabaseName('<databasename>')

db.setUserName('<username>')

db.setPassword('<password>')

db.open()

NOTE: The value of <driver> can be any one of the following ['QSQLITE',

'QMYSQL', 'QMYSQL3', 'QODBC', 'QODBC3', 'QPSQL', 'QPSQL7']. To get this list on

your system run QSqlDatabase.drivers().

That’s it! Once the connection is established, the models will behave exactly as

before.

378

Custom Widgets
As we’ve seen, Qt comes with a wide range of widgets built-in, which you can use

to build your applications. Even so, sometimes these simple widgets are not

enough — maybe you need an input for some custom types, or want to visualize

data in a unique way. In Qt you are free to create your own widgets, either from

scratch or by combining existing widgets.

In this chapter we’ll see how to use bitmap graphics and custom signals to create

your very own widgets.

Figure 166. A custom color-gradient input, one of the widgets in our library.

 You may also want to check out our custom widget library.

379

https://www.pythonguis.com/widgets/

22. Bitmap Graphics in Qt

The first step towards creating custom widgets in PySide6 is understanding

bitmap (pixel-based) graphic operations. All standard widgets draw themselves

as bitmaps on a rectangular "canvas" that forms the shape of the widget. Once

you understand how this works you can draw any custom widget you like!

INFO: Bitmaps are rectangular grids of pixels, where each pixel (and its color) is

represented by a number of "bits". They are distinct from vector graphics, where

the image is stored as a series of line (or vector) drawing shapes which are used

to form the image. If you’re viewing vector graphics on your screen they are

being rasterised — converted into a bitmap image — to be displayed as pixels on

the screen.

In this tutorial we’ll take a look at QPainter, Qt’s API for performing bitmap

graphic operations and the basis for drawing your own widgets. We’ll go through

some basic drawing operations and finally put it all together to create our own

little Paint app.

QPainter

Bitmap drawing operations in Qt are handled through the QPainter class. This is a

generic interface which can be used to draw on various surfaces including, for

example, QPixmap. In this chapter we’ll look at the QPainter drawing methods, first

using primitive operations on a QPixmap surface, and then building a simple Paint

application using what we’ve learnt.

To make this easy to demonstrate we’ll be using the following stub application

which handles creating our container (a QLabel) creating a pixmap canvas,

setting that into the container and adding the container to the main window.

380

Listing 133. bitmap/stub.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtGui import QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel()

 self.canvas = QPixmap(400, 300) ①

 self.canvas.fill(Qt.GlobalColor.white) ②

 self.setCentralWidget(self.label)

 self.draw_something()

 def draw_something(self):

 pass

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① Create the QPixmap object we’ll draw onto.

② Fill the entire canvas with white (so we can see our line).

Why do we use QLabel to draw on? The QLabel widget can also be

used to show images, and it’s the simplest widget available for

displaying a QPixmap.

We need to fill our canvas with white to begin with as depending on the platform

and current dark mode, the background can be anything from light gray to black.

We can start by drawing something really simple.

381

Listing 134. /bitmap/line.py

import sys

from PySide6.QtCore import QPoint, Qt

from PySide6.QtGui import QColor, QPainter, QPen, QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel()

 self.canvas = QPixmap(400, 300) ①

 self.canvas.fill(Qt.white) ②

 self.label.setPixmap(self.canvas)

 self.setCentralWidget(self.label)

 self.draw_something()

 def draw_something(self):

 painter = QPainter(self.canvas)

 painter.drawLine(10, 10, 300, 200) ③

 painter.end()

 self.label.setPixmap(self.canvas)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

① Create the QPixmap object we’ll draw onto.

② Fill the entire canvas with white (so we can see our line).

③ Draw a line from (10, 10) to (300, 200). The coordinates are x, y with 0, 0 in the

top left.

Save this to a file and run it and you should see the following — a single black

line inside the window frame —

382

Figure 167. A single black line on the canvas.

All the drawing occurs within the draw_something method — we create a QPainter

instance, passing in the canvas (self.label.pixmap()) and then issue a command

to draw a line. Finally we call .end() to close the painter and apply the changes.

You would usually also need to call .update() to trigger a refresh

of the widget, but as we’re drawing before the application

window is shown a refresh is already going to occur

automatically.

The coordinate system of QPainter puts 0, 0 in the top-left of the canvas, with x

increasing towards the right and y increasing down the image. This may be

surprising if you’re used to graphing where 0, 0 is in the bottom-left.

383

Figure 168. Black line annotated with the coordinates.

Drawing primitives

QPainter provides a huge number of methods for drawing shapes and lines on a

bitmap surface (in 5.12 there are 192 QPainter specific non-event methods). The

good news is that most of these are overloaded methods which are simply

different ways of calling the same base methods.

For example, there are 5 different drawLine methods, all of which draw the same

line, but differ in how the coordinates of what to draw are defined.

Method Description

drawLine(line) Draw a QLine instance

drawLine(line) Draw a QLineF instance

drawLine(x1, y1, x2, y2) Draw a line between x1, y2 and x2, y2

(both int).

384

Method Description

drawLine(p1, p2) Draw a line between point p1 and p2

(both QPoint)

drawLine(p1, p2) Draw a line between point p1 and p2

(both QPointF)

If you’re wondering what the difference is between a QLine and a QLineF , the

latter has its coordinates specified as float. This is convenient if you have float

positions as the result of other calculations, but otherwise not so much.

Ignoring the F-variants, we have 3 unique ways to draw a line — with a line

object, with two sets of coordinates (x1, y1), (x2, y2) or with two QPoint

objects. When you discover that a QLine itself is defined as `QLine(const QPoint &

p1, const QPoint & p2)`or`QLine(int x1, int y1, int x2, int y2)`you see that they

are all in fact, exactly the same thing. The different call signatures are simply

there for convenience.

Given the x1, y1, x2, y2 coordinates, the two QPoint objects

would be defined as QPoint(x1, y1) and QPoint(x2, y2).

So, leaving out the duplicates we have the following draw operations —drawArc ,

drawChord, drawConvexPolygon, drawEllipse,drawLine, drawPath, drawPie, drawPoint,

drawPolygon, drawPolyline, drawRect, drawRects and drawRoundedRect. To avoid get

overwhelmed we’ll focus first on the primitive shapes and lines first and return

to the more complicated operations once we have the basics down.

For each example, replace the draw_something method in your

stub application and re-run it to see the output.

drawPoint

This draws a point, or pixel at a given point on the canvas. Each call to drawPoint

draws one pixel. Replace your draw_something code with the following.

385

Listing 135. bitmap/point.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 painter.drawPoint(200, 150)

 painter.end()

 self.label.setPixmap(self.canvas)

If you re-run the file you will see a window, but this time there is a single dot, in

black in the middle of it. You may need to move the window around to spot it.

Figure 169. Drawing a single point (pixel) with QPainter.

That really isn’t much to look at. To make things more interesting we can change

the color and size of the point we’re drawing. In PySide6 the color and thickness

of lines is defined using the active pen on the QPainter. You can set this by

creating a QPen instance and applying it.

386

Listing 136. bitmap/point_with_pen.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(40)

 pen.setColor(QColor("red"))

 painter.setPen(pen)

 painter.drawPoint(200, 150)

 painter.end()

 self.label.setPixmap(self.canvas)

This will give the following mildly more interesting result..

Figure 170. A big red dot.

You are free to perform multiple draw operations with your QPainter until the

painter is ended. Drawing onto the canvas is very quick — here we’re drawing

10k dots at random.

387

Listing 137. bitmap/points.py

from random import choice, randint ①

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(3)

 painter.setPen(pen)

 for n in range(10000):

 painter.drawPoint(

 200 + randint(-100, 100),

 150 + randint(-100, 100), # x # y

)

 painter.end()

 self.label.setPixmap(self.canvas)

① Add this import at the top of the file.

The dots are 3 pixel-width and black (the default pen).

Figure 171. 10k 3-pixel dots on a canvas.

388

You will often want to update the current pen while drawing — e.g. to draw

multiple points in different colors while keeping other characteristics (width) the

same. To do this without recreating a new QPen instance each time you can get the

current active pen from the QPainter using pen = painter.pen(). You can also re-

apply an existing pen multiple times, changing it each time.

Listing 138. bitmap/points_color.py

 def draw_something(self):

 colors = [

 "#FFD141",

 "#376F9F",

 "#0D1F2D",

 "#E9EBEF",

 "#EB5160",

]

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(3)

 painter.setPen(pen)

 for n in range(10000):

 # pen = painter.pen() you could get the active pen here

 pen.setColor(QColor(choice(colors)))

 painter.setPen(pen)

 painter.drawPoint(

 200 + randint(-100, 100),

 150 + randint(-100, 100), # x # y

)

 painter.end()

 self.label.setPixmap(self.canvas)

Will produce the following output —

389

Figure 172. Random pattern of 3 width dots.

There can only ever be one QPen active on a QPainter — the

current pen.

That’s about as much excitement as you can have drawing dots onto a screen, so

we’ll move on to look at some other drawing operations.

drawLine

We already drew a line on the canvas at the beginning to test things are working.

But what we didn’t try was setting the pen to control the line appearance.

390

Listing 139. bitmap/line_with_pen.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(15)

 pen.setColor(QColor("blue"))

 painter.setPen(pen)

 painter.drawLine(QPoint(100, 100), QPoint(300, 200))

 painter.end()

 self.label.setPixmap(self.canvas)

In this example we’re also using QPoint to define the two points to connect with a

line, rather than passing individual x1, y1, x2, y2 parameters — remember that

both methods are functionally identical.

Figure 173. A thick blue line.

drawRect, drawRects and drawRoundedRect

These functions all draw rectangles, defined by a series of points, or by QRect or

QRectF instances.

391

Listing 140. bitmap/rect.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(3)

 pen.setColor(QColor("#EB5160"))

 painter.setPen(pen)

 painter.drawRect(50, 50, 100, 100)

 painter.drawRect(60, 60, 150, 100)

 painter.drawRect(70, 70, 100, 150)

 painter.drawRect(80, 80, 150, 100)

 painter.drawRect(90, 90, 100, 150)

 painter.end()

 self.label.setPixmap(self.canvas)

 A square is just a rectangle with the same width and height

Figure 174. Drawing rectangles.

You can also replace the multiple calls to drawRect with a single call to drawRects

passing in multiple QRect objects. This will product exactly the same result.

392

painter.drawRects(

 QtCore.QRect(50, 50, 100, 100),

 QtCore.QRect(60, 60, 150, 100),

 QtCore.QRect(70, 70, 100, 150),

 QtCore.QRect(80, 80, 150, 100),

 QtCore.QRect(90, 90, 100, 150),

)

Drawn shapes can be filled in PySide6 by setting the current active painter brush,

passing in a QBrush instance to painter.setBrush(). The following example fills all

rectangles with a patterned yellow color.

Listing 141. bitmap/rect_with_brush.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(3)

 pen.setColor(QColor("#376F9F"))

 painter.setPen(pen)

 brush = QBrush()

 brush.setColor(QColor("#FFD141"))

 brush.setStyle(Qt.BrushStyle.Dense1Pattern)

 painter.setBrush(brush)

 painter.drawRects(

 [

 QRect(50, 50, 100, 100),

 QRect(60, 60, 150, 100),

 QRect(70, 70, 100, 150),

 QRect(80, 80, 150, 100),

 QRect(90, 90, 100, 150),

]

)

 painter.end()

 self.label.setPixmap(self.canvas)

393

Figure 175. Filled rectangles.

As for the pen, there is only ever one brush active on a given painter, but you can

switch between them or change them while drawing. There are a number of

brush style patterns available. You’ll probably use Qt.SolidPattern more than any

others though.

You must set a style to see any fill at all as the default is

Qt.NoBrush.

The drawRoundedRect methods draw a rectangle, but with rounded edges, and so

take two extra parameters for the x & y radius of the corners.

394

https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum

Listing 142. bitmap/roundrect.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(3)

 pen.setColor(QColor("#376F9F"))

 painter.setPen(pen)

 painter.drawRoundedRect(40, 40, 100, 100, 10, 10)

 painter.drawRoundedRect(80, 80, 100, 100, 10, 50)

 painter.drawRoundedRect(120, 120, 100, 100, 50, 10)

 painter.drawRoundedRect(160, 160, 100, 100, 50, 50)

 painter.end()

 self.label.setPixmap(self.canvas)

Figure 176. Rounded rectangles.

There is an optional final parameter to toggle between the x & y

ellipse radii of the corners being defined in absolute pixel terms

Qt.RelativeSize (the default) or relative to the size of the

rectangle (passed as a value 0…100). Pass Qt.RelativeSize to

enable this.

395

drawEllipse

The final primitive draw method we’ll look at now is drawEllipse which can be

used to draw an ellipse or a circle.

 A circle is just an ellipse with an equal width and height.

Listing 143. bitmap/ellipse.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(3)

 pen.setColor(QColor(204, 0, 0)) # r, g, b

 painter.setPen(pen)

 painter.drawEllipse(10, 10, 100, 100)

 painter.drawEllipse(10, 10, 150, 200)

 painter.drawEllipse(10, 10, 200, 300)

 painter.end()

 self.label.setPixmap(self.canvas)

In this example drawEllipse is taking 4 parameters, with the first two being the x

& y position of the top left of the rectangle in which the ellipse will be drawn,

while the last two parameters are the width and height of that rectangle

respectively.

396

Figure 177. Drawing an ellipse with x, y, width, height or QRect.

 You can achieve the same by passing in a QRect

There is another call signature which takes the center of the ellipse as the first

parameter, provided as QPoint or QPointF object, and then a x and y radius. The

example below shows it in action.

painter.drawEllipse(QtCore.QPoint(100, 100), 10, 10)

painter.drawEllipse(QtCore.QPoint(100, 100), 15, 20)

painter.drawEllipse(QtCore.QPoint(100, 100), 20, 30)

painter.drawEllipse(QtCore.QPoint(100, 100), 25, 40)

painter.drawEllipse(QtCore.QPoint(100, 100), 30, 50)

painter.drawEllipse(QtCore.QPoint(100, 100), 35, 60)

397

Figure 178. Drawing an ellipse using Point & radius.

You can fill ellipses using the same QBrush approach described for rectangles.

Text

Finally, we’ll take a brief tour through the QPainter text drawing methods. To

control the current font on a QPainter you use setFont passing in a QFont instance.

With this you can control the family, weight and size (among other things) of the

text you write. The color of the text is still defined using the current pen,

however the width of the pen has no effect.

398

Listing 144. bitmap/text.py

 def draw_something(self):

 painter = QPainter(self.canvas)

 pen = QPen()

 pen.setWidth(1)

 pen.setColor(QColor("green"))

 painter.setPen(pen)

 font = QFont()

 font.setFamily("Times")

 font.setBold(True)

 font.setPointSize(40)

 painter.setFont(font)

 painter.drawText(100, 100, "Hello, world!")

 painter.end()

 self.label.setPixmap(self.canvas)

 You can also specify location with QPoint or QPointF.

Figure 179. Bitmap text hello world example.

399

There are also methods for drawing text within a specified area. Here the

parameters define the x & y position and the width & height of the bounding box.

Text outside this box is clipped (hidden). The 5th parameter flags can be used to

control alignment of the text within the box among other things.

painter.drawText(100, 100, 100, 100, Qt.AlignHCenter, 'Hello, world!')

Figure 180. Bounding box clipped on drawText.

You have complete control over the display of text by setting the active font on

the painter via a QFont object. Check out the QFont documentation for more

information.

A bit of fun with QPainter

That got a bit heavy, so let’s take a breather and make something fun. So far

we’ve been programmatically defining the draw operations to perform on the

QPixmap surface. But we can just as easily draw in response to user input — for

example allowing a user to scribble all over the canvas. Let’s take what we’ve

400

https://doc.qt.io/archives/qt-4.8/qfont.html

learned so far and use it to build a rudimentary Paint app.

We can start with the same simple application outline, adding a mouseMoveEvent

handler to the MainWindow class in place of our draw method. Here we take the

current position of the user’s mouse and draw it to the canvas.

Listing 145. bitmap/paint_start.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtGui import QPainter, QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel()

 self.canvas = QPixmap(400, 300)

 self.canvas.fill(Qt.white)

 self.label.setPixmap(self.canvas)

 self.setCentralWidget(self.label)

 def mouseMoveEvent(self, e):

 pos = e.position()

 painter = QPainter(self.canvas)

 painter.drawPoint(pos.x(), pos.y())

 painter.end()

 self.label.setPixmap(self.canvas)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

401

Widgets by default only receive mouse move events when a

mouse button is pressed, unless mouse tracking is enabled. This

can be configured using the .setMouseTracking method — setting

this to True (it is False by default) will track the mouse

continuously.

If you save this and run it you should be able to move your mouse over the

screen and click to draw individual points. It should look something like this —

Figure 181. Drawing individual mouseMoveEvent points.

The issue here is that when you move the mouse around quickly it actually jumps

between locations on the screen, rather than moving smoothly from one place to

the next. The `mouseMoveEvent`is fired for each location the mouse is in, but

that’s not enough to draw a continuous line, unless you move very slowly.

402

The solution to this is to draw lines instead of points. On each event we simply

draw a line from where we were (previous .x() and .y()) to where we are now

(current .x() and .y()). We can do this by tracking last_x and last_y ourselves.

We also need to forget the last position when releasing the mouse, or we’ll start

drawing from that location again after moving the mouse across the page — i.e.

we won’t be able to break the line.

Listing 146. bitmap/paint_line.py

import sys

from PySide6.QtCore import Qt

from PySide6.QtGui import QPainter, QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel()

 self.canvas = QPixmap(400, 300)

 self.canvas.fill(Qt.white)

 self.label.setPixmap(self.canvas)

 self.setCentralWidget(self.label)

 self.last_x, self.last_y = None, None

 def mouseMoveEvent(self, e):

 pos = e.position()

 if self.last_x is None: # First event.

 self.last_x = pos.x()

 self.last_y = pos.y()

 return # Ignore the first time.

 painter = QPainter(self.canvas)

 painter.drawLine(self.last_x, self.last_y, pos.x(), pos.y())

 painter.end()

 self.label.setPixmap(self.canvas)

403

 # Update the origin for next time.

 self.last_x = pos.x()

 self.last_y = pos.y()

 def mouseReleaseEvent(self, e):

 self.last_x = None

 self.last_y = None

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

If you run this you should be able to scribble on the screen as you would expect.

Figure 182. Drawing with the mouse, using a continuous line.

404

It’s still a bit dull, so let’s add a simple palette to allow us to change the pen color.

This requires a bit of re-architecting to ensure the mouse position is detected

accurately. So far we’ve using the mouseMoveEvent on the QMainWindow . When we

only have a single widget in the window this is fine — as long as you don’t resize

the window, the coordinates of the container and the single nested widget line

up. However, if we add other widgets to the layout this won’t hold — the

coordinates of the QLabel will be offset from the window, and we’ll be drawing in

the wrong location.

This is easily fixed by moving the mouse handling onto the QLabel itself— it’s

event coordinates are always relative to itself. This we wrap up as an individual

Canvas object, which handles the creation of the pixmap surface, sets up the x & y

locations and the holds the current pen color (set to black by default).

This self-contained Canvas is a drop-in drawable surface you

could use in your own apps.

Listing 147. bitmap/paint.py

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtGui import QColor, QPainter, QPixmap

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class Canvas(QLabel):

 def __init__(self):

 super().__init__()

 self._pixmap = QPixmap(600, 300)

405

 self._pixmap.fill(Qt.white)

 self.setPixmap(self._pixmap)

 self.last_x, self.last_y = None, None

 self.pen_color = QColor("#000000")

 def set_pen_color(self, c):

 self.pen_color = QColor(c)

 def mouseMoveEvent(self, e):

 pos = e.position()

 if self.last_x is None: # First event.

 self.last_x = pos.x()

 self.last_y = pos.y()

 return # Ignore the first time.

 painter = QPainter(self._pixmap)

 p = painter.pen()

 p.setWidth(4)

 p.setColor(self.pen_color)

 painter.setPen(p)

 painter.drawLine(self.last_x, self.last_y, pos.x(), pos.y())

 painter.end()

 self.setPixmap(self._pixmap)

 # Update the origin for next time.

 self.last_x = pos.x()

 self.last_y = pos.y()

 def mouseReleaseEvent(self, e):

 self.last_x = None

 self.last_y = None

For the color selection we’re going to build a custom widget, based off

QPushButton. This widget accepts a color parameter which can be a QColor

instance, or a color name ('red', 'black') or hex value. This color is set on the

background of the widget to make it identifiable. We can use the standard

QPushButton.pressed signal to hook it up to any actions.

406

Listing 148. bitmap/paint.py

COLORS = [

 # 17 undertones https://lospec.com/palette-list/17undertones

 "#000000",

 "#141923",

 "#414168",

 "#3a7fa7",

 "#35e3e3",

 "#8fd970",

 "#5ebb49",

 "#458352",

 "#dcd37b",

 "#fffee5",

 "#ffd035",

 "#cc9245",

 "#a15c3e",

 "#a42f3b",

 "#f45b7a",

 "#c24998",

 "#81588d",

 "#bcb0c2",

 "#ffffff",

]

class QPaletteButton(QPushButton):

 def __init__(self, color):

 super().__init__()

 self.setFixedSize(QSize(24, 24))

 self.color = color

 self.setStyleSheet("background-color: %s;" % color)

With those two new parts defined, we simply need to iterate over our list of

colors, create a QPaletteButton for each, passing in the color. Then connect its

pressed signal to the set_pen_color handler on the canvas (indirectly through a

lambda to pass the additional color data) and add it to the palette layout.

407

Listing 149. bitmap/paint.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.canvas = Canvas()

 w = QWidget()

 l = QVBoxLayout()

 w.setLayout(l)

 l.addWidget(self.canvas)

 palette = QHBoxLayout()

 self.add_palette_buttons(palette)

 l.addLayout(palette)

 self.setCentralWidget(w)

 def add_palette_buttons(self, layout):

 for c in COLORS:

 b = QPaletteButton(c)

 b.pressed.connect(lambda c=c: self.canvas.set_pen_color(

c))

 layout.addWidget(b)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

This should give you a fully-functioning multicolor paint application, where you

can draw lines on the canvas and select colors from the palette.

408

Figure 183. Unfortunately, it doesn’t make you good.

Unfortunately, it doesn’t make you a good artist.

Spray

For a final bit of fun you can switch out the mouseMoveEvent with the following to

draw with a "spray can" effect instead of a line. This is simulated using

random.gauss to generate a series of normally distributed dots around the current

mouse position which we plot with drawPoint.

Listing 150. bitmap/spraypaint.py

import random

import sys

from PySide6.QtCore import QSize, Qt

from PySide6.QtGui import QColor, QPainter, QPixmap

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

409

SPRAY_PARTICLES = 100

SPRAY_DIAMETER = 10

class Canvas(QLabel):

 def __init__(self):

 super().__init__()

 self._pixmap = QPixmap(600, 300)

 self._pixmap.fill(Qt.GlobalColor.white)

 self.setPixmap(self._pixmap)

 self.pen_color = QColor("#000000")

 def set_pen_color(self, c):

 self.pen_color = QColor(c)

 def mouseMoveEvent(self, e):

 pos = e.position()

 painter = QPainter(self._pixmap)

 p = painter.pen()

 p.setWidth(1)

 p.setColor(self.pen_color)

 painter.setPen(p)

 for n in range(SPRAY_PARTICLES):

 xo = random.gauss(0, SPRAY_DIAMETER)

 yo = random.gauss(0, SPRAY_DIAMETER)

 painter.drawPoint(pos.x() + xo, pos.y() + yo)

 self.setPixmap(self._pixmap)

For the spray can we don’t need to track the previous position,

as we always spray around the current point.

Define the SPRAY_PARTICLES and SPRAY_DIAMETER variables at the top of your file

and import the random standard library module. The image below shows the

spray behavior when using the following settings:

410

import random

SPRAY_PARTICLES = 100

SPRAY_DIAMETER = 10

Figure 184. Just call me Picasso.

If you want a challenge, you could try adding an additional button to toggle

between draw and spray mode, or an input widget to define the brush/spray

diameter.

For a fully-functional drawing app written with Python & Qt

check out Piecasso in our "Minute apps" repository on Github.

This introduction should have given you a good idea of what you can do with

QPainter. As described, this system is the basis of all widget drawing. If you want

to look further, check out the widget .paint() method, which receives a QPainter

instance, to allow the widget to draw on itself. The same methods you’ve learnt

here can be used in .paint() to draw some basic custom widgets.

411

https://github.com/learnpyqt/15-minute-apps/tree/master/paint

23. Creating Custom Widgets

In the previous chapter we introduced QPainter and looked at some basic bitmap

drawing operations which you can used to draw dots, lines, rectangles and circles

on a QPainter surface such as a QPixmap. This process of drawing on a surface with

QPainter is in fact the basis by which all widgets in Qt are drawn. Now you know

how to use QPainter you know how to draw your own custom widgets! In this

chapter we’ll take what we’ve learnt so far and use it to construct a completely

new custom widget. For a working example we’ll be building the following

widget — a customizable PowerBar meter with a dial control.

Figure 185. PowerBar meter.

This widget is actually a mix of a compound widget and custom widget in that we

are using the built-in Qt QDial component for the dial, while drawing the power

bar ourselves. We then assemble these two parts together into a parent widget

which can be dropped into place seamlessly in any application, without needing

to know how it’s put together. The resulting widget provides the common

QAbstractSlider interface with some additions for configuring the bar display.

After following this example you will be able to build your very own custom

widgets — whether they are compounds of built-ins or completely novel self-

412

drawn wonders.

Getting started

As we’ve previously seen compound widgets are simply widgets with a layout

applied, which itself contains >1 other widget. The resulting "widget" can then be

used as any other, with the internals hidden/exposed as you like.

The outline for our PowerBar widget is given below — we’ll build our custom

widget up gradually from this outline stub.

413

Listing 151. custom-widgets/stub.py

import sys

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class _Bar(QtWidgets.QWidget):

 pass

class PowerBar(QtWidgets.QWidget):

 """

 Custom Qt Widget to show a power bar and dial.

 Demonstrating compound and custom-drawn widget.

 """

 def __init__(self, parent=None, steps=5):

 super().__init__(parent)

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar()

 layout.addWidget(self._bar)

 self._dial = QtWidgets.QDial()

 layout.addWidget(self._dial)

 self.setLayout(layout)

app = QtWidgets.QApplication(sys.argv)

volume = PowerBar()

volume.show()

app.exec()

This simply defines our custom power bar is defined in the _Bar object — here

just unaltered subclass of QWidget. The PowerBar widget (which is the complete

widget) combines this, using a QVBoxLayout with the built in QDial to display them

together.

414

We don’t need to create a QMainWindow since any widget without a

parent is a window in it’s own right. Our custom PowerBar widget

will appear as any normal window.

You can run this file at any time to see your widget in action. Run it now and you

should see something like this:

Figure 186. PowerBar dial.

If you stretch the window down you’ll see the dial has more space above it than

below — this is being taken up by our (currently invisible) _Bar widget.

paintEvent

The paintEvent handler is the core of all widget drawing in PySide6. Every

complete and partial re-draw of a widget is triggered through a paintEvent which

the widget handles to draw itself. A paintEvent can be triggered by — 

• repaint() or update() was called

• the widget was obscured and has now been uncovered

• the widget has been resized

 — but it can also occur for many other reasons. What is important is that when a

paintEvent is triggered your widget is able to redraw it.

If a widget is simple enough (like ours is) you can often get away with simply

redrawing the entire thing any time anything happens. But for more complicated

415

https://doc.qt.io/qt-5/qwidget.html#repaint
https://doc.qt.io/qt-5/qwidget.html#update

widgets this can get very inefficient. For these cases the paintEvent includes the

specific region that needs to be updated. We’ll make use of this in later, more

complicated examples.

For now we’ll do something very simple, and just fill the entire widget with a

single color. This will allow us to see the area we’re working with to start

drawing the bar. Add the following code to the _Bar class.

Listing 152. custom-widgets/powerbar_1.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

Positioning

Now we can see the _Bar widget we can tweak its positioning and size. If you drag

around the shape of the window you’ll see the two widgets changing shape to fit

the space available. This is what we want, but the QDial is also expanding

vertically more than it should, and leaving empty space we could use for the bar.

416

Figure 187. PowerBar stretched leaves empty space.

We can use setSizePolicy on our _Bar widget to make sure it expands as far as

possible. By using the QSizePolicy.MinimumExpanding the provided sizeHint will be

used as a minimum, and the widget will expand as much as possible.

417

Listing 153. custom-widgets/powerbar_2.py

class _Bar(QtWidgets.QWidget):

 def __init__(self):

 super().__init__()

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 def sizeHint(self):

 return QtCore.QSize(40, 120)

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

It’s still not perfect as the QDial widget resizes itself a bit awkwardly, but our bar

is now expanding to fill all the available space.

418

Figure 188. PowerBar with policy set to QSizePolicy.MinimumExpanding.

With the positioning sorted we can now move on to define our paint methods to

draw our PowerBar meter in the top part (currently black) of the widget.

Updating the display

We now have our canvas completely filled in black, next we’ll use QPainter draw

commands to actually draw something on the widget.

Before we start on the bar, we’ve got a bit of testing to do to make sure we can

update the display with the values of our dial. Update the _Bar.paintEvent with

the following code.

419

Listing 154. custom-widgets/powerbar_3.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 pen = painter.pen()

 pen.setColor(QtGui.QColor("red"))

 painter.setPen(pen)

 font = painter.font()

 font.setFamily("Times")

 font.setPointSize(18)

 painter.setFont(font)

 painter.drawText(

 25, 25, "{}-->{}<--{}".format(vmin, value, vmax)

)

 painter.end()

This draws the black background as before, then uses .parent() to access our

parent PowerBar widget and through that the QDial via _dial. From there we get

the current value, as well as the allowed range minimum and maximum values.

Finally we draw those using the painter, just like we did in the previous part.

420

We’re leaving handling of the current value, min and max

values to the QDial here, but we could also store that value

ourselves and use signals to/from the dial to keep things in sync.

Run this, wiggle the dial around and …..nothing happens. Although we’ve defined

the paintEvent handler we’re not triggering a repaint when the dial changes.

You can force a refresh by resizing the window, as soon as you

do this you should see the text appear. Neat, but terrible

UX — "just resize your app to see your settings!"

To fix this we need to hook up our _Bar widget to repaint itself in response to

changing values on the dial. We can do this using the QDial.valueChanged`signal,

hooking it up to a custom slot method which calls `.refresh() — triggering a

full-repaint.

Add the following method to the _Bar widget.

Listing 155. custom-widgets/powerbar_4.py

 def _trigger_refresh(self):

 self.update()

…and add the following to the __init__ block for the parent PowerBar widget.

Listing 156. custom-widgets/powerbar_4.py

 self._dial = QtWidgets.QDial()

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 layout.addWidget(self._dial)

If you re-run the code now, you will see the display updating automatically as

you turn the dial (click and drag with your mouse). The current value is

displayed as text.

421

Figure 189. PowerBar displaying current value as text.

Drawing the bar

Now we have the display updating and displaying the current value of the dial,

we can move onto drawing the actual bar display. This is a little complicated,

with a bit of maths to calculate bar positions, but we’ll step through it to make it

clear what’s going on.

The sketch below shows what we are aiming for — a series of N boxes, inset from

the edges of the widget, with spaces between them.

Figure 190. The bar segments and layout we’re aiming for.

422

Calculating what to draw

The number of boxes to draw is determined by the current value — and how far

along it is between the minimum and maximum value configured for the QDial.

We already have that information in the example above.

dial = self.parent()._dial

vmin, vmax = dial.minimum(), dial.maximum()

value = dial.value()

If value is half way between vmin and vmax then we want to draw half of the boxes

(if we have 4 boxes total, draw 2). If value is at vmax we want to draw them all.

To do this we first convert our value into a number between 0 and 1, where 0 =

vmin and 1 = vmax. We first subtract vmin from value to adjust the range of

possible values to start from zero — i.e. from vmin…vmax to 0…(vmax-vmin).

Dividing this value by vmax-vmin (the new maximum) then gives us a number

between 0 and 1.

The trick then is to multiply this value (called pc below) by the number of steps

and that gives us a number between 0 and 5 — the number of boxes to draw.

pc = (value - vmin) / (vmax - vmin)

n_steps_to_draw = int(pc * 5)

We’re wrapping the result in int to convert it to a whole number (rounding

down) to remove any partial boxes.

Update the drawText method in your paint event to write out this number instead.

423

Listing 157. custom-widgets/powerbar_5.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 pen = painter.pen()

 pen.setColor(QtGui.QColor("red"))

 painter.setPen(pen)

 font = painter.font()

 font.setFamily("Times")

 font.setPointSize(18)

 painter.setFont(font)

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * 5)

 painter.drawText(25, 25, "{}".format(n_steps_to_draw))

 painter.end()

As you turn the dial you will now see a number between 0 and 5.

Drawing boxes

Next we want to convert this number 0…5 to a number of bars drawn on the

canvas. Start by removing the drawText and font and pen settings, as we no longer

424

need those.

To draw accurately we need to know the size of our canvas — i.e the size of the

widget. We will also add a bit of padding around the edges to give space around

the edges of the blocks against the black background.

 All measurements in the QPainter are in pixels.

Listing 158. custom-widgets/powerbar_6.py

 padding = 5

 # Define our canvas.

 d_height = painter.device().height() - (padding * 2)

 d_width = painter.device().width() - (padding * 2)

We take the height and width and subtract 2 * padding from each — it’s 2x

because we’re padding both the left and right (and top and bottom) edges. This

gives us our resulting active canvas area in d_height and d_width.

Figure 191. The padding on the outside of the layout.

We need to break up our d_height into 5 equal parts, one for each block — we can

calculate that height simply by d_height / 5. Additionally, since we want spaces

between the blocks we need to calculate how much of this step size is taken up by

space (top and bottom, so halved) and how much is actual block.

425

Listing 159. custom-widgets/powerbar_6.py

 step_size = d_height / 5

 bar_height = step_size * 0.6

These values are all we need to draw our blocks on our canvas. To do this we

count up to the number of steps-1 starting from 0 using range and then draw a

fillRect over a region for each block.

Listing 160. custom-widgets/powerbar_6.py

 brush.setColor(QtGui.QColor("red"))

 for n in range(n_steps_to_draw):

 ypos = (1 + n) * step_size

 rect = QtCore.QRect(

 padding,

 padding + d_height - int(ypos),

 d_width,

 int(bar_height),

)

 painter.fillRect(rect, brush)

There is a lot going on in the placement calculations for the blocks, so let’s step

through those first.

The box to draw with fillRect is defined as a QRect object to which we pass, in

turn, the left x, top y, width and height.

The width is the full canvas width minus the padding, which we previously

calculated and stored in d_width. The left x is similarly just the padding value (5px)

from the left hand side of the widget.

The height of the bar bar_height`we calculated as 0.6 times the `step_size.

This leaves parameter 2 d_height - ((1 + n) * step_size) which gives the top y

position of the rectangle to draw. This is the only calculation that changes as we

426

draw the blocks.

Remember that y coordinates in QPainter start at the top and

increase down the canvas. This means that plotting at d_height

will be plotting at the very bottom of the canvas.

To draw a block at the very bottom we must start drawing at

d_height-step_size i.e. one block up to leave space to draw

downwards.

In our bar meter we’re drawing blocks, in turn, starting at the bottom and

working upwards. So our very first block must be placed at d_height-step_size

and the second at d_height-(step_size*2). Our loop iterates from 0 upwards, so

we can achieve this with the following formula — 

ypos = (1 + n) * step_size

y = d_height - ypos

This produces the following layout.

In the picture below the current value of n has been printed

over the box, and a blue box has been drawn around the

complete step_size so you can see the padding and spacers in

effect.

427

Figure 192. Showing the whole area (in blue) taken up by each segment.

Putting this all together gives the following code, which when run will produce a

working power-bar widget with blocks in red. You can drag the wheel back and

forth and the bars will move up and down in response.

Listing 161. custom-widgets/powerbar_6b.py

import sys

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class _Bar(QtWidgets.QWidget):

 def __init__(self):

 super().__init__()

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 def sizeHint(self):

 return QtCore.QSize(40, 120)

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

428

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * 5)

 padding = 5

 # Define our canvas.

 d_height = painter.device().height() - (padding * 2)

 d_width = painter.device().width() - (padding * 2)

 step_size = d_height / 5

 bar_height = step_size * 0.6

 brush.setColor(QtGui.QColor("red"))

 for n in range(n_steps_to_draw):

 ypos = (1 + n) * step_size

 rect = QtCore.QRect(

 padding,

 padding + d_height - int(ypos),

 d_width,

 int(bar_height),

)

 painter.fillRect(rect, brush)

 painter.end()

 def _trigger_refresh(self):

 self.update()

429

class PowerBar(QtWidgets.QWidget):

 """

 Custom Qt Widget to show a power bar and dial.

 Demonstrating compound and custom-drawn widget.

 """

 def __init__(self, parent=None, steps=5):

 super().__init__(parent)

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar()

 layout.addWidget(self._bar)

 self._dial = QtWidgets.QDial()

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 layout.addWidget(self._dial)

 self.setLayout(layout)

app = QtWidgets.QApplication(sys.argv)

volume = PowerBar()

volume.show()

app.exec()

Figure 193. The basic complete PowerBar.

That already does the job, but we can go further to provide more customization,

430

add some UX improvements and improve the API for working with our widget.

Customizing the Bar

We now have a working power bar, controllable with a dial. But it’s nice when

creating widgets to provide options to configure the behavior of your widget to

make it more flexible. In this part we’ll add methods to set customizable numbers

of segments, colors, padding and spacing.

The elements we’re going to provide customization for are — 

Option Description

number of bars How many bars are displayed on the

widget

colors Individual colors for each of the bars

background color The color of the draw canvas (default

black)

padding Space around the widget edge, between

bars and edge of canvas

bar height / bar percent Proportion (0…1) of the bar which is

solid (the rest will be spacing between

adjacent bars)

We can store each of these as attributes on the _bar object, and use them from the

paintEvent method to change its behavior.

The _Bar.__init__ is updated to accept an initial argument for either the number

of bars (as an integer) or the colors of the bars (as a list of QColor, hex values or

names). If a number is provided, all bars will be colored red. If the a list of colors

is provided the number of bars will be determined from the length of the color

list. Default values for`self._bar_solid_percent`, self._background_color,

self._padding are also set.

431

Listing 162. custom-widgets/powerbar_7.py

class _Bar(QtWidgets.QWidget):

 def __init__(self, steps):

 super().__init__()

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 if isinstance(steps, list):

 # list of colors.

 self.n_steps = len(steps)

 self.steps = steps

 elif isinstance(steps, int):

 # int number of bars, defaults to red.

 self.n_steps = steps

 self.steps = ["red"] * steps

 else:

 raise TypeError("steps must be a list or int")

 self._bar_solid_percent = 0.8

 self._background_color = QtGui.QColor("black")

 self._padding = 4 # n-pixel gap around edge.

Likewise we update the PowerBar.__init__ to accept the steps parameter, and

pass it through.

432

Listing 163. custom-widgets/powerbar_7.py

class PowerBar(QtWidgets.QWidget):

 """

 Custom Qt Widget to show a power bar and dial.

 Demonstrating compound and custom-drawn widget.

 """

 def __init__(self, parent=None, steps=5):

 super().__init__(parent)

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar(steps)

 layout.addWidget(self._bar)

 self._dial = QtWidgets.QDial()

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 layout.addWidget(self._dial)

 self.setLayout(layout)

We now have the parameters in place to update the paintEvent method. The

modified code is shown below.

Listing 164. custom-widgets/powerbar_7.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(self._background_color)

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

433

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 # Define our canvas.

 d_height = painter.device().height() - (self._padding * 2)

 d_width = painter.device().width() - (self._padding * 2)

 # Draw the bars.

 step_size = d_height / self.n_steps

 bar_height = step_size * self._bar_solid_percent

 # Calculate the y-stop position, from the value in range.

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * self.n_steps)

 for n in range(n_steps_to_draw):

 brush.setColor(QtGui.QColor(self.steps[n]))

 ypos = (1 + n) * step_size

 rect = QtCore.QRect(

 self._padding,

 self._padding + d_height - int(ypos),

 d_width,

 int(bar_height),

)

 painter.fillRect(rect, brush)

 painter.end()

You can now experiment with passing in different values for the __init__ to

PowerBar, e.g. increasing the number of bars, or providing a color list. Some

examples are shown below.

 A good source of hex color palettes is the Bokeh source.

434

https://github.com/bokeh/bokeh/blob/master/bokeh/palettes.py

PowerBar(10)

PowerBar(3)

PowerBar(["#5e4fa2", "#3288bd", "#66c2a5", "#abdda4", "#e6f598",

"#ffffbf", "#fee08b", "#fdae61", "#f46d43", "#d53e4f", "#9e0142"])

PowerBar(["#a63603", "#e6550d", "#fd8d3c", "#fdae6b", "#fdd0a2",

"#feedde"])

Figure 194. Some PowerBar examples.

You could fiddle with the padding settings through the variables e.g.

self._bar_solid_percent but it’d be nicer to provide proper methods to set these.

We’re following the Qt standard of camelCase method names for

these external methods for consistency with the others inherited

from QDial.

435

Listing 165. custom-widgets/powerbar_8.py

 def setColor(self, color):

 self._bar.steps = [color] * self._bar.n_steps

 self._bar.update()

 def setColors(self, colors):

 self._bar.n_steps = len(colors)

 self._bar.steps = colors

 self._bar.update()

 def setBarPadding(self, i):

 self._bar._padding = int(i)

 self._bar.update()

 def setBarSolidPercent(self, f):

 self._bar._bar_solid_percent = float(f)

 self._bar.update()

 def setBackgroundColor(self, color):

 self._bar._background_color = QtGui.QColor(color)

 self._bar.update()

In each case we set the private variable on the _bar object and then call

_bar.update() to trigger a redraw of the widget. The method support changing the

color to a single color, or updating a list of them — setting a list of colors can also

be used to change the number of bars.

There is no method to set the bar count, since expanding a list of

colors would be tricky. But feel free to try adding this yourself!

Here’s an example using 25px padding, a fully solid bar and a grey background.

bar = PowerBar(["#49006a", "#7a0177", "#ae017e", "#dd3497", "#f768a1",

"#fa9fb5", "#fcc5c0", "#fde0dd", "#fff7f3"])

bar.setBarPadding(2)

bar.setBarSolidPercent(0.9)

bar.setBackgroundColor('gray')

436

With these settings you get the following result.

Figure 195. Configuring the PowerBar.

Adding the QAbstractSlider Interface

We’ve added methods to configure the behavior of the power bar. But we

currently provide no way to configure the standard QDial methods — for

example, setting the min, max or step size — from our widget. We could work

through and add wrapper methods for all of these, but it would get very tedious

very quickly.

Example of a single wrapper, we'd need 30+ of these.

def setNotchesVisible(self, b):

 return self._dial.setNotchesVisible(b)

Instead we can add a little handler onto our outer widget to automatically look

for methods (or attributes) on the QDial instance, if they don’t exist on our class

directly. This way we can implement our own methods, yet still get all the

QAbstractSlider goodness for free.

The wrapper is shown below, implemented as a custom __getattr__ method.

437

Listing 166. custom-widgets/powerbar_8.py

 def __getattr__(self, name):

 if name in self.__dict__:

 return self[name]

 try:

 return getattr(self._dial, name)

 except AttributeError:

 raise AttributeError(

 "'{}' object has no attribute '{}'".format(

 self.__class__.__name__, name

)

)

When accessing a property (or method) — e.g. when we call

PowerBar.setNotchesVisible(true) Python internally uses __getattr__ to get the

property from the current object. This handler does this through the object

dictionary self.__dict__. We’ve overridden this method to provide our custom

handling logic.

Now, when we call PowerBar.setNotchesVisible(true), this handler first looks on

our current object (a PowerBar instance) to see if .setNotchesVisible exists and if it

does uses it. If not it then calls getattr() on self._dial instead returning what it

finds there. This gives us access to all the methods of QDial from our custom

`PowerBar`widget.

If QDial doesn’t have the attribute either, and raises an AttributeError we catch it

and raise it again from our custom widget, where it belongs.

This works for any properties or methods, including signals. So

the standard QDial signals such as .valueChanged are available

too.

Thanks to these changes we can also simplify the code in our paintEvent to get the

current state from .parent() directly, rather than .parent()._dial. This doesn’t

438

alter behavior at all, but makes things more readable.

Listing 167. custom-widgets/powerbar_8.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(self._background_color)

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

 # Get current state.

 parent = self.parent()

 vmin, vmax = parent.minimum(), parent.maximum()

 value = parent.value()

 # Define our canvas.

 d_height = painter.device().height() - (self._padding * 2)

 d_width = painter.device().width() - (self._padding * 2)

 # Draw the bars.

 step_size = d_height / self.n_steps

 bar_height = step_size * self._bar_solid_percent

 # Calculate the y-stop position, from the value in range.

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * self.n_steps)

 for n in range(n_steps_to_draw):

 brush.setColor(QtGui.QColor(self.steps[n]))

 ypos = (1 + n) * step_size

 rect = QtCore.QRect(

 self._padding,

 self._padding + d_height - int(ypos),

 d_width,

439

 int(bar_height),

)

 painter.fillRect(rect, brush)

 painter.end()

Updating from the Meter display

Currently you can update the current value of the PowerBar meter by twiddling

with the dial. But it would be nice if you could also update the value by clicking a

position on the power bar, or by dragging you mouse up and down. To do this we

can update our _Bar widget to handle mouse events.

Listing 168. custom-widgets/powerbar_9.py

class _Bar(QtWidgets.QWidget):

 clickedValue = QtCore.Signal(int)

 def _calculate_clicked_value(self, e):

 parent = self.parent()

 vmin, vmax = parent.minimum(), parent.maximum()

 d_height = self.size().height() + (self._padding * 2)

 step_size = d_height / self.n_steps

 click_y = e.y() - self._padding - step_size / 2

 pc = (d_height - click_y) / d_height

 value = int(vmin + pc * (vmax - vmin))

 self.clickedValue.emit(value)

 def mouseMoveEvent(self, e):

 self._calculate_clicked_value(e)

 def mousePressEvent(self, e):

 self._calculate_clicked_value(e)

In the __init__ block for the PowerBar widget we can connect to the

_Bar.clickedValue signal and send the values to self._dial.setValue to set the

current value on the dial.

440

Take feedback from click events on the meter.

self._bar.clickedValue.connect(self._dial.setValue)

If you run the widget now, you’ll be able to click around in the bar area and the

value will update, and the dial rotate in sync.

The final code

Below is the complete final code for our PowerBar meter widget, called PowerBar.

Listing 169. custom-widgets/powerbar.py

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtCore import Qt

class _Bar(QtWidgets.QWidget):

 clickedValue = QtCore.Signal(int)

 def __init__(self, steps):

 super().__init__()

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 if isinstance(steps, list):

 # list of colors.

 self.n_steps = len(steps)

 self.steps = steps

 elif isinstance(steps, int):

 # int number of bars, defaults to red.

 self.n_steps = steps

 self.steps = ["red"] * steps

 else:

 raise TypeError("steps must be a list or int")

441

 self._bar_solid_percent = 0.8

 self._background_color = QtGui.QColor("black")

 self._padding = 4 # n-pixel gap around edge.

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(self._background_color)

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(

 0,

 0,

 painter.device().width(),

 painter.device().height(),

)

 painter.fillRect(rect, brush)

 # Get current state.

 parent = self.parent()

 vmin, vmax = parent.minimum(), parent.maximum()

 value = parent.value()

 # Define our canvas.

 d_height = painter.device().height() - (self._padding * 2)

 d_width = painter.device().width() - (self._padding * 2)

 # Draw the bars.

 step_size = d_height / self.n_steps

 bar_height = step_size * self._bar_solid_percent

 # Calculate the y-stop position, from the value in range.

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * self.n_steps)

 for n in range(n_steps_to_draw):

 brush.setColor(QtGui.QColor(self.steps[n]))

 ypos = (1 + n) * step_size

 rect = QtCore.QRect(

 self._padding,

 self._padding + d_height - int(ypos),

 d_width,

442

 int(bar_height),

)

 painter.fillRect(rect, brush)

 painter.end()

 def sizeHint(self):

 return QtCore.QSize(40, 120)

 def _trigger_refresh(self):

 self.update()

 def _calculate_clicked_value(self, e):

 parent = self.parent()

 vmin, vmax = parent.minimum(), parent.maximum()

 d_height = self.size().height() + (self._padding * 2)

 step_size = d_height / self.n_steps

 click_y = e.y() - self._padding - step_size / 2

 pc = (d_height - click_y) / d_height

 value = int(vmin + pc * (vmax - vmin))

 self.clickedValue.emit(value)

 def mouseMoveEvent(self, e):

 self._calculate_clicked_value(e)

 def mousePressEvent(self, e):

 self._calculate_clicked_value(e)

class PowerBar(QtWidgets.QWidget):

 """

 Custom Qt Widget to show a power bar and dial.

 Demonstrating compound and custom-drawn widget.

 """

 def __init__(self, parent=None, steps=5):

 super().__init__(parent)

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar(steps)

 layout.addWidget(self._bar)

443

 # Create the QDial widget and set up defaults.

 # - we provide accessors on this class to override.

 self._dial = QtWidgets.QDial()

 self._dial.setNotchesVisible(True)

 self._dial.setWrapping(False)

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 # Take feedback from click events on the meter.

 self._bar.clickedValue.connect(self._dial.setValue)

 layout.addWidget(self._dial)

 self.setLayout(layout)

 def __getattr__(self, name):

 if name in self.__dict__:

 return self[name]

 try:

 return getattr(self._dial, name)

 except AttributeError:

 raise AttributeError(

 "'{}' object has no attribute '{}'".format(

 self.__class__.__name__, name

)

)

 def setColor(self, color):

 self._bar.steps = [color] * self._bar.n_steps

 self._bar.update()

 def setColors(self, colors):

 self._bar.n_steps = len(colors)

 self._bar.steps = colors

 self._bar.update()

 def setBarPadding(self, i):

 self._bar._padding = int(i)

 self._bar.update()

 def setBarSolidPercent(self, f):

 self._bar._bar_solid_percent = float(f)

 self._bar.update()

444

 def setBackgroundColor(self, color):

 self._bar._background_color = QtGui.QColor(color)

 self._bar.update()

You’ll notice that this version of the file does not create an instance of

QApplication or PowerBar itself — it is intended to be used as a library. You can add

this file into your own projects and then import with from powerbar import

PowerBar to use this widget in your own apps. The example below adds the

PowerBar` to a standard main window layout.

445

Listing 170. custom-widgets/powerbar_demo.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from powerbar import PowerBar

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 powerbar = PowerBar(steps=10)

 layout.addWidget(powerbar)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

You should be able to use many of these ideas in creating your own custom

widgets. For some more examples, take a look at the Learn PyQt widget

library — these widgets are all open source and free to use in your own projects.

446

https://www.pythonguis.com/widgets/
https://www.pythonguis.com/widgets/

24. Using Custom Widgets in Qt
Designer

In the previous chapter we built a custom PowerBar widget. The resulting widget

can be used as-is in your own applications by importing and adding to layouts,

just as for any built-in widget. But what if you’re building your application UI

using Qt Designer? Can you add custom widgets there too?

The answer is — yes!

In this short chapter we’ll step through the process for adding custom widgets to

your own Qt Designer applications. The process can be a little confusing, but if

you follow the steps below you’ll be able to use any of your custom widgets in UIs

you create in Designer.

You can use the same approach for adding custom widgets from

other libraries, such as PyQtGraph or matplotlib.

Background

The first thing to understand is that you can’t load and display your custom

widgets in Qt Designer. The widgets available in Designer are built-in and it has

no way to interpret your Python code to discover what you’ve created.

Instead, to insert your widgets into the UI you add placeholder widgets and then

tell Designer that you want to replace the placeholder with your custom widget in

the application when it is run.

Inside Qt Designer you will see the placeholder. You can change the same

parameters as you would on any widget of the same type and these will be passed

to your custom widget. When you load the UI in your Python application PySide6

will substitute your custom widget where it belongs.

In Qt this process of replacing placeholder widgets is known as promoting. The

447

built-in widget is promoted into your custom widget.

Writing Promotable Custom Widgets

Promoting widgets allows you to switch a placeholder widget used in Qt Designer

with your own custom widget. When implementing your custom widget, you

must subclass from another existing PySide6 widget — even if that is the base

QWidget. You must also ensure the your custom widget implements the default

constructor of the widget you subclass. In most cases, that just means accepting

parent as a first argument to your __init__ method.

If your custom widget throws an error, check the parameters

that PySide6 is trying to pass it in the compiled UI file.

To promote to a custom widget, the custom widget must be in a separate file from

where the compiled UI will be imported. However, you can define multiple

custom widgets in the same file if you wish.

This restriction is to avoid circular imports — if your application

file imports the compiled UI file and this in turn imports your

application file, this will not work.

Once you have your custom widget defined in a file, take a note of the file name

and the class name. You will need these to promote the widget in Qt Designer.

Creating & Promoting Widgets in Designer

Choose where you want your custom widget to appear in your UI and add the

placeholder widget. There is no rule here, but generally if your custom widget

inherits from another Qt widget, use that widget as the placeholder. For example,

if you’ve created a custom widget based on QLabel use Label as your placeholder.

This allows you to access the label’s standard properties within Designer to

customize your custom widget.

448

Figure 196. Simple UI layout, with a placeholder Widget on the left hand side.

You won’t be able alter any custom widget properties in

Designer — Qt Designer doesn’t know anything about your

custom widget or how it works. Do this in your code!

Once you’ve added the widgets you can promote them. Select the widgets you

want to promote, right click and chose Promote to …

Figure 197. Promoting widgets via the right click menu.

At the bottom of the dialog you can add a New Promoted Class. Enter the class

name — the name of your custom widget’s Python class, e.g. PowerBar — and the

Python file containing the class as the header file, omitting the .py suffix.

449

Qt will auto-suggest the filename based on the class name, but

will append a .h (the C++ standard suffix for header files). You

must remove the .h even if the filename is correct.

If your custom widget is defined in a class in a sub-folder, provided the full

Python dot-notation to the file, the same way you would for other imports. For

example, perhaps you placed the file under ui/widgets/powerbar.py then enter

ui.widgets.powerbar as the header file.

Figure 198. Adding the class name and header file.

Click "Add" to define the promotion. You can then select the promotion in the list

at the top and click Promote to actually promote your widgets.

Figure 199. Selecting the promotion and applying it to your widgets.

The widgets will be promoted, and show their new class name (here PowerBar).

450

Figure 200. Promoted widgets showing in the UI hierarchy.

Save the UI file and compile it using the pyuic tool as before.

pyside6-uic mainwindow.ui -o MainWindow.py

If you open the generated file, you’ll see custom PowerBar class is now used to

construct a widget in the setupUi method and a new import has been added at

the bottom of the file.

class Ui_MainWindow(object):

 def setupUi(self, MainWindow):

 # etc...

 self.widget = PowerBar(self.centralwidget)

 # etc...

 def retranslateUi(self, MainWindow):

 _translate = QtCore.QCoreApplication.translate

 MainWindow.setWindowTitle(_translate("MainWindow",

"MainWindow"))

 self.label.setText(_translate("MainWindow", "Some custom

widgets here next to the PowerBar (left)."))

 self.pushButton.setText(_translate("MainWindow", "A button"))

from powerbar import PowerBar

You can use the compiled UI file as normal. You don’t need to import your custom

widget into your application since this is handled in the compiled UI file.

451

Listing 171. custom-widgets/promote_test.py

import random

import sys

from PySide6.QtCore import Qt

from PySide6.QtWidgets import QApplication, QMainWindow

from MainWindow import Ui_MainWindow

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.show()

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

When you run the app your custom widgets will be loaded and automatically

appear in the right place.

Figure 201. PowerBar custom widget showing in the app.

Most errors you see will be due to imports. The first step should

always be to check the import at the bottom of the compiled UI

file, to see if it makes sense. Is the target file reachable?

452

Third-party widgets

You can use this same technique to add other third-party widgets to your

applications too. The process is exactly the same, you just need to refer to the

widget by the fully-qualified Python import path and use the appropriate class

names. Below, are some example configurations for common third-party widgets.

 We’ll be covering how to use these libraries in a later chapter!

PyQtGraph

Use PlotWidget as the promoted class name and pyqtgraph as the header file in Qt

Designer. Use QWidget as the placeholder widget. The PyQtGraph plot widget will

work as-is in the generated UI file.

See the custom-widgets/pyqtgraph_demo.py file in the source code downloads for

this book for a working demo.

Figure 202. PyQtGraph plot widget added via widget promotion.

Matplotlib

The matplotlib custom widget FigureCanvasQTAgg cannot be used directly in Qt

Designer because the constructor doesn’t accept parent as the first parameter,

expecting a Figure object instead.

We can work around this by adding a simple wrapper class, defined below.

453

Listing 172. custom-widgets/mpl.py

from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg

from matplotlib.figure import Figure

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

Add this file to your project named mpl.py and then use MplCanvas as the promoted

class name and mpl as the header file in Qt Designer. Use QWidget as the

placeholder widget.

See the custom-widgets/matplotlib_demo.py file in the source code downloads for

this book for a working demo.

Figure 203. matplotlib plot widget added via widget promotion.

Using these techniques you should be able to use any custom widgets you come

across in your PySide6 applications.

454

One of the most powerful tools you can exploit when building user interfaces is familiarity.
That is, giving your users the sense that your interface is something they have used before.
Familiar interfaces are often described as being intuitive. There is nothing naturally
intuitive about moving a mouse pointer around a screen and clicking on square-ish bumps.
But, after spending years doing exactly that, there is something very familiar about it.

Search for familiarity in user interfaces
led to skeuomorphism. Skeuomorphism
is the application of non-functional
design cues from objects, where those
design elements are functional. That can
mean using common interface elements,
or making interfaces which look like real
objects. While in recent years GUI trends
have moved back to abstract "flat"
designs, all modern user-interfaces
retain skeuomorphic touches.

The modern desktop calculator is a good example. When we perform calculations we put
the result at the bottom. So why is the screen on the top of a calculator? Because otherwise
it would be obscured by your hand. The screen position is functional.

For calculators on computers, this
position is retained even though it is
non-functional— themouse pointer will
not obscure the screen and input is often
via the keyboard. But if you opened up a
calculator and it had the screen at the
bottom you would be confused. It looks
upside down. It’s weird or unintuitive
despite being perfectly usable. This is
the essence of skeuomorphism —
making user interfaces feel more
intuitive by exploiting the familiarity of
users with existing objects.

Where your own software sits on this scale is up to you. The important thing is to be aware
of existing interfaces and to exploit them where possible to improve usability of your own
apps. Your users will thank you for it!

DO Take inspiration from existing interfaces when designing your own.
DO Include skeuomorphic elements where they help your users.

Familiarity & Skeuomorphism

RealPhone — One of IBM’s RealThings™

Calculator & upside down calculator (Windows 10)

Concurrent Execution
A computer shall not waste your time or require you to do

more work than is strictly necessary.

— Jef Raskin, Second Law of User Interface Design

The event loop started by calling .exec() on your QApplication object runs within

the same thread as your Python code. The thread which runs this event loop —

commonly referred to as the GUI thread — also handles all window

communication with the host operating system.

By default, any execution triggered by the event loop will also run synchronously

within this thread. In practice this means that any time your PySide6 application

spends doing something in your code, window communication and GUI

interaction are frozen.

If what you’re doing is simple, and returns control to the GUI loop quickly, this

freeze will be imperceptible to the user. However, if you need to perform longer-

running tasks, for example opening/writing a large file, downloading some data,

or rendering some complex image, there are going to be problems. To your user

the application will appear to be unresponsive. Because your app is no longer

communicating with the OS the OS will think it has crashed — on macOS you see

the spinning wheel of death, on Windows the window will dim. That’s not a good

look.

The solution is simple — get your work out of the GUI thread. PySide6 provides

straightforward interfaces to accomplish exactly that.

456

25. Introduction to Threads &
Processes

Below is a minimal stub application for PySide6 which will allow us to

demonstrate the problem and later to fix it. You can copy and paste this into a

new file, and save it with an appropriate filename like concurrent.py.

Listing 173. bad_example_1.py

import sys

import time

from PySide6.QtCore import QTimer

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

457

 self.setCentralWidget(w)

 self.show()

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def oh_no(self):

 time.sleep(5)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

 Run it! A window will appear, containing a button and a number

counting upwards.

Figure 204. The number will increase by 1 every second, as long as the event loop is

running.

This is generated by a simple recurring timer, firing once per second. Think of

this as our event loop indicator — a simple way to let us known that out

application is ticking over normally. There is also a button with the word

"DANGER!". Push it.

458

Figure 205. Push the button.

You’ll notice that each time you push the button the counter stops ticking and

your application freezes entirely. On Windows you may see the window turn

pale, indicating it is not responding, while on macOS you may see the spinning

wheel of death.

What appears as a frozen interface is in fact caused by the Qt event loop being

blocked from processing (and responding to) window events. Your clicks on the

window as still registered by the host OS and sent to your application, but

because it’s sat in your big ol' lump of code (time.sleep), it can’t accept or react to

them. Your app does not respond and the OS and it interprets this as a freeze or

hang.

The wrong approach

The simplest way get around this is to accept events from within your code. This

allows Qt to continue to respond to the host OS and your application will stay

responsive. You can do this easily by using the static .processEvents() function on

the QApplication class. Simply add a line like the following, somewhere in your

long-running code block:

QApplication.processEvents()

459

If we take our long-running time.sleep code and break it down into multiple

steps, we can insert .processEvents in between. The code for this would be:

def oh_no(self):

 for n in range(5):

 QApplication.processEvents()

 time.sleep(1)

Now when you push the button your code is entered as before. However, now

QApplication.processEvents() intermittently passes control back to Qt, and allows

it to respond to OS events as normal. Qt will now accept events and handle them

before returning to run the remainder of your code.

This works, but it’s horrible for a couple of reasons.

Firstly, when you pass control back to Qt, your code is no longer running. This

means that whatever long-running thing you’re trying to do will take longer. That

is probably not what you want.

Secondly, processing events outside the main event loop causes your application

to branch off into handling code (e.g. for triggered slots, or events) while in your

loop. If your code depends on/responds to external state this can cause undefined

behavior. The code below demonstrates this in action:

Listing 174. bad_example_2.py

import sys

import time

from PySide6.QtCore import QTimer

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

460

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 c = QPushButton("?")

 c.pressed.connect(self.change_message)

 layout.addWidget(self.l)

 layout.addWidget(b)

 layout.addWidget(c)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 def change_message(self):

 self.message = "OH NO"

 def oh_no(self):

 self.message = "Pressed"

 for _ in range(100):

 time.sleep(0.1)

 self.l.setText(self.message)

 QApplication.processEvents()

app = QApplication(sys.argv)

461

window = MainWindow()

app.exec()

If you run this code you’ll see the counter as before. Pressing "DANGER!" will

change the displayed text to "Pressed", as defined at the entry point to the oh_no

function. However, if you press the "?" button while oh_no is still running you’ll

see that the message changes. State is being changed from outside your loop.

This is a toy example. However, if you have multiple long-running processes

within your application, with each calling QApplication.processEvents() to keep

things ticking, your application behavior can quickly become unpredictable.

Threads and Processes

If you take a step back and think about what you want to happen in your

application, it can probably be summed up with "stuff to happen at the same time

as other stuff happens". There are two main approaches to running independent

tasks on a computer: threads and processes.

Threads share the same memory space, so are quick to start up and consume

minimal resources. The shared memory makes it trivial to pass data between

threads, however reading/writing memory from different threads can lead to

race conditions or segfaults. In Python there is the added issue that multiple

threads are bound by the same Global Interpreter Lock GIL — meaning non-GIL-

releasing Python code can only execute in one thread at a time. However, this is

not a major issue with PySide6 where most of the time is spent outside of Python.

Processes use separate memory space (and an entirely separate Python

interpreter). This side-steps any potential problems with the GIL, but at the cost

of slower start-up times, larger memory overhead and complexity in

sending/receiving data.

For simplicity’s sake it usually makes sense to use threads. Processes in Qt are

better suited to running and communicating with external programs. In this

462

chapter we’ll look at the options available to you from within Qt to move work

onto separate threads and processes.

463

26. Using the thread pool

Qt provides a very simple interface for running jobs in other threads, which is

exposed nicely in PySide6. This is built around two classes — QRunnable and

QThreadPool. The former is the container for the work you want to perform, while

the latter is the manager for your working threads.

The neat thing about using QThreadPool is that it handles queuing and execution

of workers for you. Other than queuing up jobs and retrieving the results there is

not very much to do at all.

Using QRunnable

To define a custom QRunnable you can subclass the base QRunnable class, then

place the code you wish you execute within the run() method. The following is an

implementation of our long running time.sleep job as a QRunnable. Add the

following code above the MainWindow class definition.

Listing 175. concurrent/qrunnable_1.py

class Worker(QRunnable):

 """

 Worker thread

 """

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 print("Thread start")

 time.sleep(5)

 print("Thread complete")

Executing our function in another thread is simply a matter of creating an

instance of the Worker and then passing it to our QThreadPool instance.

464

We create an instance of a thread pool in the __init__ block.

Listing 176. concurrent/qrunnable_1.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

Finally, replace the oh_no method with the following to create and submit the

worker to the pool.

Listing 177. concurrent/qrunnable_1.py

 def oh_no(self):

 worker = Worker()

 self.threadpool.start(worker)

Now, clicking on the button will create a worker to handle the (long-running)

process and spin that off into another thread via the QThreadPool pool. If there are

not enough threads available to process incoming workers, they’ll be queued and

executed in order at a later time.

 Run it! You’ll see that your application now handles you frantically

bashing the button with no problems.

465

Figure 206. The simple QRunnable example app. The counter will increase by one every

second — as long as the GUI thread is running.

Look at the output in the console to see workers starting and finishing.

Multithreading with maximum 12 threads

Thread start

Thread start

Thread start

Thread complete

Thread complete

Thread complete

Check what happens if you hit the button multiple times. You should see your

threads executed immediately up to the number reported by .maxThreadCount. If

you hit the button again after there are already this number of active workers,

the subsequent workers will be queued until a thread becomes available.

In this example we’ve let QThreadPool decide the ideal number of active threads to

use. This number differs on different computers and is designed to get the

optimum performance. However, sometimes you have a need for a specific

number of threads — in that case, you can use .setMaxThreadCount to set this value

explicitly. This value is per thread pool.

Using QThreadPool.start()

 QThreadPool.start() was introduced in PySide 6.2.0.

In the previous example we created a QRunnable object ourselves and passed it to

466

the QThreadPool to have them executed. However, for simple use-cases, Qt

provides a convenience method through QThreadPool.start() which can handle

the execution of arbitrary Python functions and methods. Qt creates the

necessary QRunnable objects for you and queues them on the pool.

In the example below we’ve put our work in a do_some_work method and modified

our oh_no method to pass this to the thread pool’s .start() method.

Listing 178. concurrent/qthreadpool_start_1.py

 def oh_no(self):

 self.threadpool.start(self.do_some_work)

 @Slot()

 def do_some_work(self):

 print("Thread start")

 time.sleep(5)

 print("Thread complete")

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

Pressing the button will execute our do_some_work method on the QThreadPool.

You can start more than one thread this way. Try pressing the

button until you reach the maximum number of concurrent

threads. No new threads will start until there is space in the

pool.

This approach works fine for many simple tasks. Within your executed function

you do have access to signals and can use them to emit data. You cannot receive

signals — there is nowhere to connect them — but you can interact with variables

through the self object.

Update your code to add the following custom_signal and modify the work

method to emit this signal and update the self.counter variable.

467

Listing 179. concurrent/qthreadpool_start_2.py

class MainWindow(QMainWindow):

 custom_signal = Signal()

 def __init__(self):

 super().__init__()

 # Connect our custom signal to a handler.

 self.custom_signal.connect(self.signal_handler)

 # etc.

 def oh_no(self):

 self.threadpool.start(self.do_some_work)

 @Slot()

 def do_some_work(self):

 print("Thread start")

 # Emit our custom signal.

 self.custom_signal.emit()

 for n in range(5):

 time.sleep(1)

 self.counter = self.counter - 10

 print("Thread complete")

 def signal_handler(self):

 print("Signal received!")

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

If you run this example you’ll notice that while the work method is running in

another thread (the sleep does not interrupt the counter) we are still able to emit

signals and modify the self.counter variable.

You cannot modify the GUI directly from another

thread — attempting to do so will crash your application.

468

You can modify the GUI using signals. For example, try

connecting a str signal to the label’s .setText method.

While this is a handy little interface, often you’ll find yourself wanting more

control over, or more structured communication with, your running threads.

Next we’ll look at some more complicated examples using QRunnable to show

what’s possible.

Extending QRunnable

If you want to pass custom data into the execution function you can set up your

runner to take arguments or keywords and then store that data on the QRunnable

self object. The data will then be accessible from within the run method.

469

Listing 180. concurrent/qrunnable_2.py

class Worker(QRunnable):

 """

 Worker thread

 :param args: Arguments to make available to the run code

 :param kwargs: Keywords arguments to make available to the run

 :code

 :

 """

 def __init__(self, *args, **kwargs):

 super().__init__()

 self.args = args

 self.kwargs = kwargs

 @Slot()

 def run(self):

 """

 Initialize the runner function with passed self.args,

 self.kwargs.

 """

 print(self.args, self.kwargs)

 def oh_no(self):

 worker = Worker("some", "arguments", keywords=2)

 self.threadpool.start(worker)

As functions are also objects in Python, you can also pass a

function to execute in to your runner. See The Generic for an

example.

Thread IO

Sometimes it’s helpful to be able to pass back state and data from running

workers. This could include the outcome of calculations, raised exceptions or

ongoing progress (think progress bars). Qt provides the signals and slots

470

framework which allows you to do just that and is thread-safe, allowing safe

communication directly from running threads to your GUI frontend. Signals

allow you to .emit values, which are then picked up elsewhere in your code by

slot functions which have been linked with .connect.

Below is a simple WorkerSignals class defined to contain a number of example

signals.

Custom signals can only be defined on objects derived from

QObject. Since QRunnable is not derived from QObject we can’t

define the signals there directly. A custom QObject to hold the

signals is the simplest solution.

Listing 181. concurrent/qrunnable_3.py

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `str` Exception string

 result

 `dict` data returned from processing

 """

 finished = Signal()

 error = Signal(str)

 result = Signal(dict)

In this example we’ve defined 3 custom signals:

471

1. finished signal, with no data to indicate when the task is complete.

2. error signal which receives a tuple of Exception type, Exception value and

formatted traceback.

3. result signal receiving any object type from the executed function.

You may not find a need for all of these signals, but they are included to give an

indication of what is possible. In the following code we use these signals to notify

about completion and errors in a simple calculation worker.

Listing 182. concurrent/qrunnable_3.py

import random

import sys

import time

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

472

 error

 `str` Exception string

 result

 `dict` data returned from processing

 """

 finished = Signal()

 error = Signal(str)

 result = Signal(dict)

class Worker(QRunnable):

 """

 Worker thread

 :param args: Arguments to make available to the run code

 :param kwargs: Keywords arguments to make available to the run

 :code

 :

 """

 def __init__(self, iterations=5):

 super().__init__()

 self.signals = (

 WorkerSignals()

) # Create an instance of our signals class.

 self.iterations = iterations

 @Slot()

 def run(self):

 """

 Initialize the runner function with passed self.args,

 self.kwargs.

 """

 try:

 for n in range(self.iterations):

 time.sleep(0.01)

 v = 5 / (40 - n)

 except Exception as e:

473

 self.signals.error.emit(str(e))

 else:

 self.signals.finished.emit()

 self.signals.result.emit({"n": n, "value": v})

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def oh_no(self):

 worker = Worker(iterations=random.randint(10, 50))

 worker.signals.result.connect(self.worker_output)

474

 worker.signals.finished.connect(self.worker_complete)

 worker.signals.error.connect(self.worker_error)

 self.threadpool.start(worker)

 def worker_output(self, s):

 print("RESULT", s)

 def worker_complete(self):

 print("THREAD COMPLETE!")

 def worker_error(self, t):

 print("ERROR: %s" % t)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

You can connect your own handler functions to these signals to receive

notification of completion (or the result) of threads. The example is designed to

occasionally throw a division by zero exception, which you’ll see in the output.

Multithreading with maximum 12 threads

THREAD COMPLETE!

RESULT {'n': 16, 'value': 0.20833333333333334}

ERROR: division by zero

THREAD COMPLETE!

RESULT {'n': 11, 'value': 0.1724137931034483}

THREAD COMPLETE!

RESULT {'n': 22, 'value': 0.2777777777777778}

ERROR: division by zero

In the next section we’ll look at a number of different variations on this approach

which allow you to do some interesting things using QThreadPool in your own

applications.

475

27. QRunnable examples

QThreadPool and QRunnable are an incredibly flexible way to run things in other

threads. By tweaking the signals and parameters you can perform any tasks you

can imagine. In this chapter we’ll look some examples for how to construct

runners for particular scenarios.

All the examples follow the same general pattern — a custom QRunnable class with

custom WorkerSignals. The difference is in what we pass to the runner, what it

does with those parameters, and how we hook up the signals.

476

Listing 183. concurrent/qrunnable_base.py

import sys

import time

import traceback

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 Signal,

 Slot,

)

from PySide6.QtWidgets import QApplication, QMainWindow

class WorkerSignals(QObject):

 pass

class Worker(QRunnable):

 def __init__(self, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing)

 self.args = args

 self.kwargs = kwargs

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 pass

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.show()

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

477

The progress watcher

If you’re using threads to perform long-running actions you should keep your

users informed about how the task is progressing. A common way to do this is by

showing the user a progress bar which indicates, with a bar filling left to right,

how much of the task is complete. In order to show a progress bar for your tasks,

you need to emit the current progress state from your worker.

To do this we can define another signal called progress on the WorkerSignals

object. This signal emits on each loop a number from 0..100 as the "task"

progresses. The output of this progress signal is connected to a standard

QProgressBar shown on the statusbar of our main window.

Listing 184. concurrent/qrunnable_progress.py

import sys

import time

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

478

 progress

 int progress complete,from 0-100

 """

 progress = Signal(int)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 total_n = 1000

 for n in range(total_n):

 progress_pc = int(

 100 * float(n + 1) / total_n

) # Progress 0-100% as int

 self.signals.progress.emit(progress_pc)

 time.sleep(0.01)

class MainWindow(QMainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 layout = QVBoxLayout()

 self.progress = QProgressBar()

 button = QPushButton("START IT UP")

 button.pressed.connect(self.execute)

479

 layout.addWidget(self.progress)

 layout.addWidget(button)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 def execute(self):

 worker = Worker()

 worker.signals.progress.connect(self.update_progress)

 # Execute

 self.threadpool.start(worker)

 def update_progress(self, progress):

 self.progress.setValue(progress)

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

Figure 207. Progress bar showing current progress for a long-running worker.

If you press the button while another runner is already working, you’ll notice a

problem — the two runners emit their progress to the same progress bar, so the

480

values will jump back and forward.

Tracking multiple workers with a single progress bar is possible — we just need

two things: somewhere to store the progress values for each worker, and a

unique identifier for each worker. On each progress update, we can then

calculate the average progress across all workers, and display that.

Listing 185. concurrent/qrunnable_progress_many.py

import random

import sys

import time

import uuid

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 progress

 int progress complete,from 0-100

 """

481

 progress = Signal(str, int)

 finished = Signal(str)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.job_id = uuid.uuid4().hex ①

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 total_n = 1000

 delay = random.random() / 100 # Random delay value.

 for n in range(total_n):

 progress_pc = int(100 * float(n + 1) / total_n) ②

 self.signals.progress.emit(self.job_id, progress_pc)

 time.sleep(delay)

 self.signals.finished.emit(self.job_id)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.progress = QProgressBar()

 button = QPushButton("START IT UP")

 button.pressed.connect(self.execute)

 self.status = QLabel("0 workers")

 layout.addWidget(self.progress)

482

 layout.addWidget(button)

 layout.addWidget(self.status)

 w = QWidget()

 w.setLayout(layout)

 # Dictionary holds the progress of current workers.

 self.worker_progress = {}

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 self.timer = QTimer()

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.refresh_progress)

 self.timer.start()

 def execute(self):

 worker = Worker()

 worker.signals.progress.connect(self.update_progress)

 worker.signals.finished.connect(self.cleanup) ③

 # Execute

 self.threadpool.start(worker)

 def cleanup(self, job_id):

 if job_id in self.worker_progress:

 del self.worker_progress[job_id] ④

 # Update the progress bar if we've removed a value.

 self.refresh_progress()

 def update_progress(self, job_id, progress):

 self.worker_progress[job_id] = progress

 def calculate_progress(self):

483

 if not self.worker_progress:

 return 0

 return sum(v for v in self.worker_progress.values()) / len(

 self.worker_progress

)

 def refresh_progress(self):

 # Calculate total progress.

 progress = self.calculate_progress()

 print(self.worker_progress)

 self.progress.setValue(progress)

 self.status.setText("%d workers" % len(self.worker_progress))

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

① Use a unique UUID4 identifier for this runner.

② Progress 0-100% as an integer.

③ When the job finishes, we need to cleanup (delete) the workers progress.

④ Delete the progress for the finished worker.

If you run this, you’ll see the global progress bar along with an indicator to show

how many active workers there are running.

Figure 208. The window showing the global progress state, together with the number of

active workers.

Checking the console output for the script you can see the actual status for each

of the individual workers.

484

Figure 209. Check the shell output to see the individual worker progress.

Removing the worker immediately means that the progress will jump backwards

when a job finishes — removing 100 from the average calculation will cause the

average to fall. You can postpone the cleanup if you like, for example the

following will only remove the entries when all progress bars reach 100.

Listing 186. concurrent/qrunnable_progress_many_2.py

import random

import sys

import time

import uuid

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

485

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 progress

 int progress complete,from 0-100

 """

 progress = Signal(str, int)

 finished = Signal(str)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.job_id = uuid.uuid4().hex ①

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 total_n = 1000

 delay = random.random() / 100 # Random delay value.

 for n in range(total_n):

 progress_pc = int(100 * float(n + 1) / total_n) ②

 self.signals.progress.emit(self.job_id, progress_pc)

 time.sleep(delay)

 self.signals.finished.emit(self.job_id)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

486

 self.progress = QProgressBar()

 button = QPushButton("START IT UP")

 button.pressed.connect(self.execute)

 self.status = QLabel("0 workers")

 layout.addWidget(self.progress)

 layout.addWidget(button)

 layout.addWidget(self.status)

 w = QWidget()

 w.setLayout(layout)

 # Dictionary holds the progress of current workers.

 self.worker_progress = {}

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 self.timer = QTimer()

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.refresh_progress)

 self.timer.start()

 def execute(self):

 worker = Worker()

 worker.signals.progress.connect(self.update_progress)

 worker.signals.finished.connect(self.cleanup) ③

 # Execute

 self.threadpool.start(worker)

 def cleanup(self, job_id):

 if all(v == 100 for v in self.worker_progress.values()):

 self.worker_progress.clear() # Empty the dict.

487

 # Update the progress bar if we've removed a value.

 self.refresh_progress()

 def update_progress(self, job_id, progress):

 self.worker_progress[job_id] = progress

 def calculate_progress(self):

 if not self.worker_progress:

 return 0

 return sum(v for v in self.worker_progress.values()) / len(

 self.worker_progress

)

 def refresh_progress(self):

 # Calculate total progress.

 progress = self.calculate_progress()

 print(self.worker_progress)

 self.progress.setValue(progress)

 self.status.setText("%d workers" % len(self.worker_progress))

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

While this works, and is fine for simple use-cases, it would be nicer if this worker

state (and control) could be wrapped up into it’s own manager component rather

than being handled through the main window. Take a look at the later The

Manager section to see how we can do that.

488

The calculator

Threading is a good option when you need to perform complex calculations. If

you’re using the Python numpy, scipy or pandas libraries then these calculations

may also release the Python Global Interpreter Lock (GIL) meaning both your

GUI and calculation thread can run at full speed.

In this example we’ll create a number of workers which are all performing some

simple calculations. The results of these calculations will be returned to the GUI

thread and displayed in a plot.

We cover PyQtGraph in detail in Plotting with PyQtGraph, for

now just focus on the QRunnable.

Listing 187. concurrent/qrunnable_calculator.py

import random

import sys

import time

import uuid

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

import pyqtgraph as pg

489

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 data

 tuple data point (worker_id, x, y)

 """

 data = Signal(tuple) ①

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.worker_id = uuid.uuid4().hex # Unique ID for this

worker.

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 total_n = 1000

 y2 = random.randint(0, 10)

 delay = random.random() / 100 # Random delay value.

 value = 0

 for n in range(total_n):

 # Dummy calculation, each worker will produce different

values,

 # because of the random y & y2 values.

 y = random.randint(0, 10)

 value += n * y2 - n * y

 self.signals.data.emit((self.worker_id, n, value)) ②

 time.sleep(delay)

490

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.threadpool = QThreadPool()

 self.x = {} # Keep timepoints.

 self.y = {} # Keep data.

 self.lines = {} # Keep references to plotted lines, to

update.

 layout = QVBoxLayout()

 self.graphWidget = pg.PlotWidget()

 self.graphWidget.setBackground("w")

 layout.addWidget(self.graphWidget)

 button = QPushButton("Create New Worker")

 button.pressed.connect(self.execute)

 # layout.addWidget(self.progress)

 layout.addWidget(button)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 def execute(self):

 worker = Worker()

 worker.signals.data.connect(self.receive_data)

 # Execute

 self.threadpool.start(worker)

 def receive_data(self, data):

 worker_id, x, y = data ③

 if worker_id not in self.lines:

 self.x[worker_id] = [x]

 self.y[worker_id] = [y]

491

 # Generate a random color.

 pen = pg.mkPen(

 width=2,

 color=(

 random.randint(100, 255),

 random.randint(100, 255),

 random.randint(100, 255),

),

)

 self.lines[worker_id] = self.graphWidget.plot(

 self.x[worker_id], self.y[worker_id], pen=pen

)

 return

 # Update existing plot/data

 self.x[worker_id].append(x)

 self.y[worker_id].append(y)

 self.lines[worker_id].setData(

 self.x[worker_id], self.y[worker_id]

)

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

① Setup a custom signal to pass out the data. Using tuple allows you to send out

any number of values wrapped in a tuple.

② Here we’re emitting a worker_id, x and y value.

③ Receiver slot unpacks the data.

Once you’ve received the data from a worker, you can do what you like with

it — perhaps add it to a table or model view. Here we’re storing the x and y values

in dict objects keyed by the worker_id. That keeps the data for each worker

separate and allows us to plot them individually.

If you run this example press the button you’ll see a line appear on the plot and

492

gradually extend. If you press the button again, another worker will start,

returning more data and adding another line to the plot. Each worker generates

data at a different rate, each generating 100 values.

Figure 210. Plot output from a single runner after a few iterations.

You can start new workers up to the max threads available on your machine.

After generating 100 values workers will shut-down and the next queued worker

will start up — adding it’s values as a new line.

Figure 211. Plot from multiple runners.

The tuple is of course optional, you could send back bare strings if you have only

one runner, or don’t need to associated outputs with a source. It is also possible

to send a bytestring, or any other type of data, by setting up the signals

493

appropriately.

494

Stopping a running QRunnable

Once you’ve started a QRunnable there is, by default, no way to stop it. This isn’t

very nice from a usability point of view — if a user starts task by mistake, they

then have to sit and wait for it to finish. Unfortunately, there is no way to kill a

runner, however we can ask it nicely to stop. In this example we’ll look at how

we can use flags to indicate to the runner that it needs to stop.

In computing flags are variables that are used to signal a current

or change in state. Think of how ships use flags to communicate

with one another.

Figure 212. Lima, "You should stop your vessel instantly."

The code below implements a simple runner with a progress bar which increases

every 0.01 seconds from left to right, and a [ Stop ] button. If you click [ Stop ] the

worker will exit, stopping the progress bar permanently.

Listing 188. concurrent/qrunnable_stop.py

import sys

import time

from PySide6.QtCore import (

 QObject,

 QRunnable,

 Qt,

 QThreadPool,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QMainWindow,

 QProgressBar,

495

 QPushButton,

 QWidget,

)

class WorkerKilledException(Exception):

 pass

class WorkerSignals(QObject):

 progress = Signal(int)

class JobRunner(QRunnable):

 signals = WorkerSignals()

 def __init__(self):

 super().__init__()

 self.is_killed = False ①

 @Slot()

 def run(self):

 try:

 for n in range(100):

 self.signals.progress.emit(n + 1)

 time.sleep(0.1)

 if self.is_killed: ②

 raise WorkerKilledException

 except WorkerKilledException:

 pass ③

 def kill(self): ④

 self.is_killed = True

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

496

 # Some buttons

 w = QWidget()

 l = QHBoxLayout()

 w.setLayout(l)

 btn_stop = QPushButton("Stop")

 l.addWidget(btn_stop)

 self.setCentralWidget(w)

 # Create a statusbar.

 self.status = self.statusBar()

 self.progress = QProgressBar()

 self.status.addPermanentWidget(self.progress)

 # Thread runner

 self.threadpool = QThreadPool()

 # Create a runner

 self.runner = JobRunner()

 self.runner.signals.progress.connect(self.update_progress)

 self.threadpool.start(self.runner)

 btn_stop.pressed.connect(self.runner.kill)

 self.show()

 def update_progress(self, n):

 self.progress.setValue(n)

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

① The flag to indicate whether the runner should be killed is called .is_killed.

② On each loop we test to see whether .is_killed is True in which case we throw

an exception.

③ Catch the exception, we could emit a finished or error signal here.

497

④ .kill() convenience function so we can call worker.kill() to kill it.

If you want to stop the worker without throwing an error, you can simply return

from the run method, e.g.

 def run(self):

 for n in range(100):

 self.signals.progress.emit(n + 1)

 time.sleep(0)

 if self.is_killed:

 return

In the above example we only have a single worker. However, in many

applications you will have more. How do you handle stopping workers when you

have multiple runners running?

If you want the stop to stop all workers, then nothing is changed. You can simply

hook all the workers up to the same "Stop" signal, and when that signal is

fired — e.g. by pressing a button — all the workers will stop simultaneously.

If you want to be able to stop individual workers you would either need to create

a separate button somewhere in your UI for each runner, or implement a

manager to keep track of workers and provide a nicer interface to kill them. Take

a look at The Manager for a working example.

Pausing a runner

Pausing a runner is a rarer requirement — normally you want things to go as fast

as possible. But sometimes you may want to put a worker to "sleep" so it

temporarily stops reading from a data source. You can do this with a small

modification to the approach used to stop the runner. The code to do this is

shown below.

498

The paused runner still takes up a slot in the thread pool,

limiting the number of concurrent tasks that can be run. Use

carefully!

Listing 189. concurrent/qrunnable_pause.py

import sys

import time

from PySide6.QtCore import (

 QObject,

 QRunnable,

 Qt,

 QThreadPool,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QWidget,

)

class WorkerKilledException(Exception):

 pass

class WorkerSignals(QObject):

 progress = Signal(int)

class JobRunner(QRunnable):

 signals = WorkerSignals()

 def __init__(self):

 super().__init__()

499

 self.is_paused = False

 self.is_killed = False

 @Slot()

 def run(self):

 for n in range(100):

 self.signals.progress.emit(n + 1)

 time.sleep(0.1)

 while self.is_paused:

 time.sleep(0) ①

 if self.is_killed:

 raise WorkerKilledException

 def pause(self):

 self.is_paused = True

 def resume(self):

 self.is_paused = False

 def kill(self):

 self.is_killed = True

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Some buttons

 w = QWidget()

 l = QHBoxLayout()

 w.setLayout(l)

 btn_stop = QPushButton("Stop")

 btn_pause = QPushButton("Pause")

 btn_resume = QPushButton("Resume")

 l.addWidget(btn_stop)

 l.addWidget(btn_pause)

 l.addWidget(btn_resume)

500

 self.setCentralWidget(w)

 # Create a statusbar.

 self.status = self.statusBar()

 self.progress = QProgressBar()

 self.status.addPermanentWidget(self.progress)

 # Thread runner

 self.threadpool = QThreadPool()

 # Create a runner

 self.runner = JobRunner()

 self.runner.signals.progress.connect(self.update_progress)

 self.threadpool.start(self.runner)

 btn_stop.pressed.connect(self.runner.kill)

 btn_pause.pressed.connect(self.runner.pause)

 btn_resume.pressed.connect(self.runner.resume)

 self.show()

 def update_progress(self, n):

 self.progress.setValue(n)

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

① You can put a higher value that 0 in the sleep call if you don’t want to check if

it’s time to wake up very often.

If you run this example you’ll see a progress bar moving from left to right. If you

click [ Pause ] the worker will pause. If you then click [ Resume ] the worker will

continue from where it started. If you click [ Stop ] the worker will stop,

permanently, as before.

Rather than throw an exception when receiving the is_paused signal, we enter a

pause loop. This stops execution of the worker, but does not exit the run method

or terminate the worker.

501

By using while self.is_paused: for this loop, we will exit the loop as soon as the

worker is unpaused, and resume what we were doing before.

You must include the time.sleep() call. This zero-second pause

allows for Python to release the GIL, so this loop will not block

other execution. Without that sleep you have a busy loop which

will waste resources while doing nothing. Increase the sleep

value if you want to check less often.

502

The Communicator

When running a thread you frequently want to be able get output from what is

happening, while it’s happening.

In this example we’ll create a runner which performs requests to remote servers

in a separate thread, and dumps the output to a logger. We’ll also look at how we

can pass a custom parser into the runner to extra data we’re interested in from

the requests.

If you want to log data from external processes, rather than

threads, take a look at Running External processes and Running

external commands & processes.

Dumping data

In this first example we’ll just dump the raw data (HTML) from each request to

the output, using a custom signal.

Listing 190. concurrent/qrunnable_io.py

import sys

import requests

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPlainTextEdit,

 QPushButton,

 QVBoxLayout,

503

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 data

 tuple of (identifier, data)

 """

 data = Signal(tuple)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 :param id: The id for this worker

 :param url: The url to retrieve

 """

 def __init__(self, id, url):

 super().__init__()

 self.id = id

 self.url = url

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 r = requests.get(self.url)

 for line in r.text.splitlines():

 self.signals.data.emit((self.id, line))

class MainWindow(QMainWindow):

 def __init__(self):

504

 super().__init__()

 self.urls = [

 "https://www.pythonguis.com/",

 "https://www.mfitzp.com/",

 "https://www.google.com",

 "https://academy.pythonguis.com/",

]

 layout = QVBoxLayout()

 self.text = QPlainTextEdit()

 self.text.setReadOnly(True)

 button = QPushButton("GO GET EM!")

 button.pressed.connect(self.execute)

 layout.addWidget(self.text)

 layout.addWidget(button)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 def execute(self):

 for n, url in enumerate(self.urls):

 worker = Worker(n, url)

 worker.signals.data.connect(self.display_output)

 # Execute

 self.threadpool.start(worker)

 def display_output(self, data):

 id, s = data

505

 self.text.appendPlainText("WORKER %d: %s" % (id, s))

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

If you run this example and press the button you’ll see the HTML output from a

number of websites, prepended by the worker ID that retrieve them. Note that

output from different workers is interleaved.

Figure 213. Logging output from multiple workers to the main window.

The tuple is of course optional, you could send back bare strings if you have only

one runner, or don’t need to associated outputs with a source. It is also possible

to send a bytestring, or any other type of data, by setting up the signals

appropriately.

Parsing data

Often you are not interested in the raw data from the thread (whether from a

server or other external device) and instead want to process the data in some

way first. In this example we create custom parsers, which can extract specific

data from pages requested. We can create multiple workers, each receiving a

different list of sites and parsers.

506

Listing 191. concurrent/qrunnable_io_parser.py

 self.parsers = { ①

 # Regular expression parsers, to extract data from the

HTML.

 "title": re.compile(

 r"<title.*?>(.*?)<\/title>", re.M | re.S

),

 "h1": re.compile(r"<h1.*?>(.*?)<\/h1>", re.M | re.S),

 "h2": re.compile(r"<h2.*?>(.*?)<\/h2>", re.M | re.S),

 }

① The parsers are defined as a series of compiled regular expressions. But you

can define parsers however you like.

Listing 192. concurrent/qrunnable_io_parser.py

 def execute(self):

 for n, url in enumerate(self.urls):

 worker = Worker(n, url, self.parsers) ①

 worker.signals.data.connect(self.display_output)

 # Execute

 self.threadpool.start(worker)

① Pass the list of parsers to each worker.

507

Listing 193. concurrent/qrunnable_io_parser.py

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 :param id: The id for this worker

 :param url: The url to retrieve

 """

 def __init__(self, id, url, parsers):

 super().__init__()

 self.id = id

 self.url = url

 self.parsers = parsers

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 r = requests.get(self.url)

 data = {}

 for name, parser in self.parsers.items(): ①

 m = parser.search(r.text)

 if m: ②

 data[name] = m.group(1).strip()

 self.signals.data.emit((self.id, data))

① Iterate the parser list we passed to the worker. Run each parser on the data

for this page.

② If the regular expression matched, add the data to our data dictionary.

Running this, you’ll see the output from each worker, with the H1, H2 and TITLE

tags extracted.

508

Figure 214. Displaying parsed output from multiple workers.

If you are building tools to extract data from websites, take a

look at BeautifulSoup 4 which is far more robust than using

regular expressions.

509

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

The Generic

You won’t always know ahead of time what you want to use workers for. Or you

may have a number of similar functions to perform and want a regular API for

running them. In that case you can take advantage of the fact that in Python

functions are objects to build a generic runner which accepts not just arguments,

but also the function to run.

In the following example we create a single Worker class and then use it to run a

number of different functions. With this setup you can pass in any Python

function and have it executed in a separate thread.

The complete working example is given below, showcasing the custom QRunnable

worker together with the worker & progress signals. You should be able to adapt

this code to any application you develop.

Listing 194. concurrent/qrunnable_generic.py

import sys

import time

import traceback

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

510

def execute_this_fn():

 for _ in range(0, 5):

 time.sleep(1)

 return "Done."

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `tuple` (exctype, value, traceback.format_exc())

 result

 `object` data returned from processing, anything

 """

 finished = Signal()

 error = Signal(tuple)

 result = Signal(object)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param callback: The function callback to run on this worker

 :thread. Supplied args and

 kwargs will be passed through to the runner.

 :type callback: function

 :param args: Arguments to pass to the callback function

 :param kwargs: Keywords to pass to the callback function

511

 :

 """

 def __init__(self, fn, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing)

 self.fn = fn

 self.args = args

 self.kwargs = kwargs

 self.signals = WorkerSignals()

 @Slot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 # Retrieve args/kwargs here; and fire processing using them

 try:

 result = self.fn(*self.args, **self.kwargs)

 except:

 traceback.print_exc()

 exctype, value = sys.exc_info()[:2]

 self.signals.error.emit(

 (exctype, value, traceback.format_exc())

)

 else:

 self.signals.result.emit(

 result

) # Return the result of the processing

 finally:

 self.signals.finished.emit() # Done

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

512

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def print_output(self, s):

 print(s)

 def thread_complete(self):

 print("THREAD COMPLETE!")

 def oh_no(self):

 # Pass the function to execute

 worker = Worker(

 execute_this_fn

) # Any other args, kwargs are passed to the run function

 worker.signals.result.connect(self.print_output)

 worker.signals.finished.connect(self.thread_complete)

 # Execute

 self.threadpool.start(worker)

 def recurring_timer(self):

 self.counter += 1

513

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

The generic function approach adds a limitation that may not be immediately

obvious — the run function does not have access to the self object of your

runner, and therefore cannot access the signals to emit the data itself. We can

only emit the return value of the function, once it has ended. While you can

return a compound type, such as a tuple, to return multiple values, you can’t get

progress signals or in-progress data.

However, there is a way around this. Since you can pass anything you want into

the custom function, you can also pass self or the self.signals object to make

them available to you.

Listing 195. concurrent/qrunnable_generic_callback.py

import sys

import time

import traceback

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 QTimer,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

514

)

def execute_this_fn(signals):

 for n in range(0, 5):

 time.sleep(1)

 signals.progress.emit(n * 100 / 4)

 return "Done."

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `tuple` (exctype, value, traceback.format_exc())

 result

 `object` data returned from processing, anything

 progress

 `int` indicating % progress

 """

 finished = Signal()

 error = Signal(tuple)

 result = Signal(object)

 progress = Signal(int)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

515

 :param callback: The function callback to run on this worker

 :thread. Supplied args and

 kwargs will be passed through to the runner.

 :type callback: function

 :param args: Arguments to pass to the callback function

 :param kwargs: Keywords to pass to the callback function

 :

 """

 def __init__(self, fn, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing)

 self.fn = fn

 self.args = args

 self.kwargs = kwargs

 self.signals = WorkerSignals()

 # Add the callback to our kwargs

 kwargs["signals"] = self.signals

 @Slot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 # Retrieve args/kwargs here; and fire processing using them

 try:

 result = self.fn(*self.args, **self.kwargs)

 except Exception:

 traceback.print_exc()

 exctype, value = sys.exc_info()[:2]

 self.signals.error.emit(

 (exctype, value, traceback.format_exc())

)

 else:

 self.signals.result.emit(

 result

) # Return the result of the processing

 finally:

 self.signals.finished.emit() # Done

516

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads"

 % self.threadpool.maxThreadCount()

)

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def progress_fn(self, n):

 print("%d%% done" % n)

 def print_output(self, s):

 print(s)

 def thread_complete(self):

 print("THREAD COMPLETE!")

517

 def oh_no(self):

 # Pass the function to execute

 worker = Worker(

 execute_this_fn

) # Any other args, kwargs are passed to the run function

 worker.signals.result.connect(self.print_output)

 worker.signals.finished.connect(self.thread_complete)

 worker.signals.progress.connect(self.progress_fn)

 # Execute

 self.threadpool.start(worker)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

Note that for this to work, your custom function must be able to accept the

additional argument. You can do this by defining the functions with **kwargs to

silently swallow the extra arguments if they aren’t used.

def execute_this_fn(**kwargs): ①

 for _ in range(0, 5):

 time.sleep(1)

 return "Done."

① The signals keyword argument is swallowed up by **kwargs.

518

Running External processes

So far we’ve looked how we can run Python code in another thread. Sometimes

however you need to run external programs — such as command line

programs — in another process.

You actually have two options when starting external processes with PySide6.

You can either use Python’s built-in subprocess module to start the processes, or

you can use Qt’s QProcess.

For more information on running external processes using

QProcess take a look at the Running external commands &

processes chapter.

Starting a new process always comes with a small execution cost and will block

your GUI momentarily. This is usually not perceptible but it can add up

depending on your use case and may have performance impacts. You can get

around this by starting your processes in another thread.

If you want to communicate with the process in real-time you will need a

separate thread to avoid blocking the GUI. QProcess handles this separate thread

for you internally, but with Python subprocess you will need to do this yourself.

In this QRunnable example we use instances of workers to handle starting external

processes through Python subprocess. This keeps the startup cost of the process

out of the GUI thread and also allows us to interact with the processes directly

through Python.

Listing 196. concurrent/qrunnable_process.py

import subprocess

import sys

from PySide6.QtCore import (

 QObject,

 QRunnable,

519

 QThreadPool,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QPlainTextEdit,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished: No data

 result: str

 """

 result = Signal(

 str

) # Send back the output from the process as a string.

 finished = Signal()

class SubProcessWorker(QRunnable):

 """

 ProcessWorker worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param command: command to execute with `subprocess`.

 """

 def __init__(self, command):

 super().__init__()

520

 # Store constructor arguments (re-used for processing).

 self.signals = WorkerSignals()

 # The command to be executed.

 self.command = command

 @Slot()

 def run(self):

 """

 Execute the command, returning the result.

 """

 output = subprocess.getoutput(self.command)

 self.signals.result.emit(output)

 self.signals.finished.emit()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Some buttons

 layout = QVBoxLayout()

 self.text = QPlainTextEdit()

 layout.addWidget(self.text)

 btn_run = QPushButton("Execute")

 btn_run.clicked.connect(self.start)

 layout.addWidget(btn_run)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 # Thread runner

 self.threadpool = QThreadPool()

 self.show()

 def start(self):

 # Create a runner

521

 self.runner = SubProcessWorker("python dummy_script.py")

 self.runner.signals.result.connect(self.result)

 self.threadpool.start(self.runner)

 def result(self, s):

 self.text.appendPlainText(s)

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

The "external program" in this example is a simple Python script

python dummy_script.py. However can replace this with any

other program you like.

Running processes have two streams of output — standard out and standard

error. The standard output returns the actual result of the execution (if any)

while standard error returns any error or logging information.

In this example we’re running the external script using subprocess.getoutput.

This runs the external program, waiting for it to complete before returning. Once

it has completed, getoutput returns both the standard output and standard error

together as a single string.

Parsing the result

You don’t have to pass the output as-is. If you have post-processing to do on the

output from the command, it can make sense to handle this in your worker

thread as well, to keep it self-contained. The worker can then return the data to

your GUI thread in a structured format, ready to be used.

In the following example, we pass in a function to post-process the result of the

demo script to extract the values of interest into a dictionary. This data is used to

update widgets on the GUI side.

Listing 197. concurrent/qrunnable_process_result.py

522

import subprocess

import sys

from collections import namedtuple

from PySide6.QtCore import (

 QObject,

 QRunnable,

 QThreadPool,

 Signal,

 Slot,

)

from PySide6.QtWidgets import (

 QApplication,

 QLineEdit,

 QMainWindow,

 QPushButton,

 QSpinBox,

 QVBoxLayout,

 QWidget,

)

def extract_vars(l):

 """

 Extracts variables from lines, looking for lines

 containing an equals, and splitting into key=value.

 """

 data = {}

 for s in l.splitlines():

 if "=" in s:

 name, value = s.split("=")

 data[name] = value

 data["number_of_lines"] = len(l)

 return data

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

523

 finished: No data

 result: dict

 """

 result = Signal(dict) # Send back the output as dictionary.

 finished = Signal()

class SubProcessWorker(QRunnable):

 """

 ProcessWorker worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param command: command to execute with `subprocess`.

 """

 def __init__(self, command, process_result=None):

 super().__init__()

 # Store constructor arguments (re-used for processing).

 self.signals = WorkerSignals()

 # The command to be executed.

 self.command = command

 # The post-processing fn.

 self.process_result = process_result

 @Slot()

 def run(self):

 """

 Execute the command, returning the result.

 """

 output = subprocess.getoutput(self.command)

 if self.process_result:

 output = self.process_result(output)

 self.signals.result.emit(output)

524

 self.signals.finished.emit()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Some buttons

 layout = QVBoxLayout()

 self.name = QLineEdit()

 layout.addWidget(self.name)

 self.country = QLineEdit()

 layout.addWidget(self.country)

 self.website = QLineEdit()

 layout.addWidget(self.website)

 self.number_of_lines = QSpinBox()

 layout.addWidget(self.number_of_lines)

 btn_run = QPushButton("Execute")

 btn_run.clicked.connect(self.start)

 layout.addWidget(btn_run)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 # Thread runner

 self.threadpool = QThreadPool()

 self.show()

 def start(self):

 # Create a runner

 self.runner = SubProcessWorker(

 "python dummy_script.py", process_result=extract_vars

)

 self.runner.signals.result.connect(self.result)

 self.threadpool.start(self.runner)

525

 def result(self, data):

 print(data)

 self.name.setText(data["name"])

 self.country.setText(data["country"])

 self.website.setText(data["website"])

 self.number_of_lines.setValue(data["number_of_lines"])

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

The simple parser in this case looks for any lines with a = in them, splits on this to

produce a name and a value, which are then stored in a dict. However, you can

use any tools you like to extract data from the string output.

Because getoutput blocks until the program is complete, we cannot see how the

program is running — for example, to get progress information. In the next

example we’ll show how to get live output from a running process.

Tracking progress

Often external programs will output progress information to the console. You

might want to capture this and either show it to your users, or use it to generate a

progress bar.

For the result of the execution you usually want to capture standard out, for the

progress to capture standard error. In this following example we capture both. As

well as the command, we pass a custom parser function to the worker, to capture

the current worker progress and emit it as a number 0-99.

This example is quite complex. The full source code is available in the source

code with the book, but here we’ll cover the key differences to the simpler one.

526

Listing 198. concurrent/qrunnable_process_parser.py

 @Slot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 result = []

 with subprocess.Popen(①

 self.command,

 bufsize=1,

 stdout=subprocess.PIPE,

 stderr=subprocess.STDOUT, ②

 universal_newlines=True,

) as proc:

 while proc.poll() is None:

 data = proc.stdout.readline() ③

 result.append(data)

 if self.parser: ④

 value = self.parser(data)

 if value:

 self.signals.progress.emit(value)

 output = "".join(result)

 self.signals.result.emit(output)

① Run using Popen to give us access to output streams.

② We pipe standard error out together with standard output.

③ Read a line from the process (or wait for one).

④ Pass all collected data so far to the parser.

Parsing is handled by this simple parser function, which takes in a string and

matches the regular expression Total complete: (\d+)%.

527

Listing 199. concurrent/qrunnable_process_parser.py

progress_re = re.compile("Total complete: (\d+)%")

def simple_percent_parser(output):

 """

 Matches lines using the progress_re regex,

 returning a single integer for the % progress.

 """

 m = progress_re.search(output)

 if m:

 pc_complete = m.group(1)

 return int(pc_complete)

The parser is passed into the runner along with the command — this means we

can use a generic runner for all subprocesses and handle the output differently

for different commands.

Listing 200. concurrent/qrunnable_process_parser.py

 def start(self):

 # Create a runner

 self.runner = SubProcessWorker(

 command="python dummy_script.py",

 parser=simple_percent_parser,

)

 self.runner.signals.result.connect(self.result)

 self.runner.signals.progress.connect(self.progress.setValue)

 self.threadpool.start(self.runner)

In this simple example we only pass the latest line from the process, since our

custom script outputs lines like Total complete: 25%. That means that we only

need the latest line to be able to calculate the current progress.

Sometimes however, scripts can be a bit less helpful. For example ffmpeg the

video encoder outputs the duration of the video file to be processed once at the

beginning, then outputs the duration that has currently been processed. To

528

calculate the % of progress you need both values.

To do that, you can pass the collected output to the parser instead. There is an

example of this in the source code with the book, named

concurrent/qrunnable_process_parser_elapsed.py.

529

The Manager

In the previous examples we’ve created a number of different QRunnable

implementations that can be used for different purposes in your application. In

all cases you can run as many of these runners as you like, on the same or

multiple QThreadPool pools. However, sometimes you will want to keep track of

the runners which you have running in order to do something with their output,

or provide users with control over the runners directly.

QThreadPool itself does not give you access to the currently running runners, so

we need to create our own manager ourselves, through which we start and

control our workers.

The example below brings together some of the other worker features already

introduced — progress, pause and stop control — together with the model views

to present individual progress bars. This manager will likely work as a drop-in

for most use-cases you have for running threads.

This is quite a complex example, the full source code is available

in the resources for the book. Here we’ll go through the key

parts of the QRunnable manager in turn.

The worker manager

The worker manager class holds the threadpool, our workers and their progress

and state information. It is derived from QAbstractListModel meaning it also

provides a Qt model-like interface, allowing for it to be used as the model for a

QListView — providing a per-worker progress bar and status indicator. The status

tracking is handled through a number of internal signals, which attach

automatically to every added worker.

Listing 201. concurrent/qrunnable_manager.py

class WorkerManager(QAbstractListModel):

 """

530

 Manager to handle our worker queues and state.

 Also functions as a Qt data model for a view

 displaying progress for each worker.

 """

 _workers = {}

 _state = {}

 status = Signal(str)

 def __init__(self):

 super().__init__()

 # Create a threadpool for our workers.

 self.threadpool = QThreadPool()

 # self.threadpool.setMaxThreadCount(1)

 self.max_threads = self.threadpool.maxThreadCount()

 print(

 "Multithreading with maximum %d threads" % self

.max_threads

)

 self.status_timer = QTimer()

 self.status_timer.setInterval(100)

 self.status_timer.timeout.connect(self.notify_status)

 self.status_timer.start()

 def notify_status(self):

 n_workers = len(self._workers)

 running = min(n_workers, self.max_threads)

 waiting = max(0, n_workers - self.max_threads)

 self.status.emit(

 "{} running, {} waiting, {} threads".format(

 running, waiting, self.max_threads

)

)

 def enqueue(self, worker):

 """

 Enqueue a worker to run (at some point) by passing it to the

QThreadPool.

 """

531

 worker.signals.error.connect(self.receive_error)

 worker.signals.status.connect(self.receive_status)

 worker.signals.progress.connect(self.receive_progress)

 worker.signals.finished.connect(self.done)

 self.threadpool.start(worker)

 self._workers[worker.job_id] = worker

 # Set default status to waiting, 0 progress.

 self._state[worker.job_id] = DEFAULT_STATE.copy()

 self.layoutChanged.emit()

 def receive_status(self, job_id, status):

 self._state[job_id]["status"] = status

 self.layoutChanged.emit()

 def receive_progress(self, job_id, progress):

 self._state[job_id]["progress"] = progress

 self.layoutChanged.emit()

 def receive_error(self, job_id, message):

 print(job_id, message)

 def done(self, job_id):

 """

 Task/worker complete. Remove it from the active workers

 dictionary. We leave it in worker_state, as this is used to

 to display past/complete workers too.

 """

 del self._workers[job_id]

 self.layoutChanged.emit()

 def cleanup(self):

 """

 Remove any complete/failed workers from worker_state.

 """

 for job_id, s in list(self._state.items()):

 if s["status"] in (STATUS_COMPLETE, STATUS_ERROR):

 del self._state[job_id]

 self.layoutChanged.emit()

 # Model interface

532

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the data structure.

 job_ids = list(self._state.keys())

 job_id = job_ids[index.row()]

 return job_id, self._state[job_id]

 def rowCount(self, index):

 return len(self._state)

Workers are constructed outside the manager and passed in via .enqueue(). This

connects all signals and adds the worker to the thread pool`. It will be executed,

as normal once a thread is available.

The worker’s are kept in an internal dictionary _workers keyed by the job id.

There is a separate dictionary _state which stores the status and progress

information about the workers. We keep them separate so we can delete jobs

once complete, keeping an accurate count, yet continue to show information

about completed jobs until cleared.

Signals from each submitted workers are connected to slots on the manager,

which update the _state dictionary, print error messages or delete the completed

job. Once any state is updated, we must call .layoutChanged() to trigger a refresh

of the model view. The _clear_ method iterates through the _state list and

removes any that are complete or have failed.

Lastly, we set up a timer to regularly trigger a method to emit the current thread

counts as a status message. The number of active threads is the minimum of the

number of _workers and the max_threads. The waiting threads is the number of

_workers _minus_ the max_threads (as long as it is more than zero). The message

is shown on the main window status bar.

The worker

The worker itself follows the same pattern as all our previous examples. The only

requirement for our manager is the addition of a .job_id property which is set

533

when the worker is created.

The signals from the workers must include this job id so the manager knows

which worker sent the signal — updating the correct status, progress and finished

states.

The worker itself is a simply dummy worker, which iterates 100 times (1 for each

% progress) and performs a simple calculation. This worker calculation generates

a series of numbers, but is constructed to occasionally throw division by zero

errors.

Listing 202. concurrent/qrunnable_manager.py

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `tuple` (exctype, value, traceback.format_exc())

 result

 `object` data returned from processing, anything

 progress

 `int` indicating % progress

 """

 error = Signal(str, str)

 result = Signal(str, object) # We can send anything back.

 finished = Signal(str)

 progress = Signal(str, int)

 status = Signal(str, str)

534

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param args: Arguments to pass for the worker

 :param kwargs: Keywords to pass for the worker

 """

 def __init__(self, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing).

 self.signals = WorkerSignals()

 # Give this job a unique ID.

 self.job_id = str(uuid.uuid4())

 # The arguments for the worker

 self.args = args

 self.kwargs = kwargs

 self.signals.status.emit(self.job_id, STATUS_WAITING)

 @Slot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 self.signals.status.emit(self.job_id, STATUS_RUNNING)

 x, y = self.args

 try:

 value = random.randint(0, 100) * x

 delay = random.random() / 10

 result = []

535

 for n in range(100):

 # Generate some numbers.

 value = value / y

 y -= 1

 # The following will sometimes throw a division by

zero error.

 result.append(value)

 # Pass out the current progress.

 self.signals.progress.emit(self.job_id, n + 1)

 time.sleep(delay)

 except Exception as e:

 print(e)

 # We swallow the error and continue.

 self.signals.error.emit(self.job_id, str(e))

 self.signals.status.emit(self.job_id, STATUS_ERROR)

 else:

 self.signals.result.emit(self.job_id, result)

 self.signals.status.emit(self.job_id, STATUS_COMPLETE)

 self.signals.finished.emit(self.job_id)

In addition to the progress signals we’ve seen before, we also have a status signal

which emits one of the following statuses. Exceptions are caught and both the

exception text and the error state are emitted using error and status.

536

Listing 203. concurrent/qrunnable_manager.py

STATUS_WAITING = "waiting"

STATUS_RUNNING = "running"

STATUS_ERROR = "error"

STATUS_COMPLETE = "complete"

STATUS_COLORS = {

 STATUS_RUNNING: "#33a02c",

 STATUS_ERROR: "#e31a1c",

 STATUS_COMPLETE: "#b2df8a",

}

DEFAULT_STATE = {"progress": 0, "status": STATUS_WAITING}

Each of the active statuses have assigned colors which will be used in drawing on

the progress bar.

Custom row display

We’re using a QListView for the progress bar display. Normally a list view displays

a simple text value for each row. To modify this we use a QItemDelegate which

allows us to paint a custom widget for each row.

537

Listing 204. concurrent/qrunnable_manager.py

class ProgressBarDelegate(QStyledItemDelegate):

 def paint(self, painter, option, index):

 # data is our status dict, containing progress, id, status

 job_id, data = index.model().data(index, Qt.DisplayRole)

 if data["progress"] > 0:

 color = QColor(STATUS_COLORS[data["status"]])

 brush = QBrush()

 brush.setColor(color)

 brush.setStyle(Qt.SolidPattern)

 width = option.rect.width() * data["progress"] / 100

 rect = QRect(

 option.rect

) # Copy of the rect, so we can modify.

 rect.setWidth(width)

 painter.fillRect(rect, brush)

 pen = QPen()

 pen.setColor(Qt.black)

 painter.drawText(option.rect, Qt.AlignLeft, job_id)

We get the data for the current row from the model using

index.model().data(index, Qt.DisplayRole). This is calling the .data() method on

our custom model (manager) passing in the index and role. In our .data()

method we are returning two bits of data — job_id and the state dictionary,

containing progress and status keys.

For active jobs (progress > 0) status is used to select a color for the bar. This is

drawn as a rectangle of the item row size option.rect(), with the width adjusted

by the % completion. Finally, we write the job_id text over the top of this.

Starting a job

With everything in place, we can now enqueue jobs by calling

538

.self.worker.enqueue() passing in arguments to the worker.

Listing 205. concurrent/qrunnable_manager.py

 def start_worker(self):

 x = random.randint(0, 1000)

 y = random.randint(0, 1000)

 w = Worker(x, y)

 w.signals.result.connect(self.display_result)

 w.signals.error.connect(self.display_result)

 self.workers.enqueue(w)

The .enqueue() method accepts a constructed worker and attaches the internal

signals to it to track progress. However, we can still attach any other external

signals that we want.

Figure 215. The manager interface, where you can start new jobs and see progress.

Also, while this example has only a single worker class, you can use this same

manager with any other QRunnable-derived classes, as long as they have the same

signals available. This means you can use a single worker manager to manage all

539

the workers in your app.

Take a look at the full code in the source files with this book and

experiment modifying the manager to your needs — for

example, try adding kill & pause functionality, generic function

runners.

Stopping jobs

We can start jobs, and some of them die due to errors. But what if we want to

stop jobs that are taking too long? The QListView allows us to select rows and

through the selected row we can kill a specific worker. The method below is

linked to a button, and looks up the worker from the current selected item in the

list.

Listing 206. concurrent/qrunnable_manager_stop.py

 def stop_worker(self):

 selected = self.progress.selectedIndexes()

 for idx in selected:

 job_id, _ = self.workers.data(idx, Qt.DisplayRole)

 self.workers.kill(job_id)

In addition to this we need to modify the delegate to draw the currently selected

item and update the worker and manager to pass through the kill signal. Take a

look at the full source for this example to see how it all fits together.

540

Figure 216. The manager, selecting a job allows you to stop it.

541

28. Long-running threads

In the examples we’ve looked at so far we’ve been using QRunnable objects to

execute tasks using the QThreadPool. The tasks we submitted were handled in

order by the thread pool, with the maximum concurrency constrained by the

pool.

But what if you want something to execute right now regardless of what else is

happening? Or, perhaps you want to keep a thread running in the background

the entire time your application is running — to interact with some remote

service or hardware, or to stream data through for processing. In that case the

thread pool architecture may not be appropriate.

In this chapter we’ll look at PySide6’s persistent thread interface QThread. It

provides a very similar interface to the QRunnable objects you’ve already seen, but

gives you complete control over when and how the thread is run.

Using QThread

Just like in the QRunnable examples, the QThread class acts as a wrapper around the

code you want to execute in another thread. It handles the start up and shifting

of the work to a separate thread, as well as managing and shutting down the

thread once it completes. You just need to provide the code to execute. This is

done by subclassing QThread and implementing a run() method.

A simple thread

Let’s start with a simple example. Below, we’ve implemented a worker thread

which can perform arithmetic for us. We have added a single signal to the thread

which we can use to send data out of the thread.

Listing 207. concurrent/qthread_1.py

import sys

import time

542

from PySide6.QtCore import QThread, Signal, Slot

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

class Thread(QThread):

 """

 Worker thread

 """

 result = Signal(str) ①

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 print("Thread start")

 counter = 0

 while True:

 time.sleep(0.1)

 # Output the number as a formatted string.

 self.result.emit(f"The number is {counter}")

 counter += 1

 print("Thread complete")

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create thread and start it.

 self.thread = Thread()

 self.thread.start() ②

 label = QLabel("Output will appear here")

 # Connect signal, so output appears on label.

 self.thread.result.connect(label.setText)

 self.setCentralWidget(label)

 self.show()

543

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

① Unlike QRunnable the QThread class does inherit from QObject so we can define

the signals on the thread object itself.

② Call .start() to start the thread, not .run()!

If you run this example you’ll see a number in a window counting upwards. Not

very exciting! But this counting is happening on a separate thread from your GUI

and the result is being emitted using signals. This means the GUI isn’t blocked by

the work taking place (although normal Python GIL rules apply).

Figure 217. QThread counter with the result displayed via a signal.

Try increasing the duration of the sleep() call and you’ll see that, even with the

thread blocked the main GUI continues to run as normal.

If you usually work with numpy or other libraries, experiment

with using them to perform more complex calculations in the

thread.

You will usually want to add signals of some kind to your thread

for communication.

544

Thread control

Now we can start our thread, but we have no way to stop it. Unlike QRunnable the

QThread class has a built-in method .terminate() which can be used to

immediately kill a running thread. This is not a clean shutdown — the thread will

simply stop wherever it was, and no Python exception will be thrown.

Listing 208. concurrent/qthread_2.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create thread and start it.

 self.thread = Thread()

 self.thread.start()

 label = QLabel("Output will appear here")

 button = QPushButton("Kill thread")

 # Terminate (kill immediately) the thread.

 button.pressed.connect(self.thread.terminate)

 # Connect signal, so output appears on label.

 self.thread.result.connect(label.setText)

 container = QWidget()

 layout = QVBoxLayout()

 layout.addWidget(label)

 layout.addWidget(button)

 container.setLayout(layout)

 self.setCentralWidget(container)

 self.show()

If you run this, you’ll notice that the "Thread complete" message we added after

the thread’s main loop is never displayed. That’s because when we call

.terminate() the execution just halts and never reaches that point in the code.

545

Figure 218. The thread can be terminated using the button control.

However, QThread has a finished signal which can be used to trigger some action

after the thread completes. This is always fired — whether the thread terminates

or shuts down cleanly.

The thread object persists after the thread has completed running & you can

usually use this to query the thread for status. However be careful — if the thread

was terminated, interacting with the thread object may cause your application to

crash. The example below demonstrates this by attempting to print some

information about the thread object after it is terminated.

546

Listing 209. concurrent/qthread_2b.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create thread and start it.

 self.thread = Thread()

 self.thread.start()

 label = QLabel("Output will appear here")

 button = QPushButton("Kill thread")

 # Terminate (kill immediately) the thread.

 button.pressed.connect(self.thread.terminate)

 # Connect signal, so output appears on label.

 self.thread.result.connect(label.setText)

 self.thread.finished.connect(self.thread_has_finished) ①

 container = QWidget()

 layout = QVBoxLayout()

 layout.addWidget(label)

 layout.addWidget(button)

 container.setLayout(layout)

 self.setCentralWidget(container)

 self.show()

 def thread_has_finished(self):

 print("Thread has finished.")

 print(

 self.thread,

 self.thread.isRunning(),

 self.thread.isFinished(),

) ②

① Connecting the finished signal to our custom slot.

② If you terminate the thread your application will likely crash here.

While you can terminate a thread from inside, it’s cleaner to just return from the

run() method. Once you exit the run() method the thread will be automatically

547

ended and cleaned up safely & the finished signal will fire.

Listing 210. concurrent/qthread_2c.py

class Thread(QThread):

 """

 Worker thread

 """

 result = Signal(str)

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 print("Thread start")

 counter = 0

 while True:

 time.sleep(0.1)

 # Output the number as a formatted string.

 self.result.emit(f"The number is {counter}")

 counter += 1

 if counter > 50:

 return ①

① calling return in the run() method will exit and end the thread.

When you run the above example, the counter will stop at 50 because we return

from the run() method. If you try and press the terminate button after this has

happened, notice that you don’t receive the thread finished signal a second

time — the thread has already been shut down, so it cannot be terminated.

Sending data

In the previous example our thread was running but not able to receive any data

from outside. Usually when you use long-running threads you want to be able to

communicate with them, either to pass them work, or to control their behavior in

some other way.

548

We’ve been talking about how important it is to shut your threads down cleanly.

So let’s start by looking at how we can communicate with our thread that we

want it to shut down. As with the QRunnable examples, we can do this by using an

internal flag in the thread to control the main loop, with the loop continuing

while our flag is True.

To shut the thread down, we change the value of this flag. Below we’ve

implemented this using a flag named is_running and custom method .stop() on

the thread. When called, this method toggles the is_running flag to False. With the

flag set to False the main loop will end, the thread will exit the run() method and

the thread will shut down.

Listing 211. concurrent/qthread_3.py

class Thread(QThread):

 """

 Worker thread

 """

 result = Signal(str)

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 self.data = None

 self.is_running = True

 print("Thread start")

 counter = 0

 while self.is_running:

 time.sleep(0.1)

 # Output the number as a formatted string.

 self.result.emit(f"The number is {counter}")

 counter += 1

 def stop(self):

 self.is_running = False

549

We can then modify our button to call the custom stop() method, rather than

terminate.

Listing 212. concurrent/qthread_3.py

 button = QPushButton("Shutdown thread")

 # Shutdown the thread nicely.

 button.pressed.connect(self.thread.stop)

Since the thread shutdown cleanly, we can access the thread object without risk

of it crashing. Re-add the print statement to the thread_has_finished method.

Listing 213. concurrent/qthread_3.py

 def thread_has_finished(self):

 print("Thread has finished.")

 print(

 self.thread,

 self.thread.isRunning(),

 self.thread.isFinished(),

)

If you run this you will see the number counting up as before, but pressing the

button will stop the thread dead. Notice that we are able to display the metadata

about the thread after the shutdown, because the thread didn’t crash.

Figure 219. The thread can now be cleanly shutdown using the button.

We can use this same general approach to send any data into the thread that we

550

like. Below we’ve extended our custom Thread class to add a send_data method,

which accepts a single argument, and stores it internally on the thread via self.

Using this we can send in data which is accessible within the threads run()

method and use it to modify behavior.

Listing 214. concurrent/qthread_4.py

import sys

import time

from PySide6.QtCore import QThread, Signal, Slot

from PySide6.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QSpinBox,

 QVBoxLayout,

 QWidget,

)

class Thread(QThread):

 """

 Worker thread

 """

 result = Signal(str)

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 self.data = None

 self.is_running = True

 print("Thread start")

 counter = 0

 while self.is_running:

 while self.data is None:

 time.sleep(0.1) # wait for data <1>.

551

 # Output the number as a formatted string.

 counter += self.data

 self.result.emit(f"The cumulative total is {counter}")

 self.data = None

 def send_data(self, data):

 """

 Receive data onto internal variable.

 """

 self.data = data

 def stop(self):

 self.is_running = False

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create thread and start it.

 self.thread = Thread()

 self.thread.start()

 self.numeric_input = QSpinBox()

 button_input = QPushButton("Submit number")

 label = QLabel("Output will appear here")

 button_stop = QPushButton("Shutdown thread")

 # Shutdown the thread nicely.

 button_stop.pressed.connect(self.thread.stop)

 # Connect signal, so output appears on label.

 button_input.pressed.connect(self.submit_data)

 self.thread.result.connect(label.setText)

 self.thread.finished.connect(self.thread_has_finished)

 container = QWidget()

 layout = QVBoxLayout()

 layout.addWidget(self.numeric_input)

 layout.addWidget(button_input)

 layout.addWidget(label)

552

 layout.addWidget(button_stop)

 container.setLayout(layout)

 self.setCentralWidget(container)

 self.show()

 def submit_data(self):

 # Submit the value in the numeric_input widget to the thread.

 self.thread.send_data(self.numeric_input.value())

 def thread_has_finished(self):

 print("Thread has finished.")

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

If you run this example you’ll see the following window. Use the QSpinBox to select

a number and then press the button to submit it to the thread. The thread will

add the incoming number onto the current counter and return the result.

Figure 220. We can now submit data to our thread, using the QSpinBox and button.

If you use the Shutdown thread button to stop the thread you may notice

something a little strange. The thread does shutdown, but you can submit one

more number before it does so and the calculation is still performed — try it! This

553

is because the is_running check is performed at the top of the loop and then the

thread waits for input.

To fix this, we need to move the check of the is_running flag into the waiting loop.

Listing 215. concurrent/qthread_4b.py

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 print("Thread start")

 self.data = None

 self.is_running = True

 counter = 0

 while True:

 while self.data is None:

 if not self.is_running:

 return # Exit thread.

 time.sleep(0.1) # wait for data <1>.

 # Output the number as a formatted string.

 counter += self.data

 self.result.emit(f"The cumulative total is {counter}")

 self.data = None

If you run the example now, you’ll see that if the button is pressed while the

thread is waiting, it will exit immediately.

Be careful when placing thread exit control conditions in your

threads, to avoid any unexpected side-effects. Try and check

before performing any new tasks/calculations and before

emitting any data.

Often you’ll also want to pass in some initial state data, for example configuration

options to control the subsequent running of the thread. We can pass that in just

as we did for QRunnable by adding arguments to our __init__ block. The provided

554

arguments must be stored on the self object to be available in the run() method.

Listing 216. concurrent/qthread_5.py

class Thread(QThread):

 """

 Worker thread

 """

 result = Signal(str)

 def __init__(self, initial_data):

 super().__init__()

 self.data = initial_data

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create thread and start it.

 self.thread = Thread(500)

 self.thread.start()

 # ...

Using these two approaches you can provide any data you need to your thread.

This pattern of waiting for data in the thread (using sleep loop), processing the

data and returning it via a signal is the most common pattern when working

with long-running threads in Qt applications.

Let’s extend the example one more time to demonstrate passing in multiple data

types. In this example we modify our thread to use an explicit lock, called

waiting_for_data which we can toggle between True and False. You can use this

Listing 217. concurrent/qthread_6.py

class Thread(QThread):

 """

 Worker thread

 """

 result = Signal(str)

555

 def __init__(self, initial_counter):

 super().__init__()

 self.counter = initial_counter

 @Slot()

 def run(self):

 """

 Your code goes in this method

 """

 print("Thread start")

 self.is_running = True

 self.waiting_for_data = True

 while True:

 while self.waiting_for_data:

 if not self.is_running:

 return # Exit thread.

 time.sleep(0.1) # wait for data <1>.

 # Output the number as a formatted string.

 self.counter += self.input_add

 self.counter *= self.input_multiply

 self.result.emit(f"The cumulative total is {self.counter}

")

 self.waiting_for_data = True

 def send_data(self, add, multiply):

 """

 Receive data onto internal variable.

 """

 self.input_add = add

 self.input_multiply = multiply

 self.waiting_for_data = False

 def stop(self):

 self.is_running = False

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create thread and start it.

556

 self.thread = Thread(500)

 self.thread.start()

 self.add_input = QSpinBox()

 self.mult_input = QSpinBox()

 button_input = QPushButton("Submit number")

 label = QLabel("Output will appear here")

 button_stop = QPushButton("Shutdown thread")

 # Shutdown the thread nicely.

 button_stop.pressed.connect(self.thread.stop)

 # Connect signal, so output appears on label.

 button_input.pressed.connect(self.submit_data)

 self.thread.result.connect(label.setText)

 self.thread.finished.connect(self.thread_has_finished)

 container = QWidget()

 layout = QVBoxLayout()

 layout.addWidget(self.add_input)

 layout.addWidget(self.mult_input)

 layout.addWidget(button_input)

 layout.addWidget(label)

 layout.addWidget(button_stop)

 container.setLayout(layout)

 self.setCentralWidget(container)

 self.show()

 def submit_data(self):

 # Submit the value in the numeric_input widget to the thread.

 self.thread.send_data(

 self.add_input.value(), self.mult_input.value()

)

 def thread_has_finished(self):

 print("Thread has finished.")

You can also split your submit data methods out into a separate method per value

and implement an explicit calculate method which releases the lock. This

557

approach is well suited when you don’t necessarily want to update all values all

of the time. For example, if you are reading data in from an external service or

hardware.

Listing 218. concurrent/qthread_6b.py

class Thread(QThread):

 def send_add(self, add):

 self.input_add = add

 def send_multiply(self, multiply):

 self.input_multiply = multiply

 def calculate(self):

 self.waiting_for_data = False # Release the lock & calculate.

class MainWindow(QMainWindow):

 def submit_data(self):

 # Submit the value in the numeric_input widget to the thread.

 self.thread.send_add(self.add_input.value())

 self.thread.send_multiply(self.mult_input.value())

 self.thread.calculate()

If you run this example you’ll see exactly the same behavior as before. Which

approach makes the most sense in your application will depend on what the

particular thread is doing.

Don’t be afraid to mix and match the various threading

techniques you’ve learned. For example, in some applications it

will make sense to run certain parts of the application using

persistent threads and others using thread pools.

558

When a user does something in your application, the consequences of that action should be
immediately apparent — either through the result of the action itself, or through an
indication that something is being done that will provide the result. This is particularly
important for long-running tasks, such as calculations or network requests, where a lack of
feedback could prompt the user to repeatedly mash buttons and see nothing in return.

One simple approach is to disable buttons once an
operation has been triggered. But with no other
indicator this looks a lot like broken. A better
alternative is to update the button with a "Working"
message and an active progress indicator such as a
spinner nearby.

Progress bars are a
common way to address
this by informing the user
of what is going on — and
how long it’s going to take.
But don’t fall into the trap

of thinking progress bars are always useful! They should only be
used when you they can present a linear progress towards a task

— if they don’t they can be more frustrating than having no Information at all.
Any of these behaviors can give users the sense that something isn’t right leading to
frustration to confusion — "what was that dialog I missed?!" These aren’t good things to
make your users feel, so you should avoid it wherever possible.

Remember that your users don’t know what’s going on inside your application — their only
insight is through the data you give them. Share data which is helpful to your users and keep
everything else hidden. If you need debugging output, you can put it behind a menu.

DO Provide progress bars for long-running tasks.
DO Provide granular detail of sub-tasks where appropriate.
DO Estimate how long something will take, when you can.
DON’T Assume your users know which tasks are long or short.
DON’T Use progress bars that move up & down, or irregularly.

A Sense of Progress

Progress bars are not helpful if —
• they go backwards and forward
• they don’t increase linearly with progress
• they complete too quickly

Spinners or waiting icons can be
used when the the duration of the
task Is unknown, or very short.

Some complex
applications can have

multiple concurrent
tasks

29. Running external commands &
processes

So far we’ve looked at how to run things in separate threads, including external

programs using Python subprocess. But in PySide6 we can also make use of a Qt-

based system for running external programs, QProcess. Creating and executing a

job with QProcess is relatively straightforward.

The simplest possible example is shown below — we create a QProcess object and

then call .start passing in the command to execute and a list of string

arguments. In this case we’re running our custom demo script, with Python

python dummy_script.py.

p = QProcess()

p.start("python", ["dummy_script.py"])

Depending on your environment, you may need to specify

python3 instead of python.

You need to keep a reference to the created QProcess instance,

either on self or elsewhere, while it is running.

The simple example is enough if you just want to run a program and don’t care

what happens to it. However, if you want to know more about what a program is

doing, QProcess provides a number of signals which can be used to track the

progress and state of processes.

The most useful are the .readyReadStandardOutput and .readyReadStandardError

which fire whenever there is standard output and standard error ready to be

read from the process. All running processes have two streams of

output — standard out and standard error. The standard output returns the

actual result of the execution (if any) while standard error returns any error or

560

logging information.

p = QProcess()

p.readyReadStandardOutput.connect(self.handle_stdout)

p.readyReadStandardError.connect(self.handle_stderr)

p.stateChanged.connect(self.handle_state)

p.finished.connect(self.cleanup)

p.start("python", ["dummy_script.py"])

Additionally, there is a .finished signal which is fired when the process

completes, and a .stateChanged signal which fires when the process status

changes. Valid values — defined in the QProcess.ProcessState enum —  are shown

below.

Constant Value Description

QProcess.NotRunning 0 The process is not running.

QProcess.Starting 1 The process is starting, but the program

has not yet been invoked.

QProcess.Running 2 The process is running and is ready for

reading and writing.

In the following example we extend this basic QProcess setup to add handlers for

the standard out and standard err. The signals notifying of available data connect

to these handlers and trigger a request of the data from the process, using

.readAllStandardError() and .readAllStandardOutput().

 The methods output raw bytes, so you need to decode it first.

In this example, our demo script dummy_script.py return a series of strings, which

are parsed to provide progress information and structured data. The state of the

process is also displayed on the statusbar.

The full code is shown below — 

561

Listing 219. concurrent/qprocess.py

import re

import sys

from PySide6.QtCore import QProcess

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QPlainTextEdit,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

STATES = {

 QProcess.NotRunning: "Not running",

 QProcess.Starting: "Starting...",

 QProcess.Running: "Running...",

}

progress_re = re.compile("Total complete: (\d+)%")

def simple_percent_parser(output):

 """

 Matches lines using the progress_re regex,

 returning a single integer for the % progress.

 """

 m = progress_re.search(output)

 if m:

 pc_complete = m.group(1)

 return int(pc_complete)

def extract_vars(l):

 """

 Extracts variables from lines, looking for lines

 containing an equals, and splitting into key=value.

 """

 data = {}

 for s in l.splitlines():

562

 if "=" in s:

 name, value = s.split("=")

 data[name] = value

 return data

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Hold process reference.

 self.p = None

 layout = QVBoxLayout()

 self.text = QPlainTextEdit()

 layout.addWidget(self.text)

 self.progress = QProgressBar()

 layout.addWidget(self.progress)

 btn_run = QPushButton("Execute")

 btn_run.clicked.connect(self.start)

 layout.addWidget(btn_run)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 def start(self):

 if self.p is not None:

 return

 self.p = QProcess()

 self.p.readyReadStandardOutput.connect(self.handle_stdout)

 self.p.readyReadStandardError.connect(self.handle_stderr)

 self.p.stateChanged.connect(self.handle_state)

 self.p.finished.connect(self.cleanup)

 self.p.start("python", ["dummy_script.py"])

563

 def handle_stderr(self):

 result = bytes(self.p.readAllStandardError()).decode("utf8")

 progress = simple_percent_parser(result)

 self.progress.setValue(progress)

 def handle_stdout(self):

 result = bytes(self.p.readAllStandardOutput()).decode("utf8")

 data = extract_vars(result)

 self.text.appendPlainText(str(data))

 def handle_state(self, state):

 self.statusBar().showMessage(STATES[state])

 def cleanup(self):

 self.p = None

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

In this example we store a reference to the process in self.p, meaning we can

only run a single process at once. But you are free to run as many processes as

you like alongside your application. If you don’t need to track information from

them, you can simply store references to the processes in a list.

However, if you want to track progress and parse output from workers

individually, you may want to consider creating a manager class to handle and

track all your processes. There is an example of this in the source files with the

book, named qprocess_manager.py.

The full source code for the example is available in the source code for the book,

but below we’ll look at the JobManager class itself.

Listing 220. concurrent/qprocess_manager.py

class JobManager(QAbstractListModel):

564

 """

 Manager to handle active jobs and stdout, stderr

 and progress parsers.

 Also functions as a Qt data model for a view

 displaying progress for each process.

 """

 _jobs = {}

 _state = {}

 _parsers = {}

 status = Signal(str)

 result = Signal(str, object)

 progress = Signal(str, int)

 def __init__(self):

 super().__init__()

 self.status_timer = QTimer()

 self.status_timer.setInterval(100)

 self.status_timer.timeout.connect(self.notify_status)

 self.status_timer.start()

 # Internal signal, to trigger update of progress via parser.

 self.progress.connect(self.handle_progress)

 def notify_status(self):

 n_jobs = len(self._jobs)

 self.status.emit("{} jobs".format(n_jobs))

 def execute(self, command, arguments, parsers=None):

 """

 Execute a command by starting a new process.

 """

 job_id = uuid.uuid4().hex

 # By default, the signals do not have access to any

information about

 # the process that sent it. So we use this constructor to

annotate

 # each signal with a job_id.

565

 def fwd_signal(target):

 return lambda *args: target(job_id, *args)

 self._parsers[job_id] = parsers or []

 # Set default status to waiting, 0 progress.

 self._state[job_id] = DEFAULT_STATE.copy()

 p = QProcess()

 p.readyReadStandardOutput.connect(

 fwd_signal(self.handle_output)

)

 p.readyReadStandardError.connect(fwd_signal(self.

handle_output))

 p.stateChanged.connect(fwd_signal(self.handle_state))

 p.finished.connect(fwd_signal(self.done))

 self._jobs[job_id] = p

 p.start(command, arguments)

 self.layoutChanged.emit()

 def handle_output(self, job_id):

 p = self._jobs[job_id]

 stderr = bytes(p.readAllStandardError()).decode("utf8")

 stdout = bytes(p.readAllStandardOutput()).decode("utf8")

 output = stderr + stdout

 parsers = self._parsers.get(job_id)

 for parser, signal_name in parsers:

 # Parse the data using each parser in turn.

 result = parser(output)

 if result:

 # Look up the signal by name (using signal_name), and

 # emit the parsed result.

 signal = getattr(self, signal_name)

 signal.emit(job_id, result)

 def handle_progress(self, job_id, progress):

 self._state[job_id]["progress"] = progress

 self.layoutChanged.emit()

566

 def handle_state(self, job_id, state):

 self._state[job_id]["status"] = state

 self.layoutChanged.emit()

 def done(self, job_id, exit_code, exit_status):

 """

 Task/worker complete. Remove it from the active workers

 dictionary. We leave it in worker_state, as this is used to

 to display past/complete workers too.

 """

 del self._jobs[job_id]

 self.layoutChanged.emit()

 def cleanup(self):

 """

 Remove any complete/failed workers from worker_state.

 """

 for job_id, s in list(self._state.items()):

 if s["status"] == QProcess.NotRunning:

 del self._state[job_id]

 self.layoutChanged.emit()

 # Model interface

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the data structure.

 job_ids = list(self._state.keys())

 job_id = job_ids[index.row()]

 return job_id, self._state[job_id]

 def rowCount(self, index):

 return len(self._state)

This class provides a model view interface allowing it to be used as the basis for a

QListView. The custom delegate ProgressBarDelegate delegate draws a progress

bar for each item, along with the job identifier. The color of the progress bar is

determined by the status of the process — dark green if active, or light green if

complete.

Parsing of progress information from workers is tricky in this setup, because the

567

.readyReadStandardError and .readyReadStandardOutput signals do not pass the

data, or information about the job that is ready. To work around this we define

our custom job_id and intercept the signals to add this data to them.

Parsers for the jobs are passed in when executing the command and stored in

_parsers. Output received from each job is passed through the respective parser

and used to emit the data, or update the job’s progress. We define two simple

parsers: one for extracting the current progress and one for getting the output

data.

Listing 221. concurrent/qprocess_manager.py

progress_re = re.compile("Total complete: (\d+)%", re.M)

def simple_percent_parser(output):

 """

 Matches lines using the progress_re regex,

 returning a single integer for the % progress.

 """

 m = progress_re.search(output)

 if m:

 pc_complete = m.group(1)

 return int(pc_complete)

def extract_vars(l):

 """

 Extracts variables from lines, looking for lines

 containing an equals, and splitting into key=value.

 """

 data = {}

 for s in l.splitlines():

 if "=" in s:

 name, value = s.split("=")

 data[name] = value

 return data

The parsers are passed in as a simple list of tuple containing the function to be

568

used as the parser and the name of the signal to emit. The signal is looked up by

name using getattr on the JobManager. In the example we’ve only defined 2

signals, one for the data/result output and one for progress. But you can add as

many signals and parsers as you like. Using this approach you can opt to omit

certain parsers for certain tasks if you wish (for example, where no progress

information is available).

Run the example code and experiment running tasks in another process. You can

start multiple jobs, and watch them complete, updating their current progress as

they go. Experiment with adding additional commands and parsers for your own

jobs.

Figure 221. The process manager, showing active processes and progress.

569

Plotting
One of the major strengths of Python is in data science and visualization, using

tools such as Pandas, numpy and sklearn for data analysis. Building GUI

applications with PySide6 gives you access to all these Python tools directly from

within your app, allowing you to build complex data-driven apps and interactive

dashboards. We’ve already covered the model views, which allow us to show

data in lists and tables. In this chapter we’ll look at the final piece of that

puzzle — plotting data.

When building apps with PySide6 you have two main choices — matplotlib

(which also gives access to Pandas plots) and PyQtGraph, which creates plots

with Qt-native graphics. In this chapter we’ll look at how you can use these

libraries to visualize data in your applications.

570

30. Plotting with PyQtGraph

While it is possible to embed matplotlib plots in PySide6 the experience does not

feel entirely native. For simple and highly interactive plots you may want to

consider using PyQtGraph instead. PyQtGraph is built on top of PySide6 native

QGraphicsScene giving better drawing performance, particularly for live data, as

well as providing interactivity and the ability to easily customize plots with Qt

graphics widgets.

In this chapter we’ll walk through the first steps of creating a plot widget with

PyQtGraph and then demonstrate plot customization using line colors, line type,

axis labels, background color and plotting multiple lines.

Getting started

To be able to use PyQtGraph with PySide6 you first need to install the package to

your Python environment. You can do this using pip.

At the time of writing PySide6 is very new, and so you will need to use a

developer install of PyQtGraph.

pip install git+https://github.com/pyqtgraph/pyqtgraph@master

Once the installation is complete you should be able to import the module as

normal.

Creating a PyQtGraph widget

In PyQtGraph all plots are created using the PlotWidget widget. This widget

provides a contained canvas on which plots of any type can be added and

configured. Under the hood, this plot widget uses Qt native QGraphicsScene

meaning it fast and efficient yet simple to integrate with the rest of your app. You

can create a PlotWidget as for any other widget.

571

The basic template app, with a single PlotWidget in a QMainWindow is shown below.

In the following examples we’ll create the PyQtGraph widget in

code. However, you can also embed PyQtGraph widgets from Qt

Designer.

Listing 222. plotting/pyqtgraph_1.py

import sys

from PySide6 import QtWidgets

import pyqtgraph as pg # import PyQtGraph after Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 # plot data: x, y values

 self.graphWidget.plot(hour, temperature)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec()

In all our examples below we import PyQtGraph using import

pyqtgraph as pg. This is a common convention in PyQtGraph

examples to keep things tidy & reduce typing. You can import as

import pyqtgraph if you prefer.

572

Figure 222. The custom PyQtGraph widget showing dummy data.

The default plot style of PyQtGraph is quite bare - a black background with a thin

(barely visible) white line. In the next section we’ll look at what options we have

available to us in PyQtGraph to improve the appearance and usability of our

plots.

Styling plots

PyQtGraph uses Qt’s QGraphicsScene to render the graphs. This gives us access to

all the standard Qt line and shape styling options for use in plots. However,

PyQtGraph provides an API for using these to draw plots and manage the plot

canvas.

Below we’ll go through the most common styling features you’ll need to create

and customize your own plots.

Background Color

Beginning with the app skeleton above, we can change the background color by

calling .setBackground on our PlotWidget instance (in self.graphWidget). The code

below will set the background to white, by passing in the string 'w'.

self.graphWidget.setBackground('w')

573

You can set (and update) the background color of the plot at any time.

Listing 223. plotting/pyqtgraph_2.py

import sys

from PySide6 import QtWidgets

import pyqtgraph as pg # import PyQtGraph after Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 self.graphWidget.setBackground("w")

 self.graphWidget.plot(hour, temperature)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec()

Figure 223. Changed PyQtGraph Plot Background to White.

574

There are a number of simple colors available using single letters, based on the

standard colors used in matplotlib. They’re pretty unsurprising, except that 'k' is

used for black.

Table 7. Common color codes

Color Letter code

blue b

green g

red r

cyan (bright blue-green) c

magenta (bright pink) m

yellow y

black k

white w

In addition to these single letter codes, you can also set colors using hex notation

eg. #672922 as a string.

self.graphWidget.setBackground('#bbccaa') # hex

RGB and RGBA values can be passed in as a 3-tuple or 4-tuple respectively, using

values 0-255.

self.graphWidget.setBackground((100,50,255)) # RGB each 0-255

self.graphWidget.setBackground((100,50,255,25)) # RGBA (A = alpha

opacity)

Lastly, you can also specify colors using Qt’s QColor type directly.

575

self.graphWidget.setBackground(QtGui.QColor(100,50,254,25))

This can be useful if you’re using specific QColor objects elsewhere in your

application, or to set your plot background to the default GUI background color.

color = self.palette().color(QtGui.QPalette.Window) # Get the default

window background,

self.graphWidget.setBackground(color)

Line Color, Width & Style

Lines in PyQtGraph are drawn using standard Qt QPen types. This gives you the

same full control over line drawing as you would have in any other

QGraphicsScene drawing. To use a pen to plot a line, you simply create a new QPen

instance and pass it into the plot method.

Below we create a QPen object, passing in a 3-tuple of int values specifying an

RGB value (of full red). We could also define this by passing 'r', or a QColor object.

Then we pass this into plot with the pen parameter.

pen = pg.mkPen(color=(255, 0, 0))

self.graphWidget.plot(hour, temperature, pen=pen)

The complete code is shown below.

576

Listing 224. plotting/pyqtgraph_3.py

import sys

from PySide6 import QtWidgets

import pyqtgraph as pg # import PyQtGraph after Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 self.graphWidget.setBackground("w")

 pen = pg.mkPen(color=(255, 0, 0))

 self.graphWidget.plot(hour, temperature, pen=pen)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec()

Figure 224. Changing Line Color.

577

By changing the QPen object we can change the appearance of the line, including

both line width in pixels and style (dashed, dotted, etc.) using standard Qt line

styles. For example, the following example creates a 15px width dashed line in

red.

pen = pg.mkPen(color=(255, 0, 0), width=15, style=QtCore.Qt.DashLine)

The result is shown below, giving a 15px dashed red line.

Figure 225. Changing Line Width and Style.

The standard Qt line styles can all be used, including Qt.SolidLine, Qt.DashLine,

Qt.DotLine, Qt.DashDotLine and Qt.DashDotDotLine. Examples of each of these lines

are shown in the image below, and you can read more in the Qt Documentation.

Line Markers

For many plots it can be helpful to place markers in addition or instead of lines

on the plot. To draw a marker on the plot, pass the symbol to use as a marker

when calling .plot as shown below.

self.graphWidget.plot(hour, temperature, symbol='+')

In addition to symbol you can also pass in symbolSize, symbolBrush and symbolPen

578

https://doc.qt.io/qt-5/qpen.html#pen-style

parameters. The value passed as symbolBrush can be any color, or QBrush type,

while symbolPen can be passed any color or a QPen instance. The pen is used to

draw the outline of the shape, while brush is used for the fill.

For example the below code will give a blue cross marker of size 30, on a thick

red line.

pen = pg.mkPen(color=(255, 0, 0), width=15, style=QtCore.Qt.DashLine)

self.graphWidget.plot(hour, temperature, pen=pen, symbol='+',

symbolSize=30, symbolBrush=('b'))

Figure 226. Symbols are shown at each data point on the line.

In addition to the + plot marker, PyQtGraph supports the following standard

markers shown in the table below. These can all be used in the same way.

Variable Marker Type

o Circular

s Square

t Triangular

d Diamond

+ Cross

579

If you have more complex requirements you can also pass in

any QPainterPath object, allowing you to draw completely

custom marker shapes.

Plot Titles

Chart titles are important to provide context to what is shown on a given chart.

In PyQtGraph you can add a main plot title using the setTitle() method on the

PlotWidget, passing in your title string.

self.graphWidget.setTitle("Your Title Here")

You can apply text styles, including colors, font sizes and weights to your titles

(and any other labels in PyQtGraph) by passing additional arguments. The

available syle arguments are shown below.

Style Type

color (str) e.g. 'CCFF00'

size (str) e.g. '8pt'

bold (bool) True or False

italic (bool) True or False

The code below sets the color to blue with a font size of 30pt.

self.graphWidget.setTitle("Your Title Here", color="b", size="30pt")

You can also style your headers with HTML tag syntax if you prefer, although it’s

less readable.

self.graphWidget.setTitle("<span style=\"color:blue;font-size:30pt

\">Your Title Here")

580

Figure 227. Plot with a styled title.

Axis Labels

Similar to titles, we can use the setLabel() method to create our axis titles. This

requires two parameters, position and text. The position can be any one of

'left,'right','top','bottom' which describe the position of the axis on which

the text is placed. The 2nd parameter text is the text you want to use for the label.

You can pass additional style parameters into the method. These differ slightly

than for the title, in that they need to be valid CSS name-value pairs. For example,

the size is now font-size. Because the name font-size has a hyphen in it, you

cannot pass it directly as a parameter, but must use the **dictionary method.

styles = {'color':'r', 'font-size':'30pt'}

self.graphWidget.setLabel('left', 'Temperature (°C)', **styles)

self.graphWidget.setLabel('bottom', 'Hour (H)', **styles)

These also support HTML syntax if you prefer.

self.graphWidget.setLabel('left', "<span style=\"color:red;font-

size:30px\">Temperature (°C)")

self.graphWidget.setLabel('bottom', "<span style=\"color:red;font-

size:30px\">Hour (H)")

581

Figure 228. Axis labels with a custom style.

Legends

In addition to the axis and plot titles you will often want to show a legend

identifying what a given line represents. This is particularly important when you

start adding multiple lines to a plot. Adding a legend to a plot can be

accomplished by calling .addLegend on the PlotWidget, however before this will

work you need to provide a name for each line when calling .plot().

The example below assigns a name "Sensor 1" to the line we are plotting with

.plot(). This name will be used to identify the line in the legend.

self.graphWidget.plot(hour, temperature, name = "Sensor 1", pen =

NewPen, symbol='+', symbolSize=30, symbolBrush=('b'))

self.graphWidget.addLegend()

582

Figure 229. The plot with the legend, showing a single item.

The legend appears in the top left by default. If you would like to

move it, you can easily drag and drop the legend elsewhere. You

can also specify a default offset by passing a 2-tuple to the offset

parameter when creating the legend.

Background Grid

Adding a background grid can make your plots easier to read, particularly when

trying to compare relative x & y values against each other. You can turn on a

background grid for your plot by calling .showGrid on your PlotWidget. You can

toggle x and y grids independently.

The following with create the grid for both the X and Y axis.

self.graphWidget.showGrid(x=True, y=True)

583

Figure 230. The plot grid.

Setting Axis Limits

Sometimes it can be useful to restrict the range of data which is visible on the

plot, or to lock the axis to a consistent range regardless of the data input (e.g. a

known min-max range). In PyQtGraph this can be done using the .setXRange()

and .setYRange() methods. These force the plot to only show data within the

specified ranges on each axis.

Below we set two ranges, one on each axis. The 1st argument is the minimum

value and the 2nd is the maximum.

self.graphWidget.setXRange(5, 20, padding=0)

self.graphWidget.setYRange(30, 40, padding=0)

A optional padding argument causes the range to be set larger than specified by

the specified fraction (this between 0.02 and 0.1 by default, depending on the size

of the ViewBox). If you want to remove this padding entirely, pass 0.

self.graphWidget.setXRange(5, 20, padding=0)

self.graphWidget.setYRange(30, 40, padding=0)

The complete code so far is shown below:

584

Listing 225. plotting/pyqtgraph_4.py

import sys

from PySide6 import QtWidgets

import pyqtgraph as pg # import PyQtGraph after Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 # Add Background color to white

 self.graphWidget.setBackground("w")

 # Add Title

 self.graphWidget.setTitle(

 "Your Title Here", color="b", size="30pt"

)

 # Add Axis Labels

 styles = {"color": "#f00", "font-size": "20px"}

 self.graphWidget.setLabel("left", "Temperature (°C)", **

styles)

 self.graphWidget.setLabel("bottom", "Hour (H)", **styles)

 # Add legend

 self.graphWidget.addLegend()

 # Add grid

 self.graphWidget.showGrid(x=True, y=True)

 # Set Range

 self.graphWidget.setXRange(0, 10, padding=0)

 self.graphWidget.setYRange(20, 55, padding=0)

 pen = pg.mkPen(color=(255, 0, 0))

 self.graphWidget.plot(

 hour,

 temperature,

 name="Sensor 1",

 pen=pen,

585

 symbol="+",

 symbolSize=30,

 symbolBrush=("b"),

)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec()

Figure 231. Limiting the range of the axis.

Plotting multiple lines

It is common for plots to involve more than one line. In PyQtGraph this is as

simple as calling .plot() multiple times on the same PlotWidget. In the following

example we’re going to plot two lines of similar data, using the same line styles,

thicknesses etc. for each, but changing the line color.

To simplify this we can create our own custom plot method on our MainWindow.

This accepts x and y parameters to plot, the name of the line (for the legend) and

a color. We use the color for both the line and marker color.

586

 def plot(self, x, y, plotname, color):

 pen = pg.mkPen(color=color)

 self.graphWidget.plot(x, y, name=plotname, pen=pen, symbol=

'+', symbolSize=30, symbolBrush=(color))

To plot separate lines we’ll create a new array called temperature_2 and populate

it with random numbers similar to temperature (now temperature_1). Plotting

these alongside each other allows us to compare them together. Now, you can call

plot function twice and this will generate 2 lines on the plot.

self.plot(hour, temperature_1, "Sensor1", 'r')

self.plot(hour, temperature_2, "Sensor2", 'b')

Listing 226. plotting/pyqtgraph_5.py

import sys

from PySide6 import QtWidgets

import pyqtgraph as pg # import PyQtGraph after Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature_1 = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 temperature_2 = [50, 35, 44, 22, 38, 32, 27, 38, 32, 44]

 # Add Background color to white

 self.graphWidget.setBackground("w")

 # Add Title

 self.graphWidget.setTitle(

 "Your Title Here", color="b", size="30pt"

)

 # Add Axis Labels

587

 styles = {"color": "#f00", "font-size": "20px"}

 self.graphWidget.setLabel("left", "Temperature (°C)", **

styles)

 self.graphWidget.setLabel("bottom", "Hour (H)", **styles)

 # Add legend

 self.graphWidget.addLegend()

 # Add grid

 self.graphWidget.showGrid(x=True, y=True)

 # Set Range

 self.graphWidget.setXRange(0, 10, padding=0)

 self.graphWidget.setYRange(20, 55, padding=0)

 self.plot(hour, temperature_1, "Sensor1", "r")

 self.plot(hour, temperature_2, "Sensor2", "b")

 def plot(self, x, y, plotname, color):

 pen = pg.mkPen(color=color)

 self.graphWidget.plot(

 x,

 y,

 name=plotname,

 pen=pen,

 symbol="+",

 symbolSize=30,

 symbolBrush=(color),

)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec()

588

Figure 232. A plot with two lines.

Play around with this function, customizing your markers, line

widths, colors and other parameters.

Clearing the plot

Finally, sometimes you might want to clear and refresh the plot periodically. You

can easily do that by calling .clear().

self.graphWidget.clear()

This will remove the lines from the plot but keep all other attributes the same.

Updating the plot

While you can simply clear the plot and redraw all your elements again, this

means Qt has to destroy and recreate all your QGraphicsScene objects. For small or

simple plots this is probably not noticeable, but if you want to create high-

peformance streaming plots it is much better to update the data in place.

PyQtGraph takes the new data and updates the plotted line to match without

affecting any other elements in the plot.

To update a line we need a reference to the line object. This reference is returned

when first creating the line using .plot and we can simply store this in a

589

variable. Note that this is a reference to the line not to the plot.

my_line_ref = graphWidget.plot(x, y)

Once we have the reference, updating the plot is simply a case of calling .setData

on the reference to apply the new data.

Listing 227. plotting/pyqtgraph_6.py

import sys

from random import randint

from PySide6 import QtWidgets, QtCore

import pyqtgraph as pg # import PyQtGraph after Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 self.x = list(range(100)) # 100 time points

 self.y = [

 randint(0, 100) for _ in range(100)

] # 100 data points

 self.graphWidget.setBackground("w")

 pen = pg.mkPen(color=(255, 0, 0))

 self.data_line = self.graphWidget.plot(

 self.x, self.y, pen=pen

) ①

 self.timer = QtCore.QTimer()

 self.timer.setInterval(50)

 self.timer.timeout.connect(self.update_plot_data)

 self.timer.start()

 def update_plot_data(self):

590

 self.x = self.x[1:] # Remove the first y element.

 self.x.append(

 self.x[-1] + 1

) # Add a new value 1 higher than the last.

 self.y = self.y[1:] # Remove the first

 self.y.append(randint(0, 100)) # Add a new random value.

 self.data_line.setData(self.x, self.y) # Update the data.

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

① Here we take a reference to the line we plotted, storing it as self.data_line.

We use a QTimer to update the data every 50ms, setting the trigger to call a custom

slot method update_plot_data where we’ll change the data. We define this timer

in the __init__ block so it is automatically started.

If you run the app you will see a plot with random data scrolling rapidly to the

left, with the X values also updating and scrolling in time, as if streaming data.

You can replace the random data with your own real data, taken for example

from a live sensor readout or API. PyQtGraph is performant enough to support

multiple plots using this method.

Conclusion

In this chapter we’ve discovered how to draw simple plots with PyQtGraph and

customize lines, markers and labels. For a complete overview of PyQtGraph

methods and capabilities see the PyQtGraph Documentation & API Reference.

The PyQtGraph repository on Github also has complete set of more complex

example plots in Plotting.py (shown below).

591

http://www.pyqtgraph.org/documentation/
https://github.com/pyqtgraph/pyqtgraph

Figure 233. Example plots taken from the PyQtGraph documentation.

592

31. Plotting with Matplotlib

In the previous part we covered plotting in PySide6 using PyQtGraph. That

library uses the Qt vector-based QGraphicsScene to draw plots and provides a

great interface for interactive and high performance plotting.

However, there is another plotting library for Python which is used far more

widely, and which offers a richer assortment of plots — Matplotlib. If you’re

migrating an existing data analysis tool to a PySide6 GUI, or if you simply want to

have access to the array of plot abilities that Matplotlib offers, then you’ll want to

know how to include Matplotlib plots within your application.

In this chapter we’ll cover how to embed Matplotlib plots in your PySide6

applications

Many other Python libraries — such as seaborn and pandas —

make use of Matplotlib for plotting. These plots can be

embedded in PySide6 in the same way shown here, and the

reference to the axes passed when plotting. There is a pandas

example at the end of this chapter.

Installing Matplotlib

The following examples assume you have Matplotlib installed. If not you can

install it using pip.

At the time of writing PySide6 is very new. There is an experimental branch with

[Qt6 support](https://github.com/matplotlib/matplotlib/pull/19255) which you can

install with — 

pip install git+https://github.com/anntzer/matplotlib.git@qt6

593

https://www.matplotlib.org
https://github.com/mwaskom/seaborn
https://pandas.pydata.org/pandas-docs/version/0.13/visualization.html
https://github.com/matplotlib/matplotlib/pull/19255

A simple example

The following minimal example sets up a Matplotlib canvas FigureCanvasQTAgg

which creates the Figure and adds a single set of axes to it. This canvas object is

also a QWidget and so can be embedded straight into an application as any other

Qt widget.

594

Listing 228. plotting/matplotlib_1.py

import sys

from PySide6 import QtWidgets # import PySide6 before matplotlib

import matplotlib

from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg

from matplotlib.figure import Figure

matplotlib.use("QtAgg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 # Create the maptlotlib FigureCanvasQTAgg object,

 # which defines a single set of axes as self.axes.

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 sc.axes.plot([0, 1, 2, 3, 4], [10, 1, 20, 3, 40])

 self.setCentralWidget(sc)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec()

In this case we’re adding our MplCanvas widget as the central widget on the

window with .setCentralWidget(). This means it will take up the entirety of the

window and resize together with it. The plotted data [0,1,2,3,4], [10,1,20,3,40]

is provided as two lists of numbers (x and y respectively) as required by the .plot

595

method.

Figure 234. A simple plot.

Plot controls

Plots from Matplotlib displayed in PySide6 are actually rendered as simple

(bitmap) images by the Agg backend. The FigureCanvasQTAgg class wraps this

backend and displays the resulting image on a Qt widget. The effect of this

architecture is that Qt is unaware of the positions of lines and other plot elements

— only the x, y coordinates of any clicks and mouse movements over the widget.

However, support for handling Qt mouse events and transforming them into

interactions on the plot is built into Matplotlib. This can be controlled through a

custom toolbar which can be added to your applications alongside the plot. In

this section we’ll look at adding these controls so we can zoom, pan and get data

from embedded Matplotlib plots.

The complete code, importing the toolbar widget NavigationToolbar2QT and

adding it to the interface within a QVBoxLayout, is shown below —

Listing 229. plotting/matplotlib_2.py

import sys

from PySide6 import QtWidgets # import PySide6 before matplotlib

596

import matplotlib

from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg

from matplotlib.backends.backend_qtagg import (

 NavigationToolbar2QT as NavigationToolbar,

)

from matplotlib.figure import Figure

matplotlib.use("QtAgg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 sc.axes.plot([0, 1, 2, 3, 4], [10, 1, 20, 3, 40])

 # Create toolbar, passing canvas as first parameter, parent

(self, the MainWindow) as second.

 toolbar = NavigationToolbar(sc, self)

 layout = QtWidgets.QVBoxLayout()

 layout.addWidget(toolbar)

 layout.addWidget(sc)

 # Create a placeholder widget to hold our toolbar and canvas.

 widget = QtWidgets.QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

 self.show()

app = QtWidgets.QApplication(sys.argv)

597

w = MainWindow()

app.exec()

We’ll step through the changes.

First we import the toolbar widget from

matplotlib.backends.backend_qt5agg.NavigationToolbar2QT renaming it with the

simpler name NavigationToolbar. We create an instance of the toolbar by calling

NavigationToolbar with two parameters, first the canvas object sc and then the

parent for the toolbar, in this case our MainWindow object self. Passing in the

canvas links the created toolbar to it, allowing it to be controlled. The resulting

toolbar object is stored in the variable toolbar.

We need to add two widgets to the window, one above the other, so we use a

QVBoxLayout. First we add our toolbar widget toolbar and then the canvas widget

sc to this layout. Finally, we set this layout onto our simple widget layout

container which is set as the central widget for the window.

Running the above code will produce the following window layout, showing the

plot at the bottom and the controls on top as a toolbar.

Figure 235. Matplotlib canvas with toolbar.

The buttons provided by NavigationToolbar2QT allow for control of the following

598

actions —

• Home, Back/Forward, Pan & Zoom which are used to navigate through the

plots. The Back/Forward buttons can step backwards and forwards through

navigation steps, for example zooming in and then clicking Back will return

to the previous zoom. Home returns to the initial state of the plot.

• Plot margin/position configuration which can adjust the plot within the

window.

• Axis/curve style editor, where you can modify plot titles and axes scales,

along with setting plot line colors and line styles. The color selection uses the

platform-default color picker, allowing any available colors to be selected.

• Save, to save the resulting figure as an image (all Matplotlib supported

formats).

A few of these configuration settings are shown below.

Figure 236. Matplotlib figure options.

599

Figure 237. Matplotlib curve options.

For more information on navigating and configuring Matplotlib plots, take a look

at the official Matplotlib toolbar documentation.

Updating plots

Quite often in applications you’ll want to update the data shown in plots,

whether in response to input from the user or updated data from an API. There

are two ways to update plots in Matplotlib, either

1. clearing and redrawing the canvas (simpler, but slower) or,

2. by keeping a reference to the plotted line and updating the data.

If performance is important to your app it is recommended you do the latter, but

the first is simpler. We start with the simple clear-and-redraw method first below

—

600

https://matplotlib.org/3.1.1/users/navigation_toolbar.html

Clear and redraw

Listing 230. plotting/matplotlib_3.py

import random

import sys

from PySide6 import (

 QtCore,

 QtWidgets,

) # import PySide6 before matplotlib

import matplotlib

from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg

from matplotlib.figure import Figure

matplotlib.use("QtAgg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.canvas = MplCanvas(self, width=5, height=4, dpi=100)

 self.setCentralWidget(self.canvas)

 n_data = 50

 self.xdata = list(range(n_data))

 self.ydata = [random.randint(0, 10) for i in range(n_data)]

 self.update_plot()

 self.show()

 # Setup a timer to trigger the redraw by calling update_plot.

 self.timer = QtCore.QTimer()

601

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.update_plot)

 self.timer.start()

 def update_plot(self):

 # Drop off the first y element, append a new one.

 self.ydata = self.ydata[1:] + [random.randint(0, 10)]

 self.canvas.axes.cla() # Clear the canvas.

 self.canvas.axes.plot(self.xdata, self.ydata, "r")

 # Trigger the canvas to update and redraw.

 self.canvas.draw()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec()

In this example we’ve moved the plotting to a update_plot method to keep it self-

contained. In this method we take our ydata array and drop off the first value

with [1:] then append a new random integer between 0 and 10. This has the

effect of scrolling the data to the left.

To redraw we simply call axes.cla() to clear the axes (the entire canvas) and the

axes.plot(…) to re-plot the data, including the updated values. The resulting

canvas is then redrawn to the widget by calling canvas.draw().

The update_plot method is called every 100 msec using a QTimer. The clear-and-

refresh method is fast enough to keep a plot updated at this rate, but as we’ll see

shortly, falters as the speed increases.

In-place redraw

The changes required to update the plotted lines in-place are fairly minimal,

requiring only an addition variable to store and retrieve the reference to the

plotted line. The updated MainWindow code is shown below.

Listing 231. plotting/matplotlib_4.py

602

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.canvas = MplCanvas(self, width=5, height=4, dpi=100)

 self.setCentralWidget(self.canvas)

 n_data = 50

 self.xdata = list(range(n_data))

 self.ydata = [random.randint(0, 10) for i in range(n_data)]

 # We need to store a reference to the plotted line

 # somewhere, so we can apply the new data to it.

 self._plot_ref = None

 self.update_plot()

 self.show()

 # Setup a timer to trigger the redraw by calling update_plot.

 self.timer = QtCore.QTimer()

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.update_plot)

 self.timer.start()

 def update_plot(self):

 # Drop off the first y element, append a new one.

 self.ydata = self.ydata[1:] + [random.randint(0, 10)]

 # Note: we no longer need to clear the axis.

 if self._plot_ref is None:

 # First time we have no plot reference, so do a normal

plot.

 # .plot returns a list of line <reference>s, as we're

 # only getting one we can take the first element.

 plot_refs = self.canvas.axes.plot(

 self.xdata, self.ydata, "r"

)

 self._plot_ref = plot_refs[0]

 else:

 # We have a reference, we can use it to update the data

for that line.

 self._plot_ref.set_ydata(self.ydata)

603

 # Trigger the canvas to update and redraw.

 self.canvas.draw()

First, we need a variable to hold a reference to the plotted line we want to

update, which here we’re calling _plot_ref. We initialize self._plot_ref with None

so we can check its value later to determine if the line has already been drawn —

if the value is still None we have not yet drawn the line.

If you were drawing multiple lines you would probably want to

use a list or dict data structure to store the multiple references

and keep track of which is which.

Finally, we update the ydata data as we did before, rotating it to the left and

appending a new random value. Then we either —

1. if self._plot_ref is None (i.e. we have not yet drawn the line) draw the line

and store the reference in self._plot_ref, or

2. update the line in place by calling self._plot_ref.set_ydata(self.ydata)

We obtain a reference to the plotted line when calling .plot. However .plot

returns a list (to support cases where a single .plot call can draw more than one

line). In our case we’re only plotting a single line, so we simply want the first

element in that list – a single Line2D object. To get this single value into our

variable we can assign to a temporary variable plot_refs and then assign the

first element to our self._plot_ref variable.

plot_refs = self.canvas.axes.plot(self.xdata, self.ydata, 'r')

self._plot_ref = plot_refs[0]

You could also use tuple-unpacking, picking off the first (and only) element in the

list with —

self._plot_ref, = self.canvas.axes.plot(self.xdata, self.ydata, 'r')

604

If you run the resulting code, there will be no noticeable difference in

performance between this and the previous method at this speed. However if you

attempt to update the plot faster (e.g. down to every 10 msec) you’ll start to notice

that clearing the plot and re-drawing takes longer, and the updates do not keep

up with the timer. Whether this performance difference is enough to matter in

your application depends on what you’re building, and should be weighed

against the added complication of keeping and managing the references to

plotted lines.

Embedding plots from Pandas

Pandas is a Python package focused on working with table (data frames) and

series data structures, which is particularly useful for data analysis workflows. It

comes with built-in support for plotting with Matplotlib and here we’ll take a

quick look at how to embed these plots into PySide6. With this you will be able to

start building PySide6 data-analysis applications built around Pandas.

Pandas plotting functions are directly accessible from the DataFrame objects. The

function signature is quite complex, giving a lot of options to control how the

plots will be drawn.

DataFrame.plot(

 x=None, y=None, kind='line', ax=None, subplots=False,

 sharex=None, sharey=False, layout=None, figsize=None,

 use_index=True, title=None, grid=None, legend=True, style=None,

 logx=False, logy=False, loglog=False, xticks=None, yticks=None,

 xlim=None, ylim=None, rot=None, fontsize=None, colormap=None,

 table=False, yerr=None, xerr=None, secondary_y=False,

 sort_columns=False, **kwargs

)

The parameter we’re most interested in is ax which allows us to pass in our own

matplotlib.Axes instance on which Pandas will plot the DataFrame.

Listing 232. plotting/matplotlib_5.py

605

import sys

from PySide6 import (

 QtCore,

 QtWidgets,

) # import PySide6 before matplotlib

import matplotlib

import pandas as pd

from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg

from matplotlib.figure import Figure

matplotlib.use("QtAgg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 # Create the maptlotlib FigureCanvasQTAgg object,

 # which defines a single set of axes as self.axes.

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 # Create our pandas DataFrame with some simple

 # data and headers.

 df = pd.DataFrame(

 [

 [0, 10],

 [5, 15],

 [2, 20],

 [15, 25],

 [4, 10],

],

 columns=["A", "B"],

)

606

 # plot the pandas DataFrame, passing in the

 # matplotlib Canvas axes.

 df.plot(ax=sc.axes)

 self.setCentralWidget(sc)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec()

The key step here is passing the canvas axes in when calling the plot method on

the DataFrame on the line df.plot(ax=sc.axes). You can use this same pattern to

update the plot any time, although bear in mind that Pandas clears and redraws

the entire canvas, meaning that it is not ideal for high performance plotting.

The resulting plot generated through Pandas is shown below —

Figure 238. Pandas generated plot, in matplotlib Canvas.

Just as before, you can add the Matplotlib toolbar and control support to plots

generated using Pandas, allowing you to zoom/pan and modify them live. The

following code combines our earlier toolbar example with the Pandas example.

Listing 233. plotting/matplotlib_6.py

607

import sys

from PySide6 import (

 QtCore,

 QtWidgets,

) # import PySide6 before matplotlib

import matplotlib

import pandas as pd

from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg

from matplotlib.backends.backend_qtagg import (

 NavigationToolbar2QT as NavigationToolbar,

)

from matplotlib.figure import Figure

matplotlib.use("QtAgg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 # Create the maptlotlib FigureCanvasQTAgg object,

 # which defines a single set of axes as self.axes.

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 # Create our pandas DataFrame with some simple

 # data and headers.

 df = pd.DataFrame(

 [

 [0, 10],

 [5, 15],

 [2, 20],

 [15, 25],

 [4, 10],

608

],

 columns=["A", "B"],

)

 # plot the pandas DataFrame, passing in the

 # matplotlib Canvas axes.

 df.plot(ax=sc.axes)

 # Create toolbar, passing canvas as first parameter, parent

(self, the MainWindow) as second.

 toolbar = NavigationToolbar(sc, self)

 layout = QtWidgets.QVBoxLayout()

 layout.addWidget(toolbar)

 layout.addWidget(sc)

 # Create a placeholder widget to hold our toolbar and canvas.

 widget = QtWidgets.QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec()

Running this you should see the following window, showing a Pandas plot

embedded in PySide6 alongside the Matplotlib toolbar.

609

Figure 239. Pandas plot with matplotlib toolbar.

What’s next

In this chapter we looked at how you can embed Matplotlib plots in your PySide6

applications. Being able to use Matplotlib plots in your applications allows you to

create custom data analysis and visualization tools from Python.

Matplotlib is a huge library and too big to cover in detail. If you’re not familiar

with Matplotlib plotting and want to give it a try, take a look at the

documentation and example plots to see what is possible.

610

https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/3.1.1/gallery/index.html

Further PySide6 Features
The topics we’ve covered so far are enough to build perfectly functional desktop

applications with PySide6. In this chapter we’ll take a look at some more

technical and lesser-known aspects of the Qt framework to gain a deeper

understanding of how things work. For many applications the topics covered

here are unnecessary, but they are good to have in your toolbox for when you

need them!

611

32. Timers

In applications you often want to perform some tasks regularly or even just at

some point in the future. In PySide6 this is accomplished by using timers. The

QTimer class gives you access to two different types of timer — recurring or

interval timers, and single shot or one off timers. Both can be hooked up to

functions and methods in your application to cause them to execute whenever

you need. In this chapter we’ll look at these two types of timer and demonstrate

how you can use them to automate your apps.

Interval timers

Using the QTimer class you can create interval timers for any duration in msecs.

On each specified duration, the timer will time out. To trigger something to

happen each time this occurs, you connect the timer’s timeout signal to whatever

you want to do — just like you would with any other signal.

In the example below we setup up a timer, running every 100 msecs, which

rotates a dial.

612

Listing 234. further/timers_1.py

import sys

from PySide6.QtCore import QTimer

from PySide6.QtWidgets import QApplication, QDial, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.dial = QDial()

 self.dial.setRange(0, 100)

 self.dial.setValue(0)

 self.timer = QTimer()

 self.timer.setInterval(10)

 self.timer.timeout.connect(self.update_dial)

 self.timer.start()

 self.setCentralWidget(self.dial)

 def update_dial(self):

 value = self.dial.value()

 value += 1 # increment

 if value > 100:

 value = 0

 self.dial.setValue(value)

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

This is just a simple example — you can do anything you want in the connected

methods. However, the standard event loop rules apply and triggered tasks

should return quickly to avoid blocking the GUI. If you need to perform regular

long-running tasks, you can use the timer to trigger a separate thread or process.

613

You must keep a reference to the created timer object, for the

duration that the timer is running. If you don’t then the timer

object will be deleted and the timer will stop — without

warning. If you create a timer and it doesn’t seem to be working,

check you’ve kept a reference to the object.

If the accuracy of the timer is important, you can adjust this by passing a

Qt.QTimerType value to timer.setTimerType.

Listing 235. further/timers_1b.py

 self.timer.setTimerType(Qt.PreciseTimer)

The available options are shown below. Don’t make your timers more accurate

than they need to be. You may block important UI updates.

Timer type Value Description

Qt.PreciseTimer 0 Precise timers try to keep

millisecond accuracy

Qt.CoarseTimer 1 Coarse timers try to keep

accuracy within 5% of the

desired interval

Qt.VeryCoarseTimer 2 Very coarse timers only keep

full second accuracy

Note that even the most precise timer only tries to keep millisecond accuracy.

Anything in the GUI thread risks being blocked by UI updates and your own

Python code. If accuracy is that important, then put the work in another thread

or process you control completely.

Single shot timers

If you want to trigger something, but only have it occur once, you can use a single

614

shot timer. These are constructed using static methods on the QTimer object. The

simplest form just accepts a time in msecs and whatever callable you want to

trigger when the timer fires — for example, the method you want to run.

In the following example we use a single shot timer to uncheck a toggleable push

button after its pushed down.

615

Listing 236. further/timers_2.py

import sys

from PySide6.QtCore import QTimer

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button = QPushButton("Press me!")

 self.button.setCheckable(True)

 self.button.setStyleSheet(

 # Make the check state red so easier to see.

 "QPushButton:checked { background-color: red; }"

)

 self.button.toggled.connect(self.button_checked)

 self.setCentralWidget(self.button)

 def button_checked(self):

 print("Button checked")

 QTimer.singleShot(1000, self.uncheck_button) ①

 def uncheck_button(self):

 print("Button unchecked")

 self.button.setChecked(False)

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

① The uncheck_button method will be called after 1000 msecs.

If you run this example and press the button you’ll see it become checked and

turn red — using custom styles. Then after a second the button will revert to its

616

unchecked state.

To achieve this we’ve chained together two custom methods using a single shot

timer. First we connect the toggled signal from the button to a method

button_checked. This fires off the single shot timer. When this timer times out, it

calls uncheck_button which actually unchecks the button. This allows us to

postpone the unchecking of the button by a configurable amount.

Unlike interval timers, you don’t need to keep a reference to the created

timer — the QTimer.singleShot() method doesn’t return one.

Postponing-via the event queue

You can use zero-timed single shot timers to postpone operations via the event

queue. When the timer is triggered the timer event goes to the back of the event

queue (as it is a new event) and will only get processed once all existing events

have been processed.

Remember that signals (and events) are only processed once you return control

from Python to the event loop. If you trigger a series of signals in a method, and

want to do something after they’ve occurred, you can’t do it directly in the same

method. The code there will be executed before the signals take effect.

def my_method(self):

 self.some_signal.emit()

 self.some_other_signal.emit()

 do_something_here() ①

① This function will be executed before the two signals take effect.

By using a single shot timer you can push the subsequent operation to the back of

the event queue & ensure it occurs last.

617

def my_method(self):

 self.some_signal.emit()

 self.some_other_signal.emit()

 QTimer.singleShot(0, do_something_here) ①

① This will be executed after the signal’s effects.

This technique only guarantees that the do_something_here

function executes after the preceding signals, not any

downstream effects of them. Don’t be tempted to increase the

value of msecs to work around this, as this makes your

application dependent on system timings.

618

33. Extending Signals

We’ve seen a basic introduction to signals already, but that only scratches the

surface of what you can do with them. In this chapter we’ll look at how you can

create your own signals and customize the data sent with them.

Custom Signals

So far we’ve only looked at signals that Qt itself provides on the built-in widgets.

However, you can also make use of your own custom signals in your own code.

This is a great way to decouple modular parts of your application, meaning parts

of your app can respond to things happening elsewhere without needing to know

anything about the structure of your app.

One good indication that you need to decouple parts of your app

is the use of .parent() to access data on other unrelated widgets.

But it also applies to any place where you are referring to

objects through other objects, e.g.

self.my_other_window.dialog.some_method. This kind of code is

prone to breaking — in multiple places — when you change or

restructure your application. Avoid it wherever possible!

By putting these updates in the event queue you also help to keep your app

responsive — rather than having one big update method, you can split the work

up into multiple slot methods and trigger them all with a single signal.

You can define your own signals using the Signal method provided by PySide6.

Signals are defined as class attributes passing in the Python type (or types) that

will be emitted with the signal. You can choose any valid Python variable name

for the name of the signal, and any Python type for the signal type.

619

Listing 237. further/signals_custom.py

import sys

from PySide6.QtCore import Signal

from PySide6.QtWidgets import QApplication, QMainWindow

class MainWindow(QMainWindow):

 message = Signal(str) ①

 value = Signal(int, str, int) ②

 another = Signal(list) ③

 onemore = Signal(dict) ④

 anything = Signal(object) ⑤

 def __init__(self):

 super().__init__()

 self.message.connect(self.custom_slot)

 self.value.connect(self.custom_slot)

 self.another.connect(self.custom_slot)

 self.onemore.connect(self.custom_slot)

 self.anything.connect(self.custom_slot)

 self.message.emit("my message")

 self.value.emit(23, "abc", 1)

 self.another.emit([1, 2, 3, 4, 5])

 self.onemore.emit({"a": 2, "b": 7})

 self.anything.emit(1223)

 def custom_slot(self, *args):

 print(args)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

620

① Signal emitting a string.

② Signal emitting 3 different types.

③ Signal emitting a list.

④ Signal emitting a dictionary.

⑤ Signal emitting anything.

As you can see the signals can be connected and emitted as normal. You can send

any Python type, including multiple types, and compound types (e.g. dictionaries,

lists).

If you define your signal as Signal(object) it will be able to transmit absolutely

any Python type at all. But this isn’t usually a good idea as receiving slots will

then need to deal with all types.

You can create signals on any class that is a subclass of QObject.

That includes all widgets, including the main window and dialog

boxes.

Modifying Signal Data

Signals are connected to slots which are functions (or methods) which will be run

every time the signal fires. Many signals also transmit data, providing

information about the state change or widget that fired them. The receiving slot

can use this data to perform different actions in response to the same signal.

However, there is a limitation — the signal can only emit the data it was designed

to. Take for example, the QPushButton.clicked signal which fires when the button

is clicked. The clicked+ signal emits a single piece of data — the _checked state of

the button after being clicked.

 For non-checkable buttons, this will always be False.

The slot receives this data, but nothing more. It does not know which widget

621

triggered it, or anything about it. This is usually fine. You can tie a particular

widget to a unique function which does precisely what that widget requires.

Sometimes however you want to add additional data so your slot methods can be

a little smarter. There’s a neat trick to do just that.

The additional data you send could be the triggered widget itself, or some

associated metadata which your slot needs to perform the intended result of the

signal.

Intercepting the signal

Instead of connecting the signal directly to the target slot function, you use an

intermediate function to intercept the signal, modify the signal data and forward

that on to your target slot. If you define the intermediate function in a context

that has access to the widget that emitted the signal, you can pass that with the

signal too.

This slot function must accept the value sent by the signal (here the checked state)

and then call the real slot, passing any additional data with the arguments.

def fn(checked):

 self.button_clicked(checked, <additional args>)

Rather than define this intermediate function like this, you can also achieve the

same thing inline using a lambda function. As above, this accepts a single

parameter checked and then calls the real slot.

lambda checked: self.button_clicked(checked, <additional args>)

In both examples the <additional args> can be replaced with anything you want

to forward to your slot. In the example below we’re forwarding the QPushButton

object action to the receiving slot.

622

btn = QPushButton()

btn.clicked.connect(lambda checked: self.button_clicked(checked, btn)

)

Our button_clicked slot method will receive both the original checked value and

the QPushButton object. Our receiving slot could look something like this — 

a class method.

def button_clicked(self, checked, btn):

 # do something here.

You can reorder arguments in your intermediate function if you

like.

The following example shows it in practice, with our button_clicked slot

receiving the check state and the widget object. In this example, we hide the

button in the handler so you can’t click it again!

623

Listing 238. further/signals_extra_1.py

import sys

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 btn = QPushButton("Press me")

 btn.setCheckable(True)

 btn.clicked.connect(

 lambda checked: self.button_clicked(checked, btn)

)

 self.setCentralWidget(btn)

 def button_clicked(self, checked, btn):

 print(btn, checked)

 btn.hide()

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

Problems with loops

A common reason for wanting to connect signals in this way is when you’re

building a series of widgets and connecting signals programmatically in a loop.

Unfortunately, then things aren’t always so simple.

If you construct intercepted signals in a loop and want to pass the loop variable

to the receiving slot, you’ll hit a problem. For example, in the following example,

we’re creating a series of buttons, and trying to pass the sequence number with

the signal. Clicking a button should update the label with the value of the button.

624

Listing 239. further/signals_extra_2.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 v = QVBoxLayout()

 h = QHBoxLayout()

 for a in range(10):

 button = QPushButton(str(a))

 button.clicked.connect(

 lambda checked: self.button_clicked(a)

) ①

 h.addWidget(button)

 v.addLayout(h)

 self.label = QLabel("")

 v.addWidget(self.label)

 w = QWidget()

 w.setLayout(v)

 self.setCentralWidget(w)

 def button_clicked(self, n):

 self.label.setText(str(n))

app = QApplication(sys.argv)

625

window = MainWindow()

window.show()

app.exec()

① We accept the checked variable on our lambda but discard it. This button is not

checkable, so it will always be False.

If you run this you’ll see the problem — no matter which button you click, you get

the same number (9) shown on the label. Why 9? It’s the last value of the loop.

Figure 240. No matter which button you press, the label always shows 9.

The issue is here — 

for a in range(10):

 button = QPushButton(str(a))

 button.clicked.connect(

 lambda checked: self.button_clicked(a)

)

The problem is the line lambda: self.button_clicked(a) where we define the call

to the final slot. Here we are passing a, but this remains bound to the loop

variable. When the lambda is evaluated (when the signal fires) the value of a will

be the value it had at the end of the loop, so clicking any of them will result in the

same value being sent (here 9).

The solution is to pass the value in as a named parameter. By doing this the value

is bound at the time the lambda is created, and will hold value of a at that iteration

of the loop. This ensures the correct value whenever it is called.

626

If this is gobbledygook, don’t worry! Just remember to always

used named parameters for your intermediate functions.

lambda checked, a=a: self.button_clicked(a))

You don’t have to use the same variable name, you could use

lambda val=a: self.button_clicked(val) if you prefer. The

important thing is to use named parameters.

Putting this into our loop, it would look like this:

Listing 240. further/signals_extra_3.py

 for a in range(10):

 button = QPushButton(str(a))

 button.clicked.connect(

 lambda checked=False, a=a: self.button_clicked(a)

) ①

 h.addWidget(button)

① The signal’s checked parameter is a named keyword argument. Normally, you

can receive this using a positional argument (as in the previous examples).

However, if there are any keyword arguments PySide will no longer map

keywords to positional arguments. In this case you must turn the checked

parameter into a keyword argument.

If you run this now, you’ll see the expected behavior — clicking on a button will

show the correct value in the label.

Figure 241. When you press a button, the number pressed is shown below.

Below are a few more examples using inline lambda functions to modify the data

627

sent with the MainWindow.windowTitleChanged signal. They will all fire once the

.setWindowTitle line is reached and the my_custom_fn slot will output what they

receive.

Listing 241. further/signals_extra_4.py

import sys

from PySide6.QtWidgets import QApplication, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title will be passed to the

function.

 self.windowTitleChanged.connect(self.on_window_title_changed)

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title is discarded in the lambda

and the

 # function is called without parameters.

 self.windowTitleChanged.connect(lambda x: self.my_custom_fn())

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title is passed to the function

 # and replaces the default parameter

 self.windowTitleChanged.connect(lambda x: self.my_custom_fn(

x))

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title is passed to the function

 # and replaces the default parameter. Extra data is passed

from

 # within the lambda.

 self.windowTitleChanged.connect(

628

 lambda x: self.my_custom_fn(x, 25)

)

 # This sets the window title which will trigger all the above

signals

 # sending the new title to the attached functions or lambdas

as the

 # first parameter.

 self.setWindowTitle("This will trigger all the signals.")

 # SLOT: This accepts a string, e.g. the window title, and prints

it

 def on_window_title_changed(self, s):

 print(s)

 # SLOT: This has default parameters and can be called without a

value

 def my_custom_fn(self, a="HELLLO!", b=5):

 print(a, b)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

629

34. Working with Relative Paths

Paths describe the location of files in your filesystem.

When we load external data files into our applications we typically do this using

paths. While straightforward in principle, there are a couple of ways this can trip

you up. As your applications grow in size, maintaining the paths can get a bit

unwieldly and it’s worth taking a step back to implement a more reliable system.

Relative paths

There are two types of path — absolute and relative. An absolute path describes

the path entirely from the root (bottom) of the filesystem, while a relative path

describes the path from (or relative to) the current location in the filesystem.

It is not immediately obvious, but when you provide just a filename for a file, e.g.

hello.jpg, that is a relative path. When the file is loaded, it is loaded relative to

the current active folder. Confusingly, the current active folder is not necessarily

the same folder your script is in.

In the Widgets chapter we introduced a simple approach for dealing with this

problem when loading an image. We used the __file__ built-in to get the path of

the currently running script (our application) and then used os functions to first

get the directory of our script and then use that to build the full path.

630

Listing 242. basic/widgets_2b.py

import os

import sys

from PySide6.QtGui import QPixmap

from PySide6.QtWidgets import QApplication, QLabel, QMainWindow

basedir = os.path.dirname(__file__)

print("Current working folder:", os.getcwd()) ①

print("Paths are relative to:", basedir) ②

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLabel("Hello")

 widget.setPixmap(QPixmap(os.path.join(basedir, "otje.jpg")))

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

This works well for simple applications where you have a single main script and

load relatively few files. But having to duplicate the basedir calculation in every

file you load from and use os.path.join to construct the paths everywhere

quickly turns into a maintenance headache. If you ever need to restructure the

files in your project, it’s not going to be fun. Thankfully there is a simpler way!

631

Why not just use absolute paths? Because they will only work on

your own filesystem, or a filesystem with exactly the same

structure. If I develop an application in my own home folder

and use absolute paths to refer to files, e.g.

/home/martin/myapp/images/somefile.png, it will only work for

other people who also have a home folder named martin and put

the folder there. That would be a bit strange.

Using a Paths class

The data files your application needs to load are usually fairly structured — there

are common types of file to load, or you are loading them for common purposes.

Typically you will store related files in related folders to make managing them

easier. We can make use of this existing structure to build a regular way to

construct paths for our files.

To do this we can create a custom Paths class which uses a combination of

attributes and methods to build folder and file paths respectively. The core of this

is the same os.path.dirname(__file__) and os.path.join() approach used above,

with the added benefit of being self-contained and easily modifiable.

Take the following code and add it to the root of your project, in a file named

paths.py.

632

Listing 243. further/paths.py

import os

class Paths:

 base = os.path.dirname(__file__)

 ui_files = os.path.join(base, "ui")

 images = os.path.join(base, "images")

 icons = os.path.join(images, "icons")

 data = os.path.join(base, "images")

 # File loaders.

 @classmethod

 def ui_file(cls, filename):

 return os.path.join(cls.ui_files, filename)

 @classmethod

 def icon(cls, filename):

 return os.path.join(cls.icons, filename)

 @classmethod

 def image(cls, filename):

 return os.path.join(cls.images, filename)

 @classmethod

 def data(cls, filename):

 return os.path.join(cls.data, filename)

To experiment with the paths module you can start up a Python

interpreter in your project root and use from paths import Paths

Now, anywhere in your application you can import the Paths class an use it

directly. The attributes base, ui_files, icons, images, and data all return the paths

to their respective folders under the base folder. Notice how the icons folder is

constructed from the images path — nesting this folder under that one.

633

Feel free to customize the names and structure of the paths, etc.

to match the folder structure in your own project.

>>> from paths import Paths

>>> Paths.ui_files

'U:\\home\\martin\\books\\create-simple-gui-applications\\code

\\further\\ui'

>>> Paths.icons

'U:\\home\\martin\\books\\create-simple-gui-applications\\code

\\further\\images\\icons'

We don’t create an object instance instance from this class — we

don’t call Paths() — because we don’t need one. The paths are

static and unchanging, so there is no internal state to manage by

creating an object. Notice that the methods must be decorated as

@classmethod to be accessible on the class itself.

The methods ui_file, icon, image and data are used to generate paths including

filenames. In each case you call the method passing in the filename to add to the

end of the path. These methods all depend on the folder attributes described

above. For example, if you want to load a specific icon you can call the

Paths.icon() method, passing in the name, to get the full path back.

>>> Paths.icon('bug.png')

'U:\\home\\martin\\books\\create-simple-gui-applications\\code

\\further\\images\\icons\\bug.png'

In your application code you could use this as follows to construct the path and

load the icon.

QIcon(Paths.icon('bug.png'))

This keeps your code much tidier, helps ensure the paths are correct and makes

634

it much easier if you ever want to restructure how your files are stored. For

example, say you want to move icons up to the top level folder: now you only

need to change the paths.py definition and all icons will work as before.

 icons = os.path.join(images, 'icons')

 # to move to top level, make icons derive from base instead

 icons = os.path.join(base, 'icons')

635

35. System tray & macOS menus

System tray applications (or menu bar applications) can be useful for making

common functions available in a small number of clicks. For full desktop

applications they’re a useful shortcut to control apps without opening up the

whole window.

Qt provides a simple interface for building cross-platform system tray (Windows)

or menu bar (macOS) apps. Below is a minimal working example for showing an

icon in the toolbar/system tray with a menu. The action in the menu isn’t

connected and so doesn’t do anything yet.

636

Listing 244. further/systray.py

import sys

from PySide6.QtGui import QAction, QIcon

from PySide6.QtWidgets import (

 QApplication,

 QColorDialog,

 QMenu,

 QSystemTrayIcon,

)

app = QApplication(sys.argv)

app.setQuitOnLastWindowClosed(False)

Create the icon

icon = QIcon("icon.png")

Create the tray

tray = QSystemTrayIcon()

tray.setIcon(icon)

tray.setVisible(True)

Create the menu

menu = QMenu()

action = QAction("A menu item")

menu.addAction(action)

Add a Quit option to the menu.

quit = QAction("Quit")

quit.triggered.connect(app.quit)

menu.addAction(quit)

Add the menu to the tray

tray.setContextMenu(menu)

app.exec()

You’ll notice that there isn’t a QMainWindow, simply because we don’t have any

window to show. You can create a window as normal without affecting the

behavior of the system tray icon.

637

The default behavior in Qt is to close an application once all the

active windows have closed. This won’t affect this toy example,

but will be an issue in application where you do create windows

and then close them. Setting

app.setQuitOnLastWindowClosed(False) stops this and will ensure

your application keeps running.

The provided icon shows up in the toolbar (you can see it on the left hand side of

the icons grouped on the right of the system tray or menubar).

Figure 242. The icon showing on the menubar.

Clicking (or right-clicking on Windows) on the icon shows the added menu.

Figure 243. The menubar app menu.

This application doesn’t do anything yet, so in the next part we’ll expand this

example to create a mini color-picker.

Below is a more complete working example using the built in QColorDialog from

Qt to give a toolbar accessible color picker. The menu lets you choose to get the

picked color as HTML-format #RRGGBB, rgb(R,G,B) or hsv(H,S,V).

638

Listing 245. further/systray_color.py

import sys

from PySide6.QtGui import QAction, QIcon

from PySide6.QtWidgets import (

 QApplication,

 QColorDialog,

 QMenu,

 QSystemTrayIcon,

)

app = QApplication(sys.argv)

app.setQuitOnLastWindowClosed(False)

Create the icon

icon = QIcon("color.png")

clipboard = QApplication.clipboard()

dialog = QColorDialog()

def copy_color_hex():

 if dialog.exec():

 color = dialog.currentColor()

 clipboard.setText(color.name())

def copy_color_rgb():

 if dialog.exec():

 color = dialog.currentColor()

 clipboard.setText(

 "rgb(%d, %d, %d)"

 % (color.red(), color.green(), color.blue())

)

def copy_color_hsv():

 if dialog.exec():

 color = dialog.currentColor()

 clipboard.setText(

 "hsv(%d, %d, %d)"

 % (color.hue(), color.saturation(), color.value())

639

)

Create the tray

tray = QSystemTrayIcon()

tray.setIcon(icon)

tray.setVisible(True)

Create the menu

menu = QMenu()

action1 = QAction("Hex")

action1.triggered.connect(copy_color_hex)

menu.addAction(action1)

action2 = QAction("RGB")

action2.triggered.connect(copy_color_rgb)

menu.addAction(action2)

action3 = QAction("HSV")

action3.triggered.connect(copy_color_hsv)

menu.addAction(action3)

quit = QAction("Quit")

quit.triggered.connect(app.quit)

menu.addAction(quit)

Add the menu to the tray

tray.setContextMenu(menu)

app.exec()

As in the previous example there is no QMainWindow for this example. The menu is

created as before, but adding 3 actions for the different output formats. Each

action is connected to a specific handler function for the format it represents.

Each handler shows a dialog and, if a color is selected, copies that color to the

clipboard in the given format.

As before, the icon appears in the toolbar.

640

Figure 244. The Color picker on the toolbar.

Clicking the icon shows a menu, from which you can select the format of image

you want to return.

Figure 245. The Color picker menu

Once you’ve chosen the format, you’ll see the standard Qt color picker window.

Figure 246. The system Color picker window

641

Select the color you want and click OK. The chosen color will be copied to the

clipboard in the requested format. The formats available will product the

following output:

Value Ranges

#a2b3cc 00-FF

rgb(25, 28, 29) 0-255

hsv(14, 93, 199) 0-255

Adding a system tray icon for a full app

So far we’ve shown how to create a standalone system tray application with no

main window. However, sometimes you may wish to have a system tray icon as

well as a window. When this is done, typically the main window can be opened

and closed (hidden) from the tray icon, without closing the application. In this

section we’ll look at how to build this kind of application with Qt5.

In principle it’s quite straightforward — create our main window, and connect a

signal from an action to the .show() method of the window.

Below is a small tray notes application called "PenguinNotes". When run, it puts a

small penguin icon in your system track or macOS toolbar.

Clicking the small penguin icon in the tray will show the window. The window

contains a QTextEdit editor into which you can write notes. You can close the

window as normal, or by clicking again on the tray icon. The and app will remain

running in the tray. To close the app you can use File › Close — closing will

automatically save the notes.

Listing 246. further/systray_window.py

import sys

from PySide6.QtGui import QAction, QIcon

642

from PySide6.QtWidgets import (

 QApplication,

 QMainWindow,

 QMenu,

 QSystemTrayIcon,

 QTextEdit,

)

app = QApplication(sys.argv)

app.setQuitOnLastWindowClosed(False)

Create the icon

icon = QIcon("animal-penguin.png")

Create the tray

tray = QSystemTrayIcon()

tray.setIcon(icon)

tray.setVisible(True)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.editor = QTextEdit()

 self.load() # Load up the text from file.

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 self.reset = QAction("&Reset")

 self.reset.triggered.connect(self.editor.clear)

 file_menu.addAction(self.reset)

 self.quit = QAction("&Quit")

 self.quit.triggered.connect(app.quit)

 file_menu.addAction(self.quit)

 self.setCentralWidget(self.editor)

 self.setWindowTitle("PenguinNotes")

643

 def load(self):

 with open("notes.txt", "r") as f:

 text = f.read()

 self.editor.setPlainText(text)

 def save(self):

 text = self.editor.toPlainText()

 with open("notes.txt", "w") as f:

 f.write(text)

 def activate(self, reason):

 if reason == QSystemTrayIcon.Trigger: # Icon clicked.

 self.show()

w = MainWindow()

tray.activated.connect(w.activate)

app.aboutToQuit.connect(w.save)

app.exec()

On macOS the Quit action will appear in the application menu

(on the far left, with the application name), not the File menu. If

we didn’t also add the File › Reset action, the File menu would

be empty and hidden (try it!)

Below is a screenshot of the notes app with the window open.

644

Figure 247. The notes editor window.

The control of showing and hiding the window is handled in the activate method

on our QMainWindow. This is connected to the tray icon .activated signal at the

bottom of the code, using tray.activated.connect(w.activate).

 def activate(self, reason):

 if reason == QSystemTrayIcon.Trigger: # Icon clicked.

 if self.isVisible():

 self.hide()

 else:

 self.show()

This signal is triggered under a number of different circumstances, so we must

first check to ensure we are only using QSystemTrayIcon.Trigger.

Reason Value Description

QSystemTrayIcon.Unknown 0 Unknown reason.

QSystemTrayIcon.Context 1 Context menu requested (single click

macOS, right-click Windows).

645

Reason Value Description

QSystemTrayIcon.DoubleClick 2 Icon double clicked. On macOS double-

click only fires if no context menu is

set, as the menu opens with a single

click.

QSystemTrayIcon.Trigger 3 Icon clicked once.

QSystemTrayIcon.MiddleClick 4 Icon clicked with the middle mouse

button.

By listening to these events you should be able to construct any type of system

tray behavior you wish. However, be sure to check the behavior on all your

target platforms.

646

36. Enums & the Qt Namespace

When you see a line like the following in your application, you might have

wondered what the Qt.DisplayRole or Qt.CheckStateRole objects actually are.

 def data(self, role, index):

 if role == Qt.DisplayRole:

 # do something

Qt makes use of these types extensively for meaningful constants in code. Many

of them are available in the Qt namespace, that is as Qt.<something>, although

there are object-specific types such as QDialogButtonBox.Ok which work in exactly

the same way.

But how do they work? In this chapter we’ll take a close look at how these

constants are formed and how to work with them effectively. To do that we’ll

need to touch on some fundamentals like binary numbers. But understanding

these deeply isn’t necessary to get something from this chapter — as always we’ll

focus on how we can apply things as we learn them.

It’s all just numbers

If you check the type() of a flag you’ll see the name of a class. These classes are

the group that a given flag belongs to. For example, Qt.DecorationRole is of type

Qt.ItemDataRole — you can see these groups in the Qt documentation.

You can run the following code in a Python shell, just import the

Qt namespace first with from PySide6.QtCore import Qt.

>>> type(Qt.DecorationRole)

<class 'PySide6.QtCore.Qt.ItemDataRole'>

These types are enums — a type which restricts its values to a set of predefined

647

https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum

values. In PySide6 they are presented as a set of pre-defined class types.

Each of these values is actually a wrapper around a simple integer number. The

value of Qt.DisplayRole is 0, while Qt.EditRole has a value of 2. The integer values

themselves are meaningless but have a meaning in the particular context in

which they are used.

>>> int(Qt.DecorationRole)

1

For example, would you expect the following to evaluate to True?

>>> Qt.DecorationRole == Qt.AlignLeft

True

Probably not. But both Qt.DecorationRole and Qt.AlignLeft have an integer value

of 1 and so are numerically equal. These numeric values can usually be ignored.

As long as you use the constants in their appropriate context they will always

work as expected.

Table 8. Values given in the documentation can be in decimal or binary.

Identifier Value (hex) Value (decimal) Description

Qt.AlignLeft 0x0001 1 Aligns with the left

edge.

Qt.AlignRight 0x0002 2 Aligns with the

right edge.

Qt.AlignHCenter 0x0004 4 Centers

horizontally in the

available space.

648

Identifier Value (hex) Value (decimal) Description

Qt.AlignJustify 0x0008 8 Justifies the text in

the available

space.

Qt.AlignTop 0x0020 32 Aligns with the top.

Qt.AlignBottom 0x0040 64 Aligns with the

bottom.

Qt.AlignVCenter 0x0080 128 Centers vertically

in the available

space.

Qt.AlignBaseline 0x0100 256 Aligns with the

baseline.

If you look at the numbers in the table above you may notice something odd.

Firstly, they don’t increase by 1 for each constant, but double each time. Secondly,

the horizontal alignment hex numbers are all in one column, while the vertical

alignment numbers are in another.

This pattern of numbers is intentional and it allows us to do something very

neat — combine flags together to create compound flags. To understand this we’ll

need to take a quick look at how integer numbers are represented by a computer.

Binary & Hexadecimal

When we count normally we use decimal a base-10 number system. It has 10

digits, from 0-9 and each digit in a decimal number is worth 10x that which

preceded it. In the following example, our number 1251 is made up of 1x1000,

2x100, 5x10 and 1x1.

1000 100 10 1

1 2 5 1

649

Computers store data in binary, a series of on and off states represented in

written form as 1s and 0s. Binary is a base-2 number system. It has 2 digits, from

0-1 and each digit in a binary number is worth 2x that which preceded it. In the

following example, our number 5 is made up of 1x4 and 1x1.

8 4 2 1 Decimal

0 1 0 1 5

Writing binary numbers gets cumbersome quickly — 5893 in binary is

1011100000101 — but converting back and forward to decimal is not much better.

To make it easier to work with binary numbers hexadecimal is frequently used in

computing. This is a numeric system with 16 digits (0-9A-F). Each hexadecimal

digit has a value between 0-15 (0-A) equivalent to 4 binary digits. This makes it

straightforward to convert between the two.

The table below shows the numbers 0-15, together with the same value in binary

and hexadecimal. The value of a given binary number can be calculated by

adding up the numbers at the top of each column with a 1 in them.

8 4 2 1 Hex Dec

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6

0 1 1 1 7 7

1 0 0 0 8 8

650

8 4 2 1 Hex Dec

1 0 0 1 9 9

1 0 1 0 A 10

1 0 1 1 B 11

1 1 0 0 C 12

1 1 0 1 D 13

1 1 1 0 E 14

1 1 1 1 F 15

This pattern continues for higher numbers. For example, below is the number 25

in binary, constructed from 16 x 1, 8 x 1 and 1 x 1.

16 8 4 2 1

1 1 0 0 1

Because each digit in a binary value is either a 1 or a 0 (True or False) we can use

individual binary digits as boolean flags — state markers which are either on or

off. A single integer value can store multiple flags, using unique binary digits for

each. Each of these flags would have their own numerical value based on the

position of the binary digit they set to 1.

That is exactly how the Qt flags work. Looking at our alignment flags again, we

can now see why the numbers were chosen — each flag is a unique non-

overlapping bit. The values of the flags come from the binary digit the flag has set

to 1.

Qt.AlignLeft 1 00000001

Qt.AlignRight 2 00000010

Qt.AlignHCenter 4 00000100

651

Qt.AlignJustify 8 00001000

Qt.AlignTop 32 00100000

Qt.AlignBottom 64 01000000

Qt.AlignVCenter 128 10000000

When testing these flags directly with == you don’t need to worry about all this.

But this arrangement of values unlocks the ability to combine the flags together to

create compound flags which represent more than one state at the same time.

This allows you to have a single flag variable representing, for example, left &

bottom aligned.

Bitwise OR (|) combination

Any two numbers, with non-overlapping binary representations can be added

together while leaving their original binary digits in place. For example, below

we add 1 and 2 together, to get 3 — 

Table 9. Add

001 1

010 + 2

011 = 3

The 1 digits in the original numbers are preserved in the output. In contrast, if

we add together 1 and 3 to get 4, the 1 digits of the original numbers are not in

the result — both are now zero.

001 1

011 + 3

100 = 4

652

You can see the same effect in decimal — compare adding 100

and 50 to give 150 vs. adding 161 and 50 to give 211.

Since we’re using 1 values in specific binary positions to mean something, this

poses a problem. For example, if we added the value of an alignment flag twice,

we would get something else both entirely right (mathematically) and entirely

wrong (in meaning).

Table 10. Add

00000001 1 Qt.AlignLeft

00000001 + 1 + Qt.AlignLeft

00000010 = 2 =

Qt.AlignRight

Helpfully PySide6 prevents you from actually adding flags

together to avoid this problem.

For this reason, when working with binary flags we combine them using a

bitwise OR — which is performed in Python using the | (pipe) operator. In a

bitwise OR you combine two numbers together by comparing them at the binary

level. The result is a new number, where binary digits are set to 1 if they were 1

in either of the inputs. But importantly, digits are not carried and do not affect

adjacent digits.

When you have non-overlapping digits bitwise OR is the same as

add (+).

Qt.AlignLe

ft

00000001

Qt.AlignTo

p

00100000

Taking the two alignment constants above, we can combine their values together

653

using a bitwise OR to produce the output to give align top left.

Table 11. Bitwise OR

00000001 1 Qt.AlignLeft

00100000 OR 32 | Qt.AlignTop

00100001 = 33 Qt.AlignLeft |

Qt.AlignTop

>>> int(Qt.AlignLeft | Qt.AlignTop)

33

So, if we combine 32 with 1 we get 33. This should hopefully not be too

surprising. But what if we accidentally add Qt.AlignLeft multiple times?

>>> int(Qt.AlignLeft | Qt.AlignLeft | Qt.AlignTop)

33

The same result! The bitwise OR outputs a 1 in a binary position if there is a 1 in

any of the inputs. It doesn’t add them up, carry or overflow anything into other

digits — meaning you can | the same value together multiple times and you just

end up with what you started with.

>>> int(Qt.AlignLeft | Qt.AlignLeft | Qt.AlignLeft)

1

Or, in binary — 

Table 12. Bitwise OR

00000001 1 Qt.AlignLeft

00000001 OR 1 | Qt.AlignLeft

00000001 = 1 = Qt.AlignLeft

654

And finally, comparing the values.

>>> Qt.AlignLeft | Qt.AlignLeft == Qt.AlignLeft

True

>>> Qt.AlignLeft | Qt.AlignLeft == Qt.AlignRight

False

Checking compound flags

We can check simple flags by comparing against the flag itself, as we’ve already

seen — 

>>> align = Qt.AlignLeft

>>> align == Qt.AlignLeft

True

For combined flags we can also check equality with the combination of flags — 

>>> align = Qt.AlignLeft | Qt.AlignTop

>>> align == Qt.AlignLeft | Qt.AlignTop

True

But sometimes, you want to know if a given variable contains a specific flag. For

example, perhaps we want to know if align has the align left flag set, regardless

of any other alignment state.

How can we check that an element has Qt.AlignLeft applied, once it’s been

combined with another? In this case a == comparison will not work, since they

are not numerically equal.

>> alignment = Qt.AlignLeft | Qt.AlignTop

>> alignment == Qt.AlignLeft # 33 == 1

False

655

We need a way to compare the Qt.AlignLeft flag against the bits of our

compound flag. For this we can use a bitwise AND.

Bitwise AND (&) checks

In Python, bitwise AND operations are performed using the & operator.

In the previous step we combined together Qt.AlignLeft (1) and Qt.AlignTop (32)

to produce "Top Left" (33). Now we want to check if the resulting combined flag

has the align left flag set. To test we need to use bitwise AND which checks bit by

bit to see if both input values are 1, returning a 1 in that place if it is true.

Table 13. Bitwise AND

00100001 33 Qt.AlignLeft |

Qt.AlignTop

00000001 AND 1 & Qt.AlignLeft

00000001 = 1 = Qt.AlignLeft

This has the effect of filtering the bits in our input variable to only those that are

set in our target flag Qt.AlignLeft. If this one bit is set, the result is non-zero, if it

is unset the result is 0.

>>> int(alignment & Qt.AlignLeft)

1 # result is the numerical value of the flag, here 1.

For example, if we tested our alignment variable against Qt.AlignRight the result

is 0.

00100001 33 Qt.AlignLeft |

Qt.AlignTop

00000010 2 &

Qt.AlignRight

00000000 0 = Qt.AlignLeft

656

>>> int(alignment & Qt.AlignRight)

0

Because in Python 0 is equal to False and any other value is True. This means that

when testing two numbers against one another with bitwise AND, if any bits are

in common the result will be > 0, and be True.

With a combination of bitwise OR and AND you should be able to achieve

everything you need with the Qt flags.

657

37. Working with command-line
arguments

If you have created an application which works with specific file types — for

example a video editor that opens videos, a document editor that opens

document files — it can be useful to have your application open these files

automatically. On all platforms, when you tell the OS to open a file with a specific

application, the filename to open is passed to that application as a command-line

argument.

When your application is run, the arguments passed to the application are

always available in sys.argv. To open files automatically, you can check the value

of sys.argv at startup and, if you find a filename in there, open it.

The following app when run will open a window with all the command line

arguments received displayed.

658

Listing 247. further/arguments.py

from PySide6.QtWidgets import (

 QApplication,

 QWidget,

 QLabel,

 QVBoxLayout,

)

import sys

class Window(QWidget):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 for arg in sys.argv: ①

 l = QLabel(arg)

 layout.addWidget(l)

 self.setLayout(layout)

 self.setWindowTitle("Arguments")

app = QApplication(sys.argv)

w = Window()

w.show()

app.exec()

① sys.argv is a list of strings. All arguments are strings.

Run this app from the command line, passing in a filename (you can make

anything up, we don’t load it). You can pass as many, or as few, arguments as you

like.

Arguments are passed to your application as a list of str. All arguments are

strings, even numeric ones. You can access any argument you like using normal

659

list indexing — for example `sys.argv[1] would return the 2nd argument.

Try running the script above with the following — 

python arguments.py filename.mp4

This will produce the window below. Notice that when run with python the first

argument is actually the Python file which is being executed.

Figure 248. The window open showing the command line arguments.

If you package your application for distribution, this may no longer be the

case — the first argument may now be the file you are opening, as there is no

Python file passed as an argument. This can cause problems, but a simple way

around this is to use the last argument passed to your application as the

filename, e.g.

if len(sys.argv) > 0:

 filename_to_open = sys.argv[-1]

Alternatively, you can remove the currently executing script name if it is in the

list. The currently executing Python script name is always available in __file__.

if __file__ in sys.argv:

 sys.argv.remove(__file__)

 It will always be in the list, unless you have packaged your app.

Below is a further example, where we accept a filename on the command line,

660

and then open that text file for display in a QTextEdit.

Listing 248. further/arguments_open.py

from PySide6.QtWidgets import QApplication, QMainWindow, QTextEdit

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.editor = QTextEdit()

 if __file__ in sys.argv: ①

 sys.argv.remove(__file__)

 if sys.argv: ②

 filename = sys.argv[0] ③

 self.open_file(filename)

 self.setCentralWidget(self.editor)

 self.setWindowTitle("Text viewer")

 def open_file(self, fn):

 with open(fn, "r") as f:

 text = f.read()

 self.editor.setPlainText(text)

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

① If the script name is in sys.argv remove it.

② If there is still something in sys.argv (not empty).

661

③ Take the first argument as the filename to open.

You can run this as follows, to view the passed in text file.

python arguments_open.py notes.txt

662

38. Pythonic PySide6

In Python __feature__ imports are used to add new features which alter the

behavior of code. In PySide 5.15 a feature was introduced to enable the use of

snake case variable and method names for Qt objects. In Qt 6 this was extended

to add support for direct Qt property access from Python code, rather than using

getter/setter functions. The example code below shows the impact of these

changes on code — 

Listing 249. further/pythonic_1.py

import sys

from PySide6.QtWidgets import (

 QApplication,

 QLineEdit,

 QMainWindow,

 QPushButton,

 QTableWidget,

 QTableWidgetItem,

 QVBoxLayout,

 QWidget,

)

class Window(QWidget):

 def __init__(self):

 super().__init__()

 self.table = QTableWidget()

 self.table.setColumnCount(2)

 self.text = QLineEdit()

 self.button = QPushButton()

 self.button.setText("Insert item")

 self.button.setEnabled(True)

 self.button.pressed.connect(self.add_item)

 layout = QVBoxLayout()

663

 layout.addWidget(self.table)

 layout.addWidget(self.text)

 layout.addWidget(self.button)

 self.setLayout(layout)

 def add_item(self):

 text = self.text.text()

 item = QTableWidgetItem(text)

 self.table.insertRow(0)

 self.table.setItem(0, 0, item)

app = QApplication(sys.argv)

w = Window()

w.show()

app.exec()

Below is the same example, converted to use the new snake_case and

true_property features.

Listing 250. further/pythonic_2.py

import sys

import PySide6 # Required to enable the features.

from __feature__ import snake_case, true_property

from PySide6.QtWidgets import (

 QApplication,

 QLineEdit,

 QPushButton,

 QTableWidget,

 QTableWidgetItem,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

664

 self.table = QTableWidget()

 self.table.column_count = 2

 self.text = QLineEdit()

 self.button = QPushButton()

 self.button.text = "Insert item"

 self.button.enabled = True

 self.button.pressed.connect(self.add_item)

 layout = QVBoxLayout()

 layout.add_widget(self.table)

 layout.add_widget(self.text)

 layout.add_widget(self.button)

 self.set_layout(layout)

 def add_item(self):

 text = self.text.text

 item = QTableWidgetItem(text)

 self.table.insert_row(0)

 self.table.set_item(0, 0, item)

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec()

As you can see, these features help make the Qt code more Pythonic, improving

code readability by following Python code style standards.

While this is a nice improvement, I’ve continued to use the classic style

elsewhere in this book for maximum compatibility with PyQt5 and PySide2

examples you will find online. However, you should feel free to experiment — if

these features become popular, a later edition of this book will likely use them.

665

Packaging & Distribution
Design isn’t finished until somebody is using it.

— Brenda Laurel, PhD

There is not much fun in creating your own application if you can’t share it with

other people — whether that means publishing it commercially, sharing it online

or just giving it to someone you know. Sharing your apps allows other people to

benefit from your hard work!

Packaging Python applications for distribution has typically been a little tricky,

particularly when targeting multiple platforms (Windows, macOS and Linux).

This is because of the need to bundle the source, data files, the Python runtime

and all associated libraries in a way that will work reliably on the target system.

Thankfully there are tools available to take care of this for you!

In this chapter we’ll walk through the process of packaging up your apps to share

with other people.

666

39. Packaging with PyInstaller

PyInstaller is a cross-platform PySide6 packaging system which supports building

desktop applications for Windows, macOS and Linux. It automatically handles

packaging of your Python applications, along with any associated libraries and

data files, either into a standalone one-file executable or a distributable folder

you can then use to create an installer.

In this chapter we’ll walk through the process using PyInstaller to package a

PySide6 application. The app we’ll be building is deliberately simple, including

just a window and a few icons, but the same process can be used to build any of

your own applications. We’ll cover customizing your application’s name, icons

and bundling data files in a reproducible way. We’ll also cover some common

issues which you may encounter when building your own apps.

Once we have built the application into a distributable executable, we’ll move

onto creating Windows Installers, macOS Disk Images and Linux packages which

you can share with other people.

The source downloads for this book include complete build

examples for Windows, macOS and Ubuntu Linux.

You always need to compile your app on the target system. So, if

you want to build a Windows executable you’ll need to do this

on a Windows system.

Requirements

PyInstaller works out of the box with PySide6 and as of writing, current versions

of PyInstaller are compatible with Python 3.6+. Whatever project you’re working

on, you should be able to package your apps. This tutorial assumes you have a

working installation of Python with pip package management working.

You can install PyInstaller using pip.

667

pip3 install PyInstaller

If you experience problems packaging your apps, your first step should always be

to update your PyInstaller and hooks packages to the latest versions using:

pip3 install --upgrade PyInstaller pyinstaller-hooks-contrib

The hooks module contains specific packaging instructions and workarounds for

common Python packages and is updated more regularly than PyInstaller itself.

Getting Started

It’s a good idea to start packaging your application from the very beginning so you

can confirm that packaging is still working as you develop it. This is particularly

important if you add additional dependencies. If you only think about packaging

at the end, it can be difficult to debug exactly where the problems are.

For this example we’re going to start with a simple skeleton app, which doesn’t

do anything interesting. Once we’ve got the basic packaging process working,

we’ll start extending things, confirming the build is still working at each step.

To start with, create a new folder for your application and then add the following

app in a file named app.py.

668

Listing 251. packaging/basic/app.py

from PySide6.QtWidgets import QMainWindow, QApplication, QPushButton

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 button = QPushButton("My simple app.")

 button.pressed.connect(self.close)

 self.setCentralWidget(button)

 self.show()

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

This is a basic bare-bones application which creates a custom QMainWindow and

adds a simple QPushButton to it. Pressing the button will close the window. You

can run this app as follows:

python app.py

This should produce the following window.

669

Figure 249. Simple app on Windows, macOS and Ubuntu Linux.

Building the basic app

Now that we have confirmed our simple application is working, we can create

our first test build. Open your terminal (shell) and navigate to the folder

containing your project. Run the following command to create a PyInstaller build.

pyinstaller --windowed app.py

The --windowed command line option is required to build a .app

bundle on macOS and to hide the terminal output on Windows.

On Linux it has no effect.

You’ll see a number of messages output, giving debug information about what

PyInstaller is doing. These are useful for debugging issues in your build, but can

otherwise be ignored.

Listing 252. Output running pyinstaller on Windows

> pyinstaller app.py

388 INFO: PyInstaller: 4.7

388 INFO: Python: 3.7.6

389 INFO: Platform: Windows-10-10.0.22000-SP0

392 INFO: wrote app.spec

394 INFO: UPX is not available.

405 INFO: Extending PYTHONPATH with paths

....etc.

670

After the build is complete, look in your folder and you’ll notice you now have

two new folders dist and build.

Figure 250. build & dist folders created by PyInstaller.

Below is a truncated listing of the folder structure showing the build and dist

folders. The actual files will differ depending on which platform you’re building

on, but the general structure is always the same.

.

├── app.py

├── app.spec

├── build

│ └── app

│ ├── localpycos

│ ├── Analysis-00.toc

│ ├── COLLECT-00.toc

│ ├── EXE-00.toc

│ ├── PKG-00.pkg

│ ├── PKG-00.toc

│ ├── PYZ-00.pyz

│ ├── PYZ-00.toc

│ ├── app

│ ├── app.pkg

│ ├── base_library.zip

│ ├── warn-app.txt

│ └── xref-app.html

└── dist

 └── app

 ├── lib-dynload

 ...

The build folder is used by PyInstaller to collect and prepare the files for

671

bundling, it contains the results of analysis and some additional logs. For the

most part, you can ignore the contents of this folder, unless you’re trying to

debug issues.

The dist (for "distribution") folder contains the files to be distributed. This

includes your application, bundled as an executable file, together with any

associated libraries (for example PySide6). Everything necessary to run your

application will be in this folder, meaning you can take this folder and distribute

it to someone else to run your app.

You can try running your built app yourself now, by running the executable file

named app from the dist folder. After a short delay you’ll see the familiar

window of your application pop up as shown below.

Figure 251. Simple app, running after being packaged.

In the same folder as your Python file, alongside the build and dist folders

PyInstaller will have also created a .spec file.

The .spec file

The .spec file contains the build configuration and instructions that PyInstaller

uses to package up your application. Every PyInstaller project has a .spec file,

which is generated based on the command line options you pass when running

pyinstaller.

When we ran pyinstaller with our script, we didn’t pass in anything other than

the name of our Python application file. This means our spec file currently

672

contains only the default configuration. If you open it, you’ll see something

similar to what we have below.

Listing 253. packaging/basic/app.spec

-*- mode: python ; coding: utf-8 -*-

block_cipher = None

a = Analysis(['app.py'],

 pathex=[],

 binaries=[],

 datas=[],

 hiddenimports=[],

 hookspath=[],

 hooksconfig={},

 runtime_hooks=[],

 excludes=[],

 win_no_prefer_redirects=False,

 win_private_assemblies=False,

 cipher=block_cipher,

 noarchive=False)

pyz = PYZ(a.pure, a.zipped_data,

 cipher=block_cipher)

exe = EXE(pyz,

 a.scripts,

 [],

 exclude_binaries=True,

 name='app',

 debug=False,

 bootloader_ignore_signals=False,

 strip=False,

 upx=True,

 console=True,

 disable_windowed_traceback=False,

 target_arch=None,

 codesign_identity=None,

 entitlements_file=None)

coll = COLLECT(exe,

673

 a.binaries,

 a.zipfiles,

 a.datas,

 strip=False,

 upx=True,

 upx_exclude=[],

 name='app')

The first thing to notice is that this is a Python file, meaning you can edit it and

use Python code to calculate values for the settings. This is mostly useful for

complex builds, for example when you are targeting different platforms and

want to conditionally define additional libraries or dependencies to bundle.

If you’re building on macOS you’ll also have an additional BUNDLE block, which is

used to build the .app bundle. That section will look something like this:

app = BUNDLE(coll,

 name='app.app',

 icon=None,

 bundle_identifier=None)

If you’re starting your build on another platform, but want to target macOS later

you can add this to the end of your .spec file manually.

Once a .spec file has been generated, you can pass this to pyinstaller instead of

your script to repeat the previous build process. Run this now to rebuild your

executable.

pyinstaller app.spec

The resulting build will be identical to the build used to generate the .spec file

(assuming you have made no changes to your project). For many PyInstaller

configuration changes you have the option of passing command-line arguments,

or modifying your existing .spec file. Which you choose is up to you, although I

would recommend editing the .spec file for more complex builds.

674

Tweaking the build

We’ve created a very simple application and build our first executable. Now we’ll

look at a few things we can do to tweak the build.

Naming your app

One of the simplest changes you can make is to provide a proper "name" for your

application. By default the app takes the name of your source file (minus the

extension), for example main or app. This isn’t usually what you want to name the

executable.

You can provide a nicer name for PyInstaller to use for your executable file (and

dist folder) by editing the .spec file and changing the name= under the EXE and

COLLECT blocks (and BUNDLE on macOS).

675

Listing 254. packaging/custom/hello-world.spec

exe = EXE(pyz,

 a.scripts,

 [],

 exclude_binaries=True,

 name='hello-world',

 debug=False,

 bootloader_ignore_signals=False,

 strip=False,

 upx=True,

 console=True,

 disable_windowed_traceback=False,

 target_arch=None,

 codesign_identity=None,

 entitlements_file=None)

coll = COLLECT(exe,

 a.binaries,

 a.zipfiles,

 a.datas,

 strip=False,

 upx=True,

 upx_exclude=[],

 name='hello-world')

The name under EXE is the name of the executable file while the name under

COLLECT is the name of the output folder.

I’d recommend you to use a name with no spaces for the

executable — use hyphens or CamelCase instead.

The name specified in the BUNDLE block is used for the macOS app bundle, which

is the user-visible name of the application shown in Launchpad and on the dock.

In our example we’ve called our application executable "hello-world", but for the

.app bundle you can use the more friendly "Hello World.app".

676

Listing 255. packaging/custom/hello-world.spec

app = BUNDLE(coll,

 name='Hello World.app',

 icon=None,

 bundle_identifier=None)

Alternatively, you can re-run the pyinstaller command and pass the -n or --name

configuration flag along with your app.py script.

pyinstaller --windowed -n "hello-world" app.py

or

pyinstaller --windowed --name "hello-world" app.py

The resulting executable file will be given the name hello-world and the

unpacked build placed in the folder dist\hello-world\. The name of the .spec file

is taken from the name passed in on the command line, so this will also create a

new spec file for you, called hello-world.spec in your root folder.

If you’ve created a new .spec delete the old one to avoid getting

confused!

Figure 252. Application with custom name "hello-world".

Application icon

Another simple improvement we can make is to change the application icon

677

which is shown while the application is running. We can set the icon for the

application window/dock by calling .setWindowIcon() in the code.

Listing 256. packaging/custom/app.py

from PySide6.QtWidgets import QMainWindow, QApplication, QPushButton

from PySide6.QtGui import QIcon

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 button = QPushButton("My simple app.")

 button.pressed.connect(self.close)

 self.setCentralWidget(button)

 self.show()

app = QApplication(sys.argv)

app.setWindowIcon(QIcon("icon.svg"))

w = MainWindow()

app.exec()

Here we’ve added the .setWindowIcon call to the app instance. This defines a

default icon to be used for all windows of our application. You can override this

on a per-window basis if you like, by calling .setWindowIcon on the window itself.

Copy the icon into the same folder as your script.

If you run the above application you should now see the icon appears on the

window on Windows and on the dock in macOS or Ubuntu Linux.

678

Figure 253. Windows showing the custom icon.

A note about icons.

In this example we’re setting a single icon file, using a Scalable

Vector Graphics (SVG) file which will appear sharp at any size.

You can instead use bitmap images, in which case you will want

to provide multiple sizes to ensure the icon always appears

sharp. On Windows you can do this by building an ICO file,

which is a special file containing multiple icons. On Linux you

can provide multiple different PNG files during install (see the

Linux packaging section). On macOS the multiple icon sizes are

provided by an ICNS file included in the .app bundle.

Yes, this is confusing! But thankfully Qt supports the various

icon formats across all platforms.

 Even if you don’t see the icon, keep reading!

Dealing with relative paths

There is a gotcha here, which might not be immediately apparent. Open a shell

and change to the folder where your script is saved. Run it as normal:

python3 app.py

If the icons are in the correct location, you should see them. Now change to the

parent folder, and try and run your script again (change <folder> to the name of

the folder your script is in).

679

cd ..

python3 <folder>/app.py

Figure 254. Window with icon missing.

The icons don’t appear. What’s happening?

We’re using relative paths to refer to our data files. These paths are relative to the

current working directory — not the folder your script is in, but the folder you ran

it from. If you run the script from elsewhere it won’t be able to find the files.

One common reason for icons not showing up, is running

examples in an IDE which uses the project root as the current

working directory.

This is a minor issue before the app is packaged, but once it’s installed you don’t

know what the current working directory will be when it is run — if it’s wrong

your app won’t be able to find it’s data files. We need to fix this before we go any

further, which we can do by making our paths relative to our application folder.

In the updated code below, we define a new variable basedir, using

os.path.dirname to get the containing folder of __file__ which holds the full path

of the current Python file. We then use this to build the relative paths for data

files using os.path.join().

Take a look at Working with Relative Paths for more

information, and a more robust way of working with relative

paths in your apps.

Since our app.py file is in the root of our folder, all other paths are relative to that.

680

Listing 257. packaging/custom/app_relative_paths.py

import os

import sys

from PySide6.QtGui import QIcon

from PySide6.QtWidgets import QApplication, QMainWindow, QPushButton

basedir = os.path.dirname(__file__)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 button = QPushButton("My simple app.")

 button.setIcon(QIcon(os.path.join(basedir, "icon.svg")))

 button.pressed.connect(self.close)

 self.setCentralWidget(button)

 self.show()

app = QApplication(sys.argv)

app.setWindowIcon(QIcon(os.path.join(basedir, "icon.svg")))

w = MainWindow()

app.exec()

Try and run your app again from the parent folder — you’ll find that the icon

now appears as expected, no matter where you launch the app from.

Taskbar Icons (Windows Only)

On Windows .setWindowIcon() will correctly set the icon on your windows.

However, due to how Windows keeps track of windows and groups them on the

taskbar, sometimes the icon will not show up on the taskbar.

681

If it does for you, great! But it may not work when you distribute

your application, so follow the next steps anyway!

When you run your application, Windows looks at the executable and tries to

guess what "application group" it belongs to. By default, any Python scripts

(which includes your application) are grouped under the same "Python" group,

and so will show the Python icon. To stop this happening, we need to provide

Windows with a different application identifier for our app.

The code below does this, by calling SetCurrentProcessExplicitAppUserModelID()

with a custom application id.

682

Listing 258. packaging/custom/app_windows_taskbar.py

from PySide6.QtWidgets import QMainWindow, QApplication, QPushButton

from PySide6.QtGui import QIcon

import sys, os

basedir = os.path.dirname(__file__)

try: ①

 from ctypes import windll # Only exists on Windows.

 myappid = "mycompany.myproduct.subproduct.version" ②

 windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid)

except ImportError:

 pass

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 button = QPushButton("My simple app.")

 button.setIcon(QIcon(os.path.join(basedir, "icon.svg")))

 button.pressed.connect(self.close)

 self.setCentralWidget(button)

 self.show()

app = QApplication(sys.argv)

app.setWindowIcon(QIcon(os.path.join(basedir, "icon.svg")))

w = MainWindow()

app.exec()

① The code is wrapped in a try/except block since the windll module is not

available on non-Windows platforms. This allows your application to

continue working on macOS & Linux.

683

② Customize the app identifier string for your own applications.

The listing above shows a generic mycompany.myproduct.subproduct.version string,

but you should change this to reflect your actual application. It doesn’t really

matter what you put for this purpose, but the convention is to use reverse-

domain notation, com.mycompany for the company identifier.

Add this to your script and your icon will definitely show on the taskbar.

Figure 255. Custom icon showing on the taskbar.

Executable icons (Windows only)

We now have the icon showing correctly while the application is running. But

you may have noticed that your application executable still has a different icon.

On Windows application executables can have icons embedded in them to make

them more easily identifiable. The default icon is one provided by PyInstaller, but

you can replace it with your own.

To add an icon to the Windows executable you need to provide an .ico format

file to the EXE block.

684

Listing 259. packaging/custom/hello-world-icons.spec

exe = EXE(pyz,

 a.scripts,

 [],

 exclude_binaries=True,

 name='hello-world',

 icon='icon.ico',

 debug=False,

 bootloader_ignore_signals=False,

 strip=False,

 upx=True,

 console=True,

 disable_windowed_traceback=False,

 target_arch=None,

 codesign_identity=None,

 entitlements_file=None)

To create an .ico file, I recommend you use Greenfish Icon Editor Pro, a free and

open-source tool which can also build icons for Windows. An example .ico file is

included in the downloads with this book.

If you run the pyinstaller build with the modified .spec file, you’ll see the

executable now has the custom icon.

Figure 256. Windows executable showing the default and custom icons.

You can also provide the icon by passing --icon icon.ico to

pyinstaller on the initial build. You can provide multiple icons

this way to support macOS and Windows.

685

http://greenfishsoftware.org/gfie.php

macOS .app bundle icon (macOS only)

On macOS applications are distributed in .app bundles, which can have their own

icons. The bundle icon is used to identify the application in the Launchpad and

on the dock when the application is launched. PyInstaller can take care of adding

the icon to the app bundle for you, you just need to pass an ICNS format file to

the BUNDLE block in the .spec file. This icon will then show up on the resulting

bundle, and be shown when the app is started.

Listing 260. packaging/custom/hello-world-icons.spec

app = BUNDLE(coll,

 name='Hello World.app',

 icon='icon.icns',

 bundle_identifier=None)

ICNS is the file format for icon files on macOS. You can create icon files on macOS

using Icon Composer. You can also create macOS icons on Windows using

Greenfish Icon Editor Pro.

Figure 257. macOS .app bundle showing the default and custom icons.

You can also provide the icon by passing --icon icon.icns to

pyinstaller on the initial build. You can provide multiple icons

this way to support macOS and Windows.

In our example the icon set on the bundle will be replaced by the .setWindowIcon

call when the application launches. However, on macOS you can skip the

setWindowIcon() call entirely and just set the icon through the .app bundle if you

686

https://github.com/lemonmojo/IconComposer2x/
http://greenfishsoftware.org/gfie.php

wish.

Data files and Resources

So we now have a application working, with a custom name, custom application

icon and a couple of tweaks to ensure that the icon is displayed on all platforms

and wherever the application is launched from. With this in place, the final step

is to ensure that this icon is correctly packaged with your application and

continues to be shown when run from the dist folder.

 Try it, it wont.

The issue is that our application now has a dependency on a external data file

(the icon file) that’s not part of our source. For our application to work, we now

need to distribute this data file along with it. PyInstaller can do this for us, but we

need to tell it what we want to include, and where to put it in the output.

In the next section we’ll look at the options available to you for managing data

files associated with your app. This approach is not just for icon files, it can be

used for any other data files, including Qt Designer .ui files, needed by your

application.

Alternatively, you can bundle your data files using Qt’s

QResource architecture.

Bundling data files with PyInstaller

Our application now has a dependency on a single icon file.

Listing 261. packaging/data-file/app.py

from PySide6.QtWidgets import (

 QMainWindow,

 QApplication,

 QPushButton,

 QVBoxLayout,

687

 QLabel,

 QWidget,

)

from PySide6.QtGui import QIcon

import sys, os

basedir = os.path.dirname(__file__)

try:

 from ctypes import windll # Only exists on Windows.

 myappid = "mycompany.myproduct.subproduct.version"

 windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid)

except ImportError:

 pass

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 layout = QVBoxLayout()

 label = QLabel("My simple app.")

 label.setMargin(10)

 layout.addWidget(label)

 button = QPushButton("Push")

 button.pressed.connect(self.close)

 layout.addWidget(button)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 self.show()

app = QApplication(sys.argv)

app.setWindowIcon(QIcon(os.path.join(basedir, "icon.svg")))

w = MainWindow()

app.exec()

688

The simplest way to get this data file into the dist folder is to just tell PyInstaller

to copy them over. PyInstaller accepts a list of individual file paths to copy over,

together with a folder path relative to the dist/<app name> folder where it should

to copy them to.

As with other options, this can be specified by command line arguments, --add

-data which you can provide multiple times.

pyinstaller --add-data "icon.svg:." --name "hello-world" app.py

The path separator is platform-specific, on Linux or Mac use :

while on Windows use ;

Or via the datas list in the Analysis section of the spec file, as a 2-tuple of source

and destination locations.

a = Analysis(['app.py'],

 pathex=[],

 binaries=[],

 datas=[('icon.svg', '.')],

 hiddenimports=[],

 hookspath=[],

 runtime_hooks=[],

 excludes=[],

 win_no_prefer_redirects=False,

 win_private_assemblies=False,

 cipher=block_cipher,

 noarchive=False)

And then execute the .spec file with:

pyinstaller hello-world.spec

In both cases we are telling PyInstaller to copy the specified file icon.svg to the

location . which means the output folder dist. We could specify other locations

689

here if we wanted. If you run the build, you should see your .svg file now in the

output folder dist ready to be distributed with your application.

Figure 258. The icon file copied to the dist folder.

If you run your app from dist you should now see the icon as expected.

Figure 259. The icon showing on the window (Windows) and dock (macOS and Ubuntu)

The file must be loaded in Qt using a relative path, and be in the

same relative location to the EXE as it was to the .py file for

this to work.

If you start your build on a Windows machine, your .spec file

may end up containing paths using double back-slashes \\. This

will not work on other platforms, so you should replace these

with single forward-slashes /, which work on all platforms.

Bundling data folders

Usually you will have more than one data file you want to include with your

packaged file. The latest PyInstaller versions let you bundle folders just like you

would files, keeping the sub-folder structure. To demonstrate bundling folders of

690

data files, lets add a few more buttons to our app and add icons to them. We can

place these icons under a folder named icons.

Listing 262. packaging/data-folder/app.py

from PySide6.QtWidgets import (

 QMainWindow,

 QApplication,

 QLabel,

 QVBoxLayout,

 QPushButton,

 QWidget,

)

from PySide6.QtGui import QIcon

import sys, os

basedir = os.path.dirname(__file__)

try:

 from ctypes import windll # Only exists on Windows.

 myappid = "mycompany.myproduct.subproduct.version"

 windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid)

except ImportError:

 pass

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 layout = QVBoxLayout()

 label = QLabel("My simple app.")

 label.setMargin(10)

 layout.addWidget(label)

 button_close = QPushButton("Close")

 button_close.setIcon(

 QIcon(os.path.join(basedir, "icons", "lightning.svg"))

)

 button_close.pressed.connect(self.close)

691

 layout.addWidget(button_close)

 button_maximize = QPushButton("Maximize")

 button_maximize.setIcon(

 QIcon(os.path.join(basedir, "icons", "uparrow.svg"))

)

 button_maximize.pressed.connect(self.showMaximized)

 layout.addWidget(button_maximize)

 container = QWidget()

 container.setLayout(layout)

 self.setCentralWidget(container)

 self.show()

app = QApplication(sys.argv)

app.setWindowIcon(QIcon(os.path.join(basedir, "icons", "icon.svg")))

w = MainWindow()

app.exec()

The Windows taskbar icon fix is included in this code, you can

skip it if you are not building an application for Windows.

The icons (both SVG files) are stored under a subfolder named 'icons'.

.

├── app.py

└── icons

 └── lightning.svg

 └── uparrow.svg

 └── icon.svg

If you run this you’ll see the following window, with icons on the buttons and an

icon in the window or dock.

692

Figure 260. Window with multiple icons.

To copy the icons folder across to our build application, we just need to add the

folder to our .spec file Analysis block. As for the single file, we add it as a tuple

with the source path (from our project folder) and the destination folder under

the resulting dist folder.

Listing 263. packaging/data-folder/hello-world.spec

-*- mode: python ; coding: utf-8 -*-

block_cipher = None

a = Analysis(['app.py'],

 pathex=[],

 binaries=[],

 datas=[('icons', 'icons')],

 hiddenimports=[],

 hookspath=[],

 hooksconfig={},

 runtime_hooks=[],

 excludes=[],

 win_no_prefer_redirects=False,

 win_private_assemblies=False,

 cipher=block_cipher,

 noarchive=False)

pyz = PYZ(a.pure, a.zipped_data,

 cipher=block_cipher)

exe = EXE(pyz,

 a.scripts,

 [],

 exclude_binaries=True,

693

 name='hello-world',

 icon='icons/icon.ico',

 debug=False,

 bootloader_ignore_signals=False,

 strip=False,

 upx=True,

 console=False,

 disable_windowed_traceback=False,

 target_arch=None,

 codesign_identity=None,

 entitlements_file=None)

coll = COLLECT(exe,

 a.binaries,

 a.zipfiles,

 a.datas,

 strip=False,

 upx=True,

 upx_exclude=[],

 name='hello-world')

app = BUNDLE(coll,

 name='Hello World.app',

 icon='icons/icon.icns',

 bundle_identifier=None)

If you run the build using this spec file you’ll now see the icons folder copied

across to the dist folder. If you run the application from the folder — or

anywhere else — the icons will display as expected, as the relative paths remain

correct in the new location.

Wrapping up

With all these changes in place, you will now be able to reproducibly build your

application on across all platforms. In the next chapters we’ll move onto taking

our built executables and building them into working installers.

So far we’ve stepped through the process of building an application with

PyInstaller on your own platform. Often you’ll want to build your app for all

platforms.

694

As already mentioned, you can only build for a given platform on that

platform — i.e. if you want to build a Windows executable, you’ll need to do it on

Windows. However, ideally you want to be able to do this using the same .spec

file, to simplify maintenance. If you want to target multiple platforms try your

.spec file now on other systems to ensure the built is set up correctly. If

something doesn’t work, check back at the platform-specific notes throughout

this chapter.

695

40. Creating a Windows installer
with InstallForge

So far we’ve used PyInstaller to bundle applications for distribution. The output

of this bundling process is a folder, named dist which contains all the files our

application needs to run. While you could share this folder with your users as a

ZIP file it’s not the best user experience.

Windows desktop applications are normally distributed with installers which

handle the process of putting the executable (and any other files) in the correct

place and adding Start Menu shortcuts. Next we’ll look at how we can take our

dist folder and use it to create a functioning Windows installer.

To create our installer we’ll be using a tool called InstallForge. InstallForge is free

and can be downloaded from this page. The working InstallForge configuration is

available in the downloads for this book, as Hello World.ifp however bear in

mind that the source paths will need to be updated for your system.

If you’re impatient, you can download the Example Windows

Installer first.

We’ll now walk through the basic steps of creating an installer with InstallForge.

General

When you first run InstallForge you’ll be presented with this General tab. Here

you can enter the basic information about your application, including the name,

program version, company and website.

696

https://installforge.net/
https://installforge.net/download/
https://downloads.pythonguis.com/DemoAppInstallforge.exe
https://downloads.pythonguis.com/DemoAppInstallforge.exe

Figure 261. InstallForge initial view, showing General settings.

You can also select the target platforms for the installer, from various versions of

Windows that are currently available. This ensures people can only install your

application on versions of Windows which are compatible with it.

There is no magic here, selecting additional platforms in the

installer won’t make your application work on them! You need

to check your application runs on the target versions of

Windows before enabling them in the installer.

Setup

Click on the left sidebar to open the "Files" page under "Setup". Here you can

specify the files to be bundled in the installer.

697

Use "Add Files…" on the toolbar and select all the files in the dist/hello-world

folder produced by PyInstaller. The file browser that pops up allows multiple file

selections, so you can add them all in a single go, however you need to add

folders separately. Click "Add Folder…" and add any folders under dist/hello-

world such as your icons folder and other libraries.

Figure 262. InstallForge Files view, add all files & folders to be packaged.

Contents of selected folders will be included recursively, you do

not need to select subfolders.

Once you’re finished scroll through the list to the bottom and ensure that the

folders are listed to be included. You want all files and folders under dist/hello-

world to be present. But the folder dist/hello-world itself should not be listed.

The default install path can be left as-is. The values between angled brackets, e.g.

698

<company> , are variables and will be filled automatically from the configuration.

Next, it’s nice to allow your users to uninstall your application. Even though it’s

undoubtedly awesome, they may want to remove it at some time in the future.

You can do this under the "Uninstall" tab, simply by ticking the box. This will also

make the application appear in Windows "Add or Remove Programs".

Figure 263. InstallForge add Uninstaller for your app.

Dialogs

The "Dialogs" section can be used to show custom messages, splash screens or

license information to the user. The "Finish" tab lets you control what happens

once the installer is complete, and it’s helpful here to give the user the option to

run your program once it’s installed.

699

To do this you need to tick the box next to "Run program" and add your own

application EXE into the box. Since <installpath>\ is already specified, we can

just add hello-world.exe. Arguments can be used to pass any arguments to the

program on the first launch.

Figure 264. InstallForge configure optional run program on finish install.

System

Under "System" select "Shortcuts" to open the shortcut editor. Here you can

specify shortcuts for both the Start Menu and Desktop if you like.

700

Figure 265. InstallForge configure Shortcuts, for Start Menu and Desktop.

Click "Add…" to add new shortcuts for your application. Choose between Start

menu and Desktop shortcuts, and fill in the name and target file. This is the path

your application EXE will end up at once installed. Since <installpath>\ is

already specified, you simply need to add your application’s EXE name onto the

end, here hello-world.exe

701

Figure 266. InstallForge, adding a Shortcut.

Build

With the basic settings in place, you can now build your installer.

At this point you can save your InstallForge project so you can

re-build the installer from the same settings in future.

Click on the "Build" section at the bottom to open the build panel.

702

Figure 267. InstallForge, ready to build.

Click on the Build icon on the toolbar to start the build process. If you haven’t

already specified a setup file location you will be prompted for one. This is the

location where you want the completed installer to be saved. The build process

will began, collecting and compressing the files into the installer.

703

Figure 268. InstallForge, build complete.

Once complete you will be prompted to run the installer. This is entirely optional,

but a handy way to find out if it works.

Running the installer

The installer itself shouldn’t have any surprises, working as expected. Depending

on the options selected in InstallForge you may have extra panels or options.

704

Figure 269. InstallForge, running the resulting installer.

Step through the installer until it is complete. You can optionally run the

application from the last page of the installer, or you can find it in your start

menu.

705

Figure 270. Hello World in the Start Menu on Windows 11.

Wrapping up

In a previous chapter we covered how to build your PySide6 applications into a

distributable executable using PyInstaller. In this chapter we’ve taken this built

PyInstaller application and walked through the steps of using InstallForge to

build an installer for the app. Following these steps you should be able to

package up your own applications and make them available to other people on

Windows.

706

Another popular tool for building Windows installers is NSIS

which is a scriptable installer, meaning you configure it’s

behavior by writing custom scripts. If you’re going to be

building your application frequently and want to automate the

process, it’s definitely worth a look.

707

https://nsis.sourceforge.io/Main_Page

41. Creating a macOS Disk Image
Installer

In a previous chapter we used PyInstaller to build a macOS .app file from our

application. Opening this .app will run your application, and you can technically

distribute it to other people as it is. However, there’s a catch — macOS .app files

are actually just folders with a special extension. This means they aren’t suited

for sharing as they are — end users would need to download all the individual

files inside the folder.

The solution is to distribute the .app inside a Zip .zip or disk image .dmg file. Most

commercial software uses disk images since you can also include a shortcut to

the user’s Applications folder, allowing them to drag the application over in a

single move. This is now so common than many users would be quite confused to

be faced with anything else. Let’s just stick with the convention.

If you’re impatient, you can download the Example macOS Disk

Image first.

create-dmg

It’s relatively straightforward to create DMG files yourself, but I’d recommend

starting by using the tool create-dmg which can be installed from Homebrew. This

tool installs as a simple command-line tool, which you can call passing in a few

parameters to generate your DMG installer.

You can install the create-dmg package with Homebrew.

brew install create-dmg

Once installed you have access to the create-dmg bash script. Below is a subset of

the options, which can be displayed by running create-dmg --help

708

https://downloads.pythonguis.com/DemoAppMacOS.dmg
https://downloads.pythonguis.com/DemoAppMacOS.dmg

--volname <name>: set volume name (displayed in the Finder sidebar and

window title)

--volicon <icon.icns>: set volume icon

--background <pic.png>: set folder background image (provide png, gif,

jpg)

--window-pos <x> <y>: set position the folder window

--window-size <width> <height>: set size of the folder window

--text-size <text_size>: set window text size (10-16)

--icon-size <icon_size>: set window icons size (up to 128)

--icon <file_name> <x> <y>: set position of the file's icon

--hide-extension <file_name>: hide the extension of file

--app-drop-link <x> <y>: make a drop link to Applications, at location

x, y

--eula <eula_file>: attach a license file to the dmg

--no-internet-enable: disable automatic mount©

--format: specify the final image format (default is UDZO)

--add-file <target_name> <file|folder> <x> <y>: add additional file or

folder (can be used multiple times)

--disk-image-size <x>: set the disk image size manually to x MB

--version: show tool version number

-h, --help: display the help

Volume is a technical name for a disk, so Volume name is the

name you want to give to the disk image (DMG) itself.

Together with the options given above, you need to specify the output name for

your DMG file and an input folder — the folder containing your .app generated by

PyInstaller.

Below we’ll use create-dmg to create an installer DMG for our Hello World

application. We’re only using some of the available options here — setting the

name & icon of the disk volume, positioning and sizing the window, setting the

icon for our app and adding the /Applications drop destination link. This is the

bare minimum you will likely want to set for your own applications, and you can

customize it further yourself if you prefer.

Since create-dmg copies all files in the specified folder into the DMG you’ll need to

709

ensure that your .app file is in a folder by itself. I recommend creating a folder

dmg and copying the built .app bundle into it into it. Below I’ve created a small

script to perform the packaging, including a test to check for and remove any

previously-built DMG files.

Listing 264. packaging/installer/mac/makedmg.sh

#!/bin/sh

test -f "Hello World.dmg" && rm "Hello World.dmg"

test -d "dist/dmg" && rm -rf "dist/dmg"

Make the dmg folder & copy our .app bundle in.

mkdir -p "dist/dmg"

cp -r "dist/Hello World.app" "dist/dmg"

Create the dmg.

create-dmg \

 --volname "Hello World" \

 --volicon "icons/icon.icns" \

 --window-pos 200 120 \

 --window-size 800 400 \

 --icon-size 100 \

 --icon "Hello World.app" 200 190 \

 --hide-extension "Hello World.app" \

 --app-drop-link 600 185 \

 "Hello World.dmg" \

 "dist/dmg/"

Save this into the root of your project named build-dmg.sh and then make it

executable with.

$ chmod +x build-dmg.sh

Then execute the script to build the package.

$./build-dmg.sh

The create-dmg process will run and a DMG file will be created in the current

folder, matching the name you’ve given for the output file (the second to last

710

argument, with the .dmg extension). You can now distribute the resulting DMG

file to other macOS users!

Figure 271. The resulting Disk Image showing our .app bundle and the Applications

shortcut. Drag the app across to install.

For more information on create-dmg see the documentation on

Github.

711

https://github.com/create-dmg/create-dmg
https://github.com/create-dmg/create-dmg

42. Creating a Linux Package with

In an previous chapter we used PyInstaller to bundle the application into a Linux

executable, along with the associated data files. The output of this bundling

process is a folder which can be shared with other users. However, in order to

make it easy for them to install it on their system, we need to create a Linux

package.

Packages are distributable files which allow users to install software on their

Linux system. They automatically handle putting files in the correct places, as

well as setting up application entries in the dock/menu to make it easier to

launch the app.

On Ubuntu (and Debian) packages are named .deb files, on Redhat .rpm and on

Arch Linux .pacman. These files are all different formats, but thankfully the

process for building them is the same using a tool named fpm. fpm is a packaging

system by Jordan Issel, which takes a folder (or list of files) and assembles them

into a Linux package.

In this chapter we’ll work through the steps for creating a Linux

package, using an Ubuntu .deb file as an example. However,

thanks to the magic of fpm, you will be able to use the same

approach for other Linux systems.

Figure 272. Ubuntu Package, for our "Hello World" application

712

https://github.com/jordansissel/

If you’re impatient, you can download the Example Ubuntu

Package first.

Installing fpm

The fpm tool is written in ruby and requires ruby to be installed to use it. Install

ruby using your systems package manager, for example.

$ sudo apt-get install ruby

Once ruby is installed, you can install fpm using the gem tool.

$ gem install fpm --user-install

If you see a warning that you don’t have

~/.local/share/gem/ruby/2.7.0/bin` in your PATH you will need

to add that to your path in your .bashrc file.

Once the installation is complete, you’re ready to use fpm. You can check it is

installed and working by running:

$ fpm --version

1.14.2

Checking your build

In a terminal, change to the folder containing your application source files & run

a PyInstaller build to generate the dist folder. Test that the generated build runs

as expected (it works, and icons appear) by opening the dist folder in the file

manager, and double-clicking on the application executable.

If everything works, you’re ready to package the application — if not, go back and

713

https://downloads.pythonguis.com/hello-world.deb
https://downloads.pythonguis.com/hello-world.deb
https://askubuntu.com/a/60219

double check everything.

It’s always a good idea to test your built application before

packaging it. That way, if anything goes wrong, you know where

the problem is!

Now let’s package our folder using fpm.

Structuring your package

Linux packages are used to install all sorts of applications, including system tools.

Because of this they are set up to allow you to place files anywhere in the Linux

filesystem — and there are specific correct places to put different files. For a GUI

application like ours, we can put our executable and associated data files all

under the same folder (in /opt). However, to have our application show up in the

menus/search we’ll also need to install a .desktop file under

/usr/share/applications.

The simplest way to ensure things end up in the correct location is to recreate the

target file structure in a folder & then tell fpm to package using that folder as the

root. This process is also easily automatable using a script (see later).

In your projects root folder, create a new folder called package and subfolders

which map to the target filesystem — /opt will hold our application folder hello-

world, and /usr/share/applications will hold our .desktop file, while

/usr/share/icons… will hold our application icon.

$ mkdir -p package/opt

$ mkdir -p package/usr/share/applications

$ mkdir -p package/usr/share/icons/hicolor/scalable/apps

Next copy (recursively, with -r to include subfolders) the contents of dist/app to

package/opt/hello-world — the /opt/hello-world path is the destination of our

application folder after installation.

714

$ cp -r dist/hello-world package/opt/hello-world

We’re copying the dist/hello-world folder. The name of this

folder will depend on the name configured in PyInstaller.

The icons

We’ve already set an icon for our application while it’s running, using the

penguin.svg file. However, we want our application to show it’s icon in the

dock/menus. To do this correctly, we need to copy our application icons into a

specific location, under /usr/share/icons.

This folder contains all the icon themes installed on the system, but default icons

for applications are always placed in the fallback hicolor theme, at

/usr/share/icons/hicolor. Inside this folder, there are various folders for

different sizes of icons.

$ ls /usr/share/icons/hicolor/

128x128/ 256x256/ 64x64/ scalable/

16x16/ 32x32/ 72x72/ symbolic/

192x192/ 36x36/ 96x96/

22x22/ 48x48/ icon-theme.cache

24x24/ 512x512/ index.theme

We’re using a Scalable Vector Graphics (SVG) file so our icon belongs under the

scalable folder. If you’re using a specifically sized PNG file, place it in the correct

location — and feel free to add multiple different sizes, to ensure your

application icon looks good when scaled. Application icons go in the subfolder

apps.

$ cp icons/penguin.svg

package/usr/share/icons/hicolor/scalable/apps/hello-world.svg

715

Name the destination filename of the icon after your application

to avoid it clashing with any others! Here we’re calling it hello-

world.svg.

The .desktop file

The .desktop file is a text configuration file which tells the Linux desktop about a

desktop application — for example, where to fine the executable, the name and

which icon to display. You should include a .desktop file for your apps to make

them easy to use. An example .desktop file is shown below — add this to the root

folder of your project — with the name hello-world.desktop, and make any

changes you like.

Listing 265. packaging/installer/linux/hello-world.desktop

[Desktop Entry]

The type of the thing this desktop file refers to (e.g. can be Link)

Type=Application

The application name.

Name=Hello World

Tooltip comment to show in menus.

Comment=A simple Hello World application.

The path (folder) in which the executable is run

Path=/opt/hello-world

The executable (can include arguments)

Exec=/opt/hello-world/hello-world

The icon for the entry, use the target filesystem path.

Icon=hello-world

Now the hello-world.desktop file is ready, we can copy it into our install package

with.

716

$ cp hello-world.desktop package/usr/share/applications

Permissions

Packages retain the permissions of installed files from when they were packaged,

but will be installed by root. In order for ordinary users to be able to run the

application, you need to change the permissions of the files created.

We can recursively apply the correct permissions 755 - owner can

read/write/execute, group/others can read/execute. to our executable and folders,

and 644, owner can read/write, group/others can read to all our other library and

icons/desktop files.

$ find package/opt/hello-world -type f -exec chmod 644 -- {} +

$ find package/opt/hello-world -type d -exec chmod 755 -- {} +

$ find package/usr/share -type f -exec chmod 644 -- {} +

$ chmod +x package/opt/hello-world/hello-world

Building your package

Now everything is where it should be in our package "filesystem", we’re ready to

start building the package itself.

Enter the following into your shell.

fpm -C package -s dir -t deb -n "hello-world" -v 0.1.0 -p hello-

world.deb

The arguments in order are:

• -C the folder to change to before searching for files: our package folder

• -s the type of source(s) to package: in our case dir, a folder

• -t the type of package to build: a deb Debian/Ubuntu package

717

• -n the name of the application: "hello-world"

• -v the version of the application: 0.1.0

• -p the package name to output: hello-world-deb

You can create other package types (for other Linux

distributions) by changing the -t argument. For more command

line arguments, see the fpm documentation.

After a few seconds, you should see a message to indicate that the package has

been created.

$ fpm -C package -s dir -t deb -n "hello-world" -v 0.1.0 -p hello-

world.deb

Created package {:path=>"hello-world.deb"}

Installation

The package is ready! Let’s install it.

$ sudo dpkg -i hello-world.deb

You’ll see some output as the install completes.

Selecting previously unselected package hello-world.

(Reading database ... 172208 files and directories currently

installed.)

Preparing to unpack hello-world.deb ...

Unpacking hello-world (0.1.0) ...

Setting up hello-world (0.1.0) ...

Once installation has completed, you can check the files are where you expect,

under /opt/hello-world

718

https://fpm.readthedocs.io/en/latest/getting-started.html#using-it-to-package-an-executable

$ ls /opt/hello-world

app libpcre2-8.so.0

base_library.zip libpcre.so.3

icons libpixman-1.so.0

libatk-1.0.so.0 libpng16.so.16

libatk-bridge-2.0.so.0 libpython3.9.so.1.0

etc.

Next try and run the application from the menu/dock — you can search for "Hello

World" and the application will be found (thanks to the .desktop file).

Figure 273. Application shows up in the Ubuntu search panel, and will also appear in

menus on other environments.

If you run the application, the icons will show up as expected.

719

Figure 274. Application runs and all icons show up as expected.

Scripting the build

We’ve walked through the steps required to build an installable Ubuntu .deb

package from a PySide6 application. While it’s relatively straightforward once

you know what you’re doing, if you need to do it regularly it can get quite tedious

and prone to mistakes.

To avoid problems, I recommend scripting this with a simple bash script & fpm’s

own automation tool.

package.sh

Save in your project root and chmod +x to make it executable.

720

Listing 266. packaging/installer/linux/package.sh

#!/bin/sh

Create folders.

[-e package] && rm -r package

mkdir -p package/opt

mkdir -p package/usr/share/applications

mkdir -p package/usr/share/icons/hicolor/scalable/apps

Copy files (change icon names, add lines for non-scaled icons)

cp -r dist/hello-world package/opt/hello-world

cp icons/penguin.svg

package/usr/share/icons/hicolor/scalable/apps/hello-world.svg

cp hello-world.desktop package/usr/share/applications

Change permissions

find package/opt/hello-world -type f -exec chmod 644 -- {} +

find package/opt/hello-world -type d -exec chmod 755 -- {} +

find package/usr/share -type f -exec chmod 644 -- {} +

chmod +x package/opt/hello-world/hello-world

.fpm file

fpm allows you to store the configuration for the packaging in a configuration file.

The file name must be .fpm and it must be in the folder you run the fpm tool. Our

configuration is as follows.

Listing 267. packaging/installer/linux/.fpm

-C package

-s dir

-t deb

-n "hello-world"

-v 0.1.0

-p hello-world.deb

You can override any of the options you like when executing

fpm by passing command line arguments as normal.

721

Executing the build

With these scripts in place our application can be packaged reproducibly with

the commands:

pyinstaller hello-world.spec

./package.sh

fpm

Feel free to customize these build scripts further yourself to suit your own

project!

In this chapter we’ve stepped through the process of taking a working build from

PyInstaller and using fpm to bundle this up into a distributable Linux package for

Ubuntu. Following these steps you should be able to package up your own

applications and make them available to other people.

722

Example applications
By now you should have a firm grasp of how to go about building simple

applications with PySide6. To show how you can put what you’ve learnt into

practice, I’ve included a couple of example applications in this chapter. These

applications are functional, simple and in some ways incomplete. Use them for

inspiration, to pull apart and as an opportunity to improve. Read on for a

walkthrough of each app’s most interesting parts.

The full source for both applications is available for download, along with 13

other applications in my 15 Minute Apps repository on Github. Have fun!

There are also other examples of miniature apps throughout this book — for

example the Paint and Todo apps — I encourage you to extend these too, it’s the

best way to learn.

723

https://github.com/pythonguis/15-minute-apps

43. Mozzarella Ashbadger

Mozzarella Ashbadger is the latest revolution in web browsing! Go back and

forward! Print! Save files! Get help! (you’ll need it). Any similarity to other

browsers is entirely coincidental.

Figure 275. Mozzarella Ashbadger.

This application makes use of features covered in Signals &

Slots, Extending Signals and Widgets.

The source code for Mozzarella Ashbadger is provided in two forms, one with

tabbed browsing and one without. Adding tabs complicates the signal handling a

little bit, so the tab-less version is covered first.

Source code

The full source for the tab-less browser is included in the downloads for this

book. The browser code has the name browser.py.

python3 browser.py

 Run it! Explore the Mozzarella Ashbadger interface and features before

moving onto the code.

724

The browser widget

The core of our browser is the QWebEngineView which we import from

QtWebEngineWidgets. This provides a complete browser window, which handles

the rendering of the downloaded pages. Below is the bare-minimum of code

required to use web browser widget in PySide6.

Listing 268. app/browser_skeleton.py

import sys

from PySide6.QtCore import QUrl

from PySide6.QtWebEngineWidgets import QWebEngineView

from PySide6.QtWidgets import QApplication, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.browser = QWebEngineView()

 self.browser.setUrl(QUrl("https://www.google.com"))

 self.setCentralWidget(self.browser)

 self.show()

app = QApplication(sys.argv)

window = MainWindow()

app.exec()

If you click around a bit you’ll discover that the browser behaves as

expected — links work correctly, and you can interact with the pages. However,

you’ll also notice things you take for granted are missing — like an URL bar,

controls or any sort of interface whatsoever. This makes it a little tricky to use.

Let’s convert this bare-bones browser into something a little more usable!

725

Paths

To make working with interface icons easier, we can start by defining a Working

with Relative Paths. It defines a single folder location for data files icons and a

method icon for creating paths for icons. This allows us to using Paths.icon() to

load our icons for the browser interface.

Listing 269. app/paths.py

import os

class Paths:

 base = os.path.dirname(__file__)

 icons = os.path.join(base, "icons")

 # File loaders.

 @classmethod

 def icon(cls, filename):

 return os.path.join(cls.icons, filename)

Saved in the same folder as our browser, it can be imported as:

Listing 270. app/browser.py

from paths import Paths

Navigation

Now that is in place we can add some interface controls, using a series of

QActions on a QToolbar. We add these definitions to the __init__ block of the

QMainWindow. We use our Paths.icon() method to load up the file using relative

paths.

726

Listing 271. app/browser.py

 navtb = QToolBar("Navigation")

 navtb.setIconSize(QSize(16, 16))

 self.addToolBar(navtb)

 back_btn = QAction(

 QIcon(Paths.icon("arrow-180.png")), "Back", self

)

 back_btn.setStatusTip("Back to previous page")

 back_btn.triggered.connect(self.browser.back)

 navtb.addAction(back_btn)

The QWebEngineView includes slots for forward, back and reload navigation, which

we can connect to directly to our action’s .triggered signals.

We use the same QAction structure for the remaining controls.

727

Listing 272. app/browser.py

 next_btn = QAction(

 QIcon(Paths.icon("arrow-000.png")), "Forward", self

)

 next_btn.setStatusTip("Forward to next page")

 next_btn.triggered.connect(self.browser.forward)

 navtb.addAction(next_btn)

 reload_btn = QAction(

 QIcon(Paths.icon("arrow-circle-315.png")),

 "Reload",

 self,

)

 reload_btn.setStatusTip("Reload page")

 reload_btn.triggered.connect(self.browser.reload)

 navtb.addAction(reload_btn)

 home_btn = QAction(QIcon(Paths.icon("home.png")), "Home",

self)

 home_btn.setStatusTip("Go home")

 home_btn.triggered.connect(self.navigate_home)

 navtb.addAction(home_btn)

Notice that while forward, back and reload can use built-in slots, the navigate

home button requires a custom slot function. The slot function is defined on our

QMainWindow class, and simply sets the URL of the browser to the Google

homepage. Note that the URL must be passed as a QUrl object.

Listing 273. app/browser.py

 def navigate_home(self):

 self.browser.setUrl(QUrl("http://www.google.com"))

Challenge

Try making the home navigation location configurable. You

could create a Preferences QDialog with an input field.

728

Any decent web browser also needs an URL bar, and some way to stop the

navigation — either when it’s by mistake, or the page is taking too long.

Listing 274. app/browser.py

 self.httpsicon = QLabel() # Yes, really!

 self.httpsicon.setPixmap(QPixmap(Paths.icon("lock-

nossl.png")))

 navtb.addWidget(self.httpsicon)

 self.urlbar = QLineEdit()

 self.urlbar.returnPressed.connect(self.navigate_to_url)

 navtb.addWidget(self.urlbar)

 stop_btn = QAction(

 QIcon(Paths.icon("cross-circle.png")), "Stop", self

)

 stop_btn.setStatusTip("Stop loading current page")

 stop_btn.triggered.connect(self.browser.stop)

 navtb.addAction(stop_btn)

As before the 'stop' functionality is available on the QWebEngineView, and we can

simply connect the .triggered signal from the stop button to the existing slot.

However, other features of the URL bar we must handle independently.

First we add a QLabel to hold our SSL or non-SSL icon to indicate whether the

page is secure. Next, we add the URL bar which is simply a QLineEdit. To trigger

the loading of the URL in the bar when entered (return key pressed) we connect

to the .returnPressed signal on the widget to drive a custom slot function to

trigger navigation to the specified URL.

729

Listing 275. app/browser.py

 def navigate_to_url(self): # Does not receive the Url

 q = QUrl(self.urlbar.text())

 if q.scheme() == "":

 q.setScheme("http")

 self.browser.setUrl(q)

We also want the URL bar to update in response to page changes. To do this we

can use the .urlChanged and .loadFinished signals from the QWebEngineView. We set

up the connections from the signals in the __init__ block as follows:

Listing 276. app/browser.py

 self.browser.urlChanged.connect(self.update_urlbar)

 self.browser.loadFinished.connect(self.update_title)

Then we define the target slot functions which for these signals. The first, to

update the URL bar accepts a QUrl object and determines whether this is a http or

https URL, using this to set the SSL icon.

This is a terrible way to test if a connection is 'secure'. To be

correct we should perform a certificate validation.

The QUrl is converted to a string and the URL bar is updated with the value. Note

that we also set the cursor position back to the beginning of the line to prevent

the QLineEdit widget scrolling to the end.

730

Listing 277. app/browser.py

 def update_urlbar(self, q):

 if q.scheme() == "https":

 # Secure padlock icon

 self.httpsicon.setPixmap(

 QPixmap(Paths.icon("lock-ssl.png"))

)

 else:

 # Insecure padlock icon

 self.httpsicon.setPixmap(

 QPixmap(Paths.icon("lock-nossl.png"))

)

 self.urlbar.setText(q.toString())

 self.urlbar.setCursorPosition(0)

It’s also a nice touch to update the title of the application window with the title of

the current page. We can get this via browser.page().title() which returns the

contents of the <title></title> tag in the currently loaded web page.

Listing 278. app/browser.py

 def update_title(self):

 title = self.browser.page().title()

 self.setWindowTitle("%s - Mozzarella Ashbadger" % title)

File operations

A standard File menu with self.menuBar().addMenu("&File") is created assigning

the F key as a Alt-shortcut (as normal). Once we have the menu object, we can

can assign QAction objects to create the entries. We create two basic entries here,

for opening and saving HTML files (from a local disk). These both require custom

slot functions.

731

Listing 279. app/browser.py

 file_menu = self.menuBar().addMenu("&File")

 open_file_action = QAction(

 QIcon(Paths.icon("disk--arrow.png")),

 "Open file...",

 self,

)

 open_file_action.setStatusTip("Open from file")

 open_file_action.triggered.connect(self.open_file)

 file_menu.addAction(open_file_action)

 save_file_action = QAction(

 QIcon(Paths.icon("disk--pencil.png")),

 "Save Page As...",

 self,

)

 save_file_action.setStatusTip("Save current page to file")

 save_file_action.triggered.connect(self.save_file)

 file_menu.addAction(save_file_action)

The slot function for opening a file uses the built-in

QFileDialog.getOpenFileName() function to create a file-open dialog and get a

name. We restrict the names by default to files matching *.htm or *.html.

We read the file into a variable html using standard Python functions, then use

.setHtml() to load the HTML into the browser.

732

Listing 280. app/browser.py

 def open_file(self):

 filename, _ = QFileDialog.getOpenFileName(

 self,

 "Open file",

 "",

 "Hypertext Markup Language (*.htm *.html);;"

 "All files (*.*)",

)

 if filename:

 with open(filename, "r") as f:

 html = f.read()

 self.browser.setHtml(html)

 self.urlbar.setText(filename)

Similarly to save the HTML from the current page, we use the built-in

QFileDialog.getSaveFileName() to get a filename. However, this time we get the

HTML using self.browser.page().toHtml().

This is an asynchronous method, meaning that we do not receive the HTML

immediately. Instead we must pass in a callback method which will receive the

HTML once it is prepared. Here we create a simple writer function that handles it

for us, using the filename from the local scope.

733

Listing 281. app/browser.py

 def save_file(self):

 filename, _ = QFileDialog.getSaveFileName(

 self,

 "Save Page As",

 "",

 "Hypertext Markup Language (*.htm *html);;"

 "All files (*.*)",

)

 if filename:

 # Define callback method to handle the write.

 def writer(html):

 with open(filename, "w") as f:

 f.write(html)

 self.browser.page().toHtml(writer)

Printing

We can add a print option to the File menu using the same approach we used

earlier. Again this needs a custom slot function to perform the print action.

Listing 282. app/browser.py

 print_action = QAction(

 QIcon(Paths.icon("printer.png")), "Print...", self

)

 print_action.setStatusTip("Print current page")

 print_action.triggered.connect(self.print_page)

 file_menu.addAction(print_action)

 # Create our system printer instance.

 self.printer = QPrinter()

Qt provides a complete print framework which is based around QPrinter objects,

on which you paint the pages to be printed. To start the process we open a

QPrintDialog for the user. This allows them to choose the target printer and

734

configure the print.

We created the QPrinter object in our __init__ and stored it as self.printer. In

our print handler method we pass this printer to the QPrintDialog so it can be

configured. If the dialog is accepted we pass the (now configured) printer object

to self.browser.page().print to trigger the print.

Listing 283. app/browser.py

 def print_page(self):

 page = self.browser.page()

 def callback(*args):

 pass

 dlg = QPrintDialog(self.printer)

 dlg.accepted.connect(callback)

 if dlg.exec() == QDialog.Accepted:

 page.print(self.printer, callback)

Notice that .print also accepts a second parameter — a callback function which

receives the result of the print. This allows you to show a notification that the

print has completed, but here we’re just swallowing the callback silently.

Help

Finally, to complete the standard interface we can add a Help menu. This is

defined as before, two two custom slot functions to handle the display of a About

dialog, and to load the 'browser page' with more information.

735

Listing 284. app/browser.py

 help_menu = self.menuBar().addMenu("&Help")

 about_action = QAction(

 QIcon(Paths.icon("question.png")),

 "About Mozzarella Ashbadger",

 self,

)

 about_action.setStatusTip(

 "Find out more about Mozzarella Ashbadger"

) # Hungry!

 about_action.triggered.connect(self.about)

 help_menu.addAction(about_action)

 navigate_mozzarella_action = QAction(

 QIcon(Paths.icon("lifebuoy.png")),

 "Mozzarella Ashbadger Homepage",

 self,

)

 navigate_mozzarella_action.setStatusTip(

 "Go to Mozzarella Ashbadger Homepage"

)

 navigate_mozzarella_action.triggered.connect(

 self.navigate_mozzarella

)

 help_menu.addAction(navigate_mozzarella_action)

We define two methods to be used as slots for the Help menu signals. The first

navigate_mozzarella opens up a page with more information on the browser (or

in this case, this book). The second creates and executes a custom QDialog class

AboutDialog which we will define next.

736

Listing 285. app/browser.py

 def navigate_mozzarella(self):

 self.browser.setUrl(QUrl("https://www.pythonguis.com/"))

 def about(self):

 dlg = AboutDialog()

 dlg.exec()

The definition for the about dialog is given below. The structure follows that seen

earlier in the book, with a QDialogButtonBox and associated signals to handle user

input, and a series of QLabels to display the application information and a logo.

The only trick here is adding all the elements to the layout, then iterate over them

to set the alignment to the center in a single loop. This saves duplication for the

individual sections.

737

Listing 286. app/browser.py

class AboutDialog(QDialog):

 def __init__(self):

 super().__init__()

 QBtn = QDialogButtonBox.Ok # No cancel

 self.buttonBox = QDialogButtonBox(QBtn)

 self.buttonBox.accepted.connect(self.accept)

 self.buttonBox.rejected.connect(self.reject)

 layout = QVBoxLayout()

 title = QLabel("Mozzarella Ashbadger")

 font = title.font()

 font.setPointSize(20)

 title.setFont(font)

 layout.addWidget(title)

 logo = QLabel()

 logo.setPixmap(QPixmap(Paths.icon("ma-icon-128.png")))

 layout.addWidget(logo)

 layout.addWidget(QLabel("Version 23.35.211.233232"))

 layout.addWidget(QLabel("Copyright 2015 Mozzarella Inc."))

 for i in range(0, layout.count()):

 layout.itemAt(i).setAlignment(Qt.AlignHCenter)

 layout.addWidget(self.buttonBox)

 self.setLayout(layout)

738

Tabbed Browsing

Figure 276. Mozzarella Ashbadger (Tabbed).

Source code

The full source for the tabbed browser is included in the downloads for this book.

The browser code has the name browser_tabs.py.

 Run it! Explore the Mozzarella Ashbadger Tabbed Edition before moving

onto the code.

Creating a QTabWidget

Adding a tabbed interface to our browser is simple using a QTabWidget. This

provides a simple container for multiple widgets (in our case QWebEngineView

widgets) with a built-in tabbed interface for switching between them.

Two customizations we use here are .setDocumentMode(True) which provides a

Safari-like interface on macOS, and .setTabsClosable(True) which allows the user

to close the tabs in the application.

We also connect QTabWidget signals tabBarDoubleClicked, currentChanged and

tabCloseRequested to custom slot methods to handle these behaviors.

739

Listing 287. app/browser_tabs.py

 self.tabs = QTabWidget()

 self.tabs.setDocumentMode(True)

 self.tabs.tabBarDoubleClicked.connect(self

.tab_open_doubleclick)

 self.tabs.currentChanged.connect(self.current_tab_changed)

 self.tabs.setTabsClosable(True)

 self.tabs.tabCloseRequested.connect(self.close_current_tab)

 self.setCentralWidget(self.tabs)

The three slot methods accept an i (index) parameter which indicates which tab

the signal resulted from (in order).

We use a double-click on an empty space in the tab bar (represented by an index

of -1 to trigger creation of a new tab. For removing a tab, we use the index

directly to remove the widget (and so the tab), with a simple check to ensure

there are at least 2 tabs — closing the last tab would leave you unable to open a

new one.

The current_tab_changed handler uses a self.tabs.currentWidget() construct to

access the widget (QWebEngineView browser) of the currently active tab, and then

uses this to get the URL of the current page. This same construct is used

throughout the source for the tabbed browser, as a simple way to interact with

the current browser view.

740

Listing 288. app/browser_tabs.py

 def tab_open_doubleclick(self, i):

 if i == -1: # No tab under the click

 self.add_new_tab()

 def current_tab_changed(self, i):

 qurl = self.tabs.currentWidget().url()

 self.update_urlbar(qurl, self.tabs.currentWidget())

 self.update_title(self.tabs.currentWidget())

 def close_current_tab(self, i):

 if self.tabs.count() < 2:

 return

 self.tabs.removeTab(i)

Listing 289. app/browser_tabs.py

 def add_new_tab(self, qurl=None, label="Blank"):

 if qurl is None:

 qurl = QUrl("")

 browser = QWebEngineView()

 browser.setUrl(qurl)

 i = self.tabs.addTab(browser, label)

 self.tabs.setCurrentIndex(i)

Signal & Slot changes

While the setup of the QTabWidget and associated signals is simple, things get a

little trickier in the browser slot methods.

Whereas before we had a single QWebEngineView now there are multiple views, all

with their own signals. If signals for hidden tabs are handled things will get all

mixed up. For example, the slot handling a loadCompleted signal must check that

the source view is in a visible tab.

741

We can do this using our trick for sending additional data with signals. In the

tabbed browser we’re using the lambda style syntax to do this.

Below is an example of doing this when creating a new QWebEngineView in the

add_new_tab function.

Listing 290. app/browser_tabs.py

 # More difficult! We only want to update the url when it's

from the

 # correct tab

 browser.urlChanged.connect(

 lambda qurl, browser=browser: self.update_urlbar(

 qurl, browser

)

)

 browser.loadFinished.connect(

 lambda _, i=i, browser=browser: self.tabs.setTabText(

 i, browser.page().title()

)

)

As you can see, we set a lambda as the slot for the urlChanged signal, accepting the

qurl parameter that is sent by this signal. We add the recently created browser

object to pass into the update_urlbar function.

The result is, whenever this urlChanged signal fires update_urlbar will receive

both the new URL and the browser it came from. In the slot method we can then

check to ensure that the source of the signal matches the currently visible

browser — if not, we simply discard the signal.

742

Listing 291. app/browser_tabs.py

 def update_urlbar(self, q, browser=None):

 if browser != self.tabs.currentWidget():

 # If this signal is not from the current tab, ignore

 return

 if q.scheme() == "https":

 # Secure padlock icon

 self.httpsicon.setPixmap(

 QPixmap(Paths.icon("lock-ssl.png"))

)

 else:

 # Insecure padlock icon

 self.httpsicon.setPixmap(

 QPixmap(Paths.icon("lock-nossl.png"))

)

 self.urlbar.setText(q.toString())

 self.urlbar.setCursorPosition(0)

Going further

Explore the rest of the source code for the tabbed version of the browser paying

particular attention to the user of self.tabs.currentWidget() and passing

additional data with signals. This a good practical use case for what you’ve learnt,

so experiment and see if you can break/improve it in interesting ways.

743

Challenges

You might like to try adding some additional features — 

• Bookmarks (or Favorites) — you could store these in a simple

text file, and show them in a menu.

• Favicons — those little website icons, would look great on the

tabs.

• View source code — add a menu option to see the source

code for the page.

• Open in New Tab — add a right-click context menu, or

keyboard shortcut, to open a link in a new tab.

744

44. Moonsweeper

Explore the mysterious moon of Q’tee without getting too close to the alien

natives!

Moonsweeper is a single-player puzzle video game. The objective of the game is

to explore the area around your landed space rocket, without coming too close to

the deadly B’ug aliens. Your trusty tricounter will tell you the number of B’ugs in

the vicinity.

Suggested reading

This application makes use of features covered in Signals &

Slots, and Events.

Figure 277. Moonsweeper.

This a simple single-player exploration game modelled on Minesweeper where

you must reveal all the tiles without hitting hidden mines. This implementation

uses custom QWidget objects for the tiles, which individually hold their state as

mines, status and the adjacent count of mines. In this version, the mines are

replaced with alien bugs (B’ug) but they could just as easily be anything else.

745

In many Minesweeper variants the initial turn is considered a free go — if you

hit a mine on the first click, it is moved somewhere else. Here we cheat a little bit

by taking the first go for the player, ensuring that it is on a non-mine spot. This

allows us not to worry about the bad first move which would require us to

recalculate the adjacencies. We can explain this away as the "initial exploration

around the rocket" and make it sound completely sensible.

Challenge!

If you want to implement this, you can catch the first click on a

position and at that point generate mines/adjacencies, excluding

your location, before handling the click. You will need to give

your custom widgets access to the parent window object.

Source code

The full source for the Moonsweeper game is included in the downloads for this

book. The game file is saved with the name minesweeper.py.

python3 minesweeper.py

Paths

To make working with interface icons easier, we can start by defining a Paths

class as described in Working with Relative Paths. It defines a single folder

location for data files icons and a method icon for creating paths for icons. This

allows us to using Paths.icon() to load our icons for the game interface.

746

Listing 292. app/paths.py

import os

class Paths:

 base = os.path.dirname(__file__)

 icons = os.path.join(base, "icons")

 # File loaders.

 @classmethod

 def icon(cls, filename):

 return os.path.join(cls.icons, filename)

Saved in the same folder as our Moonsweeper app, it can be imported as:

Listing 293. app/moonsweeper.py

from paths import Paths

Icons & Colors

Now the paths are defined, we can use them to load some icons for use in our

game — a bug, a flag, a rocket and a clock. We also define a set of colors for the

interface states, a series of status flags to track how the game is

progressing — each with an associated smiley-face icon.

747

Listing 294. app/moonsweeper.py

IMG_BOMB = QImage(Paths.icon("bug.png"))

IMG_FLAG = QImage(Paths.icon("flag.png"))

IMG_START = QImage(Paths.icon("rocket.png"))

IMG_CLOCK = QImage(Paths.icon("clock-select.png"))

NUM_COLORS = {

 1: QColor("#f44336"),

 2: QColor("#9C27B0"),

 3: QColor("#3F51B5"),

 4: QColor("#03A9F4"),

 5: QColor("#00BCD4"),

 6: QColor("#4CAF50"),

 7: QColor("#E91E63"),

 8: QColor("#FF9800"),

}

STATUS_READY = 0

STATUS_PLAYING = 1

STATUS_FAILED = 2

STATUS_SUCCESS = 3

STATUS_ICONS = {

 STATUS_READY: Paths.icon("plus.png"),

 STATUS_PLAYING: Paths.icon("smiley.png"),

 STATUS_FAILED: Paths.icon("cross.png"),

 STATUS_SUCCESS: Paths.icon("smiley-lol.png"),

}

Playing Field

The playing area for Moonsweeper is a NxN grid, containing a set number of

mines. The dimensions and mine counts we’ll use are taken from the default

values for the Windows version of Minesweeper. The values used are shown in

the table below:

Table 14. Table Dimensions and mine counts

Level Dimensions Number of Mines

748

Easy 8 x 8 10

Medium 16 x 16 40

Hard 24 x 24 99

We store these values as a constant LEVELS defined at the top of the file. Since all

the playing fields are square we only need to store the value once (8, 16 or 24).

Listing 295. app/minesweeper.py

LEVELS = [("Easy", 8, 10), ("Medium", 16, 40), ("Hard", 24, 99)]

The playing grid could be represented in a number of ways, including for

example a 2D 'list of lists' representing the different states of the playing

positions (mine, revealed, flagged).

However, in our implementation we’ll be using an object-orientated approach,

where individual positions on the map hold all relevant data about themselves.

Taking this a step further, we can make these objects individually responsible for

drawing themselves. In Qt we can do this simply by subclassing from QWidget and

then implementing a custom paint function.

We’ll cover the construction and behavior of these custom widgets before moving

onto it’s appearance. Since our tile objects are subclassing from QWidget we can

lay them out like any other widget. We do this, by setting up a QGridLayout.

Listing 296. app/minesweeper.py

 self.grid = QGridLayout()

 self.grid.setSpacing(5)

 self.grid.setSizeConstraint(QLayout.SetFixedSize)

Next we need to set up the playing field, creating our position tile widgets and

adding them our grid. The initial setup for the level is defined in custom method,

which reads from LEVELS and assigns a number of variables to the window. The

749

window title and mine counter are updated, and then the setup of the grid is

begun.

Listing 297. app/minesweeper.py

 def set_level(self, level):

 self.level_name, self.b_size, self.n_mines = LEVELS[level]

 self.setWindowTitle("Moonsweeper - %s" % (self.level_name))

 self.mines.setText("%03d" % self.n_mines)

 self.clear_map()

 self.init_map()

 self.reset_map()

The setup functions will be covered next.

We’re using a custom Pos class here, which we’ll look at in detail later. For now

you just need to know that this holds all the relevant information for the relevant

position in the map — including, for example, whether it’s a mine, revealed,

flagged and the number of mines in the immediate vicinity.

Each Pos object also has 3 custom signals clicked, revealed and expandable which

we connect to custom slot methods. Finally, we call resize to adjust the size of the

window to the new contents. Note that this is actually only necessary when the

window shrinks — it will grow automatically.

750

Listing 298. app/minesweeper.py

 def init_map(self):

 # Add positions to the map

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = Pos(x, y)

 self.grid.addWidget(w, y, x)

 # Connect signal to handle expansion.

 w.clicked.connect(self.trigger_start)

 w.revealed.connect(self.on_reveal)

 w.expandable.connect(self.expand_reveal)

 # Place resize on the event queue, giving control back to Qt

before.

 QTimer.singleShot(0, lambda: self.resize(1, 1)) ①

① The singleShot timer is required to ensure the resize runs after Qt is aware of

the new contents. By using a timer we guarantee control will return to Qt

before the resize occurs.

We also need to implement the inverse of the init_map function to remove tile

objects from the map. Removing tiles will be necessary when moving from a

higher to a lower level. It would be possible to be a little smarter here and

adding/removing only those tiles that are necessary to get to the correct size. But,

since we already have the function to add all up to the right size, we can cheat a

bit.

Challenge

Update this code to add/remove the necessary tiles to size the

new level dimensions.

Notice that we both remove the item from the grid with self.grid.removeItem(c)

and clear the parent c.widget().setParent(None). This second step is necessary,

since adding the items assigning them the parent window as a parent. Just

removing them leaves them floating in the window outside the layout.

751

Listing 299. app/minesweeper.py

 def clear_map(self):

 # Remove all positions from the map, up to maximum size.

 for x in range(0, LEVELS[-1][1]): ①

 for y in range(0, LEVELS[-1][1]):

 c = self.grid.itemAtPosition(y, x)

 if c: ②

 c.widget().close()

 self.grid.removeItem(c)

① To ensure we clear all sizes of maps we take the dimension of the highest

level.

② If there isn’t anything in the grid at this location, we can skip it.

Now we have our grid of positional tile objects in place, we can begin creating

the initial conditions of the playing board. This process is rather complex, so it’s

broken down into a number of functions. We name them _reset (the leading

underscore is a convention to indicate a private function, not intended for

external use). The main function reset_map calls these functions in turn to set it

up.

The process is as follows — 

1. Remove all mines (and reset data) from the field.

2. Add new mines to the field.

3. Calculate the number of mines adjacent to each position.

4. Add a starting marker (the rocket) and trigger initial exploration.

5. Reset the timer.

752

Listing 300. app/minesweeper.py

 def reset_map(self):

 self._reset_position_data()

 self._reset_add_mines()

 self._reset_calculate_adjacency()

 self._reset_add_starting_marker()

 self.update_timer()

The separate steps from 1-5 are described in detail in turn below, with the code

for each step.

The first step is to reset the data for each position on the map. We iterate through

every position on the board, calling .reset() on the widget at each point. The

code for the .reset() function is defined on our custom Pos class, we’ll explore in

detail later. For now it’s enough to know it clears mines, flags and sets the

position back to being unrevealed.

Listing 301. app/minesweeper.py

 def _reset_position_data(self):

 # Clear all mine positions

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = self.grid.itemAtPosition(y, x).widget()

 w.reset()

Now all the positions are blank, we can begin the process of adding mines to the

map. The maximum number of mines n_mines is defined by the level settings,

described earlier.

753

Listing 302. app/minesweeper.py

 def _reset_add_mines(self):

 # Add mine positions

 positions = []

 while len(positions) < self.n_mines:

 x, y = (

 random.randint(0, self.b_size - 1),

 random.randint(0, self.b_size - 1),

)

 if (x, y) not in positions:

 w = self.grid.itemAtPosition(y, x).widget()

 w.is_mine = True

 positions.append((x, y))

 # Calculate end-game condition

 self.end_game_n = (self.b_size * self.b_size) - (

 self.n_mines + 1

)

 return positions

With mines in position, we can now calculate the 'adjacency' number for each

position — simply the number of mines in the immediate vicinity, using a 3x3

grid around the given point. The custom function get_surrounding simply returns

those positions around a given x and y location. We count the number of these

that is a mine is_mine == True and store.

Pre-calculation

Pre-calculating the adjacent counts in this way helps simplify

the reveal logic later.

754

Listing 303. app/minesweeper.py

 def _reset_calculate_adjacency(self):

 def get_adjacency_n(x, y):

 positions = self.get_surrounding(x, y)

 return sum(1 for w in positions if w.is_mine)

 # Add adjacencies to the positions

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = self.grid.itemAtPosition(y, x).widget()

 w.adjacent_n = get_adjacency_n(x, y)

A starting marker is used to ensure that the first move is always valid. This is

implemented as a brute force search through the grid space, effectively trying

random positions until we find a position which is not a mine. Since we don’t

know how many attempts this will take, we need to wrap it in an continuous

loop.

Once that location is found, we mark it as the start location and then trigger the

exploration of all surrounding positions. We break out of the loop, and reset the

ready status.

755

Listing 304. app/minesweeper.py

 def _reset_add_starting_marker(self):

 # Place starting marker.

 # Set initial status (needed for .click to function)

 self.update_status(STATUS_READY)

 while True:

 x, y = (

 random.randint(0, self.b_size - 1),

 random.randint(0, self.b_size - 1),

)

 w = self.grid.itemAtPosition(y, x).widget()

 # We don't want to start on a mine.

 if not w.is_mine:

 w.is_start = True

 w.is_revealed = True

 w.update()

 # Reveal all positions around this, if they are not

mines either.

 for w in self.get_surrounding(x, y):

 if not w.is_mine:

 w.click()

 break

 # Reset status to ready following initial clicks.

 self.update_status(STATUS_READY)

756

Figure 278. Initial exploration around rocket.

Position Tiles

As previously described, we’ve structured the game so that individual tile

positions hold their own state information. This means that Pos objects are

ideally positioned to handle game logic which reacts to interactions that relate to

their own state — in other words, this is where the magic is.

Since the Pos class is relatively complex, it is broken down here in to main

themes, which are discussed in turn. The initial setup __init__ block is simple,

accepting an x and y position and storing it on the object. Pos positions never

change once created.

To complete setup the .reset() function is called which resets all object attributes

back to default, zero values. This flags the mine as not the start position, not a

mine, not revealed and not flagged. We also reset the adjacent count.

757

Listing 305. app/minesweeper.py

class Pos(QWidget):

 expandable = Signal(int, int)

 revealed = Signal(object)

 clicked = Signal()

 def __init__(self, x, y):

 super().__init__()

 self.setFixedSize(QSize(20, 20))

 self.x = x

 self.y = y

 self.reset()

 def reset(self):

 self.is_start = False

 self.is_mine = False

 self.adjacent_n = 0

 self.is_revealed = False

 self.is_flagged = False

 self.update()

Gameplay is centered around mouse interactions with the tiles in the playfield, so

detecting and reacting to mouse clicks is central. In Qt we catch mouse clicks by

detecting the mouseReleaseEvent. To do this for our custom Pos widget we define a

handler on the class. This receives QMouseEvent with the information containing

what happened. In this case we are only interested in whether the mouse release

occurred from the left or the right mouse button.

For a left mouse click we check whether the tile is flagged or already revealed. If

it is either, we ignore the click — making flagged tiles 'safe', unable to be click by

accident. If the tile is not flagged we simply initiation the .click() method (see

later).

For a right mouse click, on tiles which are not revealed, we call our

758

.toggle_flag() method to toggle a flag on and off.

Listing 306. app/minesweeper.py

 def mouseReleaseEvent(self, e):

 if e.button() == Qt.RightButton and not self.is_revealed:

 self.toggle_flag()

 elif e.button() == Qt.LeftButton:

 # Block clicking on flagged mines.

 if not self.is_flagged and not self.is_revealed:

 self.click()

The methods called by the mouseReleaseEvent handler are defined below.

The .toggle_flag handler simply sets .is_flagged to the inverse of itself (True

becomes False, False becomes True) having the effect of toggling it on and off.

Note that we have to call .update() to force a redraw having changed the state.

We also emit our custom .clicked signal, which is used to start the

timer — because placing a flag should also count as starting, not just revealing a

square.

The .click() method handles a left mouse click, and in turn triggers the reveal of

the square. If the number of adjacent mines to this Pos is zero, we trigger the

.expandable signal to begin the process of auto-expanding the region explored

(see later). Finally, we again emit .clicked to signal the start of the game.

Finally, the .reveal() method checks whether the tile is already revealed, and if

not sets .is_revealed to True. Again we call .update() to trigger a repaint of the

widget.

The optional emit of the .revealed signal is used only for the endgame full-map

reveal. Because each reveal triggers a further lookup to find what tiles are also

revealable, revealing the entire map would create a large number of redundant

callbacks. By suppressing the signal here we avoid that.

759

Listing 307. app/minesweeper.py

 def toggle_flag(self):

 self.is_flagged = not self.is_flagged

 self.update()

 self.clicked.emit()

 def click(self):

 self.reveal()

 if self.adjacent_n == 0:

 self.expandable.emit(self.x, self.y)

 self.clicked.emit()

 def reveal(self, emit=True):

 if not self.is_revealed:

 self.is_revealed = True

 self.update()

 if emit:

 self.revealed.emit(self)

Finally, we define a custom paintEvent method for our Pos widget to handle the

display of the current position state. As described in [chapter] to perform custom

paint over a widget canvas we take a QPainter and the event.rect() which

provides the boundaries in which we are to draw — in this case the outer border

of the Pos widget.

Revealed tiles are drawn differently depending on whether the tile is a start

position, bomb or empty space. The first two are represented by icons of a rocket

and bomb respectively. These are drawn into the tile QRect using .drawPixmap.

Note we need to convert the QImage constants to pixmaps, by passing through

QPixmap by passing.

760

QPixmap vs. QImages

You might think "why not just store these as QPixmap objects

since that’s what we’re using? We can’t do this and store them in

constants because you can’t create QPixmap objects before your

QApplication is up and running.

For empty positions (not rockets, not bombs) we optionally show the adjacency

number if it is larger than zero. To draw text onto our QPainter we use

.drawText() passing in the QRect, alignment flags and the number to draw as a

string. We’ve defined a standard color for each number (stored in NUM_COLORS) for

usability.

For tiles that are not revealed we draw a tile, by filling a rectangle with light gray

and draw a 1 pixel border of darker grey. If .is_flagged is set, we also draw a flag

icon over the top of the tile using drawPixmap and the tile QRect.

761

Listing 308. app/minesweeper.py

 def paintEvent(self, event):

 p = QPainter(self)

 p.setRenderHint(QPainter.Antialiasing)

 r = event.rect()

 if self.is_revealed:

 if self.is_start:

 p.drawPixmap(r, QPixmap(IMG_START))

 elif self.is_mine:

 p.drawPixmap(r, QPixmap(IMG_BOMB))

 elif self.adjacent_n > 0:

 pen = QPen(NUM_COLORS[self.adjacent_n])

 p.setPen(pen)

 f = p.font()

 f.setBold(True)

 p.setFont(f)

 p.drawText(

 r,

 Qt.AlignHCenter | Qt.AlignVCenter,

 str(self.adjacent_n),

)

 else:

 p.fillRect(r, QBrush(Qt.lightGray))

 pen = QPen(Qt.gray)

 pen.setWidth(1)

 p.setPen(pen)

 p.drawRect(r)

 if self.is_flagged:

 p.drawPixmap(r, QPixmap(IMG_FLAG))

Mechanics

We commonly need to get all tiles surrounding a given point, so we have a

custom function for that purpose. It simple iterates across a 3x3 grid around the

762

point, with a check to ensure we do not go out of bounds on the grid edges (0 ≥ x

≤ self.b_size). The returned list contains a Pos widget from each surrounding

location.

Listing 309. app/minesweeper.py

 def get_surrounding(self, x, y):

 positions = []

 for xi in range(max(0, x - 1), min(x + 2, self.b_size)):

 for yi in range(max(0, y - 1), min(y + 2, self.b_size)):

 if not (xi == x and yi == y):

 positions.append(

 self.grid.itemAtPosition(yi, xi).widget()

)

 return positions

The expand_reveal method is triggered in response to a click on a tile with zero

adjacent mines. In this case we want to expand the area around the click to any

spaces which also have zero adjacent mines, and also reveal any squares around

the border of that expanded area (which aren’t mines).

This can be achieved by looking at all squares around the clicked square, and

triggering a .click() on any that do not have .n_adjacent == 0. The normal game

logic takes over and expands the area automatically. However, this is a bit

inefficient, resulting in a large number of redundant signals (each square

triggers up to 9 signals for each surrounding square).

Instead we use a self-contained method to determine the area to be revealed, and

then trigger the reveal (using .reveal() to avoid the .clicked signals.

We start with a list to_expand containing the positions to check on the next

iteration, a list to_reveal containing the tile widgets to reveal, and a flag

any_added to determine when to exit the loop. The loop stops the first time no new

widgets are added to to_reveal.

763

Inside the loop we reset any_added to False, and empty the to_expand list, keeping

a temporary store in l for iterating over.

For each x and y location we get the 8 surrounding widgets. If any of these

widgets is not a mine, and is not already in the to_reveal list we add it. This

ensures that the edges of the expanded area are all revealed. If the position has

no adjacent mines, we append the coordinates onto to_expand to be checked on

the next iteration.

By adding any non-mine tiles to to_reveal, and only expanding tiles that are not

already in to_reveal, we ensure that we won’t visit a tile more than once.

764

Listing 310. app/minesweeper.py

 def expand_reveal(self, x, y):

 """

 Iterate outwards from the initial point, adding new locations

to the

 queue. This allows us to expand all in a single go, rather

than

 relying on multiple callbacks.

 """

 to_expand = [(x, y)]

 to_reveal = []

 any_added = True

 while any_added:

 any_added = False

 to_expand, l = [], to_expand

 for x, y in l:

 positions = self.get_surrounding(x, y)

 for w in positions:

 if not w.is_mine and w not in to_reveal:

 to_reveal.append(w)

 if w.adjacent_n == 0:

 to_expand.append((w.x, w.y))

 any_added = True

 # Iterate an reveal all the positions we have found.

 for w in to_reveal:

 w.reveal()

Endgames

Endgame states are detected during the reveal process following a click on a title.

There are two possible outcomes — 

1. Tile is a mine, game over.

2. Tile is not a mine, decrement the self.end_game_n.

This continues until self.end_game_n reaches zero, which triggers the win game

765

process by calling either game_over or game_won. Success/failure is triggered by

revealing the map and setting the relevant status, in both cases.

Listing 311. app/minesweeper.py

 def on_reveal(self, w):

 if w.is_mine:

 self.game_over()

 else:

 self.end_game_n -= 1 # decrement remaining empty spaces

 if self.end_game_n == 0:

 self.game_won()

 def game_over(self):

 self.reveal_map()

 self.update_status(STATUS_FAILED)

 def game_won(self):

 self.reveal_map()

 self.update_status(STATUS_SUCCESS)

Figure 279. Oh no. Eaten by a B’ug.

766

Status

The user interface for Moonsweeper is pretty simple: one display showing the

number of mines, one showing the amount of time elapsed, and a button to

start/restart the game.

Both the labels are defined as QLabel objects with the with the same QFont size

and color. These are defined on the QMainWindow object so we can access and

update them at a later time. Two additional icons (a clock and a mine) are also

defined as QLabel objects.

The button is a QPushButton with a defined icon, which is updated in set_status in

response to status changes. The .pressed signal is connected to a custom slot

method button_pressed which handles the signal differently depending on the

game state.

Listing 312. app/minesweeper.py

 self.mines = QLabel()

 self.mines.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)

 self.clock = QLabel()

 self.clock.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)

 f = self.mines.font()

 f.setPointSize(24)

 f.setWeight(QFont.Bold)

 self.mines.setFont(f)

 self.clock.setFont(f)

 self.clock.setText("000")

 self.button = QPushButton()

 self.button.setFixedSize(QSize(32, 32))

 self.button.setIconSize(QSize(32, 32))

 self.button.setIcon(QIcon("./icons/smiley.png"))

 self.button.setFlat(True)

 self.button.pressed.connect(self.button_pressed)

767

 self.statusBar()

 l = QLabel()

 l.setPixmap(QPixmap.fromImage(IMG_BOMB))

 l.setAlignment(Qt.AlignRight | Qt.AlignVCenter)

 hb.addWidget(l)

 hb.addWidget(self.mines)

 hb.addWidget(self.button)

 hb.addWidget(self.clock)

 l = QLabel()

 l.setPixmap(QPixmap.fromImage(IMG_CLOCK))

 l.setAlignment(Qt.AlignLeft | Qt.AlignVCenter)

 hb.addWidget(l)

 vb = QVBoxLayout()

 vb.setSizeConstraint(QLayout.SetFixedSize)

 vb.addLayout(hb)

If the game is currently in progress self.status == STATUS_PLAYING a button press

is interpreted as "I give up" and the game_over state is triggered.

If the game is currently won self.status == STATUS_SUCCESS or lost self.status ==

STATUS_FAILED the press is taken to mean "Try again" and the game map is reset.

Listing 313. app/minesweeper.py

 def button_pressed(self):

 if self.status == STATUS_PLAYING:

 self.game_over()

 elif (

 self.status == STATUS_FAILED

 or self.status == STATUS_SUCCESS

):

 self.reset_map()

768

Menus

There is only a single menu for Moonsweeper which holds the game controls. We

create a QMenu by calling .addMenu() on the QMainWindow.menuBar() as normal.

The first menu item is a standard QAction for "New game" wit the .triggered

action connected to the .reset_map function, which performs the entire map

setup process. For new games we keep the existing board size & layout so do not

need to re-init the map.

In addition we add a submenu "Levels" which contains a QAction for each level

defined in LEVELS. The level name is taken from the same constant, and custom

status message is built from the stored dimensions. We connect the action

.triggered signal to .set_level, using the lambda method to discard the default

signal data and instead pass along the level number.

Listing 314. app/minesweeper.py

 game_menu = self.menuBar().addMenu("&Game")

 new_game_action = QAction("New game", self)

 new_game_action.setStatusTip(

 "Start a new game (your current game will be lost)"

)

 new_game_action.triggered.connect(self.reset_map)

 game_menu.addAction(new_game_action)

 levels = game_menu.addMenu("Levels")

 for n, level in enumerate(LEVELS):

 level_action = QAction(level[0], self)

 level_action.setStatusTip(

 "{1}x{1} grid, with {2} mines".format(*level)

)

 level_action.triggered.connect(

 lambda checked=None, n=n: self.set_level(n)

)

 levels.addAction(level_action)

769

Going further

Take a look through the rest of the source code we’ve not covered.

Challenge

You might like to try make the following changes — 

• Try changing the graphics to make you’re own themed

version of Minesweeper.

• Add support for non-square playing fields. Rectangular? Try

a circle!

• Change the timer to count down — explore the Moon against

the clock!

• Add power-ups: squares give bonuses, extra time,

invincibility.

770

Appendix A: Installing PySide6

Before you start coding you will first need to have a working installation of

PySide6 and Qt on your system. If you don’t have PySide6 set up yet, the

following sections will guide you through how to do this on Windows, macOS and

Linux.

Installation Windows

PySide6 for Windows can be installed in Python as for any other application or

library. As of Qt 5.6 installers are available to install via PyPi, the Python Package

archive.

To install PySide6 from Python3 simply run — 

pip3 install pyside6

After install is finished, you should be able to run python and import PySide6.

Note that if you want access to Qt Creator you will need to download this from

the Qt downloads site.

Installation macOS

If you already have a working installation of Python 3 on macOS, you can go

ahead and install PySide6 as for any other Python package, using the following — 

pip3 install pyside6

If you don’t have an installation of Python 3, you will need to install one first. You

can download macOS installers for Python 3 from the Python homepage. Once

installed, you should be able to use the pip3 install command above to install

PySide6.

771

https://qt.io/download
https://www.python.org/

Another alternative is to use Homebrew. Homebrew is a package manager for

command-line software on macOS. Homebrew has both Python 3 and PySide6

available in their repositories.

Figure 280. Homebrew — the missing package manager for macOS

To install homebrew run the following from the command line — 

ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

This is also available to copy and paste from the Homebrew

homepage.

Once Homebrew is installed you can then install Python with — 

brew install python3

With Python installed, you can then install PySide6 as normal, using pip3 install

pyside6, or alternatively choose to install it using Homebrew with — 

brew install pyside6

772

http://brew.sh/

Installation on Linux

The simplest way to install PySide6 on Linux is to use Python’s pip packaging tool,

just as for other packages. For Python3 installations this is usually called pip3.

pip3 install pyside6

Once the installation is finished, you should be able to run python3 (or python

depending on your system) and import PySide6.

773

Appendix B: Translating C++
Examples to Python

When writing applications with PySide6 we are really writing applications with

Qt.

PySide6 acts as a wrapper around the Qt libraries, translating Python method

calls to C++, handling type conversions and transparently creating Python objects

to represent Qt objects in your applications. The result of all this cleverness is

that you can use Qt from Python while writing mostly Pythonic code — if we

ignore the camelCase.

While there is a lot of PySide6 example code out there, there are far more Qt C++

examples. The core documentation is written for C++. The library is written in

C++. This means that sometimes, when you’re looking how to do something, the

only resource you’ll find is a C++ tutorial or some C++ code.

Can you use it? Yes! If you have no experience with C++ (or C-like languages) then

the code can look like gibberish. But before you were familiar with Python,

Python probably looked a bit like gibberish too. You don’t need to be able to write

C++ to be able to read it. Understanding and decoding is easier than writing.

With a little bit of effort you’ll be able to take any C++ example code and translate

it into fully-functional Python & PySide6. In this chapter we’ll take a snippet of

Qt5 code and step-by-step convert it into fully-working Python code.

The example code

We’ll start with the following example block of code creating a simple window

with a QPushButton and a QLineEdit. Pressing on the button will clear the line edit.

Pretty exciting stuff, but this includes a few key parts of translating Qt examples

to PySide6 — namely, widgets, layouts and signals.

774

#include <QtWidgets>

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QWidget window;

 QLineEdit *lineEdit = new QLineEdit();

 QPushButton *button = new QPushButton("Clear");

 QHBoxLayout *layout = new QHBoxLayout();

 layout->addWidget(lineEdit);

 layout->addWidget(button);

 QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

 window.setLayout(layout);

 window.setWindowTitle("Why?");

 window.show();

 return app.exec();

}

Remember that a Qt widget without a parent is always a

separate window. Here we have a single window created as a

QWidget.

Below we’ll step through the process of converting this code to Python.

Imports

In C++ imports are called includes. They’re found at the top of the file, just as in

Python (though only by convention) and look like this — 

#include <QtWidgets>

In C-like languages the # indicates that include is a pre-processor directive not a

comment. The value between <> is the name of the module to import. Note that

unlike Python, importing a module makes all contents of that module available in

775

the global namespace. This is the equivalent of doing the following in Python — 

from PySide6.QtWidgets import *

Global imports like this are generally frowned upon in Python, and you should

instead either — 

1. only import the objects you need, or

2. import the module itself and use it to reference it’s children

from PySide6.QtWidgets import QApplication, QWidget, QLineEdit,

QPushButton, QHBoxLayout

Or, alternatively…

from PySide6 import QtWidgets

…and then reference as QtWidgets.QApplication(). Which you choose for your

own code is entirely up to you, however in this example we’re going to follow the

first style. Applying that to the code gives us the following result so far.

776

from PySide6.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QWidget window;

 QLineEdit *lineEdit = new QLineEdit();

 QPushButton *button = new QPushButton("Clear");

 QHBoxLayout *layout = new QHBoxLayout();

 layout->addWidget(lineEdit);

 layout->addWidget(button);

 QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

 window.setLayout(layout);

 window.setWindowTitle("Why?");

 window.show();

 return app.exec();

}

Since we’re making changes iteratively, the code won’t work

until the very end.

int main(int argc, char *argv[])

Every C++ program needs a main(){} block which contains the first code to be run

when the application is executed. In Python any code at the top-level of the

module (i.e. not indented inside a function, class or methods) will be run when

the script is executed.

777

from PySide6.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

QApplication app(argc, argv);

QWidget window;

QLineEdit *lineEdit = new QLineEdit();

QPushButton *button = new QPushButton("Clear");

QHBoxLayout *layout = new QHBoxLayout();

layout->addWidget(lineEdit);

layout->addWidget(button);

QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

window.setLayout(layout);

window.setWindowTitle("Why?");

window.show();

app.exec();

You may have seen the following code block in Python application code, which is

also often referred to as the __main__ block.

if __name__ == '__main__':

 ...your code here...

However, this works in a subtly different way. While this block will be run when

a script is executed, so would any code that is not indented. The purpose of this

block is actually to prevent this code executing when the module is imported,

rather than executed as a script.

You can nest your code inside this block if you wish, although unless your file is

going to be imported as a module it isn’t strictly necessary.

C++ types

Python is a dynamically typed language, meaning you can change the type of a

778

variable after it has been defined. For example, the following is perfectly valid

Python.

a = 1

a = 'my string'

a = [1,2,3]

Many other languages, C++ included, are statically typed, meaning that once you

define the type of a variable it cannot be changed. For example, the following is

very definitely not valid C++.

int a = 1;

a = 'my string';

The above highlights an immediate consequence of static typing in languages:

you define the type of a variable when you create it.

In C++ this is done explicitly by providing a type decorator on the line when the

variable is defined, above int.

In lines like the following the first name is the name of type (class) that is being

created by the remainder of the line.

QApplication app(argc, argv);

QWidget window;

QLineEdit *lineEdit = new QLineEdit();

QPushButton *button = new QPushButton("Clear");

QHBoxLayout *layout = new QHBoxLayout();

In Python we do not need these type definitions, so we can just delete them.

779

lineEdit = new QLineEdit();

button = new QPushButton("Clear");

layout = new QHBoxLayout();

For application and window it’s exactly the same principle. However, if you’re not

familiar with C++ it might not be obvious those lines are creating an variable at

all.

There are differences between creating objects with new and without in C++ but

you don’t need to concern yourself with that in Python and can consider them

both equivalent.

QWidget *window = new QWidget();

QWidget window;

QApplication *app = new QApplication(argc, argv);

QApplication app;

To convert to Python, take the class name (e.g. QApplication) from the left, and

place it in front of open and closing brackets (), adding them if they aren’t

already there. Then move the name of the variable to the left, with an =. For

window that gives us — 

window = QWidget()

In Python QApplication only accepts a single parameter, a list of arguments from

sys.argv (equivalent to argv). This gives us the code — 

import sys

app = QApplication(sys.argv);

So far our complete code block is looking like the following.

780

from PySide6.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

import sys

app = QApplication(argc, argv);

window = QWidget()

lineEdit = QLineEdit();

button = QPushButton("Clear");

layout = QHBoxLayout();

layout->addWidget(lineEdit);

layout->addWidget(button);

QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

window.setLayout(layout);

window.setWindowTitle("Why?");

window.show();

app.exec();

Signals

Signals are key to making the example work, and unfortunately the C++ syntax

for Qt signals is a little tricky. The example signal we’re working with is shown

below.

QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

If you’re not familiar with C++ this will be quite difficult to parse. But if we

remove all the syntax it will get much clearer.

connect(button, QPushButton.pressed, lineEdit, QLineEdit.clear)

// or...

connect(<from object>, <from signal>, <to object>, <to slot>>)

781

Working from left to right we have, the object we’re connecting from, the signal

we’re connecting from on that object, then the object we’re connecting to, then

finally the slot (or function) we’re connecting to on that object. This is the

equivalent of writing the following in PySide6 — 

button.pressed.connect(lineedit.clear)

Making that change gives us the following in progress code.

from PySide6.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

app = QApplication(sys.argv)

window = QWidget()

lineEdit = QLineEdit()

button = QPushButton("Clear")

layout = QHBoxLayout()

layout->addWidget(lineEdit);

layout->addWidget(button);

button.pressed.connect(lineEdit.clear)

window.setLayout(layout);

window.setWindowTitle("Why?");

window.show();

app.exec();

Syntax

By now we’ve converted all the really troublesome parts, so we can do a final

syntax-correction pass. These are a simple search-replace.

First search for all instances of -> or :: and replace with .. You’ll notice that the

C++ code also uses . in some places — this comes back to how those variables

were created earlier (new vs. not). Again, you can ignore that here and simply use

782

. everywhere.

layout.addWidget(lineEdit);

layout.addWidget(button);

Finally, remove all line-ending semi-colon ; marks.

layout.addWidget(lineEdit)

layout.addWidget(button)

You technically don’t have to do this, as ; is a valid line-

terminator in Python. It’s just not necessary.

The following code is now working Python.

783

import sys

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLineEdit,

 QPushButton,

 QWidget,

)

app = QApplication(sys.argv)

window = QWidget()

lineEdit = QLineEdit()

button = QPushButton("Clear")

layout = QHBoxLayout()

layout.addWidget(lineEdit)

layout.addWidget(button)

button.pressed.connect(lineEdit.clear)

window.setLayout(layout)

window.setWindowTitle("Why?")

window.show()

app.exec()

In Python code it is normal (though not required) to subclass the window class so

the initialization code can be self-contained within the __init__ block. The code

below has been reworked into that structure, moving all except the creation of

the window object (now MyWindow) and app, and app.exec() call into the __init__

block.

784

import sys

from PySide6.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLineEdit,

 QPushButton,

 QWidget,

)

class MyWindow(QWidget):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 lineEdit = QLineEdit()

 button = QPushButton("Clear")

 layout = QHBoxLayout()

 layout.addWidget(lineEdit)

 layout.addWidget(button)

 button.pressed.connect(lineEdit.clear)

 self.setLayout(layout)

 self.setWindowTitle("Why?")

 self.show()

app = QApplication(sys.argv)

window = MyWindow()

app.exec()

Applying the process to your own code

This is a very simple example, however if you follow the same process you can

reliably convert any C++ Qt code over to it’s Python equivalent. When converting

your own sample of code try and stick to this stepwise approach to minimize the

risk of missing something or inadvertently breaking it. If you end up with Python

code that runs but is subtly different it can be hard to debug.

785

If you have a code example you would like help with translating,

you can always get in touch and I’ll try and help you out.

786

Appendix C: PyQt6 and PySide6 —
What’s the difference?

If you start building Python application with Qt6 you’ll soon discover that there

are in fact two packages which you can use to do this — PyQt6 and PySide6.

In this short chapter I’ll run through why exactly this is, whether you need to

care (spoiler: you really don’t), what the (few) differences are and how to work

around them. By the end you should be comfortable re-using code examples from

both PyQt6 and PySide6 tutorials to build your apps, regardless of which package

you’re using yourself.

Background

Why are there two libraries?

PyQt is developed by Phil Thompson of Riverbank Computing Ltd. and has

existed for a very long time — supporting versions of Qt going back to 2.x. In

2009 Nokia, who owned Qt toolkit at the time, wanted to make the Python

bindings for Qt available in a more permissive LGPL license. Unable to come to

agreement with Riverbank (who would lose money from this, so fair enough)

they then released their own bindings as _PySide.

 It’s called PySide because "side" is Finnish for "binder".

The two interfaces were basically equivalent, but over time development of

PySide lagged behind PyQt. This was particularly noticeable following the release

of Qt 5 — the Qt5 version of PyQt (PyQt5) has been available since mid-2016,

while the first stable release of PySide2 was 2 years later. With that in mind, it is

unsurprising that many Qt5 on Python examples use PyQt5 — if only because it

was available.

However, the Qt project has recently adopted PySide as the official Qt for Python

release which should ensure its viability going forward. When Qt6 was released,

787

https://www.riverbankcomputing.com/software/pyqt/intro
https://www.qt.io/qt-for-python
https://www.qt.io/qt-for-python

both Python bindings were available shortly after.

PyQt6 PySide6

First stable release Jan 2021 Dec 2020

Developed by Riverbank Computing

Ltd.

Qt

License GPL or commercial LGPL

Platforms Python 3 Python 3

Which should you use? Well, honestly, it doesn’t really matter.

Both packages are wrapping the same library — Qt6 — and so have 99.9%

identical APIs (see below for the few differences). Anything you learn with one

library will be easily applied to a project using the other. Also, no matter with

one you choose to use, it’s worth familiarizing yourself with the other so you can

make the best use of all available online resources — using PyQt6 tutorials to

build your PySide6 applications for example, and vice versa.

In this short chapter I’ll run through the few notable differences between the two

packages and explain how to write code which works seamlessly with both. After

reading this you should be able to take any PyQt6 example online and convert it

to work with PySide6.

Licensing

The main notable difference between the two versions is licensing — with PyQt6

being available under a GPL or commercial license, and PySide6 under a LGPL

license.

If you are planning to release your software itself under the GPL, or you are

developing software which will not be distributed, the GPL requirement of PyQt6

is unlikely to be an issue. However, if you want to distribute your software but

not share your source code you will need to purchase a commercial license from

788

Riverbank for PyQt6 or use PySide6.

Qt itself is available under a Qt Commercial License, GPL 2.0, GPL

3.0 and LGPL 3.0 licenses.

Namespaces & Enums

One of the major changes introduced for PyQt6 is the need to use fully qualified

names for enums and flags. Previously, in both PyQt5 and PySide2 you could

make use of shortcuts — for example Qt.DecorationRole, Qt.AlignLeft. In PyQt6

these are now Qt.ItemDataRole.DisplayRole and Qt.Alignment.AlignLeft

respectively. This change affects all enums and flag groups in Qt. In PySide6 both

long and short names remain supported.

UI files

Another major difference between the two libraries is in their handling of

loading .ui files exported from Qt Creator/Designer. PyQt6 provides the uic

submodule which can be used to load UI files directly, to produce an object. This

feels pretty Pythonic (if you ignore the camelCase).

import sys

from PyQt6 import QtWidgets, uic

app = QtWidgets.QApplication(sys.argv)

window = uic.loadUi("mainwindow.ui")

window.show()

app.exec()

The equivalent with PySide6 is one line longer, since you need to create a

QUILoader object first. Unfortunately the API of these two interfaces is different

too (.load vs .loadUI).

789

import sys

from PySide6 import QtCore, QtGui, QtWidgets

from PySide6.QtUiTools import QUiLoader

loader = QUiLoader()

app = QtWidgets.QApplication(sys.argv)

window = loader.load("mainwindow.ui", None)

window.show()

app.exec()

To load a UI onto an existing object in PyQt6, for example in your

QMainWindow.init you can call uic.loadUI passing in self(the existing widget) as

the second parameter.

import sys

from PyQt6 import QtCore, QtGui, QtWidgets

from PyQt6 import uic

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 uic.loadUi("mainwindow.ui", self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

The PySide6 loader does not support this — the second parameter to .load is the

parent widget of the widget you’re creating. This prevents you adding custom

code to the __init__ block of the widget, but you can work around this with a

separate function.

790

import sys

from PySide6 import QtWidgets

from PySide6.QtUiTools import QUiLoader

loader = QUiLoader()

def mainwindow_setup(w):

 w.setWindowTitle("MainWindow Title")

app = QtWidgets.QApplication(sys.argv)

window = loader.load("mainwindow.ui", None)

mainwindow_setup(window)

window.show()

app.exec()

Converting UI files to Python

Both libraries provide identical scripts to generate Python importable modules

from Qt Designer .ui files. For PyQt6 the script is named pyuic5 —

pyuic6 mainwindow.ui -o MainWindow.py

You can then import the UI_MainWindow object, subclass using multiple inheritance

from the base class you’re using (e.g. QMainWIndow) and then call

self.setupUI(self) to set the UI up.

791

import sys

from PyQt6 import QtWidgets

from MainWindow import Ui_MainWindow

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setupUi(self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

For PySide6 it is named pyside6-uic —

pyside6-uic mainwindow.ui -o MainWindow.py

The subsequent setup is identical.

import sys

from PySide6 import QtWidgets

from MainWindow import Ui_MainWindow

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setupUi(self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

792

For more information in using Qt Designer with either PyQt6 or

PySide6 see the Qt Creator chapter.

exec() or exec_()

The .exec() method is used in Qt to start the event loop of your QApplication or

dialog boxes. In Python 2.7 exec was a keyword, meaning it could not be used for

variable, function or method names. The solution used in both PyQt4 and PySide

was to rename uses of .exec to .exec_() to avoid this conflict.

Python 3 removed the exec keyword, freeing the name up to be used. As a result

from Qt6 all .exec() calls are named just as in Qt itself. However, PySide6 still

supports .exec_() so don’t be surprised if you see this in some code.

Slots and Signals

Defining custom slots and signals uses slightly different syntax between the two

libraries. PySide6 provides this interface under the names Signal and Slot while

PyQt6 provides these as pyqtSignal and pyqtSlot respectively. The behavior of

them both is identical for defining and slots and signals.

The following PyQt6 and PySide6 examples are identical —

my_custom_signal = pyqtSignal() # PyQt6

my_custom_signal = Signal() # PySide6

my_other_signal = pyqtSignal(int) # PyQt6

my_other_signal = Signal(int) # PySide6

Or for a slot —

793

@pyqtslot

def my_custom_slot():

 pass

@Slot

def my_custom_slot():

 pass

If you want to ensure consistency across PyQt6 and PySide6 you can use the

following import pattern for PyQt6 to use the Signal and @Slot style there too.

from PyQt6.QtCore import pyqtSignal as Signal, pyqtSlot as Slot

You could of course do the reverse from PySide6.QtCore import

Signal as pyqtSignal, Slot as pyqtSlot although that’s a bit

confusing.

QMouseEvent

In PyQt6 QMouseEvent objects no longer have the .pos(), .x() or .y() shorthand

property methods for accessing the position of the event. You must use the

.position() property to get a QPoint object and access the .x() or .y() methods on

that. The .position() method is also available in PySide6.

Features in PySide6 but not in PyQt6

As of Qt 6 PySide supports two Python feature flags to help make code more

Pythonic with snake_case variable names and the ability to assign and access

properties directly, rather than using getter/setter functions. The example below

shows the impact of these changes on code — 

794

Listing 315. Standard PySide6 code.

table = QTableWidget()

table.setColumnCount(2)

button = QPushButton("Add")

button.setEnabled(False)

layout = QVBoxLayout()

layout.addWidget(table)

layout.addWidget(button)

The same code, but with snake_case and true_property enabled.

Listing 316. PySide6 code with Snake case & properties.

from __feature__ import snake_case, true_property

table = QTableWidget()

table.column_count = 2

button = QPushButton("Add")

button.enabled = False

layout = QVBoxLayout()

layout.add_widget(table)

layout.add_widget(button)

These feature flags are a nice improvement for code readability, however as they

are not supported in PyQt6 it makes migration between the libraries more

difficult.

Supporting both in libraries

You don’t need to worry about this if you’re writing a standalone

app, just use whichever API you prefer.

If you’re writing a library, widget or other tool you want to be compatible with

795

both PyQt6 and PySide6 you can do so easily by adding both sets of imports.

import sys

if 'PyQt6' in sys.modules:

 # PyQt6

 from PyQt6 import QtGui, QtWidgets, QtCore

 from PyQt6.QtCore import pyqtSignal as Signal, pyqtSlot as Slot

else:

 # PySide6

 from PySide6 import QtGui, QtWidgets, QtCore

 from PySide6.QtCore import Signal, Slot

This is the approach used in our custom widgets library, where we support for

PyQt6 and PySide6 with a single library import. The only caveat is that you must

ensure PyQt6 is imported before (as in on the line above or earlier) when

importing this library, to ensure it is in sys.modules.

To account for the lack of shorthand enum and flags in PyQt6 you can generate

these yourself. For example, the following code will copy references for each of

the enum objects elements up to their parent object, making them accessible as

in PyQt5, PySide2 & PySide6. The code would only need to be run under PyQt6.

796

enums = [

 (QtCore.Qt, 'Alignment'),

 (QtCore.Qt, 'ApplicationAttribute'),

 (QtCore.Qt, 'CheckState'),

 (QtCore.Qt, 'CursorShape'),

 (QtWidgets.QSizePolicy, 'Policy'),

]

Look up using the long name (e.g. QtCore.Qt.CheckState.Checked, used

in PyQt6) and store under the short name (e.g. QtCore.Checked, used

in PyQt5, PySide2 & accepted by PySide6).

for module, enum_name in enums:

 for entry in getattr(module, enum_name):

 setattr(module, entry.name, entry)

Alternatively, you can define a custom function to handle the namespace lookup.

def _enum(obj, name):

 parent, child = name.split('.')

 result = getattr(obj, child, False)

 if result: # Found using short name only.

 return result

 obj = getattr(obj, parent) # Get parent, then child.

 return getattr(obj, child)

When passed an object and a PyQt6 compatible long-form name, this function

will return the correct enum or flag on both PyQt6 and PySide6.

>>> _enum(PySide6.QtCore.Qt, 'Alignment.AlignLeft')

PySide6.QtCore.Qt.AlignmentFlag.AlignLeft

>>> _enum(PyQt6.QtCore.Qt, 'Alignment.AlignLeft')

<Alignment.AlignLeft: 1>

If you’re doing this in multiple files it can get a bit cumbersome. A nice solution

to this is to move the import logic and custom shim methods to their own file, e.g.

named qt.py in your project root. This module imports the Qt modules (QtCore,

797

QtGui, QtWidgets, etc.) from one of the two libraries, and then you import into

your application from there.

The contents of the qt.py are the same as we used earlier —

import sys

if 'PyQt6' in sys.modules:

 # PyQt6

 from PyQt6 import QtGui, QtWidgets, QtCore

 from PyQt6.QtCore import pyqtSignal as Signal, pyqtSlot as Slot

else:

 # PySide6

 from PySide6 import QtGui, QtWidgets, QtCore

 from PySide6.QtCore import Signal, Slot

def _enum(obj, name):

 parent, child = name.split('.')

 result = getattr(obj, child, False)

 if result: # Found using short name only.

 return result

 obj = getattr(obj, parent) # Get parent, then child.

 return getattr(obj, child)

You must remember to add any other PyQt6 modules you use (browser,

multimedia, etc.) in both branches of the if block. You can then import Qt6 into

your own application as follows —

from .qt import QtGui, QtWidgets, QtCore, _enum

…and it will work seamlessly across either library.

798

That’s really it

There’s not much more to say — the two libraries really are that similar.

However, if you do stumble across any other PyQt6/PySide6 examples or features

which you can’t easily convert, drop me a note.

799

Appendix D: What next?

This book covers the key things you need to know to start creating GUI

applications with Python. If you’ve made it here you should be well on your way

to create your own apps!

But there is still a lot to discover while you build your applications. To help with

this I post regular tips, tutorials and code snippets on the accompanying website.

Like this book all samples are MIT licensed and free to mix into your own apps.

You may also be interested in joining my Python GUI Academy where I have

video tutorials covering the topics in this book & beyond!

Thanks for reading, and if you have any feedback or suggestions please let me

know!

Get access to updates

If you bought this book direct from me, you will receive automatic updates to this

book. If you bought this book elsewhere, you can email your receipt to me to get

access future updates.

Documentation

Resource

Qt6 Documentation

PyQt6 Library documentation

PySide "Qt for Python" Library documentation

Copyright

This book is ©2022 Martin Fitzpatrick. All code examples in this book are free to

use in your own programming projects without license.

800

https://www.pythonguis.com/
https://academy.pythonguis.com/
mailto:martin@pythonguis.com
mailto:martin@pythonguis.com
mailto:register@pythonguis.com
http://doc.qt.io/qt-6/
http://pyqt.sourceforge.net/Docs/PyQt6/
https://doc.qt.io/qtforpython/

45. Thank you

This book continues to be expanded and updated in response to reader feedback.

Thankyou to the following readers for their contributions, which helped make

this edition what it is!

• James Battat

• Alex Bender

• Andries Broekema

• Juan Cabanela

• Max Fritzler

• Olivier Girard

• Richard Hohlfield

• Cody Jackson

• John E Kadwell

• Jeffrey R Kennedy

• Gajendra Khanna

• Bing Xiao Liu

• Alex Lombardi

• Juan Pablo Donayre Quintana

• Rodrigo de Salvo Braz

• Guido Tognan

If you have feedback or suggestions for future editions, please get in touch.

801

mailto:martin@pythonguis.com

Index

A

accelerator keys, 112

accept, 121

actions, 108

arguments, 11

B

basedir, 42

bitmap graphics, 379

bitmap image, 380

bitwise, 653

C

C++, 5, 774

Cancel, 121

checkable, 100, 98

checkbox, 105, 45

checked, 21

class, 96

click, 12

clicked, 21

color, 67

columns, 79

command line, 11

command-line arguments, 658

currentItemChanged, 51

currentTextChanged, 51

D

dark mode, 236

database, 347

Debian, 712

DecorationRole, 315

dialog box, 125

dialog buttons, 122

dialogs, 118

dismissed, 118

document mode, 92

drawLine, 384

drawPoint, 385

drawRect, 391

drawRects, 391

drawRoundedRect, 391

E

editing strategy, 352

event, 12, 180

event filter, 180

event handler, 12

event loop, 11, 12, 121

event queue, 12

events, 180

F

file, 42

filter, 357

Free Desktop Specification, 243

Fugue icons, 102

Fusion, 227, 236

802

G

GIL, 462

H

horizontally, 79

I

icons, 238, 94

installer, 704

InstallForge, 696

intercept events, 180

K

key sequence, 114

keyboard shortcut, 114

L

layouts, 66

Linux package, 712

M

main window, 14

matplotlib, 593

menubar, 636

menus, 94

modal, 118

Model View, 302

mouse movement, 12

mouseDoubleClickEvent, 180

mouseMoveEvent, 180, 405

mousePressEvent, 180, 183

mouseReleaseEvent, 180

MVC, 302, 322

MySQL, 378

N

numpy, 340

O

OK, 121

P

palettes, 229

Pandas, 343

paths, 630

PEP8, 5

PNG, 241

PostgreSQL, 378

processes, 462

processEvents, 459

pseudo-selectors, 282

PyInstaller, 667, 696, 712

PyQtGraph, 489, 571

pyside6-uic, 224, 224

Q

QAbstractSlider, 412

QAbstractTableModel, 326

QApplication, 459, 8

QBrush, 393

QCheckBox, 44

QColor, 406

QComboBox, 47, 51

QContextMenuEvent, 185

QDataWidgetMapper, 372

QDial, 414, 438, 63

803

QDialogButtonBox, 125

QDoubleSpinBox, 57

QEvent, 180

QFont, 398

QGridLayout, 66

QHBoxLayout, 66

QIcon, 238

QLabel, 35, 39

QLineEdit, 54

QListItem, 51

QListView, 304

QListWidget, 51

QMouseEvent, 180

QPainter, 380, 412

QPalette, 229

QPen, 389

QPixmap, 380, 39

QProcess, 560

QPushButton, 406

QRC, 216

QRect, 391

QRectF, 391

QResource, 215

QRunnable, 476

QSlider, 60

QSpinBox, 57

QSqlQuery, 367

QSqlQueryModel, 365

QSqlRelation, 362

QSqlRelationalDelegate, 363

QSqlRelationalTableModel, 361

QSqlTableModel, 350

QSS, 246

QStackedLayout, 66

QStandardItemModel, 322

QStyle, 240

Qt Creator, 191, 197, 220

Qt Designer, 191, 196, 219, 243, 66

Qt namespace, 104, 114, 184, 37, 647

QTableView, 322

QTabWidget, 90

QThreadPool, 476

QVBoxLayout, 66

QWidget, 414, 65

R

reject, 121

relative paths, 42

remove a toolbar, 95

ribbon, 94

roles, 331

S

setSizePolicy, 417

signals, 19, 29, 619, 621

slots, 19, 29, 621

SQL, 347

SQLite, 348

stacked, 79

standardIcon, 239

status tip, 97

style sheets, 246

subclass, 121

subprocess, 560

804

SVG, 241

sys.argv, 658

system tray, 636

T

tabbed, 85

threads, 462

timer, 458

toggleable, 100

toggled, 102

toolbar, 103

toolbars, 94

triggered action, 96

U

Ubuntu, 712

V

vertically, 79

W

widget, 94

widgets, 33

window, 10

window decorations, 10

windowTitleChanged, 27

805

	Create GUI Applications with Python & Qt6: The hands-on guide to making apps with Python
	Table of Contents
	Introduction
	1. A very brief history of the GUI
	2. A bit about Qt

	Basic PySide6 Features
	3. My first Application
	4. Signals & Slots
	5. Widgets
	6. Layouts
	7. Actions, Toolbars & Menus
	8. Dialogs
	9. Windows
	10. Events

	Qt Designer
	11. Installing Qt Designer
	12. Getting started with Qt Designer
	13. The Qt Resource system

	Theming
	14. Styles
	15. Palettes
	16. Icons
	17. Qt Style Sheets (QSS)

	Model View Architecture
	18. The Model View Architecture — Model View Controller
	19. A simple Model View — a Todo List
	20. Tabular data in ModelViews, with numpy & pandas
	21. Querying SQL databases with Qt models

	Custom Widgets
	22. Bitmap Graphics in Qt
	23. Creating Custom Widgets
	24. Using Custom Widgets in Qt Designer

	Concurrent Execution
	25. Introduction to Threads & Processes
	26. Using the thread pool
	27. QRunnable examples
	28. Long-running threads
	29. Running external commands & processes

	Plotting
	30. Plotting with PyQtGraph
	31. Plotting with Matplotlib

	Further PySide6 Features
	32. Timers
	33. Extending Signals
	34. Working with Relative Paths
	35. System tray & macOS menus
	36. Enums & the Qt Namespace
	37. Working with command-line arguments
	38. Pythonic PySide6

	Packaging & Distribution
	39. Packaging with PyInstaller
	40. Creating a Windows installer with InstallForge
	41. Creating a macOS Disk Image Installer
	42. Creating a Linux Package with

	Example applications
	43. Mozzarella Ashbadger
	44. Moonsweeper

	Appendix A: Installing PySide6
	Appendix B: Translating C++ Examples to Python
	Appendix C: PyQt6 and PySide6 — What’s the difference?
	Appendix D: What next?
	45. Thank you
	Index

