

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support
of ePUB and its many features varies across reading devices and
applications. Use your device or app settings to customize the presentation to
your liking. Settings that you can customize often include font, font size,
single or double column, landscape or portrait mode, and figures that you can
click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web
site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.

Captain Code
Unleash Your Coding Superpower with Python

Ben Forta & Shmuel Forta

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Visit us on the Web: informit.com/

Library of Congress Control Number: 2021947621

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-765357-7
ISBN-10: 0-13-765357-3
ScoutAutomatedPrintCode

Editor-in-Chief

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/
http://www.pearsoned.com/permissions/

Mark Taub

Acquisitions Editor
Kim Spenceley

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Senior Project Editor
Lori Lyons

Cover Designer
Chuti Prasertsith

Composition
Kim Scott, Bumpy Design

Copy Editor
Kitty Wilson

Production Manager
Aswini Kumar/Codemantra

Indexer
Timothy Wright

Proofreader
Donna E. Mulder

Pearson’s Commitment to Diversity,
Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of
all learners. We embrace the many dimensions of diversity, including but not
limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual
orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic
mobility. As we work with authors to create content for every product and
service, we acknowledge our responsibility to demonstrate inclusivity and
incorporate diverse scholarship so that everyone can achieve their potential
through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a
better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

Everyone has an equitable and lifelong opportunity to succeed through
learning.

Our educational products and services are inclusive and represent the
rich diversity of learners.

Our educational content accurately reflects the histories and experiences
of the learners we serve.

Our educational content prompts deeper discussions with learners and -
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you
about any concerns or needs with this Pearson product so that we can
investigate and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

Contents at a Glance
Introduction

PART I It’s All Fun and Games
CHAPTER 1 Getting Started

CHAPTER 2 Mad Libs

CHAPTER 3 Roll the Dice

CHAPTER 4 Calculate the Day

CHAPTER 5 Rock Paper Scissors

CHAPTER 6 Secret Codes

CHAPTER 7 Guess the Number

CHAPTER 8 Becoming a Coder

CHAPTER 9 Hangman

CHAPTER 10 Keep Going

PART II On an Adventure
CHAPTER 11 Getting Func-ky

CHAPTER 12 Exploring

CHAPTER 13 Cleanup Time

CHAPTER 14 Reduce, Reuse, Recycle, Refactor

CHAPTER 15 Carrying (and Using) Stuff

CHAPTER 16 Keeping It Classy

CHAPTER 17 Color Your World

CHAPTER 18 Keep Going

PART III Racing Around

CHAPTER 19 Crazy Drive

CHAPTER 20 Image-ine the Possibilities

CHAPTER 21 We Like to Move It

CHAPTER 22 Crash, Bang, Boom

CHAPTER 23 Finishing Touches

CHAPTER 24 Keep Going

CHAPTER 25 Tinkering, Testing, and Debugging Revisited

What Next

Index

Contents
Introduction

PART I: It’s All Fun and Games

CHAPTER 1 Getting Started
Understanding Computer Programming

What is a computer?
How do we talk to computers?
What is Python?

Setting Things Up
Installing Python
Installing and Configuring Visual Studio Code
Creating a Work Folder

Writing Your First Python Program
Selecting Your Work Folder
It’s Coding Time!

Summary

CHAPTER 2 Mad Libs
Understanding Functions
Using Variables

Creating a Variable
Using a Variable
Some Important Variable Rules
Variables, More Variables, and Even More Variables
Getting User Input

Playing Mad Libs
Write Your Story
Add Variables
Get User Input

Summary

CHAPTER 3 Roll the Dice
Using Libraries

The random Library
Generating Random Numbers
Choosing a Random Item

“3” Is Not 3
Commenting Your Code
One Die, Two Dice
Summary

CHAPTER 4 Calculate the Day
Working with Dates

The datetime Library
Using the datetime Class

Making Decisions
The if Statement
What else?
if Revisited

Testing for Other Options
Using in

Beating the Mathematician
Handling Numeric Inputs
Putting It All Together
An Alternate Solution

Summary

CHAPTER 5 Rock Paper Scissors
More Strings
Game Time

Handling User Input
The Game Code
One Last Tweak

Summary

CHAPTER 6 Secret Codes
Lists

Creating Lists
Accessing List Items
Changing List Items
Adding and Removing Items
Finding Items
Sorting

Loop-de-Loop
Looping Through Items
Looping Through Numbers
Nested Loops

Cracking the Code
Encrypting Characters
Modulus Math
Encryption Code
Decryption Code

Summary

CHAPTER 7 Guess the Number
Conditional Loops
Game Time

The Basic Game
Putting It All Together

Summary

CHAPTER 8 Becoming a Coder
How Coders Code

Have a Plan
Think Small

Game Components
Restricting User Input
Storing User Guesses

Displaying Lists
Masking Characters

Summary

CHAPTER 9 Hangman
Game Time
So How Does It Work?
Summary

CHAPTER 10 Keep Going
Birthday Countdown

Program Requirements
Program Flow
Some Tips

Tip Calculator
Program Requirements
Program Flow
Some Tips (Pun Intended)

Password Generator
Program Requirements
Program Flow
Some Tips

Summary

Part II: On an Adventure

CHAPTER 11 Getting Func-ky
Functions Revisited

Creating a Function
Passing Arguments
Returning Values

Summary

CHAPTER 12 Exploring
Game Concept

Game Structure
Prompting for Options
Processing Options
Create a Work Folder

Game Time
Test It
Summary

CHAPTER 13 Cleanup Time
Optimizing Your Code
String Externalization

Creating the Strings File
Using Externalized Strings

Summary

CHAPTER 14 Reduce, Reuse, Recycle, Refactor
Understanding Refactoring

Identifying Refactoring Opportunities
Creating a User Choice Component

Designing a Reusable Component
Creating the User Options Function
Updating Your Code

Summary

CHAPTER 15 Carrying (and Using) Stuff
Planning the Inventory System

Creating a Dictionary
Working with Dictionaries
Lists of Dictionaries

The Inventory System
Creating an Inventory
Plugging In the Inventory System
Using the Inventory System
Displaying the Inventory

Summary

CHAPTER 16 Keeping It Classy
The Player System
Creating a Player Class

Creating the Class
Defining Properties
Creating Methods
Initializing the Class

Using Our New Class
Summary

CHAPTER 17 Color Your World
Installing Third-Party Libraries
Using Colorama

Importing and Initializing the Library
Coloring Your Output

Summary

CHAPTER 18 Keep Going
Health and Lives
Shopping for Items
Random Events
Battling Enemies
Saving and Restoring
Summary

PART III: Racing Around

CHAPTER 19 Crazy Driver
Introducing Pygame
Prepping the Game

Game Concept
Installing Pygame
Creating Work Folders

Obtaining Images
Getting Started

Initializing Pygame
Displaying Stuff

The Game Loop
Summary

CHAPTER 20 Image-ine the Possibilities
Files and Folders
Setting the Background
Placing the Cars
Summary

CHAPTER 21 We Like to Move It
Moving the Enemy
Moving the Player
Summary

CHAPTER 22 Crash, Bang, Boom
You Crashed, Game Over
Tracking Score
Increasing Difficulty
Summary

CHAPTER 23 Finishing Touches
Game Over Revisited
Pause
Varying Enemies
Ice Cubes
Summary

CHAPTER 24 Keep Going
Splash Screen
Scores and High Scores

Oil Slick
Multiple Enemies
And Then…
Summary

What Next?
There’s a Lot More to Python
Web Development
Mobile App Development
Game Development
And Then…

Index

CHAPTER 25 Tinkering, Testing, and Debugging Revisited

Register Your Book
Register your copy of Captain Code on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN 9780137653577 and click Submit. Look on
the Registered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/register

Acknowledgments
Ben Forta

It’s hard to believe that I’ve been writing and publishing for 25 years!
Pearson was the publisher for my very first book back in 1996, and since then
we’ve collaborated in creating and publishing over 40 titles. Together we
have educated and inspired developers (and future developers) the world
over. Looking back over a quarter of a century, I can truly say thank you for
all these years of dedication and support. This book is the first I’ve written
for young people, so extra thanks for trusting our vision and giving us authors
the freedom and flexibility to create this title as we saw fit.

In particular, thanks to Kim Spencely for shepherding this title from concept
to fruition, and to Chris Zahn for (once again) providing his development
expertise.

For the past few years I’ve had the pleasure of leading a Robotics class at
Farber Hebrew Day School in Southfield, MI. When COVID wreaked havoc
on teaching, we pivoted to online classes and I used the opportunity to
improve my students’ coding skills by teaching them Python. Those students
were my guinea pigs, and those lessons were the impetus for this title. So,
thank you FHDS for giving me the opportunity to inspire your students, and
thank you students for helping me learn how to best teach you.

Thanks to our son Eli, a super talented designer and up-and-coming architect,
for creating the image assets provided with this book.

And finally, thanks to our son Shmuel, a brilliant engineer, passionate
educator, and my collaborator on this title. I’ve worked with co-authors on
about half of my books, and, if I’m being honest, I’d much rather write all by
myself. This collaboration was an exception. Shmuel’s experience helped
shape this volume, his insights can be felt on every page, and working with
him has been a source of joy and pride. Thank you!

Shmuel Forta

Writing this book was an exciting and humbling experience for me. I am

honored to have been given the opportunity to share with the world what I
have been teaching seventh and eighth graders for half a decade.

I’d like to give a special thank you to Pearson. Their trust in our writing
process allowed us to create this book without compromising our vision. An
extra special thanks to Kim Spencely and Chris Zahn, without whom this
book would not have been written, edited, or published.

I would also like to thank my wife, Chana Mina, for…well…everything.
Thank you for putting up with me in general (a feat in and of itself); I know
that writing this book took up a significant amount of my time, but you were
always there for me. Without your support (as well as your recommendations
for this publication), I don’t know where I’d be. Thank you for being you.

A special thank you to my family: Mom, my siblings, and my in-laws for
helping me and supporting me through everything, as well as for the
encouragement and strength you gave me to compose this book.

Finally, a special (though that word doesn’t even start to express it) thank you
to my father and co-author. When I was under the age of 10, Dad got me
started on coding with Visual Basic. Some of my fondest memories are of me
and my Dad huddled over the old laptop that I was using, while my Dad
patiently tried to steer me toward finding the bug in my code (an ‘=’ instead
of an ‘==’). I remember the sheer joy of running downstairs to show Dad my
number guessing game, my inefficient calculator using drop-down menus,
and later my first graphical game (an overhead space shooter). The unbridled
excitement of child Shmuel from his creations could only be matched by my
Dad’s pride and love of my work. Dad’s enthusiasm, encouragement, and
unparalleled support are responsible for my love of coding. I now have met
many talented programmers with a variety of skills, but few actually love
coding the way that Dad or I do. And my love for coding was shared with me
by my Dad. I can’t thank you enough for collaborating on this title with me,
but even more importantly, for raising me to be who I am today and sharing
your love of programming with me.

About the Authors
Ben Forta is, first and foremost, an educator who has been teaching in some
capacity since he was a teenager (many centuries ago). He is Adobe’s Senior
Director of Education Initiatives, and has over three decades of experience in
the technology sector in product development, support, training, and product
marketing. Ben is the award-winning author of more than 40 books, some of
which have been translated into 16 languages, and many of which have
become college textbooks. Through his books, lectures, lessons, and videos,
Ben has taught coding skills to over a million people. Ben lives in Oak Park,
MI, with his wife Marcy and their children. He welcomes your emails at
ben@forta.com and invites you to visit him online at http://forta.com/.

Shmuel Forta is an engineer, coder, maker, tinkerer, and teacher. He is a
software developer at General Motors and has years of programming
experience, including both writing and instruction of code. He has been
teaching Python coding to middle school students for more than five years.
Shmuel has a Master’s Degree in Biomedical Engineering from the
University of Michigan and has published research work in IEEE. Shmuel
lives in Oak Park, MI, with his wife Chana Mina. He would be happy to
respond to any questions or comments via email at shmuel@forta.com.

http://forta.com/
mailto:shmuel@forta.com

Introduction

We need you to talk in a deep voice, the deepest you can manage. Actually, a
deep loud whisper would work well. And talk slowly. Got it? Ok, read the
next paragraph:

Legend tells of individuals with astounding powers. Scattered around the
globe they have been endowed with the ability to bring the inanimate to life.
Issuing instructions in varied languages, they can bend machines near and
far to their will, making them do their bidding. These individuals are
awesome and powerful, for they are…coders!

<ahem> Sorry!

Ok, so we may have gotten a bit carried away there. But, coders are indeed
awesome and powerful. We should know; we’re coders, and we think that
we’re pretty awesome and powerful (if we do say so ourselves). The truth is,
for most of us, the closest we’ll ever get to being Gandalf, Bruce Wayne,
Luke Skywalker, Queen Elsa, Tony Stark, Wonder Woman, or Deadpool is
mastering coding and developing the ability to command machines to do our
bidding.

Yep, it’s pretty heady stuff, we know. But, truthfully, that’s what coding is.
Which means superpowers are quite attainable.

In this book we’ll help you hone these skills. You’ll learn coding. But, more
importantly, you’ll learn how to be a coder.

But first, why? Why learn coding at all? If you ask around or search online
you’ll find various answers to that question.

The most common answer is that coding is important because it is a future-
ready skill. This means that if you can code, you’ll have an easier time
finding a good job in the future. And while there may be some truth to that
assertion, honestly, we don’t think that’s the best reason to learn to code.
Why?

For starters, not everyone needs to work as a coder. That makes about as
much sense as everyone being a doctor, or everyone being a chef, or
everyone being a teacher, or everyone being a pilot, or everyone being a
plumber running through pipes to save a princess…you get the idea. To
function properly, society needs lots of different people doing lots of
different things. Sorry, but humanity just does not need 8 billion coders.

In addition, the tech space (and that includes coding) changes really quickly.
What coders do now is not the same as what they did 10 years ago, and what
they’ll do 10 years from now will be even more different. So, what you learn
today is not what you’ll be doing as a coder in the future. The best coders
never stop learning, evolving, or developing skills. The basics you’ll learn in
this book will remain relevant and useful, but the specifics change, and
frequently. With coding there’s no learn-it-and-done; it’ll be a mistake to
invest time and energy assuming otherwise.

But most importantly, if you’re interested in coding primarily from a future
career perspective, it’ll feel like work rather than fun. If it’s not fun then you
won’t enjoy it; you’ll be unlikely to stick with it, and you definitely won’t be
motivated to really give it your all. And that would be a shame, because
coding really is a lot of fun.

That’s not to say there aren’t good jobs in coding. There are, and there will be
for many decades to come. But a future career should not be the only reason
to become a coder.

So, why should you learn to code? And should everyone do so? We believe
everyone should learn to code, even if they have no intentions of pursuing
careers in coding. We believe this just like we believe that everyone should
draw and sketch, and everyone should play an instrument, and everyone
should cook, and everyone should take pictures and shoot videos, and more.
All of these are creative endeavors, which means that they are ways to
actually create stuff, and creating stuff is incredibly rewarding and satisfying.

Sure, it’s fun to spend hours on your phone looking at what other people have
created; but that’s nothing compared to the joy and satisfaction of creating
stuff that other people consume and use.

And, on top of that, when you learn to code, you develop all sorts of
invaluable skills and traits beyond just coding. These include planning,
problem solving, communication, logic, empathy, attention to detail,
patience, resilience, persistence, and creativity.

Oh, and back to jobs and careers—it turns out that these skills (especially
creativity and creative problem solving) are some of the most in demand out
there. So, yes, coding will indeed help your future career, even if you don’t
become a coder.

Great, so you should learn coding. But where to start? In our experience, too
many books, videos, and lessons overly focus on the mechanics of coding—
things like syntax and exact details of how to use specific language elements.
They get caught up in the minute details of specific projects. It all feels a
whole lot like being talked to, as opposed to being encouraged to tinker and
play. And that’s boring. As in really enthusiasm-draining, soul-crushingly,
yawn-inducingly boring. It’s kinda like spending hours and hours learning
dictionary words and grammar and then getting to use those by copying
someone else’s writing, and not being given the chance to find your own
words and voice. That’s crazy, right? And yet that’s how most people are first
introduced to coding.

We’ve been teaching coding for many years. In fact, we’ve helped over a
million people become coders, including lots of young people your age. And
we know how to help you develop these skills—we do it the same way we
taught ourselves to code. It’s fast, fun, results oriented, and it works.

And that’s why we wrote this book, to help you learn to code; and, more
importantly, to discover your coding superpower and turn you into a coder.

What’s in This Book
In this book we don’t just teach you how to code; lots of books do that. Some
even do a pretty good job of it, too.

No, learning to code is not enough. Instead, we’re going to help you learn
how to think like a coder, analyze problems like a coder, plan like a coder,
progressively iterate like a coder, craft elegant solutions like a coder ... In
fact, when we’re done we’ll have morphed you into <drumroll> a coder!

To that end, this book is quite different from others you may have read. We
built it to help you become a coder quickly while having fun, too.

We divided this book into three sections that build upon each other. Here’s
how it all works.

Part I: It’s All Fun and Games

In this section, we cover some basics (and some not so basics, too). By the
time you’re done with the section, you will have learned every major coding
concept, and you’ll have the knowledge you need to write just about any
application.

This section is made up of 10 chapters:

Chapter 1 will help you get up and running, including helping you install
needed software and getting it ready to use.

In Chapters 2 through 7 you’ll create small games and other programs,
lots and lots of them. Each chapter will introduce new coding concepts
that you’ll utilize immediately in a new project. And in each chapter
you’ll get a chance to tweak, tinker, and make the code your own.

Then things will get a bit more sophisticated, and you’ll create a more -
complex game starting in Chapter 8 and finishing it in Chapter 9.

In Chapter 10 we’ll wrap this section with all sorts of ideas for you to try
yourself.

We designed these chapters so that they build upon each other; skills you
develop in one chapter will help you in subsequent chapters. But we also
designed these chapters to be short and focused, and so you’ll mostly write
small standalone programs in each.

You’ll want to take your time working through this section. Try every lesson
and example yourself, tinker, tweak, play. Make changes to the code we

provide and see what happens to the program. You can’t break it because you
can always undo it! The stuff you’ll learn here is what you’ll use most, be it
while working through this book or in any future projects.

Part II: On an Adventure

No more kiddie pool, you’re in the deep end now. In this section you’ll create
a bigger (and more fun) game. We’ll start slow, and incrementally add
functionality. What kind of game? A cool retro-style text-based adventure
game that will seriously impress family and friends, and one that you can
make complex enough to make hardcore gamers cry.

This section has 8 chapters:

Chapter 11 gets you started.

You’ll start creating the game in Chapter 12, and you’ll keep adding -
functionality and sophistication all the way through Chapter 17.

Chapter 18 will provide all sorts of ideas so you can keep improving
your game.

Unlike Part I, in this section we want you to go on your own adventure, tell
your own story, write your own game. We’ll help you get started, and we’ll
show you all the techniques you need. You are free to use our code. We’ll
even tell you how to download other story starters, but then we’ll turn things
over to you to create your own masterpiece.

Part III: Hit the Road

Just as in Part II, this section is one larger game that you’ll build
incrementally. This time it’s a graphical game complete with images,
movement, user interaction, scores, and more.

There are 6 chapters in this section:

Chapter 19 gets you started using a game engine (and explains what that
actually is).

You’ll build a complete working game in Chapters 20 through 23. We’ll

even give you graphics that you can use (yeah, we’re just that nice).

And Chapter 24 concludes with lots of fun ideas for you to add to the
game.

In this section, we’ll also give you less code to copy (as you’ll be a pro by the
time you get here). Instead, we’ll tell you how to change and update your
code to get it to do what you want.

Oh, one more thing. We should mention Chapter 25, “Tinkering, Testing, and
Debugging Revisited.” Yep, we love you guys so much that we tossed in a
bonus chapter. You’ll find it online on the book web page. Use the link or QR
code at the end of this introduction to access it.

Watch Out for These
As you work through this book you’ll come across boxes and icons. This is
what they all mean:

 New Term
Title We’re not just going to help you code, we’re also going to help
you talk like a real coder. Whenever we use a new word or phrase,
we’ll explain it in a box that looks like this.

 Tip
Title Coders love saving time. When you see a box with this symbol,
you’ll know that it contains shortcuts, time-saving ideas, or just stuff
we think will make coding easier.

 Sidebar

We’ve included lots of lots of useful notes (and some that are less
useful but still kinda fun). You’ll see these in boxes like this.

 Challenge

When you see this box, you’ll know that we are going to be giving
you extra work. No, no homework; we’re talking fun extra work. As
we explained earlier, in this book you won’t be learning coding by
reading, you’ll learn by doing. We’ll help you create lots of
programs, some small and some more complex. And many of these
will be followed by challenges—extra stuff for you to try and figure
out yourself. And don’t worry, if you get stuck you can use our
online tips and solutions.

And finally, watch for QR codes (like this one) throughout the book. They’ll
take you to web pages that contain useful links, downloadable code,
challenge solutions, and more.

Getting Help
As you work through this book, you’re going to occasionally need some help.
When that happens, here’s what you need to do:

First, check the book web page at https://forta.com/books/0137653573 or
scan this QR code. We’ve posted lots of tips, solutions, and more for
you.

You can also do what most coders do and Google it. Type really specific
questions (complete with the exact language problem, for example) and
you will find answers.

And you are always free to contact us. You’ll find contact information on
https://forta.com/ and in the front of this book.

https://forta.com/books/0137653573
https://forta.com/

And with that, welcome, turn the page, and let’s get started!

Ben & Shmuel

Figure Credits
Figure Credits
Cover HelloSSTK/Shutterstock (female superhero)

Maxim Maksutov/Shutterstock (male
superhero)

New Term, Tip, Sidebar, and
Challenge notes icons

Viktoria Kurpas/Shutterstock

Parts Pages image Bonezboyz/Shutterstock
Chapter opening images November_Seventeen/Shutterstock (female

superhero)

Maxim Maksutov/Shutterstock (male
superhero)

Python screenshots © 2001–2021. Python Software Foundation
FIG01-01 Screenshot of computer microprocessor:

Tudor Voinea/Shutterstock
FIG01-02 Screenshot of VS Code screen © Microsoft

2020
FIG01-03 Screenshot of Extensions panel,

INSTALLED section © Microsoft 2020
FIG01-04 Screenshot of Windows icons © Microsoft

2020
FIG01-05 Screenshot of Look for the New Folder icon

© Microsoft 2020
FIG01-06 Screenshot of Click the New Folder icon ©

Microsoft 2020
FIG01-07 Screenshot of Locate Finder © 2020 Apple,

Inc.

FIG01-08 Screenshot of In the Go menu © 2020 Apple,
Inc.

FIG01-09 Screenshot of New Folder © Apple, Inc.
FIG01-10 Screenshot of a new created folder © 2020

Apple, Inc.
FIG01-11 Screenshot of VS Code window © Microsoft

2020
FIG01-12 Screenshot of NO FOLDER OPENED

display © Microsoft 2020
FIG01-13 Screenshot of open folder © Microsoft 2020
FIG12-01 Screenshot PYTHON section in VS Code

Explorer panel © Microsoft 2020
FIG20-01 Screenshot of folder structure © Microsoft

2020

Part I
It’s All Fun and Games

CHAPTER 1 Getting Started

CHAPTER 2 Mad Libs

CHAPTER 3 Roll the Dice

CHAPTER 4 Calculate the Day

CHAPTER 5 Rock Paper Scissors

CHAPTER 6 Secret Codes

CHAPTER 7 Guess the Number

CHAPTER 8 Becoming a Coder

CHAPTER 9 Hangman

CHAPTER 10 Keep Going

Chapter 1
Getting Started

Hello, and welcome. We love coding, and by the time you’re done with this
book we think you will, too. We’re going to help you learn to code the way
that we learned, by doing—no long lectures, no reading lots of instructions,
and no drawn-out explanations. In every chapter you’ll get to do stuff, and
you’ll learn while doing.

Except for this chapter, sorry. :-(Before you start developing your coding
superpowers it’s really important to understand what coding actually is, so
we’ll spend just a few minutes reviewing that. And then we’ll help you install
the software you’ll need to get started. But, after that, it’s all doing. Promise.

Understanding Computer Programming
Let’s start by taking a few minutes to understand what computer
programming actually is, and to do that we need to talk about computers.

What is a computer?

You’ve seen computers, and they are all basically the same; they have
screens, a keyboard, mouse or touchpad, and some fold in half, like a
notebook. Right? No, wrong! The truth is that most of the computers that
you’ve seen and used look nothing at all like that. Really.

For example, your gaming consoles are all computers. So are smartphones,
smartwatches, and smart TVs. (Actually, anything with “smart” in the name
is pretty much guaranteed to be a computer.) Those video doorbells that show
you who’s at the door? Those are computers. Vacuuming robots, fancy
touchscreen thermostats, and display consoles in cars are all computers, too.
Drones are computers with propellers, and Tesla cars are computers with
seats and wheels. Those cool rovers NASA sent to Mars are computers.
ATMs at the bank that you can use to withdraw cash from an account? Those
are computers, as are self-checkout machines at your local grocery store. You
get the idea. There are lots and lots of computers out there, and most look
nothing like what we typically call a computer.

So, what makes all of these devices computers? They are all computers
because inside of them is a microprocessor, a computer chip that functions as
the device’s brain. The microprocessor controls everything the device does.

The display, motors, inputs, sensors, speakers, and more are all controlled by
one or more microprocessors.

So now that you know what computers are, answer these questions: Are
computers smart? Is your gaming console actually smart? What about your
smartphone or tablet? What do you think?

Well, sorry to be the bearer of bad news, but the answer is no, not at all. -
Computers are not very smart. In fact, quite the opposite, despite the word
“smart” in some of their names, computers are actually rather dumb and
useless.

Why are computers not smart? Because as powerful as they are, they
themselves don’t know how to do anything. They can’t display videos on a
screen, they can’t respond to mouse clicks or joystick controls, they can’t
connect to the Internet, they can’t understand what you type, they can’t play
your favorite games or let you video conference. By themselves computers
can’t do anything useful at all…So, yep, not very smart.

But computers do indeed do all sorts of wonderful things, so how do they
know how to do them? They can do those things because someone taught the
computers how to do them. Someone gave the computers very specific
instructions teaching them how to do all things we expect our favorite
devices to do. And those instructions are indeed pretty smart.

But the real smarts belong to whomever actually created the instructions. So
who does that? Who gets to teach all of the computers around us how to do
fun and useful things? That’s the job of computer programmers, and
computer programming is just that, teaching computers how to do stuff.

How do we talk to computers?

When you talk to your friends, they understand what you are saying (well,
hopefully). The reason that they understand you is that you are
communicating in the same language, one you both understand. This is
obviously important. If you spoke to someone who only understood another
language, you’d not really be communicating.

 What’s in a Name?

Computer programmers are also called coders, software engineers,
application developers, and software developers. Lots of titles, but
they all really mean the same thing.

Communicating with a computer is much the same. If you are going to give a
computer instructions, you need to provide those instructions in a language
that the computer understands. You are going to use a computer
programming language, and much like spoken languages, programming
languages have words and rules for how they are used.

There are lots and lots of different computer languages. Some have very
specific uses, some are more general purpose. And most programmers learn
and use multiple languages; that way they can pick the best one for any

particular situation. If the idea of having to learn lots of languages sounds
scary, don’t worry, we have some good news for you:

Exact language details, the words you use and how you use them
(programmers call this syntax) differ from one language to the next. But
unlike spoken languages, computer programming languages tend to have
very few words and rules, so you’ll master them pretty quickly.

 New Term
Syntax In spoken languages, the word syntax means the rules for
how words and phrases are put together to make well-formed
sentences. In programming languages the word syntax is used
similarly: It means the rules for how language elements are to be
used.

In addition, pretty much all programming languages do the same basic
things (and we’ll cover all of those in this book). This means that once
you master one programming language, learning the next one is much
easier.

You never need to memorize a programming language. If you ever need
a reminder for how to perform a specific task in a specific language, do
what professional programmers do: Google it.

There is one important difference between spoken languages and
programming languages, and that is the listener. When you message a
friend, you can misspell words (don’t), omit punctuation (don’t do that,
either), even send incomplete sentences (ugh, no, please), and your
friend will still understand you. Computers are less forgiving (not smart,
remember?) and if you miss a . or a }, they’ll get upset and not know
what you want them to do. This is probably the single biggest source of
frustration for beginning coders. So why did we point this out among this
list of good news? Because editors (the tools you use to write your
code…more on that soon) are really good at catching those typos, and

that makes things a whole lot less frustrating.

Now that you know what a programming language is, and why they are
similar to spoken languages, we are going to let you in on a secret; well, two
secrets, actually. We are going to tell you exactly what computer
programming is and what programmers do:

Imagine that you knew every word in your spoken language. You studied
your dictionary backward and forward and mastered every single word,
including pronunciations and definitions. Would that make you a best--
selling author? Would knowing all the words mean that you could write
the next blockbuster movie script? Of course not. Knowing the words is
one thing. Knowing how to use those words by creatively combining
them in any of infinite combinations, well, that’s obviously very
different. Computer languages are much the same. Knowing the syntax is
easy (especially as computer languages have far fewer words than
spoken languages). What makes an experienced and skilled programmer
is knowing how to use those language elements to artfully solve
problems, and that’s exactly what we’re going to help you learn. And
that is a skill that takes time and practice.

Once more, think about spoken languages. Is there a single right way to
share an idea using words? No, of course not. If that were the case, all
movies and books would be the same, and that would be horrible! A
language is a tool, and authors get to use that tool to craft all sorts of
wonderful and unique experiences. Using a programming language is
much the same. There is no single right way to write code or solve any
specific problem. Rather, there are as many solutions as there are coders.
We’ll show you lots of techniques and solutions in this book, and you are
free to use them in your own coding. But, over time, you’ll find your
own creative ways to solve problems, just like professional coders do,
because coding is all about creative problem solving.

What is Python?

All of this brings us to Python, which is <make a drumroll sound here
please> … a programming language.

Yes, Python is a language, and it is used to provide instructions to a

computer. Python is not a new programming language, it’s actually been
around for 30 years or so. But it is super popular, and even powers some of
your favorite sites and apps. Why is Python so popular?

Python is really easy to use, no complicated tools or setups, just write a
few lines of code and off you go. Really! In fact, you’ll have written
code that works before you finish this chapter!

Python’s creators worked really hard to create a language whose syntax
is really easy to read. Reading Python code is a lot like reading English.
Most other programming languages are far more complicated to read.
(Trust us on that one.)

Those syntax rules we mentioned before, the ones that frustrate most
beginning coders? Python’s syntax is one of the easiest of any
programming language, and we all like fewer rules, right?

Simple to use and having less rigid rules are great, but what really makes
Python so much fun to work with is all of the libraries it makes available.
We’ll discuss libraries later in the book, but for now, all you need to
know is that libraries are sets of code that other programmers have
written for you; just download them and use them. So, tasks that might
be complicated (for example, embedding Google maps and directions in
an app or detecting when a car hits an obstacle in a game) are so much
simpler. You don’t have to start from scratch—you get to build on top of
what other smart coders have kindly shared.

So we are going to learn Python together. But, as we explained before, what
we’ll learn are the concepts and techniques that are useful in all languages.
Once you’re done with this book, you will be able to apply your hard-earned
knowledge and expertise to whatever language you decide to use next.

 Python and Other Languages

As we noted earlier, different languages have different uses. Python is
great for general-purpose use, and it powers all sorts of websites, too.

But you’d not use it, for example, to build a mobile app, as there are
other languages far better suited to that task. That said, the techniques
you’ll master while learning Python will absolutely be relevant and
useful if, for example, you decide to use Java or Swift to create
Android or iOS apps, respectively.

Setting Things Up
Ok, enough talking. Let’s get things set up so you can start coding, and to do
that you’ll need two things: the Python language and an editor. And, yes, we
know there are quite a few steps, but you only have to do this once. Promise.

 Tip
Watch for the QR Codes All of the links and downloads referred to
below can be found on the book web page, at
https://forta.com/books/0137653573/ (or just scan the QR code at
right). You’ll find QR codes throughout the book, scan them for
downloads, tips, and more.

https://forta.com/books/0137653573/

Installing Python

Most computers don’t come with the Python language installed, so the first
thing you’ll need to do is to install Python (which is free for the download).
To do this:

1. Open your web browser and go to https://python.org.

2. Click on the Downloads link at the top of the screen.

 Using a Chromebook?
If you are using a Chromebook, you can still use Python, but the
installation steps are a bit more involved. You’ll find details on the
books web page by scanning this QR code.

3. You’ll be presented with an option to download Python. There are
different installers for Windows and Mac OSX and the download
screen should automatically show the right one (if not, click to select it
manually).

Download the latest version of Python (3.9 something while this book
was being written).

https://python.org

4. When the download has completed, double-click on the downloaded
file to run the installer. You should be able to just click all the default
options and the installer will do its thing.

 Tip
Using Windows? During installation, you might see a checkbox that
says something like Add Python to PATH. If you see this, be sure to
check this box; it’ll make things easier for you in the future.

When the installation has completed, you should have Python on your
computer ready to use. But, before we start coding, there are two more steps
needed.

Installing and Configuring Visual Studio Code

If you want to write a document, you need an editor like Google Docs or
Microsoft Word. If you want to create a video, you need a tool to capture and
edit video. Right? Coding is much the same—to write code, you need an
editor, which is an application you use to write and edit code.

There are lots of editors out there, and they let you create and open files, type
code, and save the files. Not very exciting, and so most coders use special
editors that do a whole lot more. These special editors are called IDEs (which
stands for integrated development environments). An IDE is an editor in that
it lets you open and edit and save files, but it also does other really useful
things. It can highlight errors in your code (not that you’ll ever make any), it
colors your code making it easier to read, and much more. So, yeah, you want
an IDE.

Python comes with a built-in IDE called IDLE, and it’s ok, kinda. It works,
but there are much better options. The one we like a lot is called Microsoft
Visual Studio Code (or VS Code, for short). That’s what we use, and we

recommend that you do, too.

 Visual Studio Code

VS Code is the little brother of Microsoft Visual Studio, which is a
paid for IDE. If you happen to have access to the full version of Visual
Studio, you are free to use that instead of VS Code.

 Using a Chromebook?

If you are using a Chromebook, you can use VS Code only if your
Chromebook supports Linux. For details on how to check for Linux
support and how to install VS Code on Chromebook, go to the book’s
web page by scanning this QR code.

Why do we like VS Code? Lots of reasons. It’s fast. It provides lots of built-
in help and syntax support. It supports all sorts of languages, including
Python. Oh, and it’s free. Thank you, Microsoft!

To install VS Code, follow these steps:

1. Open your web browser and go to https://code.visualstudio.com/.

2. Click on the blue Download button. Like before, there are different
installers for Windows and macOS, and the download screen should
automatically show the right one. (If not, click the down arrow next to
the Download button to select it manually.)

3. Download the latest version of VS Code (it’ll probably be called
“Stable Build”).

4. When the download has completed, double-click on the downloaded
file to run the installer.

5. If you are prompted with a checkbox that says Edit with Code, check
it. Other than that, you should be able to just leave all the default
options.

6. When the installer is finished, make sure Launch Visual Studio Code
is checked and click Finish. The installer will close, and VS Code will
start.

We’re almost done. Remember, VS Code supports all sorts of languages. We
are going to use it with Python, so the last thing we need to do is to let VS
Code know that. Once VS Code knows that we’ll be using Python, it may
install extra software so that we’ll have all the Python support we’ll need.

When VS Code starts, it shows a Welcome screen with links to tutorials,
files, and more. On the upper-left edge of the VS Code screen, you’ll see
these icons:

https://code.visualstudio.com/

You’ll use these icons extensively, but for now the icon we care about is the
bottom one. Click on it. This displays the Extensions panel. What are
Extensions? They are additional pieces of software that can be installed into
VS Code. That’s actually how VS Code can support so many different
languages. Each time you need support for a new language, you can just
install the right extension, and you’re good to go. The Extensions panel will
look something like this:

At the top of the Extensions panel is a section named INSTALLED. It’ll
probably have a 0 next to it, as no extensions are installed yet.

If the number next to INSTALLED is not 0, and if you see Python listed in
the INSTALLED section, then the Python extension is already installed.
Lucky you!

If the Python extension is not yet installed (it probably won’t be), then you’ll
need to install it. This is super easy to do. In the POPULAR section, you’ll
see Python listed. (Python is indeed very popular.) Just click on the blue
Install link to the right of Python, and you’ll see it get installed. Python will
now be listed in the INSTALLED section, and VS Code may display a new
Python Welcome page.

Creating a Work Folder

Programmers organize their code in folders. They usually have a main folder
for all of their projects, and create subfolders within it for each specific
project or application. So, let’s do that now.

Windows users

Windows users have a Documents folder, which is where all work gets
stored. This is a great place to store your code, too. Follow these steps:

1. Click the Windows button (usually at the bottom-left of your screen).

You should see a series of icons appear, like this (though the icons may
look a little different, depending on what version of Windows you are
using):

The top icon (the one that looks like a piece of paper with the corner
folded over) is the Documents icon. Hover your mouse over it, and it’ll
say Documents and you’ll know you have the right one.

 Using a Chromebook?
Chromebook-specific instructions can be found on the book web
page by scanning this QR code.

2. Click the Documents icon. This will open the Documents folder in
Windows File Explorer.

3. Look for the New Folder icon at the top of the window. It should look
like this:

4. Click the New Folder icon to create a new folder. You’ll see the new
folder created with a default name:

5. Change the folder’s name to Python and press Enter to save the new
folder.

That’s it, you’ve created a new folder. Well done!

Mac users

Mac users have a Documents folder, which is where all work gets stored.
This is a great place to store your code, too. Follow these steps:

1. Locate Finder (usually at the bottom of your screen):

2. In the Go menu, select Documents to open the Documents folder:

3. Now that Documents is open, you can create your new folder. From the
File menu, select New Folder:

A new folder is created:

4. Name the new folder Python and press Enter to save the new folder.

That’s it, you’ve created a new folder. Well done!

Writing Your First Python Program
We’re going to write a really simple program just to make sure everything is
working properly. To do that we’re going to create a work folder and then
write some code.

Selecting Your Work Folder

As you know, programmers organize their code in folders, which is why you
just created one. Now we need to tell VS Code to use your new work folder:

1. Let’s go back to the buttons on the top left of the VS Code window:

The top button opens and closes the Explorer panel, which is where you
can see all your files. Click that top button to show the Explorer (if it is
not already open).

As you’ve not yet told VS Code where your work folder is, you’ll see a
NO FOLDER OPENED display like this:

2. Click the Open Folder button, and you’ll see your regular (Windows
or Mac) file folder screen.

3. Navigate to the Python folder that you just created and then click the
Select Folder button.

You’ll now have an open folder with nothing in it:

VS Code now has a work folder, and we’re good to start coding.

It’s Coding Time!

Now let’s create a file and write some code. Remember the steps used to
create new files, you’ll be doing this over and over (starting right in the next
chapter):

1. Move your mouse over the PYTHON box in the Explorer on the left.
See those four icons to the right of the word PYTHON? The first one
creates a new file. Click it and name your file Hello.py. (The .py
extension is super important. Every Python file you create must have a
.py extension.)

2. Press Enter, and the file will be saved. You already know where the
Explorer panel is. The next part of the IDE screen you need to know
about is the most important one; it is the big box on the upper right,
that’s the editor, where you type your code. Your newly created file

should also automatically be open, ready for you to start coding. If it
isn’t, just double-click on it in the Explorer panel to open it.

3. Now to start coding, type the following exactly as shown here in the
editor part of the screen:

Let’s not worry about the code itself yet. Instead, notice that the file
name is shown above the editor. This is really important when you have
lots of files open—it’s how you can tell them apart.

4. The last important thing to look at is the green arrow above the code,
over on the top right. That is used to run your code. (If you hover your
mouse over the green arrow, the screen will say Run Python File in
Terminal. You can hover your mouse anywhere in VS Code to see what
buttons will do.)

 IDEs Are Awesome!

Notice how VS Code colors the code for you automatically, which
makes your code more readable. VS Code also points out errors if
there are any. For example, if you remove the second quotation
mark, you’ll see this (feel free to try this, but put the quote back
when you are done):

Red means bad! The filename turns red to let you know the file has
errors in it, and VS Code adds a red squiggly line in the code to
show you where the error is. See, IDEs are awesome!

 Executing Code
You may hear programmers talk about executing code. That’s not a
bad thing; no one is going to hurt the code. Execute is another word
for run, so if you execute code, you run it. Whew!

5. Click the green Run button, and Python will run your code. So when
you run your code, where do you see the results? The Terminal
window, which is right below the editor window. You told Python to
print (that means display) some text, and it does just that in the
Terminal window, like this:

If this text is displayed in the Terminal window, then it means that
Python is installed and working properly, VS Code is installed and can
talk to your Python installation, and you are ready to code.
Congratulations!

Summary
In this chapter, you learned what programming is, what programmers do, and
what Python is. You installed Python and Visual Studio Code (and got a short
tour of the latter), and wrote your first brilliant (ok, so maybe a little bit less
than brilliant) program. We’re now ready to really dive into coding with
Python.

Chapter 2
Mad Libs

Now that you are all set up, we’re going to dig into some real coding. In this
chapter, we’re going to start with an important topic, one that you will use in
every single program you ever write: variables. And to do that, you’ll also
learn about functions and create a simple game. Ready?

Understanding Functions
In programming languages, functions are bits of code that perform specific
tasks. You’ve actually seen one function already: the print() function you
used at the end of Chapter 1. And, as you saw, print() does just that, it prints
(or displays) text.

In Python, like in most other programming languages, functions are used by
referring to their name followed by parentheses. When programmers use
functions, they say that they are calling the function.

In Chapter 1, you called the print() function, like this:

That text that you told print() to print is called an argument, and arguments
always go in between (and). Programmers refer to this as passing
arguments.

How many arguments does a function accept? Well, that depends on the
function. Some functions accept no arguments, and others accept one or more
arguments, in which case these will be passed when calling the function. And
whether there are arguments or not, you always need the parentheses.

Let’s take a quick look at passing multiple arguments to a function. Create a
new file in VS Code. You already have one named Hello.py, so name the
new one Hello2.py.

Now that file Hello2.py is open, type this code in it:

 Your Own Functions

For now we’ll be using functions that come built into Python. In later
chapters, you’ll learn how to create your own functions.

 A Friendly Reminder, Just This Once

Need a reminder on how to create a file? In VS Code mouse over the
Explorer panel, then you can click on the New File icon above the file
names. Then you can just enter the file name and it’ll be opened ready
for you to edit. You can also use the File menu and select New File,
although if you create a new file this way, you’ll need to name it when
you save the file. Either way works. Just remember these steps as
you’ll be creating lots and lots of files. In the future, we’ll just tell you
“create a file named Hello2.py,” and you’ll know what to do.

When you are done, save the file (by selecting the File menu and clicking
Save), and run it (by clicking the green arrow above the code on the right).
You’ll see the results displayed in the Terminal window below.

Look at the print() statement you just used. It has two arguments this time,
and print() displays them both in the Terminal window. Yes, this is not that
useful an example. We know, you could have just typed this to get the same
results:

Click here to view code image

print("Yeah, this works! It really does!")

The reason we had you try it with the quotation marks and comma is to show
you something important. When you pass more than one argument to a
function, you must separate each argument with a comma. No comma is
needed if there is just one argument, but for two or more arguments, make
sure there is a comma between each.

So, to summarize, to use a function, you call it, and you pass arguments if
needed; and if you pass multiple arguments, make sure to separate each of
them with commas.

Using Variables
Ok, with that out the way, let’s move on to the main event: variables. These
are really important, so we’ll focus on them all the way until the end of this
chapter.

Imagine that you are sitting at a desk, working on a project. You’re working
with lots of information, so you have storage containers that are neatly
labeled so that you can put things you need to remember inside of them. Any
time you need to get the contents of a container, you just look at the name,
and you can access whatever is stored inside of it.

It’s a simple analogy, and it is exactly how variables work: You name a
variable and put information in it, and then you can get that information out
at any time.

Creating a Variable

Let’s try this. Create a new file named Hello3.py. (You don’t need to be
reminded how to do that anymore. You are a pro already.)

Then enter this code (putting your own name between the quotes, not mine):
firstName = "Shmuel"

This code creates a variable named firstName and stores the name you
specified in it.

Using a Variable

How do you use the variable you just created? You just refer to it by name.
Add this line to your code after the line that creates the variable:

print(firstName)

Now save your code and run it. You’ll see your name printed in the Terminal
window below.

Now let’s make it a bit more interesting. Update your code so that it looks
like this (again, use your name, not mine), and then save and run the code:

Click here to view code image
firstName="Shmuel"

print("Hello, my name is", firstName, "and I'm a coder!")

Okay, there are a few important things to note here.

Look how many arguments you’re passing to print(). There are three of
them. The first and last arguments contain text you typed. The middle one is
the variable firstName, but instead of printing firstName, Python prints the
information you stored in the firstName variable.

 Using Whitespace

You’ll notice that we added an extra line between the line that created
the variable and the line with the print(). This extra space is known as
whitespace, and it can make your code more readable. Actually, the
space after each comma in the print() function is also whitespace. All
whitespace is optional and ignored by Python, but it makes the code so
much easier to read.

Also, notice the code coloring. As we mentioned in Chapter 1, VS Code
automatically colors your code for you. Now, the truth is that code is just

text, and it doesn’t really have colors. But the colored code is really useful.
For starters, color makes the code much easier to read. But, more
importantly, because all functions are in one color, text in another color, and
variables in yet another color, you’ll spot mistakes quickly because the colors
will be off.

Some Important Variable Rules

Before we go further, there are a couple of important rules you need to know
about variables in Python:

A variable name can contain letters and numbers, but it can’t start with a
number. So pet1 is ok to use as a variable name, but 1pet is not.

You can’t have spaces in variable names. If you want multiple words in a
variable name, you can use mixed case (like we did here with firstName)
or use an underscore (first_name, for example).

And the most important rule to remember is that variable names are case
sensitive. What does that mean? It means that if you create a variable
named firstName, you can’t refer to it as firstname; they are not the
same because one has an uppercase character and the other does not. You
can try this if you’d like; change the print() statement so that it refers to
firstname instead of firstName. VS Code will realize that you’ve made a
mistake and will put a squiggly line under firstname:

If you mouse over firstname, VS Code will tell you “firstname” is not

defined, meaning you have tried to use a variable that doesn’t exist.

Aside from these rules, you are free to name your variables any way you
wish. And, in general, descriptive names are preferred. So firstName is a
great variable name because the name makes its use really clear. fn? That’s a
far less descriptive name. It could mean “free nachos”, “Fortnite”, “friendly
neighbors”… very confusing indeed. Using clear, descriptive names is one of
the hallmarks of a skilled developer (and you always want to look skilled,
right?).

Variables, More Variables, and Even More Variables

Take a look at this code? What do you think it does?

Click here to view code image
firstName="Shmuel"
firstName="Ben"

print("Hello, my name is", firstName, "and I'm a coder!")

 Variable Names Are Case Sensitive

Because variable names are case sensitive, you could actually create
multiple variables that only differ by case. For example, you could do
this:
FirstName="Shmuel"

firstname="Ben"

Word of advice: Don’t. Keep your variable names nice and distinct.
Doing so will prevent you from spending hours trying to figure out
why something isn’t working.

Actually, why don’t you try it? Modify your Hello3.py code so that

firstName gets set twice.

Save your code and run it. What is displayed? Does it do what you expected?

The first line, firstName="Shmuel", creates a variable named firstName and
puts the name Shmuel in it. The second line, firstName="Ben", doesn’t create a
variable, nor does it add "Ben" to the existing variable. Rather, it overwrites
the first value, replacing "Shmuel" with "Ben".

Ok, one last example. We’ll call this one Hello4.py (again, use your own
name, not mine):

Click here to view code image
firstName = "Shmuel"
lastName = "Forta"
fullName = firstName + " " + lastName

print("Hello, my name is", fullName, "and I'm a coder!")

Save the code and run it. What’s happening here?

Python processes the code one line at a time. So the first thing it does is
create a variable called firstName and store a value in it. The next line tells
Python to create a variable called lastName, and a value is stored in that
variable, too.

 Tip
Save As Can Save You Time Here’s a useful tip. File Hello4.py is
basically Hello3.py with some changes. You can create a new file and
type the code as you’ve done thus far. Or, when you have Hello3.py
open, use the File menu and select Save As to make a copy named
Hello4.py and then edit that.

 How Many Values Can a Variable Store?

As you can see, variables store one value at a time. Storing a second
value? That replaces the first one. One value at a time. But, there are
actually special types of variables that can store multiple values. You’ll
use these in future chapters.

The third line is interesting. It creates a new variable called fullName and
stores a value in it. What is the value? It is made up of three parts, all joined
together using + signs. It uses firstName, adds an empty space (that’s what "
" is), and then adds lastName. So if firstName is "Shmuel" and lastName is
"Forta", fullName will be "Shmuel Forta". And that’s what is used as the
second argument in print().

 New Term
Concatenation Joining variables together like this is called
concatenation. That’s a good word to use when you want to sound
really smart.

Getting User Input

You’re an expert at using print(), so now let’s introduce a new function. As
its name suggests, input() is used to ask the user to input something.

Create a new file named Hello5.py and type the following code:

Click here to view code image
name=input("What is your name? ")
print("Hello", name, "nice to meet you!")

Save the file and run it.

Your code will run in the Terminal window. It will display What is your
name? and will wait for you to type a response right there in the Terminal
window. When you respond and press Enter, the print() function will greet
you by name.

As you can see, input() accepts text to be displayed, just like print(). But
input() does something else, too: it obtains input from the user. Remember
that Python runs your code line by line. When it gets to an input(), it stops
processing, waits for the user to type something, and then continues. And
whatever the user typed at the prompt is provided for you to use. This is
called returning a value, and the value that input() returns can be saved to a
variable, as we are doing here. This way, the variable name contains whatever
the user typed in the Terminal window.

 Where’s the Variable?

Look at this line of code:
input("What is your name? ")

What do you think is wrong with it? Well, the code is actually valid.
Run it, and it’ll prompt for input. But this input() will prompt the user
to type something but not actually save it anywhere probably not what
is intended. That’s why we used name=input(), as that tells Python to
save whatever input() returns into name.

print(), on the other hand, doesn’t return anything, so there is never a
reason to assign it to a variable.

 Tip

Watch Where You Click When responding to an input() prompt,
make sure to click in the Terminal window before typing. Otherwise,
your cursor may be in the editor window, in which case you may edit
your code by mistake.

 Challenge 2.1

The only way to become Captain Code is to write code. The more
code you write, the better a coder you’ll become. The lessons and
examples we’ll study together are a good starting point, but you
really need to be writing your own code as well. So, throughout this
book, you are going to see Challenge sections like this one. These
sections will suggest things for you to try, based on the lessons
we’ve already studied together, but we’ll not be giving you the
solutions; those are all up to you. Don’t worry: we’ve made sure that
every Challenge is doable based on what you’ve already learned.

So, here is your first Challenge. Hello4.py created two variables,
firstName and lastName, and then combined them into a new
variable, named fullName. Modify that code so that it asks the user
for a first name and last name instead of using the hard-coded values.
Here’s a hint: You only need to change the first two lines of code so
that each line uses an input() function. Can you figure this one out?

Playing Mad Libs

If you’ve never played Mad Libs before, they are stories that change based on
provided words. You get prompted for words (a verb, a noun, an adjective,
and so on) which are inserted into the story, changing it in ways that can be
funny (or not).

Write Your Story

Let’s give it a try. We’ll start with a simple story displayed using our familiar
friend the print() function. You can use our story, or you can make up your
own. Actually, scratch that. You’re creative, so make up your own story.

Create a new file called Story.py and type your story using print() functions
like this:

Click here to view code image
print("I have a pet iguana named Spike.")
print("He is long, green, and lazy.")
print("Spike eats leaves, flowers, and fruit.")
print("His favorite toy is a small yellow ball.")

Save your file and run it. You’ll see the text displayed in the Terminal
window.

Add Variables

Now let’s make things a bit more interesting. We’ll replace one word in the
story with a variable, like this:

Click here to view code image
animal="iguana"

print("I have a pet", animal, "named Spike.")
print("He is long, green, and lazy.")
print("Spike eats leaves, flowers, and fruit.")
print("His favorite toy is a small yellow ball.")

 Mad Libs®

This is our take on Mad Libs. The real Mad Libs® is a registered
trademark of Penguin Random House LLC.

As you can see, we changed the first print(). Instead of displaying the type
of animal, it uses a variable and displays that instead.

Save and run your code. The output should be the same as it was before.

Yes, we know this isn’t that exciting. Yet. Let’s keep going. We’ll now
change lots of the text to use variables instead of hard-coded words. In our
example story, we changed 11 of them, like this:

Click here to view code image
animal="iguana"
name="Spike"
adjective1="long"
color1="green"
adjective2="lazy"
noun1="leaves"
noun2="flowers"
noun3="fruit"
adjective3="small"
color2="yellow"
noun4="ball"

print("I have a pet", animal,"named", name, ".")
print("He is", adjective1, ",", color1, ", and", adjective2, ".")
print(name, "eats", noun1, ",", noun2, ", and", noun3, ".")
print("His favorite toy is a", adjective3, color2, noun4, ".")

Make your changes and save your code.

Run the code, and it should look exactly as it did before.

One interesting thing to note is that the variable name is used twice in the
story. Once you create a variable, you can use it as many times as you need.

 Watch Your Quotes and Commas

Be careful with your quotes and commas. You’ll want quotes around
text but not around variable names. And be sure to separate all
arguments with commas. This is where color coding is super useful: If
things aren’t the right colors, then you’ve probably messed up a quote
or a comma.

Get User Input

Now that your story uses variables, changing it to display user-provided text
is easy. Simply change each variable to use an input(), just like we did
earlier in this chapter. Here is our example:

Click here to view code image
print("Hello, please answer the following prompts.")
print()
animal=input("Enter an animal: ")
name=input("Enter a name: ")
adjective1=input("Enter an adjective: ")
color1=input("Enter a color: ")
adjective2=input("Enter an adjective: ")
noun1=input("Enter a noun: ")
noun2=input("Enter a noun: ")
noun3=input("Enter a noun: ")
adjective3=input("Enter an adjective: ")
color2=input("Enter a color: ")
noun4=input("Enter a noun: ")

print("Thank you. Here is your story.")
print()
print("I have a pet", animal,"named", name, ".")
print("He is", adjective1, ",", color1, ", and", adjective2, ".")
print(name, "eats", noun1, ",", noun2, ", and", noun3, ".")
print("His favorite toy is a", adjective3, color2, noun4, ".")

You’ll notice that we added a print() at the top to provide some instructions.
We also used a couple of empty print() functions. Those add empty lines so

that the output is more readable.

Save the code and run it. You’ll be prompted for all of your inputs, and the
code will then generate a story. Each time you run the code, a new story will
be generated based on whatever inputs are provided.

Once you have tested your code, have a friend or family member give it a try.
They’ll be impressed with your coding skills.

 Challenge 2.2

Ready for your next Challenge?

Make your Mad Lib interesting by prompting for at least 15 different
words. And then personalize it. At the start, when you provide
instructions, ask the user for their name and then use that in the
instructions to create a more personalized experience.

Summary
In this chapter, you learned all about variables and how to use them. You also
mastered two functions: print(), which displays text, and input(), which
prompts for text. And then you put it all together to create a fully functional
app. Congratulations, you’re now a real coder!

Chapter 3
Roll the Dice

Now that you know how to use functions and variables, we’re going to make
things more interesting by introducing libraries and a whole lot of
randomness.

Using Libraries
We briefly mentioned libraries back in Chapter 1. You can think of libraries
as collections of code—usually functions (like the print() and input()
functions you’ve already used). Libraries are easy to use. You just tell Python
what library you need, and you get to use the functions in it. Simple as that.
Yes, someone else did the hard work, and you get to just use it. Nice, huh?

Python comes with lots of libraries included. There is one called datetime
that provides all sorts of functions for working with dates. math is used for
mathematical operations. There are libraries for working with files on your
computer, accessing Internet sites, working with cryptography, and many
more. And libraries can contain more than just functions, too, as you’ll see.

And if Python doesn’t have the libraries you need, they may exist online for
you to download and use. We’ll look at using 3rd party libraries (which
means libraries that come from someone else, as opposed to ones included
with Python) in Part III of this book.

The random Library

The first library we are going to look at is called random, and, as its name
suggests, it is used to add randomness to your code. Want to pick a random
number between 1 and 100? random can help. Creating a game and need
enemies to appear at random intervals and with random levels of health? You
use random for that, too. Even something as simple as simulating a coin toss
can be achieved by using random.

Ok, so how do you tell Python what library you want to use? You use the
import statement. Let’s try that. Create a new file named Random1.py and type
the following:

import random

 Get to Know PyPI

The official repository for Python libraries is called PyPI, which is
home to more than 300,000 libraries!

 The Truth About Random

Here’s the truth about computers and randomness: Computers can’t do
random things. They just can’t. Humans can, but computers like to
follow instructions methodically, and they have no idea how to do
things that make no sense or have no specific order. So, they can’t
really do random, well, anything. When computers appear to be doing
random things, they are actually relying on complex algorithms and
factors that constantly change (like the current date and time) to
simulate randomness. If that sounds complex, well, it kinda is. Which
is why we love libraries like random. You just use the library’s
functions and let the code inside the library do all the hard work for
you.

This code tells Python to import the random library. Save the code and run it.

What happened? Nothing? It may look like nothing, but something big did
happen. Remember, Python runs your code one line at a time. When it comes
to the line with the import statement, it goes and finds the random library and
pulls it into your code, ready for you to use it. And then you didn’t use it. But
that’s ok. Now you will.

Generating Random Numbers

Update your code, adding two more lines as shown here:

Click here to view code image

import random

num=random.randrange(1, 11)
print("Random number is", num)

Save the file and run it. And then run it again. And again. Run it a few times.

What happens? Each time you run your program, a random number is
displayed.

Let’s look at the code to understand what it is doing. You know what the first
line does: import random imports the random library. And you know what the
last line does: It prints some text and the random number.

 Put import Up Top

As a general rule, put your import statement at the very top of your
code, and all in one place. This will make it easy to see what you’ve
imported.

So let’s focus on the middle line. It calls a function named randrange(), you
pass it two numbers as arguments which define the range, and it generates a
random number between those two numbers. And whatever number gets
generated is saved in the variable num.

This code is similar to how we used input() earlier: You pass it arguments as
needed, and whatever gets returned is saved to a variable. But there is one
important difference this time.

Look at the code. The function is not called just by the name randrange().
Rather, the library name is included, too. random.randrange() tells Python to
use the randrange() function that is in the random library. This is important.
Skip the library, and Python won’t know where to find randrange().

You can try that if you want. Remove random. and save and run the code.
You’ll see that the VS Code puts a squiggly line under randrange(), and if

you mouse over it, it’ll say "randrange" is not defined. So, just remember
that the library name is needed.

Choosing a Random Item

Now you know how to generate random numbers. But what if you want to do
something else, like toss a coin? In that case, you’d want to randomly return
Heads or Tails, not a number, so randrange() wouldn’t be able to help you.
But worry not; you can do this by using another function in the random
library.

 Careful with Ranges

randrange(1, 11) returns a random number between 1 and 10. Why
10? The second argument, which is 11, means less than 11. It’s a bit
confusing because the first argument (the 1) is included in the range,
but the second (the 11) is not. This means that if you want a number
between 3 and 8, you’d use randrange(3, 9). The good news is that
this behavior is consistent with other Python functions, so you’ll get
used to it.

Create a new file named Random2.py and type the following:

Click here to view code image
import random

choices="HT"
coinToss=random.choice(choices)
print("It's", coinToss)

Save the file and run it. Each time you run the code, you’ll see It's H (for
Heads) or It's T (for Tails) displayed in the Terminal window.

So what is this code doing? You know what the first and last lines do.

The code choices="HT" creates a variable called choices and stores the text
"HT" in it.

The next line randomly picks H (for Heads) or T (for Tails). It does this by
using the choice() function, another function in the random library. Unlike
randrange(), which accepts a range of numbers as an argument, choice()
accepts a single argument with a list of choices. Here we pass it our choices
variable, which contains "HT", so choice() will return one of those options: H
or T.

Simple, huh?

Ok, so what if you want to display Heads or Tails instead of H or T? You can’t
just pass the text Heads and Tails as choices, like this:

Click here to view code image
choices="HeadsTails"
coinToss=random.choice(choices)

 Another Option

We could have written the same code without the choices variable.
How? By passing “HT” to choice() directly, like this:
coinToss=random.choice(“HT”)

In this example, the end result is the same.

Why? Because choice() will treat that as 10 options: the letter H, the letter e,
the letter a, and so on. You could end up with a returned value of i, not what
you’d want.

There are a few ways to do this. We’ll show you one option, using a special
type of variable.

You’ll recall from Chapter 2 that variables contain values. And we mentioned

then that there are special variables that can contain multiple values. We’ll
use these extensively in later lessons, but for now, here’s how we can use
these special variables to solve the Heads or Tails challenge.

Make just one change to your code. Edit this line:
choices="HT"

so that it looks like this:
choices=["Heads","Tails"]

Save the code and run it. Now the output will be It's Heads or It's Tails.

So what happens when you change that line of code? The [and] characters
are used to create a list in Python. A list is exactly what it sounds like: a list
of items. [10,20,33] would create a list with three items in it: the three
specified numbers. Similarly, ["ant","bat","cat","dog","eel"] would
create a list of five animals.

We’ll use lots of lists in future chapters, but for now just know that lists store
multiple items, and each item is separated by a comma.

Ok, now back to our code. choices=["Heads","Tails"] creates a list with two
items in it: the text Heads and the text Tails. We don’t have to change any
other code in this case because the random.choice() function is pretty smart.
Pass it some text, and it knows that you want a random character from that
text. But pass it a list, and it’ll know that what you want is one random item
from the list.

Perfect!

 Challenge 3.1

Ok, this one is a little harder, but you can do it, promise! See that list
with the five animals? Write code that creates two lists, one with
animals, like this:

Click here to view code image
animals=["ant","bat","cat","dog","eel"]

You can use your own list of animals, and you can have more than
five (the more the better).

Then create a similar list of adjectives, things like big, green, smelly,
cute, and so on. (Again, the more, the better. And it doesn’t matter
whether or not your two lists have the same number of items.)

Then pick a random adjective and a random animal and save each to
a variable. (You’ll need two variables: one for your animal and one
for your adjective.) Then print() the choices so that the output is
something like I have a cute eel. Each time you run the app, you’ll
get a different combination.

“3” Is Not 3
Before we go further, there’s an important topic we need to discuss. Did you
notice any differences in how we type variable names’ values? Here’s a
reminder: these are all snippets of code that you’ve already used:

Click here to view code image

lastName = "Forta"
fullName = firstName + " " + lastName
name=input("What is your name? ")
num=random.randrange(1, 11)
choices=["Heads","Tails"]

As you can see, sometimes we put double quotes around values and
sometimes we don’t. Why do we do this?

The reason is because you need quotes to mark a block of text (what coders
call a string). Numbers don’t need quotes around them. Python knows that 1
and 11 are numbers, and they can’t be anything else. But lastName? It could
be text, or the name of a variable (or even the name of a function), and it’s up
to the coder to specify what it is. Same for Heads, sure, it could be a string,
but it also could be something else. Computers don’t like ambiguity. Things
need to be spelled out clearly. So, when you use text and want it to be treated
as plain text, then you must surround it with double quotes.

So, to summarize:

Variables never have quotes around them.

Numbers never have quotes around them.

Strings always need quotes around them.

Ok, so let’s make this interesting. Is "3" a number or a string? And can you -
multiply it by 5?

Well, to us humans that’s an easy one. Yes, "3" is a number, and if you
multiply it by 5, you’ll get 15. But Python doesn’t know that "3" is a number;
it sees the quotes and assumes that it is a string.

So what would happen if you told Python to multiply "3" by 5? This is going
to sound crazy, we know, but you’d get "33333"! It would multiply the string
(essentially adding 5 copies of it) instead of the number in the string.
Seriously!

 Strings Need Quotes

If you forget to use quotes around a string, Python will assume that you
are referring to a variable, and it will display an error message, telling
you the variable doesn’t exist.

 Testing "3" Versus 3

Want to try this for yourself? In Python, * (asterisk) is the
multiplication symbol. You can create a file and print(3 * 5) and then
print("3" * 5) to see the difference in output. You will see that "3" *
5 concatenates five copies of the string "3".

 Python Makes Variables Easy

In most languages, you must tell the computer what data type you want
when you create a variable. Python is nice that way: It figures it out for
you based on the values you provide.

 You Can Convert Between Data Types

In future lessons, you’ll learn how to convert data from one data type
to another so that you can, for example, convert string “3” to number 3.

And now you have been introduced to data types. What is a data type? It is
simply the type of information that a variable can store. There are lots of data
types, but the two you’ll use the most are string and numeric. num=11 creates a
variable named num with a numeric data type. lastName = "Forta" creates a
variable named lastName with a string data type.

So, are “3” and 3 the same? The answer is no. The first is a string, and the
second is a number, and though they look the same, their data types are
different.

Commenting Your Code
There’s one last important topic we need to cover before we get to our final
example in this chapter.

All of the code you’ve written thus far has been pretty simple—just a few
lines. But as you work through the lessons in this book, you’ll be writing
tens, even hundreds, of lines of code. To make their code easier to read and
understand, coders put comments in their code.

How do you add comments? Like this (an example we saw before, but this
time with comments added):

Click here to view code image
Import needed libraries
import random

Define the choices
choices=["Heads","Tails"]

Pick a random choice
coinToss=random.choice(choices)

And display it
print("It's", coinToss)

In Python, comments start with a # symbol. VS Code displays comments in
their own color, making it super easy to identify them.

It is important to understand that Python completely ignores comments.
When Python sees a #, it ignores anything that comes after it. The comments

are for you, the coder, not for Python.

Commenting may seem like a waste of time. But take it from us: It is really
important, and good coders comment all of their code. Why?

Comments will help you read your own code.

Comments will remind you of what you did and why.

Comments help others understand what your code does.

Comments make it easier for other coders to understand and work on
your code.

Comments can explain any assumptions or dependencies, things that are
needed for your code to work.

And comments serve another important purpose: They can be used to hide
code. For example, earlier you made a change to your code, changing
choices="HT" to choices=["Heads","Tails"]. That was a pretty simple edit,
but imagine if it was a more complicated one. You might want to keep the
old version while you test the new one. Look at this code:

Click here to view code image
Import needed libraries
import random

Define the choices
choices="HT"
choices=["Heads","Tails"]

Pick a random choice
coinToss=random.choice(choices)

And display it
print("It's", coinToss)

Notice that the original line choices="HT" is still in the file. It wasn’t deleted
or edited, instead it has a # in front of it. That turns the line into a comment so
that it is ignored by Python. Want to go back to the prior version? Remove
the # symbol from the line and put it in front of the next line; that way, the
second choices line becomes a comment instead.

Coders call this commenting out code, and it’s an invaluable technique to use
when revising or testing code.

 New Term
Commenting Out Using comments to temporarily hide code,
preventing it from being executed.

Ok, so from now on all of our code will be commented.

One Die, Two Dice
Let’s look at one last example to review everything we learned so far.
Actually, let’s make it two examples.

You’ve rolled dice before; lots of games need them. Dice are cool, but
computer dice are way more fun. So we’ll create two programs: one that rolls
a single die and another that rolls two.

Here’s the code for Dice1.py:

Click here to view code image
Imports
import random

Roll and print
print("You rolled a", random.randrange(1, 7))

This one is pretty simple, and it’s all code you’ve seen before. Save and run
the code. You’ll see a number between 1 and 6 (remember, the 7 won’t be
included in the range).

The only real difference here is that the number returned by random.-
randrange() is never saved to a variable. Instead, it is passed directly to
print() as an argument.

Run this program whenever you need to roll a single die.

 Do You Need a Variable?

What is the difference between this code:

Click here to view code image
import random

print("You rolled a", random.randrange(1, 7))

and this code?

Click here to view code image
import random

num = random.randrange(1, 7)
print("You rolled a", num)

Functionally, there is no difference between these. Both generate a
random number and then display it.

The first version generates the random number right inside of the
print() statement. The return value (the number that randrange()
generates) is what gets passed as an argument to print().

The second version generates a random number and saves it to a
variable named num. It is the variable that gets passed as an argument to
print().

The final printed result is the same. The difference is the variable.
That’s it.

So which version should you use? In this situation, there is no
advantage of one version over the other. The difference would only be
important if that random number were needed for some other purpose,
maybe another print() or in some calculations. Then you’d definitely
want to save the generated number to a variable so that you could reuse
it.

But what about when you need to roll two dice? You could run the program
twice and add the numbers yourself. But, nah, that’s not what we coders
would do. We’d write another program to roll two dice.

This is the code for Dice2.py:

Click here to view code image
Imports
import random

Roll both dice
die1=random.randrange(1, 7)
die2=random.randrange(1, 7)

Display total and individual dies
print("You rolled", die1, "and", die2, "- that's", die1+die2)

Run the code, and you’ll see the values of both dice displayed, along with
their sum.

This code should be self-explanatory to a print() and random expert like you.
It creates two variables, and each contains the value for a rolled die. The
print() statement simply displays the values and then does this:

die1+die2

This is a simple math operation: die1 and die2 are added together, and what
gets printed is their sum. Yes, Python can do math on-the-fly.

 The + Operator

What does + do? Well, it depends on the data type. In our dice rolling
code, die1 and die2 are both variables with a numeric data type. As
they are numbers, when you use die1+die2, Python knows that you
want to add them.

But if the variables were strings and you used the + operator, Python
would concatenate them (as a mathematical addition on strings would

make no sense).

Python is smart this way: It tries to figure out what we coders intend to
do, and it does that for us.

This seems like a good place to review the math operators you can use in
Python:
+ The addition operator, so print(5+5) will display 10.
- The subtraction operator. print(12-7) will display 5.
* You saw this one earlier in this chapter: It’s the multiplication operator, and
print(10*3) will display 30.

/ The division operator. print(10/3) will display 3.333 (there will be a lot
more 3’s than this).

/
/

This is also a division operator, but this one returns just the whole number,
not the remainder. print(10//3) will display 3.

% The modulus operator, which is used to get the remainder from a division,
so print(10%3) will display 1.

Obviously, these operators can be used in all sorts of code and functions. The
print() statements used as examples here are to help you try the operators, if
you are so inclined.

So, why did we use variables to store the dice values in Dice2.py but not in
Dice1.py? Well, truthfully we could have used variables in both. But
variables are only needed if the value is to be used more than once. In
Dice1.py, the value is used only once—when it is displayed—so a variable
could have been used but isn’t truly necessary. In Dice2.py, the dice values
are used twice—once when they are displayed and once when they are
summed to get their total—and so saving the rolls to a variable is required.

 Challenge 3.2

Most dice we use have 6 sides, but some games use dice with more
sides. And, actually, ancient Greeks and Romans used dodecahedron
shaped dice, which have 12 sides! So, just in case you ever run into
an ancient Greek or Roman, write code that rolls a 12-sided die.

Summary
Wow, you covered a lot in this chapter! You learned how to use libraries, and
specifically the random library and two of its functions. You learned about
data types. And you also learned about commenting your code. Next we’ll
look at teaching your code to make decisions.

Chapter 4
Calculate the Day

You now know how to use variables, functions, and libraries. Next up is one
of the most important coding tools you’ll need: teaching the computer how to
make decisions.

Working with Dates
As you have seen, Python processes your code line by line, one line at a time.
It starts at the top of a program, and for every line that isn’t a comment, it
does whatever you have told it to do.

And that’s rather boring. If every program written were executed line by line,
then every program would do the exact same thing each time it was run.
Imagine a website that showed the same content in the same order every
single time you visited. Or a game that only ever allowed you to do one thing,
and then one more thing, and then one more, always in the same order. Or a
chat app that only ever let you enter the same one message to be sent. See
what we mean? Boring!

Obviously, any useful programs must be capable of doing lots of different
things in lots of different sequences. Which means that you, as the coder,
need a way to tell the computer how to make decisions.

Which brings us to the critically important if statement, the focus of this
chapter (and the next).

The datetime Library

Mathematicians love impressing people with a neat trick where they ask
someone for their birthday and then, in a few seconds, tell them which day of
the week they were born on. When they do this, they aren’t guessing (if they
did, they’d statistically get it right a mere seventh of the time, and that
wouldn’t impress at all). They figure it out using math that they do quickly in
their heads.

We could learn how to do this just as mathematicians do. But, nah, we’re
coders. We can impress with our coding skills and make the computer figure
it out for us.

To do this let’s look at another built-in Python library, the datetime library.

As its name suggests, this library lets you do all sorts of things with dates.
What type of things?

Getting the current date

Figuring out future and past date details (like their day of the week)

Calculating the difference between two dates (which is actually quite
tricky when you have to take into account different month lengths and
leap years)

Oh, and it does all the same things for times, too.

 The datetime Library

Part of the reason we picked the datetime library as our next library
example is that it is really useful. Also, it works a little differently from
the last library we used, random, and it’s good to experience lots of
different libraries.

Create a new file named Date1.py. Here is the code to type:
Imports
import datetime

Get today's date
today=datetime.datetime.now()

Print it
print("It is", today)

Save and run the program, and it’ll display the current date and time,
including milliseconds (really useful, we know).

You know what the import and print() lines do, so let’s focus on that middle
line, which, admittedly, looks a little strange.

The code today=datetime.datetime.now() gets today’s date and saves it to a
variable named today. now() is obviously the function that returns the date
and time right now. And unlike the functions you’ve used thus far, this one
doesn’t need any arguments. The parentheses are still needed. Any time you
call a function, you must provide the parentheses, but you can just leave them
empty, with no argument, so nothing in between (and).

But what’s up with the datetime.datetime? Why couldn’t we just use
datetime.now() like we did with the random library functions that we used in
Chapter 3?

 Functions Versus Variables

Just remember that when functions are being executed, they are always
followed by parentheses. Variables are not followed by parentheses.

The first datetime is indeed the library name. It matches the library referred
to in the first line of code: import datetime.

The second datetime is not a library or a function. It’s actually something
called a class. We’re going to look at classes in detail in Part II of this book,
where you’ll be creating classes of your own. For now, you just need to know
that a class is a way programmers can organize their code so that functions
and pieces of information can be stored together in one place. Classes have
functions in them that you can call, just like any other functions.

 New Term
Methods Functions in a class are called methods. But they are still
functions, just like the ones you’ve seen thus far.

The datetime library has a class in it named datetime. (Yeah, we agree: It
would have been simpler if they weren’t named the same!) So, datetime is
the imported library, and datetime.datetime refers to the datetime class
inside of the datetime library. Whew!

And then now() is the function (in datetime) that returns today’s date and
time, which is then saved in the today variable.

 The type() Function

In Chapter 3, we mentioned data types. So, what is the type of the
today variable that you just created? It is not a string or numeric type.
The type is actually a datetime class.

If you ever want to know the type of a variable, you can use the Python
type() function. All type() does is look at the variable so that it can
tell you what it is via a return value. type(3) will return int (for
integer) because 3 is a number. type("3") will return str (for string).
And type(today) (the variable you created above) will return type
datetime.datetime.

We’ll look at types (and the type() function) in greater detail in future
chapters.

Using the datetime Class

In our first example in this chapter, we just printed whatever was in the today
variable. But because today is a class, it actually has lots of data and
functions inside of it that you can use.

Let’s try another example. Create a file named Date2.py, this is the code:

Click here to view code image
Imports
import datetime

Get today's date
today=datetime.datetime.now()

Print today's year, month, and day
print("The year is", today.year)
print("The month is", today.month)
print("The day is", today.day)

Save and run the code, and it will display the current year, month, and day,
each on its own line.

today.year means the year value inside of the today class. Same for month
and day.

As you have seen, today contains lots of information. Earlier we printed the
whole today variable (without any specific item in it), like this:

print("It is", today)

Here Python does us a favor and displays it all in a default readable format.
But doing this is not recommended, and in general, you’re better off
displaying each item you need so that you have more control over the output.

 Methods Versus Properties

Why no () after year, month, and day? Because those are not functions
(well, methods). They are pieces of data that you can use, kind of like
variables inside of the class. These are actually called properties. We’ll
look at properties (and methods) in Part II.

You don’t use parentheses when you refer to properties; you do when
you use methods (again, functions). You’ll see an example of this soon
when we use weekday() (which is a method).

 Challenge 4.1

Modify Date2.py to also display the current time. The properties you
want are called hour and minute.

Making Decisions
Now that you know how to use dates, let’s return to our main topic, if
statements, and using these to help your computer make decisions.

The if Statement

We know that you’d love to spend every waking moment coding. But you
have other responsibilities, things like school. Right? So, let’s write a
program that figures out what day of the week it is and then displays a useful
message for different days. Obviously, this is going to require the computer
to make a decision. It can’t just go line by line and print stuff; it has to do
different things depending on the day of the week.

Create a new file named Date3.py and type the following:

Click here to view code image
Imports
import datetime

Get today's date
today=datetime.datetime.now()

Display the right message for different days of week
if today.weekday() == 6:

 print("It's the weekend, no school today!")
 print("We can code all day long!")

Save and run the code. What happens? Well, if you happen to be running this
on a Sunday, you’ll see a message displayed (the two print() statements).
But if it is any other day of the week, you’ll see nothing at all.

The magic here is this line:
if today.weekday() == 6:

if is used to create a condition that goes after the word if and before the
closing colon (the : symbol). The today.weekday() method returns the day of
week, 0 for Monday, 1 for Tuesday, and so on. This condition is pretty
simple: It tells Python to call the weekday() method inside of today and then
compare what it returns to the number 6 (which means Sunday). So what this
is saying is if today is Sunday.

Pay special attention to what is between weekday() and 6. That’s two equal
signs, not one. == means check to see if two things are equal. It is not the
same as =, which saves a value to a variable, as we have seen previously.

The condition passed to an if statement must be one that resolves to True or
False. Here, if today is indeed Sunday, then the condition is True. If not, then
it’s False.

 Python’s Weird Week

The Python week starts on Monday. Yes, Monday is the first day of the
week, and Sunday is the last.

And, just like pretty much every programming language out there,
Python starts counting from 0. If you have a list of items, for example,
they are numbered 0, 1, 2, and so on. The first item is in position 0, not
1.

Put both of these points together, and this means that 0 is Monday, 1 is

Tuesday, and so on. This means that 5 is Saturday, and 6 is Sunday.

 = Versus ==

= and == are not the same, and many programmers have spent hours
trying to figure out why their code is broken, only to discover that they
used = when they meant == or vice versa. So, to be super ultra mega
clear:

= is the assignment operator, and it assigns a value, meaning it saves
whatever is on the right of = into the variable on the left. The code x
= 3 creates a variable named x and stores the number 3 in it.

== is the equality comparison operator, meaning it is used to compare
two things. The code x == 3 checks to see if the variable x has a
value of 3.

Don’t confuse them!

 Be Careful with Indentation

Be careful with your indentation. If the prior code had looked like this:

Click here to view code image
if today.weekday() == 6:
 print("It's the weekend, no school today!")
print("We can code all day long!")

then the first print() would be executed if today is Sunday, but the
second print() statement would always print for every single day of
the week. Why? Because the second print() is not inside of the if
statement, it’s just a regular Python line of code that always runs.

How does Python know what code you want to run if the condition is True? It
looks for any code indented under the if statement, and whatever is indented
will get processed. When Python encounters a line that is not indented, it
knows that it is done processing the if statement.

What else?

We now have code that prints a message for Sunday. If today isn’t Sunday,
Python prints nothing. Let’s fix that now. Here is the updated code, which
adds two lines to the bottom:

Click here to view code image
Imports
import datetime

Get today's date
today=datetime.datetime.now()

Display the right message for different days of week
if today.weekday() == 6:
 print("It's the weekend, no school today!")
 print("We can code all day long!")
else:
 print("It's a school day.")

Save and run the code. It’ll now display the first two print() statements on -
Sunday and the last one on any other day.

else is used to define code that should run if the if statement is False (in our
case, not Sunday). else doesn’t need a condition; it’s just else: (with the
colon after it). And then whatever is indented next will get executed when the
if condition is False.

if Revisited

There’s a problem with our if statement. It only checks to see if weekday()
returns 6 (Sunday). What about Saturday (that would be a 5)?

Let’s rewrite the if statement to test for both Saturday or Sunday. Here’s the

updated code; only one line has changed, the if statement:

Click here to view code image
Imports
import datetime

Get today's date
today=datetime.datetime.now()

Display the right message for different days of week
if today.weekday() == 5 or today.weekday() == 6:
 print("It's the weekend, no school today!")
 print("We can code all day long!")
else:
 print("It's a school day.")

Save and run the code.

So, what changed here? The revised if statement has a condition with two
parts as it checks for two things: weekday() returning 5 (Saturday) or
weekday() returning 6 (Sunday). The or means that either of the tests must be
True for the if statement to be True (and the code indented beneath it to be
executed). Now the correct messages (the first two print() statements) are
displayed for both Saturday and Sunday.

When providing multiple tests to an if statement, you always connect them
using and or or. What’s the difference? Let’s look at some examples of
conditions (and we’ll use English rather than code):

If
lunc
h is
pizz
a
and
dess
ert
is
ice
crea
m

When would this be True? Only if lunch is indeed pizza and dessert is
indeed ice cream. Both condition parts must be True for the whole
condition to be True. If lunch is not pizza, then it doesn’t matter if
dessert is ice cream or not; either way, the condition is False. The and
means that the whole condition will be True only if every single part of
the condition is True. It’s all or nothing.

If it
is
Sund
ay
or
scho
ol’s
out
for
vaca
tion

When would this be True? Here the condition uses or to join the two
parts, not and. So either of the two parts needs to be True for the overall
condition to be True. If it is Sunday but school is not out, then the
condition will be True. Similarly, if school’s out but it is not Sunday,
the condition will also be True. And what if it happens to be a Sunday
while school’s out? That’ll make the condition True, too. When using
or, if any of the individual parts are True, or if they all are True, then
the condition is True. An or condition will only be False if all the parts
are False.

If it
is
Mon
day
or
Tues
day
or
Wed
nesd
ay

When would this be True? There are three parts in this condition, with
or between each part. This condition will be True if it is Monday or if it
is Tuesday or if it is Wednesday. If any of the three parts are True, then
the overall condition is True.

Our code uses two tests, each testing for equality (meaning what is on the
right and left are equal to each other). Here is a summary of the tests you can
perform:
=
=

Tests for equality, as you saw above.

!
=

Tests for non-equality, meaning the two are not the same, which is the
exact opposite of ==.

>Tests for greater than. It will be True if the left value is greater than the
right value.

<Tests for less than. It will be True if the left value is less than the right
value.

>Tests for greater than or equal to. It will be True if the left value is greater

= than the right value or if it is the same as the right value.
<
=

Tests for less than or equal to. It will be True if the left value is less than the
right value or if it is the same as the right value.

 Don’t Confuse and and or

Obviously, and makes no sense in our example, as there would never
be a day that is both Saturday (5) and Sunday (6). And if you did use
and here, like this:

Click here to view code image
if today.weekday() == 5 and today.weekday() == 6:

the statement would always evaluate to False because no day can be
both Saturday and Sunday. That’s why we use or here. We’ll be using
and a lot later in this chapter.

There are other tests that you can perform, we’ll see one in a moment,
actually. But the ones in this table are the ones you’ll use most.

Testing for Other Options

So, if tests for a condition, and if the test is True, then the code indented
beneath the if will be executed. else provides the code that gets executed if
the if statement is False (not True).

What if you wanted to test for other conditions? For example, our code
displays one message for Saturday and Sunday and another for every other
day. What if you wanted a special message just for Friday? For that, you can
use elif (which is short for else if).

Here’s an example. It’s our same code with two lines added between the if
block and the else block:

Click here to view code image
Imports
import datetime

Get today's date
today=datetime.datetime.now()

Display the right message for different days of week
if today.weekday() == 5 or today.weekday() == 6:
 # Display this on Saturday and Sunday
 print("It's the weekend, no school today!")
 print("We can code all day long!")
elif today.weekday() == 4:
 # Display this on Friday
 print("It's Friday, tomorrow we'll have tons of time to
code!")
else:
 # Display this every other day
 print("It's a school day.")

Save the code and run it. Now it displays one message for Saturday and
Sunday, another for Friday, and another for all other days.

So what changed here? Well, for starters, there are some more comments, just
to keep things very clear.

But the important change is the addition of the elif line:
elif today.weekday() == 4:

This line is another if statement, but as it is an elif, it is only called if the
first if is False. The code tests for weekday() returning 4, meaning Friday. If
that test is True, then the code indented beneath the elif is executed.

if, elif, else…let’s review:

If you are writing code to test for stuff, you always start with the if
statement.

If you want additional tests, you can use elif. elif is always optional, so
you can have no elif, or you can have lots of elifs—as many as you
need, actually.

If you want code that gets executed if none of the if or elif tests are
True, then you use else. else is optional; it is never actually needed.
else doesn’t have a condition, it’s just else, that’s it. If you do use else,
then you can only have one, and it must be the last statement in the
sequence.

Using in

Before we move on, we want to show you another way to test for one of
multiple values. Let’s look at the first if statement again:

Click here to view code image
if today.weekday() == 5 or today.weekday() == 6:

As you know, this if statement tests for two things, and either one can be
True for the whole if statement to be True.

There are two tests, and both are comparing values to the same thing. First
we check to see if today.weekday() is a 5 and then we check to see if
today.weekday() is a 6. As both tests are comparing values against
today.weekday() we can write the if statement another way.

Look at this if statement:
if today.weekday() in [5,6]:

You saw [] used in Chapter 3; it creates a list of items. Here we’ve created a
list of two values, 5 and 6. Python lets us use a special test called in, and it
returns True if the value we are looking for is anywhere in the list. So, if
today.weekday() is 5 or 6, then it is in the list, and the test will return True. If
today.weekday() is any other value, it won’t be in the list, and the if
statement will return False.

Neat, huh? If you’d like to try this, just replace the if statement in your code
with this revised one.

So, two ways to accomplish the same task. You can use either technique: in
or the or operator. It’s really a matter of personal preference.

Beating the Mathematician

You’ve now learned everything you need to write a program that will ask the
user for their birthday and then tell them what day of the week they were
born. And as for raw speed? You’ll beat the mathematician every time!

Handling Numeric Inputs

But, before we proceed, there’s one more thing we should point out. Look at
this code:

Click here to view code image
year = input("What year were you born? ")

You know what this does. It asks the user for some input and then saves it to
a variable named year.

But, there’s the problem. As we saw in Chapter 3, strings and numbers are
not the same thing. input() always returns a string. If the user types 2011 as
the year, the year variable will be the string "2011", but we need it to be the
number 2011 (as that is what datetime wants numbers, not strings).

We’ll spend more time looking at data types and how to convert between
them in later chapters. For now, just know that there is a wonderful function
called int(). You pass it a string containing a number, and it returns that
number as an actual number. So, this code:

year="2011"

stores the string "2011" to year, but this code:
year=int("2011")

stores the number 2011 to year (the string "2011" is converted to a number).

Putting It All Together

And with that, let’s write our program. Create a file named Birthday.py. Here
is the code:

Click here to view code image
Import
import datetime

Get user input
year = input("What year were you born? ")
year = int(year)
month = input("What month were you born? ")
month = int(month)
day = input("What day were you born? ")
day = int(day)

Build the date object
bday = datetime.datetime(year, month, day)
Display the results
if bday.weekday() == 6:
 print("You were born on Sunday")
elif bday.weekday() == 0:
 print("You were born on Monday")
elif bday.weekday() == 1:
 print("You were born on Tuesday")
elif bday.weekday() == 2:
 print("You were born on Wednesday")
elif bday.weekday() == 3:
 print("You were born on Thursday")
elif bday.weekday() == 4:
 print("You were born on Friday")
elif bday.weekday() == 5:
 print("You were born on Saturday")

Save and run the program. It will prompt you for a year, month, and day and
will then tell you what day of the week you were born on.

So, how does this work?

We need the datetime library, so we start with import datetime.

Then we ask the user to enter a year, month, and date. Look at these two
lines:

Click here to view code image
year = input("What year were you born? ")
year = int(year)

The first is an input(), it’ll prompt for a year and save what the user types as
a string in the variable year.

The second line then converts that string year value to a number by using
int() and saves it to the same variable (overwriting the string year with a
numeric year).

We could have actually combined those lines into one, like this:

Click here to view code image
year = int(input("What year were you born? "))

Here int() surrounds the whole input() function, and so it converts
whatever input() returns and saves that to the variable. The end result is the
same as when these two functions are executed independently.

Now that we have the year, month, and date, we need to use them to create a
Python date. Earlier you saw that this code creates a Python date with today’s
date in it:

Click here to view code image
today=datetime.datetime.now()

How can we create a date using our variables? Instead of using now(), we just
pass the year, month, and date values to datetime, like this:

Click here to view code image
bday = datetime.datetime(year, month, day)

This way, bday contains our Python date, ready to use.

Then come the if and elif statements, which are much like the ones you saw
before:

Click here to view code image
if bday.weekday() == 6:
 print("You were born on Sunday")
elif bday.weekday() == 0:
 print("You were born on Monday")
elif bday.weekday() == 1:
 print("You were born on Tuesday")

We are checking Sunday, then Monday, then Tuesday, and so on. So first
comes an if statement (it checks for Sunday) and then a series of elif

statements (for all the other days). We won’t repeat them all here as they
should be self-explanatory.

 What About else?

There’s no else in this if block? Why? Well, there are only seven
possible day-of-week options. That’s all weekday() can return, nothing
else. And we handled all seven in our if and elif statements. We
could have included an else, but it would never ever be executed, so
why bother?

Remember, else is always optional.

An Alternate Solution

One last thought: In our code, we have seven print() statements, one beneath
each if and elif. If you only want a single print() statement (so that you
don’t repeat the same display text over and over), you could have done this
(this would replace the if block currently in the code):

Click here to view code image
Calculate the day of week
if bday.weekday() == 6:
 dow="Sunday"
elif bday.weekday() == 0:
 dow="Monday"
elif bday.weekday() == 1:
 dow="Tuesday"
elif bday.weekday() == 2:
 dow="Wednesday"
elif bday.weekday() == 3:
 dow="Thursday"
elif bday.weekday() == 4:
 dow="Friday"
elif bday.weekday() == 5:
 dow="Saturday"

Display the results
print("You were born on", dow)

There are always multiple ways to write code. In this version, the if
statements don’t display anything. Instead, each of them stores a day in a
variable called dow (for day of week). Then that dow variable is used in a
single print() statement. Same result, slightly different way to organize your
code.

Summary
In this chapter, you learned one of the most important parts of any
programming language. The if statement is used to make decisions, and
we’ll continue to look at if in the next chapter.

Chapter 5
Rock Paper Scissors

In Chapter 4 you learned how to use if statements to create conditions. This
is a really important topic, so we’re going to dedicate one more chapter to it,
this time creating the game of Rock, Paper, Scissors.

More Strings
We’ve used lots and lots of strings in these past few chapters. As a reminder,
strings are simply blocks of text. Code like this should be very familiar by
now:

name="Ben"
print(name)

In this example, name is a variable; specifically, it’s a string.

But, now that you’ve seen classes (such as the datetime class in the last
chapter), we’ll let you in on a secret: That name string is actually a class, too;
it’s a str class. If you run code like this:

name="Ben"
print(type(name))

you’ll see that the variable name is of type str (that’s what Python calls the
string class).

And, as you know, classes have methods that you can use.

Here’s something fun you can try: Open a new file, let’s call this one
StringTest.py, and type the following (use your own name, not mine…
unless your name happens to be Ben, in which case, awesome name, use it):

name="Ben"
name=name
print(name)

Yep, that middle line of code is rather useless: It sets name to whatever name -
currently is.

But try this. Add a . (a period) after the last name and wait a moment. You’ll
see VS Code pop up a display like this:

name is a string, which is actually a str class, right? When you type the
period, VS Code helpfully shows you all the methods (remember, methods
are functions) available to you. And as you select any method, you’ll see help
to its right telling you what it does.

Let’s try a couple. Change the middle line so that it looks like this:
name=name.upper()

Save and run the code. You’ll see that the value in name has been converted to
uppercase. That’s what the upper() method does. There’s also a lower()
method, which converts text to lowercase. And there’s a really useful method

called strip() that removes (strips) any extra characters from before and
after text.

If you want to convert your text to uppercase and also strip all extraneous
empty space, you can use both functions:

name=" Ben "
name=name.upper()
name=name.strip()
print(name)

Here, name starts off as Ben (with a space before and after the text). The next
line turns it into BEN (still with those spaces). The next line removes the
spaces.

 Tip
Stripping Whitespace There are actually three different methods for
stripping (removing) extraneous text. rstrip() strips extraneous text
from the right side of a string (meaning at the end of the text).
lstrip() strips text from the left of a string (meaning at the start of
the string). strip() is basically a combination of rstrip() and
lstrip() that removes spaces from both ends of a string.

And, actually, Python lets you use these functions stacked on each other.
Look at this code, which is functionally the same, but both methods are in
one line:

name=" Ben "
name=name.upper().strip()
print(name)

We’ll use these methods in our game.

Game Time
Now that you know how to use if statements, let’s create our Rock, Paper,
Scissors game. This is usually a hand game played between two people, in
which each player simultaneously forms one of three shapes with an
outstretched hand. Rock beats scissors, scissors beats paper, and paper beats
rock. We’ll create a computer version of this game, where you’ll pick one of
the three, as will the computer, and you’ll see who wins (or if it’s a tie).

Handling User Input

We’re going to do things a little differently this time. Instead of creating
multiple programs, we’ll create one and incrementally add functionality to it,
using everything you’ve learned thus far.

Create a new file named rps.py (rps stands for rock paper scissors, duh!).
Start with this code:

Click here to view code image
Imports
import random

Computer picks one
cChoice = random.choice("RPS")

Get user choice
print("Rock, Paper, or Scissors?")
uChoice=input("Enter R, P, S: ")

Test it
print("You:", uChoice)
print("Computer:", cChoice)

Save the code and run it. It will prompt you to enter R, P, or S, and then it will
display the user choice and the computer choice.

The code starts by importing the random library, just as we did in Chapter 3.
Next, it uses the choice() method to pick one of three options, R, P, or S,
again, as we did in Chapter 3.

Then it asks the user to enter R, P, or S using an input() function.

At this point, you have the computer’s selection (randomly picked) and the
user’s selection.

The last few lines (from the # Test it comment to the end) are temporary.
They’ll let us test our code before we go any further. As soon as we know the
first few lines work we can delete the test code.

 Do What the Pros Do: Test as You Work

Incrementally testing your code as you work is a really good idea. It is
much easier to find problems when you have less code to work with.
And as soon as you know that you got one part working properly, then
you can move on to the next. This is what all professional coders do.

Did you try it out? Did it work? The user needs to enter one of three letters,
which we’ll use in an if statement. The code asks for an R, a P, or an S. What
if the user types s (lowercase) or adds a space after the letter? That would
mess up the if statements.

You know how to fix this one. Add this line after the line with the input():

Click here to view code image
uChoice=uChoice.upper().strip()

Alternatively, because Python lets you stack methods on to each other, you
can just change the input() line to look like this:

Click here to view code image
uChoice=input("Enter R, P, S: ").upper().strip()

The end result is the same thing: uChoice will contain uppercase text with no
extraneous whitespace.

Test the code again: Type upper- or lowercase text and add some spaces, to
make sure the code is doing what it is supposed to do. And when you are

satisfied, you can delete the test code (from # Test it to the end).

The Game Code

Now you can use if statements to see who won the game. Add this code to
the bottom of the file:

Click here to view code image
Compare choices
if cChoice == uChoice:
 print("It's a tie!")
elif uChoice == "R" and cChoice == "P":
 print("You picked rock, computer picked paper. You lose.")
elif uChoice == "P" and cChoice == "R":
 print("You picked paper, computer picked rock. You win.")
elif uChoice == "R" and cChoice == "S":
 print("You picked rock, computer picked scissors. You win.")
elif uChoice == "S" and cChoice == "R":
 print("You picked scissors, computer picked rock. You lose.")
elif uChoice == "P" and cChoice == "S":
 print("You picked paper, computer picked scissors. You lose.")
elif uChoice == "S" and cChoice == "P":
 print("You picked scissors, computer picked paper. You win.")
else:
 print("Not very good at listening to instructions. Huh?")

Save the code and run it. Each time you play, you make a choice that will be
compared to the computer’s choice, and the display will tell you who won or
if there is a tie.

The code should make sense to you, but let’s review it a bit.

The first if statement checks to see if the user’s choice (variable uChoice)
and the computer’s choice (cChoice) are the same. If yes, then it’s a tie.

Then come six elif statements that each check every possible combination of
choices. Notice that this time, we used and in the condition, not or, because
each elif has to test for both choices matching.

And finally, there is an else at the bottom. This will only ever get reached if
none of the if or elif tests are True. The only way that could happen is if the
user didn’t enter R, P, or S, so the message reflects that.

And that’s the game!

 Users Never Follow Instructions

Our code asked the user to enter R, P, or S, and we added an else to our
if that would only ever get executed if the user entered something
other than R, P, or S.

This is generally a good idea. Users tend to be lousy at following
directions. You, the coder, should always assume that your users won’t
follow instructions, expect that, and write code that anticipates and
handles the situation. That way, your code won’t break due to user
error.

One Last Tweak

The game is done. Each time you play you have equal chances of winning,
losing, or tying. Well…

Look around, make sure no one is watching for this part. Seriously. We’re
about to go all super-villain on the code. Ready? Ok. As the coder, you have
complete control over the app, and, not that we’d ever condone such
behavior, but you can use that control to give yourself an edge.

Let’s start by personalizing the game. Add this code after the import line,
before the computer’s choice:

Click here to view code image
Ask the user for their name
name=input("What is your name?: ")

Now update the line before the input to personalize it, like this:

Click here to view code image
print("Hello", name, "let's play Rock, Paper, or Scissors")

Now when you run the game, it asks the user for their name and greets them.

So nice and friendly to personalize the game. Or is it?

Now that the code knows who the user is, it can <ahem> adjust the
computer’s choice based on what the user entered. ;-)

Add this code after the user input() lines and before # Compare choices (and
you’ll want to use your name there, not mine):

TOP SECRET CODE
if name == "Ben":
 if uChoice == "R":
 cChoice = "S"
 elif uChoice == "P":
 cChoice = "R"
 elif uChoice == "S":
 cChoice = "P"

Save the code and run it. Now the odds are firmly stacked in your favor. If
you play (your name is entered) you’ll win every time. Everyone else? They
get the same one-out-of-three odds.

So, what does the code we added actually do? It starts with an if statement
that checks to see who you are. If your name was entered (that’s what gets
stored in the variable name), Python runs the code that is indented. If not, it
skips all of the indented code.

The indented code is interesting. It is another if statement, but this one is
indented so that it is inside of the first one. It’s an if statement inside of an if
statement, and coders call this a nested if statement. The if and elif
statements look to see what the user entered (uChoice) and then ... well, let’s
call it a tweak, right? ... it tweaks the computer choice (cChoice) so that the
computer will always lose, and you’ll always win. The program still picks a
random choice, we just overwrote it with one that helps you win.

Try this code with family or friends. They’ll be amazed at your luck.

 New Term

Nested When an if statement is inside of another if statement, we
call it nested (kind of like Russian Nesting Dolls). In future chapters,
you’ll see other commands that can be nested.

 Challenge 5.1

You wouldn’t want someone else with the same name getting the
same advantage. How could you modify this code to make it a little
more private? You could require the name to be typed a specific way
(all lowercase maybe), or have a space or two at the end. Come up
with an option and modify the if statement to check for it.

Summary
if statements are really important, and you are unlikely to write any code
ever that does not use them. And so in this chapter we looked at lots of
examples of using if statements with different tests and conditions. Which
brings us to our next topic, loops.

Chapter 6
Secret Codes

Now that you have mastered if statements, there is only one major topic left
to learn. And so in this chapter we’re going to start to explore loops.

Lists
Loops are super important. Different types of loops, and how to properly use
them, is the focus of the next few chapters.

But, before we look at loops, let’s take a few moments to revisit a special
type of variable, the list. We briefly showed you lists already. Back in
Chapter 3 you used this code:

choices=["Heads","Tails"]

As we explained then, variables usually store a single value. Lists are a
special type of variable that can store lots of values (as well as 0 values).

The code above is from Chapter 3, and it creates a list named choices that has
two items in it: the string Heads and the string Tails.

Creating Lists

So, how do you create a list in Python? Well, as you have already seen, you
can simply create a variable to create a list. What makes it a list? If the values
you store in the variable are enclosed with [and] (square brackets), then
you’ve created a list.

So this line of code will create an empty list:
animals=[]

animals is a variable that is a list, but it is empty.

This line of code creates a list with five items in it:

Click here to view code image
animals=["ant","bat","cat","dog","eel"]

 Lists Can Contain All Sorts of Things

The list you created in Chapter 3 was a list of strings. And to keep
things simple, the examples we’ll use here will all be lists of strings.
But it is worth noting that lists in Python are powerful and flexible.
They can store all sorts of things—numbers, dates, even lists. (Yep,
you can create a list of lists, and we’ll do that in Part II of this book.)

List items must all be enclosed within the square brackets, and they must be
separated by commas.

Let’s give this a try. Create a file named List1.py and type this code:

Click here to view code image
Create a list
animals=[]
How many items in it?
print(len(animals), "animals in list")

Save and run the code. You’ll see the text 0 animals in list displayed in the
Terminal window.

What does the code do? animals=[] creates an empty list. The print()
statement displays how many items are in the list. To do this, it uses the
len() function. len() returns the length of whatever item is passed to it, like
the number of items in a list. So len(animals) returns the number of items in
the list animals. Because the list is empty, it returns 0.

Update your code to look like this (you can use your own list of animals, it
doesn’t have to be ours):

Click here to view code image
Create a list
animals=["ant","bear","cat","dog","elephant"]
How many items in it?
print(len(animals), "animals in list")

Save and run this updated code. The output will tell you that the list contains
five animals.

 The len() Function

Here we used len() to find out how many items were in a list. But
len() is not limited to lists. It can return the lengths of other things,
too. One common use of len() is to get the lengths of strings. For
example, len("hello") will return 5.

 len() Versus Index Values

Don’t confuse the value returned by len() with an index value. As you
will recall, Python starts counting at 0, so a list with five elements will
have items with indexes from 0 through 4. But len() will return 5.

 Initializing Lists

Like all data types in Python, lists are actually a class named—you
guessed it—list. When you use code like this:
animals=[]

internally Python is creating a list and initializing it with no values. It
does this by using a method named init(). This means you can do the
same thing yourself. The line of code that creates the empty list could
be written like this:
animals=list()

Both of these lines of code do exactly the same thing.

Accessing List Items

Lists are designed to store, well, lists, like our list of animals. For a list to be
useful, you need to be able to access the items stored in it. To do this, you
once again use square brackets, specifying the item number you want.

Let’s try that. Create file List2.py. Here’s the code:

Click here to view code image
Create a list
animals = ["ant","bat","cat","dog","eel"]
Display a list item
print(animals[1])

Save and run the code. What animal gets displayed? The position of an item
in a list is called an index. In the print() function, we specified the index 1,
which is bat. Why? Because, as you know, Python always starts counting at
0, so ant is in position 0, and bat is in position 1.

 New Term
Index The position of an item (within a list, for example) is its index.

 Some Lesser-Used Indexes

If you want to return a series of items from a list, you can provide the
start and end values for a range, separated by a colon (the : character).
Look at this example:
print(animals[2:4])

This will print cat, which is index 2 (as Python starts counting at 0),
and dog, which is at index 3. As usual, the end range number is not
included, 2:4 means start at 2 and stop before 4.

If you want to count from the end of a list, you can use a - (the minus
sign), like this:
print(animals[-1])

What will this display? -1 means the last item in the list, -2 is the
second-to-last item, and so on. Therefore, this code will display eel.

Try updating and running the code with different index values. Then try using
an index that is too high (like 5 if you are using the same example). Python
won’t like that, it will tell you that list index out of range, which means
the index you provided isn’t valid.

Changing List Items

You’ve seen that you can refer to specific items in a list by their index. We
used this to get an item from the list, but the same syntax can be used to
update an item in the list.

Create a file named List3.py. Here is the code:

Click here to view code image
Create a list
animals = ["ant","bat","cat","dog","eel"]
Display the list
print(animals)
Update item 2
animals[2] = "cow"
Display the list
print(animals)

Save and run the code. It will display a list of animals and then display the
list again but with cat replaced by cow. This line of code:

animals[2] = "cow"

saves cow into the animals list in the third spot (once again, starting from 0, so
that 2 is the third item). It does not add an item but overwrites the existing
value. Bye bye, cat; hello, cow!

Adding and Removing Items

All of the lists we’ve used so far were created and initialized with a set of
values. But what if you need to add or remove values on-the-fly?

Let’s look at adding an item first. This is the code for List4.py:

Click here to view code image
Create a list
animals = ["ant","bat","cat","dog","eel"]
How big is the list?
print(len(animals), "animals in list")
Add an item
animals.append("fox")
Now how big is the list?
print(len(animals), "animals in list")

Save and run the code. It will report five animals in the list and then six
animals in the list.

Why? The animals list does indeed start with five animals, and so the len()
in the print() statements returns 5.

But then comes this line:
animals.append("fox")

The append() function adds an item to the end of the list. So the next print()
statement says there are six animals as that is what len() will return.

 Adding a List to a List

If you want to append multiple items to a list, you can call the
append() function multiple times. Or you can use extend() to add a list

to a list, like this:

Click here to view code image
list2=["goat","hippopotamus","iguana"]
animals.extend(list2)

This code creates a second list (called list2) and then appends all of
the items in list2 to the end of animals by using the extend()
function.

You’ll often find more than one way to accomplish a task, and you, as
the coder, get to pick which option works best for you.

How do you remove an item from a list? There are two functions that can do
that. If you know the exact index you want to remove, you can use the pop()
function, like this:

animals.pop(5)

If you want to remove an item by its value, you can do this:
animals.remove("fox")

Finding Items

What if you want to check if a value is in a list? There are a couple of ways to
do this.

If you just wanted to know if the list contains a value and don’t care about
exactly where in the list it is, then you can use a simple if statement.

Create the file List5.py with this code:

Click here to view code image
Create a list
animals = ["ant","bat","cat","dog","eel","fox"]
Is "goat" in the list?
if "goat" in animals:
 # Yes it is
 print("Yes, goat is in the list.")

else:
 # No it isn't
 print("Nope, no goat, sorry.")

Save and run the file. The text Nope, no goat, sorry. will be displayed. Add
"goat" to the animals list (on line 2) and then run the code again, this time
it’ll display Yes, goat is in the list.

You saw lots of if statements in the previous chapters. Here the if uses an in
clause, which, exactly as its name suggests, returns True if the value on the
left can be found anywhere in the list and False otherwise.

If you want to know exactly where in the list an item is, you can use the
index() function. Update the code to look like this (the only change is on line
6, in the first print() statement):

Click here to view code image
Create a list
animals = ["ant","bat","cat","dog","eel","fox"]
Is "goat" in the list?
if "goat" in animals:
 # Yes it is
 print("Yes, goat is item", animals.index("goat"))
else:
 # No it isn't
 print("Nope, no goat, sorry.")

Save and run the code. If there is no goat in animals, it’ll behave exactly as it
did before. But if there is a goat in animals, the display will tell you where in
the list it is because animals.index("goat") returns the index of goat.

Sorting

Lists don’t have any specific order. They store and display items however
they were added.

All of the lists we used in this chapter were alphabetically sorted. They didn’t
have to be. We did that because it makes it easier for you to read and write
the code.

But what if you actually do want the list in order? Imagine you have code like

this:

Click here to view code image
Create a list
animals = ["iguana","dog","bat","eel","goat","ant","cat"]

This list is definitely not in alphabetical order. What if it needed to be?

Now, granted, this isn’t a great example because you could have just typed
the animals in alphabetical order, right? True. But what if the list was not
hardcoded and the user was typing animals, and then you needed to sort the
list when they were done?

 New Term
Hard Coding When values (numbers, text, dates, all sorts of stuff) are
typed into the actual code, we say that they are hard coded. And, as a
rule, hard coding anything is bad.

Create file List6.py; here’s the code (feel free to add more animals than
we’ve done here; the more, the better):

Click here to view code image
Create a list
animals = ["iguana","dog","bat","eel","goat","ant","cat"]
Display the list
print(animals)
Sort the list
animals.sort()
Display the list
print(animals)

Save and run the code. You’ll see the complete list of animals displayed
twice: first in the order in which they were put into the list and then
alphabetically.

The magic in the code is this line:

animals.sort()

sort() is a function that does just that, it sorts the list. By default, it sorts
alphabetically, but you can also make it sort in reverse order and more if
needed.

Fun stuff, huh? Ok, so what does this all have to do with loops?

 You Can Only Sort the Same Type

You can sort lists of strings, as you have seen. And you can sort a list
of numbers like this:
[98,1,65,43,1]

But you can’t sort a list with mixed data types. For example, if you try
to sort this:

Click here to view code image
[98,"car",1,65,"plane",43,1,"boat"]

Python will have no idea how to sort that, and will therefore display an
error message.

 List Functions Change the Actual List

Did you notice something interesting and different about the list
functions? They don’t behave exactly like the functions we used
previously. Why? Look at this code:
name="Shmuel"
name.upper()

What does this code do? It creates a variable called name and then

creates an uppercase version of it. Right? Yes, but upper() returns an
uppercase copy of name and doesn’t actually change name. You can test
this for yourself. Try the above code and then print(name), and you’ll
see that name is not converted. If you really do want to convert name to
uppercase, you need to save whatever upper() returns into name,
overwriting it, like this:
name="Shmuel"
name=name.upper()

The list functions don’t work this way. For example, animals.append()
actually adds a value to animals.

This is an important difference to remember.

 Other Goodies

As you saw before, len() will tell you how many items are in a list. If
you want to know how many specific items there are, you can use the
count() function. For example, to find out how many items are equal
to cow, you can use animals.count("cow"), which will tell you how
many items are equal to cow.

If you need to make a copy of a list, you can use copy(). And to insert
an item into the middle of a list (moving all the following items down
one place), you can use insert().

We’ll see examples of these functions in future chapters.

Loop-de-Loop
Thus far, you have learned that Python executes code line by line. It starts at
the top of a file, ignores comments, and processes each line in order. In
Chapter 4 we introduced if statements, which effectively allow lines of code

to be included or excluded in the processing.

But what if you want to repeat a block of code over and over? Perhaps you
are writing a game, and you need to allow movements over and over until an
obstacle is reached. Or maybe your users can take selfies and send messages
over and over until a chat session is closed. Or perhaps it’s something as
simple as a calculator app that lets users enter numbers over and over until
they hit the Calculate button.

All of these examples have one thing in common: They allow the same
functionality to be used over and over until the process has completed.

Coding these actions requires the use of loops, and Python supports two types
of loops:

You can loop through a defined set of options. This might be looping
from 1 to 10, or looping through a set of uploaded images, or looping
through the lines of a file you are reading. In this type of loop, the
number of iterations (that means how many times the loop loops) is
finite. You are looping through a set of options and the loop ends once
the last option has been reached. We’ll focus on this type of loop in this
chapter.

You can also loop until a condition changes. For example, allowing a
user to move in a game until their character dies, the loop repeats so long
as a condition (character is still alive) is True, and ends when the
condition is not (bye bye, character). Or allowing a user to take selfies
until they hit Send, the loop allows the camera to be used and pictures to
be taken so long as the condition (user has not clicked Send yet) is True;
as soon as they click Send, the condition becomes False, and the loop
ends. In this type of loop, the number of iterations is not known; the loop
just keeps going and going and going until the condition changes. We’ll
look at this type of loop in the next chapter.

Looping Through Items

Let’s start with the simplest of loops, looping through a list of items:

Click here to view code image

animals=["ant","bat","cat","dog","eel"]

You know what this is: It’s a list called animals containing five items in it.

Earlier in this chapter, we saw how to access individual list items. But what if
you want to loop through the list so as to print each one individually? Tada!
Loops to the rescue!

Create a new file named Loop1.py and type the following:

Click here to view code image
List of animals
animals=["ant","bat","cat","dog","eel"]

Loop through the list
for animal in animals:
 # Display one per loop iteration
 print(animal)

Save and run this code. You should see output like this:

You know what the first line of code does, so let’s look at the loop code. This
line:

for animal in animals:

tells Python to loop through animals and, in each iteration, to put the next
item in a variable named animal. Note that there are now two variables used
here: animal and animals. animals is the list we created, but what is animal?

We didn’t explicitly create the animal variable; the for loop code did that for
us, and the loop changes the value of animal automatically on each iteration.
We told the for loop what to name the variable by specifying for animal.
(We could have named the variable anything, but animal seemed like a good
choice for a variable that holds one animal from a list of animals.)

 New Term
Iteration Each cycle of a loop is called an iteration. You may also
hear coders say the code iterates, which means it loops.

Just like if statements, loops end with a colon (the : character), and then
whatever is indented beneath the loop is what gets called once per iteration.

So, in our example, how many times does the print() statements get called?
Five—because there are five items in the list animals. Try adding an item or a
few, and run the code again. The indented code will always be called once
per item in the list.

And just like with if statements, you need to be careful with indentation.
Mess it up, and the loop won’t work as intended. For example, if the loop
code looked like this:

Click here to view code image
Loop through the list
for animal in animals:
 # Display one per loop iteration
 print("Here is the next animal:")
print(animal)

the output would look like this:

Why? The indented print() statement will be called once per iteration, so
five times. But the last print() statement is not indented (coders will say that
it is outside of the loop), so it isn’t processed until loop processing has
completed. Therefore, that last print() gets called only once, and the variable
animal then will contain the last value that was put in it (the final item in the
list).

 Minimum List Size

What is the least number of loop iterations when using a list? The
answer is 0. If the list is empty, then the indented code will never be
called at all.

Why would you ever want an empty list? You’ll see an example of this
in a future chapter.

Looping Through Numbers

Next let’s look at looping through numbers. This is similar to the list loop we
just saw, but instead of looping through a list we specify a set of numbers and

loop through them.

Create the file Loop2.py. Here is the code:

Click here to view code image
Loop from 1 to 10
for i in range(1, 11):
 # Display i in each loop iteration
 print(i)

Save and run the code, and you’ll see numbers 1 through 10 displayed, one
per line, in the Terminal window.

range() specifies the range of numbers, and just like randrange() in Chapter
3, the end number is not included, so range(1, 11) means start at 1 and stop
before you reach 11.

for i creates a variable named i, and inside the loop, i contains the next item
in the range. On the first iteration i will be 1, then 2, then 3, and so on.

Try changing the range values and then run your code. Try that a few times.

 Challenge 6.1

range() takes an optional third argument—a step. If you specify
range(1, 11, 2), the loop counter will increase by 2 each time, so
the loop will run 5 times instead of 10 (for 1, 3, 5, 7, and 9). Try to
create a loop that displays the numbers 10, 20, 30, all the way to 100.

Nested Loops

Now let’s make things more interesting. At the end of Chapter 4 we showed
you a nested if statement, which is an if statement inside of another if
statement. You can do the same with loops.

Let’s try an example that will bring back fond memories of your earliest
years in school. Remember studying your multiplication tables? Fun, right? It
might have taken you a while to memorize all the way to 12 x 12, but Python
can do that for you in just three lines of code!

 Nesting and Nesting and…

You can nest loops within loops, if statements with if statements,
loops within if statements, if statements within loops, and you can
nest within nests within nests. However, at some point nesting too
deeply makes the code really hard to read and maintain.

Create a file named Loop3.py and type this code:

Click here to view code image
Loop from 1 to 12
for i in range(1, 13):
 # Loop from 1 to 12 within each iteration of the outer loop
 for j in range(1, 13):
 # Print both loop values and multiply them
 print(i, "x", j, "=", i*j)

Save and run the code. You’ll see 144 lines of output fly by, starting with 1 x
1 = 1 all the way to 12 x 12 = 144.

Ok, so how does this code work? We have two loops here, so to keep things
clear, let’s call them outer loop and inner loop.

The outer loop uses range(1, 13), so everything indented beneath it gets
called 12 times, and each time, variable i will contain the current outer loop

iteration number (first 1, then 2, and so on).

The inner loop also uses range(1, 13), and so everything indented beneath it
also gets called 12 times, and each time, variable j will contain the current
inner loop iteration number.

So how many times does that print() statement get called? The outer loop
makes the inner loop execute 12 times. And each time the inner loop
executes, it executes the print() statement 12 times. So print() gets
executed 144 (12 times 12) times in total.

The print() statement itself is pretty simple:
print(i, "x", j, "=", i*j)

The first time this runs, i will be 1, and j will be 1, so this is effectively:
print(1, "x", 1, "=", 1*1)

print() does the math on-the-fly and will display 1 x 1 = 1.

The next time around, i will be 1, and j will be 2, so the output will be 1 x 2
= 2. This will continue until j is 12 and the displayed text is 1 x 12 = 12.
Then the inner loop will have finished, and the outer loop will restart the
inner loop a second time; this time, i will be 2. So on the next iteration, it will
display 2 x 1 = 1 and so on, all the way until i is 12 and j is 12 and the
output is 12 x 12 = 144.

And all in just three lines of code. (Yes, we know there are six lines above,
but three of them are comments. Python ignores them, so we can, too!)

Cracking the Code
Now that you know how to use loops, let’s create programs to encrypt and
decrypt text. Yes, we’ll create two programs. The first will ask the user for
some text and will display an encrypted version of that text. The other will
ask the user for encrypted text and will decrypt it and display the original
text. And so long as the same secret key (more on that in a moment) is used
for encryption and decryption, all will work well.

So, if you receive this text:

Fphjsp#jw!hxrm%

you could decrypt it and it’ll say…um, nope, can’t tell you, sorry! You’ll find
out soon….

Ok, a warning. The following code may look complicated. But don’t panic: It
is using stuff you’ve already learned. Ready?

 Encoding Versus Encryption

Technically, what we’re doing here isn’t really encryption. Real
encryption code is a bit too complex for what we need here, so we’re
using a process called encoding, which replaces characters in text with
secret characters. And we’re going to use a key to make it a little
harder to decode.

If you want to perform real encryption with Python, that’s very doable,
and there are lots of greater libraries that can help you do it.

Encrypting Characters

Replacing characters with their encrypted version requires doing a little math.
Math, you say? Letters aren’t numbers, so how can you do math on them?

Well, as it so happens, inside of your computer letters are indeed numbers.
Every single letter and character has an internal number. You don’t usually
care about these; to us, letter A is just A, b is just b, and 3 is just 3. But inside
of your computer, the letter displayed as A is character number 65, b is 98, and
the character for number 3 is 51. Every single character has its own number;
so a and A have different numbers because they are different characters.

Yep, this sounds odd, but just accept it for now. Every character has a
number (called an ASCII Character Code) that can be used to refer to it.

 Tip
Use Test Files Every coder has dozens of test files (usually named
test42.py, or something like that). Sometimes coders have whole test
folders (yep, often named test). Test files are great places to tinker
and try stuff out.

In Python you can get the ASCII code for any character by using the ord()
function. Run this code. (You have test Python files, right? They are perfect
for this):

print(ord('A'))

and it will display 65, the ASCII code for A. Change that A to a B, and it’ll
display 66. And so on.

 ASCII Character Codes

ASCII (pronounced “ASS-key”) stands for American Standard Code
for Information Interchange. It is a character encoding standard for
electronic communication, and it predates the Internet and all modern
devices.

As ord() returns a number, you can do math with it. Not that this next
example is particularly useful, but this code:

print(ord('A') + 1)

will display 66: ord('A') returns 65, and the program adds 1 and you get 66.

So how do you turn this number back into a character? The opposite of the
ord() function is the chr() function. This code:

print(chr(65))

will display the letter A.

So, if you wanted to add 1 to A to get B, you could do this:
print(chr(ord('A')+1))

What does this do? It is easiest to read it from the inside working outward.
ord('A') returns 65, as you saw previously. Add 1 and the total is 66. That
sum, 66, gets passed to chr(), which returns B.

We can use this technique to encrypt your text. To encrypt the text HELLO, we
just need to know how much to add to (or subtract from) the ASCII value of
each character. If we add 10, then HELLO becomes encrypted as ROVVY (H
becomes R, E becomes O, and so on). Subtract 10 from each letter in ROVVY,
and you get the decrypted HELLO.

Modulus Math

In the example we just saw, 10 is the magic number—the encryption key. It is
what we use to change each letter.

But it’s not very safe to use a simple number like this for encryption. Users
could try 1 and then 2 and then 3 and eventually guess your code. To make
this safer, you’d want to use different keys.

For example, what if the key was 314159? To encrypt HELLO, we’d use 3 for
the H, 1 for the E, 4 for the first L, 1 for the second L, and 5 for the O. So HELLO
becomes KFPMT. Guessing this is much harder because a different key is used
for each letter.

 Longer Keys Are Better

This type of encryption can be broken by looking for patterns and

repeats. A short key will result in lots of repeats, and a longer key in
fewer ones, so the longer your key, the harder it will be for your
nemesis to decrypt your secret plans. You have been warned!

But what if your text is longer than the key? Say you were encrypting the text
Hello World. The key has 6 digits in it, we need 11 digits (because the space
value has an ASCII value, too). What to do?

The answer is reuse the key. If the key is 6 digits long, we use these 6 digits
for the first 6 letters to be encrypted. And then we start over: For letter 7, we
use the first digit in the key, for letter 8 the second, and keep reusing the key
over and over as needed.

How do we figure out which digit to use? We use division and look at the
remainder. For the 8th character (we need the second number from the key),
we just divide the character index (8, as this is the 8th character) by the key
length (6), and the remainder is 2. In Chapter 3 we introduced the modulus
operator (%), which finds a remainder. It is used like this:

print(8%6)

Here 8 is divided by 6, and the remainder is 2.

Using modulus, we can always divide the character position (8 for the 8th
character, 42 for the 42nd, and so on) by the key length, and the remainder
will point to a valid key digit to use.

Encryption Code

Ok, here’s the code for file Encrypt.py:

Click here to view code image
ASCII range of usable characters - anything out of this range
could throw errors
asciiMin = 32 # Represents the space character - " "
asciiMax = 126 # Represents the tilde character - "~"

Secret key
key = 314159 # Top secret! This is the encryption key!

key = str(key) # Convert to string so can access individual
digits

Get input message
message = input("Enter message to be encrypted: ")

Initialize variable for encrypted message
messEncr = ""

Loop through message
for index in range(0, len(message)):
 # Get the ASCII value for this character
 char = ord(message[index])
 # Is this character out of range?
 if char < asciiMin or char > asciiMax:
 # Yes, not safe to encrypt, leave as is
 messEncr += message[index]
 else:
 # Safe to encrypt this character
 # Encrypt and shift the value as per the key
 ascNum = ord(message[index]) + int(key[index % len(key)])
 # If shifted past range, cycle back to the beginning of
the range
 if ascNum > asciiMax:
 ascNum -= (asciiMax - asciiMin)
 # Convert to a character and add to output
 messEncr = messEncr + chr(ascNum)

Display result
print("Encrypted message:", messEncr)

Save and run this code. It will ask you for a message to encrypt and will then
display the encrypted message. It doesn’t decrypt; we’ll get to that next.

So how does this work?

Not all ASCII characters print well, so to be safe, you define the range of
characters you want to use, like this:

Click here to view code image
asciiMin = 32 # Represents the space character - " "
asciiMax = 126 # Represents the tilde character - "~"

Next comes the key:

Click here to view code image
Secret key
key = 314159 # Top secret! This is the encryption key!
key = str(key) # Convert to string so can access individual
digits

key is the numeric encryption key. This one has six digits, though yours can
be longer or shorter. The key here (hee hee, bad pun, sorry) is that you must
have the same key to encrypt and decrypt the text.

We need to use each digit in the key individually. Remember? That’s how we
can encrypt each character with a different key digit. To do this, we convert
the key to a string, so 314159 becomes "314159" because getting characters
from a string is super easy. It’s much like getting them from a list. Remember
those?

Next, the code asks for the text to be encrypted using an input() function.
You’re very familiar with this one.

Then this code is used:
messEncr = ""

This creates an empty string variable named messEncr (for message
encrypted). The code is going to encrypt the text one character at a time, and
as it does so, the encrypted character will be added to this variable.

 str() and int()

str() is the opposite of the int() function you saw in Chapter 4. int()
converts a string to a number, and str() converts numbers back to
strings. We’ll look at int() in more detail in Chapter 7.

Now we loop through message:

Click here to view code image

for index in range(0, len(message)):

Here we use a for loop that loops from 0 to the length of the text. How does
the loop know how long the text is? Once again, we can use the len()
function for that. If the text is 10 characters long, len() returns 10, so the
range for the loop will be range(0, 10), meaning loop from 0 to 9, exactly
what we need. Within each iteration, the variable index will contain the
iteration number: 0 the first time, 1 the second, and so on.

The code indented under the for statement will be executed once per
character to be encrypted. At the start of each loop, we need to get the ASCII
value for the letter being processed, like this:

char = ord(message[index])

message[index] lets us access a single character. index is 0 on the first loop,
so on the first iteration, message[index] will return the first character. On the
next iteration, it will return the second. ord() gets the ASCII code for the
number, and that code is saved to the variable char.

The next if statement checks to see if the ASCII code for this character is
within the safe range. If not, we don’t encode it. If yes, this code gets
executed:

Click here to view code image
ascNum = char + int(key[index % len(key)])

This code does the actual encryption. index is the current character number
(set by the for loop). index % len(key) divides the index by the length of the
key, giving us a remainder, which is the key digit to use. That gets added to
char (the current ASCII code), and the result is saved in ascNum. So if, for
example, the loop is currently at index 9, and the key has six digits, index %
len(key) will become 9 % 6, which returns 3 (the remainder), and index 3 of
the key will be used.

The encoded character then gets appended to messEncr, like this:

Click here to view code image
messEncr = messEncr + chr(ascNum)

chr(ascNum) converts the newly calculated encoded character to a string, and
that gets appended to messEncr. (Remember that adding strings concatenates
them.)

As we mentioned previously, some ASCII characters don’t print, and so we
need to make sure to exclude these. This code checks to ensure that the
encoded character is within the safe range, and if it isn’t, it shifts to a safer
value:

Click here to view code image
if ascNum > asciiMax:
 ascNum -= (asciiMax - asciiMin)

And finally, a print() is used to display the encrypted text.

That does it. Enter text, and the program will encrypt it using the digits in the
secret key. If you send someone a message, they’d need the matching key to
read it. You can use different keys for different people (that way they won’t
be able to read each other’s messages).

Decryption Code

Great. But how do you decrypt the encrypted messages? The process is
actually exactly the same. It’s so similar, in fact, that you can use the same
Encrypt.py file and just make a few changes.

 Tip
Use Save As If you use the VS Code Save As option (in the File
menu) to save Encrypt.py as Decrypt.py, you have two files that are
identical. Try it!

Click on Decrypt.py and we’ll make a few changes. First, change the input()
so the prompt is correct:

Click here to view code image
message = input("Enter message to be decrypted: ")

Next, find the line that does the actual encryption, which looks like this:

Click here to view code image
ascNum = char + int(key[index % len(key)])

Recall that when we encrypt, we add a key digit. To decrypt, all we need to
do is subtract the same digit. So, change the code to this:

Click here to view code image
ascNum = char - int(key[index % len(key)])

The + is changed to a -.

Next, look at the if statement right below the line you just edited. It checks to
see that we haven’t gone above the allowed range and subtracts the change, if
needed. We need to reverse that so it looks like this:

Click here to view code image
if ascNum < asciiMin:
 ascNum += (asciiMax - asciiMin)

In the if statement, the > gets changed to a <, and in the assignment, the -=
becomes +=. Now if the decoding process creates a number below the range,
we can fix that.

Some of the comments will be wrong, best to fix those, too.

That’s it! Now you can encrypt and decrypt messages, so long as both parties
have the same key. And all made possible by some simple for loops.

Oh, using the key 314159, were you able to decrypt the encrypted text we
showed you earlier in this chapter?

 Challenge 6.2

As you have seen, Encrypt.py and Decrypt.py are almost identical.
In truth, they should have been the same program. We just separated
them to make the code a little simpler.

But, you can improve this. Create a program that both encrypts and
decrypts. It will need to prompt the user for the action—something
like this:

Click here to view code image
action = input("Encrypt or decrypt? Enter E or D: ")

Then, in your code, you can use if statements to select the encrypt or
decrypt versions of the code, based on action being E or D.

Summary
In this chapter, you learned how to use for loops to loop over a known set of
items. In the next chapter, we’ll look at conditional loops (and how to use
both loop types together).

Chapter 7
Guess the Number

In Chapter 6 we looked at for loops. In this chapter, we’ll look at conditional
loops and use one to build a Guess The Number game.

Conditional Loops
You now know how to use for loops. As a reminder, these are used to loop
through a finite set of options.

Conditional loops loop based on a condition. They are the more powerful and
flexible type of loops, and they also tend to be the one you’ll use most.

Let’s start with a simple (and useless) example. Create file Loop4.py and type
the following:

Click here to view code image
Get some input
userInput=input("Say something, say STOP to stop:
").upper().strip()

Loop until the user says STOP
while userInput != "STOP":
 userInput=input("Say something, say STOP to stop: ").upper().
strip()

Save the file and run it. You’ll be prompted to type some text in the Terminal
window. Then you’ll be prompted to do so again. And again. And you’ll keep
being prompted until you type STOP.

The first line of code is an input() much like you’ve seen already. And like
we saw in Chapter 4, it uses .upper().strip() to convert the user input to
uppercase and strip any extraneous whitespace.

Then comes this line:
while userInput != "STOP":

while creates a loop. But unlike for loops, while takes a condition (much like
the conditions we passed to if statements in Chapter 4). This condition
checks the userInput variable to make sure that it is not equal to STOP (!=
means not equal and is the opposite of ==).

Just like if and for, a while statement ends with a colon, and whatever is
indented beneath it will get called over and over until the loop ends. Here the
indented code again asks for input from the user.

And when will the while loop end? When the user types STOP. Then the while
condition will be False (because userInput will no longer be not equal to
STOP).

 while Conditions

In Chapter 4, you learned about different conditions and operators used
in if statements. All of them apply to while conditions, too.

So, question, what is the fewest number of times that the indented code inside
of the while loop will run? The answer is 0. If the user types STOP right away
in response to the first input(), the while condition will never be True—not
even once—and the indented code will never be run.

 Tip
if and while Here’s another way to look at it. if statements and while
statements are very similar in that they both take conditions, which, if
True, execute the code indented below. The difference is that when the
condition is True, the if statement executes its code once, as opposed
to while statements which execute the indented code over and over
(until the condition is no longer True).

We point this out because while this example works, it will make most

professional coders cringe (or even puke). Why? Coders hate duplicated
code, and here the two input() lines are completely and utterly identical.
Why is that bad? Well, it’s not that big of a deal here, but in bigger and more
complex programs, the risk of them going out of sync is really high. At some
point, you’ll make a change to one and forget to change the other. That’s
asking for future trouble.

So let’s rewrite this code with only one input() line. How can we do that?
Like this:

Click here to view code image
Initialize the input variable
userInput=""

Loop until the user says STOP
while userInput != "STOP":
 userInput=input("Say something, say STOP to stop: ").upper().
strip()

 Initialize All Variables

Coding best practices recommend that all variables be initialized with
some default value. Strings can be empty, numbers can be set to 0, it’s
your choice. Doing so can prevent a situation where you expect
variables to contain something that they don’t.

Save and run the code. It should behave exactly as it did before.

So how does this work? The trick is forcing the while loop to always run at
least once. The code starts by initializing (that is a fancy way of saying start
with an initial value) the userInput variable to be an empty string (that’s
what "" is). The truth is, we could have initialized userInput to anything
other than STOP, but an empty string is nice and clean. By doing this, the
while loop always runs at least once because the very first time userInput
does not equal STOP, it equals empty. Much better!

 New Term
Initialize Initialize means put a default initial value into a variable.

Let’s create another example combining your knowledge of lists with while
loops. This is the code for file Loop5.py:

Click here to view code image
Create the empty animals array
animals = []

Variable for input
userInput = " "

Give instructions to user
print("I can sort animals for you.")
print("Enter your animals, one at a time.")
print("When you are done just press Enter.")

Loop until get an empty string
while userInput != "":
 # Get input
 userInput=input("Enter an animal, leave empty to end:
").strip()
 # Make sure it is not empty
 if len(userInput) > 0:
 # It's not empty, add it
 animals.append(userInput)

Sort data
animals.sort()

Display the list
print(animals)

Save and run the code. It will display welcome text and then prompt for an
animal. Then it will prompt for another animal. And another. And it will keep
doing this until you press Enter without typing any text. Then the program
will display all of your animals in alphabetical order.

The code should be pretty self-explanatory. But we’ll highlight a few lines
that are of special interest.

The code starts with an empty animals list, created like this:
animals = []

Next we create and initialize the userInput variable:
userInput = " "

This time it is not initialized as an empty string (""). Rather, we put a space
in it (" "). Why? You will recall that we initialize the variable to force the
subsequent while loop to run. What does the while loop do?

 Download the Code

As a reminder, if you don’t want to type all the code, you can grab a
copy from the book web page by using this QR code.

while userInput != "":

This while loop will keep looping until userInput is empty, as that is when

we know that the user has finished typing the animals. If we had initialized
userInput to "", then the while loop would never run—not even once—
because the condition could never be True. By initializing userInput to a
value other than the one the loop checks for, we can avoid this problem.

Then comes the very familiar input(). No explanation needed.

Then comes this code:
Make sure it is not empty
if len(userInput) > 0:
 # It's not empty, add it
 animals.append(userInput)

We want to add anything the user types to animals by using the append()
function. But we need to make sure to not add an empty input (which
happens when the user just presses Enter). To eliminate empty strings, we
use an if statement that checks the length of what the user entered by using
the len() function. If the length is greater than 0, the user must have typed
something, and it is added. If not, then nothing is added.

Next, the code sorts the list:
Sort data
animals.sort()

And finally, the list is displayed.

 Infinite Loops

You need to be careful when looping until a condition changes. If you
don’t write the code properly, you can end up in a situation where the
condition never changes, and the code will run forever. This is called
an infinite loop, and it’s one of the mistakes that can cause a program
to hang or crash. To borrow a phrase from a really close friend of ours,
“With great power comes great responsibility.”

 Challenge 7.1

Double challenge for you this time.

First, look at the final print() statement. It displays the sorted list,
but the output doesn’t look that good. So change that output to use a
for loop printing the sorted animals one per line.

Second, make sure the user doesn’t type an animal already in the list.
How? Refer back to Chapter 6 if you need a reminder of how to
check if an item is in a list. Then modify the if statement so that in
addition to checking for the length of the input, it also checks to
ensure that the item is not already in the list. Your condition will
have two parts, and you’ll want to use and to join them.

Game Time
Now that you know all about loops, let’s create a number guessing game. The
computer will think of a number (well, technically, it’ll generate a random
number), and then it’ll ask the user to guess it. Each time the user guesses,
the computer will let them know if they guessed correctly or if they are too
high or too low. When they finally guess the number, the computer will tell
them how many guesses it took.

The Basic Game

Create a new file named NumGuess.py. Here is the code:

Click here to view code image

Guess the number between a specified range.
User is told if the number guess is too high or too low.
Game tells the user how many guesses were needed

Imports
import random

Define variables
userInput = "" # This holds the user's input
userGuess = 0 # This holds the user's input as a number

Generate random number
randNum = random.randrange(1, 101)

Instructions for user
print("I am thinking of a number between 1 and 100")
print("Can you guess the number?")

Loop until the user has guessed it
while randNum != userGuess:
 # Get user guess
 userInput=input("Your guess: ").strip()
 # Make sure the user typed a valid number
 if not userInput.isnumeric():
 # Input was not a number
 print(userInput, "is not a valid number!")
 else:
 # Input was a number, good to proceed
 # Convert the input text to a number
 userGuess=int(userInput)
 # Check the number
 if userGuess < randNum:
 print("Too low. Try again.")
 elif userGuess > randNum:
 print("Too high. Try again.")
 else:
 print("You got it!")

Goodbye message
print("Thanks for playing!")

Save and run the program. You’ll be prompted to guess a number between 1
and 100, and each time you guess, you’ll be given feedback until you guess
the right number.

There is a lot of code here, so let’s look at it.

At the top is a comment block that explains the code. Then comes our random
library.

Next comes this code:

Click here to view code image
Define variables
userInput = "" # This holds the user's input
userGuess = 0 # This holds the user's input as a number

This creates and initializes two variables: userInput will be used to contain
whatever the user enters, and userGuess will contain the number they guess.
Why do we need both? We’ll come back to this one in a moment.

Next, the program generates a random number and stores it in randNum. Then
come a couple of print() statements with instructions for the user. So far so
good. This is all code you have seen before.

Then we have our loop, which is the main game code. It is what will run over
and over until the user has guessed correctly. The while condition is simply
defined like this:

Click here to view code image
Loop until the user has guessed it
while randNum != userGuess:

This means that so long as userGuess and randNum don’t match, the loop will
keep looping. The game is not over until the numbers match.

We initialized userGuess to be 0 and randNum to be a number between 1 and
100, so the while loop will always execute the code indented beneath it.

 Comments Revisited

As you can see, comments in your code can be on the same line as the
code itself. Python will process the code part of the line and ignore

whatever comes after the # symbol.

Next comes the input() prompt, which you’ve seen before.

Once we have input from the user, we want to make sure they actually typed
a number. Why is this important? Well, for starters, we should always give
the user useful feedback, and if they were to enter something incorrectly, we
should tell them so. But, more importantly, we need to be able to compare
numbers later in the code, and the code will break if we compare numbers to
strings.

So, we include the following:

Click here to view code image
 # Make sure the user typed a valid number
 if not userInput.isnumeric():
 # Input was not a number
 print(userInput, "is not a valid number!")

Remember those string class methods upper() and strip()? isnumeric() is
another string method. It returns True if the string is all numbers and False if
not.

And what is that not doing in there? if userInput.isnumric() would check
to see if the string is a number, and the not turns that around and checks to
see if userInput is NOT a number. if not userInput.isnumeric() checks to
see if the user didn’t enter a number, and the indented print() tells them so.

Then comes the else statement. Any code indented beneath else gets
executed only if the user enters a valid number.

And then we have this code:

Click here to view code image
Convert the input text to a number
userGuess=int(userInput)

What does this do? Remember when we briefly discussed data types back in
Chapter 3? Back then, we explained that variables can have types. We also

showed you that a string with a number (like "3") is not a numeric type, and it
can’t be really used for math calculations or operations.

This is a problem for us. input() always returns what users enter as strings.
Even if the user types a number, userInput will be a string with that number
in it. And we need a number.

 not Negates

What does the following code do?
if userInput.isnumeric():

This code checks to see if isnumeric() returns True. It is actually
shorthand for this:

Click here to view code image
if userInput.isnumeric() == True:

If you don’t tell an if statement what you are comparing to, it’ll
assume that you are comparing to True.

not changes a condition to its exact opposite. Coders say that it negates
the condition. So by adding not:
if not userInput.isnumeric():

the code checks to see that isnumeric() returns False.

That said, there is always more than one way to write a line of code.
This code could have been written like this:

Click here to view code image
if userInput.isnumeric() == False:

Both versions do the exact same thing.

So what to do? We need to convert the string to a number.

You saw the int() function briefly in Chapter 4. As a reminder, int() turns a
string data type into a numeric data type; you pass it a string as an argument,
and it returns a number. Here the code userGuess=int(userInput) tells
Python to look at the userInput string, get the number that is in it, convert it
to a number, and save it to userGuess. This way, userInput remains a string
—it does not change at all—and userGuess is the number that was in that
string. So if userInput was "3", userGuess will be 3, which is exactly what
we need.

By the way, using int() with a string that isn’t actually a number would
throw an ugly error. We avoided that by validating the input previously.

Next comes a set of if elif and else statements:

Click here to view code image
 # Check the number
 if userGuess < randNum:
 print("Too low. Try again.")
 elif userGuess > randNum:
 print("Too high. Try again.")
 else:
 print("You got it!")

The first statement checks to see if userGuess is less than the number we
want. The second one checks to see if it is greater. As for the else, if the
guess is neither greater nor less than the target number, then it must be right.
Right? Right.

We know this is a lot of code, but it should all make sense to you (especially
as most is code you’ve seen before).

Feel free to run the program a few times just to make sure it is working
properly.

Putting It All Together

That works well. But we can make a few improvements.

First of all, we need a way to tell the user how many guesses they took.

Also, putting the range (1 and 100) in the code as we did is a really bad idea.
Why? As we noted earlier, code should be written so that you don’t
inadvertently break things. If you needed to change the range to 10 and 50 or
1 and 1000, you’d need to change multiple places. And you are going to make
mistakes. What we did? That’s hard coding, something we told you about in
Chapter 6, and something coders try to avoid.

So, here’s an updated version of the code:

Click here to view code image
Guess the number between a specified range.
User is told if the number guess is too high or too low.
Game tells the user how many guesses were needed

Imports
import random

Define variables
guesses = 0 # To keep track of how many guesses
numMin = 1 # Start of number range
numMax = 100 # End of number range
userInput = "" # This holds the user's input
userGuess = 0 # This holds the user's input as a number

Generate random number
randNum = random.randrange(numMin, numMax+1)

Instructions for user
print("I am thinking of a number between", numMin, "and", numMax)
print("Can you guess the number?")

Loop until the user has guessed it
while randNum != userGuess:
 # Get user guess
 userInput=input("Your guess: ").strip()
 # Make sure the user typed a valid number
 if not userInput.isnumeric():
 # Input was not a number
 print(userInput, "is not a valid number!")
 else:
 # Input was a number, good to proceed
 # Increment guess counter
 guesses=guesses+1

 # Convert the input text to a number
 userGuess=int(userInput)
 # Check the number
 if userGuess < numMin or userGuess > numMax:
 print(userGuess, "is not between", numMin, "and",
numMax)
 elif userGuess < randNum:
 print("Too low. Try again.")
 elif userGuess > randNum:
 print("Too high. Try again.")
 else:
 print("You got it in", guesses, "tries")

Goodbye message
print("Thanks for playing!")

Most of the code is the same, so we’ll just highlight the changes.

At the top, we create three new variables:

Click here to view code image
guesses = 0 # To keep track of how many guesses
numMin = 1 # Start of number range
numMax = 100 # End of number range

The first line creates a variable that will keep count of how many guesses the
user made. We initialize it to 0 for now, and we’ll add 1 each time the user
makes a guess.

The next two lines define two new variables, which are the range of numbers
we want for the game: numMin is the minimum (the start of the range), and
numMax is the maximum (the end of the range). If you want to change the
game, you only need to change these numbers, and all the code below
(generating the number, giving instructions) will all be correct.

How? Because the number generation code has been changed to this:

Click here to view code image
Generate random number
randNum = random.randrange(numMin, numMax+1)

numMin sets the range start, and numMax+1 sets the range end. You’ll recall that

randrange() does not include the end range number, so if numMax were 100,
the greatest randomly generated number would be 99, not 100. By adding 1
we make the range end 101, and that way 100 is included.

The print() statements with instructions also use numMin and numMax; that
way they always reflect the right instructions.

Inside the main loop is this code:
 # Increment guess counter
 guesses=guesses+1

 Incrementing Variables

This code increases guesses by 1. It does this by overwriting the
variable with the current value + 1:
guesses=guesses+1

Here is another way to do the same thing:
guesses+=1

The second example looks a little odd, we know. It’s a shortcut that
tells Python that guesses is to update itself by 1.

Both lines of code do the same thing.

And you can use this type of shortcut for more than addition. -=5
subtracts 5, *=3 multiplies by 3, you get the idea.

Some coders prefer the second format as it is shorter, it doesn’t repeat
the variable name, and there are fewer places for typos (as we said,
coders hate duplication).

This increments (increases the value of) guesses by 1. If guesses was 0, then
after this line of code, it will be 1. And then next time, it will be 2, and so on.

This is how we keep track of how many guesses the user made.

We also added a new if statement that checks to see if the user entered a -
number outside of the range (greater than 100, for example):

Click here to view code image
if userGuess < numMin or userGuess > numMax:
 print(userGuess, "is not between", numMin, "and", numMax)

This checks to see if userGuess is too low (less than numMin) or too high
(greater than numMax), and if it is, it gives the user instructions with the right
numbers.

 Tip
Don’t Hard Code Values See how useful those variables are? This is
exactly why we don’t hard code values. We can set the variables once
and don’t have to change any other code in the game. It just works.

And finally, we updated the You got it! print() statement as follows:

Click here to view code image
print("You got it in", guesses, "tries")

guesses stores the number of guesses made, and print() displays that
number.

 Challenge 7.2

This one is tricky, but you can do it. Can you provide more
feedback? Instead of always displaying Too low or Too high, can you
display Too low or Too high if they are close and Much too high and
Much too low if they are way off? Think about it.

Summary
In this chapter we built on the prior chapter and learned about looping based
on conditions. In the next two chapters we’ll use all of the lessons you’ve
learned thus far to build a more sophisticated app.

Chapter 8
Becoming a Coder

You’ve now learned the three most important programming concepts you’ll
ever need: variables, conditional processing, and loops. In this chapter (and
the next two) we’ll review them all, and focus on coding techniques and best
practices while we plan a more sophisticated application. And in doing so,
we’ll help you transition from merely writing snippets of code to actually
becoming a coder.

How Coders Code
You now know how to use variables, how to code decisions using if
statements, and how to create looping code using for and while. You’ve
learned a lot. And, truthfully, you’ve learned the most important coding
concepts. Yes, all of them. If you stop here (don’t, please!), you would have
learned all you need to be able to write any program you want. That’s not a
joke. We mean it. It is possible to write just about any application you need
using what you have already learned.

So what else is there to learn? Well, lots. In future chapters, we’ll look at
user-defined functions, variable scope, classes, dictionaries, additional
libraries, and more. All of those concepts will help you write cleaner, better
organized, reusable, and more efficient code. So you’ll want to learn it all.
But, honestly, they are all extras. The fundamentals, what you have learned
thus far, that’s what powers real coding.

So we are going to spend this chapter reviewing what we’ve learned so far by
building a more complex and sophisticated program. This stuff is important,
and the more you practice, the better.

As we noted back in Chapter 1, anyone can learn a programming language.
What makes a really skilled coder is how they use that language. We want to
help you start to think like a coder, and so we’ll use the application we create
here to introduce you to how coders work. And we’ll start with two concepts
specifically.

Have a Plan

The programs we’ve written thus far are all pretty simple. Even the Guess
The Number game (which ended up at about 50 lines long) is a pretty simple

program. Real programs often have thousands, even hundreds of thousands
(or many millions) of lines of code.

 Real Programs Can Be Huge

Minecraft has about 150,000 lines of code. The classic game Doom has
193,000 lines of code. Modern games like Overwatch, Fortnite, and
Call of Duty typically have somewhere between 1,500,000 and
5,000,000 lines of code. The Android operating system (which powers
most of the world’s smartphones) is about 15,000,000 lines of code.
Windows (which may be running on your computer) has about
50,000,000 lines of code. Yep, real programs can be huge!

 Experience Design

There is a relatively new and exciting field called Experience Design.
People who work as Experience Designers focus on the overall user
experience when using an application. They think about the user
journey (how users move around the app), flow between screens, and
more. This is an important part of planning, too. After all, you’d not
want to put time and effort into building an application only to find
that no one uses it because the user experience is bad.

When writing smaller apps, it’s tempting to just start: Open VS Code, write
some code, and figure it out as you go. Right?

Wrong! You can get away with doing that for now, but it won’t work as your
apps grow in complexity.

Think of it this way: If you were building a house, you’d never start without a
plan. Right? You’d need to know in advance how big the house is, what

rooms it has, what they are used for, how they are connected, and so on.

Coding is kinda the same. You need a plan. You need to know what the app
does, what the user expectations are, what your screens should look like,
what the complete user experience is—all of that and more.

There is no right or wrong way to plan. Some developers open a document
and write notes. Others map things out on a whiteboard. There are all sorts of
apps that are used for planning features and requirements. Exactly how you
plan is not that important. What is important is actually having a plan.

Think Small

Back to our house construction analogy. When you start building your dream
house, you wouldn’t obtain clay and make bricks from scratch. Nor would
you obtain pieces of wood and start building doors and windows. And you’d
definitely not create locks and light switches using individual pieces and
components. Instead, you’d source and bring ready-to-use materials to the
construction site and install them (perhaps modifying them if needed). Same
for tiles, roof shingles, electrical wire, piping, appliances,... The final
construction of a house is complex and hard work, but it is made simpler by
using lots of ready-made, ready-to-use, proven, and trusted objects.

Again, coding is much the same. You need to start looking for the bits you
can create in isolation (meaning outside of your main application).

Why? There are a few advantages:

Testing your code when it is part of a huge app is really hard. Just
running a program until you get to where your code snippet is can be
time-consuming. And if there are dependencies (user input, menu
selections, and so on), it’s even harder. Professional coders try to write
whole sections of code independently. This way, they can experiment,
test, iterate, perfect, and do it all outside of the main application.

This type of coding is also great for reuse. As you start to build smaller
blocks of code, you’ll find that they can be used in other programs, too.
This saves time because you are not always starting from scratch. And it
also saves time because it’s always better to start with code that you
know has already been used and tested.

But most importantly, it is so much easier to solve lots of small problems
and challenges than big giant scary ones.

And so that is where we are going to start: thinking small.

Game Components
In this chapter and the next, we are going to create a Hangman game. You
know Hangman, right? It’s usually played with pen and paper. Someone
picks a word and draws marks indicating how many letters long the word is.
Someone else guesses letters and tries to figure out the word. Every wrong
guess builds part of the hangman’s gallows. The game is over when the
player correctly guesses the word or when there are too many wrong tries.

Most of the game is inputs and checking letters—stuff we’ve done before.

But there are a couple of parts of the game that are different and which
should be carefully planned. Let’s look at a few:

Players need to guess one letter at a time. As we’ve seen, input()
accepts text input from a user, but it doesn’t limit text; users can type
whatever they want. We’ll need a way to handle the inevitable situation
where users type too much text (more than a single letter).

The game needs to remember user guesses so it can figure out what to
display and whether the player has won or not. Lists (which we looked at
in Chapter 6) are probably a really good way to handle the guesses. We
should work out all of the steps we’ll need in the final game.

Speaking of lists…as you’ve seen, they don’t display nicely by default.
So we’ll need to find a way to display user guesses properly.

The trickiest challenge is the need to display masked words. What does
that mean? Let’s say the word is apple, and the guesses so far are a and
e. The game needs to display something like a___e so that the player
knows which letters are correct and how many letters are still to be
guessed. We obviously need to hide the letters that haven’t been guessed
yet, and so we mask them. Here the mask character is an underscore, but
it could be anything (a***e is a useful mask, too).

These are all pieces of functionality that our application needs; the game
won’t work without them. And they can (and should) be written and tested
before they are ever introduced into the complete app.

Again, the idea is to solve these coding challenges in isolation. Experiment,
try, code, unit test, tweak,…and then use the code later in the complete
application.

 New Term
Unit Testing When professional coders write individual components,
they usually write code to test these components, too. And if they
were to update the components in the future they’d also update the test
code. This test code is never part of any application that eventually
uses the components. It is just there to test the component in isolation.
Coders call this practice unit testing.

Restricting User Input

Let’s start with the user input challenge. You’ve seen code like this before:

Click here to view code image
currGuess = input("Guess a letter: ")

This code prompts for input and saves the value to a variable, here named
currGuess (for current guess).

The instruction asks for a letter, just one. But what if a user types more than
one letter? input() won’t limit or restrict input; it just accepts text. So, what
do we do?

There are many ways to handle this. We could reject the input completely and
tell the user to try again. Or we could use just the first character and ignore
any extra ones. There are other options, too.

You, as the coder, get to decide how your program works. For this game,

let’s go with the option that accepts the first letter and ignores any additional
letters. So, if the user types HE, we’ll accept the H and ignore the E.

How do we do this?

Create a test file and let’s experiment with some code. We’ll start with a
simple input():

Click here to view code image
Get a guess
currGuess = input("Guess a letter: ").strip().lower()

Display it
print(currGuess)

Test the code. You will be prompted to enter text, which will then be
displayed. Simple enough.

This input() uses two functions. The strip() function, which you used in
Chapter 5, removes any extraneous whitespace character. lower() converts
the input to lowercase (because having all text in the same case will make the
code simpler).

So far, so good. But how do we make sure input is limited to a single
character? To do this, we need to know exactly how many characters the user
typed, and for that we can use the len() function. In Chapter 6, we used
len() to count the number of items in a list. But, as noted there, you can also
use len() to obtain the length of a string. That will do exactly what we need.

This if statement checks to see if a string is longer than 1 character in length:
if len(currGuess) > 1:

Easy enough. But then what? If the if statement is True, how do we handle
that situation?

In Chapter 6, you saw that you can use [] notation to access a specific item
in a list by using its index. For example, this next line of code returns the
third item in a list named animals (counting starts at 0, as you know):

animals[2]

We can use the same syntax with strings. Look at this code:
text="Coding"
text[2]

This creates a variable named text containing the string "Coding". So what
does text[2] return? The third letter in the string—the letter d.

This means that [0] will give us the first character of a string. Perfect! We
can use this syntax to restrict input. Here is the updated code:

Click here to view code image
Get a guess
currGuess = input("Guess a letter: ").strip().lower()

Make sure it's just one character
if len(currGuess) > 1:
 currGuess = currGuess[0]

Display it
print(currGuess)

Save and test the code.

The if statement checks to see if currGuess is longer than it should be. If it
is, currGuess (the whole string, as typed by the user) gets updated with
currGuess[0] (just the first character). By the time print() is executed,
currGuess will contain a single lowercase character, which is exactly what we
need.

Great. We’ll use this snippet in the final game.

Storing User Guesses

Users make guesses while they play. The game needs to remember those
guesses, so that on each turn, it can display guesses, update the mask, and
check to see if the user has won.

What is a good way to store a gradually increasing set of items? Lists (which
we looked at in detail in Chapter 6) are perfect for this. We’d need to start
with an empty list, like this:

Click here to view code image
guessedLetters = [] # List to store guesses

Then we can use append() to add letters as they are guessed.

To test this code in isolation, we can fake the inputs. Create a test program to
do just that. Create an empty list, prompt for some letters, add each letter to
the list, and then display the result. You can hard code the letters to be added,
like this:

guessedLetters.append("a")
guessedLetters.append("e")
guessedLetters.append("i")
guessedLetters.append("o")
guessedLetters.append("u")

Or you can create a few input() statements to ask for letters. Or you can loop
to prompt for a few letters, like this:

Click here to view code image
for i in range (0, 5):
 # Get a guess
 currGuess = input("Guess a letter: ").strip().lower()
 # Append to list
 guessedLetters.append(currGuess)

 Lots of Ways to Test

As you can see, there are lots of ways to test code. You can hard code
values, manually add input() statements, create temporary loops to
simulate user input, and more. How you test is up to you. The key is to
actually test, and the more ways the better.

Here the code loops five times, each time prompting for a letter and then
appending it to guessedLetters.

How do you know that letters are being properly added to the list? You can
use a print(). And while we are at it, let’s sort the list (using sort(), as you
saw in Chapter 6) as we’ll need to do that in the finished game, too. Here is
the final code:

Click here to view code image
guessedLetters = [] # List to store guesses

for i in range (0, 5):
 # Get a guess
 currGuess = input("Guess a letter: ").strip().lower()
 # Append to list
 guessedLetters.append(currGuess)

Sort the list
guessedLetters.sort()

Display it
print(guessedLetters)

Save and test the code. Once you have verified that it works, you’ll know that
it is ready to use in the complete app.

Displaying Lists

Which brings us to displaying lists. If you added A, E, I, O, and U in your test
and then printed the list, your output would look like this:

['a', 'e', 'i', 'o', 'u']

This is the correct list, but it is not very pretty looking. So, how can we
improve this?

In Chapter 6, you learned how to loop through lists, so you could print your
list like this:

Display it
for letter in guessedLetters:
 print(letter)

This will work. The output won’t have quotes and commas and parentheses
in it. Instead, each letter will be displayed on its own line (as each one is

displayed by its own print() as the loop iterates). But also not quite what we
want.

To display all the letters on one line, we’ll want to use a single print()
statement for all the letters. And that brings us back to concatenation, which
we first looked at in Chapter 3. As you will recall, you can add text to a string
like this:

youTried=""
youTried += letter

youTried will display all the letters the user has tried. It starts off as an empty
string. youTried += letter will add whatever is stored in the variable letter
to youTried.

Which means we can do something like this:

Click here to view code image
guessedLetters = [] # List to store guesses

if len(guessedLetters) > 0:
 # There are, start with an empty string
 youTried=""
 # Add each guessed letter
 for letter in guessedLetters:
 youTried += letter
 # Display them
 print("You tried:", youTried)

Save and run this test code. It will display nothing. Why? Because
guessedLetters is empty, and the if statement there checks to see if
len(guessedLetters) is greater than 0 (meaning that the user has actually
made some guesses).

Add some letters to guessedLetters. You can do this in the initialization, or
use append()—your choice. Make sure that print() displays a single line of
text, like this:

aeiou

When you know that the code is working we’ll move on to the next
component.

Masking Characters

This last component is a bit trickier than the ones you’ve already tackled. We
explained the masking requirement earlier in this chapter. What does it take
to mask letters in a word? To achieve this, we need three things:

The word being used

A list of all the letters that have been guessed so far

The character you want to use for the mask

In the actual game, you’d have code that picks a random game word. (You
know how to do that.) And the list of guessed letters will be provided by the
user with each input().

To write our masking code independent of the game, we’ll once again fake it,
pretending that we have that information.

Create a test file and type this code:
gameWord = "apocalypse"
guessedLetters = ['a','e']
maskChar = "_"

This code simply creates three variables. gameWord is hard coded (which by
now you know should never be done…except in testing). guessedLetters is a
list that contains two items because right now we are pretending that the user
guessed an a and an e (starting with vowels is very common when playing
Hangman). maskChar is the character we’ll use for our mask. Again, in the
real app, these would be created differently, but for writing and testing our
code, these will suffice.

Now add this to your code:

Click here to view code image
Start with an empty string
displayWord = ""
Loop through word
for letter in gameWord:
 # Has this letter been guessed?
 if letter in guessedLetters:

 # This one has been guessed so add it
 displayWord + letter
 else:
 # This one has not been guessed so mask it
 displayWord + maskChar

Display results word
print("Original word:", gameWord)
print("Masked word: ", displayWord)

This code creates a variable named displayWord, which will hold the masked
word. It then uses a for loop like the one we saw in Chapter 6:

for letter in gameWord:

This code loops through gameWord one letter at a time. For each letter, it calls
an if statement:

 if letter in guessedLetters:

The if statement checks to see if this letter is in the guessedLetters list,
meaning that it has already been guessed. If it has been guessed, we’ll want
to display it and add it to displayWord. If not, we need to hide it, and so the
mask character is added instead.

The two print() statements at the bottom are test code. They’ll not be part of
the finished components, but they will tell us if the code is working. The first
prints the game word (which you obviously wouldn’t want printed in the real
game, as that would kinda ruin things), and the second prints how the word
looks when masked.

In this example, the gameWord we are testing with is apocalypse. The letters
already guessed are a and e, both of which are in the word apocalypse. So
when you run the code, it should display this:

Save the code and run it. The output will look like this:

Uh oh! Something is broken.

But this is exactly why we write and test code in isolation. To figure out what
is wrong, we need to know what is happening inside of the loop and if
statements. And to do this, we can add print() statements throughout the
code to show us what is going on. Here we add four print() statements:

Save and run the code. You’ll see lots of printed output fly by. This output
makes it clear that the if statement is working, as it correctly identifies which

letters have been guessed and which have not.

The output also shows that displayWord never changes. This tells us that the
problem is in the code that updates displayWord. What is that code? There are
two lines that update displayWord():

 displayWord + letter

and
 displayWord + maskChar

Ugh, we have a bug in our code! There’s a problem with those two lines.
They are technically valid code; they are indeed adding a letter or a mask
character to displayWord. But the result is never being saved, and
displayWord is never being updated. Why? We made a teeny weeny little
typo: Those two + signs should be +=.

 New Term
Bug When code is not working, coders say that it has a bug. If code
has lots of bugs, they may even call it buggy. Looking for bugs is
called debugging. And sometimes coders looking for bugs will use a
tool called a debugger to help them debug.

Update both lines of code by replacing + with +=. You can also remove all of
those test print() statements we just added.

Then test the code again. This time, the masked output should be correct.

But, to be safe, test it further. Add more letters to the guessedLetters list. Try
it with an empty list, like this:

guessedLetters = []

Then try a different gameWord. Test as many different combinations as you
can think of. And when you are satisfied that all is good, you’ll confidently
know that this masking code is ready to be included in your finished

application.

But we can probably make one improvement. What happens when the user
has made no guesses? guessedLetters will be an empty list, right? The code
will loop through every letter in gameWord and check each one to see if it is in
the empty list, which it obviously isn’t as nothing is in the list.

The masking code works if guessedLetters is empty, but that looping and the
if statement tests are completely unnecessary. The end result will always be
a completely masked displayWord. Right?

So, when the game first starts and there are no guessed letters, let’s skip the
whole for loop and just create a completely masked displayWord. That is
cleaner code (and coders always want the cleanest, tightest code possible).

We can do this simply. Back in Chapter 3, you learned that 3 * 5 is not the
same as "3" * 5. The former returns 15 (it multiplies 3 by 5), and the latter
returns "33333" (it repeats the string "3" five times). Back then we didn’t
want to make a repeating string, but now we do.

Here is some test code:
maskChar = "_"
gameWord = "hello"
displayWord = maskChar * 5

print(displayWord)

Save it and test it. It will display displayWord, which contains five underscore
characters.

maskChar specifies the character to use as the mask; here it is underscore, but
you can change it to anything you’d like (but best not to use an actual letter,
duh!).

The gameWord is hello, which is five letters long, so we use maskChar * 5 to -
create a masked string of that length.

That works, but not all game words will be five letters long. The masked
displayWord needs to be whatever length the gameWord is. Right? No problem,
we can just use len() to get the length of gameWord. Here is the updated code:

Click here to view code image
maskChar = "_"
gameWord = "hello"
displayWord = maskChar * len(gameWord)

print(displayWord)

 Debugging Using Output

Here we debugged our code using temporary print() statements.
These statements allowed us to peek into the code to see what it was
doing. This is a very popular form of debugging and has been used for
as long as coders have been coding. Debugging tools, mentioned
previously, are another way to do this and allow coders to look at
individual lines of code and variable values while the program is being
executed.

Test the code. Try changing the gameWord to words of different lengths. You
can also try different mask characters. Make sure the code is working before
we plug it into the final app.

Summary
In this chapter, we planned the game mechanics and unit tested specific
components. In the next chapter, we’ll construct this game.

Chapter 9
Hangman

In Chapter 8 we planned our Hangman game. Now let’s create the game as
per the plan.

Game Time
We now understand how our Hangman game will work. We’ve planned and
tested individual bits of code. Now we can put it all together.

Create a new file named Hangman.py. Here is the code (and yes, this is a
longer one, close to 100 lines of code):

 Tip
You Don’t Have to Type It All That’s a lot of code to type. If you’d
like to do so, go for it. But if not, use this QR code to find the code on
the book website. Then you can just copy and paste it into VS Code
into your Hangman.py file.

Click here to view code image
Imports
import random

Variables
maxLives = 7 # Maximum allowed tries
maskChar = "_" # Mask character
livesUsed = 0 # Try counter
guessedLetters = [] # List to store guesses

#Game words
gameWords = ["anvil", "boutique", "cookie", "fluff",
 "jazz", "pneumonia", "sleigh", "society",
 "topaz", "tsunami", "yummy", "zombie"]

Pick the word for the game
gameWord = random.choice(gameWords)

Start the display with a fully masked word
displayWord = maskChar * len(gameWord)

Actual game starts here
Loop until guessed word correctly or out of lives

while gameWord != displayWord and livesUsed < maxLives:

 # First display the masked word
 print(displayWord)

 # Next we need to display any letters already guessed
 # Lists don't display nicely, so let's create a string
 # Are there any guessed letters?
 if len(guessedLetters) > 0:
 # There are, start with an empty string
 youTried=""
 # Add each guessed letter
 for letter in guessedLetters:
 youTried += letter
 # Display them
 print("You tried:", youTried)

 # Display remaining lives
 print (maxLives-livesUsed, "tries left")

 # A little space to make it more readable
 print()

 # Get a guess

 currGuess = input("Guess a letter ").lower()
 # Make sure it's just one character
 if len(currGuess) > 1:
 currGuess = currGuess[0]

 # Don't allow repeated guess
 if currGuess in guessedLetters:
 print("You already guessed", currGuess)
 else:
 # This is a new guess, save to guessed letter list
 guessedLetters.append(currGuess)
 # And sort the list
 guessedLetters.sort()
 # Update mask
 # Start with an empty string
 displayWord = ""
 # Loop through word
 for letter in gameWord:
 # Add letter or mask as needed
 # Has this letter been guessed?
 if letter in guessedLetters:
 # This one has been guessed so add it
 displayWord += letter
 else:
 # This one has not been guessed so mask it
 displayWord += maskChar

 # Is it a correct guess?
 if currGuess in gameWord:
 # Correct answer
 print ("Correct")
 else:
 # Incorrect answer
 print ("Nope")
 # One more life used
 livesUsed += 1

 # A little space to make it more readable
 print()

Game play is finished, display results
if displayWord == gameWord:
 # If won
 print ("You win,", gameWord, "is correct!")
else:

 # If lost
 print ("You lose, the answer was:", gameWord)

Yes, this a lot of code. We warned you.

Save the code and try it out. You’ll see the masked display showing how
many letters are in the word. You’ll be told how many lives you have left.
And you’ll be able to guess letters and will be told if each guess is right or
wrong.

Play the game a few times. See what happens when you win and what
happens if you lose.

So How Does It Work?
Once you have a feel for what the game does, we’ll look more closely at the
code. Fortunately, you have already seen much of it. But let’s walk through
the main parts together.

It starts by importing the random library:
Imports
import random

Next it creates a whole bunch of variables:

Click here to view code image
Variables
maxLives = 7 # Maximum allowed tries
maskChar = "_" # Mask character
livesUsed = 0 # Try counter
guessedLetters = [] # List to store guesses

maxLives stores the number of lives (wrong guesses) before the game is over.
You already know what maskChar is. livesUsed keeps track of how many bad
guesses the player has made, and we initialize it to 0. guessedLetters is the
list that will store user guesses.

 Tip
Use Comments to Explain Variables Here we’ve added a comment
next to every single variable. This is a good thing to do, as it’ll make
things so much easier when you (or someone else) have to come back
to the code in the future.

 New Term
Syntax In spoken languages, the word syntax means the rules for how
words and phrases are put together to make well-formed sentences. In
programming languages, the word syntax is used similarly: it means
the rules for how language elements are to be used.

Next comes the words that the computer can pick. We’ve started with a
dozen hard ones, as shown here, and you can add to or change this list as you
see fit:

Click here to view code image
#Game words
gameWords = ["anvil", "boutique", "cookie", "fluff",
 "jazz", "pneumonia", "sleigh", "society",
 "topaz", "tsunami", "yummy", "zombie"]

Then the program randomly picks one of those words and saves it in a
variable named gameWord. Again, you know how this works:

Click here to view code image
Pick the word for the game
gameWord = random.choice(gameWords)

As we planned in the last chapter, the code remembers two versions of the
word being used. gameWord stores the actual word, and displayWord stores the
version that gets displayed (masked as needed).

 Multiline Lists

All of the lists created thus far have been on a single line. The list of
gameWords here is spread out over multiple lines, which makes it easier
to read. Python allows this because it doesn’t use line breaks to mark
the start and end of a list; as you know, it uses [and]. So long as each
list item is separated by a comma and all are enclosed with [and], the
list will work properly.

 Jazz Is Hard

Did you know that the word jazz is considered the hardest word in
Hangman? Well, it is, which is why we included it in our list. <evil
chuckle goes here>

The masked word obviously needs to be updated during game play as the
user makes guesses. Before there are any guesses, the entire word is masked,
like this, using the optimized code we created in Chapter 8:

Click here to view code image
Start the display with a fully masked word
displayWord = maskChar * len(gameWord)

The code maskChar * len(gameWord) creates a string of mask characters with
the exact same length as the game word, as we previously planned.

Then the actual game starts by defining this loop:

Click here to view code image
while gameWord != displayWord and livesUsed < maxLives:

This while loop ensures that the game keeps playing so long as two
conditions are True: The word has not been guessed, and there are still lives
left. We used an and to join the condition parts, and so as soon as either
condition becomes False (the word has been successfully guessed or there
are no lives left), the loop will end.

Inside the indented code the program first masks the display using the code
we wrote (and fixed) earlier.

On each loop iteration, the first thing we do is display the masked word. It
will be fully masked the first time around and will gradually unmask as the
user makes correct guesses:

Click here to view code image
First display the masked word
print(displayWord)

The player needs to know what guesses were already made. This if statement
checks to see if there are any guesses:

 if len(guessedLetters) > 0:

If there are, they are concatenated and displayed exactly as we planned and
tested.

Next, we tell the player how many lives are left by using simple subtraction:

Click here to view code image
 # Display remaining lives
 print (maxLives-livesUsed, "tries left")

Then the program prompts the user for a guess and restricts input to one
character.

Next, we need to check to see if the user has guessed this letter before or not.
We can do that with this if statement:

 if currGuess in guessedLetters:

If the player made this guess before, the program tells them so. If not, the
guess is added to the guessedLetters list, and the list is sorted as we planned:

Click here to view code image
 # This is a new guess, save to guessed letter list
 guessedLetters.append(currGuess)
 # And sort the list
 guessedLetters.sort()

Now that we have a new letter in guessedLetters, the masked displayWord
must be updated. We tested the code for this thoroughly in Chapter 8, so we
know it works.

The main game loop ends with this code:

Click here to view code image
 # Is it a correct guess?
 if currGuess in gameWord:
 # Correct answer
 print ("Correct")
 else:
 # Incorrect answer
 print ("Nope")
 # One more life used
 livesUsed += 1

This code uses an if statement to check if the guessed letter is in the
gameWord. If yes, it prints Correct. If not, it prints Nope and uses the code
livesUsed += 1 to increment the lives used counter. Why do we need to do
this? Because the while loop relies on that counter to know when the player is
out of lives—and thus game over.

 Inline if Statements

As you know, coders like nice tight code—the more concise and
precise, the better.

With this in mind, there is one optimization we could make to our

code. Look at this code:

Click here to view code image
for letter in gameWord:
 # Has this letter been guessed?
 if letter in guessedLetters:
 # This one has been guessed so add it
 displayWord += letter
 else:
 # This one has not been guessed so mask it
 displayWord += maskChar

As you know, this code loops through each letter in gameWord, and on
each iteration, an if statement checks to see if the letter is already in
the guessedLetters list. Depending on that if statement, either the
letter or the mask character is added to displayWord.

Now look at this next line of code. It does the exact same thing as the
if statement—but all in one line:

Click here to view code image
Add letter or mask as needed
displayWord += letter if letter in guessedLetters else maskChar

This code can be read like this: Add something to displayWord. What
do we add? Letter if it is not already in guessedLetters; otherwise,
add maskChar.

The end result is the same as with the original code. This version
simply replaces a four-line if statement with a single line of code that
is inline, which is why this is called an inline if statement. Feel free to
use this version if you’d like.

But a word of advice: If you want to use inline if statements like this,
first test your code using a regular multiline if statement. Once you
know that it works, you can shorten it. Doing it this way will make it
easier to test your code.

The program ends with this code:

Click here to view code image
Game play is finished, display results
if displayWord == gameWord:
 # If won
 print ("You win,", gameWord, "is correct!")
else:
 # If lost
 print ("You lose, the answer was:", gameWord)

This code is outside of the while loop, so it’ll get executed only when the
game is over.

Once the program reaches this code, the user has either won or lost. How do
we know which it is? The if statement simply compares displayWord to
gameWord. If any of the letters in displayWord are still masked, then
displayWord and gameWord won’t match, and the You lose message is
displayed. If displayWord and gameWord match (which means no letters
remain masked), then the user won, and the You win message is displayed.

Whew. That’s a lot of code. Writing and testing that all at once would have
been really complicated. But we had a plan, and we broke the task into
smaller steps and wrote and tested key components first. That way, the game
worked perfectly the first time. And that’s how coders code!

 Challenge 9.1

On second thought, we handled the user input badly in this code.
Why? If the user entered too many characters, we opted to use the
first of them and ignore the rest. That works. But what if the user
enters no characters at all? That’s a situation we didn’t plan for!

Oops!

No worries, that’s why coders write version 2 (or version 1.1, you
get the idea) of their apps. So, update the code so that it catches all
invalid input lengths (too long or too short). You can do this with a
while loop, like this:
currGuess = ""
while len(currGuess) != 1:

 Challenge 9.2

This one is a fun one. In the current game, we display the number of
lives left, like this:

Click here to view code image
Display remaining lives
print (maxLives-livesUsed, "tries left")

Can you replace that code to actually display a Hangman picture?
You can use simple characters like | and / to draw one. For example,
this code would print the picture at the start of the game, with no
incorrect guesses yet:
print(" |---------")
print(" | / |")
print(" |/ |")
print(" |")
print(" |")
print(" |")

print(" |")
print(" |")
print(" |")
print("---")

Start with this and create the pictures needed for each wrong guess.

You’ll need an if statement to decide which picture to show.

And, here’s a tip. If you plan your print() and if statements
carefully, you can do this without having to create a different picture
for each number of lives. You can have one picture and change what
gets shown on each line based on the number of lives left.

Oh, watch for backslash characters (the \ character). That’s a special
character in Python. If you actually want to display \ as part of your
hangman, you’ll want to type \\ instead (you type two backslashes,
but Python will display just one).

 Escape Characters

If you want to add a tab to your string you can use \t and Python will
know that you want a tab, like this:
Print with a tab
print("Hello\tcoders!")

This will display text with a tab in it, like this:

Here’s another special character you can use. \n inserts a line break:
Print on two lines

print("Hello\ncoders!")

Here is what the output would look like.

You can also use this technique to insert quotes (use \') and double
quote (use \") characters in your string.

These are all called escape characters, and all start with a backslash.

Do you see a problem with that? The \ is used to create a Python
escape character. So, how can you ever display a backslash?

The answer is to use a special escape character for backslashes, and
that is the \\ that we mentioned previously.

Summary
In this chapter, we implemented all of the code we planned in Chapter 8 and
built a far more complex application. And, more importantly, we looked at
how coders plan and build applications. In the next chapter, you’ll get the
chance to try all this a bit more.

Chapter 10
Keep Going

We’re going to give you a break in this chapter, no new topics or code.
Instead, we’ll present a few application ideas for you to try. (Hey, we said
“break,” not “vacation”!)

Birthday Countdown
We all love our birthdays (until we are adults…and then not so much). Let’s
write a program that calculates how many days until your next birthday.

We’re not going to give you the code. Rather, we are going to help you
understand the problem. And we’ll give you some tips and pointers.

Program Requirements

We always start by clearly defining what the program needs to do. This
program has few requirements, but let’s list them anyway:

You need the current date.

You also need the upcoming birthday date.

Simple enough.

Program Flow

Next, we define the program flow, meaning, what it does, and in what order.
This one is pretty simple:

Get the birthday (not date of birth, you need the date of the next
birthday).

You’ll also need today’s date.

Then you can use simple math to calculate the days between those two
dates.

 No Cheating, but…

There is no single right way to write this program (or any of the
programs in this chapter). You should create your own solution.

But, if you need help or want to see one way to solve each problem,
you’ll find our solutions on the book website by using this QR code.

Some Tips

As you will recall, you’ll want to import datetime if you are going to use
dates.

How do you get today’s date? We did that back in Chapter 3:
today=datetime.datetime.now()

In this example, today is now a variable of type datetime.

So how do you create your own datetime variable with your own date? You
can do this:

Click here to view code image
piday=datetime.datetime(2022, 3, 14)

You pass year, month, and day as arguments to datetime, and it will create
the variable for you.

You can use print(piday) to verify that it worked.

We should point out that here we hard-coded the date. If you prompt the user
for year, month, and day, you’d pass the variables with those values instead,
like this:

Click here to view code image
birthday=datetime.datetime(yy, mm, dd)

As for the math, calculating the difference between dates? Python makes this
super easy. Assuming you have two variables, today (containing today’s
date) and birthday (containing your next birthday), you can calculate the
days in between by using simple math, like this:

Click here to view code image
daysUntilBirthday = birthday - today

 Initializing Dates

When you create a datetime variable, you pass it the year, month, and
day, as you saw here. These values are required. A date obviously isn’t
a valid date without year, month, and day.

If you need to work with times, you can also optionally pass hour,
minute, and second. If you don’t pass time values, then hour, minute,
and second will all be 0 (meaning midnight).

 Challenge 10.1

Want to make this a bit more interesting? Asking the user for year,
month, and date (or hard coding those values) makes the math easier.
But, in truth, you only need month and day, as you can figure out the
year yourself: It is either this year if the birthday has not occurred yet
or next year if it has.

So update the code to prompt for a month and day and do the math to
figure out the year.

Tip Calculator
Good service at your favorite restaurant warrants a tip. Calculating tip
amounts involves a little math. And because some people hate math (what is
wrong with them?), some restaurants print tip amounts on their bills. But
that’s the easy way to do it, and easy is for wimps, not for coders like us.

So, your next application will calculate tip amounts based on the bill amount
and tip percentage.

Program Requirements

As always, we start with the requirements:

Obviously, you need the amount of the bill.

You also need the tip percentage. Do you want to hard code this to 15%
or 18% or 20%? Or do you want to ask the user how much they want to

tip? Either way works, but decide ahead of time.

That’s really all we need. The rest is simple math.

Program Flow

As for program flow:

The first thing you need is the bill amount. You also want to make sure
that the user enters a valid number (or else the math will get ugly).

If needed, prompt for the tip percentage.

Once you have the amounts you can do the math. You can actually do
this right in the print() statements, but to make sure the numbers are
right, you’ll probably want to save them to variables.

And finally, print all the information.

Some Tips (Pun Intended)

You’ll want to build this one incrementally. First, test it with values that are
hard coded in variables, like this:

billAmount = 53.76
tipPercent = 18.5

You’ll also want to do your calculations and save the results to variables,
something like this:

Click here to view code image
tipAmount = billAmount / 100 * tipPercent
total = billAmount + tipAmount

print() those values to make sure the math is correct.

And then add the print() statements to display the results. You’ll probably
want to display the bill amount, the tip amount, and the total.

Once you know it is working, add your input() statements to set the
billAmount and tipPercent. And make sure that the users actually enter
numbers. This will involve the use of if statements at a minimum and

possible loops (if you want to keep prompting until a user enters a valid
numeric value).

 Challenge 10.2

Want to make it more interesting? Here are some ideas:

Ask the user to rate the service and pick a tip amount for them
based on the reply. You can use 15% for average service, 20% (or
more) for great service, and 10% (or less—maybe even 0%) for
poor service.

Another enhancement would be to help the user split the bill. Ask
them how many diners there were and then tell the user how much
each needs to pay.

Password Generator
You need passwords. Lots of passwords. And, no, password123 is not a safe
password. Your name is not a safe password, either. Nor are your pet’s name,
your birthday, or anything with consecutive numbers.

You are super security conscious, and you always use really safe passwords
like 4E@:3x&12)PLsx. Right? Good! But creating all those unique passwords is
a pain. So, like any good coder, you are going to write a program that will
generate passwords for you.

Program Requirements

Again, let’s start by clearly defining what the program needs to do:

The user should be able to specify a length.

What types of characters should the password use? All passwords have
letters. Should the user be able to specify if they want uppercase and
lowercase letters? Or should you assume that you’ll always use letters of
any case? Either option is ok, but decide that as part of your planning.

You should ask the user if they want digits (numbers) in their password.

You should also ask them if they want special characters (things like &
and ^).

 The World’s Worst (and Most Used) Passwords

Do you know what the most commonly used passwords are?
Unfortunately they are:

123456 (this one is used in over 25,000,000 sites!)

123456789

qwerty

password

1234567

Ouch!

Program Flow

Now let’s define the program flow:

Start by displaying welcome text and any instructions.

Prompt the user with a series of questions to find out exactly what type
of password they want (length and types of characters).

Start with an empty string for the password.

Loop as many times as the needed password length, and each time
generate a random letter (or digit or symbol) and add it to the password
string.

When done, show the user their newly generated password.

Simple, huh? This is all stuff you’ve done before.

Some Tips

You know how to pick a random letter from a string. You’ve done that many
times, like this:

Click here to view code image
letter=random.choice("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

Well, here’s a really useful shortcut. There’s a library that comes with Python
called string. It contains stuff you’ll find useful when working with strings.
And it also defines constants (much like variables, but they can’t change;
they are read-only) that you can use.

 New Term
Constant A constant is a value that can never be changed by the
program (unlike variables, which, as you have seen, can be changed as
needed). Some constants, like the ones used here, come built into
Python. And you can create your own constants, too, if needed.

For example, try this code (use a test file):
import string
print(string.ascii_uppercase)

This code imports the string library (just like we did with random and
datetime). And then it prints string.ascii_uppercase. What is that?
ascii_uppercase is a constant in the string library that contains all the
uppercase characters from A to Z.

Another constant is ascii_letters, which contains all the letters from A to Z
in both uppercase and lowercase. To pick and display a random letter, you
can use this:

Click here to view code image
import string
import random

letter=random.choice(string.ascii_letters)

print(letter)

What other constants are there? In VS Code, type string. and wait a
moment, and you’ll see a pop-up that lists them all:

Some useful ones are:
ascii_l
etters

All letters from A to Z, uppercase and lowercase. ascii_letters is
actually a concatenation of ascii_lowercase and ascii_uppercase.

ascii_l
owercas
e

All lowercase letters from a to z.

ascii_u
ppercas
e

All uppercase letters from A to Z.

digits All digits from 0 to 9.
punctua
tion

All punctuation characters: !"#$%&'()*+,-./:;<=>?@[\]^_'{|}~

You don’t have to use these constants, but Python provides them, so if they
can help, why not?

As for incrementally adding letters to a string, you’ve seen that before, but
just to remind you:

myString = "abc"
myString += "def"
print(myString)

You can add to a string by using +=. In this example, the string starts off as
abc, and then def gets added.

What will the print() display? abcdef

 Challenge 10.3

Ok, heads-up, this one is tricky. But, we have faith in you.

Have you ever seen websites that give you password rules? They’ll
say something like “Passwords must be at least 8 characters in length
and have at least 1 digit and 1 special character.”

So, suppose the user says yep, I want uppercase, lowercase, digits,
and special characters in my password. Easy, you pick random
characters and build a password. Right?

Well, if you pick random characters from all the options, there is no
guarantee that you’ll get a digit or a special character. Actually, you
may not even get letters at all. You could end up with just digits or
special characters.

Ideally, if the user says they want digits, you’ll make sure that there
is at least 1 digit. Same for special characters.

So, how could you modify the code to do this?

 Want to See Our Solutions?

As a reminder, if you want to see our solutions for these three
challenges, scan this QR code to access the book web page.

Summary
If you want to be a great coder, you need to code and code and code. There is
no shortcut. The more code you write, the better you’ll be. And so in this
chapter we gave you three applications to build yourself. These were not
designed to be super difficult, and all can be written using what you’ve
learned thus far.

And with that, you’ve finished Part I of this book. Congratulations! In Parts II
and III, we’ll change how we do things. Instead of lots of little programs,
each section builds a complete and more comprehensive one. Ready?

Part II
On An Adventure

CHAPTER 11 Getting Func-ky

CHAPTER 12 Exploring

CHAPTER 13 Cleanup Time

CHAPTER 14 Reduce, Reuse, Recycle, Refactor

CHAPTER 15 Carrying (and Using) Stuff

CHAPTER 16 Keeping It Classy

CHAPTER 17 Color Your World

CHAPTER 18 Keep Going

Chapter 11
Getting Func-ky

Welcome to Part II. In this section you are going to build a retro-style text
adventure game. Along the way, you’ll learn lots of new techniques for
creating powerful applications. But first we need to revisit functions, and this
time you’ll learn how to write your own functions.

Functions Revisited
You know what functions are. You’ve seen and used lots of them: input(),
print(), int(), now(), upper(), choice(), and many others.

As a reminder, a function is made up of three parts:

P
a
rt

Descript
ion

R
e
q
u
ir
e
d

Example

N
a
m
e

The
unique
function
name

Y
e
s

An example is print(). The name is how you call the function
when you want to use it. The function name must always be
followed by parentheses. This is required.

A
r
g
u
m
e
nt
s

One or
more
values
passed
into the
function

N
o

If you write print("Hello", firstName), then print() is being
passed two arguments: a string containing the text Hello and a
variable named firstName. Not all functions accept arguments;
print() and input() do as you have seen, but upper() and
now() do not.

R
et
u
r
n

Value
sent
back to
whateve
r called
the

N
o

One example you’ve used many times is input(), which
prompts the user to type something and then returns what the
user typed to you. firstName=input("What is your name?")
prompts for a value, which is returned and saved into a
variable (here firstName). Some functions return results; others
(like print()) don’t.

function

Remember this. We’ll frequently be referring to function names, arguments,
and return values, so don’t mix them up.

 Methods Are Functions

As you learned in Chapter 4, functions in a class are called methods.
So, technically, now() is not a function but a method within the
datetime class. But, methods are indeed functions, so to keep things
simple, we’re just going to refer to functions here. Just keep in mind
that the rules and best practices for creating functions apply to
methods, too.

 Arguments and Return Values

Here’s another way to look at it. Arguments go into a function, return
values come out of a function. Whatever you pass as an argument goes
into the function for processing. What the function sends back to your
code when it has finished executing is the return value.

Arguments go in, return values come out.

 Using Python to Write Python

Most of the libraries included with Python are themselves written in
Python. And just about every third-party Python library is also written
in Python.

But there are exceptions, as you’ll see in Part III of this book.

Writing Your Own Functions
All of the functions we’ve used thus far come included with Python. Some
are always available, others require you to import libraries as you have seen.
But all are part of Python and are ready for you to use.

Like just about every single programming language out there, Python lets you
create your own user-defined functions. And you write them in Python! Yep,
you use Python functions to create Python functions!

 New Term
User-Defined Function A user-defined function (or UDF) is just that:
a function defined by the user, you, the coder.

Creating a Function

So, how do you create your own function? Let’s start with a simple (and
rather useless) example. Create a new file named Func1.py and type the
following:

def sayHello():
 print("Hello")

sayHello()

Save and run the code. It’ll display Hello. Yes, we told you it was a rather
useless program. But wait, it gets better quickly—promise.

So, what does this code do? Let’s start at the bottom this time with this line of
code:

sayHello()

This calls a function called sayHello(). Just like calling print() or input(),
to call a function, you just specify its name followed by parentheses.

But there is no sayHello() function in Python. So what code gets executed
when the function sayHello() is called? The answer is that a new function
called sayHello() is being created right inside the same file, like this:

def sayHello():
 print("Hello")

In Python you define a function with the statement def (for define) followed
by the name of the function. Here the name is sayHello.

The name is followed by parentheses, which is where function arguments are
defined. The parentheses are empty here as this function has no arguments.
Even if your function accepts no arguments, you must still specify the
parentheses after the name.

Just like if and while statements, the line that defines a function ends with a
colon (the : character). And just like if and while, the code that makes up the
function itself is indented under the function definition statement.

 def Doesn’t Execute

It is important to note that defining a function is not the same as
executing a function. If your code looked like this:
def sayHello():
 print("Hello")

then when you executed it, nothing would be displayed. Why? Because
you’d have only defined the function but never executed it. If you want
to use your defined function (assumedly you do, otherwise why write
it?), then you must execute it.

 Functions Must Be Defined Before They Can Be
Used

In our simple example, we used def to define the sayHello() function
and then called sayHello(). What would happen if the sayHello() call
were before the def? You can modify the code to try that if you’d like.
You’ll see an error message:

'sayHello' is not defined

This simply means that Python saw your sayHello() call and didn’t
know what to do with it. Why? Remember, Python processes your
code line-by-line, starting at the top. If sayHello() is called before the
function sayHello() is defined, it’ll have no idea what sayHello() is.

So, in Python functions must always be defined before they are used.

Incidentally, this is also why you always put import statements at the
top of your code. When you import a library, Python sees all the
functions in it, essentially defining them on-the-fly right where the
import statement is. Any code after the import can then use the
imported functions.

Passing Arguments

Our sayHello() function accepted no arguments (and returned no values).
That’s why it was rather useless.

So let’s create a more interesting example. Look at this code:
multiply(12, 8)

There is no Python function named multiply(), so you can’t run this code
yet. What this code should do is allow you to pass any two numbers to a
function named multiply(). That function will do just that: It’ll multiply
whatever two numbers you pass to it, and it will also display the

multiplication and result.

Unlike sayHello(), which accepts no arguments, multiply() obviously needs
to accept two arguments—the two numbers to be multiplied.

So, what would the multiply() function look like? This is the code for file
Func2.py:

Click here to view code image
Function to multiply and print two numbers
def multiply(n1, n2):
 print(n1, "x", n2, "=", n1*n2)

Test the function
multiply(12, 8)

Save and run the code. It’ll display 12 x 8 = 96 (unless you used different
numbers, which you are obviously free to do…actually, go for it and try
running the code with different numbers).

This function definition is a little different:
def multiply(n1, n2):

This creates a function named multiply and tells Python that multiply() will
accept two arguments. How does it do this? By listing the needed arguments
in between the parentheses. The code (n1, n2) tells Python to accept two
arguments and to also create two variables named n1 and n2 to contain
whatever values are passed as arguments.

In our test code, we passed 12 and 8 as arguments to multiply(). Python puts
the first argument (the value 12) into the first variable, which is named n1,
and the second argument (8) into the second named variable, which is n2.

Within the multiply() function itself we can use those variables just like any
other variables. As such, this line of code:

Click here to view code image
 print(n1, "x", n2, "=", n1*n2)

prints the two passed arguments and their multiplication. As we passed 12

and 8, this becomes print(12, "x", 8, "=", 12*8), as you’ve seen
previously.

 Argument Names

The rules for naming arguments are the same as the rules for naming
variables that you saw in Chapter 2.

 Arguments Are Required by Default

What would happen if you tried to call multiply() with no arguments?
Or, for that matter, what if you passed one argument—or three?

If you don’t pass the right number of arguments, Python will throw an
error (just as it does when you pass incorrect arguments to built-in
functions). That’s because the two arguments defined in multiply()
are required.

That said, it is possible to create optional arguments. We’ll see
examples of this in future chapters.

Understanding how to pass (and use) arguments is really important, so let’s
try another example. This is the code for Func3.py (replace the name Ben in
the last line with your own name):

Click here to view code image
Function to display text within a border
def displayWelcome(txt):
 borderChar = "*" # Border character
 print(borderChar * (len(txt) + 4)) # Top line
 print(borderChar, txt, borderChar) # Middle line
 print(borderChar * (len(txt) + 4)) # Bottom line

Test it
displayWelcome("Welcome, O Great Coder Ben!")

Save and run the code. It will display something like this:

Click here to view code image

* Welcome, O Great Coder Ben! *

So how does this work? We define a function named displayWelcome(),
which accepts a single argument, which we’ve called txt.

When the function is called, the entire string (everything between the double
quotes) gets passed to displayWelcome and is stored in variable txt.

The displayWelcome() function itself is pretty simple. It first creates a
variable named borderChar, which contains the character we want to use for
the border around the text. We’ve used an asterisk, but you can change that to
any character you want.

The first print() statement prints the top border. How many border
characters does it need to print for the top line? Well, the answer is it
depends. All three lines must be exactly the same length, and the length
depends on how long the passed text is. The middle line displays the text
surrounded by a border and space. If the text is Shmuel (which is 6 characters
long) the middle line will be * Shmuel * (10 characters long). This means that
all of the lines must be exactly 4 characters greater than the passed text.
Therefore, to display the right number of border characters, we can do this:

Click here to view code image
print(borderChar * (len(txt) + 4))

len(txt) returns the length of the passed text. (len(txt) + 4) returns the
length of the passed text plus 4. And as you’ve seen previously, multiplying a
character by a number returns a string of repeating characters. If the text were
Shmuel, this print() statement would return ********** (10 border
characters).

The next print() statement displays the middle line, which is made up of
border character, space, text, space, and border character, as we just
explained.

The final print() statement is the bottom border and is the same as the top
border.

 Arguments Are Local

Within the displayWelcome() function there is a variable named txt.
This was created by the function, and it contains the argument value—
so whatever gets passed to the function will be stored in txt.

This variable is special in that it only exists inside the
displayWelcome() function. This type of variable is called a local
variable, and it is local to the function that created it.

What does this mean? Try adding a print(txt) at the very bottom of
the code. You’ll see an error message saying txt is not defined. This
is because outside displayWelcome(), the variable txt is indeed not
defined; it is created when the function starts, and it is destroyed when
the function finishes executing.

If the function were to be called again, a new local txt variable would
be created (possibly with a different value) and would exist until the
function finishes executing.

And Python does this all automatically: creating the variable when you
need it and destroying it when you are done.

Returning Values

Now you know how to create a function and how to pass it arguments. The
last thing we need to look at is how to return values from a function.

Functions can return values. Think about how you used input(). It interacted
with the user and then returned whatever the user typed as the result. upper()
returns the uppercase version of a string. now() returns today’s date and time.

Your own functions will frequently need to be able to return values, too, and
you can do this with the (very conveniently named) return statement.

Let’s look at an example—and a very useful example at that. You know what
this code does, right?

num=input("Enter a number: ")

This code asks the user to Enter a number: and then stores whatever they
typed into a variable named num.

So, if the user typed abc (which is definitely not a number), that will be saved
into variable num. Not good.

So, here’s a better version of the code:

Click here to view code image
num=inputNumber("Enter a number: ")

This version calls a function named inputNumber() instead of input(). Unlike
input(), which will accept any text, inputNumber() is smart and makes sure
the user actually types a number. Cool, huh?

Well, it would be if the inputNumber() function actually existed. But, alas, it
doesn’t.

But, there’s a solution. We can create the function ourselves. Here’s the code
for Func4.py:

Click here to view code image
Numeric input function
def inputNumber(prompt):
 # Input variable
 inp = ""
 # Loop until variable is a valid number
 while not inp.isnumeric():
 # Prompt for input
 inp = input(prompt).strip()

 # Return the number
 return int(inp)

Get a number
num=inputNumber("Enter a number: ")
Display it
print(num)

Save and run the code. It will prompt you for a number, which will then be
displayed. If you don’t type a number, it’ll keep asking you to Enter a
number, and won’t stop until you actually enter a number.

The last two lines of code are pretty simple. inputNumber() works just like
input(). It accepts a prompt and returns a value. Here the value is saved to a
variable named num, which is then printed.

The real magic is the inputNumber() function itself. We start by defining it:
Numeric input function
def inputNumber(prompt):

Just like input(), inputNumber() accepts a prompt—the text that is displayed
to the user—and the prompt is passed as an argument.

Next, the code defines a variable that will store the user input:
 # Input variable
 inp = ""

Then comes the actual prompt inside of a loop:

Click here to view code image
 # Loop until variable is a valid number
 while not inp.isnumeric():
 # Prompt for input
 inp = input(prompt).strip()

This is code you’ve seen before. It uses a while loop with a condition that
ensures that the loop will keep looping until inp is a number.

The actual input() is the same one we’ve been using throughout this book.
What text does input() display as a prompt? Whatever gets passed to
inputNumber() as an argument. prompt is a passthrough variable: You pass it

to our UDF inputNumber(), which passes it to the built-in function input().

 New Term
Passthrough A passthrough is a variable that is passed to a function,
which then just passes it on, untouched and unchanged.

The loop won’t end until the user has entered a number, much like we saw
when we looked at while statements previously.

Then comes the last line of code:
 # Return the number
 return int(inp)

return specifies the value to be returned from a function. return inp would
return the user input as a string. Here we are using int(inp) to turn the
inputted numeric string into an actual number and return that instead.

Perfect!

Now, it is worth noting that if your program needed numeric input, you could
have stuck all of this code right where you needed it (kind of like what we
did previously). But creating a function to do this is preferable. Why?

For starters, it makes your code much cleaner. Replace input() with
inputNumeric(), and it just works, without any clutter.

Functions like this can be cleanly isolated. Any variables inside them are
local. There is no chance of overwriting variables of the same name
because the function has its own scope. Code like this is much safer and
reduces the chance of accidentally breaking things.

Functions like this promote reuse. Write the function once, test it, and
then use it all over the place. That saves time.

But, more importantly, a function like this is easier to maintain. If you
had to fix a bug, or needed to add a feature, you’d just change the

function itself, and all of your code that uses the function would benefit
from the changes.

 New Term
Scope Earlier we mentioned that arguments passed to a function
create local variables, meaning variables that only exist within the
function itself.

The truth is that this doesn’t just apply to arguments; it’s also true of
all variables. The inp variable we created in inputNumber() only
exists while that function is being executed—not before and not after.

This is referred to as scope, meaning the visibility of a variable. A
variable with local scope can only be seen inside of the function to
which it is local. And, yes, there are other scopes, as we’ll see in
future chapters.

 Challenge 11.1

Superheroes often need to travel great distances, and depending on
where they go they’ll need to measure those distances in miles or
kilometers. Create two functions:

miles2km() accepts a distance in miles and returns that distance in
kilometers.

km2miles() does the reverse, accepting a distance in kilometers and

returning it in miles.

Each of these functions can be written in just two lines of code. The
first is the def that defines the function and argument, and the second
performs the calculation and returns it.

And to save you time, there are 1.6 kilometers in a mile, and .6 miles
in a kilometer (rounded to keep things simple).

Summary
In this chapter, you’ve learned how to create your own functions and how to
pass arguments and return results. You’ll be creating functions in just about
every upcoming chapter.

Chapter 12
Exploring

Now that you know how to create your own functions, we’re ready to work
on our game.

We’re going to do things a little differently from now on. In Part I you
created lots of small programs, each a single .py file. That’s a great way to
get started, but you’re a pro now, so it’s time to work like the pros do. In this
part of the book (and in Part III), you’ll create a single application—a larger
and far more comprehensive one. This application will be made up of lots of
files, and we’ll incrementally add functionality chapter by chapter.

So, what are we going to create? In this section you are going to build a basic
retro-style text adventure game.

Game Concept
Now that you know how to create functions and how to accept arguments and
return values, let’s start working on our game.

Most modern games feature stunning graphics and animation, sound effects,
video sequences, and sophisticated interaction using controllers, touch, and
motion. This wasn’t always the case. The earliest computer games were all
text: You typed what you wanted to do in text, and the computer responded in
text.

You’ll work on a graphics-based game in Part III of this book. In this section,
we’re going to go all retro and create a text-based adventure game.

Our own game takes place somewhere in space. It starts with the player
stranded and trying to understand where they are. We’re going to start with a
very simple game structure and will add functionality and complexity in the
next chapters.

 Text-Based Adventure Games

The very first text-based adventure game was called Colossal Cave
Adventure, and it was created way back in 1976 (at about the same

time that the Internet was being invented). The game was all text, and
started with:

YOU ARE STANDING AT THE END OF A ROAD BEFORE A SMALL BRICK
BUILDING. AROUND YOU IS A FOREST. A SMALL STREAM FLOWS OUT OF
THE BUILDING AND DOWN A GULLY.

The player would then type what they wanted to do—for example,
look or go east—and the game would respond with more text. Players
would need to find items, solve puzzles, and more, to win.

One year later, Zork (which was inspired by Colossal Cave Adventure)
was released by Infocom. Zork was the first commercial (as in sold)
text-based game, and it was so popular that it became a series of 10
titles. Yep, sequels are nothing new! Infocom went on to create dozens
of text-based adventure games, including The Hitchhiker’s Guide to
the Galaxy (which we authors happen to be super fond of).

Text-based adventure games went out of style when computers were
given the ability to display graphics and images. But they are still lots
of fun to play, and even more fun to create.

 We’re Getting You Started

We should point out that the game we’ll create together will be very
simple; players could complete it in just a few minutes. But, by using
the techniques you’ll learn in this section (and by completing the
Challenges), you’ll have all the tools and skills you need to complete
this game—or create one of your own. And, actually, we’ll wrap up
this part of the book with ideas about where to go next so you can
really take your game to the next level.

 Story Starters

If you are struggling to come up with a good story idea for your game,
visit the book web page by scanning this QR code. We’ve created a
few (deliberately incomplete) story starters that you can use as, well, a
starting point.

 Tip
Write Your Own Game We really want you to write your own game,
not just copy ours. If it helps, feel free to use ours as a starting point.
But this will be a whole lot more useful (and fun) if you go crazy and
invent your own storyline.

A text-based adventure game is usually a series of locations. Each location
has a description and things the player can do.

So, to start things off, we need a way to display locations, and a way to
prompt users for what they want to do. And, fortunately, we know how to do
both. Right?

Game Structure

We’re not going to start coding just yet. Before we do so, let’s look at how
the game will be structured.

The foundation of our game will be functions. Every location is a function.
For now our functions will just display text, but we’ll add functionality (get
it?) soon enough.

When the game starts we’ll display a welcome message using the function
doWelcome():

Click here to view code image
Welcome the player
def doWelcome():
 # Display text
 print("Welcome adventurer!")
 print("You wake in a daze, recalling nothing useful.")
 print("Stumbling you reach for the door, it opens in
anticipation.")
 print("You step outside. Nothing is familiar.")
 print("The landscape is dusty, vast, tinged red, barren.")
 print("You notice that you are wearing a spacesuit. Huh?")

As you can see, it’s a lot of print() statements. Simple enough. When your
code calls doWelcome(), all of those print() statements will execute, and the
text will be displayed.

Actual game play starts with a function called doStart(), which looks like
this:

Click here to view code image
Location: Start
def doStart():
 # Display text
 print("You look around. Red dust, a pile of boulders, more
dust.")
 print("There's an odd octagon shaped structure in front of

you.")
 print("You hear beeping nearby. It stopped. No, it didn't.")

Again, this is a pretty simple function (for now), with no arguments and no
return values. The code simply displays text using the very familiar print()
functions.

Here’s another example, showing what happens if the player decides to run
away:

Click here to view code image
Player ran
def doRun():
 # Display text
 print("You run, for a moment.")
 print("And then you are floating. Down down down.")
 print("You've fallen into a chasm, never to be seen again.")
 print("Not very brave, are you?")

Again, a simple function and just print() statements.

You’ll want to create a series of these—one for each location in your game.
You can name the functions as you wish. We’ve started them all with do to
keep things organized, but you can use any naming convention you want.

 Tip
Don’t Reuse Function Names Don’t use the same name for multiple
functions. This is actually allowed, so Python won’t display an error
message if you do so. But what will happen is the second function will
overwrite the first one—probably not what you want. So, keep all
function names unique.

Prompting for Options

The locations in the game are all functions…lots and lots of functions. Your
code will execute a function, which displays text and then prompts the player
for what they want to do next. Once the player makes a choice, you’ll execute
another function, which displays text and then prompts the user for an action.
And so on.

Which means we need to display options and prompt for a choice.

Prompting users for options is easy enough. You’re an expert in that by now.
We can use a while loop with input(). For example, at the start of the game,
the user has a few choices. They can choose P to look at the pile of boulders,
S to go to the structure, B to walk toward the beeping, or R to run. We can do
something like this:

Click here to view code image
Prompt for user action
choice=" "
while not choice in "PSBR":
 print("You can:")
 print("P = Examine boulder pile")
 print("S = Go to the structure")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [P/S/B/R]")

This code is much like code you’ve seen before. It initializes a variable
named choice. Then it uses a while loop to display options and only accepts a
valid choice. The condition checks to see that choice is in the allowed options
(here P, S, B, or R).

Easy enough. But what do we do with choice once it has been made?

Processing Options

The above while loop will only end once the user has made a valid choice.
Once a choice has been made, we just need to call the right function, like this:

Perform action
if choice == 'P':
 doBoulders()
elif choice == 'S':
 doStructure()

elif choice == 'B':
 doBeeping()
elif choice == 'R':
 doRun()

Here we have a series of if and elif statements. Depending on the choice
made, we send the user to the right function.

So, the complete doStart() function would look something like this:

Click here to view code image
Location: Start
def doStart():
 # Display text
 print("You look around. Red dust, a pile of boulders, more
dust.")
 print("There's an odd octagon shaped structure in front of
you.")
 print("You hear beeping nearby. It stopped. No, it didn't.")
 # Prompt for user action
 choice=" "
 while not choice in "PSBR":
 print("You can:")
 print("P = Examine boulder pile")
 print("S = Go to the structure")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [P/S/B/R]").strip().
upper()
 # Perform action
 if choice == 'P':
 doBoulders()
 elif choice == 'S':
 doStructure()
 elif choice == 'B':
 doBeeping()
 elif choice == 'R':
 doRun()

Display text, show available options, prompt for input, and then go to the
next function. Simple as that.

Create a Work Folder

Unlike all of the code we’ve created thus far, the text-based adventure is
going to be comprised of many files. To keep them all nicely organized
together, we’ll create a new folder for this project.

Move your mouse over the VS Code Explorer panel. Hover over the
PYTHON section, and you’ll see this toolbar displayed at the top:

The second icon from the left is the New Folder icon. Click it, and you’ll be
prompted for a folder name. Type Adventure and press Enter to create a new
folder for the game.

 More Code Online

As already mentioned, you don’t have to type all this code. You’ll find
this and other starters online if you just scan this QR code.

When you create new code files, make sure you have clicked on the new
folder in the Explorer panel first. That way, the file you create will be in the
right folder.

 Tip
Multiple Work Folders You may want to create more than one work
folder. That way, you can have one for the example code we provided
and will work on together and one for your own game.

Game Time
Okay, now that you understand the game structure and have a work folder,
let’s start coding. The first file in the game will be called Main.py (and it goes
in your new Adventure folder). Here’s the code:

Click here to view code image
##
Space Adventure
by Ben & Shmuel
##

Welcome the player
def doWelcome():
 # Display text
 print("Welcome adventurer!")
 print("You wake in a daze, recalling nothing useful.")
 print("Stumbling you reach for the door, it opens in
anticipation.")
 print("You step outside. Nothing is familiar.")
 print("The landscape is dusty, vast, tinged red, barren.")
 print("You notice that you are wearing a spacesuit. Huh?")

Location: Start
def doStart():

 # Display text
 print("You look around. Red dust, a pile of boulders, more
dust.")
 print("There's an odd octagon shaped structure in front of
you.")
 print("You hear beeping nearby. It stopped. No, it didn't.")
 # Prompt for user action
 choice=" "
 while not choice in "PSBR":
 print("You can:")
 print("P = Examine boulder pile")
 print("S = Go to the structure")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [P/S/B/R]").strip().
upper()
 # Perform action
 if choice == 'P':
 doBoulders()
 elif choice == 'S':
 doStructure()
 elif choice == 'B':
 doBeeping()
 elif choice == 'R':
 doRun()

Location: Boulders
def doBoulders():
 # Display text
 print("Seriously? They are boulders.")
 print("Big, heavy, boring boulders.")
 # Go back to start
 doStart()

Location: Structure
def doStructure():
 # Display text
 print("You examine the odd structure.")
 print("Eerily unearthly sounds seem to be coming from
inside.")
 print("You see no doors or windows.")
 print("Well, that outline might be a door, good luck opening
it.")
 print("And that beeping. Where is it coming from?")
 # Prompt for user action

 choice=" "
 while not choice in "SDBR":
 print("You can:")
 print("S = Back to start")
 print("D = Open the door")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [S/D/B/R]").strip().
upper()
 # Perform action
 if choice == 'S':
 doStart()
 elif choice == 'D':
 doStructureDoor()
 elif choice == 'B':
 doBeeping()
 elif choice == 'R':
 doRun()

Location: Structure door
def doStructureDoor():
 # Display text
 print("The door appears to be locked.")
 print("You see a small circular hole. Is that the keyhole?")
 print("You move your hand towards it, it flashes blue and
closes!")
 print("Well, that didn't work as planned.")
 # Prompt for user action
 choice=" "
 while not choice in "SR":
 print("You can:")
 print("S = Back to structure")
 print("R = Run!")
 choice=input("What do you want to do? [S/R]").strip().
upper()
 # Perform action
 if choice == 'S':
 doStructure()
 elif choice == 'R':
 doRun()

Location: Explore beeping
def doBeeping():
 pass

Player ran
def doRun():
 # Display text
 print("You run, for a moment.")
 print("And then you are floating. Down down down.")
 print("You've fallen into a chasm, never to be seen again.")
 print("Not very brave, are you?")
 # Dead, game over
 gameOver()

Game over
def gameOver():
 print("Game over!")

Actual game starts here
Display welcome message
doWelcome()
Game start location
doStart()

There’s a lot of code here, but most of it should be self-explanatory.

The code first defines lots of functions. doWelcome(), doStart(),
doStructure(), etc. are all locations in the game. As explained before, each is
its own function. doWelcome() introduces the game with a series of print()
functions. doStart() is the game starting location; it displays text and also
prompts for a user choice and then sends the user to the appropriate function.

Defining functions doesn’t execute them. When you use def, you are creating
and naming a new function for future use. But Python will do nothing with
the new function until you actually call it. That’s why the code ends with:

Actual game starts here
Display welcome
doWelcome()
Game start location
doStart()

Once all the functions have been defined, doWelcome() calls the doWelcome()
function, which welcomes the user, and doStart() starts the actual game
play.

Oh, there is one new statement here that we should mention. Look at this

code:
Explore beeping
def doBeeping():
 pass

What does pass do? Python does not like empty functions. If you use def to
create a function, then something must be indented beneath it. If you have
nothing indented, Python will display an error message. pass does, well,
absolutely nothing at all. It’s a placeholder. You can put it in your code so
that Python stops displaying error messages until you are ready to actually
write the function code. pass is thus really useful while you are working (but
useless in your finished code).

Test It
If you were to run Main.py, you’d see this is in the Terminal window:

The code executed doWelcome(), which displayed the welcome message, and
then executed doStart(), which displayed the start location and prompts.

If you select S to go to the structure, the function doStructure() is executed,
and this is displayed:

And so on.

One function worth noting is doBoulder(). This will be an important location
in the future (it’s where the player can find a key, shhhh!), but for now it just
displays text and has no options. So how does the game proceed if there are
no options to choose from? Look at the code:

Click here to view code image
Location: Boulders
def doBoulders():
 # Display text
 print("Seriously? They are boulders.")
 print("Big, heavy, boring boulders.")
 # Go back to start
 doStart()

doBoulder() displays text and then right away sends the player back to the
start by executing doStart(). That’ll suffice for now. We’ll add functionality
to doBoulder() shortly.

 Tip
You Can Stop Execution When you test, you don’t have to run the
entire program. You can stop execution at any time. You do this by
clicking on the garbage can icon to the right of the Terminal window.
This terminates the Terminal session, which stops your program from
running. Then, when you are ready, you can just start execution again.

 You Can Space Your Output

When you run the game, you’ll see lots of text, all bunched together.
You can space things out by adding empty lines to the output. To do
this, just add an empty print() function, like this:
print()

Extra spacing will make the text much more readable.

Oh, and in Chapter 17, we’ll add color, which will make things even
more readable.

 Challenge 12.1

The challenges in Part I were all optional—kind of a nice-to-have.
That’s not the case anymore. You’ll want to do them all as you’ll
build on them in subsequent chapters.

Okay, we need you to take your time on this one. The work you
create here will form the basis for everything else you do until the
end of Part II of this book.

So, before going on to Chapter 13, you need to plan your game. And
we mean plan, not code. At least not yet. You can base your game on
ours or use our story starters. (But, truthfully, we’d rather you come
up with your own idea.) Make sure you have at least 10 locations—
more are preferable. And have paths that allow the player to go from
one location to another.

Think through the flow. Not every location will always be available.
Users might have to go to one location to be able to get to another.
You may want to draw a map. (Yep, draw…old school, as in pencil
or pen on paper. We did say we’re going all retro.)

Once you have a plan, start to write your location functions. Make
sure that every function can be reached and that every function has
options. And it is perfectly ok to make your user go around and
around and around.

Then test your code. Try every option. Move from location to
location. Verify that everything works as expected.

Summary
In this chapter, you’ve used your knowledge of functions to create the basic
structure of a text-based adventure game. The game doesn’t do much yet: It
just lets the player wander around. We’ll add functionality throughout the rest
of this part of the book.

Chapter 13
Cleanup Time

In Chapter 12 you created the beginnings of your text-based adventure game.
While very incomplete, players can launch your game and move around by
making selections. The code works, but you’re probably already seeing ways
to improve it. That ongoing improvement process is the subject of this
chapter and the next.

Optimizing Your Code
As we’ve previously discussed, before you start coding, you plan your
application. The planning is critical, and the more you plan, the easier it’ll be
to actually write your code. But, even with the best planning, once you start
coding, you are inevitably going to discover ways to improve your code.

What type of improvements? Things like:

Processing that can be moved elsewhere to make your code cleaner and
simpler

Removing duplicated code

Identifying functionality that can be isolated from your main code so that
it can be reused

Improving specific processing for simplicity or performance

These are just a few types of improvements, and there are many more.

With time and experience, coders learn to write better code in the first place.
But, the truth is that even the most experienced coders are continuously
looking for ways to improve their code.

For now, let’s look at an example of the first type of improvement we
mentioned: moving code elsewhere to make everything clearer and simpler.

Main.py is the main file of our game. As you’ve seen, it is made up of lots of
functions. But what are those functions made up of? Let’s look at a couple
starting with the doWelcome() function:

Click here to view code image
Welcome the player
def doWelcome():

 # Display text
 print("Welcome adventurer!")
 print("You wake in a daze, recalling nothing useful.")
 print("Stumbling you reach for the door, it opens in
anticipation.")
 print("You step outside. Nothing is familiar.")
 print("The landscape is dusty, vast, tinged red, barren.")
 print("You notice that you are wearing a spacesuit. Huh?")

What do you notice about this function? It’s all print() statements, right?
Lots and lots of text.

Let’s look at part of the doStart() function:

Click here to view code image
Location: Start
def doStart():
 # Display text
 print("You look around. Red dust, a pile of boulders, more
dust.")
 print("There's an odd octagon shaped structure in front of
you.")
 print("You hear beeping nearby. It stopped. No, it didn't.")

Lots of print() statements and text, too. Same for doRun():

Click here to view code image
Player ran
def doRun():
 # Display text
 print("You run, for a moment.")
 print("And then you are floating. Down down down.")
 print("You've fallen into a chasm, never to be seen again.")
 print("Not very brave, are you?")

Actually, if you look at all of the code in Main.py, you’ll probably find that
displayed text by print() functions makes up a significant part of it.

Is having all of this text right inside the core code a problem? Consider the
following:

Story text spread all over the place is hard to maintain. Keeping spelling

consistent and ensuring a common voice and tone is challenging if text is
scattered all over the place.

Making changes is harder. Renaming a character, tweaking descriptions
and adjectives, and so on…if you need to do this in multiple places,
you’ll inevitably miss some.

Imagine that your program is so popular that you decide to release it in
other languages. Translating text that is broken into little bits in different
places is difficult.

And, most importantly, all that text gets in the way. When you want to
focus on game functionality, you don’t want to be scrolling up and down
past hundreds of lines of text.

For all these reasons, and more, developers like to externalize their text. This
means that they take the text out of the main code and put it into another
dedicated file.

 New Term
Externalize The term externalize means to move content out of a
main program into an external file that can be easily managed and
maintained.

String Externalization
String externalization is an important part of code optimization for all the
reasons we mentioned. How can you do this? There are lots of ways, but one
simple option is to move all of the text into another file and create a function
that returns the text you need when you need it.

Creating the Strings File

Let’s externalize our text starting with the doWelcome() function:

Click here to view code image

Welcome the player
def doWelcome():
 # Display text
 print("Welcome adventurer!")
 print("You wake in a daze, recalling nothing useful.")
 print("Stumbling you reach for the door, it opens in
anticipation.")
 print("You step outside. Nothing is familiar.")
 print("The landscape is dusty, vast, tinged red, barren.")
 print("You notice that you are wearing a spacesuit. Huh?")

We can turn it into something like this:

Click here to view code image
Welcome the player
def doWelcome():
 # Display text
 print(functionThatGetsTheString())

Obviously, this doWelcome() function can’t be executed as is; it calls a
function that doesn’t exist. But, conceptually, this is how things could work.
Instead of using lots of print() statements with hard-coded text, we can have
a single print() statement that calls a function and prints whatever that
function returns.

Incidentally, when coders are thinking through ideas, they often use dummy
code like this—fake code meant for them during development. They call this
pseudocode.

 New Term
Pseudocode Pseudocode is fake code. It’s not actual code that a
computer can understand but text meant for humans to read and
understand while they think through their code.

Create a new file (in the Adventure folder) named Strings.py. Here’s the
code:

Click here to view code image
##
Strings.py
Externalized strings
##

def get(id):
 if id == "Welcome":
 return ("Welcome adventurer!\n"
 "You wake in a daze, recalling nothing useful.\n"
 "Stumbling, you reach for the door, it opens in "
 "anticipation.\nYou step outside. Nothing is "
 "familiar.\nThe landscape is dusty, vast, tinged "
 "red, barren.\nYou notice that you are wearing "
 "a spacesuit. Huh?")
 elif id == "Start":
 return ("You look around. Red dust, a pile of boulders, "
 "more dust.\nThere's an odd octagon shaped "
 "structure in front of you.\nYou hear beeping "
 "nearby. It stopped. No, it didn't.")
 elif id == "Boulders":
 return ("Seriously? They are boulders.\n"
 "Big, heavy, boring boulders.")
 elif id == "Structure":
 return ("You examine the odd structure.\n"
 "Eerily unearthly sounds seem to be coming from "
 "inside.\nYou see no doors or windows.\nWell, that
"
 "outline might be a door, good luck opening it.\n"
 "And that beeping. Where is it coming from?")
 elif id == "StructureDoor":
 return ("The door appears to be locked.\nYou see a small "
 "circular hole. Is that the keyhole?")
 elif id == "StructureDoorNoKey":
 return ("You move your hand towards it, it flashes blue "
 "and closes!\nWell, that didn't work as planned.")
 elif id == "Run":
 return ("You run, for a moment.\n"
 "And then you are floating. Down down down.\n"
 "You've fallen into a chasm, never to be seen "
 "again.\nNot very brave, are you?")
 elif id == "GameOver":
 return "Game over!"
 else:

 return ""

There is only one function in this file, defined like this:
def get(id):

Function get() accepts an identifier (a variable named id). So when get() is
called, an id must be passed to it.

The rest of the code is a big if elif else statement. It first checks:
if id == "Welcome":

If Welcome was passed to get(), then that condition will be True, and the code
indented beneath it will be executed. What does that code do? It simply
returns a block of text:

Click here to view code image
return ("Welcome adventurer!\n"
 "You wake in a daze, recalling nothing useful.\n"
 "Stumbling, you reach for the door, it opens in
anticipation.\n"
 "You step outside. Nothing is familiar.\n"
 "The landscape is dusty, vast, tinged red, barren.\n"
 "You notice that you are wearing a spacesuit. Huh?")

The remaining elif statements do the same thing: check the id and return
text.

The final else statement is just to be safe:
else:
 return ""

If an invalid id gets passed to get(), the function will return an empty string.

get() doesn’t display text—there is no print() in there—but simply returns
it to your code. It’s up to your code to decide what to do with the text, and the
code could indeed print it if so desired.

If the function is called with get("Welcome"), it will return the Welcome
message. Same for any other needed strings. Want to test that it’s working?
Add this to the bottom of Strings.py:

print(get("Welcome"))

 Multiline Text

Two comments about multiline text.

First, long blocks of text can be broken over multiple lines. Just put
quotes around the text on each line. Python will treat the text as if it
were one long block of text.

Second, notice the \n in the middle of some of the text. That’s a
newline character (which we mentioned previously). It forces a line
break in the Terminal output.

If you run the code, the test associated with Welcome will be printed. How?
get("Welcome") returns the text, and print(), …well, it prints.

You can try other ids just to make sure it’s working. And then remove the
test print() when you are done testing.

Each time a new block of text is needed in the game, a section can be added
to this function. Each section has a unique id. Call get() with that id, and the
right text is returned.

Oh, notice the return statements. Most functions have a single return
statement at the end of the function. Here we have a return for each string,
and each return stops function processing and returns the result. This way,
we don’t have to save the text to a variable and then return that. But, within
the if statements, you could indeed save the text to a variable and return that.
Either way works.

Using Externalized Strings

So, how do we use this new Strings file and get() function? We import it as
a library. Yes, our Strings.py file is a Python library.

Add this to the top of Main.py:
Imports
import Strings

 Careful with Library Naming

We called the file Strings.py, so the library is named Strings. As you
will recall, Python has a built-in library named String. If we had
named the file String.py, we’d have overwritten the built-in library,
but Strings.py is safe.

 String Storage

Here we moved display strings from the core code into a large if
statement. This works for tens—or even hundreds—of strings. For
larger applications, coders would never do this. They would store the
text in a database of some kind and retrieve the strings as needed.

Using a database is conceptually similar to using a Python file. Strings
are externalized and retrieved as needed. You can pick a storage option
based on your specific needs.

To use the get() function, we replace the hard-coded text with the function
call. Let’s start with doWeclome(). Remove all of the print() statements and
replace them with this code:

Click here to view code image
Welcome the player
def doWelcome():
 # Display text
 print(Strings.get("Welcome"))

Strings.get() is our get() function in Strings.py. As this is the doWelcome()
function, we use Strings.get("Welcome"), which tells get() to return the "-
Welcome" text, as you saw previously. That text is passed to print().

doWelcome() is now a single line of code. As you can see, this is much cleaner
and tighter.

 Challenge 13.1

Externalize all of the strings in your application. At a minimum,
externalize the display text. If you’d like, you can even externalize
option prompts and any other displayed text.

Summary
In this chapter, we introduced string externalization as a way to clean up
code. Our application now is made up of two files, and in the next chapter,
we’ll add a third as we introduce another really important optimization.

Chapter 14
Reduce, Reuse, Recycle,
Refactor

In Chapter 13 we took a break from coding our game to clean up our code.
We are going to continue doing that in this chapter.

Understanding Refactoring
In Chapter 13 we talked about continuously finding ways to improve our
code. After all, code is never really done. It can always be further refined and
optimized—which is why coders regularly dedicate time to refactoring their
code. Refactoring is the process of improving how code functions. When you
refactor your code, you change how it works without changing what it does.

 New Term
Refactoring Refactoring is the process of improving how your code
functions. When you refactor your code, you change how it works
without changing what it does.

The important thing about refactoring is that it is not about adding
features or making any functional changes. When you refactor, you
are not changing what your code does, just how it does it. Making lots
of changes at once is never a good idea; it increases the chances of
breaking things and makes it hard to find exactly what broke. When
you refactor your code, your application will do exactly what it did
beforehand, which means you can easily verify that things still work
properly.

Refactoring may sound complicated, but—surprise!—you’ve already started
refactoring your code. Our string externalization exercise is an example of
refactoring. By the time we wrapped up Chapter 13, the code was
functionally identical to the code at the end of Chapter 12. We didn’t change
what the code did, we changed how it did it by reorganizing and improving it.
That’s exactly what refactoring is all about.

So, let’s continue refactoring. And, yes, that means that by the time we’ve
finished this chapter, the code will still be functionally identical to what it

was in Chapters 12 and 13. Functionally identical, but reworked—or, rather,
refactored.

We previously discussed identifying and eliminating duplicated code. As
we’ve noted, duplicating code is never a good idea. As you write code, you
will inevitably discover that you have pieces of code that are repeated, either
identically or with minor changes. Eliminating these duplications is an
important part of refactoring your code.

Identifying Refactoring Opportunities

There is no rule as to exactly what to refactor. How and where to optimize
your code is up to you, the coder. But let’s look at one example together.

You now have a simple working text-based adventure. You’ve created a
series of locations, and players can move around through them.

Look at your code. Do you see any parts that look repetitive? There’s one
very obvious example. At every location, we need to do the following:

1. Display a series of options to the player.

2. Prompt them for what they want to do.

3. Make sure they make a valid selection, and if they don’t, send them
back to step 2.

While the exact options vary at each location, the flow is the same. Compare
these two examples (from our code in Chapter 11…your own story will likely
have different options).

This is our doStart() function:

Click here to view code image
Location: Start
def doStart():
 # Display text
 print(Strings.get("Start"))
 # Prompt for user action
 choice=" "
 while not choice in "PSBR":
 print("You can:")
 print("P = Examine boulder pile")

 print("S = Go to the structure")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [P/S/B/R]").strip().
upper()
 # Perform action
 if choice == 'P':
 doBoulders()
 elif choice == 'S':
 doStructure()
 elif choice == 'B':
 doBeeping()
 elif choice == 'R':
 doRun()

The code uses our Strings.get() function to display text and then displays
options and prompts for a choice.

And this is a snippet from our doStructure() function:

Click here to view code image
def doStructure():
 # Display text
 print(Strings.get("Structure"))
 # Prompt for user action
 choice=" "
 while not choice in "SDBR":
 print("You can:")
 print("S = Back to start")
 print("D = Open the door")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [S/D/B/R]").strip().
upper()

Compare the code in the two # Prompt for user action sections. Obviously,
they are not 100% identical; the options differ, but the flow is exactly the
same. Right?

They print options, one per line. They prompt for input() within a while
loop. And if you have 10, 15, or more functions, then you’ve got very similar
code repeated over and over. This is an obvious candidate for refactoring.

Creating a User Choice Component
We need to display choices and prompt for one over and over. This needs to
be refactored.

We could easily create a function to prompt the user to choose an action.
Actually, we could reuse the code and do something as simple as this:

Click here to view code image
def startChoice():
 choice=" "
 while not choice in "PSBR":
 print("You can:")
 print("P = Examine boulder pile")
 print("S = Go to the structure")
 print("B = Walk towards the beeping")
 print("R = Run!")
 choice=input("What do you want to do? [P/S/B/R]")
 return choice

This creates a function named startChoice(). It contains code copied from
our doStart() function. It displays options, prompts for an input(), and
ensures that the input is valid. The only difference is the last line, return
choice, which returns what the user decided to do.

Using this function, we can change our doStart() function to look like this:

Click here to view code image
Location: Start
def doStart():
 # Display text
 print(Strings.get("Start"))
 # Get user choice
 choice=startChoice()
 # Perform action
 if choice == 'P':
 doBoulders()
 elif choice == 'S':
 doStructure()
 elif choice == 'B':
 doBeeping()
 elif choice == 'R':

 doRun()

This version of doStart() is much cleaner. It displays text, gets a choice, and
then acts on that choice. All of the prompting and input code has been moved
out of the main function and has been replaced with one clear and clean line
of code:

 choice=startChoice()

But is this actually better? Yes, the code is cleaner, but the startChoice()
function is only useful for doStart(). As each location function has different
options, we’d need a different function for each one—all almost the same.
Ahhhhhh! Duplication! We’re trying to de-duplicate code!

The truth is that the concept makes sense. Moving the choice code out of the
location functions is a good idea, but this is definitely not the right
implementation.

Designing a Reusable Component

How could we improve on this? We could create a general-purpose function:
one that is not hard coded to specific options, one that can display all sorts of
options.

Let’s call our new function getUserChoice(). You’ll pass getUserChoice()
the available options as arguments. It could then display whatever options
you passed, obtain a choice that is one of those options, and return it. That
would give you the benefit of isolating the choice code while not
necessitating lots and lots of functions. Perfect!

You know how to pass arguments to a function; we did that in Chapter 11. So
what could a general-purpose getUserChoice() function definition look like?

We could try this:

Click here to view code image
def getUserChoice(letter, prompt):

This function would accept a letter and the text to display—for example,
getUserChoice("R", "Run!"). The function could display the letter and the

prompt as passed.

But that will only work if a location has a single option. What if another
location had 2 options? Well, we could add more arguments, like this:

Click here to view code image
def getUserChoice(letter1, prompt1, letter2, prompt2):

Great, that handles 2 options. But what if other locations had 3, or 5, or even
12 options? And for that matter, what of the location that needed just 1? The
function would throw an error if too few arguments were passed.

We need a better and more flexible way to pass arguments. Any ideas?

Maybe we can use a variable that can store as many (or as few) options as we
need. Anything?

A variable that can store lists of values? <nudge> <wink>

You know what it is, right? Yes, lists. We can use lists!

We could define the function like this:
def getUserChoice(options):

And then pass it options in a list, like this:

Click here to view code image
options=["E", "Explore", "R", "Run!"]
getUserChoice(options)

This way, you can pass as many options as needed, adding two items to the
list for each option. The code can then loop through the list. Within the
function code, options[0] will be the first allowed letter, and options[1] will
be its matching prompt; options[2] will be the next allowed letter, and
options[3] will be its matching prompt; and so on.

This is actually a really good solution. But, we can make it a little better.

Back in Chapter 6 we explored lists, and we mentioned in passing that you
can create lists of lists. Yep, a list containing lists.

The best way to explain lists of lists is to look at an example. Create a file
named List7.py. (You’ll probably want to put it in your main Python code
folder as it is not part of the adventure game.) Here’s the code:

Click here to view code image
Create a list of lists
options = [["P","Examine boulder pile"],
 ["S","Go to the structure"],
 ["B","Walk towards the beeping"],
 ["R","Run!"]]

Some test prints
print(options)
print(len(options))
print(len(options[0]))
print(options[0])
print(options[1])
print(options[1][0])
print(options[1][1])

 Tip
Line-breaks In Lists Long lists, like the ones here, can be broken
over multiple lines which makes them so much easier to read. Just
make sure that lines end with a comma.

We know this list looks strange. We’ll get to that. For now, save it and run it,
and you’ll see output that looks like this:

There’s a lot to digest here, so let’s look at the code.

Ok, so what is this code doing?
print(options)

This is pretty simple: It displays the whole list.

What does this display?
print(len(options))

options is a list with 4 items, so len(options) returns 4, so the code prints 4.

As you will recall, lists go inside of square brackets, so [1,2,3] would be a
list with three items in it. This code also creates a list with three items. This is
the first:

["P","Examine boulder pile"]

The four items are separated by commas:

Click here to view code image
options = [["P","Examine boulder pile"],
 ["S","Go to the structure"],
 ["B","Walk towards the beeping"],
 ["R","Run!"]]

But here the items are <drumroll> lists! Yep, each item is another list
containing two items, so each item is enclosed within square brackets.

It looks a little funky, we know, which is why we separated it onto multiple
lines to make it easier to read. The list starts and ends with two square
brackets. Why? The first [creates the outer list. The second [creates the first
inner list. Same at the end: The second] closes the outer list, and the] in
front of it closes the final inner list.

These arrows help explain things:

So, how do you access individual list items?

 len() and Lists of Lists

How long are the lists in our example? len(options) will return 4, as
there are four items in options. Yes, the items are lists; each list is just
one item. len(options[0]) will return 2, as list options[0] (like list
options[1] and list options[2]) contains two items—the letter and
prompt text.

 Lists of Lists of Lists of…

You’ve seen lists, and you’ve seen lists of lists. And, yes, you can
create lists of lists of lists. And more!

In some languages, lists of lists are referred to as two-dimensional
arrays, and lists of lists of lists are called three-dimensional arrays.
And you can even go out of our spatial world into more than three
dimensions!

You know that you use [index] notation to access list items. options[0]
returns the first item in a list, right? So here it returns the first item in
options, which is ["P","Examine boulder pile"]. Similarly, options[1]
returns the second item, which is the list ["S","Go to the structure"]. This
can be seen in the print() statements.

So, if options[1] refers to the entire second list, how can we access the
individual items in that list? Like this:

print(options[1][0])
print(options[1][1])

The first print() displays S as that is item 0 inside of item 1. options[1]
means item 1 in options, options[1][0] means item 0 within item 1 in
options. The second print() displays item 1 within item 1, which is Go to
the Structure.

This is a fun and powerful way to use lists, but the syntax can be tricky at
first. Play with the code in List7.py, change what is being printed, and try
different options to get a feel for how to use [index][index] syntax.

Using lists of lists is a great way to pass options to our getUserChoice()
function. This format will make it easy to add options (each of which is a list
of two items—letter and prompt). It can handle as many options as needed.
And it’ll make the actual UDF code really clean, too.

Plus, added bonus: As you know, you can use the append() function to add

items to lists. How could this be useful? Imagine a scenario where your game
has three options. But, if the user has an item—perhaps a key they found—
then there is a fourth option to unlock a door. You could create your basic
options list and then have an if statement that checks to see if the user has
the key, and if yes, use append() to add the Unlock door option. Nice, huh?

Creating the User Options Function

Ok, so let’s create the getUserChoice() function. We know that it will accept
a single argument (the options formatted as a list of lists), and it will return
whatever the user selected.

This function could have uses outside of this game, so let’s put it in its own
file. Create a new file (in your Adventure folder) named Utils.py. We’ll use
this file for all sorts of utility functions, starting with getUserChoice().

Here’s the code:

Click here to view code image
##
Utils.py
Utility functions
##

getUserChoice()
Displays a list of options, prompts for an option, and returns
it
Pass it a list of lists in format [["Letter","Display Text"]]
Example: [["A","Option A"],["B","Option B"],["C","Option C"]]
Returns selected letter
def getUserChoice(options):
 # Create a variable to hold valid inputs
 validInputs=""
 # Loop through the options
 for opt in options:
 # Add this one to the valid letters list
 validInputs+=opt[0]
 # And display it
 print(opt[0], "-", opt[1])
 # Create the prompt
 prompt="What do you want to do? [" + validInputs + "]: "
 # Initialize variables

 choice=""
 done=False
 # Main loop
 while not done:
 # Get a single upper case character
 choice=input(prompt).strip().upper()
 # If the user entered more than 1 character
 if len(choice) > 1:
 # Just use the first
 choice=choice[0]
 # Do we have 1 valid input?
 if len(choice) == 1 and choice in validInputs:
 # We do, outa here!
 done = True
 # Return the selected option
 return choice

You can’t test this code as is. Well, actually, you can. If you save the code
and run it, though, nothing will happen.

Well, that is not quite true. Something did happen. When the code ran, it
defined a function. But that’s it. The function was defined but never actually
executed. No code executed? Then no output.

 #####

What’s with the line of # symbols at the top of Utils.py? As you
know, # starts a comment; anything after the # is ignored by Python. So
that whole block at the top of the file is one big comment. What’s it
for? Coders like to start their files with information about what the file
is, what it does, who wrote it, and so on. The line of pound signs above
and below the comments are just to make the comment stand out.

To test the function, add some text code beneath the function—something
like this:

Click here to view code image

choices = [["A", "Option A"],
 ["B", "Option B"],
 ["X", "Option X"],
 ["3", "And a numeric one, just because"]]

choice = getUserChoice(choices)
print(choice)

Now if you save and test the code, it will display options, prompt for input,
and then display what the user chose.

So, what does our getUserChoice() function do?

It starts with a few lines of comments to explain what the function is, what to
pass to it, and what it returns.

The function definition is pretty simple. It accepts a single argument:
def getUserChoice(options):

The function needs to restrict user input to only the valid options. But what
are the valid options? That depends on what gets passed to the function. That
means the code to check for valid options can’t be hard coded. Instead, we
need to build a set of valid options that will be used to validate user input. We
start with an empty variable, like this:

Click here to view code image
 # Create a variable to hold valid inputs
 validInputs=""

Then we loop through all the options with a for loop:

Click here to view code image
 # Loop through the options
 for opt in options:

Within each iteration, opt will contain an option—a list with two items;
opt[0] will contain the letter, and opt[1] will contain the text prompt.

The code within the loop does two things with each option:

Click here to view code image

 # Add this one to the valid letters list
 validInputs+=opt[0]

This line of code adds the letter to validInputs. The variable was empty at
first. Using the above test code, it’ll be "A" on the first iteration, "AB" on the
second, then "ABX", and then "ABX3". These, and only these, are all of the
allowed inputs, and we’ll use this variable later in the function.

Then the code displays the option:

Click here to view code image
 # And display it
 print(opt[0], "-", opt[1])

The first item in the test code (the first loop iteration) is list ["A","Option
A"]. Within the list, item [0] is "A", and item [1] is "Option A". So this will
print A - Option A.

Once the options have been displayed, we use input() to prompt the user for
their selection. We want the input() prompt to display the available options,
which are now in variable validInputs, so we create a prompt like this:

Click here to view code image
 # Create the prompt
 prompt="What do you want to do? [" + validInputs + "]: "

In our example, this will create a variable named prompt containing What do
you want to do? [ABX3]:.

Next, we initialize a couple of variables:
 # Initialize variables
 choice=""
 done=False

choice will store the user choice. done is a boolean value, it can only ever be
True or False, and we set the flag to False now; when the user selection is
complete, we’ll set it to True.

Next comes a while loop with input() code, much like you’ve seen many
times before:

 # Main loop
 while not done:

We initialized done to False, and this while loop will keep running until done
becomes True.

By the way, that line of code could have been written like this:
 # Main loop
 while done == False:

The end result is the same thing. But while not done feels so much cleaner.
Right?

Within the while loop, we do this:

Click here to view code image
 # Get a single upper case character
 choice=input(prompt).strip().upper()
 # If the user entered more than 1 character
 if len(choice) > 1:
 # Just use the first
 choice=choice[0]
 # Do we have 1 valid input?
 if len(choice) == 1 and choice in validInputs:
 # We do, outa here!
 done = True

The code first uses input() to get a choice and then strips extraneous spaces
and converts it to uppercase.

It then checks to ensure that the user only entered one letter. If there are more
than one, then choice=choice[0] replaces the user selection with the first
character, effectively ignoring the ones the user should not have typed.

And finally, the code checks to make sure that the user typed something by
checking the length of choice and then checks to see if choice is in
validInputs. If the length is right and choice is in validInputs, the code sets
done to True, which then forces the while to stop looping.

Once the user makes a valid selection, the function simply returns choice:
 # Return the selected option

 return choice

Test your new function with different options. Add items to the list, edit and
remove some, test all sorts of combinations to make sure it is working
properly.

And when you are done testing it all, remove the test code you added below
the function.

Updating Your Code

Now that you have a new Utils file with a wonderful new getUserChoice()
function, how do we use it in our adventure game?

The code is now in three files: Main.py is the main game, Strings.py
processes externalized strings, and Utils.py contains getUserChoice(). For
code in Main.py to use functions that are in Utils.py, we need to import
Utils.py into Main.py, just like we did Strings.py. So now your import
statements at the top of Main.py should look like this:

Imports
import Strings
import Utils

 Combining import Statements

Python lets you import multiple libraries on one line. So the code:
import Strings
import Utils

could be shortened to:
import Strings, Utils

The end result is the same thing, so use whichever syntax you prefer.

Now you can modify your functions to use the new getUserChoice()
function. Here is the updated version of the doStart() function:

Click here to view code image
Location: Start
def doStart():
 # Display text
 print(Strings.get("Start"))
 # What can the player do?
 choices = [
 ["P", "Examine pile of boulders"],
 ["S", "Go to the structure"],
 ["B", "Walk towards the beeping"],
 ["R", "Run!"]
]
 # Prompt for user action
 choice = Utils.getUserChoice(choices)
 # Perform action
 if choice == 'P':
 doBoulders()
 elif choice == 'S':
 doStructure()
 elif choice == 'B':
 doBeeping()
 elif choice == 'R':
 doRun()

Save and run your code. It is functionally the same as it was before.
(Remember, we are refactoring here.) So what changed?

We have a variable named choices, which is a list of lists that define all of
the possible choices available to the player:

Click here to view code image
 choices = [
 ["P", "Examine pile of boulders"],
 ["S", "Go to the structure"],
 ["B", "Walk towards the beeping"],
 ["R", "Run!"]
]

And then we use our new getUserChoice() function to actually get the
choice:

Click here to view code image
 # Prompt for user action
 choice=Utils.getUserChoice(choices)

As getUserChoice() is in the Utils library, we invoke it as
Utils.getUserChoice(). The choices list (of lists) gets passed as an
argument. The function returns the user choice, which is saved to the choice
variable.

The rest of the code in doStart() is the same as before.

So, what did we achieve with all of this?

The actual game code is cleaner as the user input loop has been removed.

We now have a clean and flexible way to handle options that vary during
game play.

User choice input is now an external function—one that will be used
everywhere we need to prompt the user for options. If we want to change
how that works (add color, create buttons, anything at all), we just update
that one function, and every instance of its use will be updated, too.
Actually, you can try this. Look at the getUserChoice() function. It
contains the code print(opt[0], "-", opt[1]), which is used to display
each option. Change that hyphen to an equals, or a colon, or anything
else. One little change, and every single menu option will be updated.
Perfect!

 Challenge 14.1

You know what the challenge is this time: Refactor your game.

Update every single location function in your game to use the new
getUserChoice() function.

 Challenge 14.2

Back in Chapter 11, you created a wonderful inputNumber()
function. That will be useful in your game, so copy it into Utils.py.

 Challenge 14.3

You know what else would make a great function? You are often
going to need to ask the user to make a yes-or-no choice. Things like
Do you want to pick up the weapon? or Do you give up? or Do you
need help?

You could have a while loop in your code and use input() to get a Y
or N from the user. But, nah. You could also probably use
getUserChoice(). But that’s a little convoluted.

So, create a new function in Utils.py called inputYesNo(). You’d
call it like this:

Click here to view code image
pickUpGun=inputYesNo("Do you want to pick up the gun?")

inputYesNo() would display the passed text, prompt the user, and
return a result.

You can use inputNumber() as a starting point for this one.

Summary
Refactoring is all about gradually and continuously improving your code. In
this chapter and the previous one, we looked at a couple of ways to do this:
identifying code that can be refactored for reuse and externalizing strings.
Our application now is made up of multiple files, and we’ll be adding more in
the next chapters as we introduce additional functionality.

Chapter 15
Carrying (and Using) Stuff

In Chapters 13 and 14, we took a break from coding our game to clean up our
code. We are going to continue doing that in this chapter, this time focusing
on how to carry and use items.

Planning the Inventory System
Every adventure game requires that the player obtain and use items. Maybe
you need to collect coins to buy an item from a story. The coins you collect
are items, as is whatever you buy. Or perhaps you encounter a door that is
locked, and it’ll only open if you have found a particular item: a key. Items
can be maps, food, potions, weapons, you name it.

In your game, for example, the structure has a door. It won’t open yet. Try to
open the door, and you see this:

The game doesn’t actually tell the player to find a key. That’s implied, and
they’ll need to do so to continue.

Working with items requires that your code have a way to store and access
them during game play. And that’s the job of an inventory system.

The question is how to store this information? You could create a bunch of
variables:

Inventory
coins = 0
sonicKey = False
jetPack = False
food = 100

This way, as players get more coins, you can just add them to the coins

variable. If they were to find the key or jetpack, you’d set those flags to True.
And food starts with 100 and gets used over time (so you subtract from the
food variable) unless the user finds more (in which case you add to the
variable).

That could work, but dealing with lots of individual variables isn’t ideal. You
couldn’t easily loop through them all, saving and restoring would be onerous,
and you’d always run the risk of accidentally overwriting variables.

Ok, so what about using a list?
Inventory
inv = [0, False, False, 100]

This way, you could refer to inv[0] for the coins and inv[1] for the key.

Um, nope, that won’t work. It’s way too easy to make a mistake by referring
to the wrong item. Lists are perfect for collections of the same type of thing
(such as animals, as we saw in Part I of the book). Lists are not well suited
for collections of related items of different types.

So, what to do?

Creating a Dictionary

Turns out that Python has another data type for just this purpose. Dictionaries
are similar to lists in that they can store multiple values of different types, but
unlike lists, they are stored using names.

Let’s look at an example. Create a file named Dict1.py (which you’ll
probably want in your main Python folder, not in your Adventure folder).
Here’s the code:

pet = {
 "animal":"Iguana",
 "name":"Iggy",
 "food":"Veggies",
 "mealsPerDay":1
}

If you run the code, it won’t display anything. So wait a moment before
doing so.

This code creates a variable named pet. You’ll notice that pet contains
multiple values within curly braces (the { and } characters). Those curly
braces tell Python that this is a dictionary.

 {} or []

Don’t confuse square brackets with curly braces. pet = [] creates a
list, and pet = {} creates a dictionary.

Oh, and pets = [{},{}] creates a list of dictionaries!

Each item in a dictionary is defined as a key:value pair. The key is the name
of the item, and it is always a string enclosed within quotes. The value is any
value; it can be strings and numbers, as we used here, but can potentially be
lists, dictionaries, and more, too.

This pet dictionary contains four items. You can verify this by adding this
code to Dict1.py:

print(len(pet))

Save and run the code, and it’ll print 4, the value returned by len(pet).

If you want to access a specific item in the dictionary, you must refer to it by
its key. For example:

Click here to view code image
pet = {
 "animal":"Iguana",
 "name":"Iggy",
 "food":"Veggies",
 "mealsPerDay":1
}
print(pet["name"], "the", pet["animal"])
print("eats", pet["mealsPerDay"], "times a day")

Save and run this updated code. What does it display?

pet["animal"] means get the value for key "animal", which is Iguana.
pet["name"] means get the value for key "name", which is Iggy. And so on.

So the code will display:
Iggy the Iguana
eats 1 times a day

Working with Dictionaries

As you can see, dictionaries are perfect for grouping different but related
information.

 The update() Method

You can update dictionary items by just assigning new values, like
this:
pet["mealsPerDay"] = 2

In addition, you can also use the update() function to do this:
pet.update({"mealsPerDay": 2})

Why would you ever want to use update() when a simple assignment
works? update() can be used to update multiple name:value pairs at
once.

Updating dictionary files is easy. This is the code for file Dict2.py:

Click here to view code image
pet = {
 "animal":"Iguana",
 "name":"Iggy",
 "food":"Veggies",
 "mealsPerDay":1
}

pet["mealsPerDay"] = 2

print(pet["name"], "eats", pet["mealsPerDay"], "meals")

This code creates the same dictionary as before but then updates the
mealsPerDay item. Run this code, and it’ll display: Iggy eats 2 meals.

Some other dictionary functions you may find useful are:

Function Description
clear() Remove all items from a dictionary.
copy() Make a copy of a dictionary.
keys() Return a list of all dictionary keys.
values() Return a list of all dictionary values.

Lists of Dictionaries

Create a new file named Dict3.py. Here’s the code:

Click here to view code image
pets = [
 {
 "animal":"Iguana",
 "name":"Iggy",
 "food":"Veggies",
 "mealsPerDay":1
 },
 {
 "animal":"Goldfish",
 "name":"Goldy",
 "food":"Flakes",
 "mealsPerDay":3
 }
]

for pet in pets:
 print(pet["animal"], "-", pet["name"])

Save and run the code. It will display:

Iguana - Iggy
Goldfish - Goldy

What is pets in this code? It’s obviously a list because it is defined using
square brackets. But what is in the list? Two items, and each is a dictionary
defined using curly braces.

The for loop loops through list pets, and on each iteration, it creates a
dictionary variable named pet whose values are then displayed.

The Inventory System
Ok, so now you know how to use dictionaries. And, yes, they are ideal for
our inventory system. We could create an inventory like this:

inv = {
 "StructureKey": False,
 "Coins": 0
}

This way, for example, we could check inv["StructureKey"] to see if the
player has the key and respond accordingly. And when the user finds the key,
we just need to set inv["StructureKey"] = True.

That works, but we can improve things a little bit by providing wrapper
functions.

 New Term
Wrapper Function A wrapper function is a function whose purpose
is just to call some other code. It wraps the code, and thus the name.

What does that mean? Look at this code snippet:

Click here to view code image
inv = {
 "StructureKey": False,

 "Coins": 0
}

def takeStructureKey():
 inv["StructureKey"] = True

def hasStructureKey():
 return inv["StructureKey"]

This code creates the inv dictionary and two supporting functions. When the
player finds the key, you just call takeStructureKey() to add it to the
inventory; doing so sets the StructureKey value to True. And you can use
hasStructureKey() any time to execute code only if the user has the key, like
this:

if hasStructureKey():

hasStructureKey() returns True or False, which makes it really useful in if
statements like this one.

These wrapper functions are entirely optional. After all, you can always
access dictionary items directly. But, wrappers can make the code much
easier to use and read.

Creating an Inventory

Ok, let’s create our inventory system. We actually only need the key for now
but will add the code for the coins, too, so we have it ready for future use.

In the Adventure folder, create a new file named Inventory.py. Here’s the
code:

Click here to view code image
##
Inventory.py
Inventory system
##

inv = {
 "StructureKey": False,
 "Coins": 0
}

Add key to inventory
def takeStructureKey():
 inv["StructureKey"] = True

Remove key from inventory
def dropStructureKey():
 inv["StructureKey"] = False

Does the player have the key?
def hasStructureKey():
 return inv["StructureKey"]

Add coins to inventory
def takeCoins(coins):
 inv["Coins"] += coins

Remove coins from inventory
def dropCoins(coins):
 inv["Coins"] -= coins

How many coins does the player have?
def numCoins():
 return inv["Coins"]

The code starts by defining the inventory dictionary, a variable named inv. It
has two items in it: StructureKey keeps track of whether or not the player has
the key (we initialize it to False), and coins tracks how many coins the player
has (that one is initialized to 0).

Then come the wrapper functions. For each item, you typically can do three
things: get the item, drop the item, and check the status of the item. So, three
wrapper functions per item, and you have two items, so six wrapper functions
in all.

For inventory items that are True or False (like your key), you’d want a
function that gets the item (sets the flag to True), a function that drops the
item (sets the flag to False), and a way to check if the player has the item
(just return the flag).

 The Most Common Inventory Types

You are obviously not limited to Boolean and integer items in your
inventory, but these tend to be the most used types. That’s why we
picked these two items for this example. That way, you can use the
code as the basis for any future items and wrapper functions.

For inventory items that the player can accumulate multiple times (like your
coins), you’d want a function that gets items (it’ll increment the value) and
drops items (decrement the value), as well as a way to return how many are
in the inventory.

When your game necessitates additional items, you simply need to add a
key:value pair to the dictionary and then create the wrapper functions.

Plugging In the Inventory System

Now that you have an inventory system, let’s add it to our code. How?
Another import. Change your Main.py so that the imports look like this:

Imports
import Strings
import Utils
import Inventory as inv

That last import needs explaining.

As you will recall, when you execute functions in a library, you need to
provide the fully qualified function name, like this:

Inventory.takeStructureKey()

Inventory is a good name for the file, but it is a long word to type over and
over. So what do we do? We give it an alias:

import Inventory as inv

This tells Python to import the Inventory library but to refer to it by the

shorter name inv, like this:
inv.takeStructureKey()

Much better!

Using the Inventory System

We’re going to need some more strings, so add them to the get() function in
Strings.py.

We already have messages for the structure door and trying to open the door
with no key. Now we need a message for when the player tries to open the
door with the key. Here’s the elif you need to add:

Click here to view code image
elif id == "StructureDoorKey":
 return ("You look at the key you are holding.\n"
 "It is flashing blue, as is the keyhole.")

Now, how does the player find the key? Well, keep this to yourself, but it’ll
be hidden among the boulders. Add this elif:

Click here to view code image
elif id == "BouldersKey":
 return ("You look closer. Was that a blue flash?\n"
 "You reach between the boulders and find ...\n"
 "It looks like a key, it occasionally flashes blue.")

Now we need to let the player find the key. For now, it’ll be easy: Just go to
the boulders, and it’ll be there. We’ll make this harder in the next chapter,
when we add the ability to track progress. For now, this is the updated
doBoulder() function:

Click here to view code image
Location: Boulders
def doBoulders():
 # Does the player have the key?
 if not inv.hasStructureKey():
 # No, display text
 print(Strings.get("BouldersKey"))

 # Add key to inventory
 inv.takeStructureKey()
 else:
 # Yes, so display regular boulder message
 print(Strings.get("Boulders"))
 # Go back to start
 doStart()

This updated function now first uses the inv.hasStructureKey() wrapper
function to see if the player has the key or not. If not, it displays the new
message telling the player that they found the key. And then it adds the key to
the inventory, using this code:

Add key to inventory
inv.takeStructureKey()

If the user has the key already (meaning they came back to the boulders a
second time), then the old boulder text is displayed.

Ok, so now the player can find the key. Next, we need to change the structure
door code. Previously, if the player went to the door, they saw a message
about needing a key—and that was it. Now the code needs to respond
differently based on whether the player has the key or not. Here is the
updated doStructureDoor() function:

Click here to view code image
Location: Structure door
def doStructureDoor():
 # Display text
 print(Strings.get("StructureDoor"))
 if inv.hasStructureKey():
 print(Strings.get("StructureDoorKey"))
 else:

print(Strings.get("StructureDoorNoKey"))
 # What can the player do?
 choices = [
 ["S", "Back to structure"],
 ["R", "Run!"]
]
 # Does user have the key?
 if inv.hasStructureKey():
 # Yep, add unlock to choices

 choices.insert(0, ["U","Unlock the door"])
 # Prompt for user action
 choice = Utils.getUserChoice(choices)
 # Perform action
 if choice == 'S':
 doStructure()
 elif choice == 'R':
 doRun()
 elif choice == 'U':
 doEnterStructure()

Ok, this is a fun one. The code first displays the basic door message. It then
checks to see if the player has the key or not and uses this code to display one
message if yes and another if no:

Click here to view code image
 # Display text
 print(Strings.get("StructureDoor"))
 if inv.hasStructureKey():
 print(Strings.get("StructureDoorKey"))
 else:

print(Strings.get("StructureDoorNoKey"))

Then come the user choices, like before. But the code now adds a choice if
the player has the key:

Click here to view code image
 # What can the player do?
 choices = [
 ["S", "Back to structure"],
 ["R", "Run!"]
]
 # Does user have the key?
 if inv.hasStructureKey():
 # Yep, add unlock to choices
 choices.insert(0, ["U","Unlock the door"])

choices starts with the same two choices as before. If the player has the key,
it adds an item to the choices list. The Unlock the door option is important;
we want it to be the first item in the list. So rather than use append() to add
["U","Unlock the door"], we use insert() and place it at position 0 (making

it the first choice).

And finally, this code is added to respond to the door being unlocked:
 elif choice == 'U':
 doEnterStructure()

Obviously, to run this code, you need a doEnterStructure() function, but you
get the idea.

Now you see the value and power of our getUserChoice() function. The
ability to change options dynamically based on inventory or other criteria is
critical to making the game dynamic.

Ok, save the code and test it. The game starts as before:

Enter S to go to the structure and then D to open the door:

The player doesn’t have the key, so the door doesn’t open.

Enter S to go back to the structure, S again to go back to the start location, and
then P to look at the pile of boulders:

The player now has the key. And, yep, that was too easy. We’ll change that
soon enough.

Enter S to go back to the structure and then D to try the door again:

This time, the code responds differently because the key is in the inventory.
Nice!

Oh. Go back to the boulder again, and you’ll see this:

We now have a functioning inventory system, and the game can respond
differently, depending on inventory contents.

Displaying the Inventory

One last point about inventories: Most games give you a way to check what
you are holding. This is pretty easy to do. Add this function to the end of

Inventory.py:

Click here to view code image
Display inventory
def display():
 print("*** Inventory ***")
 print("You have", numCoins(), "coins")
 if hasStructureKey():
 print("You have a key that flashes blue")
 print("*****************")

This code is pretty simple. It defines a function named display(), which
prints the current inventory contents. Notice that it uses the wrapper functions
as opposed to accessing inv dictionary items directly. This is the preferred
way to do things. Why? Well, imagine that you wanted to format coins a
specific way or needed to perform any calculations (temporary multipliers on
food or energy, for example). Always accessing items the same way ensures
that you’ll always execute the code you want.

So, how do we display the inventory? Just call the display() function. For
example, if you added this to the choices in doStart():

 ["I", "Inventory"]

You could then add this to the processing:
 elif choice == "I":
 inv.display()
 doStart()

This way, if the user selects I, you display the inventory and then redisplay
the doStart() options.

Yes, doStart() is calling doStart(). That’s allowed, and it’s called recursion.

 New Term
Recursion Recursion is when code calls itself—for example, a
function named doStart() calling doStart(). Recursion is allowed,
and, when used properly, is super powerful.

 Challenge 15.1

You now have everything you need to define a complete inventory
system. Identify places in your game where you’ll use additional
inventory items. Add them to the inventory and create the
appropriate wrapper functions.

Summary
In this chapter, you’ve learned how to use Python’s dictionaries to store
related items. You’ve used a dictionary and wrapper functions to create an
inventory system. And you’ve seen how to work with the inventory inside of
your game.

Chapter 16
Keeping It Classy

You now have a functioning inventory system that allows players to obtain,
carry, and use items. And your game can adapt based on inventory items. The
next thing you need is a player management system. To create this, we’ll
introduce you to classes, which are the focus of this chapter.

The Player System
In Chapter 15, you used a dictionary to create an inventory system. We used
that to hide a key that the player needed to find in order to unlock the door.

But, let’s be honest, we did a pretty lousy job of hiding the key. A player can
just go to the boulders, and—ta-da!—there it is. In a real game, you’d
typically create some sort of puzzle that must be solved before the key would
be discoverable; you might require another item, like a shovel, to be found
first, or make the key appear only after a series of steps are performed in
order, or make it available via an in-game trade.

For our game, we’ll make the key discoverable after multiple visits to the
boulders. And to do that, we need a way to track visits, and that’s where a
player system comes into play (pun intended!).

A player system tracks player actions, statuses, and more. What type of
things? Places visited, lives left, energy used, time played, points
accumulated, and so on. These are not things you pick up and use, so they
don’t belong in an inventory system, but they do need to be tracked, and thus,
a player system

And to create our player system, we are going to introduce you to a new type
of Python object: the class. The truth is you’ve used classes already. For
example:

name="Shmuel"

That variable name is a class of type str (Python’s string class). If you were to
display the variable’s type, like this:

print(type(name))

you’d see <class 'str'> displayed.

And when you use functions like upper():

name=name.upper()

you are actually calling a method named upper() in that str class.

So, yep, you’ve used lots and lots of classes. But you’ve not created one of
your own. Yet.

 Classes or Dictionaries?

We used a Python dictionary for our inventory system and are using a
Python class for our player system. Why? Well, the truth is, we could
have used classes or dictionaries for both systems. But we want you to
know how to use both dictionaries and classes, so we have you use one
of each. In your own code, you are free to use whatever you prefer.

Oh, and by the way, dictionaries are actually classes, too! Yep, a
dictionary is a class, of type dict.

Creating a Player Class
Ok, so what actually is a class? In programming, a class is an object, much
like variables are objects. But classes are special because of what they can do.
We’ll use lots of classes in Part III of this book. For now, the important thing
we need you to understand about classes is that they can contain both data
and functions.

What does that mean? Well, think about the lists and dictionaries we’ve
created. What do they contain? Data, just data. They are variables that can
contain variables. Dictionaries and lists can’t contain functions, just data.

Classes, on the other hand, can contain data (called properties) and functions
(called methods). For example, the str class we just referred to contains data
(the text stored in the variable) and methods (like the upper() function).

This is important because by storing both data and the functions that access

that data, classes are perfectly suited for writing highly reusable self-
contained code.

There’s a lot more to classes, as we’ll see in Part III (where you’ll be using
lots of them). But, with this basic introduction, let’s proceed with creating our
player class.

Creating the Class

We’ll create our class in its own file. So, create a new file named Player.py
in your Adventure folder. Here’s the code you need:

Click here to view code image
##
Player.py
player class
##

Define player class
class player:
 pass

You can save and execute the code if you’d like, but you won’t see any
output. This code simply creates a class by using the class keyword followed
by the name of the class and a colon.

The class code needs to be indented beneath this class statement (just like
with if and while and def). We have nothing in your class yet, so we put a
pass statement in there just so Python wouldn’t throw error messages.

Now that you have a class, let’s make it do something useful.

Defining Properties

As we explained earlier, classes can store data, and data in classes are called
properties (or attributes).

 New Term
Attributes Data in classes are properties. This is true in just about
every programming language. But Python also uses the term attributes
to refer to all the data in classes, including properties, and also other
information about the class. That said, in this book, if you see
attributes, just think properties.

How do you create properties? Properties are variables, so you create them
just like you’d create any other variables. Here’s the updated code:

Click here to view code image
##
Player.py
player class
##

Define player class
class player:

 # Properties
 name = "Adventurer"
 livesLeft = 3
 boulderVisits = 0

We removed the pass statement, as that is not needed anymore, and we added
three properties.

name stores the name of the player, so you can personalize messages in the
game, and we initialized it with the default value "Adventurer".

We also created a property to keep track of how many lives the player has left
and initialized that to 3.

And, finally, the property we need to hide the key is boulderVisits, which
we initialized to 0. (This property will be incremented each time the player
visits the boulders.)

 TIP
Always Initialize Properties You should always initialize properties
with default values. This way, code will always work, even if you
don’t set property values explicitly in your code.

Save your changes.

If you’d like to test the class, you can add code like this beneath it:
p=player()
print(p.livesLeft)

What does this code do?

The first line creates a variable named p, which is an instance of the player
class. Notice that we added parentheses after the class name. The truth is that
p=player would have worked, too, but you’ll usually want to include those
parentheses so that you have the option of passing arguments to the class, if
needed.

 New Term

Instance When a variable of a class type is created, we say that we’ve
created an instance of that class. The act of creating an instance is
called instantiation. So, you don’t actually create a class variable; you
instantiate an instance of the class.

Yes, we are helping you speak programmer-ese.

The second line displays the value in the livesLeft property inside of the p

class.

So what would this code display? 3, the value of livesLeft.

Test the other properties. And when you are done, remove your test code
from the file.

It is important to note that when you create a class, you are actually creating a
new type of variable. If you were to use print(type(p)), you’d see that p is a
variable of type class player. And the class you create is just as much a
class as any of Python’s built-in classes—and can be used the same way.

 Properties Can Be Any Type

We created simple text and numeric properties in our class. But,
properties can be as simple or as sophisticated as needed, and can be
lists, dictionaries, even other classes.

 Displaying All Class Properties

If you want a list of all the properties in a class, you can use the dir()
function. If your class instance is named p, you can use dir(p) to
obtain a list of attributes. And because dir() returns a list, you can use
a for loop to loop through each property. Here’s an example:

Click here to view code image
p=player()
for att in dir(p):
 print (att, getattr(p, att))

The for loop loops through the list returned by dir() and creates a
variable named att for each attribute in the list. print() then prints the
attribute name and uses the getattr() function to get the attribute

value.

Note that this code won’t just display class properties; it’ll display all
class attributes (including lots of built-in ones), too.

Creating Methods

Now that our class has the properties we need, let’s create our methods.
Here’s the code to add to your class:

Click here to view code image
 # Get name property
 def getName(self):
 return self.name

 # Get number of lives left
 def getLivesLeft(self):
 return self.livesLeft

 # Player died
 def died(self):
 if self.livesLeft > 0:
 self.livesLeft-=1

 # Is player alive
 def isAlive(self):
 return True if self.livesLeft > 0 else False

 # Get number of times boulders were visited
 def getBoulderVisits(self):
 return self.boulderVisits

 # Player visited the boulders
 def visitBoulder(self):
 self.boulderVisits += 1

Most of this code should be self-explanatory. Just like how you create
functions, def is used to define methods (which, as you will recall, are
functions).

What’s different about these functions is the argument self. What is this?

When you create methods in a class, those methods need to be able to access
the class itself. self is simply a reference to the instance of the class, and by
passing self, your method can access class properties.

So, to get the player name, we use this method:
 # Get name property
 def getName(self):
 return self.name

The getName() method gets passed a reference to the class instance, and it
uses that to return self.name, meaning the name property in the current class
(self).

If that sounds odd, um, yeah, it kinda is. We know. But, go with it. Make sure
that self is the first argument to any class method, and you’ll be good to go.

Let’s look at another example:
 # Get number of lives left
 def getLivesLeft(self):
 return self.livesLeft

This one is pretty simple: getLivesLeft() returns the livesLeft property, so
you can know how many lives your player has left.

Where methods get a bit more interesting is when they do more than just
return properties. Look at this example:

Click here to view code image
 # Is player alive
 def isAlive(self):
 return True if self.livesLeft > 0 else False

Your code could check if a player is alive by simply checking how many
lives they have left. But rather than do that if calculation all over the place,
we created a method called isAlive(), which your code can call. It returns
True if there are lives left (livesLeft > 0) or False if there are no lives left
(meaning the player is dead). This way, you can use code like this in your
game:

if p.isAlive():

 Does Not Need to Be Self

Actually, you can name the first argument of a class method anything
you’d like. Python coders have adopted self as the standard name, so
you’ll see that used in most Python code. But if you want to use
another name, go for it.

 Inline if Statements

Did you notice anything different about the return statement in the
isAlive() method? That’s an inline if statement—an if statement
with an else in a single line of code. Technically, this is called a
ternary conditional operator. (Yeah, that’s why we called it an inline
if statement.)

This code:

Click here to view code image
 return True if self.livesLeft > 0 else False

is functionally equivalent to this code:
 if self.livesLeft > 0:
 return True
 else:
 return False

Either syntax works. We used the inline if because it is just so much
cleaner, and it looks so much more professional (and we love looking
very professional).

Nice, huh?

Oh, one important thing to note: The isAlive() method is defined as def
isAlive(self):, with the self argument. In the if statement we just looked
at, we called isAlive() with no arguments. So, what about that self? Well,
turns out you don’t have to worry about it. Python deals with that one for
you; you just call the method (passing arguments, if needed) but ignore the
self argument when you are calling class methods.

Methods that simply return properties are great. But where classes become
super useful is when you create super useful methods that do whatever
processing they need to return super useful results.

Back to our boulders and the methods we’ll need to hide the key and
eventually make it discoverable. First this method:

Click here to view code image
 # Player visited the boulders
 def visitBoulder(self):
 self.boulderVisits += 1

Every time the player visits the boulder location, we’ll call this
visitBoulder() method. All it does is increment the boulderVisits property
so we can keep track of how many times the location has been visited.

To get the visit number, our code can call this method:

Click here to view code image
 # Get number of times boulders were visited
 def getBoulderVisits(self):
 return self.boulderVisits

This one is self-explanatory (we hope!).

Initializing the Class

Before we move on to using our class, there’s one additional topic we should
discuss.

When instantiating classes, it is sometimes necessary to execute some default
code. This is often done to initialize properties, which we don’t need to do
here (as we did this with simple assignments right inside of the class

definition). But there are other reasons to do so, too.

When you create a class, you can define a constructor—a method that will -
automatically be executed.

 New Term
Constructor A constructor is a method in a call that gets called
automatically when a class is instantiated.

We don’t actually need a constructor in your class, but you need to know
what constructors are and what they look like, so here we go:

Click here to view code image
 # Initialize class and properties
 def __init__(self):
 self.name = "Adventurer"
 self.livesLeft = 3
 self.boulderVisits = 0

In Python, constructors are always named __init__ (that’s two underscore
characters before and after the word init). If a method with that name exists,
Python will execute it. Simple.

In this code snippet we’re demonstrating how you could use the constructor
to initialize properties. But, as already noted, we don’t need to do that as
we’ve initialized them already.

If you want to add this code to your class, you can. Your choice.

Using Our New Class
We now have a class for your player system. So let’s plug it into the game
and update the boulder and key-finding code.

The first thing we need to do is import the new Player file. So, update your
import statements like this:

Imports
import Strings
import Utils
import Inventory as inv
import Player

Next, we need to create an instance of our new class. Add this code to the top
of Main.py. You can put it right after the import statements:

Create player object
p = Player.player()

The player class is in the Player library, so we refer to it as Player.player().

Now when you run the game, the code will immediately instantiate the
player class, and we can use this new instance (named p) in our code.

Oh, we need one more block of text for our game. We have text that gets
displayed when the player looks at the boulder, and we have text that gets
displayed when they find the key. Let’s add one more block of text that will
be displayed on the second and subsequent visits. Add this to the get()
function in Strings.py:

Click here to view code image
 elif id == "Boulders2":
 return ("What's with you and boulders?\n"
 "They are still big, heavy, boring boulders.")

Great. Now all we have to do is update the doBoulder() function. Here is the
updated code:

Click here to view code image
Location: Boulders
def doBoulders():
 # Track this visit
 p.visitBoulder()
 # Display text
 if p.getBoulderVisits() == 1:
 print(Strings.get("Boulders"))
 elif p.getBoulderVisits() == 3:
 print(Strings.get("BouldersKey"))
 inv.takeStructureKey()
 else:

 print(Strings.get("Boulders2"))
 # Go back to start
 doStart()

Let’s review the updated function. We need to know how many times the
player has visited the boulders, so the first thing the code does is this:

 # Track this visit
 p.visitBoulder()

As you know, the visitBoulder() method in the player class simply
increments the boulderVisits property. So, the first time the user goes to the
boulders the count will be incremented to 1, the next time it’ll be incremented
to 2, and so on.

Then comes an if statement. If this is the first visit, then the Boulders
message is displayed. If this is the second visit, then the else will display the
Boulders2 message. If this is the third visit, then the elif will display the
BouldersKey message and also take the key and add it to the inventory, using
this code:

 inv.takeStructureKey()

If the user visits again, the else will show the Boulders2 message.

That should do it! Ok, let’s test it.

The game starts. Enter I to display the inventory. There is nothing in the
inventory:

Enter P to look at the pile of boulders:

The first boulders message is displayed. No hints here. Will the player figure
it out?

Enter P to go to the boulders again:

This time, the second boulders message is displayed. That’s a subtle hint. If
the player is paying attention, they’ll notice that the text changed a bit,
hinting at the fact that different things happen on return visits.

Enter P to go to the boulders a third time:

Bingo! The player has found the key. Enter I to check the inventory:

That worked! The player found the key, and it is in the inventory, exactly as

planned.

What happens if the player goes back to the boulders?

All future visits will show the second boulders message.

And now the player can proceed to the structure and unlock the door.

 Challenge 16.1

Our player class has a name property that you can use to personalize

the game. Update your doWelcome() function to ask the player for
their name and save it to the player class. You can do something as
simple as p.name=input(), or you can create a method in player to
setName(). Either way works.

Then use p.getName() in your code to display personalized
messages.

Oh, you’ll also want to personalize the text returned by get() in
Strings.py, too. One simple way to do this is to pass p.getName() as
a second argument to the get() method, and use that when you
construct the text to be displayed..

 Challenge 16.2

When a player runs, they die (method doRun()). Change the code so
that when they run, they lose a life. (Hint: we have a method in the
class that does just this.) Then use isAlive() in an if statement. If
the player is still alive, send them to doStart() to continue playing;
if not, use gameOver().

Summary
In this chapter, you learned how to create and use classes. You created a class
for the game’s player system and introduced new functionality by combining
this new system with the inventory system created in Chapter 15.

Chapter 17
Color Your World

You now have the beginnings of a functioning game. And it looks boring.
Plain old black-and-white text. Blah! In this chapter, we’ll show you how to
install and use third-party Python libraries, and we’ll use one to introduce a
splash of color to our game.

Installing Third-Party Libraries
We mentioned third-party libraries way back in Chapter 3. Python comes
with all sorts of built-in libraries, and you’ve used many of them. third-party
libraries are created by Python developers, and you can use them just as you
would the built-in libraries.

Of course, before you can use libraries, you need to install them. To add color
to our game’s output we’ll be using a popular third-party Python library
called Colorama. The truth is that you can add color to your output without
any libraries by adding codes like ESC [31 m to your output. (That’s red text,
by the way.) But, by using Colorama, you can actually use sensible text (like
the word RED), which is much easier.

So how do you install libraries in Python? When you installed Python back in
Chapter 1, a series of tools and utilities were installed, too. One of them is
called PIP, and its job is to install (and update and remove) third-party
libraries.

You use PIP right inside the Terminal window (where application output is
usually displayed). Yep, when your code isn’t running, you can type terminal
commands in that window. To install Colorama, the command is:

Windows users: pip install colorama

Mac and Chromebook users: pip3 install colorama

After issuing the command, you see this:

 PIP

PIP is an acronym that stands for Pip Installs Packages or Pip Installs
Python. And, yes, the first word is the acronym PIP! That’s
programmer humor for you.

Alternatively, some have suggested that PIP stands for preferred
installer program. But we like the other acronym.

Don’t worry if you see a different version number. The version will change
as the library developer makes changes and updates. The key here is the last
line. So long as it says Successfully installed, you’re good to go.

Using Colorama
To color text in the Terminal window, you need to embed special codes
(called escape sequences) in the output. Rather than deal with obscure codes,
Colorama lets you use English color names, which it converts to the
necessary codes.

So, to display text in red, you’d do something like this:

Click here to view code image
print(colorama.Fore.RED+"Hello, this is in red")

Easy enough.

Importing and Initializing the Library

Before we can use Colorama, we need to import the library. You know how
to do that:

import colorama

colorama is a long name. You can shorten it with an alias, as we did back in
Chapter 15 with the Inventory file:

import colorama as col

This way, you can shorten the above code to:

Click here to view code image
print(col.Fore.RED+"Hello, this is in red")

This is all syntax you’ve seen before.

But there is another way to use import that you’ve not seen yet. Look at this
import statement:

from colorama import Fore

This import is a little different. It imports just the Fore part of the colorama
library and lets us access Fore without needing to fully qualify the name.
What does that mean? We could do this:

Click here to view code image
print(Fore.RED+"Hello, this is in red")

Now the code is even shorter!

You can use any syntax you want. We’ll use this new one just so you can get
used to it.

The two parts of the colorama library we need are init (which initializes the
library) and Fore (which has the codes for foreground colors). So, your
updated import code block should look like this:

Click here to view code image
Imports
import Strings
import Utils
import Inventory as inv
import Player
from colorama import init, Fore

The last thing we need to do before using Colorama is to initialize it. Add this
code to the top of your Main.py (either before or after the player class
instantiation):

Initialize colorama
init()

Test your app to make sure nothing’s broken. You’ll not see any color just
yet, but things should just work exactly as they did previously. If they do,
then all is good, and we can move on to adding color to your output.

Coloring Your Output

You have pretty limited color options in the Terminal window. Basically, you
can use BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, and WHITE as text
colors.

Foreground color means the color of the text itself. Colorama also supports
background colors (so you can have red on yellow, for example), but we’ll
just use foreground colors here to keep things simpler. And you’ll want to
pick different colors for different parts of the text.

We’ve decided to use GREEN for the main game text, YELLOW for menus (as
they need to be bright and clear), RED for when something goes wrong, and
CYAN for the inventory.

To use these colors, we simply need to add the right codes to the print()
functions. For example, this is the updated doWelcome() function:

Click here to view code image
Welcome the player
def doWelcome():
 # Display text
 print(Fore.GREEN+Strings.get("Welcome"))

All that has changed is the inclusion of Fore.GREEN that has been prepended
into the display text. That’s all you need to do.

When the player tries to open the door, we’ll display prompts in the standard
GREEN, unless there’s an error (you can’t open the door, sorry), in which case
we display the text in RED. Here’s a snippet from the doStructureDoor()
function:

Click here to view code image

Location: Structure door
def doStructureDoor():
 # Display text

print(Fore.GREEN+Strings.get("StructureDoor"))
 if inv.hasStructureKey():

print(Fore.GREEN+Strings.get("StructureDoorKey"))
 else:

print(Fore.RED+Strings.get("StructureDoorNoKey"))

As you can see, this is all pretty simple.

 Custom Output Functions

Rather than stick color instructions all over the place, you may want to
create your own utility functions (put them in Utils.py). You could
have one called printGreen(), so that any text passed to it prints with a
Fore.GREEN prefix, and so on.

Or you could create functions like printMessage(),
printErrorMessage(), printMenuText(), etc., and use the colors you
want inside of those.

There is no right or wrong way to do this. It’s all about how you, as the
coder, want to organize your code.

See how much power you have?

Where things get less simple is coloring the menus or inventory display.
Why? Open Inventory.py and try adding Fore.CYAN. VS Code underlines
Fore, as you can see here:

Why did this happen? Because the code in Main.py knows about Colorama,
but the code in Inventory.py does not. You’ll need to add the import to this
file, too.

Add this to the top of Inventory.py:
Imports
from colorama import Fore

We don’t need to initialize Colorama again, so we just need Fore this time.
With this change, things will work.

Oh, you’ll need to do the same for Utils.py if you want to color the choices
in those print() statements.

Save your code and run the game. Depending on the colors used, you should
see output like this:

This looks much better. You can use as much or as little color as you’d like.
Just keep in mind:

Pick colors that make sense. By that we mean don’t use green for errors
or warnings.

Be consistent in color use, with all menus one color, all messages one
color, and so on. That helps orient players, as the color helps them
identify what they are seeing.

For greater impact, you can use background colors, too. If you want to
do so, you’ll need to add Back to the import line, and then you can do
things like Back.WHITE+Fore.RED.

Remember that colors are sticky. What does that mean? If you don’t set a
color in a print(), then the last color you set will be used. Setting a color
basically turns it on, and it remains the active color until you change it.
So if something isn’t coloring as expected, you probably didn’t exactly
provide a color, and the previously chosen color is being used. This
applies to setting background colors, too.

You’ll also want to set colors back when your application finishes
running. If you don’t, the last color used will remain the Terminal text
color. So, in the gameOver() function, you should probably set the color
back to Fore.WHITE when you are done.

 TIP
You Can Auto Reset If you don’t want colors to be remembered,
change your init() to init(autoreset=True). This way, colors will be
applied to the current print() only.

 Challenge 17.1

Now that you know how to color your output, go ahead and color the
whole game.

Summary
In this chapter, you learned how to install and use third-party Python
libraries. You use the fun Colorama library to color your game’s output.

Chapter 18
Keep Going

You now have a functioning (albeit limited) text-based adventure game.
Using libraries and functions, lists and dictionaries, and classes, you have
everything you need to really build a complete and comprehensive game. In
this chapter, we’ll give you some ideas about where to go next and pointers to
help you get there.

Health and Lives
Many games track player lives. When players die, they lose a life and
continue playing. The game is over when no lives are left. Our player class
has properties and methods for using lives, and you can use them in your
game.

Newer games also track player health and often combine doing so with
tracking lives. How could you do this in your game?

For starters, you’d need to update the player class with a couple of
properties. Here’s what our updated class looks like:

 # Properties
 name = "Adventurer"
 livesLeft = 3
 boulderVisits = 0
 maxHealth = 100
 health = maxHealth

You’ll see that two properties have been added: maxHealth and health.

maxHealth stores the maximum amount of health a player can have at any
time. We’ll need this value for all sorts of calculations, and rather than hard
code the value all over the place, we do so once, in a property that other code
can refer to. This way, if we needed to change the value, we’d do so once, in
one place only. Here maxHealth is 100, but you can change it to whatever
value your game needs.

health stores the current player health level. When the game starts, the player
needs to be at full health, so the health variable is initialized to maxHealth. Of
course, if your game works differently—maybe the player starts at half health
and has to locate items to increase health—you change the initialization as
needed.

Now we need methods to work with lives and health. We’ll start with
methods to add and remove lives.

If your game allows a player to add lives (maybe by finding an item, using a
potion, buying a heart, etc.), you’ll need a way to update the player system
with this information. This addLives() method gets added to the player class:

Click here to view code image
 # Add lives
 def addLife(self, lives=1):
 # Increment lives
 self.livesLeft += lives
 # And fill up health
 self.health = self.maxHealth

When executed, the addLife() function does two things. The first line
increases the value of the livesLeft property, effectively giving the player
another life. Many games also restore player health when a life is added, and
the second line in the function restores player health back to maxHealth. If
you don’t want this to happen, just remove that second line.

As this function is a method in a class, the first argument is always self (as
we discussed in Chapter 16).

But look at that second argument. Does it look different to you? What does
lives=1 mean? That =1 provides a default value for argument lives (which -
actually makes the lives argument optional).

In our game we only need to add a single life at a time, so we could have
simply written addLife() like this:

Click here to view code image
 def addLife(self):
 self.livesLeft += 1
 self.health = self.maxHealth

Call addLife(), and it increments livesLeft by 1 (that’s what += 1 does).
Simple.

But what if at some point in the future we needed the code to allow users to
add multiple lives at once? We’d need another function that accepted the

number of lives to add as an argument. Something like this:

Click here to view code image
 def addLives(self, lives):
 self.livesLeft += lives
 self.health = self.maxHealth

True, we may not need this functionality now, but at some point we may, and
then we’d have two very similar functions.

 Write Flexible Methods

This addLife() function is a good example of how you should write all
your methods. Wherever possible, plan for future needs and
capabilities and make your code as flexible as possible. This will make
your code more reusable and future safe. And this can be done with
any function, not just methods within classes.

Anticipating possible future needs, we created a single addLife() function
that supports both use cases. How does it do this? By accepting an optional -
argument—one that has a default value that is used if no explicit argument
value is passed. So, if your code called the method like this:

p.addLife()

without passing a value for lives, then Python would use the default value of
1 for that argument value. But if the code did this:

p.addLife(3)

then the passed value of 3 would be used.

We may never need the ability to add multiple lives. But, with barely any
extra code, we can support that use case, and we’ve added no complexity to
how the function gets called either (p.addLife() works perfectly). So, why
not?

Now we need a method to remove a life:

Click here to view code image
 # Lose lives
 def loseLife(self, lives=1):
 # Decrement lives
 self.livesLeft -= lives
 # Make sure didn't go below 0
 if self.livesLeft < 0:
 # It did, so set to 0
 self.livesLeft = 0
 # If no lives
 if self.livesLeft == 0:
 # No health either
 self.health = 0
 # If lives left
 elif self.livesLeft >= 1:
 # Reset health to full
 self.health = self.maxHealth

loseLife() looks more complicated, but it really isn’t.

Like the addLife() function, it accepts an optional number of lives, and it
defaults to 1.

The first thing it does is decrement the livesLeft property. But, unlike when
we add lives, when we subtract lives, we’ll want to make sure we didn’t
inadvertently go below 0. This code addresses that:

Click here to view code image
 # Make sure didn't go below 0
 if self.livesLeft < 0:
 # It did, so set to 0
 self.livesLeft = 0

Now if livesLeft goes below 0, it gets set back to 0. Now users can’t have
negative lives! Phew!

The rest of the code sets health as needed. Each time the player starts using a
new life, health is reset back to maxHealth. But if there are no lives left, then
we set health to 0.

We can now add and delete lives as needed. Next, we need to do the same for
health. Let’s start with a method to get the current health value:

 # Get health value
 def getHealth(self):
 return self.health

getHealth() is a simple function: It just returns the current value of the
health property.

So, on to adding and losing health. Here are the two new methods:

Click here to view code image
 # Add health
 def addHealth(self, health):
 self.health += health
 # Make sure not over maxHealth
 if self.health > self.maxHealth:
 # Went too high, reset to max
 self.health=self.maxHealth

 # Lose health
 def loseHealth(self, health):
 self.health -= health
 # Make sure not < 0
 if self.health < 0:
 # Lose a life
 self.loseLife()

addHealth() accepts an argument that tells the function how much health to
add. It then uses self.health += health to add the passed health amount to
the health property. An if statement then makes sure that health isn’t larger
than maxHealth (which could happen if health were at 75 and the user did
some action that added 50, for example). If health is greater than maxHealth,
it gets reset to maxHealth.

loseHealth() does the opposite: It subtracts from the health property. If
doing so makes health go below 0, then the function calls loseLife() (which,
as you saw previously, handles decrementing livesLeft and sets health as
needed).

With these properties and methods, you have everything you need to support

lives and health in your game. So what should you do next?

Modify your game code to give players ways to add and lose lives.

You also need ways to use and gain health.

You previously added a way to display inventory contents, and you’ll
probably want to do the same to display life and health status.

If you really want to up the sophistication level, you can display a health
meter. You’ll want to write a function that accepts a meter maximum and
the current level—the two things you’ll need in order to display a
progress meter. You could even color the meter: green if the current level
is 50% or more of the meter maximum, yellow if it is between 25% and
50%, and red if the value is less than 25%.

 Watch Variable Names

The addHealth() and loseHealth() functions are good examples of
how not to write code. Yes, they work, but naming an argument the
same as a property is asking for trouble. If the property is named
health, it’s safer to use anything but the name health for the argument
name.

Shopping for Items
Buying items is a popular and common game feature. Some items may be
required (meaning the game can’t be finished without having procured them),
and some may be optional (they improve the game experience but are not
required to complete the game). Allowing players to buy items is a good way
to add variability to a game. By buying different items, players can impact
game play.

We added support for coins in our inventory system. But we never added any
way to do anything with the coins.

So, how could you support shopping in your code? There are a few things
you’ll need to do:

Players need a way to obtain coins. You can perhaps give them coins
when they solve a puzzle. Or enemies can drop coins when they are
beaten. You can hide coins in various locations and add them to the
player’s inventory when found. (If you do this, you need to decide what
happens if the player revisits that location. Do they get more coins, or is
it a one-time deal?)

You need to decide if the store is always available as an option or
whether it’s in specific game locations.

You need a way to display a list of things available for purchase.

And, finally, when the player purchases an item, you need to remove
those coins from the inventory and add the item they bought.

There is no single way to implement these tasks, but we’ll show you one way
to create a list of items for purchase and how to display them to the player.

This is the code for Items.py:

Click here to view code image
##
Items
Items that may be purchased
##

items = [
 {
 "id":"health",
 "description":"Health restoration potion.",
 "key":"H",
 "cost":100
 },
 {
 "id":"blaster",
 "description":"Laser blaster.",
 "key":"B",
 "cost":250
 },
 {

 "id":"grenades",
 "description":"3 Space Grenades.",
 "key":"G",
 "cost":300
 },
 {
 "id":"shield",
 "description":"Shield which halves enemy damage.",
 "key":"S",
 "cost":500
 },
 {
 "id":"life",
 "description":"Additional life.",
 "key":"L",
 "cost":1000},
]

When creating a list of items that can be purchased you’ll want to think about
how this information will be used. You’ll need to check that the player has
enough money to buy an item, so you’ll need to access the cost. You’ll want
a clear description of the item. And so on.

To this end, you create a list of dictionaries. Each item in a dictionary is one
item that can be purchased. If you need to add more items to the game, you
just add items to this dictionary. And then you write supporting functions.
Here’s one example, which gets the items that are available for purchase:

Click here to view code image
Get available items
Return in format used by getUserChoice()
def getItems():
 # Variable for result
 result = []
 # Loop through items
 for item in items:
 # Create empty list
 i=[]
 # Add key
 i.append(item["key"])
 # Add description + cost
 i.append(item["description"]+" ("+str(item["cost"])+")")
 # Add this item to the result

 result.append(i)
 # Return it
 return result

getItems() is an interesting function. As you will recall from Chapter 14, the
getUserChoice() function expects choices to be passed as a list of lists. Your
list of items to be purchased is a list of dictionaries. So, getItems() loops
through the items and creates the list of lists that getUserChoice() expects.
How does it do this?

The function starts by creating an empty list to store the result, like this:
result = []

It then uses a for loop to loop through the items. Each time it loops, it creates
another temporary list variable to store this particular item, like this:

Create empty list
i=[]

It then needs to add two items into this list. The first is the menu letter (what
the player enters to select a menu option), and the second is the menu text. To
add the first, we do this:

Add key
i.append(item["key"])

The append() function adds an item to a list, and here it adds the value key for
the current item.

The menu text is comprised of the description and the cost, like this:

Click here to view code image
Add description + cost
i.append(item["description"]+" ("+str(item["cost"])+")")

Again, append() adds this to the temporary list. When done, the list (for the
first item) will look like ['H', 'Health restoration potion. (100)'], which
is exactly what we need.

This item is then added to the result:
Add this item to the result

result.append(i)

This continues for each item, and then the completed result is returned.

Now the list of items can be displayed using the existing menu function,
perhaps like this:

Click here to view code image
Display shopping list menu
choice=Utils.getUserChoice(Items.getItems())

Clever, huh?

If you plan to implement items and shopping, here are some things to
consider:

Give players ways to obtain coins. (We’ll show you one idea next.)

Decide how the player displays the store and items.

Possibly put shopping in a loop so that the player can keep buying things
until they are done.

You may want to limit the shopping to show only items the player can
afford. You could modify getItems() to accept the number of coins the
player has, and then, when you loop to build the list of items, have an if
statement that checks the cost and only append ones the player can
afford.

Some items purchased will need to be added to the inventory. If the
player buys health or lives, you call the appropriate player() methods
instead.

Random Events
You may want your game to be linear, meaning that things happen in a
specific order every time the game is played. Or you may want to introduce
variability into the game, so that each time it is played, things are a little
different. There is no right or wrong way to implement game play. You, as
the coder, get to decide what your game does.

If you do want to introduce variability, you can employ random events. You
know how to use the random library; we did that together way back in Chapter
3. You can use random anywhere you want to introduce a random event. For
example, code like this would find 100 coins on the ground and would add
them to the inventory:

Click here to view code image
100 coins show up 1 in 4 times
if random.randrange(1, 5) == 1:
 # Tell player
 print("You see 100 coins on the ground.")
 print("You pick them up.")
 # Add to inventory
 inv.takeCoins(100)

This code would find coins about one in four times. How? Because the
random.randrange(1, 5) returns a random number from 1 to 4 (the 5 is not
included, as you will recall). This means that approximately a quarter of the
time the code will return 1, a quarter of the time it’ll return 2, and so on. The
if statement checks to see if randrange() returned 1, which it does about one
in four times, and if yes, the coins are found and picked up. So, a quarter of
the time that this function runs, the user will get coins. Want it to be one in
three times? Just change the range to be 1, 4.

If you do this often enough, you might want to write a function to determine
if a random event should occur or not. Look at this function (which could be
added to Utils.py):

Click here to view code image
Should a random event occur?
Pass it a frequency, 2=1 out 2, 3=1 out of 3, etc.)
def randomEvent(freq):
 return True if random.randrange(0, freq)==0 else False

randomEvent() accepts a single argument, which tells the function how often
the event should occur. Pass it 4, and it’ll return True one in four times and
False the other three times. Pass it 2, and half the time it’ll return True and
half the time it’ll return False. The logic is the same as in the previous
example, but this time it is put into a user-defined function.

By using this function you don’t really have less code than you’d have by
using randrange() right inside your app. But using a user-defined function
like this is still a good idea. For starters, it keeps your code cleaner. In
addition, it allows you to easily change how randomness works; just change
one function rather than lots of individual pieces of code.

So how would you use the function? Like this:

Click here to view code image
100 coins show up 1 in 4 times
if Utils.randomEvent(4):
 # Tell player
 print("You see 100 coins on the ground.")
 print("You pick them up.")
 # Add to inventory
 inv.takeCoins(100)

As you can see, the result is the same, but the code is a bit cleaner.
Utils.randomEvent(4) returns True approximately one in four times, and
when that happens, the code under if is executed, and the player gets the
coins.

And you can add even more randomness if you’d like. Look at this example:

Click here to view code image
1-100 coins show up 1 in 4 times
if Utils.randomEvent(4):
 # Pick a random number of coins
 coins=random.randrange(1, 101)
 # Tell player
 print("You see", coins, "coins on the ground.")
 print("You pick them up.")
 # Add to inventory
 inv.takeCoins(coins)

Now there is a one in four chance of finding a random number of coins
(between 1 and 100). Randomness is a great way to make your game more
interesting.

Battling Enemies

Battling enemies is another common game feature. Unfortunately, this one is
a bit trickier to implement. That said, we’ll give you some pointers to get you
started.

Like items, enemies have properties. So you’ll want an Enemies.py file,
perhaps something like this one:

Click here to view code image
##
Enemies
Defines enemies, supporting functions
##

List of enemies
Each needs a short name, a description,
strength (higher number = need to do more damage to kill),
and defense (lower number = easier to hit)
enemies = [
 {
 "id":"slug",
 "description":"Space slug",
 "strength":10,
 "damageMin":1,
 "damageMax":3,
 "defense":2
 },
 {
 "id":"eel",
 "description":"Radioactive eel",
 "strength":50,
 "damageMin":10,
 "damageMax":15,
 "defense":1
 },
 {
 "id":"alien",
 "description":"Green tentacled alien",
 "strength":25,
 "damageMin":5,
 "damageMax":10,
 "defense":3
 }
]

This code defines and organizes enemies. Each has an id and a description,
and then there is data that describes the enemy’s abilities and behavior.
strength is how much damage the player must inflict to kill the enemy.
damageMin and damageMax are the range of values for the amount of damage
the enemy can inflict on the player. (We wanted a range so that each time the
enemy attacks, the actual damage inflicted will be random using that range,
but you could easily change it to a fixed damage value.) defense is how well
the enemy can avoid attacks from the player; "defense":3 means that there is
a one-in-three chance of the enemy dodging an attack.

You get the idea. You don’t have to use these specific settings, and you can
make any setting fixed or a range, as needed. The key is that all enemy data
needs to be cleanly defined and organized.

Your code could then get a specific enemy by using the id key. Or if you
wanted a random enemy, you could do something like this:

Click here to view code image
Get a random enemy
def getRandomEnemy():
 # Return a random enemy
 return random.choice(enemies)

That said, that’s the easy part. The trickier part is the actual battle mechanics.
There are lots of ways to do this, and a popular one is turn-based battling,
kinda like Pokémon battles. To do this:

One side goes first (you could randomize that if you’d like), and then
each side takes turns launching an attack.

You could allow users to pick which weapon to attack with, based on
what they have in their inventory. Different weapons would inflict
different amounts of damage, and some may be single-use weapons (use
it and then it’s gone from the inventory).

You may want to allow the player to use potions or somehow improve
their health mid-battle.

Based on weapons used, range of damage inflicted, and ability to dodge,
eventually one side will win. If the enemy strength is reduced to 0, then
the player wins. If the player runs out of health (or lives), then the enemy

wins.

What happens when the battle is over? That’s up to you. Beating the
enemy may be part of the player’s journey that allows the user to
progress (basically walking past the enemy). Or the enemy may drop
items for the user to pick up and put in the inventory. Or, well, you’re the
coder, so you decide!

As we said, this one is tricky. Not all games need battling enemies. If yours
does, you’ll want to spend time carefully planning.

Saving and Restoring
Some games let players save their progress and then restore it later. You
might do this when the game is too long for players to complete all at once.
Or players may want to save their progress before trying something new (like
battling an enemy) so that if they die, they can restore back to where they
were.

So long as your game data is well organized (in dictionaries and classes, for
example, as opposed to scattered in variables all over the place), then you’ll
find that Python makes this quite easy. And the magic is a Python library
named pickle.

How does saving and restoring work? To save your game, you need to do the
following:

1. Create a single variable that contains all of the data you need to save.

2. Data gets saved in a file on the computer, so pick a file name to use.

3. Use pickle to serialize the data and save it to the file.

Restoring your game is the reverse:

1. Read data from the saved file.

2. Deserialize it with pickle.

3. Save the data back to the right variables.

 New Term
Serializing In Python, serializing data means taking an internal
Python object (variables, lists, classes, dictionaries, etc.) and turning it
into a string of bytes that can be stored. Deserializing is the opposite:
turning a string of bytes back into a Python object.

 Pickle? Really?

Yes, the Python library that you use to save and restore data is pickle.
The name may sound funny, but there is actually a good (or at least
sensible) reason for this. When you pickle foods like cucumbers or
onions, what you are doing is preserving them. The Python pickle
library is also used to save (and thus preserve) data.

Ok, so let’s see how this works. Look at this code:
Imports
from os import path
import pickle

Data file
saveDataFile = "savedGame.p"

The first import is the library used to access files on your computer. You
need that to actually save and read the saved file. The second line imports the
pickle library. Then you create a variable named saveDataFile, which
contains the name of the file that will actually hold the saved game data.

As for saving data, look at this code:

Click here to view code image
Create a data object to store both data sets.

db = {
 "inv":inv,
 "player":player
}

Save it
pickle.dump(db, open(saveDataFile, "wb"))

When you save game data, you want all of the data in one big variable. Here
we create a dictionary named db (for database), and inside it we save our inv
and player variables (assuming that these are the names we are using).

The next line of code actually saves the data. pickle.dump() gets passed the
data to save (the db variable) and the open file to save it to. The "wb"
argument tells dump() to write binary data (as opposed to simple text data).
That’s all there is to it. Game data saved!

To restore game data, we just do the opposite:

Click here to view code image
Now read back saved file
if path.isfile(saveDataFile):
 db = pickle.load(open(saveDataFile, "rb"))
 inv = db["inv"]
 player = db["player"]

This code first uses path.isfile() to verify that the saved game file exists. If
it does, it uses pickle.load() to read and deserialize the data and then puts
the restored data back in the original inv and player variables. Here we use
an "rb" argument which tells dump() to read binary data.

As you can see, saving and restoring data in Python is really easy. We mean
that. We’ve done this in other programming languages, and most can’t do this
in just a few lines of code.

If you do want to support save and restore, here are some things to keep in
mind:

What we did here—copying all objects to be saved into a single save -
variable—is the cleanest and easiest way to save data. You don’t want to
be saving and restoring lots of variables. Trust us on this one.

The variable you save should contain everything you need to restore the
game to a specific state.

Decide if you want a single save file or multiple files. A single file is
simpler to work with but will only let you restore to a specific point in
game play. Multiple save files will let players restore as they need, but
you’ll need a way to let them pick which to restore.

You may want to check to see if there are any saved games at game
startup. If you detect a saved game, ask the user if they want to restore it.

Summary
In this chapter, we’ve introduced lots of ideas and techniques that you can
use to really take your text-based adventure game to the next level. In Part III,
we’ll use these skills as we tackle graphics-based games.

Part III
Racing Around

CHAPTER 19 Crazy Driver

CHAPTER 20 Image-ine the Possibilities

CHAPTER 21 We Like to Move It

CHAPTER 22 Crash, Bang, Boom

CHAPTER 23 Finishing Touches

CHAPTER 24 Keep Going

Chapter 19
Crazy Driver

In Part II you created a text-based adventure game, and, in the process,
learned lots of skills and techniques. In this section we’re going to kick things
up a notch and create a graphical game. And just like we did with our text-
based adventure, we’ll start with the basics and add functionality in each
chapter.

Introducing Pygame
Writing graphical games can be complicated. Unlike text-based games, where
you simply print text, graphical games need to manage images on the screen,
movement, interactions between objects, keyboard or mouse input, audio, and
more—and all concurrently (meaning lots of things happening
simultaneously). You can’t just use an input() and wait. Stuff—lots of stuff
—happens while you are waiting, too. Yeah, it’s a lot (which is why we
introduced text-based gaming first).

The good news is that most game developers don’t start from scratch. Rather,
they build their games on top of trusted and proven gaming engines. This
allows them to focus more on their games and less on the low-level details
needed for lighting, animation, movement, physics, and so on.

Pygame is a gaming engine written for Python developers. It’s powerful,
easy-to-use, and free (released as open source). All that makes it perfect for
our game.

 New Term
Open Source Open source software is code that is designed to be
publicly available; anyone can see it, modify it, and use it—for free.
There’s a bit more to it than that; there are different open source
licenses that allow different uses. But for now, open source means you
can use it for free to create your game.

Prepping the Game

Before we get coding, let’s review the game we’ll be creating and get set up.

Game Concept

Crazy Driver is a simple car racing game. You’re driving a car along a busy
road. But, you are driving the wrong way—right into oncoming traffic! You
crazy driver, you! (Don’t ever do this in real life, duh!)

 More About Pygame

Pygame has been around for about 20 years, and it has been used to
create tens of thousands of games. Pygame is designed for use with
Python, but, unlike most other Python libraries, it isn’t written entirely
in Python. To improve performance, parts are written in C and
Assembler, which can run more than 100 times faster than Python.

As is often the case with large projects like Pygame, it was built on top
of another popular and powerful library, called SDL (for Simple
DirectMedia Layer), which provides access to audio, keyboard, mouse,
joystick, GPU, and more. SDL itself is used by gaming luminaries
including Valve Software.

The point of all of this is that Pygame is powerful and trusted. While
we’ll be building a rather simple game, Pygame can be used to build
really sophisticated games, too. And some not very sophisticated ones,
actually (including Flappy Bird that was all the rage a few years ago).

If you want to learn more about Pygame, visit pygame.org, where
you’ll also find lots of great examples that demonstrate what the
library can do.

This is a top-down view game (also called an overhead perspective game).
This means that the game appears as if you were above it looking down, like
this:

http://pygame.org

The objective is simple: You are at the bottom of the screen, and you need to
avoid crashing into the cars coming toward you. You can move left or right,
and that’s it.

Each time you successfully avoid a car, you’ll get a point. Oh, and each time
you successfully avoid a car, the game will get a little faster.

Installing Pygame

Pygame is not included with Python, so you’ll need to install it. To do so,
you’ll do exactly the same thing you did when you installed Colorama back
in Chapter 17:

Windows users: pip install pygame

Mac and Chromebook users: pip3 install pygame

As before, don’t worry if you see a different version number or even different
text. Just focus on the last line. So long as it says Successfully installed,
you’re good to go.

Creating Work Folders

Create a new work folder for our game. Move your mouse over the VS Code
Explorer panel. Hover over the PYTHON section to display the toolbar.
Click the New Folder icon, which is second from the left. Enter a folder
name (CrazyDriver would work) and press Enter. You now have a new
folder that is your main game folder (also called the application root folder).

Graphical games often need supporting files. At a minimum, you’ll need

image files, and you may also need audio files, music files, and more. In
general, these should not all be stored in the same folder as your code.
Rather, you’d create a separate subfolder for each. Our game uses graphic
images, so create a folder inside of your new folder named Images. (The
folders may look odd in VS Code until you have files in them. Don’t worry if
that’s the case.)

You now have a main game folder and a subfolder to store game image files.
When you create new code files, make sure you have clicked on the right
folder in the Explorer panel first. Your code needs to go in the main game
folder (not the Images subfolder).

Obtaining Images

Graphical games use graphics. (That is obvious, right?) At a minimum, you’ll
need graphics for the cars and background—usually PNG files.

Images are not created in Pygame. You need to create them using a tool like
Photoshop. We’d love for you to create your own graphics, but to help you
get started, we’ve created some graphics you can use. You can download
them from the book web page or by scanning this QR code.

When you download the images ZIP file, you’ll want to extract the images
from it. You can usually do this by double-clicking on the file in your
computer’s file browser. Copy the images from the ZIP file into the Images
folder that you just created. And if you opt to create your own images, they’ll
go in the Images folder, too.

Getting Started
We’re going to build our game incrementally. That means that you’ll be able
to run it to test code and changes, but it won’t be playable for a little while.
And we’re going to start by defining the game play space.

 Downloadable Code

You are going to be updating and refining the game code file (which
you are about to create) in every chapter in this part of the book. It’s
not a lot of code, so type away if you’d like. Or you can download the
code from the book web page by scanning this QR code. To make
things easier for you, we’ve posted the code as it would look at the end
of each chapter.

Initializing Pygame

Create a new file in your game root folder. As this is the main game file,
name it Main.py (or any name of your choice, actually). Here’s the code:

Click here to view code image
Imports

import pygame

Game colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)

Main game starts here
Initialize Pygame
pygame.init()

Initialize frame manager
clock = pygame.time.Clock()
Set frame rate
clock.tick(60)

Set caption bar
pygame.display.set_caption("Crazy Driver")

If you save and run this code, it’ll look like nothing happened. Don’t panic!
That’s what is supposed to happen, for now.

Let’s review the code. We start by importing the Pygame library. Simple
enough.

Next, we define variables for a few colors that we’ll need in the game. Colors
are specified as RGB values separated by commas, like this:

Game colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)

 ALL CAPS

You’ll notice that the color variables we defined are capitalized—for
example, BLACK instead of black or Black. As you know, Python is case
sensitive, so if you create a variable named BLACK, you must refer to it
that way exactly. So why did we create these variables in all capitals?

Python coders have adopted this convention to denote variables that
should not be changed. As our colors should never change, we used
this naming convention.

We’ve frequently used mixed case for variable names; for example,
lightGreen. If the variable is all caps, it will make it hard to separate
words, as in LIGHTGREEN. For this reason, coders often use an
underscore (_) to separate words, as in LIGHT_GREEN.

 RGB Values

Colors on a computer screen are created by mixing different amounts
of red, green, and blue light. Yep, when your screen displays yellow, it
is actually displaying lots of red and green and no blue. Seriously!

Because all colors are created using combinations of red, green, and
blue, a color value is called an RGB value (R for red, G for green, B
for blue), and it is made up of three numbers that specify how much of
each color is present. The amount of each color is a number between 0
(for none of that color at all) and 255 (for all of that color).

This means that 255, 0, 0 will display red; the R value is 255 (full
intensity), and the G and B are 0 (no light at all). Magenta (or purple)
will be 255, 0, 255: full red and blue and no green. Black is 0, 0, 0:
all three with no light at all. White is 255, 255, 255: all three at full
intensity.

Partial values can be used, too. Which means that there are over 16
million (that’s 256 to the power of 3) color combinations possible.

Colors provided to code (including Python) as well as graphic and
illustration software all use RGB values like this.

Next comes the actual library initialization. Before Pygame can be used, it

must be initialized (just like the Colorama library that we used in Chapter
17). This is done with a single line of code:

Initialize Pygame
pygame.init()

 Tuple

Look at the code for the three color variables. Do they look different to
you? Look again. They look a bit like lists that we’ve used many times
already—but not quite. Lists are defined like this:
RED = [255, 0, 0]

with values separated by commas surrounded by square brackets.
Right?

Here we used parentheses instead:
RED = (255, 0, 0)

RED looks like a list, but it obviously isn’t one. So, what is it?

It’s actually a tuple, another Python type that is very similar to a list,
but with one big difference. Unlike lists, tuples can never be changed.
You can’t add items, you can’t edit items, you can’t make any changes
at all.

This makes tuples really useful for variables that should never change,
like our colors.

Graphical game screens need to be updated constantly—many times a
second. The rate at which the screen is updated is called the frame rate.

 New Term

Frame Rate When we look at a screen, perhaps watching a movie or
playing a video game, it appears as though images are changing all the
time. The truth is that they are not. Screens get updated many times a
second—faster than the human eye can readily notice. That creates the
illusion of constant changes.

Screens update many times a second. The update speed is measured in
frames per second (or FPS), and that value is called the frame rate.

Higher frame rates make the video changes look more fluid and
realistic, but they also use more processing power.

Managing frame rates involves keeping track of time, so we create a clock
object that does exactly that, providing the game with a way to track when
frames need to be updated:

Initialize frame manager
clock = pygame.time.Clock()

Clock is defined inside of the Pygame time library, so we use the fully
qualified pygame.time.Clock() to instantiate our clock object.

Now that we have a clock object, we can use it to set the game frame rate,
like this:

Set frame rate
clock.tick(60)

clock.tick(60) tells Pygame to update the display no more than 60 times per
second (or 60 frames per second).

The last thing the code does is update the caption bar, which is the bar at the
top of the game play area. (You can see it at the top of the game, earlier in
this chapter.) Here’s the code:

Click here to view code image

Set caption bar
pygame.display.set_caption("Crazy Driver")

The Pygame display library is used to manage anything that gets displayed
on the screen. Here we use the set_caption() method to set the caption text
to Crazy Driver. Later we’ll add code so that the caption keeps updating to
show the current game score.

That’s all the code does, which is why it won’t do very much if you run it.

The next thing we need to do is to tell Pygame the size of the game window,
so add this to the bottom of your code:

Click here to view code image
Initialize game screen
screen = pygame.display.set_mode((500, 800))

Games created in Pygame can run in different modes, including full screen or
in a window. This line tells Pygame that our game runs in a window, and it
sets the window size to 500 pixels wide and 800 pixels high. The set_mode()
method returns the game area, which we save to a variable named screen.

Now if you were to save and run the code, you’d see a black box (exactly 500
pixels wide and 800 pixels high) briefly flash on the screen.

We’re making progress!

Displaying Stuff

We now have a game area (called a surface) to work with. Everything that
happens in the game—displaying items, moving them, and so on—happens
on the game surface.

 New Term
Surface A surface is an object that represents an area of the screen
where you display images, text, and more. You place items on the
surface, and then Pygame can display them.

Let’s update the game area. The surface is accessed via the screen variable
we created. We can fill the background with a solid color. In this case, we’ll
make it white, using the fill() method. Add this to the bottom of your file:

Set background color
screen.fill(WHITE)

 Pixel

A pixel (short for picture element, pix = picture, el = element) is the
smallest item that can be displayed on a screen. Each pixel is a tiny dot
that is entirely one RGB color. Larger images or videos are actually
made up of lots and lots of pixels. When pixels are super small and
there are lots of them, you don’t notice the individual pixel dots and
just see the combined image.

This is why 1080 images look better than 720 images. 1080 has more
pixels in the same space as a 720 image, and the individual pixels are
smaller and less apparent. 4K has far more pixels than 1080, which is
why 4K images look even smoother.

As its name suggests, fill() fills the screen with a color, and here we are
passing it the WHITE color we previously defined. Note that WHITE only works
because we created it. If you tried to use BLUE now, you’d get an error as we
have not defined BLUE.

Save and run the code. Well, that didn’t work. The box briefly flashed on the
screen, but it was still black. What happened to our fill(WHITE)?

Well, here’s the important thing to know about gaming engines—and this is
true of all gaming engines, not just Pygame: Graphical games typically
update the display a lot, and they do it very frequently. And often there are
lots of changes that need to be made all at once. Updating the display takes

time, so game engines typically remember all the changes that need to be
made, but they don’t actually make them until you tell them to do so. It’s an
extra step for you, but it makes for much faster and more responsive games.

And that’s what happened here. We told Pygame to set the background color
using fill(WHITE), and Pygame updated its own internal list of changes with
that color change. But we never told Pygame to update the display, so, well,
it didn’t.

How do we update the display? Add this below the fill() method:
Update screen
pygame.display.update()

Save and test the code. This time, the box that flashes on the screen will be
white.

display.update() does exactly what you’d expect: It updates the display with
any pending changes.

The Game Loop
Our game (yeah, we know calling it a game right now is a bit of a stretch)
starts and then quits right away. That’s because, as you will recall, Python
executes your code line by line, and once it has processed the final line of
code, the application terminates.

To keep the game running (until the game is over), we need a loop, much like
the loops we’ve used so many times in prior chapters. And the entire game
goes inside of a loop. When the loop ends, the game is done.

So, what goes in the loop? In our game, we’ll need code for the player to
move left and right, oncoming cars will need to appear and move toward the
player, we’ll need to track the score and adjust game speed, and more. All of
that goes inside of the game loop.

Let’s add a simple game loop. You can add this to the bottom of Main.py:

Click here to view code image
Main game loop
while True:

 # Check for events
 for event in pygame.event.get():
 # Did the player quit?
 if event.type == pygame.QUIT:
 # Quit pygame
 pygame.quit()
 sys.exit()

 # Update screen
 pygame.display.update()

Save the changes and run the game. This time, the game screen will display
(with a white background), and the box will remain on the screen until you
manually close it (by clicking on the Close icon at the top of the screen or
clicking the X on the game window).

So what does this code do? It starts with a strange-looking loop:
Main game loop
while True:

This is a while loop, much like the ones we used previously, but this one has
a condition of True. On each loop iteration, Python will check to see if the
condition is True, and it always will be. That makes this an endless loop.
Usually that’s a bad thing, but it works for us as it keeps the game running.

Next comes a for loop, which checks to see if any events have occurred that
we need to respond to in our game. What are events? They could be a key
pressed or a mouse button clicked. If those occurred, your code would need
to respond accordingly. The only event we need to respond to right now is the
QUIT event, which means the player closed the game window.

pygame.event.get() returns a list of events that need to be responded to (if
there are any), and that gets passed to a for loop, which iterates through those
events, like this:

Click here to view code image
for event in pygame.event.get():

Within the for loop, a variable named event will contain the details of an
event to be responded to. We need to check for the QUIT event, so we use this

if statement:
Did the player quit?
if event.type == pygame.QUIT:

If the player did indeed quit, then we need to shut down Pygame and close
the computer window it was running in. That’s what these two lines do:

Quit pygame
pygame.quit()
sys.exit()

The second line of code uses the sys library, which contains methods used to
work with the environment Python runs in. To use this, you’ll need add an
import to the top of your code:

import sys

And finally, the last line of code in the game loop should always be a display
update, like this:

Update screen
pygame.display.update()

Our game loop doesn’t update anything, so the update() method won’t really
do anything. But, as a general rule, you’ll always want to update the display
at the end of each game loop iteration, so we added it here for future use.

One more tweak before we wrap this chapter. And to make it easier to see
what’s going on, here is the complete Main.py:

Click here to view code image
Imports
import sys
import pygame
from pygame.locals import *

Game colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)

Main game starts here
Initialize Pygame

pygame.init()

Initialize frame manager
clock = pygame.time.Clock()
Set frame rate
clock.tick(60)

Set caption bar
pygame.display.set_caption("Crazy Driver")

Initialize game screen
screen = pygame.display.set_mode((500, 800))

Set background color
screen.fill(WHITE)

Update screen
pygame.display.update()

Main game loop
while True:
 # Check for events
 for event in pygame.event.get():
 # Did the player quit?
 if event.type == QUIT:
 # Quit pygame
 pygame.quit()
 sys.exit()

 # Update screen
 pygame.display.update()

So what changed here? Two things.

As you know, coders love clean, tight code and always look for ways to
simplify what they write. When using Pygame, you’ll find yourself referring
to events like pygame.QUIT repeatedly. It would be cleaner to just be able to
refer to QUIT, without specifying the library as a prefix. The above code uses
QUIT this way in the if statement:

if event.type == QUIT:

QUIT is a local variable defined in the pygame library. So how can we use QUIT
without specifying the pygame library name? The answer is that we can import

the variables in pygame directly into our code. Look at the import statements
at the top of the file:

Imports
import sys
import pygame
from pygame.locals import *

The first two import statements are ones you are very familiar with. The third
one is new. It tells Python to import all of the local variables (that’s what
locals means) from pygame, making them available in our code as if they
were our own local variables. Neat, huh? Now we can refer to QUIT as if it
were a local variable.

 Challenge 19.1

Try changing the window size passed to set_mode(). Make it bigger,
smaller, wider…you get the idea.

We defined three colors. Try changing fill() to use RED instead of
WHITE. And then create your own color variables and use them.
Remember, you can use any values between 0 and 255 for each of the
RGB values. You may want to use just 0 and 255 as you play with
the colors. (That still gives you 8 combinations to try.)

Summary
In this chapter, you’ve learned what Pygame is and installed it. You’ve also

created the basic game structure, which is now ready to display graphics in
the next chapter.

Chapter 20
Image-ine the Possibilities

Now that you have a basic Pygame application set up, it’s time to actually
make it look like a game. In this chapter, we’ll place images on the game
surface and learn how to work with files and folders, too.

Files and Folders
Our Crazy Driver game right now is made of a single file named Main.py,
which contains Python code. But that’s about to change. Real games are
made up of lots of files, and not all of them are code. You’ll have image files
at a minimum, and possibly video, music, and other files, too. And you’d not
want all of those files in the same folder. That would get unruly and
unmanageable.

Our game just uses images (and in Chapter 19 we guided you through saving
them in an Images folder). If you had video files, sound clips, music files,
etc., you’ll probably want to save them in their own appropriately named
folders, too. A more complete game may have a folder structure that looks
something like this:

The challenge, however, is that your code needs to know where to find these
files when it needs them. And you do not want to hard code file paths. Why?
Because depending on the operating system used and which folder the app is
being run from, the exact path to the files and folders could change. What
works on your computer may not work on someone else’s.

 New Term
Path Files on your computer are stored in folders. And folders can be
inside of other folders. The exact location of a file, taking into account
the folders, is called a path.

The solution? Build paths to the folders dynamically. When the game starts,
it checks to see where it is running and then creates variables for the paths to

the necessary folders. Your code uses these variables to access files. It’s only
a few extra lines of code, and it makes your app safer and more portable.

 New Term
Portable When code is written in a way that ensures that it’ll execute
safely on different computers, devices, or operating systems, it is said
to be portable. Portability is a good thing, and coders always try to
write code that is as portable as possible.

How do we get the path to the code that is running? Python makes this really
easy. Create a test file and type this code:

print(__file__)

Save and run the code. You’ll see the full path to the file being executed
displayed in the Terminal window.

How does this work? __file__ is a special built-in variable that contains the
full name of the currently executing code—exactly what we need. Pay
attention to that variable: It has two underscores before and after the word
file.

Now we have the path to the code. Next, we need to extract just the folder
name portion, as that will tell us which folder the code file is in. That folder is
our game root folder. To extract the folder (also called a directory) from a
fully qualified path, change the code to look like this:

Click here to view code image
import os
print(__file__)
print(os.path.dirname(__file__))

Save and run the code. This time, you’ll see two lines in the output: first the
full path to the code and then the code directory.

 Tip
Work Like a Pro Libraries, both built-in ones and third-party ones
like Pygame, tend to have lots of modules with lots of methods. You
don’t need to memorize them. Type part of a name, and VS Code will
help you find what you need. And if that doesn’t work, just do what
the pros do and Google it. If you search for “Python get file path,”
you’ll see code much like what we used here, and other solutions, too.

The os library contains functions for working with your operating system,
including files. os.path.dirname() accepts a path and extracts just the folder
portion, which is what we need.

With this, we can easily create variables for our game paths. Here’s the
updated code:

Click here to view code image
import os

Build game paths
GAME_ROOT_FOLDER=os.path.dirname(__file__)
IMAGE_FOLDER=os.path.join(GAME_ROOT_FOLDER, "Images")

print("Game root: ", GAME_ROOT_FOLDER)
print("Image folder:", IMAGE_FOLDER)

Save and run this code. It’ll print two lines of output, reporting the game root
and image folder.

The code is pretty simple. The first path variable is created like this:

Click here to view code image
GAME_ROOT_FOLDER=os.path.dirname(__file__)

This simply saves the extracted folder path to the variable GAME_ROOT_FOLDER.

The next line saves the path to the image folder, which is inside the game
root. To do this, it uses a function called os.path.join(), like this:

Click here to view code image
IMAGE_FOLDER=os.path.join(GAME_ROOT_FOLDER, "Images")

The join() function is used to add to the path in a way that is safe for all
computer operating systems. This code creates a variable named
IMAGE_FOLDER that is constructed dynamically using GAME_ROOT_FOLDER and
adding the Images folder to it. (We previously created this folder, so we know
it’s there.) And we don’t have to worry about slash or backslash characters
(which you need in file paths); join() takes care of that for us.

We’ll use this code to access the images we’ll be placing on the surface
shortly.

 Challenge 20.1

We’re only using images right now, and thus we have just an Images
folder. But it’s good to plan for the future. Assume that you have
Sound and Videos folders and create variables for each of those. You
should be able to create each with a single line of code.

Setting the Background
In the last chapter, we created a game window and set the background to
white. Let’s now update the code to display the road image as the

background. The road image is in the Images folder and is appropriately
named Road.png. When done, your game screen will look like this:

That looks way better than a white background!

Here’s the updated Main.py:

Click here to view code image
Imports
import sys, os
import pygame
from pygame.locals import *

Game colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)

Build game paths
GAME_ROOT_FOLDER=os.path.dirname(__file__)
IMAGE_FOLDER=os.path.join(GAME_ROOT_FOLDER, "Images")

Main game starts here
Initialize Pygame
pygame.init()

Initialize frame manager
clock = pygame.time.Clock()

Set frame rate
clock.tick(60)

Set caption bar
pygame.display.set_caption("Crazy Driver")

Load images
IMG_ROAD = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Road.png"))

Initialize game screen
screen = pygame.display.set_mode(IMG_ROAD.get_size())

Main game loop
while True:
 # Place background
 screen.blit(IMG_ROAD, (0,0))

 # Check for events

 for event in pygame.event.get():
 # Did the player quit?
 if event.type == QUIT:
 # Quit pygame
 pygame.quit()
 sys.exit()

 # Update screen
 pygame.display.update()

Save and run the code. This time, the game window displays the road
background until you close the window.

Okay, so what changed? Let’s walk through the code.

We made one change to the imports:
Imports
import sys, os
import pygame
from pygame.locals import *

As you just saw, os is what we use to work with file paths, so we need to
import it.

 Combining import Statements

As previously notes, we can place each import on its own line, like
this:
import sys
import os

Python also lets you combine these lines, as we did in our code, like
this:
import sys, os

The end result is the same thing, so use which format you prefer.

Next come the game color definitions, like before.

Then we create the two folder variables, as discussed previously.
GAME_ROOT_FOLDER stores the computer path to our game, and IMAGE_FOLDER
stores the path to where the game image files are.

After that comes Pygame initialization, frame manager and frame rate, and -
caption bar text, unchanged, so no explanation needed.

Then comes this code:

Click here to view code image
Load images
IMG_ROAD = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Road.png"))

To use an image in Pygame, it needs to be loaded into a variable and placed
on a surface. Here we want to load the road image; that’s the file Road.png in
the Images folder. As we did before, we use os.path.join()to safely (and
portably) create the file path to the file we need. pygame.image.load() then
retrieves the specified image and draws it on a surface named IMG_ROAD.

It is important to note that loading an image doesn’t actually display it. To
display the image, we need to copy this new surface to our main game
surface and then update the display. We’ll get to that in a moment.

Next, we initialize the game screen, as we did before. But there’s an
important change here. Previously we gave set_mode() an exact hard-coded
screen size (500 pixels by 800 pixels). Not anymore. Look at this revised line
of code:

Click here to view code image
Initialize game screen
screen = pygame.display.set_mode(IMG_ROAD.get_size())

We previously loaded Road.png into the IMG_ROAD surface. IMG_ROAD knows all
about the image, including how big it is. So, rather than hard code the size
(hard code = bad, right?), we use IMG_ROAD.get_size(). This way, the game
window will be sized to match the road background image size (which,
coincidentally, just happens to be 500 pixels by 800 pixels). And if we used a

different sized image, the window would adjust accordingly.

There is one more super-important change. We removed the code that makes
the background white and added this to the game loop in its place:

Place background
screen.blit(IMG_ROAD, (0,0))

This line of code is what puts the road image onto the game screen.
Remember, we have two surfaces now: the main game surface (which we
called screen) and the background image surface (which we called IMG_ROAD).
The blit() function copies a passed surface and copies it onto another
surface. Here it copies IMG_ROAD onto screen.

blit() takes two arguments: the image being copied and where to copy it to.
Why is that second argument needed? Surfaces are two dimensional. Think
of them as squares (or rectangles). When you copy an image onto a surface,
you need to tell the surface where to place the image by using an x,y
coordinate—a pair of numbers that identifies a location on the target surface.
0,0 refers to the top-left corner of the screen, which is exactly where we want
our background placed so that it fills the entire screen.

 New Term
x,y Coordinate An x,y coordinate (also called an x,y axis) marks a
location on a plane. The x number is the horizontal position starting
from the left, and the y number is the vertical position starting from
the top. And, as you’d expect, in Python these values start from 0.
This means that position 0,0 is the top-left corner, 100,50 would be
100 pixels from the left and 50 from the top, and so on.

 New Term
Blit Blit is a strange word, right? It actually stands for block transfer,
which is what actually happens when you blit: You copy (transfer) a

block of information from one location to another.

Placing the Cars
Now that you have the background image placed, let’s add the two cars to the
screen: the player car and the oncoming car (we’ll call it the enemy). The cars
won’t move yet. We’ll add that functionality in the next chapter. For now
let’s just place them, much like we did the background.

Here’s the updated code for Main.py:

Click here to view code image
Imports
import sys, os, random
import pygame
from pygame.locals import *

Game colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)

Build game paths
GAME_ROOT_FOLDER=os.path.dirname(__file__)
IMAGE_FOLDER=os.path.join(GAME_ROOT_FOLDER, "Images")

Main game starts here
Initialize Pygame
pygame.init()

Initialize frame manager
clock = pygame.time.Clock()

Set frame rate
clock.tick(60)

Set caption bar
pygame.display.set_caption("Crazy Driver")

Load images
IMG_ROAD = pygame.image.load(os.path.join(IMAGE_FOLDER,

"Road.png"))
IMG_PLAYER = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Player.png"))
IMG_ENEMY = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Enemy.png"))

Initialize game screen
screen = pygame.display.set_mode(IMG_ROAD.get_size())

Create game objects
Calculate initial player position
h=IMG_ROAD.get_width()//2
v=IMG_ROAD.get_height() - (IMG_PLAYER.get_height()//2)
Create player sprite
player = pygame.sprite.Sprite()
player.image = IMG_PLAYER
player.surf = pygame.Surface(IMG_PLAYER.get_size())
player.rect = player.surf.get_rect(center = (h, v))

Enemy
Calculate initial enemy position
hl=IMG_ENEMY.get_width()//2
hr=IMG_ROAD.get_width()-(IMG_ENEMY.get_width()//2)
h=random.randrange(hl, hr)
v=0
Create enemy sprite
enemy = pygame.sprite.Sprite()
enemy.image = IMG_ENEMY
enemy.surf = pygame.Surface(IMG_ENEMY.get_size())
enemy.rect = enemy.surf.get_rect(center = (h, v))

Main game loop
while True:
 # Place background
 screen.blit(IMG_ROAD, (0,0))

 # Place player on screen
 screen.blit(player.image, player.rect)

 # Place enemy on screen
 screen.blit(enemy.image, enemy.rect)

 # Check for events
 for event in pygame.event.get():
 # Did the player quit?

 if event.type == QUIT:
 # Quit pygame
 pygame.quit()
 sys.exit()

 # Update screen
 pygame.display.update()

Save and run the code. You’ll see two cars placed on the screen. The player
car will be centered at the bottom, and the enemy car will be at some random
location at the top. Your display will look something like this, and each time
you run it, the enemy car should be in a different location:

The game is starting to take shape. Let’s look at what changed in our code.

We added our favorite random library to the import statements. We need that
to randomly place the enemy car.

We updated the code that loads our images to also load the two cars we need:

Click here to view code image
Load images
IMG_ROAD = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Road.png"))
IMG_PLAYER = pygame.image.load(os.path.join(IMAGE_FOLDER, "
Player.png"))
IMG_ENEMY = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Enemy.png"))

Just like we did with IMG_ROAD previously, IMG_PLAYER loads the Player.png
car, and IMG_ENEMY loads the Enemy.png car. Now we have three images
loaded onto surfaces and ready to use.

Then comes something new. We created sprites, a kind of image object that
can be placed on a surface, moved, rotated, removed, and more.

 New Term
Sprite In computer graphics, a sprite is a two-dimensional image that
is placed onto a larger image. Sprites can be displayed or hidden,
moved, rotated, and transformed in all sorts of ways. Sprites are key to
creating the illusion of animation and movement in games, animated
movies, and more.

Because our cars need to move, we make them sprites. Here’s the code for
the player car sprite:

Click here to view code image
Calculate initial player position
h=IMG_ROAD.get_width()//2

v=IMG_ROAD.get_height() - (IMG_PLAYER.get_height()//2)
Create player sprite
player = pygame.sprite.Sprite()
player.image = IMG_PLAYER
player.surf = pygame.Surface(IMG_PLAYER.get_size())
player.rect = player.surf.get_rect(center = (h, v))

This looks more complicated than it actually is, so let’s go through it
together.

When sprites are placed on a surface, we need to define exactly where they
are to be placed. We want the player car to be centered at the bottom of the
screen, so we’ll position the sprites by figuring out their centers (unlike when
we placed the background at an exact fixed position). Determining the center
requires a little bit of math, and that’s what the first two lines of code do:

The horizontal position is exactly half of the width of the road (which, as
you will recall, is the size of the game screen). We save
IMG_ROAD.get_width()//2 to a variable named h (for horizontal).

The vertical position is a little trickier. If we just used the height of the
road, the center of the car would be at the bottom of the screen, so only
the top half of the player car (the half above the center point) would be
displayed. To display the whole player car flush on the bottom, we
subtract half of the height of the car from the screen height by using the
code IMG_ROAD.get_height() - (IMG_PLAYER.get_height()//2). This is
saved to variable v for vertical.

This image helps explain player car positioning:

Now we have two variables, which contain the horizontal and vertical center
positions for the player sprite.

The code then creates the sprite and names the variable player and sets the
sprite image to IMG_PLAYER (the player car image we just loaded). Note that
this looks like initializing a class because—surprise!—Sprite() is a class!

The sprite object needs to know how big the image is. Rather than hard code
values, we use get_size() to get the actual image size (just like we did when

we set the game screen size based on the background image size).

And, finally, we define the rectangle that will hold the sprite. This is used to
place the sprite in the correct position on the game surface, using the two
position variables we just calculated.

Placing the enemy car works similarly:

Click here to view code image
Calculate initial enemy position
hl=IMG_ENEMY.get_width()//2
hr=IMG_ROAD.get_width()-(IMG_ENEMY.get_width()//2)
h=random.randrange(hl, hr)
v=0
Create enemy sprite
enemy = pygame.sprite.Sprite()
enemy.image = IMG_ENEMY
enemy.surf = pygame.Surface(IMG_ENEMY.get_size())
enemy.rect = enemy.surf.get_rect(center = (h, v))

Again, we first calculate the sprite positions. And again, this involves a little
math:

Actually, we don’t need math for the vertical position. We want the
enemy to start at the top of the screen with only half the car showing.
(The full car will appear as it drives toward the player.) Variable v is the
vertical position, so we set v=0.

The horizontal position is a bit more interesting. Unlike the player sprite,
which we want centered, the enemy sprite needs to be placed at a random
horizontal position. As you know, picking a random number requires that
we provide the minimum and maximum for a range of values. So we
calculate the leftmost allowed position (which will be the range
minimum) and save it to variable hl (for horizontal left) and the
rightmost position (which will be the range maximum) and save it to
variable hr (for horizontal right). We then use randrange() to pick a
random number between hl and hr and save it to h.

This figure will help explain this:

The rest of the code is the same as the player sprite code but using the enemy
image instead of the player image.

We now have two sprites ready to use.

 Can All Be Inline

We calculated sprite positions and saved the results to variables. We
then passed those variables to get_rect() to position the sprites. The
variables we created are only ever used by get_rect() in the very next
lines of code. As such, we could have just done the math right inside of
get_rect() and not created the variables. And, in fact, that’s what most
developers would have done, and if you were to look at code examples
and tutorials online, that’s what you’d typically see. We isolated the
calculations and saved their results to variables to make the code easier
to explain and understand. You can do what we did here, or you can
put the calculations right inline. The end result is the same, so it’s up to
you.

The only other change is in the game loop itself:

Click here to view code image
Place player on screen
screen.blit(player.image, player.rect)

Place enemy on screen
screen.blit(enemy.image, enemy.rect)

As we did with the road image, the player and enemy cars are blitted onto the
screen, using the sprite rectangle as the location.

And now we have three images placed on the screen. In the next chapter,
we’ll make them move.

 Challenge 20.2

We provided three different enemy cars for you to use. We’ll
actually use all three in later chapters, but for now, you can
experiment with them. Change the code so that the enemy car that
gets placed at the top of the screen is Enemy2 or Enemy3.

Summary
In this chapter, you’ve learned how to load images in Pygame and how to
place them on the screen for display. Next up, moving them!

Chapter 21
We Like to Move It

Our game is starting to look like, well, a game. The only problem is that the
cars are just sitting there, not moving at all. In this chapter we’ll change that.

Moving the Enemy
We now have a game screen with a road background and an enemy car that
appears at random locations along the top of the screen. Now we’ll make the
enemy move.

As you will recall, the enemy is driving toward you (going the right way—
and you are the one driving the wrong way!). To make the enemy move, we
simply need to move the sprite down the screen.

How fast will the enemy move? That’s up to you. If it moves 1 pixel at a
time, it’ll move really slowly; if it moves 100 pixels at a time, it’ll move
really quickly. We’ll start by making it move 5 pixels at a time, and later
we’ll make it move faster as the game progresses.

Open Main.py and add this code near the top of the file, right before or after
the color definitions would be a great location:

Game variables
moveSpeed = 5

This code creates a variable named moveSpeed and initializes it to 5 (the
number of pixels we’ll move by). We’ll use this variable when we move
sprites.

Oh, this variable truly is variable. We’ll soon add code to change midgame
play, so we didn’t use capital letters for the name this time.

Now for the fun part. Go to the game loop and find the code that blits the
enemy on to the screen. Right after that line, add this code:

Click here to view code image
 # Move enemy downwards
 enemy.rect.move_ip(0, moveSpeed)

move_ip() moves a sprite. It takes two arguments. The first is the number of
pixels to move horizontally; we don’t want to change horizontal positioning,
so that value is 0. The second is the number of pixels to move vertically. We

pass it moveSpeed (which we initialized to 5), so enemy will move 5 pixels
down the screen.

Save and run the code. You’ll see the enemy start at a random location along
the top and then drive down the screen toward the player. And then…oh
no!…it drives right off the screen!

 Up, Down, Left, Right

We’re moving our sprite in one direction, passing a vertical value but
not a horizontal one. We could pass both, which would effectively
move the sprite diagonally. We could also pass negative values: -5 for
the first value would move left 5 pixels, and -5 for the second value
would move up 5 pixels.

Why is this happening? move_ip() keeps moving the enemy by 5 pixels,
exactly as coded. It doesn’t care if the sprite is visible or not. The enemy
keeps going and going off into nonvisible space.

What should happen is that when an enemy reaches the bottom of the screen,
we move it back to the top. That way, it’ll look like one car has passed us and
a new one is heading our way. To do this, we’ll need to check the position of
the enemy each time we move it to see if it has reached the bottom of the
screen.

We can do this with a simple if statement. Add this code right after the
move_ip() line:

Click here to view code image
 # Check didn't go off edge of screen
 if (enemy.rect.bottom > IMG_ROAD.get_height()):
 # At bottom, so move back to top
 enemy.rect.top = 0

Save and run the code. The enemy car drives down the screen, and when it

reaches the bottom, it moves back to the top.

How does this work? You will recall that sprites have rectangles around them
that Pygame uses to keep track of where they are. Each time we call
move_ip(), Pygame updates the rectangle so that enemy.rect always contains
the exact location of the enemy sprite. enemy.rect.bottom contains the exact
location of the bottom of the enemy sprite. The if statement simply checks to
see if the bottom of enemy is greater than the height of the road. If yes, then
we’ve gone off the screen, and the code then sets enemy.rect.top to 0, which
moves it back to the top of the screen.

Pretty cool, huh?

The only problem is that when the enemy reappears at the top of the screen, it
is in the same horizontal position as before. Why? Because we are changing
the vertical position but not the horizontal position.

Let’s change that. We used math and randrange() to pick an initial random
horizontal position for the enemy. We can do exactly the same thing again
each time we put the enemy back at the top. Remove the code that moves the
enemy to the top of the screen and replace it with this code:

Click here to view code image
 # Calculate new random location
 hl=IMG_ENEMY.get_width()//2
 hr=IMG_ROAD.get_width()-(IMG_ENEMY.get_width()//2)
 h=random.randrange(hl, hr)
 v=0
 # And place it
 enemy.rect.center = (h, v)

This is the same code that we used to place the enemy sprite initially. It
calculates the range minimum and maximum, uses randrange() to pick a
horizontal location, and sets the vertical location to 0. (0 is the top of the
screen, remember?)

Save and run the code. Now the enemy car will drive to the bottom of the
screen, and then a new enemy will appear, starting from a random location.

What happens if the enemy crashes into your player car? Nothing yet. In fact,
you can’t even move out of the way yet! We’ll fix that next.

 Duplicated Code?

We know what you are thinking. We’ve gone on and on about how
coders hate duplicated code, and we just duplicated the code that
calculates the enemy positions.

Oh, the shame!

Well, the truth is that this is temporary code. We’re going to replace it
in a future chapter when we add support for multiple enemy images.
As this is essentially throwaway code, we took the lazy option and,
yes, duplicated code.

But this is the exception, really. We mean it. As a rule, no duplicated
code!

Moving the Player
The enemy sprite moved automatically. On each frame refresh, it moved 5
pixels down the screen.

The player sprite can’t move automatically. It needs to move only when the
player tells it to do so. How will players do this? Our game will use the left
and right arrow keys on the keyboard; press left to go left, right to go right.
This obviously requires that we check if those keyboard keys have been
pressed. And, once again, Pygame makes this really easy.

In your game loop, find the line of code that blits the player sprite. Add this
right after that line of code:

Click here to view code image
 # Get keys pressed
 keys = pygame.key.get_pressed()
 # Check for LEFT key
 if keys[K_LEFT]:
 # Move left
 player.rect.move_ip(-moveSpeed, 0)

 # Check for RIGHT key
 if keys[K_RIGHT]:
 # Move right
 player.rect.move_ip(moveSpeed, 0)

key.get_pressed() returns a list of all the available keys, and each will be
True if pressed or False if not. We save the returned list in a viable named
keys, which we can then check. If keys[K_LEFT] is True, then we know the
left arrow key has been pressed, and so on.

 All Sorts of Key Options

As you have seen, key.get_pressed() returns a list of all the possible
keys that could be pressed, with each set to True or False. In our game,
we only care about the left and right arrow keys. But other games
might want to test for key combinations (Ctrl+A, or left arrow and up
arrow pressed at the same time), and this is easily done by checking
multiple values from the returned list.

What do we do if the player presses the left or right arrow key? We use the
move_ip() function to move the player sprite, just as we did the enemy sprite:

If the right arrow key was pressed, we execute
player.rect.move_ip(moveSpeed, 0), which moves the player 5 pixels to
the right (and 0 pixels vertically).

If the left arrow key was pressed, we move by -moveSpeed, which moves
the player 5 pixels to the left (but not vertically). Notice the minus sign
there: moveSpeed is 5, so -moveSpeed is -5, as we explained previously.

Save the changes and run the game. You can now move your player left and
right.

And you can move them right off the screen! It’s the same problem we had
with enemy going too far.

So, what to do? With enemy, we moved the sprite back to the top of the
screen. But that doesn’t make sense for the player sprite. What would that
do? Move the player sprite back to the center? Nah! You could do it Pac-
Man style: Go off one side of the screen and reappear on the other.

But, for us, a better option is to not let the player sprite go too far in the first
place.

Update the if statement that checks for the left arrow key as follows:

Click here to view code image
if keys[K_LEFT] and player.rect.left > 0:

Now the if statement checks to see if the left arrow key was pressed and
determines whether the left side of the player rectangle is greater than 0. If
left is 0, then the player is already all the way to the left and won’t be able to
move further.

What about the right arrow key? Change that if statement, too:

Click here to view code image
if keys[K_RIGHT] and player.rect.right < IMG_ROAD.get_width():

This code checks the right side of the player rectangle to make sure that it
has not gone beyond the width of the road (the width of the game screen).

This is better: The player can no longer fall off the edge of the screen. But we
are not quite done. As coders, we need to anticipate how our code will be
used and plan for every scenario. And here’s one that may not have happened
yet but inevitably will at some point.

When the player presses the left or right arrow key, we move the player
sprite by 5 pixels. And we make sure that the player can’t go too far off the
screen. Right? But what if the current position is pixel 3 horizontally? When
the player presses the left arrow key, our code will check to see if the position
is less than 0, and as it isn’t, it’ll allow the sprite to move. Where will it move
to? 5 pixels left of pixel 3 is –2, which means that part of the car will be over
the edge of the screen. That’s less than ideal.

There are a couple of ways to address this. We could change the code to

check how many pixels there are left to move and use a number less than 5, if
needed. Or we could just move the player sprite, and if we move it too far
just nudge it back.

Let’s go with the latter option. Here is the updated player sprite movement
code:

Click here to view code image
Get keys pressed
keys = pygame.key.get_pressed()
Check for LEFT key
if keys[K_LEFT] and player.rect.left > 0:
 # Move left
 player.rect.move_ip(-moveSpeed, 0)
 # Make sure we didn't go too far left
 if player.rect.left < 0:
 # Too far, fix it
 player.rect.left = 0
Check for RIGHT key
if keys[K_RIGHT] and player.rect.right < IMG_ROAD.get_width():
 # Move right
 player.rect.move_ip(moveSpeed, 0)
 # Make sure we didn't go too far right
 if player.rect.right > IMG_ROAD.get_width():
 # Too far, fix it
 player.rect.right = IMG_ROAD.get_width()

Let’s walk through this together.

We start by using key.get_pressed() to check if left or right arrow key was
pressed.

If the left arrow key was pressed and we’re not too far to the left, move_ip()
moves the player sprite 5 pixels to the left. This is the same code that we
used before. What changed is what comes next. An if statement checks to
see if the left edge of the player rectangle is less than 0, which would mean
we’ve moved too far. If that happens, we set player.rect.left = 0, which
puts the player sprite exactly on the left edge.

The code then does the same thing for the right arrow key. If the right edge
of the player sprite is greater than the road width, then we’ve gone too far. If
that happens, we set player.rect.right = IMG_ROAD.get_width(), which

aligns the sprite as far right as it can go.

Much better. Our cars now all move, and they can’t end up where they
shouldn’t be.

Although nothing happens when you crash into oncoming cars. We’ll fix that
next.

 Making Lots of Little Changes

In our code, we move the player sprite and then correct the position if
we allow it to move too far.

So, question: Is this really a good option? Won’t it look weird to the
player if their car moves slightly offscreen and then nudges back?

And the answer is…nope! Not at all. In fact, the player will have no
idea.

You can make as many changes as you want to the display— change
colors, add or remove sprites, move items, do whatever you want—and
the player will see none of those changes while they are happening.

Why? As explained previously, Pygame doesn’t actually update the
display until you call pygame.display.update(). This means you can
move sprites, adjust them, do whatever you need, without the player
knowing. They’ll see the changes you made only when you want them
to.

And that’s why we put pygame.display.update() at the very bottom of
the game loop. Pretty smart, huh?

 Challenge 21.1

Game speed is controlled by the moveSpeed variable. It specifies how
many pixels the enemy should advance by and how many pixels the
player sprite moves with each left or right arrow key press.

Try changing the moveSpeed value. You can try smaller numbers and
larger numbers. Get a feel for how changing this value impacts game
play.

 Challenge 21.2

We used the left and right keys to move the player sprite. You don’t
have to use those keys; you can pick your own. Many games use A
and S, for example. Update the code to use those keys. You’ll want
to check for K_a and K_s.

Or allow both sets of keys, letting players use left arrow or A to go
left and right arrow or S to go right. Here’s a hint: You can do this
easily with an or in your if statement. If you do this, be careful to

group your conditions correctly with parentheses because you’ll have
an and and an or.

Summary
You now have cars that move. Nice. They can even move until they should
crash—but then they don’t. They kinda pass through each other. As cool as
that ghostly effect is, we need to actually handle crashes properly.
Fortunately, handling collisions is the subject of the next chapter.

Chapter 22
Crash, Bang, Boom

You now have a playable game—well, playable as in a game that you can
never win or lose. So, yeah, maybe not so playable. In this chapter we’ll fix
that, and we’ll also add score tracking and incrementally increasing game
difficulty.

You Crashed, Game Over
Enemies drive toward you (or is it you driving toward them? Hmmm.). You
move left or right to avoid them. That’s how things work now.

What happens if you crash into oncoming traffic? Right now nothing, but
what should happen is game over. And that means we need to be able to
detect collisions and then respond when a collision occurs.

 Collision Detection

In our game, a crash is literally a collision. But that’s not what
collision detection means. In game engines, collision detection is the
process of determining if object boundaries have overlapped. And
that’s important. If your game allows you to drop bombs, then you
need to know if a bomb hit a target, even if the game engine has no
idea what a bomb even is. If your player approaches a door, the game
engine needs to let you do something, even though it doesn’t know
what doors are. Same for jumping to bump into a mushroom or tossing
a Poké Ball. From the game engine’s perspective, the actual action
being performed is not important. What is important is that items come
into contact with each other (bomb and target, character and
mushroom, etc.). The game engine’s collision detection system is
responsible for knowing when things come into contact with each
other, and it does that by checking object boundaries to see if they
overlap. If, for example, the character’s boundary overlaps the
mushroom’s boundary at all, then there has been a collision, and the
game engine will let you know so you can respond as appropriate for
your game (and that will double your height for some reason).

Pygame keeps things simple. It uses rectangles for all sprites, and a
collision occurs when any part of the rectangles overlap. Other game
engines support more sophisticated collision detection options that can
work with irregular shapes, too.

We need to make two changes to our code. Let’s start with the code that will
get executed when a collision occurs. We’ll create a user-defined function
named GameOver(). For now it’ll just quit the game; we’ll add more
functionality later.

Here’s the code, which you can add to your Main.py (just remember that
user-defined functions must be defined before they are used, so a good place
to put the function would be after the game variables are initialized but before
the main game code):

Game over function
def GameOver():
 # Quit Pygame
 pygame.quit()
 sys.exit()

This code is really simple. In fact, you’ve seen similar code before. Back in
Chapter 19, we added code to the main game loop to allow players to quit the
game. That code simply quit Pygame and exited the operating system
environment. That’s exactly what this code does. Call GameOver(), and the
game will quit.

So how do we call GameOver()? We need to add collision detection. And this
is super complicated stuff. Not!

Add this code in your game loop. It can go anywhere in the game loop, but
ideally it should go after all sprite movement. So a good location would be
right before or after the code that checks for the QUIT event. Here’s the code:

Click here to view code image
 # Check for collisions
 if pygame.sprite.collide_rect(player, enemy):
 # Crash! Game over
 GameOver()

Save and test the game. Avoid oncoming cars, and the game will keep
playing. But as soon as you collide, game over.

The magic here is the collide_rect() function. You simply pass it two
objects, and it compares the rectangles defined by their boundaries. If the
rectangles overlap in any way, the function will return True. Otherwise, it’ll
return False.

Here we are passing our two sprites, player and enemy, to collide_rect(). So
long as you avoid oncoming cars, the two sprites won’t overlap, so no
collision occurs, and the function returns False. But if (or should that be
when?) you crash, the sprites will overlap, and the function will return True.
When that happens, the GameOver() function is called, and the game quits.

That was easier than you expected, right? That’s the beauty of game engines:
Once you have the basics in place, they take care of all the hard stuff for you.

We’ll make our GameOver() function more interesting in the next chapter.

Tracking Score
Right now in the Crazy Driver game, you can avoid oncoming traffic until
you crash. To make things more interesting, we should add scoring so you
earn a point for each enemy you’ve successfully avoided. We need to make
three changes to our code:

We need a way to track the score.

Scores have to be updated each time a vehicle has been avoided.

And we need a way to show the score.

Let’s tackle these one at a time.

Tracking scores is easy: We just need a variable that we’ll increment as
needed. We have one game variable already, and now we add a second.
Here’s the updated game variables section:

Game variables
moveSpeed = 5
score = 0

Simple enough.

Now how do we increment the score during game play? The score needs to
go up each time a car is avoided. Or, put differently, when an oncoming car
reaches the bottom of the screen, then it’s been avoided—and the score needs
to go up.

Does that sound familiar? We already have code that gets executed when a
car reaches the bottom of the screen. Our game loop contains this if
statement:

Click here to view code image
 # Check didn't go off edge of screen
 if (enemy.rect.bottom > IMG_ROAD.get_height()):

The code under that if statement handles enemy sprite position. We can use
the same if statement to update the score. Add this code to the bottom of the
if statement:

 # Update the score
 score += 1

Now each time an enemy reaches the bottom of the screen, it’ll move to the
top, and the score variable will be incremented by 1. (As a reminder, score
+= 1 is a shortcut for score = score + 1.)

The last thing we need to do is to display the score. Back when we started
building the game, we set the caption bar, like this:

Click here to view code image
Set caption bar
pygame.display.set_caption("Crazy Driver")

The caption bar can be updated whenever needed, so we can use it to display
the score. Add this code to your game loop. You may want to put it right at
the top of the loop, before the sprite code (as captions are not affected by
screen updates):

Click here to view code image
Update caption with score
pygame.display.set_caption("Crazy Driver - Score " + str(score))

This code updates the game caption on each game loop. str(score) converts
score to a string, as you saw previously, and we use that to build the caption
text. Before any car is avoided, the caption will be Crazy Driver - Score 0,
and the caption will update as score changes.

Save and try it out. Your screen should look something like this, with the
score displayed in the caption bar:

Increasing Difficulty
Our game is too easy. To make it more challenging, we’ll gradually increase
game speed so that each time a car is avoided, the game will get a little
quicker.

And you’re going to love how easy this is to do.

The game speed is controlled by a variable named moveSpeed. We initialized
it to 5, so, when the game starts, cars move toward you 5 pixels at a time.
Similarly, the player sprite moves left and right 5 pixels at a time.

To make the game go faster, we just need to change that moveSpeed variable.
And as we want to do so each time a crash is avoided, we can use the same if
statement as the one we just used to increment the score.

Add this code (you can put it right after the score incrementing code):

Click here to view code image
 # Increase the speed
 moveSpeed += 1

Save and run the game. You’ll see that things get faster each time you avoid a
car.

How does this work? moveSpeed was initialized to 5, but as soon as you avoid
a car, moveSpeed will be incremented to 6, which means oncoming cars now
advance 6 pixels at a time. Then they advance 7 at a time, and so on.

You’ll find that the game speed picks up quickly, and at some point, it’ll
move too fast to even see properly. Is that okay? Sure, if that’s what you
want. But you may want to set an upper limit—a max speed that the game
won’t go over. If you want to do this, add one more variable to the game
variables section:

maxSpeed = 10

And then change the code that increments the speed to do so only if
moveSpeed is less than maxSpeed, like this:

Click here to view code image

 # Increase the speed
 if moveSpeed < maxSpeed:
 moveSpeed += 1

That’ll do it.

 Yeah for No Hard Coding

This is a perfect example of why you don’t hard code values. When we
added sprite movement in the previous chapter, we could have hard
coded 5 in the move_ip() function calls. And the truth is that the game
would have worked just as well—that is, until you wanted to make the
game become incrementally faster. That wouldn’t have been doable
with hard-coded values. By creating a variable for the game speed,
even when it wasn’t really needed, we set ourselves up to easily make
changes and add functionality.

 Make It Yours

Feel free to change any of this. You can make score increment by .5
so it ramps up more slowly. Or you can make it exponential by
updating score with moveSpeed *= 1.1 (which will multiply the score
by 1.1, so increases will be slower at first and faster as the game -
progresses). You can also set maxSpeed to any value you want, or you
can have no maxSpeed at all. Just be aware that if it gets so fast that it’s
jumping pixels greater than the height of the player car, it may never
collide since the cars will never actually touch.

This is your game, so make it your own.

 Challenge 22.1

The game gets faster (and thus harder) the longer you play. But the
scoring stays the same: 1 point per car avoided. Can you change that
so that once the game doubles in speed, players get 2 points per car
avoided?

Summary
We now have a real playable game. You can avoid cars, and the score (and
speed) will increase. And if you crash, game over. In the next chapter, we’ll
add some finishing touches to our masterpiece.

Chapter 23
Finishing Touches

Our Crazy Driver game is fully functional. Not bad for 100 or so lines of
code! In this chapter, we’ll add some finishing touches—some little details
that will make the game shine.

Game Over Revisited
When our game ends, it just ends: no display, no message, no anything. You
can’t even view your score. Let’s change that. We created a GameOver()
function that gets called when the game is over. Right now, it just does
cleanup, like this:

Game over function
def GameOver():
 # Quit Pygame
 pygame.quit()
 sys.exit()

We’ll update this function to display a text message for a few seconds before
the game ends, like this:

Pausing for a few seconds requires us to use the time library, which contains
a sleep() function that pauses. So add time to your import statements:

Imports
import sys, os, random, time
import pygame
from pygame.locals import *

Displaying text with Pygame is a little more involved than using the print()
function we so know and love. Anything placed on a graphical screen needs
to be turned into a graphic that can be blitted.

And you need to explicitly pick fonts and sizes. We’ll use variables for our
font details (no hard coding!). So add these two lines to your code’s variables
declarations:

Click here to view code image
textFonts = ['comicsansms','arial']
textSize = 48

textFonts is a list of fonts we want to use to display our text. Pygame will let
you use any fonts installed on your computer, and we’ll use Comic Sans
because it’s such a terrible font that it’s perfect for a Crazy Driver game.

But what will happen if someone plays our game on a computer that doesn’t
have comicsansms installed? To address this potentiality, we specify
additional fonts, including ones that will pretty much always be present, like
the safe (and boring) arial. Pygame will try the fonts in the order specified,
so it will prioritize comicsansms and will use that if it is installed. But, if
comicsansms is not available, Pygame will fall back to arial.

textSize is the font size we want. Duh!

Okay, so on to our updated GameOver() function. Here’s the code:

Click here to view code image
GameOver function
Displays message and cleans things up
def GameOver():
 # Game Over text creation
 fontGameOver = pygame.font.SysFont(textFonts, textSize)
 textGameOver = fontGameOver.render("Game Over!", True, RED)

 rectGameOver = textGameOver.get_rect()
 rectGameOver.center = (IMG_ROAD.get_width()//2,
 IMG_ROAD.get_height()//2)
 # Black screen with game over text
 screen.fill(BLACK)
 screen.blit(textGameOver, rectGameOver)
 # Update the display
 pygame.display.update()
 # Destroy objects
 player.kill()
 enemy.kill()
 # Pause
 time.sleep(5)
 # Quit pygame
 pygame.quit()
 sys.exit()

You can save the code and try the game. When you crash, you’ll see a black
screen with a bright red Game Over! message.

Let’s look at the code.

We start by creating a font object (named fontGameOver) and passing it the
font name and size variables.

Then the render() method is used to draw text on a new surface, which we
named textGameOver. render() accepts the text to be drawn, an antialiasing
flag that we set to True to smooth out font lines, and the text color, which we
set to RED (using the color variables we created way back when). render()
can also accept an optional text background color, but we skipped that as
we’ll be filling the entire window with background color anyway.

 New Term
Antialiasing When lines (including lines that make up text) are drawn
using pixels, the edges can look jagged. Antialiasing is a technique
used to smooth out those edges.

Next, we get the object’s rectangle and set the sizes, just like we did with all
of the image and sprite objects. We need to do this because we’re going to
blit it, just like the cars and the background.

The background is then painted black with fill(), just like we did in Chapter
19, and the text object is blitted onto the display. Our friend
display.update() then updates the screen to display our background and text.

Next, we do some cleanup, destroying the player and enemy sprites that we
created.

 Killing Objects

Python is really good about cleaning up after itself. If you create
objects and don’t remove them, Python will do it for you. But coders
generally like to control when objects are created and killed, which is
why we explicitly cleaned up our sprites here.

We want the Game Over! text to be displayed for 5 seconds, so we pause
using the sleep() function, like this:

 # Pause
 time.sleep(5)

And finally, we quit Pygame.

Pause
Some games allow players to pause and catch their breath. How could we do
that in our game? If we set moveSpeed to 0, then nothing will move,
effectively pausing the game.

What makes this a little tricky is if you are going to set moveSpeed to 0, you
need to remember what the speed was before you paused so you can set it
back once the game resumes.

Let’s try that. We are using the left and right arrow keys to control the player,
and we’ll add support for pressing the spacebar. While the spacebar is
pressed down, the game will pause. Release it, and the game will resume.

Create a game variable called paused and initialize it to False, which we’ll
use to track whether the game is paused or not:

paused = False

Now we need to modify the game loop. We need to respond to the user
pressing the spacebar to stop all movement, and while paused, we’ll also
ignore left and right arrow keys. (We wouldn’t want the player to be able to
cheat by moving out of the way while the oncoming car is paused.)

We need to make some changes to the code that processes key presses, so
here is the updated code:

Click here to view code image
 # Get keys pressed
 keys = pygame.key.get_pressed()

 # Are we paused?
 if paused:
 # Check for SPACE
 if not keys[K_SPACE]:
 # Turn off pause
 # Set speed back to what it was
 moveSpeed=tempSpeed
 # Turn off flag
 paused=False

 else:
 # Check for LEFT key
 if keys[K_LEFT] and player.rect.left > 0:
 # Move left
 player.rect.move_ip(-moveSpeed, 0)
 # Make sure we didn't go too far left
 if player.rect.left < 0:
 # Too far, fix it
 player.rect.left = 0
 # Check for RIGHT key
 if keys[K_RIGHT] and player.rect.right < IMG_ROAD
.get_width():

 # Move right
 player.rect.move_ip(moveSpeed, 0)
 # Make sure we didn't go too far right
 if player.rect.right > IMG_ROAD.get_width():
 # Too far, fix it
 player.rect.right = IMG_ROAD.get_width()
 # Check for SPACE key
 if keys[K_SPACE]:
 # Turn on pause
 # Save speed
 tempSpeed=moveSpeed
 # Set speed to 0
 moveSpeed=0
 # Turn on flag
 paused=True

Save and run this code. You can now press the spacebar to pause the game
and release it to continue game play.

The code first checks to see if the game has been paused or not. If paused is
True, then the only key the code responds to is the spacebar (key K_SPACE).
When keys[K_SPACE] becomes False, we know that the spacebar is no longer
being pressed, so moveSpeed is restored, and paused is set to True.

If the game is not paused, then processing continues as usual. The code
checks for the left and right arrow keys being pressed and moves the player
accordingly. And it also checks to see if the spacebar was pressed. If pressed,
the current moveSpeed is saved to a temporary variable so it can be restored
later, and paused is set to True.

And that’s one way to implement a pause.

 Challenge 23.1

We created a paused variable to track whether or not the game is
paused: True if it is, False if not. Was this necessary? Actually, no, it
wasn’t. There is another way to know if we’re paused or not: just
look at moveSpeed, which will be 0 only if the game is paused.
Modify the code to remove the paused variable, and use the existing
moveSpeed variable to pause (and unpause) game play.

Varying Enemies
Let’s make one more enhancement that is a bit more involved. (But you’re a
pro by now, so you have nothing to worry about.)

Right now the game has a single enemy that reaches the bottom of the screen
and then reappears at the top. That works, but it is the same enemy image
over and over. It would be way more fun if different enemy images were used
at random. And if different enemies were different sizes, well, that would
make game play more interesting, as that would impact obstacle avoidance
and collisions.

Yeah, multiple different enemy vehicles would be better, which is why we’ve
provided three for you to use.

Changing our code to support multiple enemies is not hard. It’s all stuff
we’ve done before. But quite a bit of code has to change to make this work.
We’ll walk through the key changes here, and you are always free to
download the code, too.

The game now has an enemy sprite that is created before the game loop,
ensuring that it is always ready to use. We’ll change the code to create and
remove the enemy sprite as needed. So, the first thing we need is a way to
track which enemy we have, if any. Add this to your list of game variables:

eNum = -1

eNum is the active enemy number, and it’ll be 0 for the first enemy, 1 for the
second, and so on. As 0 or higher could be valid enemies, we use -1 to mean
no enemy (as -1 could never be a valid enemy number).

Next, we need to load our enemy images. We currently load just one, like
this:

Click here to view code image
IMG_ENEMY = pygame.image.load(os.path.join(IMAGE_FOLDER,
"Enemy.png"))

Delete this line of code. That sounds scary, we know. But, yes, we are
serious: Delete it. Or comment it out.

 TIP
Comment Out Code Instead of deleting a line of code, you can
comment it out by putting a # character in front of it, like this:

Click here to view code image
#IMG_ENEMY = pygame.image.load(os.path.join(IMAGE_
FOLDER, “Enemy.png”))

This way, you can easily add the line back, if needed. And when you
are finished testing, you can delete the unneeded code.

IMG_ENEMY is a simple variable that can load and store a single image. That

won’t work anymore as we need to load multiple images, so we’ll replace
that variable with a list.

Here is the code to replace it with:

Click here to view code image
IMG_ENEMIES = []
IMG_ENEMIES.append(pygame.image.load(os.path.join(IMAGE_FOLDER,
"Enemy.png")))
IMG_ENEMIES.append(pygame.image.load(os.path.join(IMAGE_FOLDER,
"Enemy2.png")))
IMG_ENEMIES.append(pygame.image.load(os.path.join(IMAGE_FOLDER,
"Enemy3.png")))

We’ve replaced IMG_ENEMY with a list we brilliantly called IMG_ENEMIES. The
list starts off empty, like this:

IMG_ENEMIES = []

Then we use the append() method to add each of the three images, as we -
discussed way back in Chapter 6.

So far, so good.

And now, we need to be brave…and delete more code.

Before the main game loop, we created player and enemy sprites. Right? The
enemy location and sprite code looks like this:

Click here to view code image
Enemy
Calculate initial enemy position
hl=IMG_ENEMY.get_width()//2
hr=IMG_ROAD.get_width()-(IMG_ENEMY.get_width()//2)
h=random.randrange(hl, hr)
v=0
Create enemy sprite
enemy = pygame.sprite.Sprite()
enemy.image = IMG_ENEMY
enemy.surf = pygame.Surface(IMG_ENEMY.get_size())
enemy.rect = enemy.surf.get_rect(center = (h, v))

Delete this entire block of code. We don’t need it anymore, as we’ll be

creating sprites as we need them right inside of the game loop.

Let’s do that next. Add this code inside of your game loop. You can put it
right after where you blit the player sprite:

Click here to view code image
 # Make sure we have an enemy
 if eNum == -1:
 # Get a random enemy
 eNum = random.randrange(0, len(IMG_ENEMIES))
 # Calculate initial enemy position
 hl=IMG_ENEMIES[eNum].get_width()//2
 hr=IMG_ROAD.get_width()-(IMG_ENEMIES[eNum].get_width()//2)
 h=random.randrange(hl, hr)
 v=0
 # Create enemy sprite
 enemy = pygame.sprite.Sprite()
 enemy.image = IMG_ENEMIES[eNum]
 enemy.surf = pygame.Surface(IMG_ENEMIES[eNum].get_size())
 enemy.rect = enemy.surf.get_rect(center = (h, v))

We only create a new enemy if we don’t already have one. This code uses an
if statement to check to see if we have an enemy or not. If eNum is -1, then we
have no enemy and need one.

If there is no enemy, we need to randomly pick one, like this:

Click here to view code image
 # Get a random enemy
 eNum = random.randrange(0, len(IMG_ENEMIES))

This code uses the very familiar randrange() function to return a number
between 0 and len(IMG_ENEMIES), which we save to our eNum variable. As we
have three enemies in IMG_ENEMIES, eNum will be 0, 1, or 2. (This is why we
used -1 to indicate no enemy.)

The rest of the code is exactly the same as before, with one important change.
We replaced IMG_ENEMY with IMG_ENEMIES[eNum] as we are accessing a list
item instead of a simple variable. The logic is all the same, but this way, we’ll
be using a randomly selected enemy.

The randomly generated enemy is still named enemy. This ensures that the

rest of the code (including the code that moves the enemy and provides
collision detection) still works. None of that needs to be changed.

But we do need to make one final code change. What happens when an enemy
sprite reaches the bottom of the screen? Previously, we moved it back up to
the top, at a new random location. We need to change that so that a new
enemy will be generated.

Find the code that starts with this if statement:

Click here to view code image
 if (enemy.rect.bottom > IMG_ROAD.get_height()):

We’re going to get rid of all the code used to move the enemy sprite. Instead,
the code will look like this:

Click here to view code image
 # Check didn't go off edge of screen
 if (enemy.rect.bottom > IMG_ROAD.get_height()):
 # Kill enemy object
 enemy.kill()
 # No enemy
 eNum = -1
 # Increment the score
 score += 1
 # Increase the speed
 moveSpeed += 1
 # Increase the speed
 if moveSpeed < maxSpeed:
 moveSpeed += 1

When enemy reaches the bottom of the screen, we don’t bother moving it but
just kill the object, like this:

 # Kill enemy object
 enemy.kill()

And then we set eNum back to -1:
 # No enemy
 eNum = -1

 Flags and Variables

Our code needs to know if we have an enemy or not. We created a
variable named eNum (for enemy number) to keep track of this for us:
-1 means no enemy, and any other value is the index of the enemy we
are using.

So, was this necessary? Couldn’t we instead use a Boolean flag and set
it to True if we have an enemy and False if not? Wouldn’t the code be
simpler that way?

Yes, we could indeed do so, and the code would be simpler. But coders
need to anticipate what they’ll be doing next. And the next
enhancement we’ll add will indeed require us to know not just that we
have an enemy but what exact enemy we have. So, with the future in
mind, we opted for a numeric variable over a Boolean one.

That’s all there is to it. In the next game loop, the code will see that eNum is
-1, and it will generate a new random enemy sprite, using the code we already
created above.

Oh, and we removed the duplicated enemy code as promised, too!

 Challenge 23.2

Can you add additional vehicles to the game? You can create your

own PNG files or try to find some online. Save the images to the
Images folder and then add them to IMG_ENEMIES.

Ice Cubes
You can now display a variety of enemies. Crash into any one of them, and
game over. This means that players need to avoid oncoming objects. Always.

But we can make things more interesting by introducing different objects that
do different things, including objects that the player might want to hit. For
example, imagine if there were random ice cubes on the road, like this:

Yes, it’s silly, but we love silly in our games. So, ice cubes appear. Hit them,
and the game will slow down back to the starting game speed (and then it’ll
start increasing speed again). Players would definitely want to hit the ice
cubes, as doing so will let them play longer.

With the code we wrote to support multiple enemies, adding the ice cube
functionality is pretty simple.

Let’s add the ice cube to the enemy images:

Click here to view code image
IMG_ENEMIES.append(pygame.image.load(os.path.join(IMAGE_FOLDER,
"IceCube.png")))

Now there are four images loaded. If you run the game now, ice cubes will
appear on the screen. Crashing into them will end the game. Why? Because
our collision detection doesn’t distinguish between enemy types. Hit any
enemy, and game over.

Let’s change that. But first, up top, where we defined game variables, we
have this code:

moveSpeed = 5

Change this code to look like this:
startSpeed = 5
moveSpeed = startSpeed

moveSpeed changes as game play proceeds. Crashing into an ice cube will
reset moveSpeed back to the original starting speed, so we need to save that
value, as we did here.

We need one more code change. Find the collision detection code that looks
like this:

Click here to view code image
 # Check for collisions
 if pygame.sprite.collide_rect(player, enemy):
 # Crash! Game over
 GameOver()

This code simply says that if there are any collisions, run the GameOver()
function. We now need to treat ice cubes differently. So update the code so
that it looks like this:

Click here to view code image
 # Check for collisions
 if eNum >= 0 and pygame.sprite.collide_rect(player, enemy):
 # Is it enemy 3?
 if eNum == 3:
 # It's the ice cube, reset the speed
 moveSpeed = startSpeed
 else:
 # Crash! Game over
 GameOver()

The code now checks collisions only if there is an active enemy (that is, if
eNum is 0 or greater). If there is a collision, the code checks to see what enemy
the player collided with. If it is enemy 3 (the 4th enemy in our list, Python
starts counting from 0 as you know), then it is the ice cube, and the game
speed is reset back to the starting speed. If it is any other enemy, then game
over.

Save and run this code. You’ll see the game plays as it did before, increasing
speed with each vehicle avoided. If you hit an ice cube, the game slows back
down to the original speed; if you avoid the ice cube, nothing changes.

Summary
In this chapter, we’ve added lots of bells and whistles to improve our game
experience. We’ve added a Game Over! screen, giving players the option of
pausing the game, and introduced random enemies and different enemy
types. In the next chapter, we’ll suggest other ideas for you to try.

Chapter 24
Keep Going

You have created a fun and functional game. Congratulations! But, coders are
never satisfied with their creations and always look for cool new features to
add. In this chapter, we’ll present some ideas as next steps and give you hints
or pointers to get started.

Splash Screen
Let’s start with an easy one. Right now, the Crazy Driver game runs and
starts. It has no introduction, no warning, no click-to-start. It just runs
(because that’s how we coded it). Most games start with a splash screen that
displays the game name and maybe instructions (like telling players what
keys to use) and the name of the creator (that’s you, BTW).

So, how could you create a splash screen? Well, you could use the
GameOver() code as a starting point. Copy it to a GameStart() function and
call that function before your main game loop. You could use the same black
background or any other color. Or, you could use the road image as the
background.

You’ll need to decide how the splash screen disappears and the game starts.
Is it a timed pause like the Game Over! screen? Or should the user press a
key or click a button to start the game? Either option works, and you get to
decide which to use.

Scores and High Scores
The Game Over! screen just says Game Over! That’s not very interesting. At
a minimum, it should also display the player’s score, perhaps like this:

There’s one catch: Pygame can’t display text with line breaks, so to create a
display like this, you’ll need a second set of objects: another SysFont, another
render(), another rectangle, and so on. And then you’ll blit the new text.

To make things easier, you can actually just make a copy of the game over
block and change the object names (fontGameOver2, textGameOver2, etc., for
example). That’ll make for a more interesting (and useful) closing screen.
(Just make sure you use different placement values, or your second line of
text will be drawn over the first.)

But if you really want to up your game (bad pun intended), you could also
display the high score, like this:

Doing this requires the following workflow:

1. The player plays the game.

2. When the game is over, check to see if there is a high score already
saved.

3. If there is no high score saved, then the current game’s score is the high
score.

4. If there is a saved high score, read it from the save file and compare it
to the current game score. If the current score is greater than the saved
high score, then the current game score becomes the new high score.

5. Display the high score on the screen.

6. Save the high score to the save file so you have it for the next game.

Displaying the high score is much like displaying the current score. You need
new font and text objects, which you can use to draw the text to the display.

How do you read and save high score files? Refer to the “Saving and
Restoring” section in Chapter 18.

Oil Slick
In Chapter 23, you added an ice cube enemy. Hit it, and the game slows
down.

Now add an oil slick enemy. We gave you an image named Oil.png. It’s in
your Images folder, and it looks like this:

To use it:

Add a line of code to append Oil.png to the enemies list. If you add it
last (after the ice cube), it’ll be item 4.

In your collision detection code, check for eNum == 4 (meaning the
player hit the oil slick) and do something devious.

As for what hitting an oil slick does, that’s up to you. Here are some ideas:

You could randomly move the player a few pixels to the left or right.
You could even randomize how far they’ll move.

You could make the left and right keys not work for a couple of seconds.

You could reverse the keys so the left key goes right and the right key
goes left.

You could make the whole screen go black for a few seconds, as if oil
splashed the windscreen.

Hey, we weren’t kidding when we said do something devious!

Oh, one more thing. Right now our code gives the player a point for every
enemy avoided. That made sense when we only had car enemies. But now we
have ice and oil; should avoiding those give the player points (and raise the
speed)? Maybe. Or maybe not. You’re the coder, it’s up to you. If you’d like
to only change score and speed if the enemy is a car, you’d want to add an if
statement and necessary code in your collision detection to do that.

Multiple Enemies
Our game displays one enemy at a time. If you want to really up game play
difficulty, you can display multiple enemies at a time, starting at different
times and scattered randomly across the road. Dodging these will be much
harder.

This is definitely a more complicated enhancement, so here are some notes
and tips:

You’ll need to decide how often new enemies appear. Is it random?

Every few seconds? Do you add an enemy each time the score increases
by 5 (so 1 enemy until the score is 5, 2 until the score is 10, 3 until the
score is 15, and so on)?

Look at how we created and killed enemy objects (once we changed the
code to support multiple image files). You can use the same technique to
create enemies on demand.

You can manipulate individual sprites, but that’s a pain. A better option
is to use sprite groups. You create a group like this:

Click here to view code image
enemies = pygame.sprite.Group()

And then, whenever you generate new enemies, you can add them to
the group, like this:

enemies.add(enemy)

You can blit entire groups at once. You can also kill a group to kill
all members.

To move all group members you’d use a for loop and move each
member, like this:

for enemy in enemies:

Sprite groups can also simplify collision detection. Instead of checking
each sprite individually, you can use the spritecollideany() function,
which checks if any sprites in a group collided.

As we noted, this enhancement is definitely more complicated. But with what
you’ve learned thus far, it is quite doable.

And Then…
You now have the framework for a fun game—one with lots of room for you
to be creative. So, do that: Create! Think of other features you could add.
Here are some ideas:

Put objects (mushroom perhaps?) on the road that temporarily change the
player car size. A bigger car is more likely to crash an oncoming
vehicle; a smaller one is less likely to do so.

How about an invincibility potion? Hit that, and crashes won’t kill you
for a few seconds.

Or how about temporary shields that deflect oncoming vehicles? When
your shield is up, oncoming vehicles get nudged to the side so they don’t
hit you.

Add firepower. Hit the right object, and you will be able to shoot away
oncoming vehicles. And maybe doing so awards even more points.

You could allow the player to move forward and backward for greater
control. You can make that part of the core game, or available only as an
unlock when a certain score is reached, or temporarily available when a
specific item is hit.

Another idea could be a jump button that allows you to leap over enemy
cars. You’d need to decide how to show this, either changing the car
image or growing it to simulate getting closer to the “camera.”

So many ideas, all very doable, and all of which will make the game uniquely
yours.

Summary
In this chapter, we’ve presented ideas that will really take our Crazy Driver
game to the next level. And we’ve left you with lots of ideas about where to
go next.

What Next?

Congratulations, you’re a coder!

You’ve made it all the way to the end of our book, and along the way picked
up critical coding skills that will continue to serve you well. And we hope
you found the experience engaging and fun.

But, as we told you way back when we started on this journey together,
coders are never really done—there’s always more to learn (especially as
technology keeps evolving).

So, before we say goodbye, we wanted to share some thoughts and ideas as to
what to learn and do next.

Here goes.

There’s a Lot More to Python
You learned a lot of Python in this book. And as you have discovered, Python
is a fun and intuitive language. Python makes getting started simple, but
don’t let that simplicity fool you. Python is crazy powerful and capable,
which is why it is one of the most used languages in the world.

So we want you to keep at it and dig into Python further:

We worked with classes a bit, but not enough. If there is one area where
we’d like you to really double down, that’s what it is: classes. Actually, a
great project would be to rewrite the Crazy Driver game using classes

instead of one long block of code. In doing so, you’ll actually find
yourself writing more code, not less. But when you’re done, you’ll find
that you can add functionality and complexity with much less effort.
And, to get you started, we’ve posted a class-based version of the game
for you to download from the book page.

One topic we didn’t get to is working with data and external data files.
These types of projects tend to be less fun and games, which is why we
didn’t include them. But there is a huge demand for data scientists, and
Python is one of the really popular ways to work with data. You can
search online for project ideas. Look for data projects that involve XML
files, JSON, and any large data sets. There are lots of these online, and
lots of great examples to look at, too.

Web Development
Websites and web apps are fun projects, but they pose an interesting
challenge by virtue of how many different languages and technologies you
need to use to build them. So, what’s involved in building websites?

Web pages are created using HTML, which is a language; but it is not a
programming language (so no if statements, no loops, no variables).
Rather, it is a markup language, and it is used to lay out elements of a
web page. HTML is read by your web browser (think Chrome, Safari,
Edge, Firefox, etc.) which is how they know what to display. The good
news is that HTML is super easy to learn. The bad news is that HTML
by itself doesn’t do much.

You’ll also need CSS (Cascading Style Sheets) which is the
language used to design and format web pages and elements.

Unlike HTML and CSS, JavaScript is indeed a programming
language. It has been around for almost as long as the web because
without it, the web would be a really boring place. JavaScript runs
inside of the web browser, and it adds interactivity to pages. If you
mouse over an item on a web page and something happens, that’s
JavaScript making that happen. JavaScript is a programming
language, and it is not too hard to learn, especially as you’ll tend to
write lots of small blocks of code in it as opposed to full-blown

applications. The key is that like HTML, JavaScript runs in the
browser. For your web site or app to do anything more sophisticated,
part of it needs to run on a server or in the cloud. And so:

Pretty much every web application has a server backend. This is the
glue that holds the whole app together, and it tends to be the largest
part of any web application. What languages are used to write the
backend of a web application? You’ll be pleased to know that Python
is a good and popular choice. Python itself doesn’t really have any
web-specific libraries or technology, but there are community-
created third-party libraries that you can use. One very popular one is
called Flask, which makes it easy to generate web pages and respond
to them. In addition to Python, you can use Java, PHP, .NET, and
more, for your website backend.

Most websites need to store and access data (logins, items to
purchase, user profiles, game scores, and so much more). This type
of data lives in databases, and the language used to work with
databases is called SQL. Fortunately, SQL is an easy language to
learn (although it can take time to master).

 Tip
Learn SQL If you want to learn SQL, we have a book suggestion for
you. It’s the best-selling SQL book out there, and it’s written by our
very own Ben. You can find it at
https://forta.com/books/0135182794/.

Mobile App Development
The one thing Python really isn’t well-suited for is mobile app development.
For those you’ll want to use other languages:

https://forta.com/books/0135182794/

To write apps for iOS (meaning they’ll run on iPhone and iPad), you’ll
want to use a language called Swift. This is a pretty new language; it is
easy to learn and use, and developers really like it. iOS apps are also
written in Objective C (which is a variation of C, one of the most
powerful languages out there, but a harder one to learn and master).

Android apps are written in Java, one of the most used programming
languages. Java has lots of other uses, too (often used for server side and
backend code) and it is the preferred language for Android development.

Like web apps, your mobile apps will likely need backends, too. The options
we mentioned for websites all apply to mobile apps, too.

Game Development
We used Pygame to create a graphical game in Part III. Pygame is fun, easy
to use, and quite powerful. But it is not a full-blown gaming engine. If you
really want to write games, take a look at Unity, the most widely used
gaming engine and platform out there. With Unity you can write games for
every major operating system, mobile device, and gaming platform
(including Nintendo Switch, Sony PlayStation, and Microsoft Xbox).

Unity games are written in C#, which is a programming language based on C
(and C++). Oh, and now that you’re familiar with Visual Studio Code, you’ll
be pleased to know that Unity development is done with Visual Studio (VS
Code’s big brother), so the IDE will be familiar.

And Then…
And once you are done with all this, check out the book web page at
https://forta.com/books/0137653573 or scan this QR code. We’ve posted -
additional links and ideas there for you.

https://forta.com/books/0137653573

 Tip
Chapter 25 Want access to a bonus Chapter 25? You’ll find it online.
Just use the link or QR code above.

And with that, thanks for joining us on this journey. We can’t wait to see
what you create!

Ben & Shmuel

Index

Symbols

+ (addition) operator, 47-48
= (assignment) operator, 57
== (equality comparison) operator, 57
// (division) operator, 48
/ (division) operator, 48
% (modulus) operator, 48, 97-98
(pound sign), commenting, 214, 344
- (subtraction) operator, 48
* (multiplication) operator, 42, 48

A

antialiasing, 340
append() function, 213, 274
arguments, 164, 165

commas and, 31
naming, 168
passing, 22-23
range() function, 93
self, 247-248
user-defined functions and, 167-170
variables and, 170

arrays, 212
ASCII code, 96
assignment operator (=), 57
asterisk (*), 42
attributes, 244. See also classes

B

backslash (\), 147, 148
battling enemies, 277-279. See also game(s); text-based adventure game(s)
birthday countdown

datetime variable, 151
program flow, 150
requirements, 150

blit() function, 309
bugs, 134

C

Call of Duty, 122
calling a function, 23, 53
case sensitivity

color variables and, 291
variables and, 25, 26

choice() method, 73
choosing, random items, 38-39
Chromebook, 9, 11
classes, 54, 242

creating, 243-244
datetime, 55, 66
dictionaries and, 243
initializing, 250-251
instantiation, 246
player management system and, 251-255
properties, 244-246

reusability, 243
str, 70, 71
testing, 245-246

code(ing), 124
coloring your output, 260-264
commenting, 43-45, 141, 344
debugging, 134, 136
duplicate, 107, 322
executing, 19
indentation, 58, 77
open source, 286
optimizing, 194-195
planning and, 122-123
pseudo, 197
recursion, 238-239
refactoring, 204-206, 221
reuse, 174
string externalization, 196-201
testing, 73, 129
unit testing, 125
updating, 218-220
whitespace, 25

stripping, 72
collide_rect() function, 331
collision detection, 330-331, 350-351
colons (:), 57
Colorama, importing and initializing the library, 259-260
Colossal Cave Adventure, 178
combining, import statements, 218, 307
commas, 31
commenting, 43-45, 141

(pound sign), 214, 344

computers, 5, 42. See also programming languages
communicating with, 6
microprocessors, 4
randomness and, 37

concatenation, 28, 42, 47, 130
conditional loops, 106-110, 115

indentation and, 106-107
conditions, 57

if statement, 59, 60-61
testing for, 59-62

constants, 156, 157
constructors, 250-251
converting, strings to numbers, 65-66, 115
Crazy Driver. See also Pygame

adding multiple enemies, 357-358
collision detection, 330-331, 350-351
dynamic access to game files, 302-305
frame rate, 293
game area, 294
game concept, 286-288
game loop, 295-299
Game Over! screen, 338-341

adding the high score, 354-356
ice cubes, adding, 348-351
increasing the difficulty, 334-336
initializing Pygame, 290-294
moving the enemy, 320-322
moving the player, 323-326
obtaining images, 289
oil slicks, 356-357
pausing, 341-343
placing the cars, 310-317

setting the background, 305-309
splash screen, 354
sprites, 313-317
tracking the score, 332-334
updating the display, 295
varying enemies, 343-348
work folders, 288-289

creating
classes, 243-244
inventory system, 230-232
lists, 80-82
methods, 247-250
new Python file, 17
user choice component, 207-208
variables, 24

CSS (Cascading Style Sheets), 363
curly braces ({ }), 225

D

data files, 362
data types, 43
datetime

class, 55, 66
library, 52-54
variable, 151

debugging, 134, 136
decisions. See also loops

elif statement, 66
else statement, 58-59, 75
if statement, 56-58, 65, 66, 67, 73

conditions, 57, 59
indentation and, 58

multiple tests and, 59-61
nested, 77
in operator, 62-63

testing for conditions, 59-62
decrypting messages, 102-103. See also encryption/decryption
def statement, 166, 167, 247. See also user-defined functions
dice

12-sided, 48
rolling, 45-46, 47

dictionaries, 225, 273
classes and, 243
functions and, 227
inventory system, 229-230, 233-237

creating, 230-232
displaying, 238

key:value pairs, 226
lists of, 228
updating, 227

dir() function, 246
display() function, 238
displaying, class properties, 246
duplicate code, 107, 322

E

editors, 7. See also IDEs (integrated development environments)
elif statement, 66, 116
else statement, 58-59, 75
encoding, 95
encryption/decryption, 95, 96, 99-102

ASCII code, 96
keys, 97-98
modulus operator, 97-98

equality comparison operator (==), 57
errors, in VS Code, 18
escape characters, 148
executing code, 19
Experience Design, 123
extend() function, 85
externalization. See also refactoring, string, 196-201

F

files. See also code(ing); game(s)
accessing dynamically, 302-305
creating, 17
data, 362
naming, 26-27
path, 302
saving, 27
test, 96

fill() method, 295
folders. See also work folder

creating
for Mac users, 14-15
for Windows users, 13-14

for loops, 90-91. See also loops
Crazy Driver, 297
iteration, 91
looping through items, 90-92
looping through numbers, 92-93
nested, 93-95

frame rate, 292-293
functions, 27, 164. See also classes; methods; variables

append(), 213
append() function, 274

arguments, 22-23, 165
blit(), 309
calling, 23, 53
collide_rect(), 331
dictionary, 227
dir(), 246
display(), 238
extend(), 85
get(), 199, 201, 233
getUserChoice(), 213-217, 236
input(), 28, 38, 65, 102, 126

numeric input and, 63-64
inputYesNo(), 221
int(), 64, 66
join(), 305
len(), 81, 89, 110, 126, 212
list, 88
methods and, 54
move_ip(), 324
now(), 53, 54
ord(), 97, 101
pop(), 85
print(), 28, 30, 31, 32, 46, 47, 55, 81, 84, 132-133
randrange(), 38, 46, 346
range(), 93
recursion, 238-239
render(), 340
returning a value, 28
reusable, 208-212
sleep(), 338
str(), 100
type(), 54

user input, 28-29
user-defined, 165-167

def statement, 166-167
passing arguments, 167-170, 209
returning values, 171-174

variables, 24, 25, 30, 46, 53
naming, 26
rules, 25-26

wrapper, 229-230, 234

G

game(s), 224. See also Pygame
Colossal Cave Adventure, 178
Crazy Driver

adding multiple enemies, 357-358
collision detection, 330-331, 350-351
displaying the high score, 354-356
frame rate, 293
game area, 294
game concept, 286-288
game loop, 295-299
Game Over! screen, 338-341
ice cubes, adding, 348-351
increasing the difficulty, 334-336
initializing Pygame, 290-294
moving the enemy, 320-322
moving the player, 323-326
obtaining images, 289
oil slicks, 356-357
pausing, 341-343
placing the cars, 310-317
setting the background, 305-309

tracking the score, 332-334
varying enemies, 343-348
work folders, 288-289

development, 364
dynamic access to files, 302-305
files and, 302
folder structure, 302
graphics

antialiasing, 340
frame rate, 292-293
pixels, 294
sprites, 313-317
updating the display, 295

Hangman, 124, 125, 138-141
displaying lists, 129-131
displaying remaining lives, 147
loops, 143-145
masking characters, 131-136, 143
restricting user input, 125-128
storing user guesses, 128-129

inventory system, 233-237, 242-243
creating, 230-232
displaying, 238
planning, 224-225
wrapper functions, 229-230

Mad Libs, 30-33
number guessing, 111-120
player management system, 242-243
Pygame and, 286, 287
splash screens, 354
surface, 294
text-based adventure, 178, 184-188

addHealth() function, 270-271
addLife() function, 267-269
battling enemies, 277-279
creating, 180-181
getHealth() function, 269-270
health property, 266
loseHealth() function, 270-271
maxhealth property, 266
processing options, 182-183
prompting for options, 181-182
random events, 275-277
saving and restoring, 280-282
shopping for items, 271-275
testing, 189-190

Zork, 178
generating random numbers, 37-38, 46

number guessing game, 111-120
get() function, 199, 201, 233
getUserChoice() function, 213-217, 236
graphics

antialiasing, 340
frame rate, 292-293
pixels, 294
sprites, 313-317

cleaning up, 340-341
moving, 320-322, 323-326

updating the display, 295

H

Hangman, 124, 125, 138-141
displaying lists, 129-131
displaying remaining lives, 147

loops, 143-145
masking characters, 131-136, 143
restricting user input, 125-128
storing user guesses, 128-129

hard-coded values, 335

I

IDEs (integrated development environments), VS Code, 9
errors, 18
installing, 10-13

if statement, 56-58, 65, 66, 67, 127, 132
conditions, 57, 59, 60, 61, 115
elif and, 62
in Hangman, 145-146
indentation and, 58
inline, 145, 249
multiple tests and, 59-61
nested, 77
in operator, 62-63
Rock, Paper, Scissors game, 74, 75
while statement and, 107

import statements, combining, 218, 307
incrementing variables, 119
indentation, 58, 77

loops and, 91-92, 106-107
index values, 81, 82-83
initializing

classes, 245, 250-251
lists, 82
Pygame, 290-294

inline if statement, 145, 249
input() function, 28, 38, 65, 102, 126. See also user input

numeric input and, 63-64
inputYesNo() function, 221
installing

VS Code, 10-13
Pygame, 288
Python, 9-10
third-party libraries, 258-259

instantiation, 246
int() function, 64, 66
inventory system, 233-237, 242-243. See also player management system

creating, 230-232
displaying, 238
planning, 224-225
wrapper functions, 229-230

iteration, 91, 94

J-K-L

JavaScript, 363
join() function, 305
len() function, 81, 89, 110, 126, 212
libraries, 36

colorama, 259-260
combining, 218
datetime, 52-54
Flask, 363
naming, 200
os, 304
pickle, 280-281
random, 36-37, 73, 141
SDL, 287
string, 155
third-party, installing, 258-259

lists, 40, 41, 80, 125, 212
accessing, 82-83
adding and removing items, 84-85
changing list items, 83-84
creating, 80-82
of dictionaries, 228
displaying, 129-131
finding items in, 85-86
initializing, 82
of lists, 213
looping through items, 90-92
multiline, 142
sorting, 86-88
storing user guesses, 128-129
syntax, 81
tuples and, 292

for loops, 101
loops, 89, 90. See also if statement

conditional, 106-110
Crazy Driver and, 295-299
for, 101
in Hangman, 143-145
indentation and, 91-92
iteration, 91, 94
lists and, 90-92
nested, 93-95
numbers and, 92-93
while statement, 106-107, 108, 109, 110, 113, 143, 146

lower() method, 71

M

Mac users, creating a work folder, 14-15

Mad Libs, 30, 31, 33
user input, 32
variables, 30-31

masking characters, 125, 143
methods, 54, 164

append(), 345
choice(), 73
constructors, 250-251
creating, 247-250
fill(), 295
lower(), 71
properties and, 55
self argument, 247-248
strip(), 71
update(), 227
upper(), 71

microprocessors, 4
Microsoft Visual Studio Code. See VS Code
Minecraft, 122
mobile app development, 364
modulus operator, 97-98

encryption and, 48
move_ip() function, 324
multiline

lists, 142
text, 200

N

naming
arguments, 168
files, 27
libraries, 200

variables, 26
nested if statement, 77
nested loops, 93-95
now() function, 53, 54
numbers

ASCII code, 96
looping through, 92-93

O

open source software, 286
in operator, 62-63
operators, 48, 60

addition, 47-48
assignment, 57
division, 48
equality comparison, 57
in, 62-63
modulus, 48, 97-98
multiplication, 48
subtraction, 48
ternary conditional, 249

optimizing your code, 194-195
ord() function, 97, 101
os library, 304
Overwatch, 122

P

parentheses, calling a function, 53
passing arguments, 22-23
passthrough variable, 173
password generator, 156

program flow, 155
requirements, 154

path, dynamic access to game files, 302-305
pickle library, 280-281
pixels, 294
plain text, 42
player management system, 242-243

classes and, 251-255
pop() function, 85
pound sign (#), 214
print() function, 28, 29, 30, 31, 32, 46, 47, 55, 66, 81, 84, 132-133
programming languages, 5, 364. See also code(ing); IDEs (integrated

development environments); Python
C#, 364
editors, 7
JavaScript, 363
Python, 9

creating a new file, 17
installing, 9-10
running code, 19
syntax, 8

spoken languages and, 6-7
syntax, 6, 7

programs. See also game(s)
birthday countdown

program flow, 150
requirements, 150

password generator, 156
program flow, 155
requirements, 154

tip calculator
program flow, 153
requirements, 152

properties, 244-246. See also variables

displaying, 246
initializing, 245
methods and, 55

pseudocode, 197
Pygame, 286, 287

displaying text, 339-341
initializing, 290
installing, 288
updating the display, 326
working with images, 308-309

Python. See also; classes; functions; methods; VS Code, 9
classes, datetime, 55
comments, 43-45
creating a new file, 17
creating a work folder

for Mac users, 14-15
for Windows users, 13-14

functions, 27
arguments, 22-23
calling, 23
now(), 53
returning a value, 28
type(), 54
user input, 28-29
variables, 24, 25-26

if statement, conditions, 57
installing, 9-10
libraries, 36

datetime, 52-54
installing, 258-259
string, 155

lists, 40, 41

accessing, 82-83
adding and removing items, 84-85
changing list items, 83-84
creating, 80-82
finding items in, 85-86
initializing, 82
looping through items, 90-92
sorting, 86-88

running code, 19
serializing/deserializing data, 280
syntax, 8
variables, 43
writing your first program, 15

selecting your work folder, 16-17

Q–R

QR codes, 9
quotes, 31, 42
random items

choosing, 38-39
numbers

generating, 37-38, 46
number guessing game, 111-120

randrange() function, 38, 46, 346
range() function, 93
recursion, 238, 239
refactoring, 204-206, 221
render() function, 340
restoring your game, 280-282
restricting user input, 125-128
returning a value, 28
reusability

classes and, 243
creating a user choice component, 207-208
functions and, 208-212
getUserChoice() function, 213-217

RGB (Red, Green, Blue) values, 291
Rock, Paper, Scissors, 72-74, 75, 76
rolling dice, 47

12-sided, 48

S

saving files, 27
saving your game, 280-282
scope, 174
SDL (Simple DirectMedia Layer) library, 287
serializing/deserializing data, 280
sleep() function, 338
sorting, lists, 86-88
splash screens, 354
spoken languages, programming languages and, 6-7
sprites, 313-317

cleaning up, 340-341
moving, 320-322, 323-326

SQL, 363
storage, 224

dictionaries, 225
string, 201

str() function, 100
string library, 155
strings, 42, 70, 71

adding to, 158
case and, 71
converting to numbers, 65-66, 115

encryption and, 100-102
externalization, 196-201
numbers and, 64
storage, 201
whitespace, stripping, 72

Stringtest.py, 70
strip() method, 71
stripping whitespace, 72
surface, 294
syntax, 6, 7, 142

[] notation, 127
colons, 57
commas, 31
indentation and, 58
lists, 81
Python, 8
quotes, 31, 42

T

ternary conditional operator, 249
test files, 96
testing

classes, 245-246
code, 73
for conditions, 59-62
getUserChoice() function, 215-217
text-based adventure game, 189-190
unit, 125

text
externalizing, 196
multiline, 200

text-based adventure game(s), 178, 179, 184-188

battling enemies, 277-279
Colossal Cave Adventure, 178
creating, 180-181
health and lives

addHealth() function, 270-271
addLife() function, 267-269
getHealth() function, 269-270
health property, 266
loseHealth() function, 270-271
maxhealth property, 266

processing options, 182-183
prompting for options, 181-182
random events, 275-277
saving and restoring, 280-282
shopping for items, 271-275
testing, 189
work folders, 183-184
Zork, 178

third-party libraries, installing, 258-259
three-dimensional arrays, 212
tip calculator

program flow, 153
requirements, 152

tuples, 292
two-dimensional arrays, 212
type() function, 54

U

unit testing, 125. See also testing
Unity, 364
update() method, 227
updating

code, 218-220
dictionaries, 227

upper() method, 71
user choice component, creating, 207-208
user input, 28-29, 146

Mad Libs, 32
restricting, 125-128

user-defined functions, 165-167
def statement, 166-167
passing arguments, 167-170
returning values, 171-174

V

values
constant, 156
constants, 157
hard-coded, 335
RGB (Red, Green, Blue), 291
user-defined functions and, 171-174

variables, 23-24, 30, 39, 40, 42, 43, 46
__file__, 303
case sensitivity, 26, 291
concatenation, 28
creating, 24
data types, 43
datetime, 151
functions and, 53
importing, 299
incrementing, 119
initializing, 108
instantiation, 246
lists, 80

accessing, 82-83
adding and removing items, 84-85
changing list items, 83-84
creating, 80-82
finding items in, 85-86
looping through items, 90-92
sorting, 86-88

Mad Libs, 30-31
moveSpeed, 334-335
naming, 26
passthrough, 173
QUIT, 299
rules, 25-26
scope, 174
user-defined functions and, 170
values, 27, 41-42, 119
whitespace, 25

VS Code. See also Colorama
colors, 25
comments, 45
creating a work folder, 13-15, 183-184
errors, 18
Extensions panel, 12-13
installing, 10-13
Terminal window, 19, 258-259

coloring your output, 260-264

W

web development, 362-363
while loops, 106-107, 108, 109, 110, 113, 143, 146. See also conditional

loops
Crazy Driver, 296-297

if statement and, 107
whitespace, 25, 72
Windows, 122

creating a work folder, 13-14
installing Python, 9

work folder
creating, 183-184

for Mac users, 14-15
for Windows users, 13-14

selecting, 16-17
wrapper functions, 229-230, 234
writing your first program, 15

selecting your work folder, 15

X-Y-Z

x,y coordinate, 309
Zork, 178

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.

	About This eBook
	Title Page
	Copyright Page
	Pearson’s Commitment to Diversity, Equity, and Inclusion
	Contents at a Glance
	Contents
	Register Your Book
	Acknowledgments
	About the Authors
	Introduction
	What’s in This Book
	Watch Out for These
	Getting Help

	Figure Credits
	Part I: It’s All Fun and Games
	Chapter 1. Getting Started
	Understanding Computer Programming
	Setting Things Up
	Writing Your First Python Program
	Summary

	Chapter 2. Mad Libs
	Understanding Functions
	Using Variables
	Playing Mad Libs
	Summary

	Chapter 3. Roll the Dice
	Using Libraries
	“3” Is Not 3
	Commenting Your Code
	One Die, Two Dice
	Summary

	Chapter 4. Calculate the Day
	Working with Dates
	Making Decisions
	Beating the Mathematician
	Summary

	Chapter 5. Rock Paper Scissors
	More Strings
	Game Time
	Summary

	Chapter 6. Secret Codes
	Lists
	Loop-de-Loop
	Cracking the Code
	Summary

	Chapter 7. Guess the Number
	Conditional Loops
	Game Time
	Summary

	Chapter 8. Becoming a Coder
	How Coders Code
	Game Components
	Summary

	Chapter 9. Hangman
	Game Time
	So How Does It Work?
	Summary

	Chapter 10. Keep Going
	Birthday Countdown
	Tip Calculator
	Password Generator
	Summary

	Part II: On An Adventure
	Chapter 11. Getting Func-ky
	Functions Revisited
	Writing Your Own Functions
	Summary

	Chapter 12. Exploring
	Game Concept
	Game Time
	Test It
	Summary

	Chapter 13. Cleanup Time
	Optimizing Your Code
	String Externalization
	Summary

	Chapter 14. Reduce, Reuse, Recycle, Refactor
	Understanding Refactoring
	Creating a User Choice Component
	Summary

	Chapter 15. Carrying (and Using) Stuff
	Planning the Inventory System
	The Inventory System
	Summary

	Chapter 16. Keeping It Classy
	The Player System
	Creating a Player Class
	Using Our New Class
	Summary

	Chapter 17. Color Your World
	Installing Third-Party Libraries
	Using Colorama
	Summary

	Chapter 18. Keep Going
	Health and Lives
	Shopping for Items
	Random Events
	Battling Enemies
	Saving and Restoring
	Summary

	Part III: Racing Around
	Chapter 19. Crazy Driver
	Introducing Pygame
	Prepping the Game
	Getting Started
	The Game Loop
	Summary

	Chapter 20. Image-ine the Possibilities
	Files and Folders
	Setting the Background
	Placing the Cars
	Summary

	Chapter 21. We Like to Move It
	Moving the Enemy
	Moving the Player
	Summary

	Chapter 22. Crash, Bang, Boom
	You Crashed, Game Over
	Tracking Score
	Increasing Difficulty
	Summary

	Chapter 23. Finishing Touches
	Game Over Revisited
	Pause
	Varying Enemies
	Ice Cubes
	Summary

	Chapter 24. Keep Going
	Splash Screen
	Scores and High Scores
	Oil Slick
	Multiple Enemies
	And Then…
	Summary

	What Next?
	There’s a Lot More to Python
	Web Development
	Mobile App Development
	Game Development
	And Then…

	Index
	Code Snippets

