
Advanced Python
Programming
Second Edition

Accelerate your Python programs using proven
techniques and design patterns

Quan Nguyen

Advanced Python Program
m

ing
Second Edition
Q

uan N
guyen

Python's powerful capabilities for implementing robust and effi cient programs make it one of the
most sought-after programming languages. In this book, you'll explore the tools that allow you to
improve performance and take your Python programs to the next level.

This book starts by examining the built-in as well as external libraries that streamline tasks
in the development cycle, such as benchmarking, profi ling, and optimizing. You'll then get to
grips with using specialized tools such as dedicated libraries and compilers to increase your
performance at number-crunching tasks, including training machine learning models. The book
covers concurrency, a major solution to making programs more effi cient and scalable, and various
concurrent programming techniques such as multithreading, multiprocessing, and asynchronous
programming. You'll also understand the common problems that cause undesirable behavior in
concurrent programs. Finally, you'll work with a wide range of design patterns, including creational,
structural, and behavioral patterns that enable you to tackle complex design and architecture
challenges, making your programs more robust and maintainable.

By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python
and be equipped with the practical knowledge needed to apply them to your use cases.

Second Edition
Advanced Python Programming

Things you will learn:

• Write effi cient numerical code with
NumPy, pandas, and Xarray

• Use Cython and Numba to achieve
native performance

• Find bottlenecks in your Python code
using profi lers

• Optimize your machine learning
models with JAX

• Implement multithreaded,
multiprocessing, and asynchronous
programs

• Solve common problems in concurrent
programming, such as deadlocks

• Tackle architecture challenges with
design patterns

Advanced Python
Programming
Second Edition

Accelerate your Python programs using proven
techniques and design patterns

Quan Nguyen

BIRMINGHAM—MUMBAI

Advanced Python Programming
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Richa Tripathi
Publishing Product Manager: Gebin George
Senior Editor: Ruvika Rao
Content Development Editor: Nithya Sadanandan
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Aparna Bhagat
Marketing Coordinator: Sonakshi Bubbar

First published: February 2019

Second edition: March 2022

Production reference: 1180222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-401-0

www.packt.com

To Julie. Please learn Python—it's better than R, I promise.

– Quan Nguyen

Contributors

About the author
Quan Nguyen is a Python programmer and machine learning enthusiast. He is interested
in solving decision-making problems under uncertainty. Quan has authored several books
on Python programming and scientific computing. He is currently pursuing a Ph.D.
degree in computer science at Washington University in St. Louis, researching Bayesian
methods in machine learning.

About the reviewers
Dhruv Thakkar is a full-stack developer with 7+ years of experience working in multiple
Fortune 500 companies in industries such as telecoms, information technology, and
finance. He holds a masters in computer science from the University of Bridgeport,
Connecticut, and a Bachelor of Science (information technology) from the University
of Mumbai.

Having started his career working as a frontend developer, he later transitioned to backend
technologies such as Python, PHP, Perl, and Node.js to name a few. He also has experience
working on DevOps tools such as Git, Jenkins, Ansible, and Docker. He is always open to
learning new skills and is also passionate about open source and blockchain technologies.

Marius Iulian Mihailescu, Ph.D. is an associate professor at Spiru Haret University
and a software project manager at the company Institute for Computers, both based
in Bucharest, Romania. As an associate professor at Spiru Haret University, Marius is
responsible for information security, functional programming, and developing IoT
application courses. For more than 6 years, he has served as a lecturer at well-known
national and international universities and different companies.

His main activity involves fields such as information security and cryptography related
business/industry and research projects, ethical hacking, and developing software projects
using the latest technologies, such as DevOps, IoT, cloud computing, big data, C#, F#, Java,
Haskell, and Python.

Marius has authored and coauthored more than 30 articles in conference proceedings,
25 articles in journals, and 6 books.

Table of Contents
Preface

Section 1: Python-Native and Specialized
Optimization

1
Benchmarking and Profiling

Technical requirements 4
Designing your application 4
Building a particle simulator 5
Visualizing the simulation 9

Writing tests and benchmarks 11
Timing your benchmark 13

Writing better tests
and benchmarks with
pytest-benchmark 16

Finding bottlenecks with
cProfile 19
Graphically analyzing profiling results 22
Profiling line by line with line_profiler 25

Optimizing our code 27
Using the dis module 28
Profiling memory usage with
memory_profiler 30
Summary 32
Questions 33
Further reading 34

2
Pure Python Optimizations

Technical requirements 36
Using the right algorithms and
data structures 36
Lists and deques 37

Dictionaries 40
Sets 44
Heaps 46
Tries 47

viii Table of Contents

Improved efficiency with
caching and memoization 50
Joblib 53

Efficient iteration with
comprehensions and generators 54

Summary 56
Questions 57
Further reading 57

3
Fast Array Operations with NumPy, Pandas, and Xarray

Technical requirement 60
Getting started with NumPy 60
Creating arrays 60
Accessing arrays 63
Broadcasting 68
Mathematical operations 71
Calculating the norm 73

Rewriting the particle simulator
in NumPy 73
Reaching optimal performance
with numexpr 77

Working with database-style
data with pandas 80
pandas fundamentals 80
Database-style operations with pandas 85

High-performance labeled data
with xarray 92
Analyzing CO2 concentration 92
The xarray library 96
Improved performance 98
Plotting with xarray 100

Summary 102
Questions 103
Further reading 103

4
C Performance with Cython

Technical requirements 106
Compiling Cython extensions 106
Adding static types 109
Declaring variables 109
Declaring functions 112
Declaring classes 113

Sharing declarations 114
Working with arrays 115
C arrays and pointers 116

Working with NumPy arrays 118
Working with typed memoryviews 120

Using a particle simulator
in Cython 122
Profiling Cython 127
Using Cython with Jupyter 131
Summary 135
Questions 135

Table of Contents ix

5
Exploring Compilers

Technical requirements 138
Getting started with Numba 138
Using Numba decorators 139
Type specializations 140
Object mode versus native mode 142
Numba and NumPy 144
JIT classes 149
Limitations in Numba 154

The PyPy project 155
Setting up PyPy 155
Running a particle simulator in PyPy 156

Other interesting projects 158
Summary 158
Questions 159
Further reading 159

6
Automatic Differentiation and Accelerated Linear Algebra
for Machine Learning

A crash course in machine
learning 162
Model parameters 164
Loss function 165
Loss minimization 166

Getting JAX up and running 167
Installing JAX 168
Using Google Colab 168

Automatic differentiation for
loss minimization 169
Making the dataset 170
Building a linear model 171

Gradient descent with automatic
differentiation 173

Just-In-Time compilation for
improved efficiency 176
Automatic vectorization for
efficient kernels 177
Data that is not linearly separable 178
The kernel method in
machine learning 179
Automatic vectorization for
kernelized models 181

Summary 184
Questions 185
Further reading 185

x Table of Contents

Section 2: Concurrency and Parallelism

7
Implementing Concurrency

Technical requirements 190
Asynchronous programming 190
Waiting for input/output 190
Concurrency 191
Callbacks 193
Futures 197
Event loops 200

The asyncio framework 203
Coroutines 204

Converting blocking code into non-
blocking code 208

Reactive programming 211
Observables 212
Useful operators 214
Hot and cold observables 218
Building a CPU monitor 222

Summary 226
Questions 226
Further reading 226

8
Parallel Processing

Technical requirements 228
Introduction to parallel
programming 228
GPUs 230

Using multiple processes 231
The Process and Pool classes 232
The Executor interface 234
Monte Carlo approximation of pi 236
Synchronization and locks 239

Parallel Cython with OpenMP 242
Automatic parallelism 245
Getting started with Theano 245
Profiling Theano 251
TensorFlow 253
Running code on a GPU 256

Summary 261
Questions 261

9
Concurrent Web Requests

The basics of web requests 264
HTML 264

HTTP requests 265
HTTP status code 266

Table of Contents xi

The requests module 268
Making a request in Python 268
Running a ping test 270

Concurrent web requests 272
Spawning multiple threads 273
Refactoring request logic 275

The problem with timeouts 277
Support from httpstat.us and
simulation in Python 277
Timeout specifications 278

Good practices in making
web requests 282
Consider the terms of service and
data-collecting policies 282
Error handling 283
Update your program regularly 283
Avoid making a large number
of requests 284

Summary 285
Questions 285
Further reading 286

10
Concurrent Image Processing

Technical requirements 288
Image processing
fundamentals 288
Python as an image processing tool 289
Computer image basics 290
OpenCV API 292
Image processing techniques 295

Applying concurrency to image
processing 302

Good concurrent image
processing practices 307
Choosing the correct way (out of
many) 307
Spawning an appropriate number of
processes 310
Processing input/output concurrently 310

Summary 310
Questions 311
Further reading 311

11
Building Communication Channels with asyncio

Technical requirements 314
The ecosystem of
communication channels 314
Communication protocol layers 314
Asynchronous programming for
communication channels 316
Transports and protocols in asyncio 317

The big picture of asyncio's
server client 319

Getting started with Python
and Telnet 320
Starting a server 320
Installing Telnet 321
Simulating a connection channel 322

xii Table of Contents

Sending messages back to clients 323
Closing transports 325

Client-side communication
with aiohttp 327
Installing aiohttp and aiofiles 327

Fetching a website's HTML code 328
Writing files asynchronously 330

Summary 332
Questions 332
Further reading 332

12
Deadlocks

Technical requirements 333
The concept of deadlocks 334
The dining philosophers problem 334
A deadlock in a concurrent system 336
Python simulation 338

Approaches to deadlock
situations 342

Implementing ranking among
resources 342
Ignoring locks and sharing resources 349

The concept of livelocks 353
Summary 355
Questions 356
Further reading 356

13
Starvation

Technical requirements 357
Understanding starvation 358
What is starvation? 358
Scheduling 359
Causes of starvation 360
Starvation's relationship to deadlock 361

Approaching the readers-
writers problem 362

Problem statement 362
The first readers-writers problem 363
The second readers-writers problem 367
The third readers-writers problem 370

Solutions to starvation 373
Summary 374
Questions 374
Further reading 374

14
Race Conditions

Technical requirements 376
The concept of race conditions 376
Critical sections 376

How race conditions occur 377

Simulating race conditions in
Python 379

Table of Contents xiii

Locks as a solution to race
conditions 381
The effectiveness of locks 381
Implementation in Python 383
The downside of locks 384

Race conditions in real life 389
Security 389

Operating systems 390
Networking 391

Summary 391
Questions 392
Further reading 392

15
The Global Interpreter Lock

Technical requirements 394
Introducing the GIL 394
Analyzing memory management in
Python 394
The problem that the GIL addresses 397
Problems raised by the GIL 398

The potential removal of the
GIL from Python 400
Working with the GIL 400

Implementing multiprocessing, rather
than multithreading 401
Getting around the GIL with native
extensions 403
Utilizing a different Python interpreter 403

Summary 403
Questions 404
Further reading 404

Section 3: Design Patterns in Python

16
The Factory Pattern

Technical requirements 407
Understanding design patterns 408
Implementing the factory
method 409
Real-world examples 409
Use cases 410
Implementing the factory method 411

Applying the abstract factory 419
Real-world examples 419
Use cases 420
Implementing the abstract factory
pattern 420

Summary 425
Questions 425

xiv Table of Contents

17
The Builder Pattern

Technical requirements 428
Understanding the builder
pattern 428
Real-world examples 429
Use cases 429

Implementing an ordering
application 433
Summary 442
Questions 442

18
Other Creational Patterns

Technical requirements 443
Implementing the prototype
pattern 444
Real-world examples 445
Use cases 445
Implementation 445

Implementing the singleton
pattern 450
Real-world examples 451
Use cases 451
Implementation 451

Summary 456
Questions 456
Further reading 456

19
The Adapter Pattern

Technical requirements 457
Understanding the adapter
pattern 458
Real-world examples 458

Use cases 458
Implementation 459
Summary 462

20
The Decorator Pattern

Technical requirements 464
Introducing the decorator
pattern 464

Real-world examples 464
Use cases 465

Table of Contents xv

Implementation 466
Summary 471

Questions 472

21
The Bridge Pattern

Technical requirements 474
Real-world examples 474
Use cases 474

Implementation 474
Summary 479
Questions 479

22
The Façade Pattern

Technical requirements 481
Understanding the façade
pattern 482
Real-world examples 482
Use cases 483

Implementation 483
Summary 490
Questions 490
Further reading 490

23
Other Structural Patterns

Technical requirements 492
Implementing the flyweight
pattern 492
Real-world examples 493
Use cases 493
Implementation 494

Implementing the model-view-
controller pattern 500
Real-world examples 502

Use cases 503
Implementation 504

Applying the proxy pattern 507
Real-world examples 511
Use cases 511
Implementation 512

Summary 515
Questions 515

xvi Table of Contents

24
The Chain of Responsibility Pattern

Technical requirements 518
Understanding the Chain of
Responsibility pattern 518
Real-world examples 519

Use cases 521
Implementation 522
Summary 526
Questions 526

25
The Command Pattern

Technical requirements 527
Understanding the command
pattern 528
Real-world examples 528

Use cases 529
Implementation 529
Summary 536
Questions 537

26
The Observer Pattern

Technical requirements 540
Understanding the observer
pattern 540
Real-world examples 540

Use cases 541
Implementation 541
Summary 547
Questions 547

Assessments

Index

Other Books You May Enjoy

Preface
Advanced Python Programming serves as a guide for you to take your Python skills to
the next level. To beginners, Python is a great option for fast prototyping and software
development due to its simple syntax, but some tend to lean toward other languages
when they want to speed up and scale their code. However, this mindset is not necessarily
correct. As this book will show us, Python comes with a wide range of support for
optimizing, scaling, and overall high-performance computing.

This second edition includes both updated and new content from the first. Many
chapters with overlapping materials have been combined to make a succinct, logical flow
throughout the text. Further, a new chapter on JAX, the state-of-the-art high-performance
computing tool in machine learning, has been added. These adjustments promise to make
the book a high-quality text for all Python users who are looking to get the most out of
their programs.

By the end of this book, you will have been exposed to a variety of techniques and libraries
that are designed to streamline, protect, and optimize your software. You will gain practical
skills on how to make your Python applications robust, efficient, and scalable.

Who this book is for
This book is for intermediate to experienced Python programmers who are looking
to scale up their applications in a systematic and robust manner. Programmers from a
range of backgrounds will find this book useful, including software engineers, scientific
programmers, and software architects.

What this book covers
Chapter 1, Benchmarking and Profiling, teaches you how to assess the performance of
Python programs and practical strategies on how to identify and isolate slow sections
of your code.

Chapter 2, Pure Python Optimizations, discusses how to improve your running times by
orders of magnitude using the efficient data structures and algorithms available in the
Python standard library and pure-Python third-party modules.

xviii Preface

Chapter 3, Fast Array Operations with NumPy, Pandas, and Xarray, offers a guide to the
NumPy and pandas packages. Mastery of these packages will allow you to implement fast
numerical algorithms with an expressive, concise interface.

Chapter 4, C Performance with Cython, is a tutorial on Cython, a language that uses
a Python-compatible syntax to generate efficient C code.

Chapter 5, Exploring Compilers, covers tools that can be used to compile Python to
efficient machine code. The chapter will teach you how to use Numba, an optimizing
compiler for Python functions, and PyPy, an alternative interpreter that can execute
and optimize Python programs on the fly.

Chapter 6, Automatic Differentiation and Accelerated Linear Algebra for Machine Learning,
covers high-performance Python programming, which is essential in scientific computing
and machine learning. JAX implements many compiler-related optimizations under the
hood, which speeds up NumPy operations by a significant amount. Further, the tool can
automatically differentiate native Python functions, allowing for the wide application of
gradient-based optimization routines.

Chapter 7, Implementing Concurrency, offers a guide to asynchronous and reactive
programming. We will learn about key terms and concepts, and demonstrate how
to write clean, concurrent code using the asyncio and RxPy frameworks.

Chapter 8, Parallel Processing, provides an introduction to parallel programming
on multi-core processors and GPUs. In this chapter, you will learn how to achieve
parallelism using the multiprocessing module and by expressing your code using
Theano and TensorFlow.

Chapter 9, Concurrent Web Requests, covers one of the main applications of concurrent
programming: web scraping. It also covers other relevant elements of web scraping, before
discussing how threading can be applied to parallelize this process.

Chapter 10, Concurrent Image Processing, goes into a specific application of concurrency:
image processing. The basic ideas behind image processing, in addition to some of
the most common processing techniques, are discussed. We will, of course, see how
concurrency, specifically multiprocessing, can speed up the task of image processing.

Chapter 11, Building Communication Channels with asyncio, combines the knowledge
obtained regarding asynchronous programming covered in previous chapters with the
topic of network communication. Specifically, we will look into using the aiohttp module
as a tool to make asynchronous HTTP requests to web servers, as well as the aiofile
module that implements asynchronous file reading/writing.

Preface xix

Chapter 12, Deadlocks, introduces the first of the problems that are commonly faced in
concurrent programming. We will learn about the classical dining philosophers problem
as an example of how deadlocks can cause concurrent programs to stop functioning. This
chapter also covers a number of potential approaches to deadlocks as well as relevant
concepts, such as livelocks and distributed deadlocks.

Chapter 13, Starvation, considers another common problem in concurrent applications.
The chapter uses the narrative of the classical readers-writers problem to explain the
concept of starvation and its causes. We will, of course, also discuss potential solutions
to these problems via hands-on examples in Python.

Chapter 14, Race Conditions, addresses arguably the most well-known concurrency
problem: race conditions. We will also discuss the concept of a critical section, which
is an essential element in the context of race conditions specifically, and concurrent
programming in general. The chapter then covers mutual exclusion as a potential
solution for this problem.

Chapter 15, The Global Interpreter Lock, introduces the infamous GIL, which is considered
the biggest challenge in concurrent programming in Python. We will learn about the
reason behind the GIL's implementation and the problems that it raises. This chapter
concludes with some thoughts regarding how Python programmers and developers
should think about and interact with the GIL.

Chapter 16, The Factory Pattern, teaches you how to use the Factory design pattern
(Factory Method and Abstract Factory) to initialize objects, and also covers the benefits
of using the Factory design pattern instead of direct object instantiation.

Chapter 17, The Builder Pattern, teaches you how to simplify the object creation
process for cases typically composed of several related objects. We will review real-world
examples and use cases, and then implement the builder pattern in developing a
pizza-ordering application.

Chapter 18, Other Creational Patterns, teaches you how to handle other object creation
situations with techniques such as creating a new object that is a full copy (a named clone)
of an existing object, a technique offered by the Prototype pattern. You will also learn
about the Singleton pattern.

Chapter 19, The Adapter Pattern, teaches you how to make your existing code compatible
with a foreign interface (for example, an external library) with minimal changes.
Specifically, you will see how you can achieve interface conformance using the Adapter
pattern without modifying the source code of the incompatible model.

xx Preface

Chapter 20, The Decorator Pattern, teaches you how to enhance the functionality of an
object without using inheritance. We will mention several categories of cross-cutting
concerns and specifically demonstrate memoization in this view. We will also describe
how decorators can help us to keep our functions clean, without sacrificing performance.

Chapter 21, The Bridge Pattern, teaches you how to externalize an object's implementation
details from its class hierarchy to another object class hierarchy. This chapter encourages
the idea of preferring composition over inheritance.

Chapter 22, The Façade Pattern, teaches you how to create a single entry point to hide the
complexity of a system. We will cover the basic use cases of facade and the implementation
of the interface used by a multiserver operating system.

Chapter 23, Other Structural Patterns, teaches you about the Flyweight, Model-View-
Controller (MVC), and Proxy patterns. With the Flyweight pattern, you will learn how
to reuse objects from an object pool to improve the memory usage and possibly the
performance of your applications. The MVC pattern is used in application development
(desktop and the web) to improve maintainability by avoiding mixing the business logic
with the user interface. And with the Proxy pattern, you provide a special object that
acts as a surrogate or placeholder for another object to control access to it and reduce
complexity and/or improve performance.

Chapter 24, The Chain of Responsibility Pattern, teaches you another technique to improve
the maintainability of your applications by avoiding mixing the business logic with the
user interface.

Chapter 25, The Command Pattern, teaches you how to encapsulate operations (such as
undo, copy, and paste) as objects, to improve your application. Among the advantages of
this technique, the object that invokes the command is decoupled from the object that
performs it.

Chapter 26, The Observer Pattern, teaches you how to send a request to multiple receivers.

To get the most out of this book
The code used in this book has been tested on Python version 3.8 on macOS Big Sur,
Windows, Ubuntu, and Monterey.

You should first have Python installed, preferably in a virtual environment. The
recommended way to do this is via Anaconda, which can be downloaded from https://
www.anaconda.com/products/individual. Individual chapters may discuss
various external libraries and tools that have to be installed via a package manager, and
specific instructions on how to do so are included in the corresponding text.

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

Preface xxi

Note
If you are using the digital version of this book, we advise you to type the
code yourself or access the code from the book's GitHub repository (a link is
available in the next section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Advanced-Python-Programming-Second-
Edition. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801814010_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "In our main program, we create the fork as a lock object first; then, we
create two Spouse thread objects, which are each other's partner attributes."

A block of code is set as follows:

fork = threading.Lock()

partner1 = Spouse('Wife', None)

partner2 = Spouse('Husband', partner1)

partner1.partner = partner2

partner1.start()

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801814010_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801814010_ColorImages.pdf

xxii Preface

partner2.start()

partner1.join()

partner2.join()

print('Finished.')

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

fork = threading.Lock()

partner1 = Spouse('Wife', None)

partner2 = Spouse('Husband', partner1)

partner1.partner = partner2

partner1.start()

partner2.start()

partner1.join()

partner2.join()

print('Finished.')

Any command-line input or output is written as follows:

pip install numpy

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "The
Coordinates section shows the values that each of these dimensions can take on."

Tips or important notes
Appear like this.

Preface xxiii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Advanced Python Programming, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1801814015

Section 1:
Python-Native

and Specialized
Optimization

Python, along with its many libraries and packages, offers specialized data structures and
classes that facilitate highly optimized operations. You will learn how to navigate through
these different tools and use them appropriately to accelerate your Python program.

This section contains the following chapters:

• Chapter 1, Benchmarking and Profiling

• Chapter 2, Pure Python Optimizations

• Chapter 3, Fast Array Operations with NumPy, Pandas, and Xarray

• Chapter 4, C Performance with Cython

• Chapter 5, Exploring Compilers

• Chapter 6, Automatic Differentiation and Accelerated Linear Algebra for
Machine Learning

1
Benchmarking and

Profiling
Recognizing the slow parts of your program is the single most important task when it
comes to speeding up your code. In most cases, the code that causes the application to
slow down is a very small fraction of the program. By identifying these critical sections,
you can focus on the parts that need the most improvement without wasting time in
micro-optimization.

Profiling is a technique that allows us to pinpoint the most resource-intensive parts of an
application. A profiler is a program that runs an application and monitors how long each
function takes to execute, thus detecting the functions on which your application spends
most of its time.

Python provides several tools to help us find these bottlenecks and measure important
performance metrics. In this chapter, we will learn how to use the standard cProfile
module and the line_profiler third-party package. We will also learn how to profile
the memory consumption of an application through the memory_profiler tool.
Another useful tool that we will cover is KCachegrind, which can be used to graphically
display the data produced by various profilers.

Finally, benchmarks are small scripts used to assess the total execution time of your
application. We will learn how to write benchmarks and use them to accurately time
your programs.

4 Benchmarking and Profiling

The topics we will cover in this chapter are listed here:

• Designing your application

• Writing tests and benchmarks

• Writing better tests and benchmarks with pytest-benchmark

• Finding bottlenecks with cProfile

• Optimizing our code

• Using the dis module

• Profiling memory usage with memory_profiler

By the end of the chapter, you will have gained a solid understanding of how to
optimize a Python program and will be armed with practical tools that facilitate the
optimization process.

Technical requirements
To follow the content of this chapter, you should have a basic understanding of Python
programming and be familiar with core concepts such as variables, classes, and functions.
You should also be comfortable with working with the command line to run Python
programs. Finally, the code for this chapter can be found in the following GitHub
repository: https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter01.

Designing your application
In the early development stages, the design of a program can change quickly and may
require large rewrites and reorganizations of the code base. By testing different prototypes
without the burden of optimization, you are free to devote your time and energy to ensure
that the program produces correct results and that the design is flexible. After all, who
needs an application that runs fast but gives the wrong answer?

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter01

Designing your application 5

The mantras that you should remember when optimizing your code are outlined here:

• Make it run: We have to get the software in a working state and ensure that it
produces the correct results. This exploratory phase serves to better understand
the application and to spot major design issues in the early stages.

• Make it right: We want to ensure that the design of the program is solid.
Refactoring should be done before attempting any performance optimization.
This really helps separate the application into independent and cohesive units
that are easy to maintain.

• Make it fast: Once our program is working and well structured, we can focus on
performance optimization. We may also want to optimize memory usage if that
constitutes an issue.

In this section, we will write and profile a particle simulator test application. A simulator
is a program that considers some particles and simulates their movement over time
according to a set of laws that we impose. These particles can be abstract entities or
correspond to physical objects—for example, billiard balls moving on a table, molecules
in a gas, stars moving through space, smoke particles, fluids in a chamber, and so on.

Building a particle simulator
Computer simulations are useful in fields such as physics, chemistry, astronomy, and
many other disciplines. The applications used to simulate systems are particularly
performance-intensive, and scientists and engineers spend an inordinate amount of time
optimizing their code. In order to study realistic systems, it is often necessary to simulate
a very high number of bodies, and every small increase in performance counts.

In our first example, we will simulate a system containing particles that constantly rotate
around a central point at various speeds, just like the hands of a clock.

6 Benchmarking and Profiling

The necessary information to run our simulation will be the starting positions of the
particles, the speed, and the rotation direction. From these elements, we have to calculate
the position of the particle in the next instant of time. An example system is shown in the
following diagram. The origin of the system is the (0, 0) point, the position is indicated
by the x, y vector, and the velocity is indicated by the vx, vy vector:

Figure 1.1 – An example of a particle system

The basic feature of a circular motion is that the particles always move perpendicular
to the direction connecting the particle and the center. To move the particle, we simply
change the position by taking a series of very small steps (which correspond to advancing
the system for a small interval of time) in the direction of motion, as shown in the
following diagram:

Figure 1.2 – Movement of a particle

Designing your application 7

We will start by designing the application in an object-oriented (OO) way. According to
our requirements, it is natural to have a generic Particle class that stores the particle
positions, x and y, and their angular velocity, ang_vel, as illustrated in the following
code snippet:

 class Particle:

 def __init__(self, x, y, ang_vel):

 self.x = x

 self.y = y

 self.ang_vel = ang_vel

Note that we accept positive and negative numbers for all the parameters (the sign of
ang_vel will simply determine the direction of rotation).

Another class, called ParticleSimulator, will encapsulate the laws of motion and
will be responsible for changing the positions of the particles over time. The __init__
method will store a list of Particle instances, and the evolve method will change the
particle positions according to our laws. The code is illustrated in the following snippet:

class ParticleSimulator:

 def __init__(self, particles):

 self.particles = particles

We want the particles to rotate around the position corresponding to the x=0 and
y=0 coordinates, at a constant speed. The direction of the particles will always be
perpendicular to the direction from the center (refer to Figure 1.1 in this chapter). To find
the direction of the movement along the x and y axes (corresponding to the Python v_x
and v_y variables), it is sufficient to use these formulae:

 v_x = -y / (x**2 + y**2)**0.5

 v_y = x / (x**2 + y**2)**0.5

If we let one of our particles move, after a certain time t, it will reach another position
following a circular path. We can approximate a circular trajectory by dividing the time
interval, t, into tiny time steps, dt, where the particle moves in a straight line tangentially to
the circle. (Note that higher-order curves could be used rather than straight lines for better
accuracy, but we will stick with lines as the simplest approximation.) The final result is just
an approximation of a circular motion.

8 Benchmarking and Profiling

In order to avoid a strong divergence, such as the one illustrated in the following diagram,
it is necessary to take very small time steps:

Figure 1.3 – Undesired divergence in particle motion due to large time steps

In a more schematic way, we have to carry out the following steps to calculate the particle
position at time t:

1. Calculate the direction of motion (v_x and v_y).
2. Calculate the displacement (d_x and d_y), which is the product of the time step,

angular velocity, and direction of motion.
3. Repeat Steps 1 and 2 enough times to cover the total time t.

The following code snippet shows the full ParticleSimulator implementation:

 class ParticleSimulator:

 def __init__(self, particles):

 self.particles = particles

 def evolve(self, dt):

 timestep = 0.00001

 nsteps = int(dt/timestep)

 for i in range(nsteps):

 for p in self.particles:

 # 1. calculate the direction

 norm = (p.x**2 + p.y**2)**0.5

Designing your application 9

 v_x = -p.y/norm

 v_y = p.x/norm

 # 2. calculate the displacement

 d_x = timestep * p.ang_vel * v_x

 d_y = timestep * p.ang_vel * v_y

 p.x += d_x

 p.y += d_y

 # 3. repeat for all the time steps

And with that, we have finished building the foundation of our particle simulator. Next,
we will see it in action by visualizing the simulated particles.

Visualizing the simulation
We can use the matplotlib library here to visualize our particles. This library is not
included in the Python standard library, but it can be easily installed using the pip
install matplotlib command.

Alternatively, you can use the Anaconda Python distribution (https://store.
continuum.io/cshop/anaconda/), which includes matplotlib and most of the
other third-party packages used in this book. Anaconda is free and is available for Linux,
Windows, and Mac.

To make an interactive visualization, we will use the matplotlib.pyplot.plot
function to display the particles as points and the matplotlib.animation.
FuncAnimation class to animate the evolution of the particles over time.

The visualize function takes a ParticleSimulator particle instance as an
argument and displays the trajectory in an animated plot. The steps necessary to display
the particle trajectory using the matplotlib tools are outlined here:

1. Set up the axes and use the plot function to display the particles. The plot
function takes a list of x and y coordinates.

2. Write an initialization function, init, and a function, animate, that updates
the x and y coordinates using the line.set_data method. Note that in init,
we need to return the line data in the form of line, due to syntactic reasons.

3. Create a FuncAnimation instance by passing the init and animate functions
and the interval parameters, which specify the update interval, and blit, which
improves the update rate of the image.

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/

10 Benchmarking and Profiling

4. Run the animation with plt.show(), as illustrated in the following code snippet:

 from matplotlib import pyplot as plt

 from matplotlib import animation

 def visualize(simulator):

 X = [p.x for p in simulator.particles]

 Y = [p.y for p in simulator.particles]

 fig = plt.figure()

 ax = plt.subplot(111, aspect='equal')

 line, = ax.plot(X, Y, 'ro')

 # Axis limits

 plt.xlim(-1, 1)

 plt.ylim(-1, 1)

 # It will be run when the animation starts

 def init():

 line.set_data([], [])

 return line, # The comma is important!

 def animate(i):

 # We let the particle evolve for 0.01 time

 units

 simulator.evolve(0.01)

 X = [p.x for p in simulator.particles]

 Y = [p.y for p in simulator.particles]

 line.set_data(X, Y)

 return line,

 # Call the animate function each 10 ms

 anim = animation.FuncAnimation(fig,

 animate,init_func=init,blit=True,

 interval=10)

 plt.show()

Writing tests and benchmarks 11

To test this code, we define a small function, test_visualize, that animates a
system of three particles rotating in different directions. Note in the following code
snippet that the third particle completes a round three times faster than the others:

 def test_visualize():

 particles = [

 Particle(0.3, 0.5, 1),

 Particle(0.0, -0.5, -1),

 Particle(-0.1, -0.4, 3)

]

 simulator = ParticleSimulator(particles)

 visualize(simulator)

 if __name__ == '__main__':

 test_visualize()

The test_visualize function is helpful to graphically understand the system time
evolution. Simply close the animation window when you'd like to terminate the program.
With this program in hand, in the following section, we will write more test functions to
properly verify program correctness and measure performance.

Writing tests and benchmarks
Now that we have a working simulator, we can start measuring our performance and tune
up our code so that the simulator can handle as many particles as possible. As a first step,
we will write a test and a benchmark.

We need a test that checks whether the results produced by the simulation are correct
or not. Optimizing a program commonly requires employing multiple strategies; as we
rewrite our code multiple times, bugs may easily be introduced. A solid test suite ensures
that the implementation is correct at every iteration so that we are free to go wild and try
different things with the confidence that, if the test suite passes, the code will still work as
expected. More specifically, what we are implementing here are called unit tests, which aim
to verify the intended logic of the program regardless of the implementation details, which
may change during optimization.

12 Benchmarking and Profiling

Our test will take three particles, simulate them for 0.1 time units, and compare the
results with those from a reference implementation. A good way to organize your tests
is using a separate function for each different aspect (or unit) of your application. Since
our current functionality is included in the evolve method, our function will be named
test_evolve. The following code snippet shows the test_evolve implementation.
Note that, in this case, we compare floating-point numbers up to a certain precision
through the fequal function:

 def test_evolve():

 particles = [Particle(0.3, 0.5, +1),

 Particle(0.0, -0.5, -1),

 Particle(-0.1, -0.4, +3)

]

 simulator = ParticleSimulator(particles)

 simulator.evolve(0.1)

 p0, p1, p2 = particles

 def fequal(a, b, eps=1e-5):

 return abs(a - b) < eps

 assert fequal(p0.x, 0.210269)

 assert fequal(p0.y, 0.543863)

 assert fequal(p1.x, -0.099334)

 assert fequal(p1.y, -0.490034)

 assert fequal(p2.x, 0.191358)

 assert fequal(p2.y, -0.365227)

 if __name__ == '__main__':

 test_evolve()

The assert statements will raise an error if the included conditions are not satisfied.
Upon running the test_evolve function, if you notice no error or output printed out,
that means all the conditions are met.

Writing tests and benchmarks 13

A test ensures the correctness of our functionality but gives little information about its
running time. A benchmark is a simple and representative use case that can be run to
assess the running time of an application. Benchmarks are very useful to keep score of
how fast our program is with each new version that we implement.

We can write a representative benchmark by instantiating a thousand Particle
objects with random coordinates and angular velocity and feeding them to a
ParticleSimulator class. We then let the system evolve for 0.1 time units.
The code is illustrated in the following snippet:

 from random import uniform

 def benchmark():

 particles = [

 Particle(uniform(-1.0, 1.0), uniform(-1.0, 1.0),

 uniform(-1.0, 1.0))

 for i in range(1000)]

 simulator = ParticleSimulator(particles)

 simulator.evolve(0.1)

 if __name__ == '__main__':

 benchmark()

With the benchmark program implemented, we now need to run it and keep track of
the time needed for the benchmark to complete execution, which we will see next. (Note
that when you run these tests and benchmarks on your own system, you are likely to see
different numbers listed in the text, which is completely normal and dependent on your
system configurations and Python version.)

Timing your benchmark
A very simple way to time a benchmark is through the Unix time command. Using
the time command, as follows, you can easily measure the execution time of an
arbitrary process:

 $ time python simul.py

real 0m1.051s

user 0m1.022s

sys 0m0.028s

14 Benchmarking and Profiling

The time command is not available for Windows. To install Unix tools such as time
on Windows, you can use the cygwin shell, downloadable from the official website
(http://www.cygwin.com/). Alternatively, you can use similar PowerShell
commands, such as Measure-Command (https://msdn.microsoft.com/en-us/
powershell/reference/5.1/microsoft.powershell.utility/measure-
command), to measure execution time.

By default, time displays three metrics, as outlined here:

• real: The actual time spent running the process from start to finish, as if it were
measured by a human with a stopwatch.

• user: The cumulative time spent by all the central processing units (CPUs) during
the computation.

• sys: The cumulative time spent by all the CPUs during system-related tasks, such as
memory allocation.

Note
Sometimes, user and sys might be greater than real, as multiple
processors may work in parallel.

time also offers richer formatting options. For an overview, you can explore its manual
(using the man time command). If you want a summary of all the metrics available,
you can use the -v option.

The Unix time command is one of the simplest and most direct ways to benchmark a
program. For an accurate measurement, the benchmark should be designed to have a long
enough execution time (in the order of seconds) so that the setup and teardown of the
process are small compared to the execution time of the application. The user metric is
suitable as a monitor for the CPU performance, while the real metric also includes the
time spent on other processes while waiting for input/output (I/O) operations.

Another convenient way to time Python scripts is the timeit module. This module runs
a snippet of code in a loop for n times and measures the total execution time. Then, it
repeats the same operation r times (by default, the value of r is 3) and records the time of
the best run. Due to this timing scheme, timeit is an appropriate tool to accurately time
small statements in isolation.

The timeit module can be used as a Python package, from the command line or
from IPython.

http://www.cygwin.com/
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/measure-command
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/measure-command
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/measure-command

Writing tests and benchmarks 15

IPython is a Python shell design that improves the interactivity of the Python interpreter.
It boosts tab completion and many utilities to time, profile, and debug your code. We will
use this shell to try out snippets throughout the book. The IPython shell accepts magic
commands—statements that start with a % symbol—that enhance the shell with special
behaviors. Commands that start with %% are called cell magics, which can be applied on
multiline snippets (termed as cells).

IPython is available on most Linux distributions through pip and is included in
Anaconda. You can use IPython as a regular Python shell (ipython), but it is also
available in a Qt-based version (ipython qtconsole) and as a powerful browser-
based interface (jupyter notebook).

In IPython and command-line interfaces (CLIs), it is possible to specify the number of
loops or repetitions with the -n and -r options. If not specified, they will be automatically
inferred by timeit. When invoking timeit from the command line, you can also pass
some setup code, through the -s option, which will execute before the benchmark. In the
following snippet, the IPython command line and Python module version of timeit
are demonstrated:

IPython Interface

$ ipython

In [1]: from simul import benchmark

In [2]: %timeit benchmark()

1 loops, best of 3: 782 ms per loop

Command Line Interface

$ python -m timeit -s 'from simul import benchmark'

'benchmark()'

10 loops, best of 3: 826 msec per loop

Python Interface

put this function into the simul.py script

import timeit

result = timeit.timeit('benchmark()',

 setup='from __main__ import benchmark', number=10)

16 Benchmarking and Profiling

result is the time (in seconds) to run the whole loop

result = timeit.repeat('benchmark()',

 setup='from __main__ import benchmark', number=10, \

 repeat=3)

result is a list containing the time of each repetition

(repeat=3 in this case)

Note that while the command line and IPython interfaces automatically infer a reasonable
number of loops n, the Python interface requires you to explicitly specify a value through
the number argument.

Writing better tests and benchmarks with
pytest-benchmark
The Unix time command is a versatile tool that can be used to assess the running time of
small programs on a variety of platforms. For larger Python applications and libraries, a
more comprehensive solution that deals with both testing and benchmarking is pytest,
in combination with its pytest-benchmark plugin.

In this section, we will write a simple benchmark for our application using the pytest
testing framework. For those who are, the pytest documentation, which can be found at
http://doc.pytest.org/en/latest/, is the best resource to learn more about the
framework and its uses.

You can install pytest from the console using the pip install pytest command.
The benchmarking plugin can be installed, similarly, by issuing the pip install
pytest-benchmark command.

A testing framework is a set of tools that simplifies writing, executing, and debugging
tests, and provides rich reports and summaries of the test results. When using the
pytest framework, it is recommended to place tests separately from the application
code. In the following example, we create a test_simul.py file that contains the
test_evolve function:

 from simul import Particle, ParticleSimulator

 def test_evolve():

 particles = [

 Particle(0.3, 0.5, +1),

 Particle(0.0, -0.5, -1),

http://doc.pytest.org/en/latest/

Writing better tests and benchmarks with pytest-benchmark 17

 Particle(-0.1, -0.4, +3)

]

 simulator = ParticleSimulator(particles)

 simulator.evolve(0.1)

 p0, p1, p2 = particles

 def fequal(a, b, eps=1e-5):

 return abs(a - b) < eps

 assert fequal(p0.x, 0.210269)

 assert fequal(p0.y, 0.543863)

 assert fequal(p1.x, -0.099334)

 assert fequal(p1.y, -0.490034)

 assert fequal(p2.x, 0.191358)

 assert fequal(p2.y, -0.365227)

The pytest executable can be used from the command line to discover and run tests
contained in Python modules. To execute a specific test, we can use the pytest path/
to/module.py::function_name syntax. To execute test_evolve, we can type
the following command in a console to obtain simple but informative output:

$ pytest test_simul.py::test_evolve

platform linux -- Python 3.5.2, pytest-3.0.5, py-1.4.32,

pluggy-0.4.0

rootdir: /home/gabriele/workspace/hiperf/chapter1, inifile:

plugins:

collected 2 items

test_simul.py .

=========================== 1 passed in 0.43 seconds
===========================

18 Benchmarking and Profiling

Once we have a test in place, it is possible for you to execute your test as a benchmark
using the pytest-benchmark plugin. If we change our test function so that it accepts
an argument named benchmark, the pytest framework will automatically pass the
benchmark resource as an argument (in pytest terminology, these resources are called
fixtures). The benchmark resource can be called by passing the function that we intend
to benchmark as the first argument, followed by the additional arguments. In the following
snippet, we illustrate the edits necessary to benchmark the ParticleSimulator.
evolve function:

 from simul import Particle, ParticleSimulator

 def test_evolve(benchmark):

 # ... previous code

 benchmark(simulator.evolve, 0.1)

To run the benchmark, it is sufficient to rerun the pytest test_simul.py::test_
evolve command. The resulting output will contain detailed timing information
regarding the test_evolve function, as shown here:

Figure 1.4 – Output from pytest

For each test collected, pytest-benchmark will execute the benchmark function
several times and provide a statistic summary of its running time. The preceding output
shown is very interesting as it shows how running times vary between runs.

Finding bottlenecks with cProfile 19

In this example, the benchmark in test_evolve was run 34 times (Rounds column),
its timings ranged between 29 and 41 milliseconds (ms) (Min and Max), and the
Average and Median times were fairly similar at about 30 ms, which is actually very
close to the best timing obtained. This example demonstrates how there can be substantial
performance variability between runs and that, as opposed to taking timings with
one-shot tools such as time, it is a good idea to run the program multiple times and
record a representative value, such as the minimum or the median.

pytest-benchmark has many more features and options that can be used to
take accurate timings and analyze the results. For more information, consult the
documentation at http://pytest-benchmark.readthedocs.io/en/stable/
usage.html.

Finding bottlenecks with cProfile
After assessing the correctness and timing of the execution time of the program, we are
ready to identify the parts of the code that need to be tuned for performance. We typically
aim to identify parts that are small compared to the size of the program.

Two profiling modules are available through the Python standard library, as outlined here:

• The profile module: This module is written in pure Python and adds significant
overhead to the program execution. Its presence in the standard library is due
to its vast platform support and the ease with which it can be extended.

• The cProfile module: This is the main profiling module, with an interface
equivalent to profile. It is written in C, has a small overhead, and is suitable
as a general-purpose profiler.

The cProfile module can be used in three different ways, as follows:

• From the command line

• As a Python module

• With IPython

http://pytest-benchmark.readthedocs.io/en/stable/usage.html
http://pytest-benchmark.readthedocs.io/en/stable/usage.html

20 Benchmarking and Profiling

cProfile does not require any change in the source code and can be executed directly
on an existing Python script or function. You can use cProfile from the command line
in this way:

$ python -m cProfile simul.py

This will print a long output containing several profiling metrics of all of the functions
called in the application. You can use the -s option to sort the output by a specific metric.
In the following snippet, the output is sorted by the tottime metric, which will be
described here:

$ python -m cProfile -s tottime simul.py

The data produced by cProfile can be saved in an output file by passing the -o option.
The format that cProfile uses is readable by the stats module and other tools. The
usage of the-o option is shown here:

$ python -m cProfile -o prof.out simul.py

The usage of cProfile as a Python module requires invoking the cProfile.run
function in the following way:

 from simul import benchmark

 import cProfile

 cProfile.run("benchmark()")

You can also wrap a section of code between method calls of a cProfile.Profile
object, as shown here:

 from simul import benchmark

 import cProfile

 pr = cProfile.Profile()

 pr.enable()

 benchmark()

 pr.disable()

 pr.print_stats()

Finding bottlenecks with cProfile 21

cProfile can also be used interactively with IPython. The %prun magic command lets
you profile an individual function call, as illustrated in the following screenshot:

Figure 1.5 – Using cProfile within IPython

The cProfile output is divided into five columns, as follows:

• ncalls: The number of times the function was called.

• tottime: The total time spent in the function without taking into account the calls
to other functions.

• cumtime: The time spent in the function including other function calls.

• percall: The time spent for a single call of the function—this can be obtained by
dividing the total or cumulative time by the number of calls.

• filename:lineno: The filename and corresponding line numbers. This
information is not available when calling C extension modules.

The most important metric is tottime, the actual time spent in the function body
excluding subcalls, which tells us exactly where the bottleneck is.

22 Benchmarking and Profiling

Unsurprisingly, the largest portion of time is spent in the evolve function. We
can imagine that the loop is the section of the code that needs performance tuning.
cProfile only provides information at the function level and does not tell us which
specific statements are responsible for the bottleneck. Fortunately, as we will see in the
next section, the line_profiler tool is capable of providing line-by-line information
of the time spent in the function.

Analyzing the cProfile text output can be daunting for big programs with a lot of calls
and subcalls. Some visual tools aid the task by improving navigation with an interactive,
graphical interface.

Graphically analyzing profiling results
KCachegrind is a graphical user interface (GUI) useful for analyzing the profiling output
emitted by cProfile.

KCachegrind is available in the Ubuntu 16.04 official repositories. The Qt port,
QCacheGrind, can be downloaded for Windows from http://sourceforge.
net/projects/qcachegrindwin/. Mac users can compile QCacheGrind using
MacPorts (http://www.macports.org/) by following the instructions present in
the blog post at http://blogs.perl.org/users/rurban/2013/04/install-
kachegrind-on-macosx-with-ports.html.

KCachegrind can't directly read the output files produced by cProfile. Luckily, the
pyprof2calltree third-party Python module is able to convert the cProfile
output file into a format readable by KCachegrind.

You can install pyprof2calltree from the Python Package Index (PyPI) using the
pip install pyprof2calltree command.

To best show the KCachegrind features, we will use another example with a more
diversified structure. We define a recursive function, factorial, and two other
functions that use factorial, named taylor_exp and taylor_sin. They represent
the polynomial coefficients of the Taylor approximations of exp(x) and sin(x) and are
illustrated in the following code snippet:

 def factorial(n):

 if n == 0:

 return 1.0

 else:

 return n * factorial(n-1)

http://sourceforge.net/projects/qcachegrindwin/
http://sourceforge.net/projects/qcachegrindwin/
http://www.macports.org/
http://blogs.perl.org/users/rurban/2013/04/install-kachegrind-on-macosx-with-ports.html
http://blogs.perl.org/users/rurban/2013/04/install-kachegrind-on-macosx-with-ports.html

Finding bottlenecks with cProfile 23

 def taylor_exp(n):

 return [1.0/factorial(i) for i in range(n)]

 def taylor_sin(n):

 res = []

 for i in range(n):

 if i % 2 == 1:

 res.append((-1)**((i-1)/2)/

 float(factorial(i)))

 else:

 res.append(0.0)

 return res

 def benchmark():

 taylor_exp(500)

 taylor_sin(500)

 if __name__ == '__main__':

 benchmark()

To access profile information, we first need to generate a cProfile output file, as follows:

$ python -m cProfile -o prof.out taylor.py

Then, we can convert the output file with pyprof2calltree and launch KCachegrind
by running the following code:

$ pyprof2calltree -i prof.out -o prof.calltree

$ kcachegrind prof.calltree # or qcachegrind prof.calltree

24 Benchmarking and Profiling

The output is shown in the following screenshot:

Figure 1.6 – Profiling output generated by pyprof2calltree and displayed by KCachegrind

The screenshot shows the KCachegrind UI. On the left, we have an output fairly similar
to cProfile. The actual column names are slightly different: Incl. translates to the
cProfile module's cumtime value and Self translates to tottime. The values are
given in percentages by clicking on the Relative button on the menu bar. By clicking on
the column headers, you can sort them by the corresponding property.

On the top right, a click on the Callee Map tab will display a diagram of the function
costs. In the diagram shown in Figure 1.6, the time percentage spent by the function is
proportional to the area of the rectangle. Rectangles can contain sub-rectangles that
represent subcalls to other functions. In this case, we can easily see that there are two
rectangles for the factorial function. The one on the left corresponds to the calls made
by taylor_exp and the one on the right to the calls made by taylor_sin.

Finding bottlenecks with cProfile 25

On the bottom right, you can display another diagram, a call graph, by clicking on the
Call Graph tab. A call graph is a graphical representation of the calling relationship
between the functions; each square represents a function and the arrows imply a calling
relationship. For example, taylor_exp calls factorial 500 times, and taylor_sin
calls factorial 250 times. KCachegrind also detects recursive calls: factorial calls
itself 187250 times.

You can navigate to the Call Graph or the Callee Map tab by double-clicking on the
rectangles; the interface will update accordingly, showing that the timing properties are
relative to the selected function. For example, double-clicking on taylor_exp will cause
the graph to change, showing only the contribution of taylor_exp to the total cost.

Gprof2Dot (https://github.com/jrfonseca/gprof2dot) is another popular
tool used to produce call graphs. Starting from output files produced by one of the
supported profilers, it will generate a .dot diagram representing a call graph.

Profiling line by line with line_profiler
Now that we know which function we have to optimize, we can use the line_profiler
module that provides information on how time is spent in a line-by-line fashion. This is very
useful in situations where it's difficult to determine which statements are costly. The line_
profiler module is a third-party module that is available on PyPI and can be installed by
following the instructions at https://github.com/rkern/line_profiler.

In order to use line_profiler, we need to apply a @profile decorator to the
functions we intend to monitor. Note that you don't have to import the profile function
from another module as it gets injected into the global namespace when running the
kernprof.py profiling script. To produce profiling output for our program, we need
to add the @profile decorator to the evolve function, as follows:

 @profile

 def evolve(self, dt):

 # code

The kernprof.py script will produce an output file and print the result of the profiling
on the standard output. We should run the script with two options, as follows:

• -l to use the line_profiler function

• -v to immediately print the results on screen

https://github.com/jrfonseca/gprof2dot
https://github.com/rkern/line_profiler

26 Benchmarking and Profiling

The usage of kernprof.py is illustrated in the following line of code:

$ kernprof.py -l -v simul.py

It is also possible to run the profiler in an IPython shell for interactive editing. You should
first load the line_profiler extension that will provide the lprun magic command.
Using that command, you can avoid adding the @profile decorator, as illustrated in the
following screenshot:

Figure 1.7 – Using line_profiler within IPython

The output is quite intuitive and is divided into six columns, as follows:

• Line #: The number of the line that was run

• Hits: The number of times that line was run

• Time: The execution time of the line in microseconds (Time)

• Per Hit: Time/hits

• % Time: Fraction of the total time spent executing that line

• Line Contents: The content of the line

Optimizing our code 27

By looking at the % Time column, we can get a pretty good idea of where the time is
spent. In this case, there are a few statements in the for loop body with a cost of around
10-20 percent each.

Optimizing our code
Now that we have identified where exactly our application is spending most of its time, we
can make some changes and assess the resulting improvement in performance.

There are different ways to tune up our pure Python code. The way that typically produces
the most significant results is to improve the algorithms used. In this case, instead of
calculating the velocity and adding small steps, it will be more efficient (and correct, as it
is not an approximation) to express the equations of motion in terms of radius, r, and
angle, alpha, (instead of x and y), and then calculate the points on a circle using the
following equation:

 x = r * cos(alpha)

 y = r * sin(alpha)

Another optimization method lies in minimizing the number of instructions. For example,
we can precalculate the timestep * p.ang_vel factor that doesn't change with time.
We can exchange the loop order (first, we iterate on particles, then we iterate on time
steps) and put the calculation of the factor outside the loop on the particles.

The line-by-line profiling also showed that even simple assignment operations can take
a considerable amount of time. For example, the following statement takes more than
10 percent of the total time:

 v_x = (-p.y)/norm

We can improve the performance of the loop by reducing the number of assignment
operations performed. To do that, we can avoid intermediate variables by rewriting the
expression into a single, slightly more complex statement (note that the right-hand side
gets evaluated completely before being assigned to the variables), as follows:

 p.x, p.y = p.x - t_x_ang*p.y/norm, p.y + t_x_ang *

 p.x/norm

28 Benchmarking and Profiling

This leads to the following code:

 def evolve_fast(self, dt):

 timestep = 0.00001

 nsteps = int(dt/timestep)

 # Loop order is changed

 for p in self.particles:

 t_x_ang = timestep * p.ang_vel

 for i in range(nsteps):

 norm = (p.x**2 + p.y**2)**0.5

 p.x, p.y = (p.x - t_x_ang * p.y/norm,

 p.y + t_x_ang * p.x/norm)

After applying the changes, we should verify that the result is still the same by running our
test. We can then compare the execution times using our benchmark, as follows:

$ time python simul.py # Performance Tuned

real 0m0.756s

user 0m0.714s

sys 0m0.036s

$ time python simul.py # Original

real 0m0.863s

user 0m0.831s

sys 0m0.028s

As you can see, we obtained only a modest increment in speed by making a pure Python
micro-optimization.

Using the dis module
In this section, we will dig into the Python internals to estimate the performance of
individual statements. In the CPython interpreter, Python code is first converted to an
intermediate representation, the bytecode, and then executed by the Python interpreter.

Using the dis module 29

To inspect how the code is converted to bytecode, we can use the dis Python module
(dis stands for disassemble). Its usage is really simple; all we need to do is call the
dis.dis function on the ParticleSimulator.evolve method, like this:

 import dis

 from simul import ParticleSimulator

 dis.dis(ParticleSimulator.evolve)

This will print, for each line in the function, a list of bytecode instructions. For example,
the v_x = (-p.y)/norm statement is expanded in the following set of instructions:

 29 85 LOAD_FAST 5 (p)

 88 LOAD_ATTR 4 (y)

 91 UNARY_NEGATIVE

 92 LOAD_FAST 6 (norm)

 95 BINARY_TRUE_DIVIDE

 96 STORE_FAST 7 (v_x)

LOAD_FAST loads a reference of the p variable onto the stack and LOAD_ATTR loads
the y attribute of the item present on top of the stack. The other instructions, UNARY_
NEGATIVE and BINARY_TRUE_DIVIDE, simply do arithmetic operations on top-of-
stack items. Finally, the result is stored in v_x (STORE_FAST).

By analyzing the dis output, we can see that the first version of the loop produces
51 bytecode instructions, while the second gets converted into 35 instructions.

The dis module helps discover how the statements get converted and serves mainly
as an exploration and learning tool of the Python bytecode representation. For a more
comprehensive introduction and discussion on the Python bytecode, refer to the Further
reading section at the end of this chapter.

To improve our performance even further, we can keep trying to figure out other
approaches to reduce the number of instructions. It's clear, however, that this approach is
ultimately limited by the speed of the Python interpreter, and it is probably not the right
tool for the job. In the following chapters, we will see how to speed up interpreter-limited
calculations by executing fast specialized versions written in a lower-level language (such
as C or Fortran).

30 Benchmarking and Profiling

Profiling memory usage with memory_profiler
In some cases, high memory usage constitutes an issue. For example, if we want to handle
a huge number of particles, we will incur a memory overhead due to the creation of many
Particle instances.

The memory_profiler module summarizes, in a way similar to line_profiler,
the memory usage of a process.

The memory_profiler package is also available on PyPI. You should also install the
psutil module (https://github.com/giampaolo/psutil) as an optional
dependency that will make memory_profiler considerably faster.

Just as with line_profiler, memory_profiler also requires the instrumentation of
the source code by placing a @profile decorator on the function we intend to monitor.
In our case, we want to analyze the benchmark function.

We can slightly change benchmark to instantiate a considerable amount (100000) of
Particle instances and decrease the simulation time, as follows:

 def benchmark_memory():

 particles = [

 Particle(uniform(-1.0, 1.0),

 uniform(-1.0, 1.0),

 uniform(-1.0, 1.0))

 for i in range(100000)

]

 simulator = ParticleSimulator(particles)

 simulator.evolve(0.001)

We can use memory_profiler from an IPython shell through the %mprun magic
command, as shown in the following screenshot:

https://github.com/giampaolo/psutil

Profiling memory usage with memory_profiler 31

Figure 1.8 – Output from memory_profiler

It is possible to run memory_profiler from the shell using the mprof run command
after adding the @profile decorator.

From the Increment column, we can see that 100,000 Particle objects take 23.7
MiB of memory.

1 mebibyte (MiB) is equivalent to 1,048,576 bytes. It is different from 1 megabyte (MB),
which is equivalent to 1,000,000 bytes.

We can use __slots__ on the Particle class to reduce its memory footprint. This
feature saves some memory by avoiding storing the variables of the instance in an internal
dictionary. This strategy, however, has a small limitation—it prevents the addition of
attributes other than the ones specified in __slots__. You can see this feature in use
in the following code snippet:

 class Particle:

 __slots__ = ('x', 'y', 'ang_vel')

 def __init__(self, x, y, ang_vel):

 self.x = x

32 Benchmarking and Profiling

 self.y = y

 self.ang_vel = ang_vel

We can now rerun our benchmark to assess the change in memory consumption. The
result is displayed in the following screenshot:

Figure 1.9 – Improvement in memory consumption

By rewriting the Particle class using __slots__, we can save about 10 MiB
of memory.

Summary
In this chapter, we introduced the basic principles of optimization and applied those
principles to a test application. When optimizing an application, the first thing to do
is test and identify the bottlenecks in the application. We saw how to write and time a
benchmark using the time Unix command, the Python timeit module, and the full-
fledged pytest-benchmark package. We learned how to profile our application using
cProfile, line_profiler, and memory_profiler, and how to analyze and
navigate the profiling data graphically with KCachegrind.

Questions 33

Speed is undoubtedly an important component of any modern software. The techniques
we have learned in this chapter will allow you to systematically tackle the problem of
making your Python programs more efficient from different angles. Further, we have seen
that these tasks can take advantage of Python built-in/native packages and do not require
any special external tools.

In the next chapter, we will explore how to improve performance using algorithms and
data structures available in the Python standard library. We will cover scaling and sample
usage of several data structures, and learn techniques such as caching and memorization.
We will also introduce Big O notation, which is a common computer science tool to
analyze the running time of algorithms and data structures.

Questions
1. Arrange the following three items in order of importance when building a software

application: correctness (the program does what it is supposed to do), efficiency
(the program is optimized in speed and memory management), and functionality
(the program runs).

2. How could assert statements be used in Python to check for the correctness
of a program?

3. What is a benchmark in the context of optimizing a software program?
4. How could timeit magic commands be used in Python to estimate the speed

of a piece of code?
5. List three different types of information that are recorded and returned by

cProfile (included as output columns) in the context of profiling a program.
6. On a high level, what is the role of the dis module in optimization?
7. In the exercise.py file, we write a simple function, close(), that checks

whether a pair of particles are close to each other (with 1e-5 tolerance). In
benchmark(), we randomly initialize two particles and call close() after
running the simulation. Make a guess of what takes most of the execution time in
close(), and profile the function via benchmark() using cProfile; does the
result confirm your guess?

34 Benchmarking and Profiling

Further reading
• Profilers in Python: https://docs.python.org/3/library/profile.

html

• Using PyCharm's profiler: https://www.jetbrains.com/help/pycharm/
profiler.html

• A beginner-friendly introduction to bytecode in Python: https://
opensource.com/article/18/4/introduction-python-bytecode

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://opensource.com/article/18/4/introduction-python-bytecode
https://opensource.com/article/18/4/introduction-python-bytecode

2
Pure Python

Optimizations
As mentioned in the previous chapter, one of the most effective ways of improving the
performance of applications is through the use of better algorithms and data structures.
The Python standard library provides a large variety of ready-to-use algorithms and data
structures that can be directly incorporated into your applications. With the tools learned
from this chapter, you will be able to use the right algorithm for the task and achieve
massive speed gains.

Even though many algorithms have been around for quite a while, they are especially
relevant in today's world as we continuously produce, consume, and analyze ever-increasing
amounts of data. Buying a larger server or micro-optimizing can work for some time, but
achieving better scaling through algorithmic improvement can solve the problem once
and for all.

In this chapter, we will learn how to achieve better scaling using standard algorithms and
data structures. More advanced use cases where we take advantage of third-party libraries
will also be covered. We will also learn about tools to implement caching, a technique used
to achieve faster response times by sacrificing some space in memory or on disk.

36 Pure Python Optimizations

The list of topics to be covered in this chapter is as follows:

• Using the right algorithms and data structures

• Improved efficiency with caching and memoization

• Efficient iteration with comprehensions and generators

Technical requirements
You will find the code files for this chapter here: https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter02.

Using the right algorithms and data structures
Algorithmic improvements are especially effective in increasing performance because they
typically allow the application to scale better with increasingly large inputs.

Algorithm running times can be classified according to their computational complexity,
a characterization of the resources required to perform a task.

Such classification is expressed through the Big O notation, an upper bound on the
operations required to execute the task, which usually depends on the input size. Specifically,
Big O notation describes how the runtime or memory requirement of an algorithm grows
in terms of the input size. For this reason, a lower Big O denotes a more efficient algorithm,
which is what we aim for.

For example, incrementing each element of a list can be implemented using a for loop,
as follows:

 input = list(range(10))

 for i, _ in enumerate(input):

 input[i] += 1

If the operation does not depend on the size of the input (for example, accessing the first
element of a list), the algorithm is said to take constant, or O(1), time. This means that, no
matter how much data we have, the time to run the algorithm will always be the same.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter02

Using the right algorithms and data structures 37

In this simple algorithm, the input[i] += 1 operation will be repeated 10 times,
which is the size of the input. If we double the size of the input array, the number of
operations will increase proportionally. Since the number of operations is proportional
to the input size, this algorithm is said to take O(N) time, where N is the size of the
input array.

In some instances, the running time may depend on the structure of the input (for example,
if the collection is sorted or contains many duplicates). In these cases, an algorithm
may have different best-case, average-case, and worst-case running times. Unless stated
otherwise, the running times presented in this chapter are considered to be average
running times.

In this section, we will examine the running times of algorithms and data structures that
are implemented in the Python standard library and understand how improving running
times results in massive gains and allows us to solve large-scale problems with elegance.

You can find the code used to run the benchmarks in this chapter in the
Algorithms.ipynb notebook, which can be opened using Jupyter.

First, we will examine lists and deques.

Lists and deques
Python lists are ordered collections of elements and, in Python, are implemented as
resizable arrays. An array is a basic data structure that consists of a series of contiguous
memory locations, and each location contains a reference to a Python object.

Lists shine in accessing, modifying, and appending elements. Accessing or modifying
an element involves fetching the object reference from the appropriate position of the
underlying array and has O(1) complexity. Appending an element is also very fast. When
an empty list is created, an array of fixed size is allocated and, as we insert elements, the
slots in the array are gradually filled up. Once all the slots are occupied, the list needs to
increase the size of its underlying array, thus triggering a memory reallocation that can
take O(N) time. Nevertheless, those memory allocations are infrequent, and the time
complexity for the append operation is referred to as amortized O(1) time.

The list operations that may have efficiency problems are those that add or remove
elements at the beginning (or somewhere in the middle) of the list. When an item is
inserted or removed from the beginning of a list, all the subsequent elements of the
array need to be shifted by a position, thus taking O(N) time.

38 Pure Python Optimizations

In the following table, the timings for different operations on a list of 10,000 size are
shown; you can see how insertion and removal performances vary quite dramatically
if performed at the beginning or the end of the list:

Table 1.1 – The speed of different list operations

In some cases, it is necessary to efficiently perform the insertion or removal of elements
both at the beginning and the end of the collection. Python provides a data structure
with those properties in the collections.deque class. The word deque stands for
double-ended queue because this data structure is designed to efficiently put and remove
elements at the beginning and the end of the collection, as it is in the case of queues. In
Python, deques are implemented as doubly linked lists.

Deques, in addition to pop and append, expose the popleft and appendleft
methods that have O(1) running time:

Table 1.2 – The speed of different deque operations

Despite these advantages, deques should not be used to replace regular lists in most cases.
The efficiency gained by the appendleft and popleft operations comes at a cost
– accessing an element in the middle of a deque is an O(N) operation, as shown in the
following table:

Table 1.3 – The inefficiency of deques in accessing the middle element

Using the right algorithms and data structures 39

Searching for an item in a list is generally an O(N) operation and is performed using the
list.index method. A simple way to speed up searches in lists is to keep the array
sorted and perform a binary search using the bisect module.

The bisect module allows fast searches on sorted arrays. The bisect.bisect
function can be used on a sorted list to find the index to place an element while
maintaining the array in sorted order. In the following example, we can see that if we
want to insert the 3 element in the array while keeping collection in sorted order,
we should put 3 in the third position (which corresponds to index 2):

 insert bisect

 collection = [1, 2, 4, 5, 6]

 bisect.bisect(collection, 3)

 # Result: 2

This function uses the binary search algorithm that has O(log(N)) running time. Such
a running time is exceptionally fast and, basically, means that your running time will
increase by a constant amount every time you double your input size. This means that if,
for example, your program takes 1 second to run on an input of 1000 size, it will take 2
seconds to process an input of 2000 size, 3 seconds to process an input of 4000 size, and
so on. If you had 100 seconds, you could theoretically process an input of 10^33 size,
which is larger than the number of atoms in your body!

If the value we are trying to insert is already present in the list, the bisect.bisect
function will return the location after the already present value. Therefore, we can use
the bisect.bisect_left variant, which returns the correct index in the following
way (taken from the module documentation at https://docs.python.org/3.5/
library/bisect.html):

 def index_bisect(a, x):

 'Locate the leftmost value exactly equal to x'

 i = bisect.bisect_left(a, x)

 if i != len(a) and a[i] == x:

 return i

 raise ValueError

https://docs.python.org/3.5/library/bisect.html
https://docs.python.org/3.5/library/bisect.html

40 Pure Python Optimizations

In the following table, you can see how the running time of the bisect solution is barely
affected by these input sizes, making it a suitable solution when searching through very
large collections:

Table 1.4 – The efficiency of the bisect function

Dictionaries
Dictionaries are extremely versatile and extensively used in the Python language, for
example, in package-, module-, and class-level namespaces, as well as object and class
annotations. Dictionaries are implemented as hash maps and are very good at element
insertion, deletion, and access; all these operations have an average O(1) time complexity.

Important Note
In Python versions up to 3.5, dictionaries are unordered collections. Since
Python 3.6, dictionaries are capable of maintaining their elements by order of
insertion.

Hash map
A hash map is a data structure that associates a set of key-value pairs. The principle
behind hash maps is to assign a specific index to each key so that its associated value can
be stored in an array. The index can be obtained through the use of a hash function;
Python implements hash functions for several data types. As a demonstration, the
generic function to obtain hash codes is hash. In the following example, we show you
how to obtain the hash code when given the "hello" string:

 hash("hello")

 # Result: -1182655621190490452

 # To restrict the number to be a certain range you can

 use

 # the modulo (%) operator

 hash("hello") % 10

 # Result: 8

Using the right algorithms and data structures 41

Hash maps can be tricky to implement because they need to handle collisions that happen
when two different objects have the same hash code. However, all the complexity is
elegantly hidden behind the implementation and the default collision resolution works
well in most real-world scenarios.

The access to, insertion, and removal of an item in a dictionary scales as O(1) with the size
of the dictionary. However, note that the computation of the hash function still needs
to happen and, for strings, the computation scales with the length of the string. As string
keys are usually relatively small, this doesn't constitute a problem in practice.

A dictionary can be used to efficiently count unique elements in a list. In this example, we
define the counter_dict function that takes a list and returns a dictionary containing
the number of occurrences of each value in the list:

 def counter_dict(items):

 counter = {}

 for item in items:

 if item not in counter:

 counter[item] = 1

 else:

 counter[item] += 1

 return counter

The code can be somewhat simplified using collections.defaultdict, which can
be used to produce dictionaries where each new key is automatically assigned a default
value. In the following code, the defaultdict(int) call produces a dictionary where
every new element is automatically assigned a zero value and can be used to streamline
the counting:

 from collections import defaultdict

 def counter_defaultdict(items):

 counter = defaultdict(int)

 for item in items:

 counter[item] += 1

 return counter

42 Pure Python Optimizations

The collections module also includes a Counter class that can be used for the same
purpose with a single line of code:

 from collections import Counter

 counter = Counter(items)

Speed-wise, all these ways of counting have the same time complexity, but the Counter
implementation is the most efficient, as shown in the following table:

Table 1.5 – The different methods of computing counters

Building an in-memory search index using a hash map
Dictionaries can be used to quickly search for a word in a list of documents, similar to
a search engine. In this subsection, we will learn how to build an inverted index based
on a dictionary of lists. Let's say we have a collection of four documents:

 docs = ["the cat is under the table",

 "the dog is under the table",

 "cats and dogs smell roses",

 "Carla eats an apple"]

A simple way to retrieve all the documents that match a query is to scan each document
and test for the presence of a word. For example, if we want to look up the documents
where the word table appears, we can employ the following filtering operation:

 matches = [doc for doc in docs if "table" in doc]

This approach is simple and works well when we have one-off queries; however, if we need
to query the collection very often, it can be beneficial to optimize querying time. Since the
per-query cost of the linear scan is O(N), you can imagine that better scaling will allow us
to handle much larger document collections.

Using the right algorithms and data structures 43

A better strategy is to spend some time preprocessing the documents so that they are
easier to find at query time. We can build a structure, called the inverted index, that
associates each word in our collection with the list of documents where that word is
present. In our earlier example, the word "table" will be associated with the "the cat
is under the table" and "the dog is under the table" documents; they
correspond to 0 and 1 indices.

Such a mapping can be implemented by going over our collection of documents and
storing in a dictionary the index of the documents where that term appears. The
implementation is similar to the counter_dict function, except that, instead of
incrementing a counter, we are growing the list of documents that match the current term:

 # Building an index

 index = {}

 for i, doc in enumerate(docs):

 # We iterate over each term in the document

 for word in doc.split():

 # We build a list containing the indices

 # where the term appears

 if word not in index:

 index[word] = [i]

 else:

 index[word].append(i)

Once we have built our index, doing a query involves a simple dictionary lookup. For
example, if we want to return all the documents containing the table term, we can
simply query the index and retrieve the corresponding documents:

 results = index["table"]

 result_documents = [docs[i] for i in results]

Since all it takes to query our collection is dictionary access, the index can handle queries
with O(1) time complexity! Thanks to the inverted index, we are now able to query any
number of documents (as long as they fit in memory) in constant time. Needless to say,
indexing is a technique widely used to quickly retrieve data, not only in search engines
but also in databases and any system that requires fast searches.

44 Pure Python Optimizations

Important Note
Building an inverted index is an expensive operation and requires you to
encode every possible query. This is a substantial drawback, but the benefits
are great, and it may be worthwhile to pay the price in terms of decreased
flexibility.

Sets
Sets are unordered collections of elements, with the additional restriction that
the elements must be unique. The main use cases where sets are a good choice are
membership tests (testing whether an element is present in the collection) and,
unsurprisingly, set operations such as union, difference, and intersection.

In Python, sets are implemented using a hash-based algorithm, just like dictionaries;
therefore, the time complexities for addition, deletion, and testing for membership
scale as O(1) with the size of the collection.

Sets contain only unique elements. An immediate use case of sets is the removal of
duplicates from a collection, which can be accomplished by simply passing the collection
through the set constructor, as follows:

 # create a list that contains duplicates

 x = list(range(1000)) + list(range(500))

 # the set *x_unique* will contain only

 # the unique elements in x

 x_unique = set(x)

The time complexity for removing duplicates is O(N), as it requires reading the input and
putting each element in the set.

Sets offer a number of operations, such as union, intersection, and difference. The union of
two sets is a new set containing all the elements of both the sets; the intersection is a new
set that contains only the elements in common between the two sets, and the difference
is a new set containing the elements of the first set that are not contained in the second
set. The time complexities for these operations are shown in the following table. Note that
since we have two different input sizes, we will use the letter S to indicate the size of the
first set (called s), and T to indicate the size of the second set (called t):

Using the right algorithms and data structures 45

Table 1.6 – The running time of set operations

An application of set operations is, for example, Boolean queries. Going back to the
inverted index example of the previous subsection, we may want to support queries
that include multiple terms. For example, we may want to search for all the documents
that contain the words cat and table. This kind of query can be efficiently computed
by taking the intersection between the set of documents containing cat and the set of
documents containing table.

In order to efficiently support those operations, we can change our indexing code so that
each term is associated with a set of documents (rather than a list). After applying this
change, calculating more advanced queries is a matter of applying the right set operation.
In the following code, we show the inverted index based on sets and the query using
set operations:

 # Building an index using sets

 index = {}

 for i, doc in enumerate(docs):

 # We iterate over each term in the document

 for word in doc.split():

 # We build a set containing the indices

 # where the term appears

 if word not in index:

 index[word] = {i}

 else:

 index[word].add(i)

 # Querying the documents containing both "cat" and

 "table"

 index['cat'].intersection(index['table'])

46 Pure Python Optimizations

Heaps
Heaps are data structures designed to quickly find and extract the maximum (or minimum)
value in a collection. A typical use case for heaps is to process a series of incoming tasks in
order of maximum priority.

You can theoretically use a sorted list using the tools in the bisect module; however,
while extracting the maximum value will take O(1) time (using list.pop), insertion will
still take O(N) time (remember that, even if finding the insertion point takes O(log(N))
time, inserting an element in the middle of a list is still an O(N) operation). A heap is a
more efficient data structure that allows for the insertion and extraction of maximum
values with O(log(N)) time complexity.

In Python, heaps are built using the procedures contained in the heapq module on an
underlying list. For example, if we have a list of 10 elements, we can reorganize it into
a heap with the heapq.heapify function:

 import heapq

 collection = [10, 3, 3, 4, 5, 6]

 heapq.heapify(collection)

To perform the insertion and extraction operations on the heap, we can use the
heapq.heappush and heapq.heappop functions. The heapq.heappop function
will extract the minimum value in the collection in O(log(N)) time and can be used in
the following way:

 heapq.heappop(collection)

 # Returns: 3

Similarly, you can push the 1 integer with the heapq.heappush function, as follows:

 heapq.heappush(collection, 1)

Another easy-to-use option is the queue.PriorityQueue class, which as a bonus, is
thread- and process-safe. The PriorityQueue class can be filled up with elements using
the PriorityQueue.put method, while PriorityQueue.get can be used to extract
the minimum value in the collection:

 from queue import PriorityQueue

 queue = PriorityQueue()

 for element in collection:

Using the right algorithms and data structures 47

 queue.put(element)

 queue.get()

 # Returns: 3

If the maximum element is required, a simple trick is to multiply each element of the list
by -1. In this way, the order of the elements will be inverted. Also, if you want to associate
an object (for example, a task to run) with each number (which can represent the priority),
you can insert tuples of the (number, object) form; the comparison operator for the
tuple will be ordered with respect to its first element, as shown in the following example:

 queue = PriorityQueue()

 queue.put((3, "priority 3"))

 queue.put((2, "priority 2"))

 queue.put((1, "priority 1"))

 queue.get()

 # Returns: (1, "priority 1")

Tries
A perhaps less popular data structure, but very useful in practice, is the trie (sometimes
called prefix tree). Tries are extremely fast at matching a list of strings against a prefix.
This is especially useful when implementing features such as search as you type and
autocompletion, where the list of available completions is very large and short response
times are required.

Unfortunately, Python does not include a trie implementation in its standard library;
however, many efficient implementations are readily available through PyPI. The one we
will use in this subsection is patricia-trie, a single-file, pure Python implementation
of trie. As an example, we will use patricia-trie to perform the task of finding the
longest prefix in a set of strings (just like autocompletion).

48 Pure Python Optimizations

Here, we can demonstrate how fast a trie is able to search through a list of strings.
In order to generate a large amount of unique random strings, we can define a function,
random_string. The random_string function will return a string composed of
random uppercase characters and, while there is a chance to get duplicates, we can greatly
reduce the probability of duplicates to the point of being negligible if we make the string
long enough. The implementation of the random_string function is shown as follows:

 from random import choice

 from string import ascii_uppercase

 def random_string(length):

 """Produce a random string made of *length* uppercase \

 ascii characters"""

 return ''.join(choice(ascii_uppercase) for i in \

 range(length))

We can build a list of random strings and time how fast it searches for a prefix (in our
case, the "AA" string) using the str.startswith function:

 strings = [random_string(32) for i in range(10000)]

 matches = [s for s in strings if s.startswith('AA')]

List comprehension and str.startwith are already very optimized operations and,
on this small dataset, the search takes only a millisecond or so:

 %timeit [s for s in strings if s.startswith('AA')]

 1000 loops, best of 3: 1.76 ms per loop

Now, let's try using a trie for the same operation. In this example, we will use the
patricia-trie library that is installable through pip. The patricia.trie class
implements a variant of the trie data structure with an interface similar to a dictionary.
We can initialize our trie by creating a dictionary from our list of strings, as follows:

 from patricia import trie

 strings_dict = {s:0 for s in strings}

 # A dictionary where all values are 0

 strings_trie = trie(**strings_dict)

Using the right algorithms and data structures 49

To query patricia-trie for a matching prefix, we can use the trie.iter method,
which returns an iterator over the matching strings:

 matches = list(strings_trie.iter('AA'))

Now that we know how to initialize and query a trie, we can time the operation:

 %timeit list(strings_trie.iter('AA'))

 10000 loops, best of 3: 60.1 µs per loop

The timing for this input size is 60.1 µs, which is about 30 times faster (1.76 ms = 1760 µs)
than linear search! This impressive speedup is because of the better computational
complexity of the trie prefix search. Querying a trie has an O(S) time complexity, where S
is the length of the longest string in the collection, while the time complexity of a simple
linear scan is O(N), where N is the size of the collection.

Note that if we want to return all the prefixes that match, the running time will be
proportional to the number of results that match the prefix. Therefore, when designing
timing benchmarks, care must be taken to ensure that we are always returning the same
number of results.

The scaling properties of a trie versus a linear scan for datasets of different sizes that
contains 10 prefix matches are shown in the following table:

Table 1.7 – The running time of a trie versus a linear scan

An interesting fact is that the implementation of patricia-trie is actually a single
Python file; this clearly shows how simple and powerful a clever algorithm can be.
For extra features and performance, other C-optimized trie libraries are also available,
such as datrie and marisa-trie.

At this point, we have considered most of the important data structures that are native
to Python. Appropriate use of these data structures will speed up your application by a
significant degree. In addition to data structures, there are other computing techniques
and concepts that we could utilize in order to make our programs even faster. In the next
section, we will take a look at caching and memoization, which are common practices
when you expect the same computations to be repeated multiple times.

50 Pure Python Optimizations

Improved efficiency with caching and
memoization
Caching is a great technique used to improve the performance of a wide range of
applications. The idea behind caching is to store expensive results in a temporary location,
called a cache, that can be located in memory, on disk, or in a remote location.

Web applications make extensive use of caching. In a web application, it is often the
case that multiple users request a certain page at the same time. In this case, instead of
recomputing the page for each user, the web application can compute it once and serve the
user the already rendered page. Ideally, caching also needs a mechanism for invalidation so
that if the page needs to be updated, we can recompute it before serving it again. Intelligent
caching allows web applications to handle the increasing number of users with fewer
resources. Caching can also be done preemptively, such as the later sections of a video
getting buffered when watching a video online.

Caching is also used to improve the performance of certain algorithms. A great example
is computing the Fibonacci sequence. Since computing the next number in the Fibonacci
sequence requires the previous number in the sequence, you can store and reuse previous
results, dramatically improving the running time. Storing and reusing the results of the
previous function calls in an application is usually termed memoization and is one of the
forms of caching. Several other algorithms can take advantage of memoization to gain
impressive performance improvements, and this programming technique is commonly
referred to as dynamic programming, where you aim to solve a large problem by
breaking it into smaller ones.

The benefits of caching, however, do not come for free. What we are actually doing is
sacrificing some space to improve the speed of the application. Additionally, if the cache
is stored in a location on the network, we may incur transfer costs and the general time
needed for communication. You should evaluate when it is convenient to use a cache and
how much space you are willing to trade for an increase in speed.

Given the usefulness of this technique, the Python standard library includes
a simple in-memory cache out of the box in the functools module. The
functools.lru_cache decorator can be used to easily cache the results of a function.

In the following example, we create a function, sum2, that prints a statement and returns
the sum of two numbers. By running the function twice, you can see that the first time
the sum2 function is executed, the "Calculating ..." string is produced, while the
second time, the result is returned without running the function:

 from functools import lru_cache

 @lru_cache()

Improved efficiency with caching and memoization 51

 def sum2(a, b):

 print("Calculating {} + {}".format(a, b))

 return a + b

 print(sum2(1, 2))

 # Output:

 # Calculating 1 + 2

 # 3

 print(sum2(1, 2))

 # Output:

 # 3

The lru_cache decorator also provides other basic features. To restrict the size of
the cache, you can set the number of elements that we intend to maintain through the
max_size argument. If we want our cache size to be unbounded, we can specify a value
of None. An example of max_size usage is shown here:

 @lru_cache(max_size=16)

 def sum2(a, b):

 ...

In this way, as we execute sum2 with different arguments, the cache will reach a
maximum size of 16 and, as we keep requesting more calculations, new values will replace
older values in the cache. The lru prefix originates from this strategy, which means least
recently used.

The lru_cache decorator also adds extra functionalities to the decorated function. For
example, it is possible to examine the cache performance using the cache_info method,
and it is possible to reset the cache using the cache_clear method, as follows:

 sum2.cache_info()

 # Output: CacheInfo(hits=0, misses=1, maxsize=128,

 currsize=1)

 sum2.cache_clear()

52 Pure Python Optimizations

As an example, we can see how a problem, such as computing the Fibonacci series, may
benefit from caching. We can define a fibonacci function and time its execution:

 def fibonacci(n):

 if n < 1:

 return 1

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

 # Non-memoized version

 %timeit fibonacci(20)

 100 loops, best of 3: 5.57 ms per loop

The execution takes 5.57 milliseconds, which is very long. The scaling of the function
written in this way has poor performance; the previously computed Fibonacci sequences
are not reused, causing this algorithm to have an exponential scaling of roughly O(2N).

Caching can improve this algorithm by storing and reusing the already-computed
Fibonacci numbers. To implement the cached version, it is sufficient to apply the
lru_cache decorator to the original fibonacci function. Also, to design a proper
benchmark, we need to ensure that a new cache is instantiated for every run; to do this,
we can use the timeit.repeat function, as shown in the following example:

 import timeit

 setup_code = '''

 from functools import lru_cache

 from __main__ import fibonacci

 fibonacci_memoized = lru_cache(maxsize=None)(fibonacci)'''

 results = timeit.repeat('fibonacci_memoized(20)',

 setup=setup_code,

 repeat=1000,

 number=1)

 print("Fibonacci took {:.2f} us".format(min(results)))

 # Output: Fibonacci took 0.01 us

Even though we changed the algorithm by adding a simple decorator, the running time
now is much less than a microsecond. The reason is, thanks to caching, we now have a
linear time algorithm instead of an exponential one.

Improved efficiency with caching and memoization 53

The lru_cache decorator can be used to implement simple in-memory caching in your
application. For more advanced use cases, third-party modules can be used for more
powerful implementation and on-disk caching.

Joblib
A simple library that, among other things, provides a simple on-disk cache is joblib.
The package can be used in a similar way as lru_cache, except that the results will be
stored on disk and will persist between runs.

The joblib module can be installed from PyPI using the pip install joblib
command.

The joblib module provides the Memory class, which can be used to memoize functions
using the Memory.cache decorator:

 from joblib import Memory

 memory = Memory(cachedir='/path/to/cachedir')

 @memory.cache

 def sum2(a, b):

 return a + b

The function will behave similarly to lru_cache, with the exception that the results will
be stored on disk in the directory specified by the cachedir argument during Memory
initialization. Additionally, the cached results will persist over subsequent runs!

The Memory.cache method also allows limiting recomputation to only when certain
arguments change, and the resulting decorated function supports basic functionalities
to clear and analyze the cache.

Perhaps the best joblib feature is, thanks to intelligent hashing algorithms, providing
efficient memoization of functions that operate on numpy arrays, which is particularly
useful in scientific and engineering applications.

At this point, we have seen that by using caching and memoization, our program can reuse
computations in an efficient way. Another common strategy to improve running time is
to utilize specifically designed techniques as appropriate. In the next section, we will
see how we can take advantage of comprehensions and generators when working with
Python loops.

54 Pure Python Optimizations

Efficient iteration with comprehensions
and generators
In this section, we will explore a few simple strategies to speed up Python loops using
comprehensions and generators. In Python, comprehension and generator expressions
are fairly optimized operations and should be preferred in place of explicit for loops,
as they are designed to avoid many unnecessary computational overheads during their
construction. Another reason to use this construct is readability; even if the speedup over
a standard loop is modest, the comprehension and generator syntax is more compact and
(most of the time) more intuitive.

In the following example, we can see that both the list comprehension and generator
expressions are faster than an explicit loop when combined with the sum function:

 def loop():

 res = []

 for i in range(100000):

 res.append(i * i)

 return sum(res)

 def comprehension():

 return sum([i * i for i in range(100000)])

 def generator():

 return sum(i * i for i in range(100000))

 %timeit loop()

 100 loops, best of 3: 16.1 ms per loop

 %timeit comprehension()

 100 loops, best of 3: 10.1 ms per loop

 %timeit generator()

 100 loops, best of 3: 12.4 ms per loop

Just like lists, it is possible to use dict comprehension to build dictionaries slightly more
efficiently and compactly, as shown in the following code:

 def loop():

 res = {}

 for i in range(100000):

Efficient iteration with comprehensions and generators 55

 res[i] = i

 return res

 def comprehension():

 return {i: i for i in range(100000)}

 %timeit loop()

 100 loops, best of 3: 13.2 ms per loop

 %timeit comprehension()

 100 loops, best of 3: 12.8 ms per loop

Efficient looping (especially in terms of memory) can be implemented using iterators and
functions such as filter and map. As an example, consider the problem of applying a
series of operations to a list using list comprehension and then taking the maximum value:

 def map_comprehension(numbers):

 a = [n * 2 for n in numbers]

 b = [n ** 2 for n in a]

 c = [n ** 0.33 for n in b]

 return max(c)

The problem with this approach is that for every list comprehension, we are allocating a
new list, increasing memory usage. Instead of using list comprehension, we can employ
generators. Generators are objects that, when iterated upon, compute a value on the fly
and return the result.

For example, the map function takes two arguments – a function and an iterator – and
returns a generator that applies the function to every element of the collection. The
important point is that the operation happens only while we are iterating, and not when
map is invoked!

We can rewrite the previous function using map and by creating intermediate generators,
rather than lists, thus saving memory by computing the values on the fly:

 def map_normal(numbers):

 a = map(lambda n: n * 2, numbers)

 b = map(lambda n: n ** 2, a)

 c = map(lambda n: n ** 0.33, b)

 return max(c)

56 Pure Python Optimizations

We can profile the memory of the two solutions using the memory_profiler extension
from an IPython session. The extension provides a small utility, %memit, that will help
us evaluate the memory usage of a Python statement in a way similar to %timeit,
as illustrated in the following details:

 %load_ext memory_profiler

 numbers = range(1000000)

 %memit map_comprehension(numbers)

 peak memory: 166.33 MiB, increment: 102.54 MiB

 %memit map_normal(numbers)

 peak memory: 71.04 MiB, increment: 0.00 MiB

As you can see, the memory used by the first version is 102.54 MiB, while the second
version consumes 0.00 MiB! For those who are interested, more functions that return
generators can be found in the itertools module, which provides a set of utilities
designed to handle common iteration patterns.

Summary
Algorithmic optimization can improve how your application scales as we process
increasingly large data. In this chapter, we demonstrated use cases and running times of
the most common data structures available in Python, such as lists, deques, dictionaries,
heaps, and tries. We also covered caching, a technique that can be used to trade some
space, in memory or on disk, in exchange for the increased responsiveness of an
application. We also demonstrated how to get modest speed gains by replacing for
loops with fast constructs, such as list comprehensions and generator expressions.

Overall, we have seen that by utilizing a specifically designed data structure or technique
that is appropriate in certain situations, the efficiency of our program can be greatly
improved. The topics covered in this chapter offer us the ability to do just that across
a wide range of use cases.

In the subsequent chapters, we will learn how to improve performance further using
numerical libraries such as numpy and how to write extension modules in a lower-level
language with the help of Cython.

Questions 57

Questions
1. Identify the best/most appropriate from the data structures covered in this chapter

concerning the following use cases:

A. Mapping items to another set of items (set being used in the most general sense)
B. Accessing, modifying, and appending elements
C. Maintaining a collection of unique elements
D. Keeping track of the minimum/maximum of a set (in the most general sense)
E. Appending and removing elements at the endpoints of a sequence (in the most

general sense).
F. Fast searching according to some similarity criterion (for example, being used

by autocompletion engines).

2. What is the difference between caching and memoization?
3. Why are comprehensions and generators (in most situations) more preferred than

explicit for loops?
4. Consider the problem of representing a pairwise association between a set of letters

and a set of numbers (for example, a 2, b 1, c 3, and so on), where we need
to look at what number a given letter is associated with in our application.

A. Is a list an appropriate data structure for this task, and if not, what is?
B. What if each number represented the number of instances of a given letter in

a text document? What would the best data structure for this task be?

Further reading
• Lazy evaluation in Python: https://towardsdatascience.com/what-is-

lazy-evaluation-in-python-9efb1d3bfed0

• The yield statement in Python: https://realpython.com/
introduction-to-python-generators/

https://towardsdatascience.com/what-is-lazy-evaluation-in-python-9efb1d3bfed0
https://towardsdatascience.com/what-is-lazy-evaluation-in-python-9efb1d3bfed0
https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

3
Fast Array

Operations with
NumPy, Pandas,

and Xarray
NumPy is the de facto standard for scientific computing in Python. It offers flexible
multidimensional arrays that allow you to perform fast and concise mathematical
calculations.

NumPy provides common data structures and algorithms designed to express complex
mathematical operations using a concise syntax. The multidimensional array, numpy.
ndarray, is internally based on C arrays. Apart from the performance benefits, this choice
allows NumPy code to easily interface with the existing C and FORTRAN routines; NumPy
helps bridge the gap between Python and the legacy code written using those languages.

In this chapter, we will learn how to create and manipulate NumPy arrays. We will also
explore the NumPy broadcasting feature, which is used to rewrite complex mathematical
expressions efficiently and succinctly.

60 Fast Array Operations with NumPy, Pandas, and Xarray

pandas is a tool that relies heavily on NumPy and provides additional data structures
and algorithms targeted toward data analysis. We will introduce the main pandas features
and their usage. We will also learn how to achieve high performance using pandas data
structures and vectorized operations.

Both NumPy and pandas are insufficient in many use cases concerning labeled,
multidimensional data. The xarray library combines the best features from the other
two tools and offers further optimized data processing functionalities. We will discuss
the motivation for this tool and study the performance improvements it offers via
explicit examples.

In this chapter, we will be covering the following topics:

• Getting started with NumPy
• Rewriting the particle simulator in NumPy
• Reaching optimal performance with numexpr
• Working with database-style data with pandas
• High-performance labeled data with xarray

Technical requirement
The code files for this chapter can be accessed by going to this book's GitHub
repository at https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/Chapter03.

Getting started with NumPy
The NumPy library revolves around its multidimensional array object, numpy.ndarray.
NumPy arrays are collections of elements of the same data type; this fundamental
restriction allows NumPy to pack the data in a way that allows for high-performance
mathematical operations.

Creating arrays
Let's explore NumPy's functionalities by following these steps:

1. You can create NumPy arrays using the numpy.array function. It takes a list-like
object (or another array) as input and, optionally, a string expressing its data type.
You can interactively test array creation using an IPython shell, as follows:

 import numpy as np

 a = np.array([0, 1, 2])

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/Chapter03
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/Chapter03

Getting started with NumPy 61

2. Every NumPy array has an associated data type that can be accessed using the
dtype attribute. If we inspect the a array, we will find that its dtype is int64,
which stands for 64-bit integer:

 a.dtype

 # Result:

 # dtype('int64')

3. We may decide to convert those integer numbers into the float type. To do this,
we can either pass the dtype argument at array initialization or cast the array to
another data type using the astype method. These two ways to select a data type
are shown in the following code:

 a = np.array([1, 2, 3], dtype='float32')

 a.astype('float32')

 # Result:

 # array([0., 1., 2.], dtype=float32)

4. To create an array with two dimensions (an array of arrays), we can perform the
required initialization using a nested sequence, as follows:

 a = np.array([[0, 1, 2], [3, 4, 5]])

 print(a)

 # Output:

 # [[0 1 2]

 # [3 4 5]]

5. An array that's created in this way has two dimensions, which are called axes in terms
of NumPy's jargon. An array that's formed in this way is like a table that contains two
rows and three columns. We can access the axes using the ndarray.shape attribute:

 a.shape

 # Result:

 # (2, 3)

62 Fast Array Operations with NumPy, Pandas, and Xarray

6. Arrays can also be reshaped, so long as the product of the shape dimensions is equal
to the total number of elements in the array (that is, the total number of elements
is conserved). For example, we can reshape an array containing 16 elements in the
following ways: (2, 8), (4, 4), or (2, 2, 4). To reshape an array, we can either
use the ndarray.reshape method or assign a new value to the ndarray.shape
tuple. The following code illustrates the use of the ndarray.reshape method:

 a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8,

 9, 10, 11, 12, 13, 14, 15])

 a.shape

 # Output:

 # (16,)

 a.reshape(4, 4) # Equivalent: a.shape = (4, 4)

 # Output:

 # array([[0, 1, 2, 3],

 # [4, 5, 6, 7],

 # [8, 9, 10, 11],

 # [12, 13, 14, 15]])

Thanks to this property, you can freely add dimensions of size 1. You can reshape
an array with 16 elements to (16, 1), (1, 16), (16, 1, 1), and so on. In the
next section, we will extensively use this feature to implement complex operations
through broadcasting.

7. NumPy provides convenience functions, as shown in the following code, to create
arrays filled with zeros, ones, or with no initial value (in this case, their actual value
is meaningless and depends on the memory state). Those functions take the array
shape as a tuple and, optionally, its dtype:

 np.zeros((3, 3))

 np.empty((3, 3))

 np.ones((3, 3), dtype='float32')

In our examples, we will use the numpy.random module to generate random
floating-point numbers in the (0, 1) interval. numpy.random.rand will take
a shape and return an array of random numbers with that shape:

 np.random.rand(3, 3)

Getting started with NumPy 63

8. Sometimes, it is convenient to initialize arrays that have the same shape as that of
some other array. For that purpose, NumPy provides some handy functions, such
as zeros_like, empty_like, and ones_like. These functions can be used
as follows:

 np.zeros_like(a)

 np.empty_like(a)

 np.ones_like(a)

These functions will return arrays with the specified values, whose shapes match exactly
with that of array a.

Accessing arrays
The NumPy array interface is, at a shallow level, similar to that of Python lists. NumPy
arrays can be indexed using integers and iterated using a for loop:

 A = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])

 A[0]

 # Result:

 # 0

 [a for a in A]

 # Result:

 # [0, 1, 2, 3, 4, 5, 6, 7, 8]

However, explicitly looping over an array is, most of the time, not the most efficient way
to access its elements. In this section, we will learn how to take advantage of NumPy's API
to fully utilize its efficiency.

Indexing and slicing
Indexing and slicing refer to the act of accessing elements within an array that are at
certain locations or satisfy some condition that we are interested in. In NumPy, array
elements and sub-arrays can be conveniently accessed by using multiple values separated
by commas inside the subscript operator, []. Let's get started:

1. If we take a (3,3) array (an array containing three triplets) and we access the
element with an index of 0, we can obtain the first row, as follows:

 A = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

 A[0]

64 Fast Array Operations with NumPy, Pandas, and Xarray

 # Result:

 # array([0, 1, 2])

2. We can index the row again by adding another index separated by a comma. To get
the second element of the first row, we can use the (0, 1) index. An important
observation is that the A[0, 1] notation is shorthand for A[(0, 1)]; that is,
we are indexing using a tuple! Both versions are shown in the following snippet:

 A[0, 1]

 # Result:

 # 1

 # Equivalent version using tuple

 A[(0, 1)]

3. NumPy allows you to slice arrays into multiple dimensions. If we slice on the first
dimension, we can obtain a collection of triplets, as follows:

 A[0:2]

 # Result:

 # array([[0, 1, 2],

 # [3, 4, 5]])

4. If we slice the array again on the second dimension with 0:2, we are extracting the
first two elements from the collection of triplets shown earlier. This results in an
array whose shape is (2, 2), as shown in the following code:

 A[0:2, 0:2]

 # Result:

 # array([[0, 1],

 # [3, 4]])

5. Intuitively, you can update the values in the array using both numerical indexes and
slices. An example of this is illustrated in the following code snippet:

 A[0, 1] = 8

 A[0:2, 0:2] = [[1, 1], [1, 1]]

Getting started with NumPy 65

6. Indexing with the slicing syntax is very fast because, unlike lists, it doesn't produce
a copy of the array. In NumPy's terminology, it returns a view of the same memory
area. If we take a slice of the original array, and then we change one of its values, the
original array will be updated as well. The following code illustrates an example of
this feature:

 a= np.array([1, 1, 1, 1])

 a_view = a[0:2]

 a_view[0] = 2

 print(a)

 # Output:

 # [2 1 1 1]

It is important to be extra careful when mutating NumPy arrays. Since views share
data, changing the values of a view can result in hard-to-find bugs. To prevent side
effects, you can set the a.flags.writeable = False flag, which will prevent
the array or any of its views from being accidentally mutated.

7. Let's look at another example that shows how the slicing syntax can be used in a
real-world setting. Let's define an r_i array, as shown in the following line of code,
which contains a set of 10 coordinates (x, y). Its shape will be (10, 2):

 r_i = np.random.rand(10, 2)

If you have a hard time distinguishing arrays that differ in the axes order, for example,
between an array of shape (10, 2) and shape (2, 10), it is useful to think that every
time you say the word of, you should introduce a new dimension. An array with 10
elements of size two will be (10, 2). Conversely, an array with two elements of size 10
will be (2, 10).

A typical operation we may be interested in is extracting the x component from each
coordinate. In other words, you want to extract the (0, 0), (1, 0), and (2, 0), items,
resulting in an array with a shape of (10,). It is helpful to think that the first index is
moving while the second one is fixed (at 0). With this in mind, we will slice every index
on the first axis (the moving one) and take the first element (the fixed one) on the second
axis, as shown in the following line of code:

 x_i = r_i[:, 0]

66 Fast Array Operations with NumPy, Pandas, and Xarray

On the other hand, the following expression will keep the first index fixed and the second
index moving, returning the first (x, y) coordinate:

 r_0 = r_i[0, :]

Slicing all the indexes over the last axis is optional; using r_i[0] has the same effect as
using r_i[0, :].

Fancy indexing
NumPy allows you to index an array using another NumPy array made up of either
integer or Boolean values. This is a feature called fancy indexing:

1. If you index an array (say, a) with another array of integers (say, idx), NumPy
will interpret the integers as indexes and will return an array containing
their corresponding values. If we index an array containing 10 elements with
np.array([0, 2, 3]), we obtain an array of shape (3,) containing the
elements at positions 0, 2, and 3. The following code illustrates this concept:

 a = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

 idx = np.array([0, 2, 3])

 a[idx]

 # Result:

 # array([9, 7, 6])

2. You can use fancy indexing on multiple dimensions by passing an array for each
dimension. If we want to extract the (0, 2) and (1, 2) elements, we have to
pack all the indexes acting on the first axis in one array, and the ones acting on the
second axis in another. This can be seen in the following code:

 a = np.array([[0, 1, 2], [3, 4, 5], \

 [6, 7, 8], [9, 10, 11]])

 idx1 = np.array([0, 1])

 idx2 = np.array([2, 2])

 a[idx1, idx2]

3. You can also use normal lists as index arrays, but not tuples. For example, the
following two statements are equivalent:

 a[np.array([0, 1])] # is equivalent to

 a[[0, 1]]

Getting started with NumPy 67

However, if you use a tuple, NumPy will interpret the following statement as an
index on multiple dimensions:

 a[(0, 1)] # is equivalent to

 a[0, 1]

4. The index arrays are not required to be one-dimensional; we can extract elements
from the original array in any shape. For example, we can select elements from the
original array to form a (2,2) array, as shown here:

 idx1 = [[0, 1], [3, 2]]

 idx2 = [[0, 2], [1, 1]]

 a[idx1, idx2]

 # Output:

 # array([[0, 5],

 # [10, 7]])

5. The array slicing and fancy indexing features can be combined. This is useful, for
instance, when we want to swap the x and y columns in a coordinate array. In the
following code, the first index will be running over all the elements (a slice) and, for
each of those, we extract the element in position 1 (the y) first and then the one in
position 0 (the x):

 r_i = np.random.rand(10, 2)

 r_i[:, [0, 1]] = r_i[:, [1, 0]]

6. When the index array is of the bool type, the rules are slightly different. The bool
array will act as a mask; every element corresponding to True will be extracted and
put in the output array. This is shown in the following code:

 a = np.array([0, 1, 2, 3, 4, 5])

 mask = np.array([True, False, True, False, \

 False, False])

 a[mask]

 # Output:

 # array([0, 2])

The same rules apply when dealing with multiple dimensions. Furthermore, if the
index array has the same shape as the original array, the elements corresponding
to True will be selected and put in the resulting array.

68 Fast Array Operations with NumPy, Pandas, and Xarray

7. Indexing in NumPy is a reasonably fast operation. When speed is critical, you can
use the slightly faster numpy.take and numpy.compress functions to squeeze
out a little more performance. The first argument of numpy.take is the array we
want to operate on, while the second is the list of indexes we want to extract. The
last argument is axis; if this is not provided, the indexes will act on the flattened
array; otherwise, they will act along the specified axis:

 r_i = np.random.rand(100, 2)

 idx = np.arange(50) # integers 0 to 50

 %timeit np.take(r_i, idx, axis=0)

 1000000 loops, best of 3: 962 ns per loop

 %timeit r_i[idx]

 100000 loops, best of 3: 3.09 us per loop

8. The similar but faster version for Boolean arrays is numpy.compress, which
works in the same way. The use of numpy.compress is shown here:

 In [51]: idx = np.ones(100, dtype='bool') # all

 True values

 In [52]: %timeit np.compress(idx, r_i, axis=0)

 1000000 loops, best of 3: 1.65 us per loop

 In [53]: %timeit r_i[idx]

 100000 loops, best of 3: 5.47 us per loop

As we can see, compress gives us a slight speed improvement, which will prove useful if
you are dealing with large-sized arrays.

Broadcasting
The true power of NumPy lies in its fast mathematical operations. The approach that's
used by NumPy is to avoid stepping into the Python interpreter by performing element-
wise calculations using optimized C code. Broadcasting is a clever set of rules that enables
fast array calculations for arrays of similar (but not equal!) shapes. Let's see how that goes.

Getting started with NumPy 69

Whenever you perform an arithmetic operation on two arrays (such as a product), if
the two operands have the same shape, the operation will be applied in an element-wise
fashion. For example, upon multiplying two (2,2) arrays, the operation will be done
between pairs of corresponding elements, producing another (2, 2) array, as shown
in the following code:

 A = np.array([[1, 2], [3, 4]])

 B = np.array([[5, 6], [7, 8]])

 A * B

 # Output:

 # array([[5, 12],

 # [21, 32]])

If the shapes of the operands don't match, NumPy will attempt to match them using
broadcasting rules. If one of the operands is a scalar (for example, a number), it will be
applied to every element of the array, as shown in the following code:

 A * 2

 # Output:

 # array([[2, 4],

 # [6, 8]])

If the operand is another array, NumPy will try to match the shapes starting from the
last axis. For example, if we want to combine an array of shape (3, 2) with one of
shape (2,), the second array will be repeated three times to generate a (3, 2) array.
In other words, the array is broadcasted along a dimension to match the shape of the
other operand, as shown in the following diagram:

Figure 3.1 – Illustration of array broadcasting

If the shapes don't match – for example, when combining a (3, 2) array with a (2, 2)
array – NumPy will throw an exception.

70 Fast Array Operations with NumPy, Pandas, and Xarray

If one of the axis's sizes is 1, the array will be repeated over this axis until the shapes
match. To illustrate this point, let's consider that we have an array of the following shape:

 5, 10, 2

Now, let's consider that we want to broadcast it with an array of shape (5, 1, 2); the
array will be repeated on the second axis 10 times, as shown here:

 5, 10, 2

 5, 1, 2 → repeated

 - - - -

 5, 10, 2

Earlier, we saw that it is possible to freely reshape arrays to add axes of size 1. Using
the numpy.newaxis constant while indexing will introduce an extra dimension. For
instance, if we have a (5, 2) array and we want to combine it with one of shape
(5, 10, 2), we can add an extra axis in the middle, as shown in the following code,
to obtain a compatible (5, 1, 2) array:

 A = np.random.rand(5, 10, 2)

 B = np.random.rand(5, 2)

 A * B[:, np.newaxis, :]

This feature can be used, for example, to operate on all possible combinations of the two
arrays. One of these applications is the outer product. Let's consider that we have the
following two arrays:

 a = [a1, a2, a3]

 b = [b1, b2, b3]

The outer product is a matrix containing the product of all the possible combinations (i, j)
of the two array elements, as shown in the following snippet:

 a x b = a1*b1, a1*b2, a1*b3

 a2*b1, a2*b2, a2*b3

 a3*b1, a3*b2, a3*b3

Getting started with NumPy 71

To calculate this using NumPy, we will repeat the [a1, a2, a3] elements in one
dimension, the [b1, b2, b3] elements in another dimension, and then take their
element-wise product, as shown in the following diagram:

Figure 3.2 – Illustration of an outer product

Using code, our strategy will be to transform the a array from shape (3,) into shape
(3, 1), and the b array from shape (3,) into shape (1, 3). These two arrays are
broadcasted in the two dimensions and get multiplied together using the following code:

 AB = a[:, np.newaxis] * b[np.newaxis, :]

This operation is very fast and extremely effective as it avoids Python loops and can
process a high number of elements at speeds comparable with pure C or FORTRAN code.

Mathematical operations
NumPy includes the most common mathematical operations available for broadcasting by
default, ranging from simple algebra to trigonometry, rounding, and logic.

For instance, to take the square root of every element in the array, we can use numpy.sqrt,
as shown in the following code:

 np.sqrt(np.array([4, 9, 16]))

 # Result:

 # array([2., 3., 4.])

The comparison operators are useful when we're trying to filter certain elements based on
a condition. Imagine that we have an array of random numbers from 0 to 1, and we want
to extract all the numbers greater than 0.5. We can use the > operator on the array to
obtain a bool array, as follows:

 a = np.random.rand(5, 3)

 a > 0.3

72 Fast Array Operations with NumPy, Pandas, and Xarray

 # Result:

 # array([[True, False, True],

 # [True, True, True],

 # [False, True, True],

 # [True, True, False],

 # [True, True, False]], dtype=bool)

The resulting bool array can then be reused as an index to retrieve the elements that are
greater than 0.5:

 a[a > 0.5]

 print(a[a>0.5])

 # Output:

 # [0.9755 0.5977 0.8287 0.6214 0.5669 0.9553

 0.5894 0.7196 0.9200 0.5781 0.8281]

NumPy also implements methods such as ndarray.sum, which takes the sum of all the
elements on an axis. If we have an array of shape (5, 3), we can use the ndarray.sum
method to sum the elements on the first axis, the second axis, or over all the elements of
the array, as illustrated in the following snippet:

 a = np.random.rand(5, 3)

 a.sum(axis=0)

 # Result:

 # array([2.7454, 2.5517, 2.0303])

 a.sum(axis=1)

 # Result:

 # array([1.7498, 1.2491, 1.8151, 1.9320, 0.5814])

 a.sum() # With no argument operates on flattened array

 # Result:

 # 7.3275

Note that by summing the elements over an axis, we eliminate that axis. From the
preceding example, the sum on axis 0 produces an array of shape (3,), while the
sum on axis 1 produces an array of shape (5,).

Rewriting the particle simulator in NumPy 73

Calculating the norm
We can review the basic concepts illustrated in this section by calculating the norm of
a set of coordinates. The norm of a pair of coordinates is an important concept in linear
algebra and is often interpreted as the magnitude of the corresponding line segment.
For a two-dimensional vector, the norm is defined as follows:

 norm = sqrt(x**2 + y**2)

Given an array of 10 coordinates (x, y), we want to find the norm of each coordinate. We
can calculate the norm by performing these steps:

1. Square the coordinates, obtaining an array that contains (x**2, y**2) elements.
2. Sum those with numpy.sum over the last axis.
3. Take the square root, element-wise, with numpy.sqrt.

The final expression can be compressed into a single line:

 r_i = np.random.rand(10, 2)

 norm = np.sqrt((r_i ** 2).sum(axis=1))

 print(norm)

 # Output:

 # [0.7314 0.9050 0.5063 0.2553 0.0778 0.9143

 1.3245 0.9486 1.010 1.0212]

We can verify that this method of calculating norm gives us the correct answer while
having compact code.

Rewriting the particle simulator in NumPy
In this section, we will optimize our particle simulator by rewriting some parts of it in
NumPy. From the profiling we did in Chapter 1, Benchmarking and Profiling, we found
that the slowest part of our program is the following loop, which is contained in the
ParticleSimulator.evolve method:

 for i in range(nsteps):

 for p in self.particles:

 norm = (p.x**2 + p.y**2)**0.5

74 Fast Array Operations with NumPy, Pandas, and Xarray

 v_x = (-p.y)/norm

 v_y = p.x/norm

 d_x = timestep * p.ang_vel * v_x

 d_y = timestep * p.ang_vel * v_y

 p.x += d_x

 p.y += d_y

You may have noticed that the body of the loop acts solely on the current particle. If we
had an array containing the particle positions and angular speed, we could rewrite the
loop using a broadcasted operation. In contrast, the loop's steps depend on the previous
step and cannot be parallelized in this way.

So, it is natural to store all the array coordinates in an array of shape (nparticles, 2)
and the angular speed in an array of shape (nparticles,), where nparticles is the
number of particles. We'll call those arrays r_i and ang_vel_i:

 r_i = np.array([[p.x, p.y] for p in self.particles])

 ang_vel_i = np.array([p.ang_vel for p in \

 self.particles])

The velocity direction, which is perpendicular to the vector (x, y), was defined as follows:

 v_x = -y / norm

 v_y = x / norm

The norm can be calculated using the strategy illustrated in the Calculating the norm
section under the Getting started with NumPy heading:

 norm_i = ((r_i ** 2).sum(axis=1))**0.5

For the (-y, x) components, we need to swap the x and y columns in r_i and then
multiply the first column by -1, as shown in the following code:

 v_i = r_i[:, [1, 0]] / norm_i

 v_i[:, 0] *= -1

Rewriting the particle simulator in NumPy 75

To calculate the displacement, we need to compute the product of v_i, ang_vel_i,
and timestep. Since ang_vel_i is of shape (nparticles,), it needs a new axis to
operate with v_i of shape (nparticles, 2). We will do that using numpy.newaxis,
as follows:

 d_i = timestep * ang_vel_i[:, np.newaxis] * v_i

 r_i += d_i

Outside the loop, we have to update the particle instances with the new coordinates,
x and y, as follows:

 for i, p in enumerate(self.particles):

 p.x, p.y = r_i[i]

To summarize, we will implement a method called ParticleSimulator.
evolve_numpy and benchmark it against the pure Python version, renamed as
ParticleSimulator.evolve_python:

 def evolve_numpy(self, dt):

 timestep = 0.00001

 nsteps = int(dt/timestep)

 r_i = np.array([[p.x, p.y] for p in self.particles])

 ang_vel_i = np.array([p.ang_vel for p in \

 self.particles])

 for i in range(nsteps):

 norm_i = np.sqrt((r_i ** 2).sum(axis=1))

 v_i = r_i[:, [1, 0]]

 v_i[:, 0] *= -1

 v_i /= norm_i[:, np.newaxis]

 d_i = timestep * ang_vel_i[:, np.newaxis] * v_i

 r_i += d_i

 for i, p in enumerate(self.particles):

 p.x, p.y = r_i[i]

76 Fast Array Operations with NumPy, Pandas, and Xarray

We will also update the benchmark to conveniently change the number of particles and
the simulation method, as follows:

 def benchmark(npart=100, method='python'):

 particles = [Particle(uniform(-1.0, 1.0),

 uniform(-1.0, 1.0),

 uniform(-1.0, 1.0))

 for i in range(npart)]

 simulator = ParticleSimulator(particles)

 if method=='python':

 simulator.evolve_python(0.1)

 elif method == 'numpy':

 simulator.evolve_numpy(0.1)

Let's run the benchmark in an IPython session:

 from simul import benchmark

 %timeit benchmark(100, 'python')

 1 loops, best of 3: 614 ms per loop

 %timeit benchmark(100, 'numpy')

 1 loops, best of 3: 415 ms per loop

We have made some improvements, but it doesn't look like a huge speed boost. The power
of NumPy is revealed when handling big arrays. If we increase the number of particles,
we will note a more significant performance boost:

 %timeit benchmark(1000, 'python')

 1 loops, best of 3: 6.13 s per loop

 %timeit benchmark(1000, 'numpy')

 1 loops, best of 3: 852 ms per loop

Reaching optimal performance with numexpr 77

The plot in the following diagram was produced by running the benchmark with different
particle numbers:

Figure 3.3 – The running time growth of pure Python versus NumPy

The plot shows that both implementations scale linearly with particle size, but the runtime
in the pure Python version grows much faster than the NumPy version; at greater sizes, we
have a greater NumPy advantage. In general, when using NumPy, you should try to pack
things into large arrays and group the calculations using the broadcasting feature.

Reaching optimal performance with numexpr
When handling complex expressions, NumPy stores intermediate results in memory.
David M. Cooke wrote a package called numexpr, which optimizes and compiles array
expressions on the fly. It works by optimizing the usage of the CPU cache and by taking
advantage of multiple processors.

Its usage is generally straightforward and is based on a single function: numexpr.
evaluate. The function takes a string containing an array expression as its first
argument. The syntax is basically identical to that of NumPy. For example, we can
calculate a simple a + b * c expression in the following way:

 a = np.random.rand(10000)

 b = np.random.rand(10000)

 c = np.random.rand(10000)

 d = ne.evaluate('a + b * c')

78 Fast Array Operations with NumPy, Pandas, and Xarray

The numexpr package increases performance in almost all cases, but to get a substantial
advantage, you should use it with large arrays. An application that involves a large array is
the calculation of a distance matrix. In a particle system, a distance matrix contains all the
possible distances between the particles. To calculate it, we should calculate all the vectors
connecting any two particles, (i,j), as follows:

 x_ij = x_j - x_i

 y_ij = y_j - y_i.

Then, we must calculate the length of this vector by taking its norm, as shown in the
following code:

 d_ij = sqrt(x_ij**2 + y_ij**2)

We can write this in NumPy by employing the usual broadcasting rules (the operation is
similar to the outer product):

 r = np.random.rand(10000, 2)

 r_i = r[:, np.newaxis]

 r_j = r[np.newaxis, :]

 d_ij = r_j - r_i

Finally, we must calculate the norm over the last axis using the following line of code:

 d_ij = np.sqrt((d_ij ** 2).sum(axis=2))

Rewriting the same expression using the numexpr syntax is extremely easy. The
numexpr package (aliased ne in our following code) doesn't support slicing in its array
expression; therefore, we first need to prepare the operands for broadcasting by adding
an extra dimension, as follows:

 r = np.random.rand(10000, 2)

 r_i = r[:, np.newaxis]

 r_j = r[np.newaxis, :]

At this point, we should try to pack as many operations as possible into a single expression
to allow significant optimization.

Reaching optimal performance with numexpr 79

Most of the NumPy mathematical functions are also available in numexpr. However, there
is a limitation – the reduction operations (the ones that reduce an axis, such as sum)
have to happen last. Therefore, we have to calculate the sum first, then step out of numexpr,
and finally calculate the square root in another expression:

 import numexpr as ne

 d_ij = ne.evaluate('sum((r_j - r_i)**2, 2)')

 d_ij = ne.evaluate('sqrt(d_ij)')

The numexpr compiler will avoid redundant memory allocation by not storing
intermediate results. When possible, it will also distribute the operations over multiple
processors. In the distance_matrix.py file, you will find two functions that implement
the two versions – distance_matrix_numpy and distance_matrix_numexpr:

 from distance_matrix import (distance_matrix_numpy, \

 distance_matrix_numexpr)

 %timeit distance_matrix_numpy(10000)

 1 loops, best of 3: 3.56 s per loop

 %timeit distance_matrix_numexpr(10000)

 1 loops, best of 3: 858 ms per loop

By simply converting the expressions to use numexpr, we were able to obtain a 4.5x
increase in performance over standard NumPy. The numexpr package can be used every
time you need to optimize a NumPy expression that involves large arrays and complex
operations, and you can do so while making minimal changes to the code.

Overall, we have seen that NumPy, in combination with numexpr, offers powerful APIs
when it comes to working with multidimensional data. However, in many use cases, data
is only two-dimensional but is labeled in the sense that the data axes include explicit
information about the type of data they contain. This is the case for data extracted from
database tables. In such situations, pandas is the most popular and one of the best libraries
in Python for this, as we will see next.

80 Fast Array Operations with NumPy, Pandas, and Xarray

Working with database-style data with pandas
pandas is a library that was originally developed by Wes McKinney. It was designed to
analyze datasets in a seamless and performant way. In recent years, this powerful library
has seen incredible growth and a huge adoption by the Python community. In this section,
we will introduce the main concepts and tools provided in this library, and we will use
them to increase the performance of various use cases that can't otherwise be addressed
with NumPy's vectorized operations and broadcasting.

pandas fundamentals
While NumPy deals mostly with arrays, pandas's main data structures are pandas.
Series, pandas.DataFrame, and pandas.Panel. In the rest of this chapter,
we will abbreviate pandas to pd.

The main difference between a pd.Series object and an np.array is that a
pd.Series object associates a specific key with each element of an array. Let's see
how this works in practice with an example.

Let's assume that we are trying to test a new blood pressure drug and we want to store, for
each patient, whether the patient's blood pressure improved after administering the drug.
We can encode this information by associating each subject ID (represented by an integer)
with True if the drug was effective and False otherwise:

1. We can create a pd.Series object by associating an array of keys – the patients –
to the array of values that represent the drug's effectiveness. This array of keys can
be passed to the Series constructor using the index argument, as shown in the
following snippet:

 import pandas as pd

 patients = [0, 1, 2, 3]

 effective = [True, True, False, False]

 effective_series = pd.Series(effective, \

 index=patients)

2. Associating a set of integers from 0 to N with a set of values can technically be
implemented with np.array since, in this case, the key will simply be the position
of the element in the array. In pandas, keys are not limited to integers; they can also be
strings, floating-point numbers, and generic (hashable) Python objects. For example,
we can easily turn our IDs into strings with little effort, as shown in the following code:

 patients = ["a", "b", "c", "d"]

 effective = [True, True, False, False]

Working with database-style data with pandas 81

 effective_series = pd.Series(effective, \

 index=patients)

An interesting observation is that, while NumPy arrays can be thought of as a
contiguous collection of values similar to Python lists, the pandas pd.Series
object can be thought of as a structure that maps keys to values, similar to Python
dictionaries.

3. What if you want to store the initial and final blood pressure for each patient?
In pandas, you can use a pd.DataFrame object to associate multiple data with
each key.

pd.DataFrame can be initialized, similarly to a pd.Series object, by passing
a dictionary of columns and an index. In the following example, we will see how
to create pd.DataFrame containing four columns that represent the initial and
final measurements of systolic and diastolic blood pressure for our patients:

 patients = ["a", "b", "c", "d"]

 columns = {

 "sys_initial": [120, 126, 130, 115],

 "dia_initial": [75, 85, 90, 87],

 "sys_final": [115, 123, 130, 118],

 "dia_final": [70, 82, 92, 87]

 }

 df = pd.DataFrame(columns, index=patients)

4. Equivalently, you can think of pd.DataFrame as a collection of pd.Series. It
is possible to directly initialize pd.DataFrame using a dictionary of pd.Series
instances:

 columns = {

 "sys_initial": pd.Series([120, 126, 130, 115], \

 index=patients),

 "dia_initial": pd.Series([75, 85, 90, 87], \

 index=patients),

 "sys_final": pd.Series([115, 123, 130, 118], \

 index=patients),

82 Fast Array Operations with NumPy, Pandas, and Xarray

 "dia_final": pd.Series([70, 82, 92, 87], \

 index=patients)

 }

 df = pd.DataFrame(columns)

5. To inspect the content of a pd.DataFrame or pd.Series object, you can use the
pd.Series.head and pd.DataFrame.head methods, which print the first few
rows of the dataset:

 effective_series.head()

 # Output:

 # a True

 # b True

 # c False

 # d False

 # dtype: bool

 df.head()

 # Output:

 # dia_final dia_initial sys_final sys_initial

 # a 70 75 115

 120

 # b 82 85 123

 126

 # c 92 90 130

 130

 # d 87 87 118

 115

Just like a pd.DataFrame can be used to store a collection of pd.Series, you can
use a pd.Panel to store a collection of pd.DataFrames. We will not cover the usage
of pd.Panel as it is not used as often as pd.Series and pd.DataFrame. To learn
more about pd.Panel, make sure that you refer to the excellent documentation at
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#panel.

http://pandas.pydata.org/pandas-docs/stable/dsintro.html#panel

Working with database-style data with pandas 83

Indexing Series and DataFrame objects
In many instances, we might want to access certain elements stored inside a pd.Series
or a pd.DataFrame object. In the following steps, we will see how we can index
these objects:

1. Retrieving data from a pd.Series, given its key, can be done intuitively by
indexing the pd.Series.loc attribute:

 effective_series.loc["a"]

 # Result:

 # True

2. It is also possible to access the elements, given their position in the underlying array,
using the pd.Series.iloc attribute:

 effective_series.iloc[0]

 # Result:

 # True

3. Indexing pd.DataFrame works similarly. For example, you can use
pd.DataFrame.loc to extract a row by key, and you can use pd.DataFrame.
iloc to extract a row by position:

 df.loc["a"]

 df.iloc[0]

 # Result:

 # dia_final 70

 # dia_initial 75

 # sys_final 115

 # sys_initial 120

 # Name: a, dtype: int64

4. An important aspect is that the return type in this case is a pd.Series, where
each column is a new key. To retrieve a specific row and column, you can use the
following code. The loc attribute will index both the row and the column by key,
while the iloc version will index the row and the column by an integer:

 df.loc["a", "sys_initial"] # is equivalent to

 df.loc["a"].loc["sys_initial"]

84 Fast Array Operations with NumPy, Pandas, and Xarray

 df.iloc[0, 1] # is equivalent to

 df.iloc[0].iloc[1]

5. Retrieving a column from a pd.DataFrame by name can be achieved by regular
indexing or attribute access. To retrieve a column by position, you can either use iloc
or use the pd.DataFrame.column attribute to retrieve the name of the column:

 # Retrieve column by name

 df["sys_initial"] # Equivalent to

 df.sys_initial

 # Retrieve column by position

 df[df.columns[2]] # Equivalent to

 df.iloc[:, 2]

These methods also support more advanced indexing, similar to those of NumPy, such as
bool, lists, and int arrays.

Now, it's time for some performance considerations. There are some differences between
an index in pandas and a dictionary. For example, while the keys of a dictionary cannot
contain duplicates, pandas indexes can contain repeated elements. This flexibility, however,
comes at a cost – if we try to access an element in a non-unique index, we may incur
substantial performance loss – the access will be O(N), like a linear search, rather than
O(1), like a dictionary.

A way to mitigate this effect is to sort the index; this will allow pandas to use a binary
search algorithm with a computational complexity of O(log(N)), which is much better.
This can be accomplished using the pd.Series.sort_index function, as shown
in the following code (the same applies for pd.DataFrame):

 # Create a series with duplicate index

 index = list(range(1000)) + list(range(1000))

 # Accessing a normal series is a O(N) operation

 series = pd.Series(range(2000), index=index)

 # Sorting the will improve look-up scaling to O(log(N))

 series.sort_index(inplace=True)

Working with database-style data with pandas 85

The timings for the different versions are summarized in the following table. If you'd like
to rerun this benchmarking yourself, please refer to Chapter03/Pandas.ipynb:

Table 3.1 – Performance analysis for pandas indexing

Database-style operations with pandas
You may have noted that the tabular data is similar to what is usually stored in a database.
A database is usually indexed using a primary key, and the various columns can have
different data types, just like in a pd.DataFrame.

The efficiency of the index operations in pandas makes it suitable for database-style
manipulations, such as counting, joining, grouping, and aggregations.

Mapping
pandas supports element-wise operations, just like NumPy (after all, pd.Series stores
their data using np.array).

For example, it is possible to apply transformation very easily to both pd.Series and
pd.DataFrame:

 np.log(df.sys_initial) # Logarithm of a series

 df.sys_initial ** 2 # Square a series

 np.log(df) # Logarithm of a dataframe

 df ** 2 # Square of a dataframe

You can also perform element-wise operations between two pd.Series objects in a way
similar to NumPy. An important difference is that the operands will be matched by key,
rather than by position; if there is a mismatch in the index, the resulting value will be set
to NaN. Both scenarios are exemplified in the following example:

 # Matching index

 a = pd.Series([1, 2, 3], index=["a", "b", "c"])

 b = pd.Series([4, 5, 6], index=["a", "b", "c"])

86 Fast Array Operations with NumPy, Pandas, and Xarray

 a + b

 # Result:

 # a 5

 # b 7

 # c 9

 # dtype: int64

 # Mismatching index

 b = pd.Series([4, 5, 6], index=["a", "b", "d"])

 a + b

 # Result:

 # a 5.0

 # b 7.0

 # c NaN

 # d NaN

 # dtype: float64

For added flexibility, pandas offers the map, apply, and applymap methods, which can
be used to apply specific transformations.

The pd.Series.map method can be used to execute a function for each value and
return a pd.Series containing each result. In the following example, we can see how
to apply the superstar function to each element of a pd.Series:

 a = pd.Series([1, 2, 3], index=["a", "b", "c"])

 def superstar(x):

 return '*' + str(x) + '*'

 a.map(superstar)

 # Result:

 # a *1*

 # b *2*

 # c *3*

 # dtype: object

Working with database-style data with pandas 87

The pd.DataFrame.applymap function is the equivalent of pd.Series.map,
but for DataFrames:

 df.applymap(superstar)

 # Result:

 # dia_final dia_initial sys_final sys_initial

 # a *70* *75* *115* *120*

 # b *82* *85* *123* *126*

 # c *92* *90* *130* *130*

 # d *87* *87* *118* *115*

Finally, the pd.DataFrame.apply function can apply the passed function to each
column or each row, rather than element-wise. This selection can be performed with the
argument axis, where a value of 0 (the default) corresponds to columns and 1 corresponds
to rows. Also, note that the return value of apply is a pd.Series:

 df.apply(superstar, axis=0)

 # Result:

 # dia_final *a 70nb 82nc 92nd 87nName: dia...

 # dia_initial *a 75nb 85nc 90nd 87nName: dia...

 # sys_final *a 115nb 123nc 130nd 118nName:...

 # sys_initial *a 120nb 126nc 130nd 115nName:...

 # dtype: object

 df.apply(superstar, axis=1)

 # Result:

 # a *dia_final 70ndia_initial 75nsys_f...

 # b *dia_final 82ndia_initial 85nsys_f...

 # c *dia_final 92ndia_initial 90nsys_f...

 # d *dia_final 87ndia_initial 87nsys_f...

 # dtype: object

pandas also supports efficient numexpr-style expressions with the convenient eval
method. For example, if we want to calculate the difference between the final and initial
blood pressure, we can write the expression as a string, as shown in the following code:

 df.eval("sys_final - sys_initial")

 # Result:

 # a -5

88 Fast Array Operations with NumPy, Pandas, and Xarray

 # b -3

 # c 0

 # d 3

 # dtype: int64

It is also possible to create new columns using the assignment operator in the
pd.DataFrame.eval expression. Note that if the inplace=True argument is used, the
operation will be applied directly to the original pd.DataFrame; otherwise, the function
will return a new DataFrame. In the following example, we are computing the difference
between sys_final and sys_initial, and we store it in the sys_delta column:

df.eval("sys_delta = sys_final - sys_initial", \

 inplace=False)

Result:

dia_final dia_initial sys_final sys_initial

 sys_delta

a 70 75 115 120

-5

b 82 85 123 126

 -3

c 92 90 130 130

 0

d 87 87 118 115

 3

Grouping, aggregations, and transforms
One of the most appreciated features of pandas is its simple and concise method of
grouping, transforming, and aggregating data. To demonstrate this concept, let's extend
our dataset by adding two new patients that we didn't administer the treatment to
(this is usually called a control group). We will also include a column, drug_admst,
which records whether the patient was administered the treatment:

 patients = ["a", "b", "c", "d", "e", "f"]

 columns = {

 "sys_initial": [120, 126, 130, 115, 150, 117],

 "dia_initial": [75, 85, 90, 87, 90, 74],

 "sys_final": [115, 123, 130, 118, 130, 121],

Working with database-style data with pandas 89

 "dia_final": [70, 82, 92, 87, 85, 74],

 "drug_admst": [True, True, True, True, False, False]

 }

 df = pd.DataFrame(columns, index=patients)

At this point, we may be interested to know how the blood pressure changed between
the two groups. You can group the patients according to drug_amst using the
pd.DataFrame.groupby function. The return value will be the DataFrameGroupBy
object, which can be iterated to obtain a new pd.DataFrame for each value of the
drug_admst column:

 df.groupby('drug_admst')

 for value, group in df.groupby('drug_admst'):

 print("Value: {}".format(value))

 print("Group DataFrame:")

 print(group)

Output:

Value: False

Group DataFrame:

dia_final dia_initial drug_admst sys_final

 sys_initial

e 85 90 False 130

 150

f 74 74 False 121

 117

Value: True

Group DataFrame:

dia_final dia_initial drug_admst sys_final

 sys_initial

a 70 75 True 115

 120

b 82 85 True 123

 126

c 92 90 True 130

 130

d 87 87 True 118

 115

90 Fast Array Operations with NumPy, Pandas, and Xarray

Iterating the DataFrameGroupBy object is rarely necessary because, thanks to method
chaining, it is possible to calculate group-related properties directly. For example, we may
want to calculate the mean, max, or standard deviation for each group. All those operations
that summarize the data in some way are called aggregations and can be performed using
the agg method. The result of agg is another pd.DataFrame that relates the grouping
variables and the result of the aggregation, as illustrated in the following code:

df.groupby('drug_admst').agg(np.mean)

dia_final dia_initial sys_final sys_in

 itial

drug_admst

False 79.50 82.00 125.5

 133.50

True 82.75 84.25 121.5

 122.75

Note
It is also possible to perform processing on the DataFrame groups that do not
represent a summarization. One common example of such an operation is
filling in missing values. Those intermediate steps are called transforms.

We can illustrate this concept with an example. Let's assume that we have a few missing
values in our dataset, and we want to replace those values with the average of the other
values in the same group. This can be accomplished using a transform, as follows:

df.loc['a','sys_initial'] = None

df.groupby('drug_admst').transform(lambda df: \

 df.fillna(df.mean()))

dia_final dia_initial sys_final sys_initial

a 70 75 115 123.666667

b 82 85 123 126.000000

c 92 90 130 130.000000

d 87 87 118 115.000000

e 85 90 130 150.000000

f 74 74 121 117.000000

Working with database-style data with pandas 91

Joining
Joins are useful for aggregating data that is scattered among different tables. Let's say that
we want to include the location of the hospital in which patient measurements were taken
in our dataset. We can reference the location for each patient using the H1, H2, and H3
labels, and we can store the address and identifier of the hospital in a hospital table:

 hospitals = pd.DataFrame(

 { "name" : ["City 1", "City 2", "City 3"],

 "address" : ["Address 1", "Address 2", "Address \

 3"],

 "city": ["City 1", "City 2", "City 3"] },

 index=["H1", "H2", "H3"])

 hospital_id = ["H1", "H2", "H2", "H3", "H3", "H3"]

 df['hospital_id'] = hospital_id

Now, we want to find the city where the measure was taken for each patient. We need to
map the keys from the hospital_id column to the city stored in the hospitals table.

This can be implemented in Python using dictionaries:

 hospital_dict = {

 "H1": ("City 1", "Name 1", "Address 1"),

 "H2": ("City 2", "Name 2", "Address 2"),

 "H3": ("City 3", "Name 3", "Address 3")

 }

 cities = [hospital_dict[key][0]

 for key in hospital_id]

This algorithm runs efficiently with an O(N) time complexity, where N is the size of
hospital_id. pandas allows you to encode the same operation using simple indexing;
the advantage is that the join will be performed in heavily optimized Cython and with
efficient hashing algorithms. The preceding simple Python expression can easily be
converted into pandas in this way:

 cities = hospitals.loc[hospital_id, "city"]

92 Fast Array Operations with NumPy, Pandas, and Xarray

More advanced joins can also be performed with the pd.DataFrame.join method,
which will produce a new pd.DataFrame that will attach the hospital information for
each patient:

 result = df.join(hospitals, on='hospital_id')

 result.columns

 # Result:

 # Index(['dia_final', 'dia_initial', 'drug_admst',

 # 'sys_final', 'sys_initial',

 # 'hospital_id', 'address', 'city', 'name'],

 # dtype='object')

This concludes our discussion on pandas. In the next section, we will talk about xarray,
the state-of-the-art tool for working with multidimensional labeled data in Python.

High-performance labeled data with xarray
With NumPy, we can manipulate multidimensional numerical data and perform
mathematical computations that are highly optimized by low-level C and FORTRAN
code. On the other hand, we have seen that pandas allows us to work with labeled,
categorical data that resembles data tables using database-like operations.

These two tools complement each other: NumPy does not allow categorical data to be
mixed in with numerical values, while pandas is mostly limited to two-dimensional,
database-like datasets. Combining these tools can help address many data processing
needs, but when we are faced with big, multidimensional data that is also labeled, many
performance-related problems arise.

In the last section of this chapter, we will discuss xarray, a library that combines the best of
both the NumPy and the pandas worlds and offers one of the best tools for working with
labeled multidimensional data. We will explore some of its most prominent features while
noting the improvements we achieve with xarray over other Python libraries.

Analyzing CO2 concentration
To guide our discussion, we will be using the carbon dioxide concentration data, which
was collected concerning the volcano Mauna Loa in Hawaii. The dataset is a time series of
monthly measurements of the CO2 level, starting from 1958 to this day. We have prepared
a cleaned version of this dataset for you, which is included in the code repository for this
book in the monthly_co2.csv file.

High-performance labeled data with xarray 93

The data has three simple columns:

• The year of measurement

• The month of measurement

• The measurement itself

Our goal is to analyze this dataset and visualize any time-related trends. Since we are
already familiar with using pandas to work with a .csv file, let's proceed with the library
to start:

import pandas as pd

df = pd.read_csv('monthly_co2.csv', index_col=[0, 1])

df.head()

Make sure that the data file is in the same directory as this code. You may remember that
this will read in the file and store the data in a DataFrame object. Here, we are using the
first two columns (by using the index_col=[0, 1] argument) as the index of this
DataFrame object. Finally, we print out the first five rows of this dataset, which look
as follows:

 co2

year month

1958 3 315.70

 4 317.45

 5 317.51

 6 317.24

 7 315.86

Here, we can see that in March 1958, the CO2 level was 315.70, and that the following
month's measurement was 317.45.

The first thing we'd like to look at is a simple line graph corresponding to the co2 column,
which is simply the graph of the CO2 level as a function of time (in month). With the help
of Matplotlib, the go-to plotting tool in Python, we can do this very easily:

import matplotlib.pyplot as plt

plt.plot(df.co2.values);

94 Fast Array Operations with NumPy, Pandas, and Xarray

The preceding code will produce the following output:

Figure 3.4 – Monthly CO2 level

We can notice two very distinct trends:

• The first is the global increasing trend, which roughly goes from 320 to 420 during
our timeline.

• The second looks like a seasonal zigzag trend, which is present locally and repeats
itself every year.

To verify this intuition, we can inspect the average data across the years, which will tell
us that the CO2 level has been rising as a global trend. We can also compute the average
measurement for each month and consider how the data changed from January to
December. To accomplish this, we will utilize the groupby function by computing the
yearly averages and plotting them:

by_year = df.groupby('year').mean().co2

plt.plot(by_year);

High-performance labeled data with xarray 95

This gives us the following output:

Figure 3.5 – Yearly CO2 level, averaged across months

Just as we expected, we can see the global rising trend of the CO2 level:

by_month = df.groupby('month').mean().co2

plt.plot(by_month);

Similarly, the preceding code generates the following average-by-month data:

Figure 3.6 – Monthly CO2 level, averaged across years

96 Fast Array Operations with NumPy, Pandas, and Xarray

The seasonal trend we suspected now becomes clear: the CO2 level tends to rise during the
summer and fall between fall and winter.

So far, we have been using pandas to manipulate our data. Even with this minimal
example, we can notice a few things:

• Loading the data, specifically the co2 column, as a NumPy array would be
inappropriate since we would lose information about the year and month each
measurement was made. pandas is the better choice here.

• On the other hand, the groupby function can be unintuitive and costly to work
with. Here, we simply want to compute the average-by-month and average-by-year
measurements, but that requires us to group our data by the month column and
then by year. Although pandas takes care of this grouping for us behind the
scenes, it is an expensive operation, especially if we are working with a significantly
large dataset.

• To bypass this inefficiency, we can think of representing the co2 column as a
two-dimensional NumPy array, where the rows represent years and the columns
represent months, and each cell in the array holds the measurement. Now, to
compute the averages we want, we could simply calculate the mean along each of
the two axes, which we know NumPy can do efficiently. However, once again, we
lose the expressiveness of the labeled month and year data we have under pandas.

This dilemma we are currently facing is similar to the one that motivated the development
of xarray, the premiere tool in Python for working with labeled, multidimensional data.
The idea is to extend NumPy's support for fast, multidimensional array computations
and allow dimensions (or axes) to have labels, which is one of the main selling points
of pandas.

The xarray library
xarray is developed and actively maintained by PyData and a part of the NumFOCUS
project. To use the library, you must head to http://xarray.pydata.org/en/
stable/installing.html for more details on how to install it. To continue with
our example of the CO2 concentration level, we will feed the data we have into a Dataset
object in xarray using the following code:

import xarray as xr

ds = xr.Dataset.from_dataframe(df)

http://xarray.pydata.org/en/stable/installing.html
http://xarray.pydata.org/en/stable/installing.html

High-performance labeled data with xarray 97

If we were to print this object out in a Jupyter notebook, the output would be
formatted nicely:

Figure 3.7 – A Dataset instance of xarray, printed in Jupyter

xarray was able to infer that month and year (the index columns in DataFrame) should
be the dimension, as indicated by the Dimensions section of the output. The Coordinates
section shows the values that each of these dimensions can take on; in our case, the year
could be anything between 1958 and 2021, while the month could be anything between
1 and 12. The Data variables section shows the actual co2 data we care about, which is
now a two-dimensional array indexed by year and month.

xarray makes interacting and inspecting its objects easy and interactive; you can
inspect the values of the coordinates and data variables further by clicking on the icons
highlighted in the preceding screenshot.

We mentioned earlier that xarray combines the best features of NumPy and pandas; this
is best illustrated via the slicing/indexing interface it provides. For example, let's say that
we'd like to extract the measurements within the first 10 years of the dataset. For the first
5 months, we could apply NumPy-style slicing to the 'co2' variable of the ds object:

ds['co2'][:10, :5]

98 Fast Array Operations with NumPy, Pandas, and Xarray

This gives us a DataArray object containing the requested values:

Figure 3.8 – A DataArray instance of xarray, printed in Jupyter

While NumPy slicing can be flexible, it does not offer much expressiveness for labeled
data: we would have to know that the first axis of the implied multidimensional array is
year, that the second is month, and that ds['co2'][:10, :5] doesn't explicitly say
which years we are selecting for.

As such, we could use the sel function, which roughly offers the same functionality as
pandas filtering. To select the values within the example year of 1960, we can simply
use the following code:

ds['co2'].sel(year=1960)

This explicitly tells us that we are selecting 1960 along the year axis. For more
examples of the different APIs the library offers, you can check out the documentation
at http://xarray.pydata.org/en/stable/api.html.

Improved performance
Now, we will consider the performance improvements that xarray offers. Recall that our
goal is to compute the average measurement, first for each year to visualize the global
trend, and then for each month for the seasonal trend. To do this, we can simply call the
mean function while specifying the appropriate (labeled!) dimension.

http://xarray.pydata.org/en/stable/api.html

High-performance labeled data with xarray 99

First, to obtain the average-by-year, we must compute the mean across the month
dimension:

ds.mean(dim='month')

This returns another Dataset object containing the computed values:

Figure 3.9 – Taking the average across a dimension in xarray

From here, we can simply access the co2 variable and pass the array to the plot function
of Matplotlib to replicate Figure 3.5. For Figure 3.6, we can follow the same procedure
using ds.mean(dim='year').

The advantage we are gaining here is the expressiveness in our code. If we were using
NumPy, we would need to specify the axis number (for example, 0, 1, 2, and so on), not
the dimension name, (for example, 'month', 'year'). This might lead to hard-to-find
bugs if you confuse which axis is which type of data in NumPy.

Furthermore, the code is simpler and can take advantage of the optimized mean operation,
which is managed under the hood by xarray, compared to the expensive groupby
function from pandas. To see this, we can benchmark the two ways of computing the
average-by-year that we have. First, we have the pandas way:

%timeit df.groupby('year').mean().co2

Result:

534 µs ± 10.8 µs per loop (mean ± std. dev. of 7 runs,

 1000 loops each)

100 Fast Array Operations with NumPy, Pandas, and Xarray

Then, we have the xarray way:

%timeit ds.mean(dim='month').co2.values

Result:

150 µs ± 1.27 µs per loop (mean ± std. dev. of 7 runs,

 10000 loops each)

Here, we can see a clear performance improvement, achieved almost for free by passing
our data to xarray!

Plotting with xarray
Labeled multidimensional arrays are ubiquitous in time series (where one of the
dimensions is time), geospatial data (where some dimensions represent the coordinates
on a map), or data that is both geospatial and time-dependent. In these data analysis tasks,
data visualization is crucial; as such, xarray makes it easy to implement and call complex
plotting functions on its data.

Let's look at this through a quick example. First, we will read in an example dataset we
have prepared for you, saved in a file named 2d_measurement.npy, which can be
read into a Python program using NumPy:

measures = np.load('2d_measure.npy')

measures.shape

Result:

(100, 100, 3)

As you can see, it is a 100x100x3 array. Let's say that this dataset contains a specific type
of measurement, taken over a 100x100 grid of a two-dimensional space (corresponding
to the first two axes) at three specific timestamps (corresponding to the third axis).

We would like to visualize these measurements as three squares, where each square
represents a specific time stamp, and each pixel in each square represents the intensity
of the corresponding measurement.

To do this in Matplotlib, we could use the imshow function, which takes in a
two-dimensional array and plots it as an image. So, we would iterate through the three
timestamps that we have and plot the corresponding grids one by one, as follows:

fig, ax = plt.subplots(1, 3, figsize=(10, 3))

for i in range(3):

High-performance labeled data with xarray 101

 c = ax[i].imshow(measures[:, :, i], origin='lower')

 plt.colorbar(c, ax=ax[i])

plt.show()

Note
The index, i, iterates through the three indices of the third axis in the
measures array. Again, we can see that this indexing scheme is not very
expressive and readable. Here, we are also using the colorbar function to
add a color bar to each of the plots.

The preceding code produces the following output:

Figure 3.10 – Regular imshow from Matplotlib

Although there is noise in the measurements, we can observe some global trends;
specifically, we seem to have low-intensity measurements in the lower-left corner in the
first plot, in the center in the second, and in the top-right corner in the third. As the final
note, something we might want to change about this plot is making the three color bars
have the same range, which may be hard to do with Matplotlib.

Now, let's see how we can produce this plot using xarray. First, we must convert the
NumPy array into a DataArray object:

da = xr.DataArray(measures, dims=['x', 'y', 'time'])

Here, we are also specifying the names for the three dimensions: 'x', 'y', and 'time'.
This will allow us to manipulate the data more expressively, as we saw previously. To plot
out the 2D grids, we can use the similarly named imshow method:

da.plot.imshow(x='x', y='y', col='time', robust=True);

102 Fast Array Operations with NumPy, Pandas, and Xarray

This results in the following output:

Figure 3.11 – Specialized imshow from xarray

The plotting function is much simpler than the for loop we had earlier. Furthermore,
with minimal code, xarray has taken care of many different aesthetics-related aspects
of this plot:

• First, the plots have their titles and x- and y-axis labels automatically created.

• Second, by using a common color range, the fact that the measurements at the
second timestamp are lower than those in the other two is now more obvious. This
demonstrates that functions and methods in xarray are optimized to make working
with labeled multidimensional data more efficient.

On the topic of plotting, many data scientists work with map data. xarray nicely integrates
with the popular Cartopy library for geospatial data processing and offers many plotting
functionalities that incorporate world and country maps. More details can be found in their
documentation: http://xarray.pydata.org/en/stable/plotting.html.

Summary
In this chapter, we learned how to manipulate NumPy arrays and how to write fast
mathematical expressions using array broadcasting. This knowledge will help you write
more concise, expressive code and, at the same time, obtain substantial performance gains.
We also introduced the numexpr library to further speed up NumPy calculations with
minimal effort.

pandas implements efficient data structures that are useful when analyzing large datasets.
In particular, pandas shines when the data is indexed by non-integer keys and provides
very fast hashing algorithms.

http://xarray.pydata.org/en/stable/plotting.html

Questions 103

NumPy and pandas work well when handling large, homogenous inputs, but they are not
suitable when the expressions become complex and the operations cannot be expressed
using the tools provided by these libraries. xarray comes in handy as an alternative option
where we need to work with labeled, multidimensional data.

In combination, the three libraries offer Python users powerful APIs and flexible
functionalities to work with a wide range of data. By keeping them in your toolbox, you
are well situated to tackle most data processing and engineering tasks using Python.

In other cases, we can also leverage Python capabilities as a glue language by interfacing
it with C using the Cython package, as we will see in the next chapter.

Questions
1. Name the advantages NumPy has over Python-native lists when working with

multidimensional data.
2. What are some of the database-style operations that pandas offers in its API?
3. What problems does xarray address and why can they not be addressed by NumPy

or pandas?

Further reading
• An overview tutorial on NumPy and pandas: https://cloudxlab.com/blog/

numpy-pandas-introduction/

• Data structures in xarray: https://towardsdatascience.com/basic-
data-structures-of-xarray-80bab8094efa

https://cloudxlab.com/blog/numpy-pandas-introduction/
https://cloudxlab.com/blog/numpy-pandas-introduction/
https://towardsdatascience.com/basic-data-structures-of-xarray-80bab8094efa
https://towardsdatascience.com/basic-data-structures-of-xarray-80bab8094efa

4
C Performance with

Cython
Cython is a language that extends Python by supporting the declaration of types for
functions, variables, and classes. These typed declarations enable Cython to compile
Python scripts to efficient C code. Cython can also act as a bridge between Python and C
as it provides easy-to-use constructs to write interfaces to external C and C++ routines.

In this chapter, we will learn about the following topics:

• Compiling Cython extensions

• Adding static types

• Sharing declarations

• Working with arrays

• Using a particle simulator in Cython

• Profiling Cython

• Using Cython with Jupyter

Through this chapter, we will learn how to leverage Cython to improve the efficiency of our
programs. While a minimum knowledge of C is helpful, this chapter focuses only on Cython
in the context of Python optimization. Therefore, it doesn't require any C background.

106 C Performance with Cython

Technical requirements
You can access the code used in this chapter on GitHub at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter04.

Compiling Cython extensions
The Cython syntax is, by design, a superset of Python. Cython can compile, with a few
exceptions, most Python modules without requiring any change. Cython source files have
the .pyx extension and can be compiled to produce a C file using the cython command.

All that is required to convert Python code to Cython is some syntactic modifications
that we will see throughout this chapter (such as when declaring variables and functions)
as well as compilation. While this procedure may seem intimidating at first, Cython will
more than make up for itself via the computational benefits that it offers.

First off, to install Cython, we can simply run the pip command, like this:

$pip install cython

Refer to the documentation at https://pypi.org/project/Cython/ for more
details. Our first Cython script will contain a simple function that prints Hello,
World! as the output. Follow these next steps:

1. Create a new hello.pyx file containing the following code:

 def hello():

 print('Hello, World!')

2. The cython command will read hello.pyx and generate a hello.c file,
as follows:

$ cython hello.pyx

3. To compile hello.c to a Python extension module, we will use the GNU
Compiler Collection (GCC) compiler (more details on how to install it can be
found at https://gcc.gnu.org/install/). We need to add some Python-
specific compilation options that depend on the operating system. It's important
to specify the directory that contains the header files; in the following example,
the directory is /usr/include/python3.5/:

$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -fno-

strict-aliasing -lm -I/usr/include/python3.5/ -o

hello.so hello.c

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter04
https://pypi.org/project/Cython/
https://gcc.gnu.org/install/

Compiling Cython extensions 107

Note
To find your Python include directory, you can use the distutils
utility and run sysconfig.get_python_inc. To execute it, you can
simply issue the following command: python -c "from distutils
import sysconfig; print(sysconfig.get_python_
inc())".

4. This will produce a file called hello.so, a C extension module that is directly
importable into a Python session. The code is illustrated in the following snippet:

 >>> import hello

 >>> hello.hello()

 Hello, World!

5. Cython accepts both Python 2 and Python 3 as input and output (I/O) languages.
In other words, you can compile a Python 3 script hello.pyx file using the -3
option, as illustrated in the following code snippet:

$ cython -3 hello.pyx

6. The generated hello.c file can be compiled without any changes to Python 2 and
Python 3 by including the corresponding headers with the -I option, as follows:

$ gcc -I/usr/include/python3.5 # ... other options

$ gcc -I/usr/include/python2.7 # ... other options

7. A Cython program can be compiled in a more straightforward way using
distutils, the standard Python packaging tool. By writing a setup.py script,
we can compile the .pyx file directly to an extension module. To compile our
hello.pyx example, we can write a minimal setup.py script containing the
following code:

 from distutils.core import setup

 from Cython.Build import cythonize

 setup(

 name='Hello',

 ext_modules = cythonize('hello.pyx')

)

In the first two lines of the preceding code snippet, we import the setup function
and the cythonize helper. The setup function contains a few key-value pairs
that specify the name of the application and the extensions that need to be built.

108 C Performance with Cython

8. The cythonize helper takes either a string or a list of strings containing the
Cython modules we want to compile. You can also use glob patterns by running
the following code:

 cythonize(['hello.pyx', 'world.pyx', '*.pyx'])

9. To compile our extension module using distutils, you can execute the
setup.py script using the following code:

$ python setup.py build_ext --inplace

The build_ext option tells the script to build the extension modules indicated in
ext_modules, while the --inplace option tells the script to place the hello.
so output file in the same location as the source file (instead of a build directory).

10. Cython modules can also be automatically compiled using pyximport. All that's
needed is a call to pyximport.install() at the beginning of your script (or
you need to issue the command in your interpreter), as illustrated in the following
code snippet. After doing that, you can import .pyx files directly and pyximport
will transparently compile the corresponding Cython modules:

 >>> import pyximport

 >>> pyximport.install()

 >>> import hello # This will compile hello.pyx

Unfortunately, pyximport will not work for all kinds of configurations (for example,
when they involve a combination of C and Cython files), but it comes in handy for
testing simple scripts.

11. Since version 0.13, IPython includes the cythonmagic extension to interactively
write and test a series of Cython statements. You can load the extensions in an
IPython shell using load_ext, as follows:

 %load_ext Cython

Once the extension is loaded, you can use the %%cython cell magic to write a
multiline Cython snippet. In the following example, we define a hello_snippet
function that will be compiled and added to the IPython session namespace:

 %%cython

 def hello_snippet():

 print("Hello, Cython!")

 hello_snippet()

 Hello, Cython!

Adding static types 109

It is that simple to work with Cython source code. In the next section, we will see how we
can add static types to our program, getting it closer to C code.

Adding static types
In Python, a variable can be associated with objects of different types during the execution
of the program. While this feature is desirable as it makes the language flexible and
dynamic, it also adds significant overhead to the interpreter as it needs to look up the
type and methods of the variables at runtime, making it difficult to perform various
optimizations. Cython extends the Python language with explicit type declarations so
that it can generate efficient C extensions through compilation.

The main way to declare data types in Cython is through cdef statements. The cdef
keyword can be used in multiple contexts, such as variables, functions, and extension
types (statically typed classes). We will see how to do this in the following subsections.

Declaring variables
In Cython, you can declare the type of a variable by prepending the variable with cdef
and its respective type. For example, we can declare the i variable as a 16-bit integer in
the following way:

 cdef int i

The cdef statement supports multiple variable names on the same line along with
optional initialization, as seen in the following line of code:

 cdef double a, b = 2.0, c = 3.0

Typed variables are treated differently from regular variables. In Python, variables are
often described as labels that refer to objects in memory. For example, we could assign
the value 'hello' to the a variable at any point in the program without restriction,
as illustrated here:

 a = 'hello'

The a variable holds a reference to the 'hello' string. We can also freely assign another
value (for example, the integer 1) to the same variable later in the code, as follows:

 a = 1

Python will assign the integer 1 to the a variable without any problem.

110 C Performance with Cython

Typed variables behave quite differently and are usually described as data containers:
we can only store values that fit into the container that is determined by its data type.
For example, if we declare the a variable as int, and then we try to assign it to a double
data type, Cython will trigger an error, as shown in the following code snippet:

 %%cython

 cdef int i

 i = 3.0

 # Output has been cut

 ...cf4b.pyx:2:4 Cannot assign type 'double' to 'int'

Static typing makes it easy for the compiler to perform useful optimizations. For example,
if we declare a loop index as int, Cython will rewrite the loop in pure C without needing
to step into the Python interpreter. The typing declaration guarantees that the type of the
index will always be int and cannot be overwritten at runtime so that the compiler is free
to perform optimizations without compromising the program's correctness.

We can assess the speed gain in this case with a small test case. In the following example,
we implement a simple loop that increments a variable 100 times. With Cython, the
example function can be coded as follows:

 %%cython

 def example():

 cdef int i, j=0

 for i in range(100):

 j += 1

 return j

 example()

 # Result:

 # 100

We can compare the speed of an analogous, untyped, pure Python loop, as follows:

 def example_python():

 j=0

 for i in range(100):

 j += 1

Adding static types 111

 return j

 %timeit example()

 10000000 loops, best of 3: 25 ns per loop

 %timeit example_python()

 100000 loops, best of 3: 2.74 us per loop

The speedup obtained by implementing this simple type declaration is a whopping 100
times! This works because the Cython loop has first been converted to pure C and then
to efficient machine code, while the Python loop still relies on the slow interpreter.

In Cython, it is possible to declare a variable to be of any standard C type, and it is also
possible to define custom types using classic C constructs, such as struct, enum,
and typedef.

An interesting example is that if we declare a variable to be of the object type, the
variable will accept any kind of Python object, as illustrated in the following code snippet:

 cdef object a_py

 # both 'hello' and 1 are Python objects

 a_py = 'hello'

 a_py = 1

Note that declaring a variable as object has no performance benefits, as accessing and
operating on the object will still require the interpreter to look up the underlying type of
the variable and its attributes and methods.

Sometimes, certain data types (such as float and int numbers) are compatible in the
sense that they can be converted into each other. In Cython, it is possible to convert (cast)
between types by surrounding the destination type with pointy brackets, as shown in the
following code snippet:

 cdef int a = 0

 cdef double b

 b = <double> a

Together with static types for variables, we can provide information about functions,
which we will learn how to do next.

112 C Performance with Cython

Declaring functions
You can add type information to the arguments of a Python function by specifying the
type in front of each of the argument names. Functions specified in this way will work
and perform like regular Python functions, but their arguments will be type-checked. We
can write a max_python function that returns the greater value between two integers,
as follows:

 def max_python(int a, int b):

 return a if a > b else b

A function specified in this way will perform type checking and treat the arguments as
typed variables, just as in cdef definitions. However, the function will still be a Python
function, and calling it multiple times will still need to switch back to the interpreter. To
allow Cython for function call optimizations, we should declare the type of the return
type using a cdef statement, as follows:

 cdef int max_cython(int a, int b):

 return a if a > b else b

Functions declared in this way are translated to native C functions and have much less
overhead compared to Python functions. A substantial drawback is that they can't be used
from Python but only from Cython, and their scope is restricted to the same Cython file
unless they're exposed in a definition file (refer to the Sharing declarations section).

Fortunately, Cython allows you to define functions that are both callable from Python and
translatable to performant C functions. If you declare a function with a cpdef statement,
Cython will generate two versions of the function: a Python version available to the
interpreter, and a fast C function usable from Cython. The cpdef syntax is equivalent
to cdef, shown as follows:

 cpdef int max_hybrid(int a, int b):

 return a if a > b else b

Sometimes, the call overhead can be a performance issue even with C functions, especially
when the same function is called many times in a critical loop. When the function body
is small, it is convenient to add the inline keyword in front of the function definition;
the function call will be replaced by the function body itself. Our max function is a good
candidate for inlining, as illustrated in the following code snippet:

 cdef inline int max_inline(int a, int b):

 return a if a > b else b

Finally, we will see how to work with class types next.

Adding static types 113

Declaring classes
We can define an extension type using the cdef class statement and declare its
attributes in the class body. For example, we can create a Point extension type, as shown
in the following code snippet, which stores two coordinates (x, y) of the double type:

 cdef class Point:

 cdef double x

 cdef double y

 def __init__(self, double x, double y):

 self.x = x

 self.y = y

Accessing the declared attributes in the class methods allows Cython to bypass expensive
Python attribute lookups by direct access to the given fields in the underlying C struct. For
this reason, attribute access in typed classes is an extremely fast operation.

To use the cdef class statement in your code, you need to explicitly declare the type of
the variables you intend to use at compile time. You can use the extension type name (such
as Point) in any context where you will use a standard type (such as double, float,
and int). For example, if we want a Cython function that calculates the distance from the
origin (in the example, the function is called norm) of a Point, we have to declare the
input variable as Point, as shown in the following code snippet:

 cdef double norm(Point p):

 return (p.x**2 + p.y**2)**0.5

Just as with typed functions, typed classes have some limitations. If you try to access
an extension type attribute from Python, you will get an AttributeError warning,
as follows:

 >>> a = Point(0.0, 0.0)

 >>> a.x

 AttributeError: 'Point' object has no attribute 'x'

In order to access attributes from Python code, you have to use the public (for read/
write access) or readonly specifiers in the attribute declaration, as shown in the
following code snippet:

 cdef class Point:

 cdef public double x

114 C Performance with Cython

Additionally, methods can be declared with the cpdef statement, just as with
regular functions.

Extension types do not support the addition of extra attributes at runtime. To do that,
a solution is defining a Python class that is a subclass of the typed class and extends its
attributes and methods in pure Python.

And with that, we have seen how to add static types to various objects in Cython. In the
next section, we will begin our discussion regarding declarations.

Sharing declarations
When writing your Cython modules, you may want to reorganize your most-used
functions and classes declaration in a separate file so that they can be reused in different
modules. Cython allows you to put these components in a definition file and access them
with cimport statements.

Let's say that we have a module with the max and min functions, and we want to reuse
those functions in multiple Cython programs. If we simply write a bunch of functions
in a .pyx file, the declarations will be confined to the same file.

Note
Definition files are also used to interface Cython with external C code. The idea
is to copy (or, more accurately, translate) the types and function prototypes in
the definition file and leave the implementation in the external C code that will
be compiled and linked in a separate step.

To share the max and min functions, we need to write a definition file with a .pxd
extension. Such a file only contains the types and function prototypes that we want to
share with other modules—a public interface. We can declare the prototypes of our max
and min functions in a file named mathlib.pxd, as follows:

 cdef int max(int a, int b)

 cdef int min(int a, int b)

As you can see, we only write the function name and arguments without implementing
the function body.

Working with arrays 115

The function implementation goes into the implementation file with the same base name
but the .pyx extension mathlib.pyx, as follows:

 cdef int max(int a, int b):

 return a if a > b else b

 cdef int min(int a, int b):

 return a if a < b else b

The mathlib module is now importable from another Cython module.

To test our new Cython module, we will create a file named distance.pyx containing a
function named chebyshev. The function will calculate the Chebyshev distance between
two points, as shown in the following code snippet. The Chebyshev distance between
two coordinates—(x1, y1) and (x2, y2—is defined as the maximum value of the
difference between each coordinate:

 max(abs(x1 - x2), abs(y1 - y2))

To implement the chebyshev function, we will use the max function declared in
mathlib.pxd by importing it with the cimport statement, as shown in the following
code snippet:

 from mathlib cimport max

 def chebyshev(int x1, int y1, int x2, int y2):

 return max(abs(x1 - x2), abs(y1 - y2))

The cimport statement will read mathlib.pxd and the max definition will be used to
generate a distance.c file.

Along with static types and declarations, one factor that allows C to be generally faster
than Python is its highly optimized array operations, which we will examine in the
next section.

Working with arrays
Numerical and high-performance calculations often make use of arrays. Cython provides
an easy way to interact with different types of arrays, using directly low-level C arrays, or the
more general typed memoryviews. We will see how to do this in the following subsections.

116 C Performance with Cython

C arrays and pointers
C arrays are a collection of items of the same type, stored contiguously in memory. Before
digging into the details, it is helpful to understand (or review) how memory is managed
in C.

Variables in C are like containers. When creating a variable, a space in memory is reserved
to store its value. For example, if we create a variable containing a 64-bit floating-point
number (double), the program will allocate 64 bits (16 bytes) of memory. This portion
of memory can be accessed through an address to that memory location.

To obtain the address of a variable, we can use the address operator denoted by the &
symbol. We can also use the printf function, as follows, available in the libc.stdio
Cython module to print the address of this variable:

 %%cython

 cdef double a

 from libc.stdio cimport printf

 printf("%p", &a)

 # Output:

 # 0x7fc8bb611210

Note
The output will only be generated when the code is run from a standard Python
terminal. This limitation of IPython is detailed at https://github.com/
ipython/ipython/issues/1230.

Memory addresses can be stored in special variables, pointers, that can be declared by
putting a * prefix in front of the variable name, as follows:

 from libc.stdio cimport printf

 cdef double a

 cdef double *a_pointer

 a_pointer = &a # a_pointer and &a are of the same type

If we have a pointer and we want to grab the value contained in the address it's pointing at,
we can use the zero-index notation shown here:

 cdef double a

 cdef double *a_pointer

https://github.com/ipython/ipython/issues/1230
https://github.com/ipython/ipython/issues/1230

Working with arrays 117

 a_pointer = &a

 a = 3.0

 print(a_pointer[0]) # prints 3.0

When declaring a C array, the program allocates enough space to accommodate all the
elements requested. For instance, to create an array that has 10 double values (16 bytes
each), the program will reserve 16 * 10 = 160 bytes of contiguous space in memory. In
Cython, we can declare such arrays using the following syntax:

 cdef double arr[10]

We can also declare a multidimensional array, such as an array with 5 rows and 2
columns, using the following syntax:

 cdef double arr[5][2]

The memory will be allocated in a single block of memory, row after row. This order is
commonly referred to as row-major and is depicted in the following screenshot. Arrays
can also be column-major ordered, as is the case for the Fortran programming language:

Figure 4.1 – Row-major order

Array ordering has important consequences. When iterating a C array over the last
dimension, we access contiguous memory blocks (in our example, 0, 1, 2, 3 ...), while when
we iterate on the first dimension, we skip a few positions (0, 2, 4, 6, 8, 1 ...). You should
always try to access memory sequentially as this optimizes cache and memory usage.

We can store and retrieve elements from the array using standard indexing, as shown here;
C arrays don't support fancy indexing or slices:

 arr[0] = 1.0

118 C Performance with Cython

C arrays have many of the same behaviors as pointers. The arr variable, in fact, points to
the memory location of the first element of the array. We can verify that the address of the
first element of the array is the same as the address contained in the arr variable using
the dereference operator, as follows:

%%cython

from libc.stdio cimport printf

cdef double arr[10]

printf("%p\n", arr)

printf("%p\n", &arr[0])

Output

0x7ff6de204220

0x7ff6de204220

Note
The output will only be generated when the aforementioned code is run from a
standard Python terminal. This limitation of IPython is detailed at https://
github.com/ipython/ipython/issues/1230.

You should use C arrays and pointers when interfacing with existing C libraries or when
you need fine control over the memory (also, they are very performant). This level of
fine control is also prone to mistakes as it doesn't prevent you from accessing the wrong
memory locations. For more common use cases and improved safety, you can use NumPy
arrays or typed memoryviews.

Working with NumPy arrays
NumPy arrays can be used as normal Python objects in Cython, using their already
optimized broadcasted operations. However, Cython provides a numpy module with
better support for direct iteration.

When we normally access an element of a NumPy array, a few other operations take place
at the interpreter level, causing a major overhead. Cython can bypass those operations
and checks by acting directly on the underlying memory area used by NumPy arrays,
thus obtaining impressive performance gains.

https://github.com/ipython/ipython/issues/1230
https://github.com/ipython/ipython/issues/1230

Working with arrays 119

NumPy arrays can be declared as the ndarray data type. To use the data type in our
code, we first need to cimport the numpy Cython module (which is not the same as
the Python numpy module). We will bind the module to the c_np variable to make the
difference with the Python numpy module more explicit, as follows:

 cimport numpy as c_np

 import numpy as np

We can now declare a NumPy array by specifying its type and the number of dimensions
between square brackets (this is called buffer syntax). To declare a two-dimensional (2D)
array of type double, we can use the following code:

 cdef c_np.ndarray[double, ndim=2] arr

Access to this array will be performed by directly operating on the underlying memory
area; the operation will avoid stepping into the interpreter, giving us a tremendous
speed boost.

In the next example, we will show the usage of typed NumPy arrays and compare them
with the normal Python version.

We first write a numpy_bench_py function that increments each element of py_arr.
We declare the i index as an integer so that we avoid the for loop overhead, as follows:

 %%cython

 import numpy as np

 def numpy_bench_py():

 py_arr = np.random.rand(1000)

 cdef int i

 for i in range(1000):

 py_arr[i] += 1

Then, we write the same function using the ndarray type. Note that after we define
the c_arr variable using c_np.ndarray, we can assign to it an array from the numpy
Python module. The code is illustrated in the following snippet:

 %%cython

 import numpy as np

 cimport numpy as c_np

120 C Performance with Cython

 def numpy_bench_c():

 cdef c_np.ndarray[double, ndim=1] c_arr

 c_arr = np.random.rand(1000)

 cdef int i

 for i in range(1000):

 c_arr[i] += 1

We can time the results using timeit, and we can see here how the typed version is
50 times faster:

 %timeit numpy_bench_c()

 100000 loops, best of 3: 11.5 us per loop

 %timeit numpy_bench_py()

 1000 loops, best of 3: 603 us per loop

This gives us a significant speedup from the Python code!

Working with typed memoryviews
C and NumPy arrays, as well as the built-in bytes, bytearray, and array.array
objects, are similar in the sense that they all operate on a contiguous memory area (also
called a memory buffer). Cython provides a universal interface—a typed memoryview—
that unifies and simplifies access to all these data types.

A memoryview is an object that maintains a reference on a specific memory area. It doesn't
actually own the memory, but it can read and change its contents; in other words, it is a view
of the underlying data. Memoryviews can be defined using a special syntax. For example, we
can define a memoryview of int and a 2D memoryview of double in the following way:

 cdef int[:] a

 cdef double[:, :] b

The same syntax applies to the declaration of any type in variables, function definitions, class
attributes, and so on. Any object that exposes a buffer interface (for example, NumPy arrays,
bytes, and array.array objects) will be bound to the memoryview automatically.
For example, we can bind the memoryview to a NumPy array using a simple variable
assignment, as follows:

 import numpy as np

 cdef int[:] arr

Working with arrays 121

 arr_np = np.zeros(10, dtype='int32')

 arr = arr_np # We bind the array to the memoryview

It is important to note that the memoryview does not own the data, but it only provides
a way to access and change the data it is bound to; the ownership, in this case, is left to
the NumPy array. As you can see in the following example, changes made through the
memoryview will act on the underlying memory area and will be reflected in the original
NumPy structure (and vice versa):

 arr[2] = 1 # Changing memoryview

 print(arr_np)

 # [0 0 1 0 0 0 0 0 0 0]

In a certain sense, the mechanism behind memoryviews is similar to what NumPy
produces when we slice an array. As we have seen in Chapter 3, Fast Array Operations with
NumPy, Pandas, and Xarray, slicing a NumPy array does not copy the data but returns a
view on the same memory area, and changes to the view will reflect on the original array.

Memoryviews also support array slicing with the standard NumPy syntax, as illustrated
in the following code snippet:

 cdef int[:, :, :] a

 arr[0, :, :] # Is a 2-dimensional memoryview

 arr[0, 0, :] # Is a 1-dimensional memoryview

 arr[0, 0, 0] # Is an int

To copy data between one memoryview and another, you can use syntax similar to slice
assignment, as shown in the following code snippet:

 import numpy as np

 cdef double[:, :] b

 cdef double[:] r

 b = np.random.rand(10, 3)

 r = np.zeros(3, dtype='float64')

 b[0, :] = r # Copy the value of r in the first row of b

In the next section, we will use typed memoryviews to declare types for the arrays in our
particle simulator.

122 C Performance with Cython

Using a particle simulator in Cython
Now that we have a basic understanding of how Cython works, we can rewrite the
ParticleSimulator.evolve method. Thanks to Cython, we can convert our
loops in C, thus removing the overhead introduced by the Python interpreter.

In Chapter 3, Fast Array Operations with NumPy, Pandas, and Xarray, we wrote a fairly
efficient version of the evolve method using NumPy. We can rename the old version
evolve_numpy to differentiate it from the new version. The code is illustrated in the
following snippet:

 def evolve_numpy(self, dt):

 timestep = 0.00001

 nsteps = int(dt/timestep)

 r_i = np.array([[p.x, p.y] for p in \

 self.particles])

 ang_speed_i = np.array([p.ang_speed for p in \

 self.particles])

 v_i = np.empty_like(r_i)

 for i in range(nsteps):

 norm_i = np.sqrt((r_i ** 2).sum(axis=1))

 v_i = r_i[:, [1, 0]]

 v_i[:, 0] *= -1

 v_i /= norm_i[:, np.newaxis]

 d_i = timestep * ang_speed_i[:, np.newaxis] * \

 v_i

 r_i += d_i

 for i, p in enumerate(self.particles):

 p.x, p.y = r_i[i]

We want to convert this code to Cython. Our strategy will be to take advantage of the fast
indexing operations by removing the NumPy array broadcasting, thus reverting to an
indexing-based algorithm. Since Cython generates efficient C code, we are free to use as
many loops as we like without any performance penalty.

Using a particle simulator in Cython 123

As a design choice, we can decide to encapsulate the loop in a function that we will rewrite
in a Cython module called cevolve.pyx. The module will contain a single Python
function, c_evolve, that will take the particle positions, angular velocities, timestep,
and the number of steps as input.

At first, we are not adding typing information; we just want to isolate the function and
ensure that we can compile our module without errors. The code is illustrated in the
following snippet:

 # file: simul.py

 def evolve_cython(self, dt):

 timestep = 0.00001

 nsteps = int(dt/timestep)

 r_i = np.array([[p.x, p.y] for p in \

 self.particles])

 ang_speed_i = np.array([p.ang_speed for p in \

 self.particles])

 c_evolve(r_i, ang_speed_i, timestep, nsteps)

 for i, p in enumerate(self.particles):

 p.x, p.y = r_i[i]

 # file: cevolve.pyx

 import numpy as np

 def c_evolve(r_i, ang_speed_i, timestep, nsteps):

 v_i = np.empty_like(r_i)

 for i in range(nsteps):

 norm_i = np.sqrt((r_i ** 2).sum(axis=1))

 v_i = r_i[:, [1, 0]]

 v_i[:, 0] *= -1

 v_i /= norm_i[:, np.newaxis]

124 C Performance with Cython

 d_i = timestep * ang_speed_i[:, np.newaxis] *

 v_i

 r_i += d_i

Note that we don't need a return value for c_evolve as values are updated in place in the
r_i array. We can benchmark the untyped Cython version against the old NumPy version
by slightly changing our benchmark function, as follows:

 def benchmark(npart=100, method='python'):

 particles = [

 Particle(uniform(-1.0, 1.0),

 uniform(-1.0, 1.0),

 uniform(-1.0, 1.0))

 for i in range(npart)

]

 simulator = ParticleSimulator(particles)

 if method=='python':

 simulator.evolve_python(0.1)

 elif method == 'cython':

 simulator.evolve_cython(0.1)

 elif method == 'numpy':

 simulator.evolve_numpy(0.1)

We can time the different versions in an IPython shell, as follows:

 %timeit benchmark(100, 'cython')

 1 loops, best of 3: 401 ms per loop

 %timeit benchmark(100, 'numpy')

 1 loops, best of 3: 413 ms per loop

The two versions have the same speed. Compiling the Cython module without static
typing doesn't have any advantage over pure Python. The next step is to declare the type
of all the important variables so that Cython can perform its optimizations.

Using a particle simulator in Cython 125

We can start adding types to the function arguments and see how the performance
changes. We can declare the arrays as typed memoryviews containing double values.
It's worth mentioning that if we pass an array of the int or float32 type, the casting
won't happen automatically and we will get an error. The code is illustrated in the
following snippet:

 def c_evolve(double[:, :] r_i,

 double[:] ang_speed_i,

 double timestep,

 int nsteps):

At this point, we can rewrite the loops over the particles and timesteps. We can declare the
i and j iteration indices and the nparticles particle number as int, as follows:

 cdef int i, j

 cdef int nparticles = r_i.shape[0]

The algorithm is very similar to the pure Python version; we iterate over the particles
and timesteps, and we compute the velocity and displacement vectors for each particle
coordinate using the following code:

 for i in range(nsteps):

 for j in range(nparticles):

 x = r_i[j, 0]

 y = r_i[j, 1]

 ang_speed = ang_speed_i[j]

 norm = sqrt(x ** 2 + y ** 2)

 vx = (-y)/norm

 vy = x/norm

 dx = timestep * ang_speed * vx

 dy = timestep * ang_speed * vy

 r_i[j, 0] += dx

 r_i[j, 1] += dy

126 C Performance with Cython

In the preceding code snippet, we added the x, y, ang_speed, norm, vx, vy, dx, and dy
variables. To avoid the Python interpreter overhead, we have to declare them with their
corresponding types at the beginning of the function, as follows:

 cdef double norm, x, y, vx, vy, dx, dy, ang_speed

We also used a function called sqrt to calculate the norm. If we use the sqrt function
present in the math module or the one in numpy, we will again include a slow Python
function in our critical loop, thus killing our performance. A fast sqrt function is
available in the standard C library, already wrapped in the libc.math Cython module.
Run the following code to import it:

 from libc.math cimport sqrt

We can rerun our benchmark to assess our improvements, as follows:

 In [4]: %timeit benchmark(100, 'cython')

 100 loops, best of 3: 13.4 ms per loop

 In [5]: %timeit benchmark(100, 'numpy')

 1 loops, best of 3: 429 ms per loop

For small particle numbers, the speedup is massive as we obtained a 40 times faster
performance over the previous version. However, we should also try to test the
performance scaling with a larger number of particles, as follows:

 In [2]: %timeit benchmark(1000, 'cython')

 10 loops, best of 3: 134 ms per loop

 In [3]: %timeit benchmark(1000, 'numpy')

 1 loops, best of 3: 877 ms per loop

As we increase the number of particles, the two versions get closer in speed. By increasing
the particle size to 1000, we already decreased our speedup to a more modest 6 times.
This is likely because, as we increase the number of particles, the Python for loop
overhead becomes less and less significant compared to the speed of other operations.

The topic of benchmarking naturally transitions us to our next section: profiling.

Profiling Cython 127

Profiling Cython
Cython provides a feature called annotated view that helps find which lines are executed
in the Python interpreter and which are good candidates for ulterior optimizations. We
can turn this feature on by compiling a Cython file with the -a option. In this way, Cython
will generate a HyperText Markup Language (HTML) file containing our code annotated
with some useful information. The usage of the -a option is shown here:

$ cython -a cevolve.pyx

$ firefox cevolve.html

The HTML file displayed in the following screenshot shows our Cython file line by line:

Figure 4.2 – Generated HTML containing annotated code

128 C Performance with Cython

Each line in the source code can appear in different shades of yellow. A more intense color
corresponds to more interpreter-related calls, while white lines are translated to regular
C code. Since interpreter calls substantially slow down execution, the objective is to make
the function body as white as possible. By clicking on any of the lines, we can inspect the
code generated by the Cython compiler. For example, the v_y = x/norm line checks
that the norm is not 0 and raises a ZeroDivisionError error if the condition is not
verified. The x = r_i[j, 0] line shows that Cython checks whether the indexes are
within the bounds of the array. You may have noted that the last line is of a very intense
color; by inspecting the code, we can see that this is actually a glitch—the code refers to
a boilerplate related to the end of the function.

Cython can shut down checks such as division by zero so that it can remove those extra
interpreter-related calls; this is usually accomplished through compiler directives. There
are a few different ways to add compiler directives, as outlined here:

• Using a decorator or a context manager

• Using a comment at the beginning of the file

• Using the Cython command-line options

For a complete list of the Cython compiler directives, you can refer to the official
documentation at http://docs.cython.org/src/reference/compilation.
html#compiler-directives.

For example, to disable bounds checking for arrays, it is sufficient to decorate a function
with cython.boundscheck, in the following way:

 cimport cython

 @cython.boundscheck(False)

 def myfunction():

 # Code here

Alternatively, we can use cython.boundscheck to wrap a block of code into a context
manager, as follows:

 with cython.boundscheck(False):

 # Code here

If we want to disable bounds checking for a whole module, we can add the following line
of code at the beginning of the file:

 # cython: boundscheck=False

http://docs.cython.org/src/reference/compilation.html#compiler-directives
http://docs.cython.org/src/reference/compilation.html#compiler-directives

Profiling Cython 129

To alter the directives with the command-line options, you can use the -X option,
as follows:

$ cython -X boundscheck=True

To disable the extra checks in our c_evolve function, we can disable the boundscheck
directive and enable cdivision (this prevents checks for ZeroDivisionError),
as in the following code snippet:

 cimport cython

 @cython.boundscheck(False)

 @cython.cdivision(True)

 def c_evolve(double[:, :] r_i,double[:] ang_speed_i, \

 double timestep,int nsteps):

If we look at the annotated view again, the loop body has become completely white—we
removed all traces of the interpreter from the inner loop. In order to recompile, just type
python setup.py build_ext --inplace again. By running the benchmark,
however, we note that we didn't obtain a performance improvement, suggesting that
those checks are not part of the bottleneck, as we can see here:

 In [3]: %timeit benchmark(100, 'cython')

 100 loops, best of 3: 13.4 ms per loop

Another way to profile Cython code is using the cProfile module. As an example, we
can write a simple function that calculates the Chebyshev distance between coordinate
arrays. Create a cheb.py file, as follows:

 import numpy as np

 from distance import chebyshev

 def benchmark():

 a = np.random.rand(100, 2)

 b = np.random.rand(100, 2)

 for x1, y1 in a:

 for x2, y2 in b:

 chebyshev(x1, x2, y1, y2)

130 C Performance with Cython

If we try profiling this script as-is, we won't get any statistics regarding the functions that
we implemented in Cython. If we want to collect profiling information for the max and
min functions, we need to add the profile=True option to the mathlib.pyx file,
as shown in the following code snippet:

 # cython: profile=True

 cdef int max(int a, int b):

 # Code here

We can now profile our script with %prun using IPython, as follows:

 import cheb

 %prun cheb.benchmark()

Output:

2000005 function calls in 2.066 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall

 filename:lineno(function)

 1 1.664 1.664 2.066 2.066

 cheb.py:4(benchmark)

 1000000 0.351 0.000 0.401 0.000

 {distance.chebyshev}

 1000000 0.050 0.000 0.050 0.000 mathlib.pyx:2(max)

 2 0.000 0.000 0.000 0.000 {method 'rand' of

'mtrand.RandomState' objects}

 1 0.000 0.000 2.066 2.066

 <string>:1(<module>)

 1 0.000 0.000 0.000 0.000 {method 'disable'

 of '_lsprof.Profiler' objects}

From the output, we can see that the max function is present and is not a bottleneck. Most
of the time seems to be spent in the benchmark function, meaning that the bottleneck is
likely a pure Python for loop. In this case, the best strategy will be rewriting the loop in
NumPy or porting the code to Cython.

Using Cython with Jupyter 131

One feature in Python that many users enjoy is the ability to work with Jupyter Notebooks.
When working with Cython, you don't have to give up on this feature. In the next and last
section of this chapter, we will see how we can use Cython with Jupyter.

Using Cython with Jupyter
Optimizing Cython code requires substantial trial and error. Fortunately, Cython tools
can be conveniently accessed through Jupyter Notebooks for a more streamlined and
integrated experience.

You can launch a notebook session by typing jupyter notebook in the command line,
and you can load the Cython magic by typing %load_ext cython in a cell.

As mentioned earlier, the %%cython magic can be used to compile and load the Cython
code inside the current session. As an example, we may copy the contents of the cheb.py
file into a notebook cell, like this:

 %%cython

 import numpy as np

 cdef int max(int a, int b):

 return a if a > b else b

 cdef int chebyshev(int x1, int y1, int x2, int y2):

 return max(abs(x1 - x2), abs(y1 - y2))

 def c_benchmark():

 a = np.random.rand(1000, 2)

 b = np.random.rand(1000, 2)

 for x1, y1 in a:

 for x2, y2 in b:

 chebyshev(x1, x2, y1, y2)

132 C Performance with Cython

A useful feature of the %%cython magic is the -a option that will compile the code and
produce an annotated view (just as with the -a command-line option) of the source code
directly in the notebook, as shown in the following screenshot:

Figure 4.3 – Generated annotated code

This allows you to quickly test different versions of your code and use the other integrated
tools available in Jupyter. For example, we can time and profile the code (provided that
we activate the profile directive in the cell) in the same session using tools such as %prun
and %timeit. We can also inspect the profiling results by taking advantage of the %prun
magic, as shown in the following screenshot:

Using Cython with Jupyter 133

Figure 4.4 – Profiling output

It is also possible to use the line_profiler tool we discussed in Chapter 1,
Benchmarking and Profiling, directly in the notebook. To support line annotations,
it is necessary to do the following things:

• Enable the linetrace=True and binding=True compiler directives.

• Enable the CYTHON_TRACE=1 flag at compile time.

This can be easily accomplished by adding the respective arguments to the %%cython
magic and by setting the compiler directives, as shown in the following code snippet:

 %%cython -a -f -c=-DCYTHON_TRACE=1

 # cython: linetrace=True

 # cython: binding=True

 import numpy as np

 cdef int max(int a, int b):

 return a if a > b else b

 def chebyshev(int x1, int y1, int x2, int y2):

 return max(abs(x1 - x2), abs(y1 - y2))

 def c_benchmark():

 a = np.random.rand(1000, 2)

 b = np.random.rand(1000, 2)

134 C Performance with Cython

 for x1, y1 in a:

 for x2, y2 in b:

 chebyshev(x1, x2, y1, y2)

Once the code is instrumented, we can install the line_profiler package via pip
install line_profiler and profile using the %lprun magic, as follows:

%load_ext line_profiler

%lprun -f c_benchmark c_benchmark()

Output:

Timer unit: 1e-06 s

Total time: 2.322 s

File: /home/gabriele/.cache/ipython/cython/_cython_

magic_18ad8204e9d29650f3b09feb48ab0f44.pyx

Function: c_benchmark at line 11

Line # Hits Time Per Hit % Time Line Contents

==

 11 def

c_benchmark():

 12 1 226 226.0 0.0 a =

np.random.rand...

 13 1 67 67.0 0.0 b =

np.random.rand...

 14

 15 1001 1715 1.7 0.1 for

x1, y1 in a:

 16 1001000 1299792 1.3 56.0

for x2, y2 in b:

 17 1000000 1020203 1.0 43.9

chebyshev...

As you can see, a good chunk of time is spent in line 16, which is a pure Python loop and
a good candidate for further optimization.

The tools available in Jupyter Notebook allow for a fast edit-compile-test cycle so that you
can quickly prototype and save time when testing different solutions.

Summary 135

Summary
Cython is a tool that bridges the convenience of Python with the speed of C. Compared to
C bindings, Cython programs are much easier to maintain and debug, thanks to the tight
integration and compatibility with Python and the availability of excellent tools.

In this chapter, we introduced the basics of the Cython language and how to make our
programs faster by adding static types to our variables and functions. We also learned
how to work with C arrays, NumPy arrays, and memoryviews.

We optimized our particle simulator by rewriting the critical evolve function, obtaining
a tremendous speed gain. Finally, we learned how to use the annotated view to spot hard-
to-find interpreter-related calls and how to enable cProfile support in Cython. Also,
we learned how to take advantage of the Jupyter Notebook for integrated profiling and
analysis of Cython code.

All these tasks provide us with the high level of flexibility, which we already enjoy with
Python, when working with Cython, while allowing our programs to be more optimized
with low-level C code.

In the next chapter, we will explore other tools that can generate fast machine code on
the fly, without requiring the compilation of our code to C ahead of time (AOT).

Questions
1. What is the benefit of implementing static types?
2. What is the benefit of a memoryview?
3. Which tools for profiling Cython were introduced in this chapter?

5
Exploring Compilers

Python is a mature and widely used language, and there is great interest in improving
its performance by compiling functions and methods directly to machine code rather
than executing instructions in the interpreter. We have already seen a compiler example
in Chapter 4, C Performance with Cython, where Python code is enhanced with types,
compiled to efficient C code, and the interpreter calls are sidestepped.

In this chapter, we will explore two projects, Numba and PyPy, that approach compilation
in a slightly different way. Numba is a library designed to compile small functions on
the fly. Instead of transforming Python code to C, Numba analyzes and compiles Python
functions directly to machine code. PyPy is a replacement interpreter that works by
analyzing the code at runtime and optimizing the slow loops automatically.

These tools are called Just-In-Time (JIT) compilers because the compilation is performed
at runtime rather than before running the code (in other cases, the compiler is called
Ahead-Of-Time or AOT).

The list of topics to be covered in this chapter is as follows:

• Getting started with Numba

• The PyPy project

• Other interesting projects

138 Exploring Compilers

Overall, Numba and PyPy offer us flexibility in leveraging JIT compilation to accelerate
our programs. This chapter adds another instrument to our toolbox for improving the
speed of Python applications.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter05.

Getting started with Numba
Numba was started in 2012 by Travis Oliphant, the original author of NumPy, as a library
for compiling individual Python functions at runtime using the Low-Level Virtual
Machine (LLVM) toolchain.

LLVM is a set of tools designed to write compilers. LLVM is language-agnostic and is
used to write compilers for a wide range of languages (an important example is the Clang
compiler). One of the core aspects of LLVM is the intermediate representation (the LLVM
IR), a very low-level, platform-agnostic language-like assembly, that can be compiled to
machine code for the specific target platform.

Numba works by inspecting Python functions and compiling them, using LLVM, to the
IR. As we saw in the last chapter, speed gains can be obtained when we introduce types
for variables and functions. Numba implements clever algorithms to guess the types
(this is called type inference) and compiles type-aware versions of the functions for
fast execution.

Note that Numba was developed to improve the performance of numerical code. The
development efforts often prioritize the optimization of applications that intensively
use NumPy arrays.

Important Note
Numba is evolving fast and can have substantial improvements between
releases and, sometimes, backward-incompatible changes. To keep up, ensure
that you refer to the release notes for each version. In the rest of this chapter,
we will use Numba version 0.53.1; ensure that you install the correct version to
avoid any error by using pip install numba==0.53.1. The complete
code examples in this chapter can be found in the Numba.ipynb notebook.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter05

Getting started with Numba 139

For the rest of this section, we will explore different aspects of Numba usage such as
type specializations and JIT classes, as well as its limitations. First, we will discuss how
to integrate Numba into a Python program via decorators.

Using Numba decorators
In most cases, the way we point Numba to specific Python functions is via decorators.
Let's see how to do this:

1. As a first example, we will implement a function that calculates the sum of the
squares of an array. The function definition is as follows:

 def sum_sq(a):

 result = 0

 N = len(a)

 for i in range(N):

 result += a[i]

 return result

2. To set up this function with Numba, it is sufficient to apply the nb.jit decorator:

 from numba import nb

 @nb.jit

 def sum_sq(a):

 ...

The nb.jit decorator won't do much when applied. However, when the function
is invoked for the first time, Numba will detect the type of the input argument, a,
and compile a specialized, performant version of the original function.

3. To measure the performance gain obtained by the Numba compiler, we can compare
the timings of the original and the specialized functions. The original, undecorated
function can be easily accessed through the py_func attribute. The timings for the
two functions are as follows:

 import numpy as np

 x = np.random.rand(10000)

 # Original

 %timeit sum_sq.py_func(x)

140 Exploring Compilers

 4.3 ms ± 81.6 µs per loop

 # Numba

 %timeit sum_sq(x)

 12.8 µs ± 5.41 µs per loop

From the previous code, you can see how the Numba version (12.8 µs) is one order
of magnitude faster than the Python version (4.3 ms).

4. We can also compare how this implementation stacks up against NumPy standard
operators:

 %timeit (x**2).sum()

 9.44 µs ± 93.7 ns per loop

In this case, the Numba compiled function is marginally slower than NumPy
vectorized operations, although this difference might change across different runs.

Considering that all we needed to do was apply a simple decorator to obtain an incredible
speed up over different data types, it's no wonder that what Numba does looks like magic.
In the following sections, we will dig deeper to understand how Numba works and
evaluate the benefits and limitations of the Numba compiler.

Type specializations
As shown earlier, the nb.jit decorator works by compiling a specialized version of the
function once it encounters a new argument type. To better understand how this works,
we can inspect the decorated function in the sum_sq example:

1. Numba exposes the specialized types using the signatures attribute. Right after
the sum_sq definition, we can inspect the available specialization by accessing
sum_sq.signatures, as follows:

 sum_sq.signatures

 # Output:

 # []

2. If we call this function with a specific argument, for instance, an array of float64
numbers, we can see how Numba compiles a specialized version on the fly. If we also
apply the function on an array of float32, we can see how a new entry is added
to the sum_sq.signatures list:

 x = np.random.rand(1000).astype('float64')

 sum_sq(x)

Getting started with Numba 141

 sum_sq.signatures

 # Result:

 # [(array(float64, 1d, C),)]

 x = np.random.rand(1000).astype('float32')

 sum_sq(x)

 sum_sq.signatures

 # Result:

 # [(array(float64, 1d, C),), (array(float32, 1d,

 C),)]

It is possible to explicitly compile the function for certain types by passing a
signature to the nb.jit function.

3. An individual signature can be passed as a tuple that contains the type we would
like to accept. Numba provides a great variety of types that can be found in the
nb.types module, and they are also available in the top-level nb namespace. If we
want to specify an array of a specific type, we can use the slicing operator, [:], on
the type itself. In the following example, we demonstrate how to declare a function
that takes an array of float64 as its only argument:

 @nb.jit((nb.float64[:],))

 def sum_sq(a):

4. Note that when we explicitly declare a signature, we are prevented from using
other types, as demonstrated in the following example. If we try to pass an array, x,
as float32, Numba will raise a TypeError exception:

 sum_sq(x.astype('float32'))

 # TypeError: No matching definition for argument

 type(s)

 array(float32, 1d, C)

5. Another way to declare signatures is through type strings. For example, a function
that takes float64 as input and returns float64 as output can be declared with
the float64(float64) string. Array types can be declared using a [:] suffix. To
put this together, we can declare a signature for our sum_sq function, as follows:

 @nb.jit("float64(float64[:])")

 def sum_sq(a):

142 Exploring Compilers

6. You can also pass multiple signatures by passing a list:

 @nb.jit(["float64(float64[:])",

 "float64(float32[:])"])

 def sum_sq(a):

These APIs ensure that Numba has the correct information about what data type a
function works with.

Object mode versus native mode
So far, we have shown how Numba behaves when handling a simple function. In this case,
Numba worked exceptionally well, and we obtained great performance on arrays and lists.

The degree of optimization obtainable from Numba depends on how well Numba can
infer the variable types and how well it can translate those standard Python operations to
fast type-specific versions. If this happens, the interpreter is sidestepped, and we can get
performance gains such as those of Cython.

When Numba cannot infer variable types, it will still try and compile the code, reverting
to the interpreter when the types can't be determined or when certain operations are
unsupported. In Numba, this is called object mode and contrasts with the interpreter-free
scenario called native mode.

Numba provides a function called inspect_types that helps understand how effective
the type inference was and which operations were optimized. Let's see how to use the
following function:

1. As an example, we can look at the types inferred for our sum_sq function:

 sum_sq.inspect_types()

2. When this function is called, Numba will print the type inferred for each specialized
version of the function. The output consists of blocks that contain information
about variables and types associated with them. For example, we can examine
the N = len(a) line:

 # --- LINE 4 ---

 # label 0

 # a = arg(0, name=a) :: array(float64, 1d, A)

 # $2load_global.0 = global(len: <built-in \

 function len>) :: Function (<built-in \

 function len>)

Getting started with Numba 143

 # N = call $2load_global.0(a, func= \

 $2load_global.0, args=[Var(a, \

 <ipython-in put-19-4687c4bff0ac>:4)], \

 kws=(), vararg=None) :: (array(\

 float64, 1d, A),) -> int64

 N = len(a)

For each line, Numba prints a thorough description of variables, functions, and
intermediate results. In the preceding example, you can see (on the second line) that
the a argument is correctly identified as an array of float64 numbers. At LINE 4,
the input and return type of the len function is also correctly identified (and likely
optimized) as taking an array of float64 numbers and returning int64.

If you scroll through the output, you can see how all the variables have a well-defined
type. Therefore, we can be certain that Numba is able to compile the code quite
efficiently. This form of compilation is called native mode.

As a counterexample, we can see what happens if we write a function with
unsupported operations. For example, as of version 0.53.1, Numba has limited
support for string operations.

3. We can implement a function that concatenates a series of strings and compiles it
as follows:

 @nb.jit

 def concatenate(strings):

 result = ''

 for s in strings:

 result += s

 return result

4. Now, we can invoke this function with a list of strings and inspect the types:

 concatenate(['hello', 'world'])

 concatenate.signatures

 # Output: concatenate (reflected

 list(unicode_type)<iv=None>,)

 concatenate.inspect_types()

144 Exploring Compilers

5. Numba will return the output of the function for the reflected list
(unicode type) type. We can, for instance, examine how the third line gets
inferred. The output of concatenate.inspect_types() is reproduced here:

 # --- LINE 3 ---

 # label 0

 # strings = arg(0, name=strings) :: reflected \

 list(unicode_type)<iv=None>

 # result = const(str,) :: Literal[str]()

 result = ''

You can see that this time, each variable, or function is of the unicode or str type.
Once again by timing the original and compiled function, we can note a significant
improvement in performance:

 x = ['hello'] * 1000

 %timeit concatenate.py_func(x)

 81.9 µs ± 1.25 µs per loop

 %timeit concatenate(x)

 1.27 ms ± 23.3 µs per loop

This is because the Numba compiler is not able to optimize the code and adds some
extra overhead to the function call.

An Equivalent Decorator
Note that from version 0.12, the more concise @nb.njit decorator could be
used instead.

Numba and NumPy
Numba was originally developed to easily increase the performance of code that
uses NumPy arrays. Currently, many NumPy features are implemented efficiently by
the compiler. Here, we will see how to combine the two tools to achieve even better
performance for universal functions.

Getting started with Numba 145

Universal functions with Numba
Universal functions are special functions defined in NumPy that can operate on arrays
of different sizes and shapes according to the broadcasting rules. One of the best features
of Numba is the implementation of fast ufunc instances.

We have already seen some ufunc examples in Chapter 3, Fast Array Operations with
NumPy, Pandas, and Xarray. For instance, the np.log function is a ufunc instance because
it can accept scalars and arrays of different sizes and shapes. Also, universal functions that
take multiple arguments still work according to the broadcasting rules. Examples of universal
functions that take multiple arguments are np.sum and np.difference.

Universal functions can be defined in standard NumPy by implementing the scalar
version and using the np.vectorize function to enhance the function with the
broadcasting feature. As an example, let's see how to write the Cantor pairing function:

1. A pairing function is a function that encodes two natural numbers into a single
natural number so that you can easily interconvert between the two representations.
The Cantor pairing function can be written as follows:

 import numpy as np

 def cantor(a, b):

 return int(0.5 * (a + b)*(a + b + 1) + b)

2. As already mentioned, it is possible to create a ufunc instance in pure Python using
the np.vectorized decorator:

 @np.vectorize

 def cantor(a, b):

 return int(0.5 * (a + b)*(a + b + 1) + b)

 cantor(np.array([1, 2]), 2)

 # Result:

 # array([8, 12])

Except for the convenience, defining universal functions in pure Python is not very
useful, as it requires a lot of function calls affected by interpreter overhead. For this
reason, ufunc implementation is usually done in C or Cython, but Numba beats all
these methods with its convenience.

All that is needed in order to perform the conversion is to use the equivalent
decorator, nb.vectorize.

146 Exploring Compilers

3. We can compare the speed of the standard np.vectorized version, which, in the
following code, is called cantor_py, and the same function is implemented using
standard NumPy operations:

 # Pure Python

 %timeit cantor_py(x1, x2)

 2.4 ms ± 23.7 µs per loop

 # Numba

 %timeit cantor(x1, x2)

 9.1 µs ± 204 ns per loop

 # NumPy

 %timeit (0.5 * (x1 + x2)*(x1 + x2 + 1) + \

 x2).astype(int)

 33.2 µs ± 1.12 µs per loop

You can see how the Numba version beats all the other options by a large margin! Numba
works extremely well because the function is simple and type inference is possible.

Important Note
An additional advantage of universal functions is that, since they depend
on individual values, their evaluation can also be executed in parallel.
Numba provides an easy way to parallelize such functions by passing
the target="cpu" or target="gpu" keyword argument to the
nb.vectorize decorator.

Generalized universal functions
One of the main limitations of universal functions is that they must be defined on scalar
values. A generalized universal function, abbreviated as gufunc, is an extension of
universal functions to procedures that take arrays. Let's see how we can apply Numba
to these functions:

1. A classic example is matrix multiplication. In NumPy, matrix multiplication can
be applied using the np.matmul function, which takes two 2D arrays and returns
another 2D array. An example of the usage of np.matmul is as follows:

 a = np.random.rand(3, 3)

 b = np.random.rand(3, 3)

Getting started with Numba 147

 c = np.matmul(a, b)

 c.shape

 # Result:

 # (3, 3)

As we saw in the previous subsection, a ufunc instance broadcasts the operation
over arrays of scalars; its natural generalization will be to broadcast over an array
of arrays. If, for instance, we take two arrays of 3 by 3 matrices, we will expect
np.matmul to match the matrices and take their product.

2. In the following example, we take two arrays containing 10 matrices of the (3, 3)
shape. If we apply np.matmul, the product will be applied matrix-wise to obtain a
new array containing the 10 results (which are, again, (3, 3) matrices):

 a = np.random.rand(10, 3, 3)

 b = np.random.rand(10, 3, 3)

 c = np.matmul(a, b)

 c.shape

 # Output

 # (10, 3, 3)

3. The usual rules for broadcasting will work in a similar way. For example, if we have
an array of (3, 3) matrices, which will have a shape of (10, 3, 3), we can use
np.matmul to calculate the matrix multiplication of each element with a single
(3, 3) matrix. According to the broadcasting rules, we find that the single matrix
will be repeated to obtain a size of (10, 3, 3):

 a = np.random.rand(10, 3, 3)

 b = np.random.rand(3, 3) # Broadcasted to shape

 (10, 3, 3)

 c = np.matmul(a, b)

 c.shape

 # Result:

 # (10, 3, 3)

Numba supports the implementation of efficient generalized universal functions
through the nb.guvectorize decorator. As an example, we will implement a
function that computes the Euclidean distance between two arrays as a gufunc
instance. To create a gufunc instance, we must define a function that takes the
input arrays, plus an output array where we will store the result of our calculation.

148 Exploring Compilers

The nb.guvectorize decorator requires two arguments:

 � The types of input and output – two 1D arrays as input and a scalar as output.

 � The so-called layout string, which is a representation of the input and output sizes;
in our case, we take two arrays of the same size (denoted arbitrarily by n) and
output a scalar.

4. In the following example, we can see the implementation of the euclidean
function using the nb.guvectorize decorator:

 @nb.guvectorize(['float64[:], float64[:], \

 float64[:]'], '(n), (n) -> ()')

 def euclidean(a, b, out):

 N = a.shape[0]

 out[0] = 0.0

 for i in range(N):

 out[0] += (a[i] - b[i])**2

There are a few very important points to be made. Predictably, we declared the a
and b input types as float64[:] because they are 1D arrays. However, what
about the output argument? Wasn't it supposed to be a scalar? Yes, but Numba treats
a scalar argument as arrays of size 1. That's why it was declared as float64[:].

Similarly, the layout string indicates that we have two arrays of size (n) and the
output is a scalar, denoted by empty brackets – (). However, the array out will
be passed as an array of size 1. Also, note that we don't return anything from the
function; all the output must be written in the out array.

Important Note
The letter n in the layout string is completely arbitrary; you may choose to use
k or other letters of your liking. Also, if you want to combine arrays of uneven
sizes, you can use layout strings, such as (n, m).

5. Our brand-new euclidean function can be conveniently used on arrays of
different shapes, as shown in the following example:

 a = np.random.rand(2)

 b = np.random.rand(2)

 c = euclidean(a, b) # Shape: (1,)

Getting started with Numba 149

 a = np.random.rand(10, 2)

 b = np.random.rand(10, 2)

 c = euclidean(a, b) # Shape: (10,)

 a = np.random.rand(10, 2)

 b = np.random.rand(2)

 c = euclidean(a, b) # Shape: (10,)

6. How does the speed of euclidean compare to standard NumPy? In the following
code, we will benchmark a NumPy vectorized version with our previously defined
euclidean function:

 a = np.random.rand(10000, 2)

 b = np.random.rand(10000, 2)

 %timeit ((a - b)**2).sum(axis=1)

 153 µs ± 13.2 µs per loop

 %timeit euclidean(a, b)

 47.1 µs ± 3.19 µs per loop

The Numba version, again, beats the NumPy version by a large margin!

JIT classes
As of today, Numba doesn't support the optimization of generic Python objects. This
limitation, however, doesn't have a huge impact on numerical codes, as they usually
involve arrays and math operations exclusively.

Nevertheless, certain data structures are much more naturally implemented using objects;
therefore, Numba provides support for defining classes that can be used and compiled to
fast native code. Bear in mind that this is one of the newest (and almost experimental)
features, and it is extremely useful, as it allows us to extend Numba to support fast data
structures that are not easily implemented with arrays.

150 Exploring Compilers

As an example, we will show how to implement a simple linked list using JIT classes. A
linked list can be implemented by defining a Node class that contains two fields – a value
and the next item in the list. As you can see in the following figure, each Node connects
to the next and holds a value, and the last Node contains a broken link, to which we assign
a value of None:

Figure 5.1 – An illustration of a linked list

We will explore various JIT-related features in the following steps:

1. In Python, we can define the Node class as follows:

 class Node:

 def __init__(self, value):

 self.next = None

 self.value = value

2. We can manage the collection of Node instances by creating another class, called
LinkedList. This class will keep track of the head of the list (in the preceding
figure, this corresponds to the Node instance with value 3). To insert an element
in the front of the list, we can simply create a new Node instance and link it to the
current head.

In the following code, we develop the initialization function for LinkedList and
the LinkedList.push_back method that inserts an element in the front of the
list using the strategy outlined earlier:

 class LinkedList:

 def __init__(self):

 self.head = None

 def push_front(self, value):

 if self.head == None:

 self.head = Node(value)

 else:

 # We replace the head

Getting started with Numba 151

 new_head = Node(value)

 new_head.next = self.head

 self.head = new_head

3. For debugging purposes, we can also implement the LinkedList.show
method that traverses and prints each element in the list. The method is shown
in the following snippet:

 def show(self):

 node = self.head

 while node is not None:

 print(node.value)

 node = node.next

4. At this point, we can test our LinkedList and see whether it behaves correctly.
We can create an empty list, add a few elements, and print its content. Note that
since we are pushing elements to the front of the list, the last elements inserted
will be the first to be printed:

 lst = LinkedList()

 lst.push_front(1)

 lst.push_front(2)

 lst.push_front(3)

 lst.show()

 # Output:

 # 3

 # 2

 # 1

5. Finally, we can implement a function, sum_list, that returns the sum of the
elements in the linked list. We will use this method to time differences between
the Numba and pure Python versions:

 @nb.jit

 def sum_list(lst):

 result = 0

 node = lst.head

 while node is not None:

 result += node.value

 node = node.next

 return result

152 Exploring Compilers

6. If we measure the execution time of the original sum_list version and the
nb.jit version, we see that there is not much difference. The reason is that
Numba cannot infer the type of classes:

 lst = LinkedList()

 [lst.push_front(i) for i in range(10000)]

 %timeit sum_list(lst)

 1.73 ms ± 159 µs per loop

 %timeit sum_list.py_func(lst)

 1.01 ms ± 175 µs per loop

7. We can improve the performance of sum_list by compiling the Node and
LinkedList classes using the nb.jitclass decorator.

The nb.jitclass decorator takes a single argument that contains the attribute
types. In the Node class, the attribute types are int64 for value and Node for
next. The nb.jitclass decorator will also compile all the methods defined
for the class. Before delving into the code, we need to make two observations.

First, the attribute declaration must be done before the class is defined, but
how do we declare a type that we haven't defined yet? Numba provides the
nb.deferred_type() function that can be used for this purpose.

Second, the next attribute can be either None or a Node instance. This is what is
called an optional type, and Numba provides a utility called nb.optional that
lets you declare variables that can be (optionally) None.

This Node class is illustrated in the following code sample. As you can see,
node_type is predeclared using nb.deferred_type(). The attributes are
declared as a list of pairs containing the attribute name and the type (also note the
use of nb.optional). After the class declaration, we are required to declare the
deferred type:

 node_type = nb.deferred_type()

 node_spec = [

 ('next', nb.optional(node_type)),

 ('value', nb.int64)

]

Getting started with Numba 153

 @nb.jitclass(node_spec)

 class Node:

 # Body of Node is unchanged

 node_type.define(Node.class_type.instance_type)

8. The LinkedList class can be easily compiled, as follows. All that's needed is to
define the head attribute and to apply the nb.jitclass decorator:

 ll_spec = [

 ('head', nb.optional(Node.class_type. \

 instance_type))

]

 @jitclass(ll_spec)

 class LinkedList:

 # Body of LinkedList is unchanged

9. We can now measure the execution time of the sum_list function when we pass
a JIT LinkedList:

 lst = LinkedList()

 [lst.push_front(i) for i in range(10000)]

 %timeit sum_list(lst)

 106 µs ± 2.64 µs per loop

 %timeit sum_list.py_func(lst)

 2.42 ms ± 51.8 µs per loop

Interestingly, when using a JIT class from a compiled function, we obtain a substantial
performance improvement against the pure Python version. However, using the JIT class
from the original sum_list.py_func actually results in a worse performance. Ensure
that you use JIT classes only inside compiled functions!

154 Exploring Compilers

Limitations in Numba
There are some instances where Numba cannot properly infer the variable types. In the
following example, we define a function that takes a nested list of integers and returns
the sum of the element in every sublist. In this case, Numba will raise a warning:

 a = [[0, 1, 2],

 [3, 4],

 [5, 6, 7, 8]]

 @nb.jit

 def sum_sublists(a):

 result = []

 for sublist in a:

 result.append(sum(sublist))

 return result

 sum_sublists(a)

 # NumbaWarning: Compilation is falling back to object

 mode WITH looplifting enabled because Function

 "sum_sublists" failed type inference...

The problem with this code is that Numba is not able to determine the list type and fails.
A way to fix this problem is to help the compiler determine the right type by initializing
the list with a sample element and removing it at the end:

 @nb.jit

 def sum_sublists(a):

 result = [0]

 for sublist in a:

 result.append(sum(sublist))

 return result[1:]

Among other features that are not yet implemented in the Numba compiler are function
and class definitions, list, set, and dict comprehensions, generators, the with
statement, and try and except blocks. Note, however, that many of these features
may become supported in the future.

The PyPy project 155

Overall, we have seen multiple approaches of working with Numba to speed up our
applications, such as type specializations, NumPy's universal functions, and JIT classes.
We will now move on to our second main topic in this chapter – PyPy.

The PyPy project
PyPy is a very ambitious project at improving the performance of the Python interpreter.
The way PyPy improves performance is by automatically compiling slow sections of the
code at runtime.

PyPy is written in a special language called RPython (rather than C) that allows
developers to implement advanced features and improvements quickly and reliably.
RPython means Restricted Python because it implements a restricted subset of the
Python language targeted to the compiler development.

As of today, PyPy version 7.3.5 supports a lot of Python features and is a possible choice
for a large variety of applications, such as game and web development. PyPy compiles code
using a very clever strategy called tracing JIT compilation. At first, the code is executed
normally using interpreter calls. PyPy then starts to profile the code and identifies the most
intensive loops. After the identification takes place, the compiler then observes (traces) the
operations and can compile its optimized, interpreter-free version.

Once an optimized version of the code is present, PyPy can run the slow loop much faster
than the interpreted version.

This strategy can be contrasted with what Numba does. In Numba, the units of compilation
are methods and functions, while the PyPy focus is just slow loops. Overall, the focus of the
projects is also very different, as Numba has limited scope for numerical code and requires
a lot of instrumentation, while PyPy aims at replacing the CPython interpreter.

In this section, we will demonstrate and benchmark PyPy on our particle simulator
application. We will begin by setting up Python and then look at running a particle
simulator in PyPy.

Setting up PyPy
PyPy is distributed as a precompiled binary that can be downloaded from http://
pypy.org/download.html, and it currently supports Python versions 2.7 and 3.7.
In this chapter, we will demonstrate the usage of the 3.7 version.

http://pypy.org/download.html
http://pypy.org/download.html

156 Exploring Compilers

Once PyPy is downloaded and unpacked, you can locate the interpreter in the bin/pypy
directory relative to the unpacked archive. You can initialize a new virtual environment,
where we can install additional packages using the following command:

$ /path/to/bin/pypy -m ensurepip

$ /path/to/bin/pypy -m pip install virtualenv

$ /path/to/bin/virtualenv my-pypy-env

To activate the environment, we will use the following command:

$ source my-pypy-env/bin/activate

At this point, you can verify that the binary Python is linked to the PyPy executable by
typing python -V. At this point, we can go ahead and install some packages we may
need. Note that PyPy may have limited support for software that uses the Python C API
(most notably, packages such as numpy and matplotlib). We can go ahead and install
them in the usual way:

(my-pypy-env) $ pip install numpy matplotlib

On certain platforms, the installation of numpy and matplotlib can be tricky. You can
skip the installation step and remove any imports on these two packages from the scripts
we will run.

Running a particle simulator in PyPy
Now that we have successfully set up the PyPy installation, we can go ahead and run
our particle simulator. As a first step, we will time the particle simulator from Chapter 1,
Benchmarking and Profiling, on the standard Python interpreter. If the virtual environment
is still active, you can issue the deactivate command to exit the environment:

(my-pypy-env) $ deactivate

At this point, we can time our code using the timeit command-line interface:

$ python -m timeit --setup "from simul import benchmark"

 "benchmark()"

10 loops, best of 3: 886 msec per loop

The PyPy project 157

We can reactivate the environment and run the exact same code from PyPy. On Ubuntu,
you may have problems importing the matplotlib.pyplot module. You can try
issuing the following export command to fix the issue or removing the matplotlib
imports from simul.py:

$ export MPLBACKEND='agg'

Now, we can go ahead and time the code using PyPy:

$ source my-pypy-env/bin/activate

(my-pypy-env) $ python -m timeit --setup "from simul import

 benchmark" "benchmark()"

WARNING: timeit is a very unreliable tool. use perf or

something else for real measurements

10 loops, average of 7: 106 +- 0.383 msec per loop (using

standard deviation)

Note that we obtained a large (more than eight times) speed-up! PyPy, however, warns us
that the timeit module can be unreliable. We can confirm our timings using the perf
module, as suggested by PyPy:

(my-pypy-env) $ pip install perf

(my-pypy-env) $ python -m perf timeit --setup 'from simul

 import benchmark' 'benchmark()'

.......

Median +- std dev: 97.8 ms +- 2.3 ms

This gives us a more reliable assurance that our speed-up is consistent. Overall, we can
see that with a simple reinstallation of Python, we are able to achieve significant speed-up
via PyPy.

Advanced PyPy
Although not within the scope of this chapter, for more advanced usage of
PyPy, one could integrate it with Pyglet for game development and PyLongs
and Django for web development.

Overall, Numba and PyPy together offer us many options regarding how we might want
to go about leveraging JIT compilers to supercharge our Python programs. In the next
section, we examine several other options that may be of interest.

158 Exploring Compilers

Other interesting projects
Over the years, many projects attempted to improve Python performance through several
strategies, and, sadly, many of them failed. As of today, there are a few projects that survive
and hold the promise for a faster Python.

Numba and PyPy are mature projects that are steadily improving over the years. Features
are continuously being added, and they hold great promise for the future of Python:

• Nuitka is a program developed by Kay Hayen that compiles Python code to C.
At the time of writing (version 0.6.15), it provides extreme compatibility with the
Python language and produces efficient code that results in moderate performance
improvements over CPython.

Nuitka is quite different than Cython in the sense that it focuses on extreme
compatibility with the Python language, and it doesn't extend the language with
additional constructs.

• Pyston is a new interpreter developed by Dropbox that powers JIT compilers.
It differs substantially from PyPy as it doesn't employ a tracing JIT but rather a
method-at-a-time JIT (similar to what Numba does). Pyston, like Numba, is also
built on top of the LLVM compiler infrastructure.

Pyston is in active development and supports both Python 2.7 and 3.8. Benchmarks
show that it is faster than CPython but slower than PyPy; that said, it is still
an interesting project to follow as new features are added and compatibility
is increased.

At this point, we have been introduced to four different JIT compilers. You may find in
your own experience that, when developing an application, different situations and use
cases may call for different compilers. It is, therefore, important to explore our options
when it comes to using a JIT compiler to speed up our Python code.

Summary
Numba is a tool that compiles fast, specialized versions of Python functions at runtime.
In this chapter, we learned how to compile, inspect, and analyze functions compiled by
Numba. We also learned how to implement fast NumPy universal functions that are
useful in a wide array of numerical applications. Finally, we implemented more complex
data structures using the nb.jitclass decorator. Overall, Numba is built to accelerate
numeric loops that are common in scientific computing. As we have seen, Numba works
seamlessly with the popular NumPy library.

Questions 159

Tools such as PyPy allow us to run Python programs unchanged to obtain significant
speed improvements. We demonstrated how to set up PyPy, and we assessed the
performance improvements on our particle simulator application. We have also seen that,
unlike Numba, PyPy doesn't operate on a function level but instead seeks to implement
a more efficient interpreter for a whole Python program.

We also, briefly, described the current ecosystem of the Python compilers and compared
them with each other. These discussions will give you the confidence to explore and work
with different JIT compilers and select the most appropriate for your applications. In
the next chapter, we will see a specialized version of a JIT compiler that is optimized
for machine learning operations and tasks.

Questions
1. What are JIT compilers and why are they useful?
2. How does Numba determine the types of variables in a Python program? What

happens when these variables are not of the type that Numba works well with?
3. What is the high-level idea of tracing a JIT compilation of PyPy?

Further reading
• More on JIT compilers: https://www.freecodecamp.org/news/just-

in-time-compilation-explained/

https://www.freecodecamp.org/news/just-in-time-compilation-explained/
https://www.freecodecamp.org/news/just-in-time-compilation-explained/

6
Automatic

Differentiation
and Accelerated

Linear Algebra for
Machine Learning

With the recent explosion of data and data generating systems, machine learning has
grown to be an exciting field, both in research and industry. However, implementing a
machine learning model might prove to be a difficult endeavor. Specifically, common tasks
in machine learning, such as deriving the loss function and its derivative, using gradient
descent to find the optimal combination of model parameters, or using the kernel method
for nonlinear data, demand clever implementations to make predictive models efficient.

162 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

In this chapter, we will discuss the JAX library, the premier high-performance machine
learning tool in Python. We will explore some of its most powerful features, such as
automatic differentiation, JIT compilation, and automatic vectorization. These features
streamline the tasks that are central to machine learning mentioned previously, making
training a predictive model as simple and accessible as possible. All these discussions
will revolve around a hands-on example of a binary classification problem.

By the end of the chapter, you will be able to use JAX to power your machine learning
applications and explore the more advanced features that it offers.

The list of topics covered in this chapter is as follows:

• A crash course in machine learning

• Getting JAX up and running

• Automatic differentiation for loss minimization

• Just-In-Time compilation for improved efficiency

• Automatic vectorization for efficient kernels

A crash course in machine learning
To fully appreciate the functionalities that JAX offers, let's first talk about the principal
components of a typical workflow of training a machine learning model. If you are
already familiar with the basics, feel free to skip to the next section, where we begin
discussing JAX.

In machine learning, we set out to solve the problem of predicting an unknown target
value of interest of a data point by considering its observable features. The goal is to design
a predictive model that processes the observable features and outputs an estimate of what
the target value might be. For example, image recognition models analyze the pixel values
of an image to predict which object the image depicts, while a model processing weather
data could predict the probability of rainy weather for tomorrow by accounting for
temperature, wind, and humidity.

In general, a machine learning model could be viewed as a general mathematical function
that takes in the observable features, typically referred to as X, and produces a prediction
about the target value, Y. Implicitly assumed by the model is the fact that there is a certain
mathematical relationship between the features (input) and the target values (output).
Machine learning models in turn aim to learn about this relationship by studying a large
number of examples. As such, data is crucial in any machine learning workflow.

A crash course in machine learning 163

A dataset is a collection of labeled examples – data points whose observable features, X,
and target values, Y, are both available. It is through these labeled points that a model will
attempt to uncover the relationship between X and Y; this is known as training the model.
After training, the learned model can then take in the features of unlabeled data points,
whose target values are unknown to us, and output its predictions. These predictions are
what the model believes the target values of the unlabeled data points to be, given the
observable features that they have.

In this section, we will talk about how training is facilitated for many common machine
learning models. Specifically, it consists of three core components—the model's
parameters, the model's loss function, and the minimization of that loss function—which
we will consider one by one.

We will ground our discussions with an explicit example problem. Assume that we have
a number of points in a two-dimensional space (which is simply the xy plane), each of
which belongs to either the positive class or the negative class. The following is an example
where the yellow points are the positives, and the purple ones are the negatives:

Figure 6.1 – An example binary classification problem

In this case, the observable features are the x and y coordinates of the points, so X
consists of two features, while the target value y is their class membership, a positive or a
negative. Our goal is to train a machine learning model on a set of labeled data and make
predictions on unlabeled points. For example, after training, our model should be able to
predict whether point (2, 1) is positive or negative.

It is quite clear to us what the separation between the positives and the negatives is,
where the lower-right corner corresponds to the positive class, and the upper-left corner
corresponds to the negative class. Point (2, 1) specifically is likely a positive (a yellow
point). But how does a machine learning model do this automatically, without humans
having to hardcode such a classification rule? We will see this in the next section.

164 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Model parameters
A predictive model starts out with a formula that attempts to explain the relationship
between the observable features and the target value. We will consider the class of linear
models (one of the most common and simplest types of machine learning models),
which assume that the target value is a linear combination of the features (hence the
model's name)

𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2,

where 𝑥𝑥1 and 𝑥𝑥2 are the x and y coordinates of the points, and the numbers 𝑤𝑤𝑖𝑖 are the
model's parameters.

We do not know the values of these parameters, and each combination of values for these
parameters defines a unique relationship between x and y, a unique hypothesis. It is the
values of these parameters that we need to identify during the training phase, such that
the aforementioned relationship fits the labeled data that we have access to.

In our classification model, we constrain the target values y to be either positive (+1) or
negative (-1), but y as defined by the linear relationship discussed earlier can take on any
real value. As such, it is customary to transform a real-valued y to be either +1 or -1 by
simply taking the sign of the value. In other words, the actual model we are working
with is:

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2)

Performing predictions is at the heart of a common machine learning task. Given the
linear relationship between features X and the target value y, predicting the target value 𝑦𝑦∗
of a new data point with features 𝑥𝑥∗1 and 𝑥𝑥∗2 simply involves applying the mathematical
model we have:

𝑦𝑦∗ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥∗1 + 𝑤𝑤2𝑥𝑥∗2)

The only missing piece of our puzzle is how to identify the correct values for our
parameters 𝑤𝑤𝑖𝑖 . Again, we need to determine the values for the model's parameters to fit
our training data. But how can we exactly quantify how well a specific value combination
for the parameters explains a given labeled dataset? This question leads to the next
component of a machine learning workflow: the model's loss function.

A crash course in machine learning 165

Loss function
A model's loss function quantifies a property about the model that we'd like to minimize.
This could, in general, be the cost incurred when the model is trained a certain way.
Within our context, the loss function is specifically the amount of predictive error that the
model makes on the training dataset. This quantity approximates the error made on future
unseen data, which is what we really care about. (In different settings, you might encounter
utility functions, which, most of the time, are simply the negative of corresponding loss
functions, which are to be maximized.) The lower the loss, the better our model is likely
to perform (barring technical problems such as overfitting).

In a classification problem like ours, there are many ways to design an appropriate loss
function. For example, the 0-1 loss simply counts how many instances there are in which
the model makes an incorrect prediction, while the binary cross-entropy loss is a more
popular choice as the function is smoother than 0-1 and thus easy to optimize (we will
come back to this point later).

For our example, we will use a version of the support-vector loss function, which is
formalized as:

𝐿𝐿 = 1
𝑛𝑛 ∑ max(0, 1 − 𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

where i, indicating the index of unique examples in the training set, ranges from 1 to n, the
training set size. 𝑦𝑦𝑖𝑖 is the true label of the i-th example, while �̅�𝑦𝑖𝑖 is the corresponding label
predicted by the learning model.

This non-negative function calculates the average of the max(0, 1 − 𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖) term across all
training examples. It is easy to see that for each example i, if 𝑦𝑦𝑖𝑖 and �̅�𝑦𝑖𝑖 are similar to each
other, the max term will evaluate to a small value. On the other hand, if 𝑦𝑦𝑖𝑖 and �̅�𝑦𝑖𝑖 have
opposite signs (in other words, if the model misclassifies the example), the max term will
increase. As such, this function is appropriate to quantify the error that our predictive
model is making for a given parameter combination.

Given this loss function, the problem of training our linear model reduces to finding the
optimal parameter 𝑤𝑤𝑖𝑖 that minimizes the loss (preferably at 0). Of course, the search space
of 𝑤𝑤𝑖𝑖 is very large—each parameter could be any real-valued number—so exhaustively
trying out all possible combinations of values for 𝑤𝑤𝑖𝑖 is out of the question. This leads us
to the final subsection: intelligently minimizing a loss function.

166 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Loss minimization
Without going into too much technical detail, you can mathematically find the minimum
of a given function by utilizing its derivative information. Derivates of a function denote
the rate of change in the function value with respect to the rate of change of its input. By
analyzing the value of the derivative, or more commonly referred to in machine learning
as the gradient, we could algorithmically identify input locations at which the objective
function is likely to be low-valued.

However, derivatives are only informative in helping us locate the function minimum
if the function itself is smooth. Smoothness is a mathematical property that states that if
the input value of a function only changes by a little, the function value (output) should
not change by too much. Notable examples of non-smooth functions include the step
function and the absolute value function, but most functions that you will encounter
are likely to be smooth. The smoothness property explains our preference for the binary
cross-entropy loss over the 0-1 loss, the latter of which is a non-smooth function. The
support vector-style loss function we will be using is also smooth.

The overall takeaway is that if we have access to the derivate of a smooth function, finding
its minimum will be easy to do. But how do we do this exactly? Many gradient-based
optimization routines have been studied, but we will consider arguably the most common
method: gradient descent. The high-level idea is to inspect the gradient of the loss function
at a given location and move in the direction opposite to that gradient (in other words,
descending the gradient, hence the name), illustrated next:

Figure 6.2 – Illustration of gradient descent

Getting JAX up and running 167

Due to the definition of the gradient, the function value f(x') evaluated at the point x'
that is immediately in the opposite direction of the gradient with respect to a given point
x is lower than f(x). As such, by using the gradient of the loss function as a guide and
incrementally moving in the opposite direction, we can theoretically arrive at the function
minimum. One important consideration is that, if we move our evaluation by a large
amount, even in the correct direction, we could end up missing the true minimum. To
address this, we typically adjust our step to be only a fraction of the loss gradient.

Concretely, denote ∇𝐿𝐿𝑖𝑖 as the gradient of the loss function L with respect to the i-th
parameter 𝑤𝑤𝑖𝑖 , so the gradient descent update rule is to adjust the value of 𝑤𝑤𝑖𝑖 as:

𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 − 𝛾𝛾∇𝐿𝐿𝑖𝑖

where γ is a small number (much lower than 1) that acts as a step size. By repeatedly
applying this update rule, we could incrementally adjust the values of the model's
parameters to lower the model's loss, thereby improving its predictive performance.

And with that, we have finished sketching out the main components of a typical machine
learning workflow. As a summary, we work with a predictive model (in our case, a linear
one) that has a certain number of adjusting parameters that seek to explain the data
we have. Each parameter combination leads to a different hypothesis whose validity is
quantified by the loss function. Finally, by taking the derivative of the loss function and
using gradient descent, we have a way to incrementally update the model's parameters
to achieve better performance.

We will now begin the main topic of this chapter: the JAX library.

Getting JAX up and running
As briefly mentioned, JAX is a combination of different tools for developing accelerated,
high-performance computations with a focus on machine learning applications.
Remember from the last chapter that the NumPy library offers optimized computation
for numerical operations such as finding the min/max or taking the sum of the average
along an axis. We can think of JAX as the NumPy equivalent for machine learning, where
common tasks in machine learning could be done in highly optimized code. These, as we
will see, include automatic differentiation, accelerated linear algebra using a Just-In-Time
compiler, and efficient vectorization and parallelization of code, among other things.

JAX offers these functionalities through what's known as functional transformations.
In the simplest sense, a functional transformation in JAX converts a function, typically
one that we build ourselves, to an optimized version where different functionalities are
facilitated. This is done via a simple API, as we will see later.

But first, we will talk about installing the library on a local system.

168 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Installing JAX
A barebones version of JAX could be simply installed using the regular Python package
manager pip:

pip install --upgrade pip

pip install --upgrade jax jaxlib

These commands will install a CPU-only version of JAX, which is recommended if you
are planning to try it out on a local system such as a laptop. The full version of JAX, with
support for NVIDIA GPUs (commonly used by deep learning models), could also be
installed via a more involved procedure, outlined in their documentation: https://
jax.readthedocs.io/en/latest/developer.html.

Furthermore, note that JAX can only be installed on Linux (Ubuntu 16.04 or above) or
macOS (10.12 or above). To run JAX on a Windows machine, you would need the Windows
Subsystem for Linux, which lets you run a GNU/Linux environment on Windows. If you
typically run your machine learning jobs on a cluster, you should talk to your system
administrator about finding the correct way to install JAX.

If you are an independent machine learning practitioner, you might find these technical
requirements to install the full version of JAX intimidating. Luckily, there is a free
platform that we could use to see JAX in action: Google Colab.

Using Google Colab
Generally, Google Colab is a free Jupyter notebook platform that is integrated with a
high-performance backend and machine learning tools on which you could build
prototypes of machine learning models with ease.

There are two main advantages to using Google Colab. First, the platform comes with most
machine learning-related libraries (for example, TensorFlow, PyTorch, and scikit-learn)
and tools preinstalled, including a GPU (graphics processing unit) and a TPU (tensor
processing unit), free of charge! This allows independent machine learning researchers
and students to try out expensive hardware on their machine learning pipelines at no
cost. Second, Google Colab allows collaborative editing between different users, enabling
streamlined group work when building models.

To utilize this platform, all you need is a Google/Gmail account when signing in at
https://colab.research.google.com/. Using this platform is generally
simple and intuitive, but you can also refer to several readings included at the end of this
chapter for further content relating to Google Colab. Note that the code presented in the
remainder of this chapter is run on Google Colab, which means you could go to [INSERT
LINK] and simply run the code yourself to follow along with our later discussions.

https://jax.readthedocs.io/en/latest/developer.html
https://jax.readthedocs.io/en/latest/developer.html
https://colab.research.google.com/

Automatic differentiation for loss minimization 169

And with that, we are ready to begin talking about the functionalities that JAX offers.

Automatic differentiation for loss
minimization
Recall from our previous discussion that to fit a predictive model to a training dataset, we
first analyze an appropriate loss function, derive the gradient of this loss, and then adjust
the parameters of the model in the opposite direction of the gradient to achieve a lower
loss. This procedure is only possible if we have access to the derivative of the loss function.

Earlier machine learning models were able to do this because researchers derived the
derivatives of common loss functions by hand using calculus, which were then hardcoded
into the training algorithm so that a loss function could be minimized. Unfortunately,
taking the derivative of a function could be difficult to do at times, especially if the loss
function being used is not well behaved. In the past, you would have to choose a different,
more mathematically convenient loss function to make your model run even if the new
function was less appropriate, potentially sacrificing some of the expressiveness of the
original function.

Recent advances in computational algebra have resulted in the technique called automatic
differentiation. Exactly as it sounds, this technique allows for an automated process to
numerically evaluate the derivative of a given function, expressed in computer code,
without relying on a human to provide the closed-form solution for that derivative. On the
highest level, automatic differentiation traces the order in which the considered function
is computed and which arithmetic operations (for example, addition, multiplication, and
exponentiation) were involved, and then applies the chain rule to obtain the numerical
value of the derivative in an automated manner. By intelligently taking advantage of the
information present in the computational calculation of the function itself, automatic
differentiation can compute its derivative efficiently and accurately.

Recall that in our running toy problem, we would like to minimize the loss function:

𝐿𝐿 = 1
𝑛𝑛 ∑ max(0, 1 − 𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

where �̅�𝑦𝑖𝑖 is the prediction made by our linear predictive model for the i-th data point. Of
course, we could derive the gradient of this loss function when implementing gradient
descent (which would require us to brush up on our calculus!), but with automatic
differentiation, we will not have to.

170 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

The technique is widely used in deep learning tools such as TensorFlow and PyTorch,
where computing the gradient of a loss function is a central task. We could use the API for
automatic differentiation from these libraries to compute the loss gradient, but by using
JAX's API, we will be able to utilize other powerful functionalities that we will get to later.
For now, let's build our model and the gradient descent algorithm using JAX's automatic
differentiation tool.

Making the dataset
First, we need to generate the toy dataset shown in Figure 6.1. To do this, we will make
use of the make_blobs function from the datasets module in scikit-learn. If you are
running your code locally, you would need to install scikit-learn using the pip command:

pip install sklearn

Otherwise, if you are using Google Colab, scikit-learn, as well as all the other external
libraries used in this chapter's code, already comes preinstalled, so you only need to
import it into your program.

The make_blobs function, as the name suggests, generates blobs (in other words,
clusters) of data points. Its API is simple and readable:

X, y = make_blobs(

 n_samples=500, n_features=2, centers=2, \

 cluster_std=0.5, random_state=0

)

Here we are creating a two-dimensional (specified by n_features) dataset of 500
points (specified by n_samples). These data points should belong to one of two classes
(specified by centers). The cluster_std argument controls how tightly the points
belonging to the same class cluster together; in this case, we are setting it to 0.5. At this
point, we have a dataset of 500 points, each of which has two features and belongs to either
the positive class or the negative class. The variable X is a NumPy array that contains the
features, having a shape of (500, 2), while y is a 500-long, one-dimensional, binary
array containing the labels.

By default, the negative class has the label of 0 in y. As a data preprocessing step, we
will convert all the instances of 0 in y to -1 using NumPy's convenient conditional
indexing syntax:

y[y == 0] = -1

Automatic differentiation for loss minimization 171

We are also adding to X a third feature column that only contains instances of 1. This
column is a constant and corresponds to the free coefficient 𝑤𝑤0 in our model:

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2)

On the other hand, 𝑤𝑤1 and 𝑤𝑤2 are the coefficients for the first and second features in X.

We have now generated our toy example. If you now call Matplotlib to generate a scatter
plot on X, for example, via the following code:

plt.scatter(X[:, 0], X[:, 1], c=y);

You will obtain the same plot as in Figure 6.1. And with that, we are ready to begin
building our predictive model.

Building a linear model
Remember two core components of a machine learning pipeline: the model and the loss
function. To build our model, we first need to write functions that correspond to these
components. First, the model comes in the form of the predict function:

import jax.numpy as jnp

def predict(w, X):

 return jnp.dot(X, w)

This function takes in the model's parameters w, implicitly assumed to be in the form of
a NumPy array, and the features of the training data points X, a NumPy two-dimensional
matrix. Here we are using the dot function from the NumPy module of JAX, aliased
jnp in the code, to take the dot product of w and X. If you are unfamiliar with the dot
product, it is simply an algebraic operation that is a shorthand for the linear combination
𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 that corresponds to our model. Overall, this function encodes for our
model that the prediction we make about the label of a data point is (the sign of) the dot
product of the parameters and the data features.

While not a focus of our discussion, it is important at this point to note that the numpy
module of JAX provides nearly identical APIs for mathematical operations as NumPy.
The dot function is simply one example; others could be found on their documentation
site: https://jax.readthedocs.io/en/latest/jax.numpy.html. This is
to say that if you have accumulated a significant amount of code in NumPy but would
like to convert it to JAX, replacing your import statement of import numpy as np
with import jax.numpy as np would, in most cases, do the trick; no complicated,
painstaking conversion is necessary.

https://jax.readthedocs.io/en/latest/jax.numpy.html

172 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

So, we have implemented the prediction function of our model. Our next task is to write
the loss function

𝐿𝐿 = 1
𝑛𝑛 ∑ max(0, 1 − 𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖) ,

𝑛𝑛

𝑖𝑖=1

The loss function can be written with the following code:

def loss(w):

 preds = predict(w, X)

 return jnp.mean(jnp.clip(1 - jnp.multiply(y, preds), \

 a_min=0))

Let's take a moment to break this code down. This loss function is a function of w, since,
if w changes, the loss will change accordingly.

Now, let's focus on the term inside the summation symbol in the previous formula: it is
the max between 0 and 1 − 𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖 , where 𝑦𝑦𝑖𝑖 is the true label of a data point and �̅�𝑦𝑖𝑖 is the
corresponding prediction made by the model. As such, we compute this quantity with
jnp.clip(1 - jnp.multiply(y, preds), a_min=0), before which we call
the predict function to obtain the values for �̅�𝑦𝑖𝑖 , stored in the preds variable.

If you are familiar with the NumPy equivalent, you might have noticed that these
functions that we are using, clip and multiply, have an identical interface in NumPy;
again, JAX tries to make the transition for NumPy users as seamless as possible. Finally, we
compute the mean of this max term across all training examples with the mean function.

Believe it or not, we have successfully implemented our linear model! With a specific
value for w, we will be able to predict what the label of a data point is using the predict
function and compute our loss with the loss function. At this point, we can try out
different values for w; as a common practice, we will initialize w to be random numbers:

np.random.seed(0)

w = np.random.randn(3)

The last step of our training procedure is to find the best value for w that minimizes the
loss, which we will implement next.

Automatic differentiation for loss minimization 173

Gradient descent with automatic differentiation
Recall that in the gradient descent algorithm, we compute the gradient of the loss function
for the current value of w and then adjust w by subtracting a fraction of the gradient
(effectively moving in the opposite direction of the gradient).

Again, in the past, we would need to derive the gradient in closed form and implement it
in our code. With automatic differentiation, we simply need the following:

from jax import grad

loss_grad = grad(loss)

loss is the function we implemented in the last subsection. Here we are using the grad
function from JAX to obtain the gradient function of loss. This is to say that if we were to
call loss_grad, the gradient function, on a given value of w using loss_grad(w), we
would obtain the gradient of the loss function at w, in the same way loss(w) gives us
the loss itself at w.

This is a so-called function transformation, which takes in a function in Python (loss in
our case) and returns a related function (loss_grad) that could then be called on actual
inputs to compute quantities that we are interested in. Function transformations are a
powerful interface that makes it easy to work with functional logic and are the main way
in which you use JAX. We will see that all other functionalities offered by JAX discussed
in this chapter are function transformations.

With our gradient function in hand, we now implement gradient descent using a simple
for loop:

n_iters = 200

lr = 0.01

loss_grad = grad(loss)

for i in range(n_iters):

 grads = loss_grad(w)

 w = w - lr * grads

 tmp_loss = loss(w)

 if tmp_loss == 0:

 break

174 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

If you are looking at the Google Colab notebook, you might see some other book-keeping
code that is used to show a real-time progress bar, but the preceding code is the main logic
of gradient descent.

At each iteration of the for loop, we compute the gradient of the loss function at the
current value of w, and then use that gradient to adjust the value of w: w = w - lr
* grads. How big of a step we will take in the opposite direction of the gradient is
controlled by the lr variable, set to 0.01. This variable is typically referred to as the
learning rate in the language of machine learning.

After the adjustment, we will check to see whether this new value of w does, in fact,
minimize our loss at 0, in which case we simply exit the for loop with the break
statement. If not, we repeat this process until some termination condition is satisfied;
in our case, we simply say that we only do this for at most 200 times (specified by the
n_iters variable).

When we run the code, we will observe that as the for loop progresses, the value of the
loss decreases for each adjustment. At the end of the loop, our loss decreases to a small
number: roughly 0.013. Using Matplotlib, we could quickly sketch out the progression
of this decrease with plt.plot(losses), which produces the following plot:

Figure 6.3 – The decrease in loss of the linear model

We see that with the random guess for the value of w at the beginning, we receive a loss of
roughly 2.5, but using gradient descent, we have reduced it to almost zero. At this point, we
can be confident that the value of w that we currently have after gradient descent fits our
data well.

This concludes the training of our linear predictive model. A customary task that follows
training a model is to examine the predictions made by the model across a whole feature
space. This process helps ensure that our model is learning appropriately. When working
in a low-dimensional space such as ours, we can even visualize this space.

Automatic differentiation for loss minimization 175

Specifically, our decision boundary is a straight line that (hopefully) separates the two
classes that we'd like to perform classification: 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 = 0 , where 𝑥𝑥1 and 𝑥𝑥2 are
coordinates of points within our two-dimensional space. As such, we can draw this line by
first generating a fine-grid array for the x coordinates (𝑥𝑥1) :

xs = np.linspace(X[:, 0].min(), X[:, 0].max(), 100)

We can derive the y coordinates (𝑥𝑥2) using the equation for the line we had previously:

plt.plot(xs, (xs * w[0] + w[2]) / - w[1])

Plotting this line together with the scattered points corresponding to our training data,
we obtain the following plot:

Figure 6.4 – The decision boundary of the learned model

We see that our decision boundary nicely separates the two classes that we have. Now,
when we'd like to make a prediction regarding which class an unseen point belongs to, we
simply put its features through our predict function and look at the sign of the output.

And that is all there is to it! Of course, when we work with more complicated models,
other more specialized considerations need to be made. However, the high-level process
remains unchanged: designing a model and its loss function and then using gradient
descent (or some other loss minimization strategy) to find the optimal combination of
parameters. We have seen that using the automatic differentiation module in JAX, we were
able to do this easily with minimal code while avoiding the hairy math that is usually
involved with deriving the gradient of a loss function.

With that said, the benefits that JAX offers don't stop there. In our next section, we will see
how to make our current code more efficient by using JAX's internal Just-In-Time (JIT)
compiler.

176 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Just-In-Time compilation for improved
efficiency
As we have learned from the last chapter, JIT compilation allows a piece of code that is
expected to run many times to be executed more efficiently. This process is specifically
useful in machine learning where functions such as the loss or the gradient of the loss of
a model need to be computed many times during the loss minimization phase. We hence
expect that by leveraging a JIT compiler, we can make our machine learning models
train faster.

You might think that to do this, we would need to hook one of the JIT compilers we
considered in the last chapter into JAX. However, JAX comes with its own JIT compiler,
which requires minimal code to integrate in an existing program. We will see how to use
it by modifying the training loop we made in the last section.

First, we reset the 𝑤𝑤𝑖𝑖 parameters of our models:

np.random.seed(0)

w = np.random.randn(3)

Now, the way we will integrate the JIT compiler into our program is to point it to the
gradient of our loss function. Remember that we can reap the benefits of JIT compilation
by applying it to a piece of code that we expect to execute many times, which we have
mentioned is exactly the case for the loss gradient. Recall that we were able to derive
this gradient in the last section using the grad function transformation:

loss_grad = grad(loss)

To obtain the JIT-compiled version of this function, we can follow a very similar process,
in which we transform this loss gradient function using jit:

from jax import jit

loss_grad = jit(grad(loss))

Amazingly, that is all we need to do. Now, if we run the same training loop we currently
have, with this one line changed, we will obtain the same result, including the learning
curve and the decision boundary we plotted earlier.

Automatic vectorization for efficient kernels 177

However, upon inspecting the running time of the training loop, we will notice that the
training loop is now much more efficient: within our Google Colab notebook, the speed
goes from roughly 77 iterations to 175 iterations per second! Note that although these
numbers might vary across different runs of the code, the improvement should stay
apparent. While this speedup might not be meaningful to us and our simple linear model,
it will prove useful for more heavyweight models such as neural networks, with millions
to billions of parameters, which take weeks and months to train.

Furthermore, this speedup was achieved with a single line of code changed using the
function transformation, jit. This means that however complicated the functions you
are working with are, if they are JAX-compatible, you can simply pass them through jit
to enjoy the benefits of JIT compilation.

At this point, we have explored two powerful techniques to accelerate our machine
learning pipeline: automatic differentiation and JIT compilation. In the next section,
we will look at a final valuable feature of JAX – automatic vectorization.

Automatic vectorization for efficient kernels
You might remember from our discussions on NumPy that the library is efficient at
applying numerical operations to all elements in an array or the elements along specific
axes. By exploiting the fact that the same operation is to be applied to multiple elements,
the library optimizes low-level code that performs the operation, making the computation
much more efficient than doing the same thing via an iterative loop. This process is
called vectorization.

When working with machine learning models, we would like to go through a procedure
of vectorizing a specific function, rather than looping through an array or a matrix, to gain
performance speedup. Vectorization is typically not easy to do and might involve clever
tricks to rewrite the function that we'd like to vectorize into another form that admits
vectorization easily.

JAX addresses this concern by providing a function transformation that automatically
vectorizes a given function, even if the function is only designed to take in single-valued
variables (which means traditionally, an iterative loop would be necessary). In this section,
we will see how to use this feature by going through the process of kernelizing our
predictive model. First, we need to briefly discuss what kernels are as well as their place
in machine learning.

178 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Data that is not linearly separable
Remember that the predictive model we currently have assumes that the target we'd like
to predict for can be expressed as a linear combination of the data features; the model is
thus a linear one. This assumption is quite restrictive in practice, as data can present highly
nonlinear and still meaningful patterns.

For example, here we use the make_moons function from the same datasets module
of scikit-learn to generate another toy dataset and visualize it, again using a scatter plot:

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=200, noise=0.1, random_state=0)

X = np.hstack((X, np.ones_like(y).reshape(-1, 1)))

y[y == 0] = -1

plt.scatter(X[:, 0], X[:, 1], c=y);

This will generate the following plot:

Figure 6.5 – A linearly non-separable dataset

Once again, this is a binary classification problem where we need to distinguish between
the yellow and the dark blue points. As you can see, these data points are not linearly
separable since, unlike our previous dataset, a straight line that perfectly separates the two
classes here does not exist. In fact, if we were to try to fit a linear model to this data, we
would obtain a model with a relatively high loss (roughly 0.7) and a decision boundary
that is clearly unsuitable, as shown here:

Automatic vectorization for efficient kernels 179

Figure 6.6 – Fitting a linear model on nonlinear data

How, then, could we modify our current model so that it can handle nonlinear data? A
typical solution in these kinds of situations is the kernel method in machine learning,
which we will briefly discuss next.

The kernel method in machine learning
Without going into much technical detail, the kernel method (sometimes referred to as the
kernel trick) refers to the process of transforming a low-dimensional dataset, such as ours,
that is nonlinear to higher dimensions, with the hope that in higher dimensions, linear
hyperplanes that separate the data will exist.

To take a data point to higher dimensions, additional features are created from the features
already included in the original data. In our running example, we are given the x and y
coordinates of the data points; hence, our data is two-dimensional. A common way to
compose more features in this case is to compute polynomials of these coordinates up to
a degree, d. For instance, polynomials that are up to degree 2 for features x and y include
xy and 𝑥𝑥2 . The larger d is, the more expressiveness we will gain from these new features we
are creating, but we will also incur a higher computational cost.

Notice that these polynomial features are nonlinear, which motivates their use in helping
us find a model that separates our nonlinear data. With these new, nonlinear features in
hand, we will then fit our predictive model on this bigger, more expressive dataset we just
engineered. Note that while the predictive model remains in the same form as the linear
parameters 𝑤𝑤𝑖𝑖 , the data features that the model learns from are nonlinear, so the resulting
decision boundary will also be nonlinear.

180 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

I mentioned earlier that the more expressive we want the features we are synthetically
creating to be, the more computational costs we will incur. Here, kernels are a way to
manipulate the data points so that we can interact with them in higher dimensions
without having to explicitly compute the high-dimensional features. In essence, a kernel
is simply a function that takes in a pair of data points and returns the inner product of
some transformation of the feature vectors. This is just to say that it returns a matrix that
represents the two data points in higher dimensions.

In this chapter, we will use one of the most popular kernels in machine learning: the radial
basis function, or RBF, kernel, which is defined as follows:

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝑒𝑒−(𝑥𝑥−𝑥𝑥′)2/𝑙𝑙

where x and x' are the low-dimensional feature vectors of the two data points, and l is
commonly referred to as the length scale, a tunable parameter of the kernel. There are
many benefits to using the RBF kernel that we won't be going into in much detail here, but
on the highest level, RBF can be regarded as an infinite-dimensional kernel, which means
that it will provide us with a high level of expressiveness in the features we are computing.

The new model using this kernel method, modified from our previous linear model, now
makes the following assumption for each pair of feature vector x and label y:

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝐾𝐾(𝑥𝑥, 𝑥𝑥1) + 𝛼𝛼2𝐾𝐾(𝑥𝑥, 𝑥𝑥2) + ⋯ + 𝛼𝛼𝑛𝑛𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)

where 𝑥𝑥𝑖𝑖 is the i-th data point in the training set and 𝛼𝛼𝑖𝑖 are the model parameters to be
optimized. While this assumption is written to contrast the linear assumption that we
had earlier:

𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2

𝑥𝑥𝑖𝑖 now refers to the entire feature vector of a data point, not the i-th feature of a data point.
Further, we now have n terms of 𝛼𝛼𝑖𝑖 , as opposed to 2 (or d) terms of 𝑤𝑤𝑖𝑖 as before.

We see the role of the kernel here is to transform the feature of x by computing the inner
product of its features and those of each of the data points in the training set. The output
of the kernel is then used as the new features to be multiplied by the model parameters 𝛼𝛼𝑖𝑖 ,
whose values will be optimized as part of the training process.

Let's now implement this kernel in our code:

lengthscale = 0.3

def rbf_kernel(x, z):

 return jnp.exp(- jnp.linalg.norm(x - z) ** 2 \

 / lengthscale)

Automatic vectorization for efficient kernels 181

Here we are setting the length scale at 0.3, but feel free to play around with this value and
observe its effect on the learned model afterward. The rbf_kernel function takes in x
and z, two given data points. The code inside the function is self-explanatory: we compute
the squared norm of the difference between x and z (linalg.norm in JAX follows the
same API as in NumPy), divide it by lengthscale, and use its negative as the input of
the natural exponential function, exp.

Now, we need to implement the new version of the predict function for our kernelized
model, which we will see how to do in the next subsection.

Automatic vectorization for kernelized models
You might remember that the job of the prediction function is to implement the
assumption our model is making, which in this case is:

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝐾𝐾(𝑥𝑥, 𝑥𝑥1) + 𝛼𝛼2𝐾𝐾(𝑥𝑥, 𝑥𝑥2) + ⋯ + 𝛼𝛼𝑛𝑛𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)

The challenge here is in the sum 𝛼𝛼1𝐾𝐾(𝑥𝑥, 𝑥𝑥1) + 𝛼𝛼2𝐾𝐾(𝑥𝑥, 𝑥𝑥2) + ⋯ + 𝛼𝛼𝑛𝑛𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛) , where 𝑥𝑥1 , 𝑥𝑥2 , …,
𝑥𝑥𝑛𝑛 are the individual data points in our training set. In a naïve implementation, we would
iterate through each data point 𝑥𝑥𝑖𝑖 , compute 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) , multiply it by 𝛼𝛼𝑖𝑖 , and finally, add these
terms together. Computing the inner product of two vectors is generally a computationally
expensive operation, so repeating this computation n times would be prohibitively costly.

To make this kernelized model more practical, we'd like to vectorize this procedure.
Normally, this would require reimplementing our kernel function using various tricks to
enable vectorization. However, with JAX, we can effortlessly obtain the vectorized version
of the rbf_kernel function using the vmap transformation:

from jax import vmap

kernel = rbf_kernel

vec_kernel = jit(vmap(vmap(kernel, (0, None)), (None, 0)))

Don't let the last line of code intimidate you. Here we are simply getting the vectorized
form of our kernel function along the first axis (remember the kernel has two inputs)
with vmap(kernel, (0, None), and then vectorizing that very vectorized-along-
the-first-axis kernel along the second axis with vmap(vmap(kernel, (0, None)),
(None, 0)). Finally, we derive the JIT-compiled version of the function with jit.

182 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Aside from being a concise one-liner, this code perfectly illustrates why function
transformation (JAX's design choice) is so useful: we can compose different function
transformations in a nested way, repeatedly calling a transformation on the output of
another transformation; in this case, we have the JIT-compiled function of a twice-
vectorized function.

With this vectorized kernel function composed, we are now ready to implement the
corresponding predict and loss functions:

def predict(alphas, X_test):

 return jnp.dot(vec_kernel(X, X_test), alphas)

def loss(alphas):

 preds = predict(alphas, X)

 return jnp.mean(jnp.clip(1 - jnp.multiply(y, preds), \

 a_min=0))

Of note here is the predict function, where we are calling vec_kernel(X, X_test)
to compute the vector of [1, 𝐾𝐾(𝑥𝑥, 𝑥𝑥1), 𝐾𝐾(𝑥𝑥, 𝑥𝑥2), … , 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)] via vectorization. Remember
that without vmap, we would need to either iterate through the individual data points
(for example, using a for loop), which is specifically more inefficient, or rewrite our
rbf_kernel function so that the function itself facilitates the vectorization. In the end,
we simply compute the dot product between the returned output and the vector of the
parameters we'd like to optimize, alphas.

Our loss function stays the same. We now can apply the same training procedure as we
have before, this time on the alphas variable:

np.random.seed(0)

alphas = np.random.randn(y.size)

for i in range(n_iters):

 grads = loss_grad(alphas)

 alphas = alphas - lr * grads

 tmp_loss = loss(alphas)

 if tmp_loss == 0:

 break

Automatic vectorization for efficient kernels 183

We can also plot out the progression of the loss throughout this training:

Figure 6.7 – The decrease in loss of the kernelized model

We see a steady decrease in loss, indicating that the model is fitting its parameters to the
data. In the end, our loss is well below 0.7, which was the loss of the purely linear model
we previously had.

Finally, we'd like to visualize what our model has learned. This is a bit more involved as
we no longer have a nice linear equation that we can translate into a line as before. Instead,
we visualize the predictions made by the model itself. In the following figure, we show
these predictions made on a fine grid that spans across our training data points, where the
colors show the predicted classes, and the hues show the confidence in the predictions:

Figure 6.8 – Predictions made by the learned kernelized model

We see that the model was able to identify the nonlinear pattern in our data, indicated
by the yellow and dark blue blobs lying right in the center of the moons. As such, we
have successfully modified our predictive model to learn from nonlinear data, which was
done by using a kernel to create nonlinear features and JAX's automatic vectorization
transformation to accelerate this computation.

184 Automatic Differentiation and Accelerated Linear Algebra for Machine Learning

Here, the speed we achieve is roughly 160 iterations per second. To once again see how big
a speedup the JIT compiler offers our program, we remove the jit() function calls from
the implementation of our model and rerun the code with the following changes:

kernel = rbf_kernel

vec_kernel = vmap(vmap(kernel, (0, None)), (None, 0))

loss_grad = grad(loss)

This time, the speedup is even more impressive: without JIT, the speed drops to 47
iterations per second.

This concludes our discussion on JAX and some of its main features. However, there are
other more advanced tools included in JAX that we didn't cover but could prove useful
in your machine learning applications such as asynchronous dispatch, parallelization,
or computing convolutions. Information on these features may be found on the
documentation page: https://jax.readthedocs.io/en/latest/.

Summary
JAX is a Python- and NumPy-friendly library that offers high-performance tools
that are specific to machine learning tasks. JAX centers its API around function
transformations, allowing users, in one line of code, to pass in generic Python functions
and receive transformed versions of the functions that would otherwise either be
expensive to compute or require more advanced implementations. The syntax of function
transformations also enables flexible and complex compositions of functions, which are
common in machine learning.

Throughout this chapter, we have seen how to utilize JAX to compute the gradient of
machine learning loss functions using automatic differentiation, JIT-compile our code for
further optimization, and vectorize kernel functions via a binary classification example.
However, these tasks are present in most use cases, and you will be able to seamlessly
apply what we have discussed here to your own machine learning needs.

At this point, we have reached the end of the first part of this book, in which we discuss
Python-native and various other techniques to accelerate our Python applications. In
the second part of the book, we examine parallel and concurrent programming, the
techniques of which allow us to distribute computational loads across multiple threads
and processes, making our applications more efficient on a linear scale.

https://jax.readthedocs.io/en/latest/

Questions 185

Questions
1. What are the main components of a machine learning pipeline?
2. How is the loss function of a machine learning model typically minimized and

how does JAX help with this process?
3. How can the predictive model used in this chapter handle nonlinear data and

how does JAX help with this process?

Further reading
• Linear models in machine learning: https://blog.dataiku.com/

top-machine-learning-algorithms-how-they-work-in-plain-
english-1

• The JAX ecosystem: https://moocaholic.medium.com/
jax-a13e83f49897

• A brief tutorial that further explores JAX: https://colinraffel.com/blog/
you-don-t-know-jax.html

https://blog.dataiku.com/top-machine-learning-algorithms-how-they-work-in-plain-english-1
https://blog.dataiku.com/top-machine-learning-algorithms-how-they-work-in-plain-english-1
https://blog.dataiku.com/top-machine-learning-algorithms-how-they-work-in-plain-english-1
https://moocaholic.medium.com/jax-a13e83f49897
https://moocaholic.medium.com/jax-a13e83f49897
https://colinraffel.com/blog/you-don-t-know-jax.html
https://colinraffel.com/blog/you-don-t-know-jax.html

Section 2:
Concurrency and

Parallelism

Advances in modern hardware allow parallel and concurrent processing of data, further
increasing the performance of computer programs. The chapters in Section 2 discuss tools
and libraries for implementing parallelism and concurrency, including hands-on examples
that allow you to immediately apply the knowledge you learn.

This section contains the following chapters:

• Chapter 7, Implementing Concurrency

• Chapter 8, Parallel Processing

• Chapter 9, Concurrent Web Requests

• Chapter 10, Concurrent Image Processing

• Chapter 11, Building Communication Channels with asyncio

• Chapter 12, Deadlocks

• Chapter 13, Starvation

• Chapter 14, Race Conditions

• Chapter 15, The Global Interpreter Lock

7
Implementing

Concurrency
So far, we have explored how to measure and improve the performance of programs by
reducing the number of operations performed by the central processing unit (CPU)
through clever algorithms and more efficient machine code. In this chapter, we will shift
our focus to programs where most of the time is spent waiting for resources that are
much slower than the CPU, such as persistent storage and network resources.

Asynchronous programming is a programming paradigm that helps to deal with slow
and unpredictable resources (such as users) and is widely used to build responsive
services and user interfaces (UIs). In this chapter, we will show you how to program
asynchronously in Python using techniques such as coroutines and reactive programming.
As we will see, the successful application of these techniques will allow us to speed up our
programs without the use of specialized data structures or algorithms.

In this chapter, we will cover the following topics:

• Asynchronous programming

• The asyncio framework

• Reactive programming

190 Implementing Concurrency

Technical requirements
The code for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter07.

Asynchronous programming
Asynchronous programming is a way of dealing with slow and unpredictable resources.
Rather than waiting idly for resources to become available, asynchronous programs can
handle multiple resources concurrently and efficiently. Programming in an asynchronous
way can be challenging because it is necessary to deal with external requests that can
arrive in any order, may take a variable amount of time, or may fail unpredictably. In this
section, we will introduce the topic by explaining the main concepts and terminology as
well as by giving an idea of how asynchronous programs work.

Waiting for input/output
A modern computer employs different kinds of memory to store data and perform
operations. In general, a computer possesses a combination of expensive memory that is
capable of operating efficiently and cheaply and more abundant memory that is slower
and is used to store a larger amount of data.

The memory hierarchy is shown in the following diagram:

Figure 7.1 – Illustration of the memory hierarchy

At the top of the memory hierarchy, are the CPU registers. Those are integrated with the
CPU and are used to store and execute machine instructions. Accessing data in a register
generally takes one clock cycle. This means that if the CPU operates at 3 gigahertz (GHz),
the time it takes to access one element in a CPU register is in the order of 0.3 nanoseconds.

At the layer just below the registers, you can find the CPU cache, which comprise multiple
levels and is integrated with the processor. The cache operates at a slightly slower speed
than the registers but within the same order of magnitude (OOM).

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter07

Asynchronous programming 191

The next item in the hierarchy is the main memory (random-access memory, or RAM),
which holds much more data but is slower than the cache. Fetching an item from memory
can take a few hundred clock cycles.

At the bottom layer, you can find persistent storage, such as rotating disks (hard disk drives
(HDDs)) and solid-state drives (SSDs). These devices hold the most data and are OOMs
slower than the main memory. An HDD may take a few milliseconds to seek and retrieve
an item, while an SSD is substantially faster and takes only a fraction of a millisecond.

To put the relative speed of each memory type into perspective, if you were to have the
CPU with a clock speed of about 1 second, a register access would be equivalent to picking
up a pen from a table. A cache access would be equivalent to picking up a book from a
shelf. Moving higher up the hierarchy, a RAM access would be equivalent to loading up
the laundry (about 20 times slower than the cache). When we move to persistent storage,
things are quite different. Retrieving an element from an SSD will be equivalent to going
on a 4-day road trip while retrieving an element from an HDD can take up to 6 months!
The duration can stretch even further if we move on to access resources over the network.

Overall, accessing data from storage and other input/output (I/O) devices is much slower
compared to the CPU; therefore, it is very important to handle those resources so that
the CPU is never stuck waiting aimlessly. This can be accomplished by carefully designed
software capable of managing multiple ongoing requests at the same time. This is the idea
of concurrency or concurrent programming.

Concurrency
Concurrency is a way to implement a system that can deal with multiple requests at the
same time. The idea is that we can move on and start handling other resources while we
wait for a resource to become available. Concurrency works by splitting a task into smaller
subtasks that can be executed out of order so that multiple tasks can be partially advanced
without waiting for the previous tasks to finish.

As a first example, we will describe how to implement concurrent access to a slow
network resource; the code for this example is included in Chapter07/example1.py.
Let's say we have a web service that takes the square of a number, and the time between
our request and the response will be approximately 1 second. We can implement the
network_request function that takes a number and returns a dictionary that contains
information about the success of the operation and the result. We can simulate such
services using the time.sleep function, as follows:

 import time

 def network_request(number):

192 Implementing Concurrency

 time.sleep(1.0)

 return {"success": True, "result": number ** 2}

We will also write some additional code that performs the request, verifies that the
request was successful, and prints the result. In the following code snippet, we define the
fetch_square function and use it to calculate the square of the number 2 using a call
to network_request:

 def fetch_square(number):

 response = network_request(number)

 if response["success"]:

 print("Result is: \

 {}".format(response["result"]))

 fetch_square(2)

 # Output:

 # Result is: 4

Fetching a number from the network will take 1 second because of the slow network. What
if we want to calculate the square of multiple numbers? We can call fetch_square,
which will start a network request as soon as the previous one is done. Its use is illustrated
in the following code snippet:

 fetch_square(2)

 fetch_square(3)

 fetch_square(4)

 # Output:

 # Result is: 4

 # Result is: 9

 # Result is: 16

This code as-is will take roughly 3 seconds to run, but it's not the best we can do. Notice
that the calculation of the square of 2 is independent of that of the square of 3, and both
are in turn independent of calculating the square of 4. As such, waiting for a previous
result to finish before moving on to the next number is unnecessary, if we can technically
submit multiple requests and wait for them at the same time.

Asynchronous programming 193

In the following diagram, the three tasks are represented as boxes. The time spent by
the CPU processing and submitting the request is in orange, while the waiting times are
in blue. You can see how most of the time is spent waiting for the resources while our
machine sits idle without doing anything else:

Figure 7.2 – Illustration of the execution time of independent calculations

Ideally, we would like to start another new task while we are waiting for the already
submitted tasks to finish. In the following screenshot, you can see that as soon as we submit
our request in fetch_square(2), we can start preparing for fetch_square(3), and
so on. This allows us to reduce the CPU waiting time and to start processing the results as
soon as they become available:

Figure 7.3 – A more efficient way of performing independent calculations

Again, this strategy is made possible by the fact that the three requests are completely
independent, and we don't need to wait for the completion of a previous task to start
the next one. Also, note how a single CPU can comfortably handle this scenario. While
distributing the work on multiple CPUs can further speed up the execution, if the waiting
time is large compared to the processing times, the speedup will be minimal.

To implement concurrency, it is necessary to think about our programs and their design
differently; in the following sections, we'll demonstrate techniques and best practices to
implement robust concurrent applications, starting with a new concept: callbacks.

Callbacks
The code we have seen so far blocks the execution of the program until the resource is
available. The call responsible for the waiting is time.sleep. To make the code start
working on other tasks, we need to find a way to avoid blocking the program flow so
that the rest of the program can move on to these other tasks.

194 Implementing Concurrency

One of the simplest ways to accomplish this behavior is through callbacks. The strategy
is quite similar to what we do when we request a cab. Imagine that you are at a restaurant
and you've had a few drinks. It's raining outside, and you'd rather not take the bus;
therefore, you request a taxi and ask them to call when they're outside so that you can
come out and you don't have to wait in the rain. What you did, in this case, is request a taxi
(that is, the slow resource), but instead of waiting outside until the taxi arrives, you provide
your number and instructions (callback) so that you can come outside when they're ready
and go home.

We will now show how this mechanism can work in code. We will compare the blocking
code of time.sleep with the equivalent non-blocking code of threading.Timer.

For this example, which is implemented in example2.py, we will write a function,
wait_and_print, that will block the program execution for 1 second and then print
a message, as follows:

 def wait_and_print(msg):

 time.sleep(1.0)

 print(msg)

If we want to write the same function in a non-blocking way, we can use the
threading.Timer class. We can initialize a threading.Timer instance by passing
the amount of time we want to wait and a callback. A callback is simply a function that
will be called when the timer expires. Note in the following code snippet that we also
must call the Timer.start method to activate the timer:

 import threading

 def wait_and_print_async(msg):

 def callback():

 print(msg)

 timer = threading.Timer(1.0, callback)

 timer.start()

An important feature of the wait_and_print_async function is that none of the
statements is blocking the execution flow of the program.

Asynchronous programming 195

How Is threading.Timer Capable of Waiting without Blocking?
The strategy used by threading.Timer involves starting a new thread
that can execute code in parallel. If this is confusing, don't worry, as we will
explore threading and parallel programming in detail in the following chapters.

This technique of registering callbacks for execution in response to certain events is
commonly called the Hollywood principle. This is because, after auditioning for a movie
or TV role at Hollywood, you may be told Don't call us, we'll call you, meaning that they
won't tell you if they chose you for the role immediately, but they'll call you if they do.

To highlight the difference between the blocking and non-blocking versions of
wait_and_print, we can test and compare the execution of the two versions. In the
output comments, the waiting periods are indicated by <wait...>, as illustrated in the
following code snippet:

 # Synchronous

 wait_and_print("First call")

 wait_and_print("Second call")

 print("After call")

 # Output:

 # <wait...>

 # First call

 # <wait...>

 # Second call

 # After call

 # Asynchronous

 wait_and_print_async("First call async")

 wait_and_print_async("Second call async")

 print("After submission")

 # Output:

 # After submission

 # <wait...>

 # First call

 # Second call

196 Implementing Concurrency

The synchronous version behaves in a very familiar, expected way. The code waits for a
second, prints First call, waits for another second, and then prints Second call
and After call messages.

In the asynchronous version, wait_and_print_async submits (rather than executes)
those calls and moves on immediately. You can see this mechanism in action by noticing
that the "After submission" message is printed immediately.

With this in mind, we can explore a slightly more complex situation by rewriting
our network_request function using callbacks. In example3.py, we define
a network_request_async function, as follows:

 def network_request_async(number, on_done):

 def timer_done():

 on_done({"success": True, \

 "result": number ** 2})

 timer = threading.Timer(1.0, timer_done)

 timer.start()

The biggest difference between network_request_async and its blocking counterpart
is that network_request_async doesn't return anything. This is because we are merely
submitting the request when network_request_async is called, but the value is
available only when the request is completed.

If we can't return anything, how do we pass the result of the request? Rather than
returning the value, we will pass the result as an argument to the on_done callback.
The rest of the function consists of submitting a callback (called timer_done) to the
threading.Timer class that will call on_done when it's ready.

The usage of network_request_async is quite similar to threading.Timer; all we
have to do is pass the number we want to square and a callback that will receive the result
when it's ready. This is demonstrated in the following code snippet:

 def on_done(result):

 print(result)

 network_request_async(2, on_done)

Asynchronous programming 197

Now, if we submit multiple network requests, we note that the calls get executed
concurrently and do not block the code, as illustrated in the following code snippet:

 network_request_async(2, on_done)

 network_request_async(3, on_done)

 network_request_async(4, on_done)

 print("After submission")

In order to use network_request_async in fetch_square, we need to adapt
the code to take advantage of asynchronous constructs. In the following code snippet,
we modify fetch_square by defining and passing the on_done callback to
network_request_async:

 def fetch_square(number):

 def on_done(response):

 if response["success"]:

 print("Result is: \

 {}".format(response["result"]))

 network_request_async(number, on_done)

You may have noted that the asynchronous code is significantly more convoluted than its
synchronous counterpart. This is due to the fact that we are required to write and pass a
callback every time we need to retrieve a certain result, causing the code to become nested
and hard to follow.

Fortunately, a concept that is essential to concurrent programming that we are examining
next, futures, will help simplify matters.

Futures
Futures are a more convenient pattern that can be used to keep track of the results of
asynchronous calls. In the preceding code snippet, we saw that rather than returning
values, we accept callbacks and pass the results when they are ready. It is interesting
to note that, so far, there is no easy way to track the status of the resource.

198 Implementing Concurrency

A future is an abstraction that helps us keep track of the requested resources that we
are waiting to become available. In Python, you can find a future implementation in the
concurrent.futures.Future class. A Future instance can be created by calling
its constructor with no arguments, as in the following IPython snippet:

 from concurrent.futures import Future

 fut = Future()

 # Result:

 # <Future at 0x7f03e41599e8 state=pending>

A future represents a value that is not yet available. You can see that its string
representation reports the current status of the result, which, in our case, is still pending.
In order to make a result available, we can use the fut.set_result method, as follows:

 fut.set_result("Hello")

 # Result:

 # <Future at 0x7f03e41599e8 state=finished returned

 str>

 fut.result()

 # Result:

 # "Hello"

You can see that once we set the result, the Future instance will report that the task
is finished and can be accessed using the fut.result method. It is also possible to
subscribe a callback to a future so that, as soon as the result is available, the callback is
executed. To attach a callback, it is sufficient to pass a function to the fut.add_done_
callback method. When the task is completed, the function will be called with the
Future instance as its first argument and the result can be retrieved using the
future.result() method, as illustrated in the following code snippet:

 fut = Future()

 fut.add_done_callback(lambda future:

 print(future.result(), flush=True))

 fut.set_result("Hello")

 # Output:

 # Hello

Asynchronous programming 199

To understand how futures can be used in practice, we will adapt the network_
request_async function to use futures in example4.py. The idea is that this time,
instead of returning nothing, we return a Future instance that will keep track of the
result for us. Note the following two things:

• We don't need to accept an on_done callback as callbacks can be connected
later using the fut.add_done_callback method. Also, we pass the generic
fut.set_result method as the callback for threading.Timer.

• This time, we are able to return a value, thus making the code a bit more similar
to the blocking version we saw in the preceding section, as illustrated here:

 from concurrent.futures import Future

 def network_request_async(number):

 future = Future()

 result = {"success": True, "result": number \

 ** 2}

 timer = threading.Timer(1.0, lambda: \

 future.set_result(result))

 timer.start()

 return future

 fut = network_request_async(2)

Note
Even though we instantiate and manage futures directly in these examples, in
practical applications, futures are handled by frameworks.

If you execute the preceding code, nothing will happen as the code only consists of
preparing and returning a Future instance. To enable further operation of the future
results, we need to use the fut.add_done_callback method. In the following code
snippet, we adapt the fetch_square function to use futures:

 def fetch_square(number):

 fut = network_request_async(number)

 def on_done_future(future):

 response = future.result()

 if response["success"]:

200 Implementing Concurrency

 print("Result is: \

 {}".format(response["result"]))

 fut.add_done_callback(on_done_future)

As you can see, the code still looks quite similar to the callback version, but when
fetch_square is called, the corresponding future will be processed, and the result
string will be printed out.

Overall, futures are a different and slightly more convenient way of working with callbacks.
Futures are also advantageous in the sense that they can keep track of the resource status,
cancel (unschedule) scheduled tasks, and handle exceptions more naturally.

Event loops
So far, we have implemented parallelism using operating system (OS) threads. However,
in many asynchronous frameworks, the coordination of concurrent tasks is managed by
an event loop.

The idea behind an event loop is to continuously monitor the status of the various
resources (for example, network connections and database queries) and trigger the
execution of callbacks when specific events take place (for example, when a resource
is ready or when a timer expires).

Why Not Just Stick to Threading?
Events loops are sometimes preferred as every unit of execution never runs at
the same time as another, and this can simplify dealing with shared variables,
data structures, and resources.

As the first example in example5.py, we will implement a thread-free version
of threading.Timer. We can define a Timer class that will take a timeout and
implement the Timer.done method, which returns True if the timer has expired.
The code is illustrated in the following snippet:

 class Timer:

 def __init__(self, timeout):

 self.timeout = timeout

 self.start = time.time()

Asynchronous programming 201

 def done(self):

 return time.time() - self.start > self.timeout

To determine whether the timer has expired, we can write a loop that continuously checks
the timer status by calling the Timer.done method. When the timer expires, we can
print a message and exit the cycle. The code is illustrated in the following snippet:

 timer = Timer(1.0)

 while True:

 if timer.done():

 print("Timer is done!")

 break

By implementing the timer in this way, the flow of execution is never blocked, and we can,
in principle, do other work inside the while loop.

Busy-Waiting
Waiting for events to happen by continuously polling using a loop is commonly
termed busy-waiting.

Ideally, we would like to attach a custom function that executes when the timer goes
off, just as we did in threading.Timer. To do this, we can implement a Timer.on_
timer_done method that will accept a callback to be executed when the timer goes off
in example6.py, as follows:

 class Timer:

 # ... previous code

 def on_timer_done(self, callback):

 self.callback = callback

Note that on_timer_done merely stores a reference to the callback. The entity that
monitors the event and executes the callback is the loop. This concept is demonstrated
as follows. Rather than using the print function, the loop will call timer.callback
when appropriate:

 timer = Timer(1.0)

 timer.on_timer_done(lambda: print("Timer is done!"))

202 Implementing Concurrency

 while True:

 if timer.done():

 timer.callback()

 break

As you can see, an asynchronous framework is starting to take place. All we did outside
the loop was define the timer and the callback, while the loop took care of monitoring
the timer and executing the associated callback. We can further extend our code by
implementing support for multiple timers.

A natural way to implement multiple timers is to add a few Timer instances to a list and
modify our event loop to periodically check all the timers and dispatch the callbacks when
required. In the following code snippet, we define two timers and attach a callback to each
of them. Those timers are added to a list, timers, that is continuously monitored by our
event loop. As soon as a timer is done, we execute the callback and remove the event from
the list:

 timers = []

 timer1 = Timer(1.0)

 timer1.on_timer_done(lambda: print("First timer is \

 done!"))

 timer2 = Timer(2.0)

 timer2.on_timer_done(lambda: print("Second timer is \

 done!"))

 timers.append(timer1)

 timers.append(timer2)

 while True:

 for timer in timers:

 if timer.done():

 timer.callback()

 timers.remove(timer)

 # If no more timers are left, we exit the loop

 if len(timers) == 0:

 break

The asyncio framework 203

The main restriction of an event loop is, since the flow of execution is managed by a
continuously running loop, that it never uses blocking calls. If we use any blocking
statement (such as time.sleep) inside the loop, you can imagine how the event
monitoring and callback dispatching will stop until the blocking call is done.

To avoid this, rather than using a blocking call such as time.sleep, we let the event loop
detect and execute the callback when the resource is ready. By not blocking the execution
flow, the event loop is free to monitor multiple resources in a concurrent way.

How Is the Event Loop Notified of Events?
Events notification is usually implemented through OS calls (such as the
select Unix tool) that will resume the execution of the program whenever
an event is ready (in contrast to busy-waiting).

The Python standard libraries include a very convenient event loop-based concurrency
framework, asyncio, which will be the topic of the next section.

The asyncio framework
At this point, we have seen how concurrency works and how to use callbacks and futures.
We can now move on and learn how to use the asyncio package, which has been present
in the standard Python library since version 3.4. We will also explore the async/await
syntax to deal with asynchronous programming in a very natural way.

As a first example, we will see how to retrieve and execute a simple callback using
asyncio. The asyncio loop can be retrieved by calling the asyncio.get_event_
loop() function. We can schedule a callback for execution using loop.call_later,
which takes a delay in seconds and a callback. We can also use the loop.stop method to
halt the loop and exit the program. To start processing the scheduled call, it is necessary to
start the loop, which can be done using loop.run_forever. The following example in
example7.py demonstrates the usage of these basic methods by scheduling a callback
that will print a message and halt the loop:

 import asyncio

 loop = asyncio.get_event_loop()

 def callback():

 print("Hello, asyncio")

204 Implementing Concurrency

 loop.stop()

 loop.call_later(1.0, callback)

 loop.run_forever()

This code schedules a callback that will print out a message and then halt the loop. One of
the main problems with callbacks is that they require you to break the program execution
into small functions that will be invoked when a certain event takes place. As we saw
in the earlier sections, callbacks can quickly become cumbersome. In the next section,
we will see how to work with coroutines to, as with futures, simplify many aspects of
concurrent programming.

Coroutines
Coroutines are another, perhaps more natural, way to break up the program execution
into chunks. They allow the programmer to write code that resembles synchronous code
but will execute asynchronously. You may think of a coroutine as a function that can be
stopped and resumed. A basic example of coroutines is generators.

Generators can be defined in Python using the yield statement inside a function. In
the following code example in example8.py, we implement the range_generator
function, which produces and returns values from 0 to n. We also add a print statement
to log the internal state of the generator:

 def range_generator(n):

 i = 0

 while i < n:

 print("Generating value {}".format(i))

 yield i

 i += 1

When we call the range_generator function, the code is not executed immediately.
Note that nothing is printed to output when the following snippet is executed. Instead,
a generator object is returned:

 generator = range_generator(3)

 generator

 # Result:

 # <generator object range_generator at 0x7f03e418ba40>

The asyncio framework 205

In order to start pulling values from a generator, it is necessary to use the next function,
as follows:

 next(generator)

 # Output:

 # Generating value 0

 next(generator)

 # Output:

 # Generating value 1

Note that every time we invoke next, the code runs until it encounters the next yield
statement, and it is necessary to issue another next statement to resume the generator
execution. You can think of a yield statement as a breakpoint where we can stop and
resume execution (while also maintaining the internal state of the generator). This
ability to stop and resume execution can be leveraged by the event loop to allow for and
implement concurrency.

It is also possible to inject (rather than extract) values in the generator through the yield
statement. In the following code example in example9.py, we declare a parrot
function that will repeat each message that we send:

 def parrot():

 while True:

 message = yield

 print("Parrot says: {}".format(message))

 generator = parrot()

 generator.send(None)

 generator.send("Hello")

 generator.send("World")

To allow a generator to receive a value, you can assign yield to a variable (in our case, it
is message = yield). To insert values in the generator, we can use the send method.
In the Python world, a generator that can also receive values is called a generator-based
coroutine.

Note that we also need to issue a generator.send(None) request before we can start
sending messages; this is to bootstrap the function execution and bring us to the first
yield statement. Also, note that there is an infinite loop inside parrot; if we implement
this without using generators, we will get stuck running the loop forever!

206 Implementing Concurrency

With this in mind, you can imagine how an event loop can partially progress several of
these generators without blocking the execution of the whole program, as well as how a
generator can be advanced only when some resource is ready, therefore eliminating the
need for a callback.

It is possible to implement coroutines in asyncio using the yield statement. However,
Python supports the definition of powerful coroutines using a more intuitive syntax. To
define a coroutine with asyncio, you can use the async def statement, as follows:

 async def hello():

 print("Hello, async!")

 coro = hello()

 coro

 # Output:

 # <coroutine object hello at 0x7f314846bd58>

As you can see, if we call the hello function, the function body is not executed
immediately, but a coroutine object instance is returned. The asyncio coroutines
do not support next, but they can be easily run in the asyncio event loop using the
run_until_complete method, as follows:

 import asyncio

 loop = asyncio.get_event_loop()

 loop.run_until_complete(coro)

Native Coroutines
Coroutines defined with the async def statement are also called native
coroutines.

The asyncio module provides resources (called awaitables) that can be requested inside
coroutines through the await syntax. For example, in example10.py, if we want to
wait for a certain time and then execute a statement, we can use the asyncio.sleep
function, as follows:

 async def wait_and_print(msg):

 await asyncio.sleep(1)

 print("Message: ", msg)

The asyncio framework 207

 loop = asyncio.get_event_loop()

 loop.run_until_complete(wait_and_print("Hello"))

The result is beautiful, clean code. We are writing perfectly functional asynchronous code
without all the ugliness of callbacks!

Breakpoints for Event Loops
You may have noted how await provides a breakpoint for the event loop so
that, as it waits for the resource, the event loop can move on and concurrently
manage other coroutines.

Even better, coroutines are also awaitable, and we can use the await statement
to chain coroutines asynchronously. In the following example, we rewrite the network_
request function, which we defined earlier, by replacing the call to time.sleep
with asyncio.sleep:

 async def network_request(number):

 await asyncio.sleep(1.0)

 return {"success": True, "result": number ** 2}

We can follow up by reimplementing fetch_square, as illustrated in the following
code snippet. As you can see, we await network_request directly without needing
additional futures or callbacks:

 async def fetch_square(number):

 response = await network_request(number)

 if response["success"]:

 print("Result is: \

 {}".format(response["result"]))

The coroutines can be executed individually using loop.run_until_complete,
as follows:

 loop.run_until_complete(fetch_square(2))

 loop.run_until_complete(fetch_square(3))

 loop.run_until_complete(fetch_square(4))

Running tasks using run_until_complete serves as a demonstration for testing and
debugging. However, our program will be started with loop.run_forever most of the
time, and we will need to submit our tasks while the loop is already running.

208 Implementing Concurrency

asyncio provides the ensure_future function, which schedules coroutines (as well
as futures) for execution. ensure_future can be used by simply passing the coroutine
we want to schedule. The following code snippet in example11.py will schedule
multiple calls to fetch_square that will be executed concurrently:

 asyncio.ensure_future(fetch_square(2))

 asyncio.ensure_future(fetch_square(3))

 asyncio.ensure_future(fetch_square(4))

 loop.run_forever()

 # Hit Ctrl-C to stop the loop

As a bonus, when passing a coroutine, the asyncio.ensure_future function will
return a Task instance (which is a subclass of Future) so that we can take advantage
of the await syntax without having to give up the resource-tracking capabilities of
regular futures.

Converting blocking code into non-blocking code
While asyncio supports connecting to resources in an asynchronous way, it is required
to use blocking calls in certain cases. This happens, for example, when third-party
application programming interfaces (APIs) exclusively expose blocking calls (which is
the case for many database libraries), but also when executing long-running computations.
In this subsection, we will learn how to deal with blocking APIs and make them
compatible with asyncio. Here are the steps:

1. An effective strategy for dealing with blocking code is to run it in a separate thread.
Threads are implemented at the OS level and allow parallel execution of blocking
code. For this purpose, Python provides the Executor interface designed to run
tasks in a separate thread and to monitor their progress using futures.

2. You can initialize a ThreadPoolExecutor instance by importing it from the
concurrent.futures module. The executor will spawn a collection of threads
(called workers) that will wait to execute whichever task we throw at them. Once a
function is submitted, the executor will take care of dispatching its execution to an
available worker thread and keep track of the result. The max_workers argument
can be used to select the number of threads.

Note that the executor will not destroy a thread once a task is completed. By doing
so, it reduces the cost associated with the creation and destruction of threads.

The asyncio framework 209

3. In the following code example in example12.py, we create a
ThreadPoolExecutor instance with three workers, and we submit a wait_and_
return function that will block the program execution for 1 second and return a
message string. We then use the submit method to schedule its execution:

 import time

 from concurrent.futures import ThreadPoolExecutor

 executor = ThreadPoolExecutor(max_workers=3)

 def wait_and_return(msg):

 time.sleep(1)

 return msg

 print(executor.submit(wait_and_return, "Hello. \

 executor"))

 # Result:

 # <Future at 0x7ff616ff6748 state=running>

4. The executor.submit method immediately schedules the function and returns
a future. It is possible to manage the execution of tasks in asyncio using the
loop.run_in_executor method, which works quite similarly to executor.
submit. The code is illustrated in the following snippet:

 fut = loop.run_in_executor(executor, \

 wait_and_return, "Hello, asyncio executor")

 # <Future pending ...more info...>

5. The run_in_executor method will also return an asyncio.Future instance
that can be awaited from other code, the main difference being that the future
will not be run until we start the loop. We can run and obtain the response using
loop.run_until_complete, as illustrated in the following snippet:

 loop.run_until_complete(fut)

 # Result:

 # 'Hello, executor'

210 Implementing Concurrency

6. As a practical example, we can use this technique to implement concurrent fetching
of several web pages. To do this, we will import the popular (blocking) requests
library and run the requests.get function in the executor in example13.py,
as follows:

 import requests

 async def fetch_urls(urls):

 responses = []

 for url in urls:

 responses.append(await \

 loop.run_in_executor(executor, \

 requests.get, url))

 return responses

 responses = loop.run_until_complete(

 fetch_urls(

 [

 'http://www.google.com',

 'http://www.example.com',

 'http://www.facebook.com'

]

)

)

 print(response)

 # Result

 # [<Response [200]>, <Response [200]>, <Response

 [200]>]

7. This version of fetch_url will not block the execution and allow other coroutines
in asyncio to run; however, it is not optimal as the function will not fetch a
Uniform Resource Locator (URL) in parallel. To do this, we can use asyncio.
ensure_future or employ the asyncio.gather convenience function that
will submit all the coroutines at once and gather the results as they come. The usage
of asyncio.gather is demonstrated in example14.py, as follows:

 def fetch_urls(urls):

 return asyncio.gather(

Reactive programming 211

 *[loop.run_in_executor(executor, \

 requests.get, url) for url in urls])

Upper Bound for the Number of Threads
The number of URLs you can fetch in parallel with this method will be
dependent on the number of worker threads you have. To avoid this limitation,
you should use a natively non-blocking library, such as aiohttp.

So far, we have seen how to work with concurrent programs in Python using core concepts
such as callbacks, futures, and coroutines. For the remaining portion of this chapter, we
will discuss a more streamlined programming paradigm for implementing concurrency.

Reactive programming
Reactive programming is a paradigm that aims at building better concurrent systems.
Reactive applications are designed to comply with the following requirements exemplified
by the reactive manifesto:

• Responsive: The system responds immediately to the user.
• Elastic: The system is capable of handling different levels of load and can adapt

to accommodate increasing demands.
• Resilient: The system deals with failure gracefully. This is achieved by modularity

and avoiding having a single point of failure (SPOF).
• Message-driven: The system should not block and take advantage of events and

messages. A message-driven application helps achieve all the previous requirements.

The requirements for reactive systems are quite reasonable but abstract, which leads us to
a natural question: how exactly does reactive programming work? In this section, we will
learn about the principles of reactive programming using the Reactive Extensions for
Python (RxPY) library.

Additional Information
The RxPY library is part of ReactiveX (http://reactivex.io/), which
is a project that implements reactive programming tools for a large variety of
languages.

To install the library, simply run pip install rx.

Note that the following code uses RxPY v3, the syntax of which is quite
different from RxPY v1. If you are familiar with RxPY v1 and the discussion
from this book's previous version, watch out for changes in syntax!

http://reactivex.io/

212 Implementing Concurrency

Observables
As the name implies, the main idea of reactive programming is to react to events. In the
preceding section, we saw some examples of this idea with callbacks; you subscribe to
them and the callback is executed as soon as the event takes place.

In reactive programming, this idea is expanded if we think of events as streams of data.
This can be exemplified by showing examples of such streams in RxPY. A data stream can
be created from an iterator using the from_iterable method in IPython, as follows:

 from rx import from_iterable

 obs = from_iterable(range(4))

In order to receive data from obs, we can use the Observable.subscribe method,
which will execute the function we pass for each value that the data source emits. This
method is shown in the following code snippet:

 obs.subscribe(print)

 # Output:

 # 0

 # 1

 # 2

 # 3

You may have noticed that observables are ordered collections of items just like lists or,
more generally, iterators. This is not a coincidence.

The term observable comes from the combination of observer and iterable. An observer
is an object that reacts to changes of the variable it observes, while an iterable is an object
that can produce and keep track of an iterator.

In Python, iterators are objects that define the __next__ method, and whose elements
can be extracted by calling next. An iterator can generally be obtained by a collection
using iter; then, we can extract elements using next or a for loop. Once an element
is consumed from the iterator, we can't go back. We can demonstrate its usage by creating
an iterator from a list, as follows:

 collection = list([1, 2, 3, 4, 5])

 iterator = iter(collection)

 print("Next")

 print(next(iterator))

Reactive programming 213

 print(next(iterator))

 print("For loop")

 for i in iterator:

 print(i)

 # Output:

 # Next

 # 1

 # 2

 # For loop

 # 3

 # 4

 # 5

You can see how, every time we call next or we iterate, the iterator produces a value and
advances. In a sense, we are pulling results from the iterator.

Iterators versus Generators
Iterators sound a lot like generators; however, they are more general. In Python,
generators are returned by functions that use yield expressions. As we saw,
generators support next; therefore, they are a special class of iterators.

Now, you can appreciate the contrast between an iterator and an observable. An
observable pushes a stream of data to us whenever it's ready, but that's not everything. An
observable can also tell us when there is an error and where there is no more data. In fact,
it is possible to register further callbacks to the Observable.subscribe method.

In the following example in IPython, we create an observable and register callbacks to be
called using on_next whenever the next item is available and using the on_completed
argument when there is no more data:

 obs = from_iterable(range(4))

 obs.subscribe(on_next=lambda x: print("Next item:", x),

 on_completed=lambda: print("No more \

 data"))

 # Output:

 # Next element: 0

 # Next element: 1

214 Implementing Concurrency

 # Next element: 2

 # Next element: 3

 # No more data

With that said, the similarity between observables and iterators is more important, because
we can use the same techniques that can be used with iterators to handle streams of events.

RxPy provides operators that can be used to create, transform, filter, and group observables.
The power of reactive programming lies in the fact that those operations return other
observables that can be conveniently chained and composed together. For a quick
demonstration, we will examine the usage of the take operator next.

Given an observable, take will return a new observable that will stop after n items. Its
usage is straightforward, as we can see here:

 from rx.operators import take

 op = take(4)

 obs = from_iterable(range(1000))

 op(obs).subscribe(print)

 # Output:

 # 0

 # 1

 # 2

 # 3

The collection of operations implemented in RxPy is varied and rich and can be used
to build complex applications using these operators as building blocks.

Useful operators
In this subsection, we will explore operators that transform the elements of a source
observable in some way. The most prominent member of this family of operators is the
familiar map operator, which emits the elements of the source observable after applying
a function to them.

Reactive programming 215

For example, we may use map to calculate the square of a sequence of numbers, as follows:

 from rx.operators import map

 map(lambda x: x**2)(from_iterable(range(4))). \

 subscribe(print)

 # Output:

 # 0

 # 1

 # 4

 # 9

Operators can be represented with marble diagrams that help us better understand
how the operator works, especially when taking into account the fact that elements can
be emitted over a region of time. In a marble diagram, a data stream (in our case, an
observable) is represented by a solid line. A circle (or another shape) identifies a value
emitted by the observable, an X symbol represents an error, and a vertical line represents
the end of the stream.

Here, we can see a marble diagram of map:

Figure 7.4 – Marble diagram illustrating the procedure of squaring numbers

The source observable is placed at the top of the diagram, the transformation is placed in
the middle, and the resulting observable is placed at the bottom.

Another example of a transformation is group_by, which sorts items into groups based
on a key. The group_by operator takes a function that extracts a key when given an
element and produces an observable for each key with the elements associated with it.

216 Implementing Concurrency

The group_by operation can be expressed more clearly using a marble diagram. In the
following diagram, you can see how group_by emits two observables. Additionally,
the items are dynamically sorted into groups as soon as they are emitted:

Figure 7.5 – Marble diagram illustrating grouping

We can further understand how group_by works with a simple example. Let's say that
we want to group a number according to the fact that it's even or odd. We can implement
this using group_by by passing the lambda x: x % 2 expression as a key function,
which will return 0 if the number is even and 1 if the number is odd, as follows:

 from rx.operators import group_by

 obs = group_by(lambda x: x % \

 2)(from_iterable(range(4)))

At this point, if we subscribe and print the content of obs, two observables are actually
printed, as illustrated in the following code snippet:

 obs.subscribe(print)

 # <rx.linq.groupedobservable.GroupedObservable object

 at 0x7f0fba51f9e8>

 # <rx.linq.groupedobservable.GroupedObservable object

 at 0x7f0fba51fa58>

You can determine the group key using the key attribute. To extract all the even numbers,
we can take the first observable (corresponding to a key equal to 0) and subscribe to it. In
the following code snippet, we show how this works:

 obs.subscribe(lambda x: print("group key: ", x.key))

 # Output:

 # group key: 0

Reactive programming 217

 # group key: 1

 take(1)(obs).subscribe(lambda x: x.subscribe(print))

 # Output:

 # 0

 # 2

With group_by, we introduced an observable that emits other observables. This turns
out to be quite a common pattern in reactive programming, and there are functions that
allow you to combine different observables.

A useful tool for combining observables is merge_all which takes multiple observables
and produces a single observable that contains the element of the two observables in the
order they are emitted. This is better illustrated using a marble diagram, as follows:

Figure 7.6 – Marble diagram illustrating merging

To demonstrate its usage, we can apply the operation to the observable of observables
returned by group_by, as follows:

 from rx.operators import merge_all

 merge_all()(obs).subscribe(print)

 # Output

 # 0

 # 1

 # 2

 # 3

With merge_all, the items are returned in the same order as they were initially
(remember that group_by emits elements in the two groups as they come).

Tip
RxPy also provides the merge operation, which can be used to combine
individual observables.

218 Implementing Concurrency

Hot and cold observables
In the preceding section, we learned how to create an observable using the from_
iterable method. RxPy provides many other tools to create more interesting
event sources.

interval takes a time interval in seconds, period, and creates an observable that
emits a value every time the period has passed. The following code can be used to define
an observable, obs, that will emit a number, starting from zero, every second. We use the
take operator to limit the timer to four events:

 from rx import interval

 from rx.operators import take

 take(4)(interval(1)).subscribe(print)

 # Output:

 # 0

 # 1

 # 2

 # 3

A very important fact about interval is that the timer doesn't start until we subscribe.
We can observe this by printing both the index and the delay from when the timer starts
definition using time.time(), as follows:

 import time

 start = time.time()

 obs = map(lambda a: (a, time.time() - \

 start))(interval(1))

 # Let's wait 2 seconds before starting the subscription

 time.sleep(2)

 take(4)(obs).subscribe(print)

 # Output:

 # (0, 3.003735303878784)

 # (1, 4.004871129989624)

 # (2, 5.005947589874268)

 # (3, 6.00749135017395)

Reactive programming 219

As you can see, the first element (corresponding to a 0 index) is produced after 3 seconds,
which means that the timer started when we issue the subscribe(print) method.

Observables such as interval are called lazy because they start producing values
only when requested (think of them as vending machines that won't dispense food
unless we press the button). In Rx jargon, these kinds of observables are called cold. A
property of cold observables is that, if we attach two subscribers, the interval timer will
be started multiple times. This is quite evident from the following example. Here, we add
a new subscription 0.5 seconds after the first, and you can see how the output of the two
subscriptions comes at different times:

 start = time.time()

 obs = map(lambda a: (a, time.time() - \

 start))(interval(1))

 # Let's wait 2 seconds before starting the subscription

 time.sleep(2)

 take(4)(obs).subscribe(lambda x: print("First \

 subscriber: {}".format(x)))

 time.sleep(0.5)

 take(4)(obs).subscribe(lambda x: print("Second \

 subscriber: {}".format(x)))

 # Output:

 # First subscriber: (0, 3.0036110877990723)

 # Second subscriber: (0, 3.5052847862243652)

 # First subscriber: (1, 4.004414081573486)

 # Second subscriber: (1, 4.506155252456665)

 # First subscriber: (2, 5.005316972732544)

 # Second subscriber: (2, 5.506817102432251)

 # First subscriber: (3, 6.0062034130096436)

 # Second subscriber: (3, 6.508296489715576)

Sometimes, we may not want this behavior as we may want multiple subscribers to
subscribe to the same data source. To make the observable produce the same data, we can
delay the data production and ensure that all the subscribers will get the same data using
the publish method.

220 Implementing Concurrency

publish will transform our observable into ConnectableObservable, which won't
start pushing data immediately, but only when we call the connect method. The usage
of publish and connect is demonstrated in the following code snippet:

 from rx.operators import publish

 start = time.time()

 obs = publish()(map(lambda a: (a, time.time() - \

 start))(interval(1)))

 take(4)(obs).subscribe(lambda x: print("First \

 subscriber: {}".format(x)))

 obs.connect() # Data production starts here

 time.sleep(2)

 take(4)(obs).subscribe(lambda x: print("Second \

 subscriber: {}".format(x)))

 # Output:

 # First subscriber: (0, 1.0016899108886719)

 # First subscriber: (1, 2.0027990341186523)

 # First subscriber: (2, 3.003532648086548)

 # Second subscriber: (2, 3.003532648086548)

 # First subscriber: (3, 4.004265308380127)

 # Second subscriber: (3, 4.004265308380127)

 # Second subscriber: (4, 5.005320310592651)

 # Second subscriber: (5, 6.005795240402222)

In this example, you can see how we first issue publish, then we subscribe the first
subscriber, and finally, we issue connect. When connect is issued, the timer will start
producing data. The second subscriber joins the party late and, in fact, won't receive the
first two messages but will start receiving data from the third, and so on. Note that, this
time around, the subscribers share the exact same data. This kind of data source, where
data is produced independently of the subscribers, is called hot.

Similar to publish, you can use the replay method that will produce the data from the
beginning for each new subscriber. This is illustrated in the following example, which is
identical to the preceding one except that we replaced publish with replay:

 from rx.operators import replay

 start = time.time()

Reactive programming 221

 obs = replay()(map(lambda a: (a, time.time() - start) \

 (interval(1)))

 take(4)(obs).subscribe(lambda x: print("First \

 subscriber: {}".format(x)))

 obs.connect()

 time.sleep(2)

 take(4)(obs).subscribe(lambda x: print("Second \

 subscriber: {}".format(x)))

 First subscriber: (0, 1.0008857250213623)

 First subscriber: (1, 2.0019824504852295)

 Second subscriber: (0, 1.0008857250213623)

 Second subscriber: (1, 2.0019824504852295)

 First subscriber: (2, 3.0030810832977295)

 Second subscriber: (2, 3.0030810832977295)

 First subscriber: (3, 4.004604816436768)

 Second subscriber: (3, 4.004604816436768)

Notice that even though the second subscriber arrives late to the party, it is still given all
the items that have been given out so far.

Another way of creating hot observables is through the Subject class. Subject is
interesting because it's capable of both receiving and pushing data, and thus it can be used
to manually push items to an observable. Using Subject is very intuitive; in the following
code snippet, we create a Subject instance and subscribe to it. Later, we push values to it
using the on_next method; as soon as we do that, the subscriber is called:

 from rx.subject import Subject

 s = Subject()

 s.subscribe(lambda x: print("Subject emitted value: \

 {}".format(x)))

 s.on_next(1)

 # Subject emitted value: 1

 s.on_next(2)

 # Subject emitted value: 2

Note that Subject is another example of a hot observable.

222 Implementing Concurrency

Building a CPU monitor
Now that we have a grasp of the main reactive programming concepts, we can implement
an example application: a monitor that will give us real-time information about our CPU
usage and that can detect spikes.

Note
The complete code for the CPU monitor can be found in the cpu_
monitor.py file.

As a first step, let's implement a data source. We will use the psutil module that provides
a function, psutil.cpu_percent, that returns the latest available CPU usage as a
percentage (and doesn't block). The code is illustrated in the following snippet:

 import psutil

 psutil.cpu_percent()

 # Result: 9.7

Since we are developing a monitor, we would like to sample this information over a
few time intervals. To accomplish, this we can use the familiar interval observable,
followed by map, just as we did in the previous section. Also, we would like to make this
observable hot as, for this application, all subscribers should receive a single source of data;
to make interval hot, we can use the publish and connect methods. The full code
for the creation of a cpu_data observable is shown here:

 cpu_data = publish()(map(lambda x: \

 psutil.cpu_percent())(interval(0.1)))

 cpu_data.connect() # Start producing data

We can test our monitor by printing a sample of four items, as follows:

 take(4)(cpu_data).subscribe(print)

 # Output:

 # 12.5

 # 5.6

 # 4.5

 # 9.6

Reactive programming 223

Now that our main data source is in place, we can implement a monitor visualization
using matplotlib. The idea is to create a plot that contains a fixed number of
measurements and, as new data arrives, we include the newest measurement and remove
the oldest one. This is commonly referred to as a moving window and is better understood
with an illustration. In the following diagram, our cpu_data stream is represented as a
list of numbers. The first plot is produced as soon as we have the first four numbers and,
each time a new number arrives, we shift the window by one position and update the plot:

Figure 7.7 – Illustration of a moving window

To implement this algorithm, we can write a function called monitor_cpu that will
create and update our plotting window. The function will do the following things:

• Initialize an empty plot and set up the correct plot limits.

• Transform our cpu_data observable to return a moving window over the data. This
can be accomplished using the buffer_with_count operator, which will take the
number of points in our window, npoints, as parameters and the shift as 1.

• Subscribe to this new data stream and update the plot with the incoming data.

The complete code for the function is implemented in cpu_monitor.py and shown
here and, as you can see, is extremely compact. Go ahead and install matplotlib if
you don't have it in your environment already, using pip install matplotlib.

Take some time to run the function and play with the parameters. You can view the
code here:

 from rx.operators import buffer_with_count

 import numpy as np

 import pylab as plt

224 Implementing Concurrency

 def monitor_cpu(npoints):

 lines, = plt.plot([], [])

 plt.xlim(0, npoints)

 plt.ylim(0, 100) # 0 to 100 percent

 cpu_data_window = buffer_with_count(npoints, \

 1)(cpu_data)

 def update_plot(cpu_readings):

 lines.set_xdata(np.arange(len(cpu_readings)))

 lines.set_ydata(np.array(cpu_readings))

 plt.draw()

 cpu_data_window.subscribe(update_plot)

 plt.show()

Another feature we may want to develop is an alert that triggers when the CPU has been
high for a certain amount of time, as this may indicate that some of the processes in our
machine are working very hard. This can be accomplished by combining buffer_with_
count and map. We can take the CPU stream and a window, and test whether all items
have a value higher than 20% usage (in a quad-core CPU, that corresponds to about one
processor working at 100%) in the map function. If all the points in the window have a
higher-than-20% usage, we display a warning in our plot window.

The implementation of the new observable can be written as follows and will produce
an observable that emits True if the CPU has high usage, and False otherwise:

 alertpoints = 4

 high_cpu = map(lambda readings: all(r > 20 for r in \

 readings))(

 buffer_with_count(alertpoints, 1)(cpu_data)

)

Now that the high_cpu observable is ready, we can create a matplotlib label and
subscribe to it for updates, as follows:

 label = plt.text(1, 1, "normal")

 def update_warning(is_high):

 if is_high:

Reactive programming 225

 label.set_text("high")

 else:

 label.set_text("normal")

 high_cpu.subscribe(update_warning)

Run the program from your terminal, and an interactive window will open to display your
CPU usage data in real time. Here is a screenshot showing the output of our program:

Figure 7.8 – Monitoring CPU usage

Here, the blue curve denotes the CPU usage, which stays below the normal threshold.

While this example is relatively simple, it possesses the core components of a reactive
program, and more complex applications that fully utilize the power of RxPY may be
built using this as a blueprint.

226 Implementing Concurrency

Summary
Asynchronous programming is useful when our code deals with slow and unpredictable
resources, such as I/O devices and networks. In this chapter, we explored the fundamental
concepts of concurrency and asynchronous programming and how to write concurrent
code with the asyncio and RxPy libraries.

asyncio coroutines are an excellent choice when dealing with multiple, interconnected
resources as they greatly simplify the code logic by cleverly avoiding callbacks. Reactive
programming is also very good in these situations, but it truly shines when dealing with
streams of data that are common in real-time applications and UIs.

Questions
1. How does asynchronous programming help programs run at higher speed?
2. What are the main differences between callbacks and futures in asynchronous

programming?
3. What are the core characteristics/requirements of a reactive application?

Further reading
• Migrating to RxPY v3: https://rxpy.readthedocs.io/en/latests/

migration.html

https://rxpy.readthedocs.io/en/latests/migration.html
https://rxpy.readthedocs.io/en/latests/migration.html

8
Parallel Processing

With parallel processing using multiple cores, you can increase the number of calculations
your program can do in a given time frame without needing a faster processor. The main
idea is to divide a problem into independent subunits and use multiple cores to solve those
subunits in parallel.

Parallel processing is necessary to tackle large-scale problems. Every day, companies
produce massive quantities of data that needs to be stored in multiple computers and
analyzed. Scientists and engineers run parallel code on supercomputers to simulate
massive systems.

Parallel processing allows you to take advantage of multicore central processing units
(CPUs) as well as graphics processing units (GPUs) that work extremely well with
highly parallel problems.

In this chapter, we will cover the following topics:

• Introduction to parallel programming

• Using multiple processes

• Parallel Cython with Open Multi-Processing (OpenMP)

• Automatic parallelism

228 Parallel Processing

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter08.

Introduction to parallel programming
To parallelize a program, it is necessary to divide the problem into subunits that can run
independently (or almost independently) from each other.

A problem where the subunits are totally independent of each other is called
embarrassingly parallel. An element-wise operation on an array is a typical example—the
operation needs to only know the element it is handling now. Another example is our
particle simulator. Since there are no interactions, each particle can evolve independently
from the others. Embarrassingly parallel problems are very easy to implement and
perform very well on parallel architectures.

Other problems may be divided into subunits but must share some data to perform their
calculations. In those cases, the implementation is less straightforward and can lead to
performance issues because of the communication costs.

We will illustrate the concept with an example. Imagine that you have a particle simulator,
but this time, the particles attract other particles within a certain distance (as shown in the
following figure):

Figure 8.1 – Illustration of a neighboring region

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter08

Introduction to parallel programming 229

To parallelize this problem, we divide the simulation box into regions and assign each
region to a different processor. If we evolve the system one step at a time, some particles
will interact with particles in a neighboring region. To perform the next iteration,
communication with the new particle positions of the neighboring region is required.

Communication between processes is costly and can seriously hinder the performance of
parallel programs. There exist two main ways to handle data communication in parallel
programs: shared memory and distributed memory.

In shared memory, the subunits have access to the same memory space. An advantage
of this approach is that you don't have to explicitly handle the communication as it
is sufficient to write or read from the shared memory. However, problems arise when
multiple processes try to access and change the same memory location at the same time.
Care should be taken to avoid such conflicts using synchronization techniques.

In the distributed memory model, each process is completely separated from the others
and possesses its own memory space. In this case, communication is handled explicitly
between the processes. The communication overhead is typically costlier compared to
shared memory as data can potentially travel through a network interface.

One common way to achieve parallelism with the shared memory model is through
threads. Threads are independent subtasks that originate from a process and share
resources, such as memory. This concept is further illustrated in the following diagram:

Figure 8.2 – Illustration of the difference between threads and processes

Threads produce multiple execution contexts and share the same memory space, while
processes provide multiple execution contexts that possess their own memory space,
and communication must be handled explicitly.

230 Parallel Processing

Python can spawn and handle threads, but they can't be used to increase performance;
due to the Python interpreter design, only one Python instruction is allowed to run at a
time—this mechanism is called the Global Interpreter Lock (GIL). What happens is that
each time a thread executes a Python statement, the thread acquires a lock and, when the
execution is completed, the same lock is released. Since the lock can be acquired only by
one thread at a time, other threads are prevented from executing Python statements while
some other thread holds the lock.

Even though the GIL prevents parallel execution of Python instructions, threads can still
be used to provide concurrency in situations where the lock can be released, such as in
time-consuming input/output (I/O) operations or in C extensions.

Why Not Remove the GIL?
In past years, many attempts have been made, including the most recent
Gilectomy experiment. First, removing the GIL is not an easy task and requires
modification of most of the Python data structures. Additionally, such fine-
grained locking can be costly and may introduce substantial performance
loss in single-threaded programs. Despite this, some Python implementations
(notable examples are Jython and IronPython) do not use the GIL.

The GIL can be completely sidestepped using processes instead of threads. Processes don't
share the same memory area and are independent of each other—each process has its
own interpreter. Processes have a few disadvantages: starting up a new process is generally
slower than starting a new thread, they consume more memory, and inter-process
communication (IPC) can be slow. On the other hand, processes are still very flexible,
and they scale better as they can be distributed on multiple machines.

GPUs
GPUs are special processors designed for computer graphics applications. Those
applications usually require processing the geometry of a three-dimensional (3D) scene
and output an array of pixels to the screen. The operations performed by GPUs involve
array and matrix operations on floating-point numbers.

GPUs are designed to run this graphics-related operation very efficiently, and they achieve
this by adopting a highly parallel architecture. Compared to a CPU, a GPU has many more
(thousands) of small processing units. GPUs are intended to produce data at about 60
frames per second (FPS), which is much slower than the typical response time of a CPU,
which possesses higher clock speeds.

Using multiple processes 231

GPUs possess a very different architecture from a standard CPU and are specialized
for computing floating-point operations. Therefore, to compile programs for GPUs, it is
necessary to utilize special programming platforms, such as Compute Unified Device
Architecture (CUDA) and Open Computing Language (OpenCL).

CUDA is a proprietary NVIDIA technology. It provides an application programming
interface (API) that can be accessed from other languages. CUDA provides the NVIDIA
CUDA Compiler (NVCC) tool that can be used to compile GPU programs written in
a language such as C (CUDA C), as well as numerous libraries that implement highly
optimized mathematical routines.

OpenCL is an open technology with an ability to write parallel programs that can be
compiled for a variety of target devices (CPUs and GPUs of several vendors) and is
a good option for non-NVIDIA devices.

GPU programming sounds wonderful on paper. However, don't throw away your CPU
yet. GPU programming is tricky, and only specific use cases benefit from the GPU
architecture. Programmers need to be aware of the costs incurred in memory transfers to
and from the main memory and how to implement algorithms to take advantage of the
GPU architecture.

Generally, GPUs are great at increasing the number of operations you can perform per
unit of time (also called throughput); however, they require more time to prepare the data
for processing. In contrast, CPUs are much faster at producing an individual result from
scratch (also called latency).

For the right problem, GPUs provide extreme (10 to 100 times) speedup. For this reason,
they often constitute a very inexpensive solution (the same speedup will require hundreds
of CPUs) to improve the performance of numerically intensive applications. We will
illustrate how to execute some algorithms on a GPU in the Automatic parallelism section.

Having said that, we will begin our discussion on multiprocessing using standard
processes in the next section.

Using multiple processes
The standard multiprocessing module can be used to quickly parallelize simple tasks
by spawning several processes while avoiding the GIL problem. Its interface is easy to use
and includes several utilities to handle task submission and synchronization.

232 Parallel Processing

The Process and Pool classes
You can create a process that runs independently by subclassing multiprocessing.
Process. You can extend the __init__ method to initialize resources, and you can
write a portion of the code that will be executed in a subprocess by implementing the
Process.run method. In the following code snippet, we define a Process class that
will wait for 1 second and print its assigned id value:

 import multiprocessing

 import time

 class Process(multiprocessing.Process):

 def __init__(self, id):

 super(Process, self).__init__()

 self.id = id

 def run(self):

 time.sleep(1)

 print("I'm the process with id:

 {}".format(self.id))

To spawn the process, we must instantiate the Process class and call the Process.
start method. Note that you don't directly call Process.run; the call to Process.
start will create a new process that, in turn, will call the Process.run method. We
can add the following lines at the end of the preceding snippet to create and start the
new process:

 if __name__ == '__main__':

 p = Process(0)

 p.start()

The special __name__ Variable
Note that we need to place any code that manages processes inside the if
__name__ == '__main__' condition, as shown in the previous code
snippet, to avoid many undesirable behaviors. All the code shown in this
chapter will be assumed to follow this practice.

Using multiple processes 233

The instructions after Process.start will be executed immediately without waiting for
the p process to finish. To wait for the task completion, you can use the Process.join
method, as follows:

 if __name__ == '__main__':

 p = Process(0)

 p.start()

 p.join()

We can launch four different processes that will run in parallel in the same way. In a serial
program, the total required time will be 4 seconds. Since the execution is concurrent, the
resulting wall clock time will be of 1 second. In the following code snippet, we create four
processes that will execute concurrently:

 if __name__ == '__main__':

 processes = Process(1), Process(2), Process(3),

 Process(4)

 [p.start() for p in processes]

Note that the order of the execution for parallel processes is unpredictable and ultimately
depends on how the operating system (OS) schedules this. You can verify this behavior by
executing the program multiple times; the order will likely be different between runs.

The multiprocessing module exposes a convenient interface that makes it easy to
assign and distribute tasks to a set of processes that reside in the multiprocessing.
Pool class.

The multiprocessing.Pool class spawns a set of processes—called workers—and lets
us submit tasks through the apply/apply_async and map/map_async methods.

The pool.map method applies a function to each element of a list and returns a list of
results. Its usage is equivalent to the built-in (serial) map.

To use a parallel map, you should first initialize a multiprocessing.Pool object that
takes the number of workers as its first argument; if not provided, that number will be equal
to the number of cores in the system. You can initialize a multiprocessing.Pool object
in the following way:

 pool = multiprocessing.Pool()

 pool = multiprocessing.Pool(processes=4)

234 Parallel Processing

Let's see pool.map in action. If you have a function that computes the square of a
number, you can map the function to the list by calling pool.map and passing the
function and the list of inputs as arguments, as follows:

 def square(x):

 return x * x

 inputs = [0, 1, 2, 3, 4]

 outputs = pool.map(square, inputs)

The pool.map_async function is just like pool.map but returns an AsyncResult
object instead of the actual result. When we call pool.map, the execution of the main
program is stopped until all the workers are finished processing the result. With map_
async, the AsyncResult object is returned immediately without blocking the main
program and the calculations are done in the background. We can then retrieve the result
using the AsyncResult.get method at any time, as shown in the following lines of code:

 outputs_async = pool.map_async(square, inputs)

 outputs = outputs_async.get()

pool.apply_async assigns a task consisting of a single function to one of the workers.
It takes the function and its arguments and returns an AsyncResult object. We can
obtain an effect similar to map using apply_async, as shown here:

 results_async = [pool.apply_async(square, i) for i in \

 range(100))]

 results = [r.get() for r in results_async]

To use the results computed and returned by these processes, we can simply access the
data stored in results.

The Executor interface
From version 3.2 onward, it is possible to execute Python code in parallel using
the Executor interface provided in the concurrent.futures module. We
already saw the Executor interface in action in the previous chapter, when we used
ThreadPoolExecutor to perform multiple tasks concurrently. In this subsection,
we'll demonstrate the usage of the ProcessPoolExecutor class.

Using multiple processes 235

ProcessPoolExecutor exposes a very lean interface, at least when compared to the
more featureful multiprocessing.Pool. A ProcessPoolExecutor class can be
instantiated, similar to ThreadPoolExecutor, by passing a number of worker threads
using the max_workers argument (by default, max_workers will be the number of
CPU cores available). The main methods available to the ProcessPoolExecutor class
are submit and map.

The submit method will take a function and return a Future instance that will keep
track of the execution of the submitted function. The map method works similarly to
the pool.map function, except that it returns an iterator rather than a list. The code is
illustrated in the following snippet:

 from concurrent.futures import ProcessPoolExecutor

 executor = ProcessPoolExecutor(max_workers=4)

 fut = executor.submit(square, 2)

 # Result:

 # <Future at 0x7f5b5c030940 state=running>

 result = executor.map(square, [0, 1, 2, 3, 4])

 list(result)

 # Result:

 # [0, 1, 4, 9, 16]

To extract the result from one or more Future instances, you can use the concurrent.
futures.wait and concurrent.futures.as_completed functions. The wait
function accepts a list of future instances and will block the execution of the programs
until all the futures have completed their execution. The result can then be extracted
using the Future.result method. The as_completed function also accepts a
function but will, instead, return an iterator over the results. The code is illustrated in
the following snippet:

 from concurrent.futures import wait, as_completed

 fut1 = executor.submit(square, 2)

 fut2 = executor.submit(square, 3)

 wait([fut1, fut2])

 # Then you can extract the results using fut1.result()

 and fut2.result()

236 Parallel Processing

 results = as_completed([fut1, fut2])

 list(results)

 # Result:

 # [4, 9]

Alternatively, you can generate futures using the asyncio.run_in_executor
function and manipulate the results using all the tools and syntax provided by the
asyncio libraries so that you can achieve concurrency and parallelism at the same time.

Monte Carlo approximation of pi
As an example, we will implement a canonical, embarrassingly parallel program—the
Monte Carlo approximation of pi. Imagine that we have a square of size 2 units; its
area will be 4 units. Now, we inscribe a circle of 1 unit radius in this square; the area of
the circle will be 𝑝𝑝𝑝𝑝 ∗ 𝑟𝑟2 . By substituting the value of r in the previous equation, we get
that the numerical value for the area of the circle is 𝑝𝑝𝑝𝑝 ∗ (1) 2 = pi. You can refer to the
following screenshot for a graphical representation of this:

Figure 8.3 – Illustration of our strategy of approximation of pi

If we shoot a lot of random points on this, some points will fall into the circle, which
we'll call hits, while the remaining points, misses, will be outside the circle. The area of
the circle will be proportional to the number of hits, while the area of the square will be
proportional to the total number of shots. To get the value of pi, it is sufficient to divide
the area of the circle (equal to pi) by the area of the square (equal to 4), as illustrated in
the following code snippet:

 hits/total = area_circle/area_square = pi/4

 pi = 4 * hits/total

Using multiple processes 237

The strategy we will employ in our program will be as follows:

• Generate a lot of uniformly random (x, y) numbers in the range (-1, 1).

• Test whether those numbers lie inside the circle by checking whether
x**2 + y**2 <= 1.

The first step when writing a parallel program is to write a serial version and verify that
it works. In a real-world scenario, you also want to leave parallelization as the last step of
your optimization process—first, because we need to identify the slow parts, and second,
parallelization is time-consuming and gives you at most a speedup equal to the number of
processors. The implementation of the serial program is shown here:

 import random

 samples = 1000000

 hits = 0

 for i in range(samples):

 x = random.uniform(-1.0, 1.0)

 y = random.uniform(-1.0, 1.0)

 if x**2 + y**2 <= 1:

 hits += 1

 pi = 4.0 * hits/samples

The accuracy of our approximation will improve as we increase the number of
samples. Note that each loop iteration is independent of the other—this problem is
embarrassingly parallel.

To parallelize this code, we can write a function, called sample, that corresponds to a
single hit-miss check. If the sample hits the circle, the function will return 1; otherwise, it
will return 0. By running sample multiple times and summing the results, we'll get the
total number of hits. We can run sample over multiple processors with apply_async
and get the results in the following way:

 def sample():

 x = random.uniform(-1.0, 1.0)

 y = random.uniform(-1.0, 1.0)

238 Parallel Processing

 if x**2 + y**2 <= 1:

 return 1

 else:

 return 0

 pool = multiprocessing.Pool()

 results_async = [pool.apply_async(sample) for i in \

 range(samples)]

 hits = sum(r.get() for r in results_async)

We can wrap the two versions in the pi_serial and pi_apply_async functions
(you can find their implementation in the pi.py file) and benchmark the execution
speed, as follows:

$ time python -c 'import pi; pi.pi_serial()'

real 0m0.734s

user 0m0.731s

sys 0m0.004s

$ time python -c 'import pi; pi.pi_apply_async()'

real 1m36.989s

user 1m55.984s

sys 0m50.386

As shown in the earlier benchmark, our first parallel version literally cripples our code,
the reason being that the time spent doing the actual calculation is small compared to
the overhead required to send and distribute the tasks to the workers.

To solve the issue, we have to make the overhead negligible compared to the calculation
time. For example, we can ask each worker to handle more than one sample at a time,
thus reducing the task communication overhead. We can write a sample_multiple
function that processes more than one hit and modifies our parallel version by dividing
our problem by 10; more intensive tasks are shown in the following code snippet:

 def sample_multiple(samples_partial):

 return sum(sample() for i inrange(samples_partial))

 n_tasks = 10

 chunk_size = samples/n_tasks

 pool = multiprocessing.Pool()

Using multiple processes 239

 results_async = [pool.apply_async(sample_multiple, \

 chunk_size) for i in range(n_tasks)]

 hits = sum(r.get() for r in results_async)

We can wrap this in a function called pi_apply_async_chunked and run it as follows:

$ time python -c 'import pi; pi.pi_apply_async_chunked()'

real 0m0.325s

user 0m0.816s

sys 0m0.008s

The results are much better; we more than doubled the speed of our program. You can also
notice that the user metric is larger than real; the total CPU time is larger than the total
time because more than one CPU worked at the same time. If you increase the number
of samples, you will note that the ratio of communication to calculation decreases, giving
even better speedups.

Everything is nice and simple when dealing with embarrassingly parallel problems.
However, you sometimes have to share data between processes.

Synchronization and locks
Even if multiprocessing uses processes (with their own independent memory), it lets
you define certain variables and arrays as shared memory. You can define a shared variable
using multiprocessing.Value, passing its data type as a string (i for integer, d for
double, f for float, and so on). You can update the content of the variable through the
value attribute, as shown in the following code snippet:

 shared_variable = multiprocessing.Value('f')

 shared_variable.value = 0

When using shared memory, you should be aware of concurrent access. Imagine that you
have a shared integer variable, and each process increments its value multiple times. You
will define a Process class, as follows:

 class Process(multiprocessing.Process):

 def __init__(self, counter):

 super(Process, self).__init__()

 self.counter = counter

240 Parallel Processing

 def run(self):

 for i in range(1000):

 self.counter.value += 1

You can initialize the shared variable in the main program and pass it to 4 processes,
as shown in the following code snippet:

 def main():

 counter = multiprocessing.Value('i', lock=True)

 counter.value = 0

 processes = [Process(counter) for i in range(4)]

 [p.start() for p in processes]

 [p.join() for p in processes] # processes are done

 print(counter.value)

If you run this program (shared.py in the code directory), you will note that the
final value of counter is not 4000, but it has random values (on my machine, they are
between 2000 and 2500). If we assume that the arithmetic is correct, we can conclude
that there's a problem with the parallelization.

What happens is that multiple processes are trying to access the same shared variable at the
same time. The situation is best explained by looking at the following diagram. In a serial
execution, the first process reads the number (0), increments it, and writes the new value
(1); the second process reads the new value (1), increments it, and writes it again (2).

In parallel execution, the two processes read the number (0), increment it, and write the
value (1) at the same time, leading to a wrong answer:

Figure 8.4 – Multiple processes accessing the same variable, leading to incorrect behavior

Using multiple processes 241

To solve this problem, we need to synchronize the access to this variable so that only one
process at a time can access, increment, and write the value on the shared variable. This
feature is provided by the multiprocessing.Lock class. A lock can be acquired and
released through the acquire and release methods respectively or by using the lock
as a context manager. Since the lock can be acquired by only one process at a time, this
method prevents multiple processes from executing the protected section of code at the
same time.

We can define a global lock and use it as a context manager to restrict access to the
counter, as shown in the following code snippet:

 class Process(multiprocessing.Process):

 def __init__(self, counter):

 super(Process, self).__init__()

 self.counter = counter

 def run(self):

 for i in range(1000):

 with lock: # acquire the lock

 self.counter.value += 1

 # release the lock

Synchronization primitives, such as locks, are essential to solving many problems, but they
should be kept to a minimum to improve the performance of your program.

Tip
The multiprocessing module includes other communication and
synchronization tools; you can refer to the official documentation at http://
docs.python.org/3/library/multiprocessing.html for a
complete reference.

In Chapter 4, C Performance with Cython, we discussed Cython as a method of speeding
up our programs. Cython itself also allows parallel processing via OpenMP, which we will
examine next.

http://docs.python.org/3/library/multiprocessing.html
http://docs.python.org/3/library/multiprocessing.html

242 Parallel Processing

Parallel Cython with OpenMP
Cython provides a convenient interface to perform shared-memory parallel processing
through OpenMP. This lets you write extremely efficient parallel code directly in Cython
without having to create a C wrapper.

OpenMP is a specification and an API designed to write multithreaded, parallel programs.
The OpenMP specification includes a series of C preprocessor directives to manage
threads and provides communication patterns, load balancing, and other synchronization
features. Several C/C++ and Fortran compilers (including the GNU Compiler Collection
(GCC)) implement the OpenMP API.

We can introduce the Cython parallel features with a small example. Cython provides
a simple API based on OpenMP in the cython.parallel module. The simplest way
to achieve parallelism is through prange, which is a construct that automatically
distributes loop operations in multiple threads.

First of all, we can write the serial version of a program that computes the square of each
element of a NumPy array in the hello_parallel.pyx file. We define a function,
square_serial, that takes a buffer as input and populates an output array with the
squares of the input array elements; square_serial is shown in the following
code snippet:

 import numpy as np

 def square_serial(double[:] inp):

 cdef int i, size

 cdef double[:] out

 size = inp.shape[0]

 out_np = np.empty(size, 'double')

 out = out_np

 for i in range(size):

 out[i] = inp[i]*inp[i]

 return out_np

Implementing a parallel version of the loop over the array elements involves substituting
the range call with prange. There's a caveat—to use prange, the body of the loop must
be interpreter-free. As already explained, we need to release the GIL and, since interpreter
calls generally acquire the GIL, they need to be avoided to make use of threads.

Parallel Cython with OpenMP 243

In Cython, you can release the GIL using the nogil context, as follows:

 with nogil:

 for i in prange(size):

 out[i] = inp[i]*inp[i]

Alternatively, you can use the nogil=True option of prange that will automatically
wrap the loop body in a nogil block, as follows:

 for i in prange(size, nogil=True):

 out[i] = inp[i]*inp[i]

Attempts to call Python code in a prange block will produce an error. Prohibited
operations include function calls, object initialization, and so on. To enable such operations
in a prange block (you may want to do so for debugging purposes), you have to re-enable
the GIL using a with gil statement, as follows:

 for i in prange(size, nogil=True):

 out[i] = inp[i]*inp[i]

 with gil:

 x = 0 # Python assignment

We can now test our code by compiling it as a Python extension module. To enable
OpenMP support, it is necessary to change the setup.py file so that it includes the
-fopenmp compilation option. This can be achieved by using the distutils.
extension.Extension class in distutils and passing it to cythonize. The
complete setup.py file looks like this:

 from distutils.core import setup

 from distutils.extension import Extension

 from Cython.Build import cythonize

 hello_parallel = Extension(

 'hello_parallel',

 ['hello_parallel.pyx'],

 extra_compile_args=['-fopenmp'],

 extra_link_args=['-fopenmp'])

 setup(

 name='Hello',

244 Parallel Processing

 ext_modules = cythonize(['cevolve.pyx',

 hello_parallel]),

)

Using prange, we can easily parallelize the Cython version of our ParticleSimulator
class. The following code snippet contains the c_evolve function of the cevolve.pyx
Cython module that was written in Chapter 4, C Performance with Cython:

 def c_evolve(double[:, :] r_i,double[:] ang_speed_i, \

 double timestep,int nsteps):

 # cdef declarations

 for i in range(nsteps):

 for j in range(nparticles):

 # loop body

First, we will invert the order of the loops so that the outermost loop will be executed
in parallel (each iteration is independent of the other). Since the particles don't interact
with each other, we can change the order of iteration safely, as shown in the following
code snippet:

 for j in range(nparticles):

 for i in range(nsteps):

 # loop body

Next, we will replace the range call of the outer loop with prange and remove calls that
acquire the GIL. Since our code was already enhanced with static types, the nogil option
can be applied safely, as follows:

 for j in prange(nparticles, nogil=True)

We can now compare the functions by wrapping them in the benchmark function to
assess any performance improvement, as follows:

 In [3]: %timeit benchmark(10000, 'openmp') # Running on

 4 processors

 1 loops, best of 3: 599 ms per loop

 In [4]: %timeit benchmark(10000, 'cython')

 1 loops, best of 3: 1.35 s per loop

Automatic parallelism 245

Interestingly, we achieved a two-times speedup by writing a parallel version using prange.

As we mentioned earlier, normal Python programs have trouble achieving thread
parallelism because of the GIL. So far, we worked around this problem using separate
processes; starting a process, however, takes significantly more time and memory than
starting a thread.

We also saw that sidestepping the Python environment allowed us to achieve a two-times
speedup on already fast Cython code. This strategy allowed us to achieve lightweight
parallelism but required a separate compilation step. In the next section, we will further
explore this strategy using special libraries that are capable of automatically translating
our code into a parallel version for efficient execution.

Automatic parallelism
Examples of packages that implement automatic parallelism are the (by now) familiar
just-in-time (JIT) compilers numexpr and Numba. Other packages have been developed
to automatically optimize and parallelize array and matrix-intensive expressions, which
are crucial in specific numerical and machine learning (ML) applications.

Theano is a project that allows you to define a mathematical expression on arrays
(more generally, tensors), and compile them to a fast language, such as C or C++. Many
of the operations that Theano implements are parallelizable and can run on both the
CPU and GPU.

TensorFlow is another library that, similar to Theano, is targeted toward array-intensive
mathematical expressions but, rather than translating the expressions to specialized C
code, executes the operations on an efficient C++ engine.

Both Theano and TensorFlow are ideal when the problem at hand can be expressed in
a chain of matrix and element-wise operations (such as neural networks).

Getting started with Theano
Theano is somewhat similar to a compiler but with the added bonus of being able to
express, manipulate, and optimize mathematical expressions as well as run code on
the CPU and GPU. Since 2010, Theano has improved release after release and has been
adopted by several other Python projects as a way to automatically generate efficient
computational models on the fly.

The package may be installed using the following command:

$pip install Theano

246 Parallel Processing

In Theano, you first define the function you want to run by specifying variables and
transformation using a pure Python API. This specification will then be compiled into
machine code for execution.

As a first example, let's examine how to implement a function that computes the square of
a number. The input will be represented by a scalar variable, a, and then we will transform
it to obtain its square, indicated by a_sq. In the following code snippet, we will use the
T.scalar function to define a variable and use the normal ** operator to obtain
a new variable:

 import theano.tensor as T

 import theano as th

 a = T.scalar('a')

 a_sq = a ** 2

 print(a_sq)

 # Output:

 # Elemwise{pow,no_inplace}.0

As you can see, no specific value is computed, and the transformation we apply is purely
symbolic. In order to use this transformation, we need to generate a function. To compile
a function, you can use the th.function utility that takes a list of the input variables
as its first argument and the output transformation (in our case, a_sq) as its second
argument, as illustrated in the following code snippet:

 compute_square = th.function([a], a_sq)

Theano will take some time and translate the expression to efficient C code and compile it,
all in the background! The return value of th.function will be a ready-to-use Python
function, and its usage is demonstrated in the next line of code:

 compute_square(2)

 4.0

Unsurprisingly, compute_square correctly returns the input value squared. Note,
however, that the return type is not an integer (like the input type) but a floating-point
number. This is because the Theano default variable type is float64. You can verify
that by inspecting the dtype attribute of the a variable, as follows:

 a.dtype

 # Result:

 # float64

Automatic parallelism 247

The Theano behavior is very different compared to what we saw with Numba. Theano
doesn't compile generic Python code and, also, doesn't do any type of inference; defining
Theano functions requires a more precise specification of the types involved.

The real power of Theano comes from its support for array expressions. Defining a
one-dimensional (1D) vector can be done with the T.vector function; the returned
variable supports broadcasting operations with the same semantics of NumPy arrays.
For instance, we can take two vectors and compute the element-wise sum of their squares,
as follows:

 a = T.vector('a')

 b = T.vector('b')

 ab_sq = a**2 + b**2

 compute_square = th.function([a, b], ab_sq)

 compute_square([0, 1, 2], [3, 4, 5])

 # Result:

 # array([9., 17., 29.])

The idea is, again, to use the Theano API as a mini-language to combine various NumPy
array expressions that will be compiled as efficient machine code.

Note
One of the selling points of Theano is its ability to perform arithmetic
simplifications and automatic gradient calculations. For more information,
refer to the official documentation (https://theano-pymc.
readthedocs.io/en/latest/).

To demonstrate Theano functionality on a familiar use case, we can implement our
parallel calculation of pi again. Our function will take a collection of two random
coordinates as input and return the pi estimate. The input random numbers will be
defined as vectors named x and y, and we can test their position inside the circle using
a standard element-wise operation that we will store in the hit_test variable, as
illustrated in the following code snippet:

 x = T.vector('x')

 y = T.vector('y')

 hit_test = x ** 2 + y ** 2 < 1

https://theano-pymc.readthedocs.io/en/latest/
https://theano-pymc.readthedocs.io/en/latest/

248 Parallel Processing

At this point, we need to count the number of True elements in hit_test, which can be
done by taking its sum (it will be implicitly cast to integer). To obtain the pi estimate, we
finally need to calculate the ratio of hits versus the total number of trials. The calculation
is illustrated in the following code snippet:

 hits = hit_test.sum()

 total = x.shape[0]

 pi_est = 4 * hits/total

We can benchmark the execution of the Theano implementation using th.function
and the timeit module. In our test, we will pass two arrays of size 30000 and use the
timeit.timeit utility to execute the calculate_pi function multiple times, as
illustrated in the following code snippet:

 calculate_pi = th.function([x, y], pi_est)

 x_val = np.random.uniform(-1, 1, 30000)

 y_val = np.random.uniform(-1, 1, 30000)

 import timeit

 res = timeit.timeit("calculate_pi(x_val, y_val)", \

 "from __main__ import x_val, y_val, calculate_pi", \

 number=100000)

 print(res)

 # Output:

 # 10.905971487998613

The serial execution of this function takes about 10 seconds. Theano is capable
of automatically parallelizing the code by implementing element-wise and matrix
operations using specialized packages, such as OpenMP and the Basic Linear Algebra
Subprograms (BLAS) linear algebra routines. Parallel execution can be enabled using
configuration options.

In Theano, you can set up configuration options by modifying variables in the theano.
config object at import time. For example, you can issue the following commands to
enable OpenMP support:

import theano

theano.config.openmp = True

theano.config.openmp_elemwise_minsize = 10

Automatic parallelism 249

The parameters relevant to OpenMP are outlined here:

• openmp_elemwise_minsize: This is an integer number that represents the
minimum size of the arrays where element-wise parallelization should be enabled
(the overhead of the parallelization can harm performance for small arrays).

• openmp: This is a Boolean flag that controls the activation of OpenMP compilation
(it should be activated by default).

Controlling the number of threads assigned for OpenMP execution can be done by setting
the OMP_NUM_THREADS environmental variable before executing the code.

We can now write a simple benchmark to demonstrate OpenMP usage in practice. In a
test_theano.py file, we will put the complete code for the pi estimation example,
as follows:

 # File: test_theano.py

 import numpy as np

 import theano.tensor as T

 import theano as th

 th.config.openmp_elemwise_minsize = 1000

 th.config.openmp = True

 x = T.vector('x')

 y = T.vector('y')

 hit_test = x ** 2 + y ** 2 <= 1

 hits = hit_test.sum()

 misses = x.shape[0]

 pi_est = 4 * hits/misses

 calculate_pi = th.function([x, y], pi_est)

 x_val = np.random.uniform(-1, 1, 30000)

 y_val = np.random.uniform(-1, 1, 30000)

 import timeit

 res = timeit.timeit("calculate_pi(x_val, y_val)",

 "from __main__ import x_val, y_val,

 calculate_pi", number=100000)

 print(res)

250 Parallel Processing

At this point, we can run the code from the command line and assess the scaling with an
increasing number of threads by setting the OMP_NUM_THREADS environment variable,
as follows:

 $ OMP_NUM_THREADS=1 python test_theano.py

 10.905971487998613

 $ OMP_NUM_THREADS=2 python test_theano.py

 7.538279129999864

 $ OMP_NUM_THREADS=3 python test_theano.py

 9.405846934998408

 $ OMP_NUM_THREADS=4 python test_theano.py

 14.634153957000308

Interestingly, there is a small speedup when using two threads, but the performance
degrades quickly as we increase their number. This means that for this input size, it is not
advantageous to use more than two threads as the price you pay to start new threads and
synchronize their shared data is higher than the speedup that you can obtain from the
parallel execution.

Achieving good parallel performance can be tricky as this will depend on the specific
operations and how they access the underlying data. As a general rule, measuring the
performance of a parallel program is crucial, and obtaining substantial speedups is
a work of trial and error.

As an example, we can see that the parallel performance quickly degrades using slightly
different code. In our hit test, we used the sum method directly and relied on the explicit
casting of the hit_tests Boolean array. If we make the cast explicit, Theano will
generate slightly different code that benefits less from multiple threads. We can modify
the test_theano.py file to verify this effect, as follows:

 # Older version

 # hits = hit_test.sum()

 hits = hit_test.astype('int32').sum()

If we rerun our benchmark, we see that the number of threads does not affect the running
time significantly, as illustrated here:

 $ OMP_NUM_THREADS=1 python test_theano.py

 5.822126664999814

 $ OMP_NUM_THREADS=2 python test_theano.py

 5.697357518001809

Automatic parallelism 251

 $ OMP_NUM_THREADS=3 python test_theano.py

 5.636914656002773

 $ OMP_NUM_THREADS=4 python test_theano.py

 5.764030176000233

Despite that, the timings improved considerably compared to the original version.

Profiling Theano
Given the importance of measuring and analyzing performance, Theano provides
powerful and informative profiling tools. To generate profiling data, the only modification
needed is the addition of the profile=True option to th.function, as illustrated in
the following code snippet:

 calculate_pi = th.function([x, y], pi_est,

 profile=True)

The profiler will collect data as the function is being run (for example, through timeit
or direct invocation). The profiling summary can be printed to the output by issuing the
summary command, as follows:

 calculate_pi.profile.summary()

To generate profiling data, we can rerun our script after adding the profile=True
option (for this experiment, we will set the OMP_NUM_THREADS environmental variable
to 1). Also, we will revert our script to the version that performed the casting of
hit_tests implicitly.

Note
You can also set up profiling globally using the config.profile option.

The output printed by calculate_pi.profile.summary() is quite long and
informative. A part of it is reported in the next block of code. The output is comprised of
three sections that refer to timings sorted by Class, Ops, and Apply. In our example, we
are concerned with Ops, which roughly maps to the functions used in the Theano compiled
code. As you can see here, roughly 80% of the time is spent in taking the element-wise
square and sum of the two numbers, while the rest of the time is spent calculating the sum:

Function profiling

==================

252 Parallel Processing

 Message: test_theano.py:15

... other output

 Time in 100000 calls to Function.__call__: 1.015549e+01s

... other output

Class

<% time> <sum %> <apply time> <time per call> <type>

<#call> <#apply> <Class name>

.... timing info by class

Ops

<% time> <sum %> <apply time> <time per call> <type> <#call>

<#apply> <Op name>

 80.0% 80.0% 6.722s 6.72e-

05s C 100000 1 Elemwise{Composite{LT((sqr(

i0) + sqr(i1)), i2)}}

 19.4% 99.4% 1.634s 1.63e-

05s C 100000 1 Sum{acc_dtype=int64}

 0.3% 99.8% 0.027s 2.66e-

07s C 100000 1 Elemwise{Composite{((i0 *

i1) / i2)}}

 0.2% 100.0% 0.020s 2.03e-

07s C 100000 1 Shape_i{0}

 ... (remaining 0 Ops account for 0.00%(0.00s) of the

 runtime)

Apply

<% time> <sum %> <apply time> <time per call> <#call> <id>

<Apply name>

... timing info by apply

Automatic parallelism 253

This information is consistent with what was found in our first benchmark. The code went
from about 11 seconds to roughly 8 seconds when two threads were used. From these
numbers, we can analyze how the time was spent.

Out of these 11 seconds, 80% of the time (about 8.8 seconds) was spent doing element-
wise operations. This means that, in perfectly parallel conditions, the increase in speed
by adding two threads will be 4.4 seconds. In this scenario, the theoretical execution time
would be 6.6 seconds. Considering that we obtained a timing of about 8 seconds, it looks
like there is some extra overhead (1.4 seconds) for the thread usage.

TensorFlow
TensorFlow is another library designed for fast numerical calculations and automatic
parallelism. It was released as an open source project by Google in 2015. TensorFlow
works by building mathematical expressions similar to Theano, except that the
computation is not compiled as machine code but is executed on an external engine
written in C++. TensorFlow supports the execution and deployment of parallel code
on one or more CPUs and GPUs.

We can install TensorFlow using the following command:

$pip install tensorflow

TensorFlow Version Compatibility
Note that as the default option, TensorFlow 2.x will be installed without
further specifications. However, since the number of users of TensorFlow
1.x is still considerable, the code we use next will follow the syntax
of TensorFlow 1.x. You can either install version 1 by specifying pip
install tensorflow==1.15 or disable version 2's behavior using
import tensorflow.compat.v1 as tf; tf.disable_v2_
behavior() when importing the library, as shown next.

The usage of TensorFlow is quite similar to that of Theano. To create a variable in
TensorFlow, you can use the tf.placeholder function that takes a data type as input,
as follows:

 import tensorflow.compat.v1 as tf

 tf.disable_v2_behavior()

 a = tf.placeholder('float64')

254 Parallel Processing

TensorFlow mathematical expressions can be expressed quite similarly to Theano,
except for a few different naming conventions as well as more restricted support for
the NumPy semantics.

TensorFlow doesn't compile functions to C and then machine code like Theano does, but
serializes the defined mathematical functions (the data structure containing variables and
transformations is called a computation graph) and executes them on specific devices.
The configuration of devices and context can be done using the tf.Session object.

Once the desired expression is defined, a tf.Session object needs to be initialized
and can be used to execute computation graphs using the Session.run method. In
the following example, we demonstrate the usage of the TensorFlow API to implement
a simple element-wise sum of squares:

 a = tf.placeholder('float64')

 b = tf.placeholder('float64')

 ab_sq = a**2 + b**2

 with tf.Session() as session:

 result = session.run(ab_sq, feed_dict={a: [0, 1, \

 2], b: [3, 4, 5]})

 print(result)

 # Output:

 # array([9., 17., 29.])

Parallelism in TensorFlow is achieved automatically by its smart execution engine, and it
generally works well without much fiddling. However, note that it is mostly suited for deep
learning (DL) workloads that involve the definition of complex functions that use a lot of
matrix multiplications and calculate their gradient.

We can now replicate the estimation of pi example using TensorFlow capabilities and
benchmark its execution speed and parallelism against the Theano implementation.
What we will do is this:

• Define our x and y variables and perform a hit test using broadcasted operations.

• Calculate the sum of hit_tests using the tf.reduce_sum function.

• Initialize a Session object with the inter_op_parallelism_threads
and intra_op_parallelism_threads configuration options. These options
control the number of threads used for different classes of parallel operations.
Note that the first Session instance created with such options sets the number
of threads for the whole script (even future Session instances).

Automatic parallelism 255

We can now write a script name, test_tensorflow.py, containing the following
code. Note that the number of threads is passed as the first argument of the script
(sys.argv[1]):

 import tensorflow.compat.v1 as tf

 tf.disable_v2_behavior()

 import numpy as np

 import time

 import sys

 NUM_THREADS = int(sys.argv[1])

 samples = 30000

 print('Num threads', NUM_THREADS)

 x_data = np.random.uniform(-1, 1, samples)

 y_data = np.random.uniform(-1, 1, samples)

 x = tf.placeholder('float64', name='x')

 y = tf.placeholder('float64', name='y')

 hit_tests = x ** 2 + y ** 2 <= 1.0

 hits = tf.reduce_sum(tf.cast(hit_tests, 'int32'))

 with tf.Session

 (config=tf.ConfigProto

 (inter_op_parallelism_threads=NUM_THREADS,

 intra_op_parallelism_threads=NUM_THREADS)) as \

 sess:

 start = time.time()

 for i in range(10000):

 sess.run(hits, {x: x_data, y: y_data})

 print(time.time() - start)

256 Parallel Processing

If we run the script multiple times with different values of NUM_THREADS, we see that the
performance is quite similar to Theano and that the speedup increased by parallelization
is quite modest, as illustrated here:

 $ python test_tensorflow.py 1

 13.059704780578613

 $ python test_tensorflow.py 2

 11.938535928726196

 $ python test_tensorflow.py 3

 12.783955574035645

 $ python test_tensorflow.py 4

 12.158143043518066

The main advantage of using software packages such as TensorFlow and Theano is the
support for parallel matrix operations that are commonly used in ML algorithms. This is
very effective because those operations can achieve impressive performance gains on GPU
hardware that is designed to perform these operations with high throughput.

Running code on a GPU
In this subsection, we will demonstrate the usage of a GPU with Theano and TensorFlow.
As an example, we will benchmark the execution of very simple matrix multiplication on
the GPU and compare it to its running time on a CPU.

Note
The code in this subsection requires the possession of a GPU. For learning
purposes, it is possible to use the Amazon Elastic Compute Cloud (EC2)
service (https://aws.amazon.com/ec2) to request a GPU-enabled
instance.

The following code performs a simple matrix multiplication using Theano. We use the
T.matrix function to initialize a two-dimensional (2D) array, and then we use the
T.dot method to perform the matrix multiplication:

 from theano import function, config

 import theano.tensor as T

 import numpy as np

 import time

https://aws.amazon.com/ec2

Automatic parallelism 257

 N = 5000

 A_data = np.random.rand(N, N).astype('float32')

 B_data = np.random.rand(N, N).astype('float32')

 A = T.matrix('A')

 B = T.matrix('B')

 f = function([A, B], T.dot(A, B))

 start = time.time()

 f(A_data, B_data)

 print("Matrix multiply ({}) took {} seconds".format(N, \

 time.time() - start))

 print('Device used:', config.device)

It is possible to ask Theano to execute this code on a GPU by setting the config.
device=gpu option. For added convenience, we can set up the configuration value from
the command line using the THEANO_FLAGS environmental variable, shown as follows.
After copying the previous code into the test_theano_matmul.py file, we can
benchmark the execution time by issuing the following command:

 $ THEANO_FLAGS=device=gpu python test_theano_gpu.py

 Matrix multiply (5000) took 0.4182612895965576 seconds

 Device used: gpu

We can analogously run the same code on the CPU using the device=cpu configuration
option, as follows:

 $ THEANO_FLAGS=device=cpu python test_theano.py

 Matrix multiply (5000) took 2.9623231887817383 seconds

 Device used: cpu

As you can see, the GPU is 7.2 times faster than the CPU version for this example!

258 Parallel Processing

For comparison, we may benchmark equivalent code using TensorFlow. The implementation
of a TensorFlow version is shown in the next code snippet. The main differences with the
Theano version are outlined here:

• The usage of the tf.device config manager that serves to specify the target device
(/cpu:0 or /gpu:0).

• The matrix multiplication is performed using the tf.matmul operator.

This is illustrated in the following code snippet:

 import tensorflow as tf

 import time

 import numpy as np

 N = 5000

 A_data = np.random.rand(N, N)

 B_data = np.random.rand(N, N)

 # Creates a graph.

 with tf.device('/gpu:0'):

 A = tf.placeholder('float32')

 B = tf.placeholder('float32')

 C = tf.matmul(A, B)

 with tf.Session() as sess:

 start = time.time()

 sess.run(C, {A: A_data, B: B_data})

 print('Matrix multiply ({}) took: {}'.format(N, \

 time.time() - start))

If we run the test_tensorflow_matmul.py script with the appropriate tf.device
option, we obtain the following timings:

 # Ran with tf.device('/gpu:0')

 Matrix multiply (5000) took: 1.417285680770874

 # Ran with tf.device('/cpu:0')

 Matrix multiply (5000) took: 2.9646761417388916

Automatic parallelism 259

As you can see, the performance gain is substantial (but not as good as the Theano
version) in this simple case.

Another way to achieve automatic GPU computation is the now-familiar Numba. With
Numba, it is possible to compile Python code to programs that can be run on a GPU.
This flexibility allows for advanced GPU programming as well as more simplified
interfaces. In particular, Numba makes extremely easy-to-write, GPU-ready, generalized
universal functions.

In the next example, we will demonstrate how to write a universal function that applies
an exponential function on two numbers and sums the results. As we already saw in
Chapter 5, Exploring Compilers, this can be accomplished using the nb.vectorize
function (we'll also specify the cpu target explicitly). The code is shown here:

 import numba as nb

 import math

 @nb.vectorize(target='cpu')

 def expon_cpu(x, y):

 return math.exp(x) + math.exp(y)

The expon_cpu universal function can be compiled for the GPU device using the
target='cuda' option. Also, note that it is necessary to specify the input types for
CUDA universal functions. The implementation of expon_gpu is shown here:

 @nb.vectorize(['float32(float32, float32)'],

 target='cuda')

 def expon_gpu(x, y):

 return math.exp(x) + math.exp(y)

We can now benchmark the execution of the two functions by applying the functions on
two arrays of size 1000000. Also, note in the following code snippet that we execute the
function before measuring the timings to trigger the Numba JIT compilation:

 import numpy as np

 import time

 N = 1000000

 niter = 100

 a = np.random.rand(N).astype('float32')

 b = np.random.rand(N).astype('float32')

260 Parallel Processing

 # Trigger compilation

 expon_cpu(a, b)

 expon_gpu(a, b)

 # Timing

 start = time.time()

 for i in range(niter):

 expon_cpu(a, b)

 print("CPU:", time.time() - start)

 start = time.time()

 for i in range(niter):

 expon_gpu(a, b)

 print("GPU:", time.time() - start)

 # Output:

 # CPU: 2.4762887954711914

 # GPU: 0.8668839931488037

Thanks to the GPU execution, we were able to achieve a three-times speedup over the
CPU version. Note that transferring data on the GPU is quite expensive; therefore, GPU
execution becomes advantageous only for very large arrays.

When To Use Which Package
To close out this chapter, we will include a brief discussion regarding the
parallel processing tools that we have examined thus far. First, we have seen
how to use multiprocessing to manage multiple processes natively in
Python. If you are using Cython, you may appeal to OpenMP to implement
parallelism while being able to avoid working with C wrappers.

Finally, we study Theano and TensorFlow as two packages that automatically
compile array-centric code and parallelize the execution. While these two
packages offer similar advantages when it comes to automatic parallelism, at
the time of this writing, TensorFlow has gained significant popularity, especially
within the DL community, where the parallelism of matrix multiplications is
the norm.

On the other hand, the active development of Theano stopped in 2018. While
the package may still be utilized for automatic parallelism and DL uses, no
new versions will be released. For this reason, TensorFlow is often preferred by
Python programmers nowadays.

Summary 261

Summary
Parallel processing is an effective way to improve performance on large datasets.
Embarrassingly parallel problems are excellent candidates for parallel execution
that can be easily implemented to achieve good performance scaling.

In this chapter, we illustrated the basics of parallel programming in Python. We learned
how to circumvent Python threading limitations by spawning processes using the
tools available in the Python standard library. We also explored how to implement a
multithreaded program using Cython and OpenMP.

For more complex problems, we learned how to use the Theano, TensorFlow, and Numba
packages to automatically compile array-intensive expressions for parallel execution on
CPU and GPU devices.

In the next chapter, we will learn how to apply parallel programming techniques to build
a hands-on application that makes and handles web requests concurrently.

Questions
1. Why doesn't running Python code across multiple threads offer any speedup? What

is the alternative approach that we have discussed in this chapter?
2. In the multiprocessing module, what is the difference between the Process

and the Pool interface in terms of implementing multiprocessing?
3. On a high level, how do libraries such as Theano and TensorFlow help in

parallelizing Python code?

9
Concurrent Web

Requests
This chapter will focus on concurrently making web requests. Intuitively, making requests
to a web page to collect information about it is independent of applying the same task to
another web page. This means that concurrency, specifically threading in this case, can
be a powerful tool that provides a significant speedup in this process. In this chapter,
we will learn about the fundamentals of web requests and how to interact with websites
using Python. We will also learn how concurrency can help us make multiple requests
efficiently. Finally, we will look at several good practices regarding web requests.

Overall, this chapter serves as a practical exercise for us to become more comfortable
with concurrency in Python, which will help you tackle future concurrent programming
projects with more confidence.

In this chapter, we will cover the following topics:

• The basics of web requests

• The requests module

• Concurrent web requests

• The problem with timeouts

• Good practices in making web requests

264 Concurrent Web Requests

The basics of web requests
The worldwide capacity to generate data is estimated to double in size every 2 years. Even
though there is an interdisciplinary field known as data science that is entirely dedicated
to studying data, almost every programming task in software development also has
something to do with collecting and analyzing data. A significant part of this is, of course,
data collection. However, the data that we need for our applications is sometimes not
stored nicely and cleanly in a database – sometimes, we need to collect the data we need
from web pages.

For example, web scraping is a data extraction method that automatically makes requests
to web pages and downloads specific information. Web scraping allows us to comb
through numerous websites and collect any data we need systematically and consistently.
The collected data can be analyzed later by our applications or simply saved on our
computers in various formats. An example of this would be Google, which maintains and
runs numerous web scrapers of its own to find and index web pages for its search engines.

The Python language itself provides several good options for applications of this kind.
In this chapter, we will mainly work with the requests module to make client-side
web requests from our Python programs. However, before we look into this module in
more detail, we need to understand some web terminology to be able to effectively design
our applications.

HTML
Hypertext Markup Language (HTML) is the standard and most common markup
language for developing web pages and web applications. An HTML file is simply a
plaintext file with the .html file extension. In an HTML document, text is surrounded
and delimited by tags, written in angle brackets; that is, <p>, , <i>, and so on.
These tags typically consist of pairs – an opening tag and a closing tag – indicating the
styling or the nature of the data included inside.

It is also possible to include other forms of media in HTML code, such as images or
videos. Numerous other tags are used in common HTML documents. Some specify a
group of elements that share some common characteristics, such as <id></id> and
<class></class>.

The basics of web requests 265

The following is an example of HTML code:

Figure 9.1 – Sample HTML code

Fortunately, detailed knowledge of what each HTML tag accomplishes is not required for
us to make effective web requests. As we will see later in this chapter, the more essential
part of making web requests is the ability to interact with web pages efficiently.

HTTP requests
In a typical communication process on the web, HTML text is the data that is to be saved
and/or further processed. This kind of data needs to be collected from web pages, but how
can we go about doing that? Most of the communication is done via the internet – more
specifically, the World Wide Web (WWW) – and this utilizes the Hypertext Transfer
Protocol (HTTP). In HTTP, request methods are used to convey the information of what
data is being requested and should be sent back from a server.

266 Concurrent Web Requests

For example, when you type packtpub.com in your browser, the browser sends a request
method via HTTP to the Packt website's main server, asking for data from the website. Now,
if both your internet connection and Packt's server are working well, then your browser will
receive a response from the server, as shown in the following diagram. This response will
be in the form of an HTML document, which will be interpreted by your browser, and your
browser will display the corresponding HTML output on the screen:

Figure 9.2 – Diagram of HTTP communication

Generally, request methods are defined as verbs that indicate the desired action to be
performed while the HTTP client (web browsers) and the server communicate with each
other: GET, HEAD, POST, PUT, DELETE, and so on. Of these methods, GET and POST
are two of the most common request methods that are used in web scraping applications;
their functionality is described here:

• The GET method requests specific data from the server. This method only retrieves
data and has no other effect on the server and its databases.

• The POST method sends data in a specific form that is accepted by the server. This
data could be, for example, a message to a bulletin board, mailing list, or newsgroup,
information to be submitted to a web form, or an item to be added to a database.

All general-purpose HTTP servers that we commonly see on the internet are required
to implement at least the GET (and HEAD) method, while the POST method is
considered optional.

HTTP status code
It is not always the case that when a web request is made and sent to a web server, the
server will process the request and return the requested data without fail. Sometimes,
the server might be completely down or already busy interacting with other clients and
therefore unresponsive to a new request; sometimes, the client itself makes bad requests
to a server (for example, incorrectly formatted or malicious requests).

The basics of web requests 267

As a way to categorize these problems as well as provide the most information possible
during the communication resulting from a web request, HTTP requires servers to
respond to each request from its clients with an HTTP response status code. A status
code is typically a three-digit number that indicates the specific characteristics of the
response that the server sends back to a client.

In total, there are five large categories of HTTP response status codes, indicated by the
first digit of the code. They are as follows:

• 1xx (informational status code): The request was received, and the server is
processing it. For example, 100 means that the request header has been received
and that the server is waiting for the request body; 102 indicates that the request is
currently being processed (this is used for large requests and to prevent clients from
timing out).

• 2xx (successful status code): The request was successfully received, understood,
and processed by the server. For example, 200 means the request was successfully
fulfilled; 202 indicates that the request has been accepted for processing, but the
processing itself is not complete.

• 3xx (redirectional status code): Additional actions need to be taken so that the
request can be successfully processed. For example, 300 means that there are multiple
options regarding how the response from the server should be processed (for example,
giving the client multiple video format options when a video file is to be downloaded);
301 indicates that the server has been moved permanently and all requests should be
directed to another address (provided in the response from the server).

• 4xx (error status code for the client): The request was incorrectly formatted by the
client and could not be processed. For example, 400 means that the client sent in a
bad request (for example, a syntax error or the size of the request is too large); 404
(arguably the most well-known status code) indicates that the request method is not
supported by the server.

• 5xx (error status code for the server): The request, although valid, could not be
processed by the server. For example, 500 means that there is an internal server
error in which an unexpected condition was encountered; 504 (Gateway Timeout)
means that the server, which was acting as a gateway or a proxy, did not receive a
response from the final server in time.

A lot more can be said about these status codes, but it is already sufficient for us to keep
the big five categories previously mentioned in mind when making web requests from
Python. If you would like to find more specific information about these or other status
codes, the Internet Assigned Numbers Authority (IANA) maintains the official registry
of HTTP status codes. Now, let's start learning about making web requests in Python.

268 Concurrent Web Requests

The requests module
The requests module allows its users to make and send HTTP request methods. In the
applications that we will be considering, it is mainly used to make contact with the server
of the web pages we want to extract data from and obtain the response for the server.

Note
According to the official documentation of the module, the use of Python 3 is
highly recommended over Python 2 for requests.

To install the module on your computer, run one of the following commands:

pip install requests

conda install requests

These commands should install requests and any other required dependencies (idna,
certifi, urllib3, and so on) for you if your system does not have those already.
After this, run import requests in a Python interpreter to confirm that the module
has been installed successfully. Next, we will use requests to build the sequential,
non-concurrent version of our program.

Making a request in Python
Let's look at an example usage of the module, as shown in the following code:

import requests

url = 'http://www.google.com'

res = requests.get(url)

print(res.status_code)

print(res.headers)

with open('google.html', 'w') as f:

 f.write(res.text)

print('Done.')

The requests module 269

In this example, we are using the requests module to download the HTML code of
a web page; that is, www.google.com. The requests.get() method sends a GET
request method to url and we store the response in the res variable. After checking
the status and headers of the response by printing them out, we create a file called
google.html and write the HTML code, which is stored in the response text, to the file.

After running the program (assuming that your internet is working and that the Google
server is not down), you should get the following output:

200

{'Date': 'Sat, 17 Nov 2018 23:08:58 GMT', 'Expires': '-1',

'Cache-Control': 'private, max-age=0', 'Content-Type': 'text/

html; charset=ISO-8859-1', 'P3P': 'CP="This is not a P3P

policy! See g.co/p3phelp for more info."', 'X-XSS-Protection':

'1; mode=block', 'X-Frame-Options': 'SAMEORIGIN', 'Content-

Encoding': 'gzip', 'Server': 'gws', 'Content-Length': '4958',

'Set-Cookie': '1P_JAR=2018-11-17-23; expires=Mon, 17-Dec-2018

23:08:58 GMT; path=/; domain=.google.com, NID=146=NHT7fic3mjBO_

vdiFB3-gqnFPyGN1EGxyMkkNPnFMEVsqjGJ8S0EwrivDBWBgUS7hCPZGHbos

LE4uxz31shnr3X4adRpe7uICEiK8qh3Asu6LH_bIKSLWStAp8gMK1f9_GnQ0_

JKQoMvG-OLrT_fwV0hwTR5r2UVYsUJ6xHtX2s; expires=Sun, 19-May-2019

23:08:58 GMT; path=/; domain=.google.com; HttpOnly'}

Done.

The response had a 200 status code, which we know means that the request has been
completed. The header of the response, which is stored in res.headers, also contains
further specific information regarding the response. For example, we can see the date and
time the request was made, that the content of the response is text and HTML, and that
the total length of the content is 4958.

The data that was sent from the server was also written to the google.html file. When
you open this file in a text editor, you will be able to see the HTML code of the web page
that we have downloaded using requests. On the other hand, if you use a web browser
to open the file, you will see how most of the information from the original web page is
now being displayed through a downloaded offline file.

270 Concurrent Web Requests

For example, the following is how Google Chrome interprets the HTML file on my system:

Figure 9.3 – Downloaded HTML opened offline

There is other information that is stored on the server that the web pages of that server
refer to. This means that not all of the information that an online web page provides can
be downloaded via a GET request, and this is why offline HTML code sometimes fails to
contain all of the information available on the online web page that it was downloaded
from. (For example, the downloaded HTML code in the preceding screenshot does not
display the Google icon correctly.)

Running a ping test
With the basic knowledge of HTTP requests and the requests module in Python in
hand, we will, for the remaining portion of this chapter, tackle the central problem of
running a ping test. A ping test is a procedure in which you test the communication
between your system and specific web servers, simply by requesting each of the servers
in question. By considering the HTTP response status code (potentially) returned by the
server, the test is used to evaluate either the internet connection of your system or the
availability of the servers.

Ping tests are quite common among web administrators, who usually have to manage a
large number of websites simultaneously. It is a good tool to quickly identify pages that
are unexpectedly unresponsive or down. Many tools provide you with powerful options
regarding ping tests and, in this chapter, we will be designing a ping test application that
can concurrently send multiple web requests at the same time.

The requests module 271

To simulate different HTTP response status codes to be sent back to our program, we will
be using httpstat.us, a website that can generate various status codes and is commonly
used to test how applications that make web requests can handle varying responses.
Specifically, to use a request that will return a 200 status code in a program, we can simply
send the request httpstat.us/200; the same applies to other status codes. In our ping
test program, we will have a list of httpstat.us URLs with different status codes.

Let's take a look at the following code:

import requests

def ping(url):

 res = requests.get(url)

 print(f'{url}: {res.text}')

urls = [

 'http://httpstat.us/200',

 'http://httpstat.us/400',

 'http://httpstat.us/404',

 'http://httpstat.us/408',

 'http://httpstat.us/500',

 'http://httpstat.us/511'

]

for url in urls:

 ping(url)

print('Done.')

In this program, the ping() function takes in a URL and attempts to make a GET request
to the site. Then, it prints out the content of the response returned by the server. In our
main program, we have a list of different status codes that we mentioned earlier, each of
which we will go through and call the ping() function on.

The final output, after running the preceding example, should be as follows:

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/404: 404 Not Found

http://httpstat.us/408: 408 Request Timeout

http://httpstat.us
http://httpstat.us/200
http://httpstat.us

272 Concurrent Web Requests

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/511: 511 Network Authentication Required

Done.

Here, we can see that our ping test program was able to obtain the corresponding
responses from the server. However, our current program is purely sequential, and we
would like to implement a concurrent version of it. We will do this in the next section.

Concurrent web requests
In the context of concurrent programming, we can see that the process of making a
request to a web server and obtaining the returned response is independent of the same
procedure for a different web server. This is to say that we could apply concurrency and
parallelism to our ping test application to speed up our execution.

In the concurrent ping test applications that we are designing, multiple HTTP requests
will be made to the server simultaneously and the corresponding responses will be sent
back to our program, as shown in the following diagram:

Figure 9.4 – Parallel HTTP requests

As we mentioned previously, concurrency and parallelism have significant applications in
web development, and most servers nowadays can handle a large number of requests at
the same time.

Now, let's see how we can make multiple web requests at the same time, with the help
of threading.

Concurrent web requests 273

Spawning multiple threads
To apply concurrency, we can simply use the threading module that we have been
discussing to create separate threads to handle different web requests. Let's take a look
at the following code:

import threading

import requests

import time

def ping(url):

 res = requests.get(url)

 print(f'{url}: {res.text}')

urls = [

 'http://httpstat.us/200',

 'http://httpstat.us/400',

 'http://httpstat.us/404',

 'http://httpstat.us/408',

 'http://httpstat.us/500',

 'http://httpstat.us/524'

]

start = time.time()

for url in urls:

 ping(url)

print(f'Sequential: {time.time() - start : .2f} seconds')

print()

start = time.time()

threads = []

for url in urls:

 thread = threading.Thread(target=ping, args=(url,))

 threads.append(thread)

 thread.start()

274 Concurrent Web Requests

for thread in threads:

 thread.join()

print(f'Threading: {time.time() - start : .2f} seconds')

In this example, we are including the sequential logic from the previous example to
process our URL list so that we can compare the speed improvement when we apply
threading to our ping test program. We are also creating a thread to ping each of the
URLs in our URL list using the threading module; these threads will be executed
independently from each other. The time it takes to process the URLs both sequentially
and concurrently is also tracked using methods from the time module.

If you run the program, your output should be similar to the following:

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/404: 404 Not Found

http://httpstat.us/408: 408 Request Timeout

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/524: 524 A timeout occurred

Sequential: 0.82 seconds

http://httpstat.us/404: 404 Not Found

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/524: 524 A timeout occurred

http://httpstat.us/408: 408 Request Timeout

Threading: 0.14 seconds

While the specific time that the sequential logic and threading logic takes to process all
the URLs might be different from system to system, there should still be a clear distinction
between the two. Specifically, here, we can see that the threading logic was almost six times
faster than the sequential logic (which corresponds to the fact that we had six threads
processing six URLs in parallel). There is no doubt, then, that concurrency can provide
a significant speedup for our ping test application and for the process of making web
requests in general.

Concurrent web requests 275

Refactoring request logic
The current version of our ping test application works as intended, but we can improve
its readability by refactoring the logic where we make web requests in a thread class.
Consider the MyThread class:

import threading

import requests

class MyThread(threading.Thread):

 def __init__(self, url):

 threading.Thread.__init__(self)

 self.url = url

 self.result = None

 def run(self):

 res = requests.get(self.url)

 self.result = f'{self.url}: {res.text}'

In this example, MyThread inherits from the threading.Thread class and contains
two additional attributes: url and result. The url attribute holds the URL that the
thread instance should process; the response that's returned from the web server to that
thread will be written to the result attribute (in the run() function).

Outside of this class, we can simply loop through the URL list and create and manage the
threads accordingly, while not having to worry about the request logic in the main program:

urls = [

 'http://httpstat.us/200',

 'http://httpstat.us/400',

 'http://httpstat.us/404',

 'http://httpstat.us/408',

 'http://httpstat.us/500',

 'http://httpstat.us/524'

]

start = time.time()

threads = [MyThread(url) for url in urls]

for thread in threads:

276 Concurrent Web Requests

 thread.start()

for thread in threads:

 thread.join()

for thread in threads:

 print(thread.result)

print(f'Took {time.time() - start : .2f} seconds')

print('Done.')

Note that we are now storing the responses in the result attribute of the MyThread
class, instead of directly printing them out, as we did in the old ping() function from the
previous examples. This means that, after making sure that all the threads have finished,
we will need to loop through the threads one more time and print out those responses.

Refactoring the request logic should not greatly affect the performance of our current
program; we are keeping track of the execution speed to see if this is the case. If you
execute the program, you will obtain an output similar to the following:

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/404: 404 Not Found

http://httpstat.us/408: 408 Request Timeout

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/524: 524 A timeout occurred

Took 0.14 seconds

Done.

Just as we expected, we are still achieving a significant speedup from the sequential
version of the program with this refactored request logic. Again, our main program is
now more readable, and further adjustments to the request logic (as we will see in the
next section) can simply be directed to the MyThread class, without affecting the rest
of the program.

Our program can now make concurrent web requests to specific sites and display the
returned status code. However, there is a problem common in working with web requests
that our program cannot handle yet: timeouts. We will learn how to address this in the
next section.

The problem with timeouts 277

The problem with timeouts
In this section, we will explore a potential improvement we can make to our ping test
application: handling timeouts. Timeouts typically occur when the server takes an
unusually long time to process a specific request, and the connection between the server
and its client is terminated.

In the context of a ping test application, we will be implementing a customized threshold
for the timeout. Recall that a ping test is used to determine whether specific servers are still
responsive, so we can specify in our program that, if a request takes more than our timeout
threshold for the server to respond, we will categorize that specific server with a timeout.

Support from httpstat.us and simulation in Python
In addition to different options for status codes, the httpstat.us website also provides
us with a way to simulate a delay in its response when we send in requests. Specifically,
we can customize the delay time (in milliseconds) with a query argument in our GET
request. For example, httpstat.us/200?sleep=5000 will return a response after
a 5-second delay.

Now, let's see how a delay like this would affect the execution of our program. Consider
the following program, which contains the current request logic of our ping test
application but has a different URL list:

import threading

import requests

class MyThread(threading.Thread):

 def __init__(self, url):

 threading.Thread.__init__(self)

 self.url = url

 self.result = None

 def run(self):

 res = requests.get(self.url)

 self.result = f'{self.url}: {res.text}'

urls = [

 'http://httpstat.us/200',

 'http://httpstat.us/200?sleep=20000',

 'http://httpstat.us/400'

http://httpstat.us
http://httpstat.us/200?sleep=5000

278 Concurrent Web Requests

]

threads = [MyThread(url) for url in urls]

for thread in threads:

 thread.start()

for thread in threads:

 thread.join()

for thread in threads:

 print(thread.result)

print('Done.')

Here, we have a URL that will take around 20 seconds to return a response. Considering
that we will block the main program until all the threads finish their execution (with
the join() method), our program will most likely appear to be hanging for 20 seconds
before any response is printed out.

Run the program to experience this for yourself. A 20-second delay will occur (which
will make the execution take significantly longer to finish) and we will obtain the
following output:

http://httpstat.us/200: 200 OK

http://httpstat.us/200?sleep=20000: 200 OK

http://httpstat.us/400: 400 Bad Request

Took 22.60 seconds

Done.

Let's say that 20 seconds is too long of a response time, and we cannot afford to wait
for a request that long. So, we would like to implement some logic that can handle long
waiting times like this.

Timeout specifications
Overall, an efficient ping test application should not be waiting for responses from its
websites for a long time; it should have a set threshold for a timeout that, if a server
fails to return a response under that threshold, the application will deem that server
non-responsive. So, we need to implement a way to keep track of how much time has
passed since a request has been sent to a server. We will do this by counting down from
the timeout threshold. Once that threshold has been passed, all the responses (whether
they've returned yet or not) will be printed out.

The problem with timeouts 279

Additionally, we will also be keeping track of how many requests are still pending and
have not had their responses returned. We will be using the is_alive() method from
the threading.Thread class to indirectly determine whether a response has been
returned for a specific request. If, at one point, the thread that's processing a specific
request is alive, we can conclude that that specific request is still pending.

Let's consider the following process_requests() function first:

import time

UPDATE_INTERVAL = 0.01

def process_requests(threads, timeout=5):

 def alive_count():

 alive = [1 if thread.is_alive() else 0 for thread \

 in threads]

 return sum(alive)

 while alive_count() > 0 and timeout > 0:

 timeout -= UPDATE_INTERVAL

 time.sleep(UPDATE_INTERVAL)

 for thread in threads:

 print(thread.result)

This function takes in a list of threads that we have been using to make web requests in
the previous examples, as well as an optional argument specifying the timeout threshold.
Inside this function, we have an inner function, alive_count(), which returns the
count of the threads that are still alive at the time of the function call.

In the process_requests() function, so long as there are threads that are currently
alive and processing requests, we will allow the threads to continue with their execution
(this is done in the while loop with the double condition). The UPDATE_INTERVAL
variable, as you can see, specifies how often we check for this condition. If either condition
fails (if there are no alive threads left or if the threshold timeout is passed), then we will
proceed with printing out the responses (even if some might have not been returned).

280 Concurrent Web Requests

Let's turn our attention to the new MyThread class:

import threading

import requests

class MyThread(threading.Thread):

 def __init__(self, url):

 threading.Thread.__init__(self)

 self.url = url

 self.result = f'{self.url}: Custom timeout'

 def run(self):

 res = requests.get(self.url)

 self.result = f'{self.url}: {res.text}'

This class is almost identical to the one we considered in the previous example, except that
the initial value for the result attribute is a message indicating a timeout. In the case that
we discussed earlier, where the timeout threshold specified in the process_requests()
function is passed, this initial value will be used when the responses are printed out.

Finally, let's consider our main program in example6.py:

urls = [

 'http://httpstat.us/200',

 'http://httpstat.us/200?sleep=4000',

 'http://httpstat.us/200?sleep=20000',

 'http://httpstat.us/400'

]

start = time.time()

threads = [MyThread(url) for url in urls]

for thread in threads:

 thread.setDaemon(True)

 thread.start()

process_requests(threads)

print(f'Took {time.time() - start : .2f} seconds')

print('Done.')

The problem with timeouts 281

Here, in our URL list, we have a request that would take 4 seconds and another that would
take 20 seconds, aside from the ones that would respond immediately. As the timeout
threshold that we are using is 5 seconds, theoretically, we should be able to see that the
4-second-delay request will successfully obtain a response, while the 20-second-delay one
will not.

There is another point to be made about this program: daemon threads. In the
process_requests() function, if the timeout threshold is passed while there is still at
least one thread being processed, then the function will proceed to print out the result
attribute of each thread:

while alive_count() > 0 and timeout > 0:

 timeout -= UPDATE_INTERVAL

 time.sleep(UPDATE_INTERVAL)

for thread in threads:

 print(thread.result)

This means that we do not block our program until all of the threads have finished their
execution by using the join() function, which means the program can simply move
forward if the timeout threshold is reached. However, this also means that the threads
themselves do not terminate at this point. The 20-second-delay request, specifically, will
still most likely be running after our program exits out of the process_requests()
function.

If the thread that's processing this request is not a daemon thread (as we know, daemon
threads execute in the background and never terminate), it will block the main program
from finishing until the thread itself finishes. By making this thread, and any other thread,
a daemon thread, we allow the main program to finish as soon as it executes the last line
of its instructions, even if there are threads still running.

Let's see this program in action. Execute this code; your output should be similar to
the following:

http://httpstat.us/200: 200 OK

http://httpstat.us/200?sleep=4000: 200 OK

http://httpstat.us/200?sleep=20000: Custom timeout

http://httpstat.us/400: 400 Bad Request

Took 5.70 seconds

Done.

282 Concurrent Web Requests

As you can see, it took around 5 seconds for our program to finish this time. This is
because it spent 5 seconds waiting for the threads that were still running and, as soon
as the 5-second threshold was passed, the program printed out the results. Here, we can
see that the result from the 20-second-delay request was simply the default value of the
result attribute of the MyThread class, while the rest of the requests were able to
obtain the correct response from the server (including the 4-second-delay request since
it had enough time to obtain the response).

If you would like to see the effect of non-daemon threads, which we discussed earlier,
simply comment out the corresponding line of code in our main program, as follows:

threads = [MyThread(url) for url in urls]

for thread in threads:

 #thread.setDaemon(True)

 thread.start()

process_requests(threads)

You will see that the main program will hang for around 20 seconds as the non-daemon
thread processing the 20-second-delay request is still running, before being able to finish
its execution (even though the output that's produced will be identical).

Good practices in making web requests
There are a few aspects of making concurrent web requests that require careful
consideration and implementation. In this section, we will be going over those aspects
and some of the best practices that you should use when developing your applications.

Consider the terms of service and data-collecting
policies
Unauthorized data collection has been the topic of discussion in the technology world for
the past few years, and it will continue to be for a long time – and for good reasons too. So,
it is extremely important for developers who are making automated web requests in their
applications to look for websites' policies on data collecting. You can find these policies in
their terms of service or similar documents. When in doubt, it is generally a good rule of
thumb to contact the website directly to ask for more details.

Good practices in making web requests 283

Error handling
Errors are something that no one can easily avoid in the field of programming, and
this is especially true when making web requests. Errors in these programs can include
making bad requests (invalid requests or even bad internet connections), mishandling
downloaded HTML code, or unsuccessfully parsing HTML code. So, it is important
to make use of try...except blocks and other error-handling tools in Python to
avoid crashing your application. Avoiding crashes is especially important if your code/
applications are used in production and larger applications.

Specifically, in concurrent web scraping, it might be possible for some threads to collect
data successfully, while others fail. By implementing error-handling functionalities in
multithreaded parts of your program, you can make sure that a failed thread will not be
able to crash the entirety of your program and ensure that successful threads can still
return their results.

However, it is important to note that blind error-catching is still undesirable. This term
indicates the practice where we have a large try...except block in our program that
will catch all errors that occur in the program's execution, and no further information
regarding the errors can be obtained; this practice is also known as error swallowing. It's
highly recommended that you have some specific error handling code in a program so
that not only can appropriate actions be taken with regards to that specific error, but other
errors that have not been taken into account might also reveal themselves.

Update your program regularly
It is quite common for websites to change their request-handling logic, as well as their
displayed data, regularly. If a program that makes requests to a website has considerably
inflexible logic to interact with the server of the website (for example, structuring its
requests in a specific format, only handling one kind of response, and so on), then if and
when the website alters the way it handles its client requests, the program will most likely
stop functioning correctly. This situation happens frequently with web scraping programs
that look for data in specific HTML tags; when the HTML tags are changed, these
programs will fail to find their data.

This practice is implemented to prevent automated data collecting programs from
functioning. The only way to keep using a website that has recently changed its request-
handling logic is to analyze the updated protocols and alter our programs accordingly.

284 Concurrent Web Requests

Avoid making a large number of requests
Each time one of the programs that we have been discussing runs, it makes HTTP
requests to a server that manages the site that you'd like to extract data from. This process
happens significantly more frequently and over a shorter amount of time in a concurrent
program, where multiple requests are being submitted to that server.

As we mentioned previously, servers nowadays can handle multiple requests
simultaneously with ease. However, to avoid having to overwork and overconsume
resources, servers are also designed to stop answering requests that come in too frequently.
The websites of big tech companies, such as Amazon or Twitter, look for large amounts
of automated requests that are made from the same IP address and implement different
response protocols; some requests might be delayed, some might be refused a response, or
the IP address might even be banned from making further requests for a specific amount
of time.

Interestingly, making repeated, heavy-duty requests to servers is a form of hacking a
website. In Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks,
a very large number of requests are made at the same time to the server, flooding the
bandwidth of the targeted server with traffic. As a result, normal, non-malicious requests
from other clients are denied because the servers are busy processing the concurrent
requests, as illustrated in the following diagram:

Figure 9.5 – Illustration of a DDoS attack

Summary 285

So, it is important to space out the concurrent requests that your application makes to a
server so that the application will not be considered an attacker and be potentially banned
or treated as a malicious client. This could be as simple as limiting the maximum number
of threads/requests that can be implemented at a time in your program or pausing the
threading for a specific amount of time (for example, using the time.sleep() function)
before sending a request to the server.

Summary
In this chapter, we learned about the basics of HTML and web requests. The two most
common web requests are GET and POST requests. There are five main categories
of HTTP response status codes, each indicating a different concept regarding the
communication between the server and its client. By considering the status codes that
are received from different websites, we can write a ping test application that effectively
checks the responsiveness of those websites.

Concurrency can be applied to the problem of making multiple web requests
simultaneously via threading to provide a significant improvement in application speed.
However, it is important to keep several considerations in mind when making concurrent
web requests.

All in all, the exercise we just went through in this chapter will prove useful in helping
us approach the general problem of converting a sequential program into its concurrent
version. The simple ping test that we have built could also be extended to have more
complex behaviors and functionalities. In the next chapter, we will consider a similar
procedure for the application of image processing.

Questions
1. What is HTML?
2. What are HTTP requests?
3. What are HTTP response status codes?
4. How does the requests module help with making web requests?
5. What is a ping test and how is one typically designed?
6. Why is concurrency applicable in making web requests?
7. What are the considerations that need to be made while developing applications

that make concurrent web requests?

286 Concurrent Web Requests

Further reading
• Automate the Boring Stuff with Python: Practical Programming for Total Beginners,

Al. Sweigart, No Starch Press, 2015

• Web Scraping with Python, Richard Lawson, Packt Publishing Ltd, 2015

• Instant Web Scraping with Java, Ryan Mitchell, Packt Publishing Ltd, 2013

10
Concurrent Image

Processing
This chapter discusses the task of processing and manipulating images via concurrent
programming, specifically multiprocessing. Since images are processed independently of
one another, concurrent programming is an attractive option for achieving a significant
speedup. This chapter lays out the basics behind image processing techniques, illustrates
the improvements that concurrent programming provides, and goes over some of the best
practices that are used in image processing applications. This discussion will consolidate
our knowledge of how to leverage concurrent and parallel processing tools in Python.

The following topics will be covered in this chapter:

• Image processing fundamentals

• Applying concurrency to image processing

• Good concurrent image processing practices

288 Concurrent Image Processing

Technical requirements
The following is a list of prerequisites for this chapter:

• You must have Python 3 installed on your computer.
• You must have OpenCV and NumPy installed for your Python 3 distribution.

The code for this chapter can be found in the following GitHub repository: https://
github.com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter10.

Image processing fundamentals
Digital/computational image processing (which we will refer to as image processing
from this point forward) has become so popular in the modern era that it exists in
numerous aspects of our everyday life. Image processing and manipulation are involved
when you take a picture with your camera or phone using different filters, such as when
advanced image editing software such as Adobe Photoshop is used, or even when you
simply edit images using Microsoft Paint.

Many of the techniques and algorithms that are used in image processing were developed
in the early 1960s for various purposes such as medical imaging, satellite image analysis,
character recognition, and so on. However, these image processing techniques required
significant computing power, and the fact that the available computer equipment at the
time was unable to accommodate the need for fast number-crunching slowed down the
use of image processing.

Fast-forwarding to the future, when powerful computers with fast, multicore processors
were developed, image processing techniques became much more accessible, and research
on image processing increased significantly. Nowadays, numerous image processing
applications are being actively developed and studied, including pattern recognition,
classification, feature extraction, and more. Some of the specific image processing
techniques that take advantage of concurrent and parallel programming, and would
otherwise be extremely computationally time-consuming, include Hidden Markov
models, independent component analysis, and even neural network models.

The following is one of the simplest forms of image processing, where we convert a fully
colored image into a grayscale one. This process is called grayscaling:

Figure 10.1 – An example use of image processing – grayscaling

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter10

Image processing fundamentals 289

Later in this chapter, we will see how grayscaling, along with other processing techniques,
can be done using Python. To do this, we must install the necessary libraries and packages.

Python as an image processing tool
As we have stated multiple times throughout this book, the Python programming
language is on its way to becoming the most popular programming language. This is
especially true in the field of computational image processing, which, most of the time,
requires fast prototyping and designing, as well as significant automation capabilities.

As we will find out in the following section, digital images are represented in
two-dimensional and three-dimensional matrices so that computers can process them
easily. Consequently, most of the time, digital image processing involves matrix calculation.
Multiple Python libraries and modules not only provide efficient matrix calculation options
but also interact seamlessly with other libraries that handle image reading/writing.

As we already know, automating tasks and making them concurrent is Python's strong suit.
This makes Python the prime candidate to implement your image processing applications.
For this chapter, we will be working with two main Python libraries: OpenCV (which stands
for Open Source Computer Vision), which is a library that provides image processing and
computer vision options in C++, Java, and Python, and NumPy, which, as we know, is one
of the most popular Python modules and performs efficient and parallelizable number-
crunching calculations. Let's see how we can install these libraries.

Installing OpenCV and NumPy
To install NumPy for your Python distribution using the pip package manager, run the
following command:

pip install numpy

If you are using Anaconda/Miniconda to manage your packages, you must run the
following command instead:

conda install numpy

290 Concurrent Image Processing

Installing OpenCV might be more complicated, depending on your operating system.
The easiest option is to have Anaconda handle the installation process by following
the guide at https://anaconda.org/conda-forge/opencv after installing
Anaconda (https://www.anaconda.com/download/) as your main Python
package manager. If, however, you are not using Anaconda, the main option for installing
OpenCV is to follow its official documentation guide, which can be found at https://
docs.opencv.org/master/df/d65/tutorial_table_of_content_
introduction.html. After successfully installing OpenCV, open a Python interpreter
and try importing the library, as follows:

>>> import cv2

>>> print(cv2.__version__)

4.5.2

We will import OpenCV using the name cv2, which is the library alias of OpenCV in
Python. The success message indicates the version of the OpenCV library that has been
downloaded (4.5.2).

Computer image basics
Before we jump into processing and manipulating digital image files, we need to discuss
the fundamentals of those files and how computers interpret data from them. Specifically,
we need to understand how data regarding the colors and coordinates of individual pixels
in an image file is represented, as well as how to extract it using Python.

RGB values
RGB values are the basics of how colors are represented digitally. Standing for red, green,
and blue (RGB), these values are constructed from the fact that all colors can be generated
from a specific combination of red, green, and blue. So, an RGB value is a tuple of three
integer numbers, each of which ranges from 0 (which indicates no color at all) to 255
(which indicates the deepest shade of that specific color).

For example, red corresponds to the tuple (255, 0, 0); in this tuple, there is only the highest
value for red and no values for the other colors, so the whole tuple represents the pure
color red. Similarly, blue is represented by (0, 0, 255), while green is represented by (0,
255, 0). Yellow is the result of mixing equal amounts of red and green and is therefore
represented by (255, 255, 0) (the maximum amount of red and green, with no blue). White,
which is the combination of all three colors, is (255, 255, 255), while black, which is the
opposite of white and therefore lacks all colors, is represented by (0, 0, 0).

https://anaconda.org/conda-forge/opencv
https://www.anaconda.com/download/
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html

Image processing fundamentals 291

This is illustrated by the following diagram:

Figure 10.2 – Illustration of RGB values

Pixels and image files
So, an RGB value indicates a specific color, but how do we connect this to a computer
image? If we were to view an image on our computer and try to zoom in as much as
we could, we would observe that as we zoom in deeper and deeper, the image will start
breaking apart into increasingly discernible colored squares. These squares are called
pixels, which are the smallest units of color on a computer display or in a digital image:

Figure 10.3 – Examples of pixels in digital images

A set of different pixels arranged in a tabular format (rows and columns of pixels) makes
up a computer image. Each pixel, in turn, is an RGB value; in other words, a pixel is a tuple
of three integers. This means that a computer image is simply a two-dimensional array of
tuples, whose sides correspond to the size of the image. For example, a 128 x 128 image
has 128 rows and 128 columns of RGB tuples for its data.

292 Concurrent Image Processing

Coordinates inside an image
Like indexing two-dimensional arrays, the coordinate for a digital image pixel is a pair of
two integers, representing the x- and y-coordinates of that pixel; the x-coordinate indicates
the pixel's location along the horizontal axis starting from the left, while the y-coordinate
indicates the pixel's location along the vertical axis starting from the top.

Here, we can see how heavy computational number-crunching processes are typically
involved when it comes to image processing since each image is a matrix of integer
tuples. This also suggests that, with the help of the NumPy library and concurrent
programming, we can achieve significant improvements in execution time for Python
image processing applications.

Following the convention of indexing two-dimensional arrays in NumPy, the location
of a pixel is still a pair of integers, but the first number indicates the index of the row
containing the pixel, which corresponds to the y-coordinate, and similarly, the second
number indicates the x-coordinate of the pixel.

OpenCV API
There are a surprising number of methods for reading in, performing image processing,
and displaying a digital image file in Python. However, OpenCV provides some of the
easiest and most intuitive options to do this. One important thing to note regarding
OpenCV is that it inverts RGB values as BGR values when interpreting its images. So,
instead of red, green, and blue in order, the tuples in an image matrix will represent blue,
green, and red, in that order.

Let's look at an example of interacting with OpenCV in Python:

import cv2

im = cv2.imread('input/ship.jpg')

cv2.imshow('Test', im)

cv2.waitKey(0) # press any key to move forward here

print(im)

print('Type:', type(im))

print('Shape:', im.shape)

print('Top-left pixel:', im[0, 0])

print('Done.')

Image processing fundamentals 293

There are a few methods from OpenCV that have been used in this script that we need
to discuss:

• cv2.imread(): This method takes in a path to an image file (compatible file
extensions include .jpeg, .jpg, .png, and so on) and returns an image object,
which, as we will see later, is represented by a NumPy array.

• cv2.imshow(): This method takes in a string and an image object and displays
it in a separate window. The title of the window is specified by the passed-in string.
The method should always be followed by the cv2.waitKey() method.

• cv2.waitKey(): This method takes in a number and blocks the program for a
corresponding number of milliseconds unless the number 0 is passed in, in which
case it will block indefinitely until the user presses a key on their keyboard. This
method should always follow the cv2.imshow() method.

After calling cv2.imshow() on the ship.jpg file inside the input subfolder so that
it's displayed from the Python interpreter, the program will stop until a key is pressed,
at which point it will execute the rest of the program. If run successfully, the script will
display the following output:

Figure 10.4 – Displaying an image using OpenCV

294 Concurrent Image Processing

You should also obtain the following output for the rest of the main program after
pressing any key to close the displayed picture:

> python example1.py

[[[199 136 86]

 [199 136 86]

 [199 136 86]

 ...,

 [198 140 81]

 [197 139 80]

 [201 143 84]]

[...Truncated for readability...]

 [[56 23 4]

 [59 26 7]

 [60 27 7]

 ...,

 [79 43 7]

 [80 44 8]

 [75 39 3]]]

Type: <class 'numpy.ndarray'>

Shape: (1118, 1577, 3)

Top-left pixel: [199 136 86]

Done.

The output confirms a few of the things that we discussed earlier:

• First, when printing out the image object that was returned by the cv2.imread()
function, we obtained a matrix of numbers.

• Using the type() method from Python, we found that the class of this matrix is
indeed a NumPy array: numpy.ndarray.

• Calling the shape attribute of the array, we can see that the image is a three-
dimensional matrix of the shape (1118, 1577, 3), which corresponds to a table with
1118 rows and 1577 columns, each element of which is a pixel (three-number tuple).
The numbers for the rows and columns also correspond to the size of the image.

Image processing fundamentals 295

• Focusing on the top-left pixel in the matrix (the first pixel in the first row; that is,
im[0, 0]), we obtained the BGR value of (199, 136, 86) – 199 blue, 136 green,
and 86 red. By looking up this BGR value through any online converter, we can
see that this is a light blue that corresponds to the sky, which is the upper part of
the image.

Image processing techniques
We have already seen some Python APIs that are provided by OpenCV to read data from
image files. Before we can use OpenCV to perform various image processing tasks, let's
discuss the theoretical foundation for several techniques that are commonly used in
image processing.

Grayscaling
We saw an example of grayscaling earlier in this chapter. Arguably one of the most
widely used image processing techniques, grayscaling is the process of reducing the
dimensionality of the image pixel matrix by only considering the intensity information
of each pixel, which is represented by the amount of light available.

As a result, the pixels of grayscale images no longer hold three-dimensional information
(red, green, and blue), and only one-dimensional black-and-white data. These images are
exclusively composed of shades of gray, with black indicating the weakest light intensity
and white indicating the strongest.

Grayscaling serves many important purposes in image processing. Firstly, as we
mentioned previously, it reduces the dimensionality of the image pixel matrix by mapping
traditional three-dimensional color data to one-dimensional gray data. So, instead of
having to analyze and process three layers of color data, image processing programs only
have to do one-third of the job with grayscale images. Additionally, by only representing
colors using one spectrum, important patterns in the image are more likely to be
recognized with just black and white data.

There are multiple algorithms for converting color into grayscale: colorimetric conversion,
luma coding, single-channel, and more. Luckily, we do not have to implement one
ourselves, as the OpenCV library provides a one-line method to convert normal images
into grayscale ones. Still using the image of a ship from the previous example, let's look
at another example:

import cv2

im = cv2.imread('input/ship.jpg')

296 Concurrent Image Processing

gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

cv2.imshow('Grayscale', gray_im)

cv2.waitKey(0) # press any key to move forward here

print(gray_im)

print('Type:', type(gray_im))

print('Shape:', gray_im.shape)

cv2.imwrite('output/gray_ship.jpg', gray_im)

print('Done.')

In this example, we are using the cvtColor() method from OpenCV to convert our
original image into a grayscale one. After running this script, the following output should
be displayed on your computer:

Figure 10.5 – Output from grayscaling

Image processing fundamentals 297

By pressing any key to unblock your program, you should obtain the following output:

> python example2.py

[[128 128 128 ..., 129 128 132]

 [125 125 125 ..., 129 128 130]

 [124 125 125 ..., 129 129 130]

 ...,

 [20 21 20 ..., 38 39 37]

 [19 22 21 ..., 41 42 37]

 [21 24 25 ..., 36 37 32]]

Type: <class 'numpy.ndarray'>

Shape: (1118, 1577)

Done.

Here, we can see that the structure of our grayscale image object is different from what we
saw with our original image object. Even though it is still represented by a NumPy array, it
is now a two-dimensional array of integers, each of which ranges from 0 (for black) to 255
(for white). The table of pixels, however, still consists of 1118 rows and 1577 columns.

In this example, we also used the cv2.imwrite() method, which saves the image object
to your local computer. This means that the grayscale image can be found in the output
subfolder of this chapter's folder, as specified in our code.

Thresholding
Another important technique in image processing is thresholding. Intending to categorize
each pixel in a digital image into different groups (also known as image segmentation),
thresholding provides a quick and intuitive way to create binary images (with just black
and white pixels).

The idea behind thresholding is to replace each pixel in an image with a white pixel if
the pixel's intensity is greater than a previously specified threshold, and with a black
pixel if the pixel's intensity is less than that threshold. Similar to the goal of grayscaling,
thresholding amplifies the differences between high- and low-intensity pixels, and from
that, important features and patterns in an image can be recognized and extracted.

Recall that grayscaling converts a fully colored image into a version that only has different
shades of gray; in this case, each pixel has a value of an integer ranging from 0 to 255.
From a grayscale image, thresholding can convert it into a fully black-and-white one,
each pixel of which is now only either 0 (black) or 255 (white). So, after performing
thresholding on an image, each pixel of that image can only hold two possible values,
further reducing the complexity of our image data.

298 Concurrent Image Processing

So, the key to an effective thresholding process is finding an appropriate threshold so that
the pixels in an image are segmented in a way that allows separate regions in the image to
become more obvious. The simplest form of thresholding is to use a constant threshold to
process all the pixels throughout a whole image. Let's consider an example of this method:

import cv2

im = cv2.imread('input/ship.jpg')

gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

ret, custom_thresh_im = cv2.threshold(gray_im, 127, 255, \

 cv2.THRESH_BINARY)

cv2.imwrite('output/custom_thresh_ship.jpg', \

 custom_thresh_im)

print('Done.')

In this example, after converting the image of a ship that we have been using to grayscale,
we called the threshold(src, thresh, maxval, type) function from OpenCV,
which takes in the following arguments:

• src: This argument takes in the input/source image.

• thresh: This is the constant threshold to be used throughout the image. Here, we
are using 127, as it is simply the middle point between 0 and 255.

• maxval: Pixels whose original values are greater than the constant threshold will
take this value after the thresholding process. We pass in 255 to specify that those
pixels should be completely white.

• type: This value indicates the thresholding type that's used by OpenCV. We are
performing simple binary thresholding, so we pass in cv2.THRESH_BINARY.

After running the script, you should be able to find the following image in the output with
the name custom_thresh_ship.jpg:

Image processing fundamentals 299

Figure 10.6 – Output from simple thresholding

Here, we can see that with a simple threshold (127), we have obtained an image that
highlights separate regions of the image: the sky, the ship, and the sea. However, there are
several problems that this simple thresholding method poses, the most common of which
is finding the appropriate constant threshold. Since different images have different color
tones, lighting conditions, and so on, it is undesirable to use a static value across different
images as their thresholds.

This issue is addressed by adaptive thresholding methods, which use different thresholds
whose values are dynamically determined for small regions of an image. This process
allows the threshold to adjust according to the input image, and not depend solely on a
static value. Let's consider two examples of these adaptive thresholding methods, namely
Adaptive Mean Thresholding and Adaptive Gaussian Thresholding:

import cv2

im = cv2.imread('input/ship.jpg')

im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

300 Concurrent Image Processing

mean_thresh_im = cv2.adaptiveThreshold(im, 255,

 cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

cv2.imwrite('output/mean_thresh_ship.jpg', mean_thresh_im)

gauss_thresh_im = cv2.adaptiveThreshold(im, 255,

 cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

cv2.imwrite('output/gauss_thresh_ship.jpg', \

 gauss_thresh_im)

print('Done.')

Similar to what we did with the cv2.threshold() method earlier, here, we are
converting the original image into its grayscale version, and then we are passing it to
the adaptiveThreshold() method from OpenCV. This method takes in similar
arguments to the cv2.threshold() method, except that instead of taking in a
constant to be the threshold, it takes in an argument for the adaptive method. We used
cv2.ADAPTIVE_THRESH_MEAN_C and cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
respectively.

The second to last argument specifies the size of the window to perform thresholding on;
this number has to be an odd positive integer. Specifically, we used 11 in our example, so
for each pixel in the image, the algorithm will consider the neighboring pixels (in an 11
x 11 square surrounding the original pixel). The last argument specifies the adjustment
to make for each pixel in the final output. These two arguments, again, help localize the
threshold for different regions of the image, thus making the thresholding process more
dynamic and, as its name suggests, adaptive.

After running the script, you should be able to find the following images as output with
the names mean_thresh_ship.jpg and gauss_thresh_ship.jpg. The output for
mean_thresh_ship.jpg is as follows:

Image processing fundamentals 301

Figure 10.7 – Output from mean thresholding

The output for gauss_thresh_ship.jpg is as follows:

Figure 10.8 – Output from Gaussian thresholding

302 Concurrent Image Processing

Here, we can see that with adaptive thresholding, details in specific regions will be
thresholded and highlighted in the final output image. These techniques are useful when
we need to recognize small details in an image, while simple thresholding is useful when
we only want to extract big regions of an image.

We have talked a lot about the basics of image processing and some common image
processing techniques. We also know why image processing is a heavy number-
crunching task, and that concurrent and parallel programming can be applied to speed
up independent processing tasks. In the next section, we will look at a specific example
of how to implement a concurrent image processing application that can handle a large
number of input images.

Applying concurrency to image processing
First, head to the current folder for this chapter's code. Inside the input folder, there
is a subfolder called large_input, which contains 400 images that we will be using
for this example. These pictures are of different regions in our original ship image, and
they have been cropped from it using the array-indexing and -slicing options that NumPy
provides for slicing OpenCV image objects. If you are curious as to how these images
were generated, check out the generate_input.py file.

Our goal in this section is to implement a program that can concurrently process these
images using thresholding. To do this, let's look at the example5.py file:

from multiprocessing import Pool

import cv2

import sys

from timeit import default_timer as timer

THRESH_METHOD = cv2.ADAPTIVE_THRESH_GAUSSIAN_C

INPUT_PATH = 'input/large_input/'

OUTPUT_PATH = 'output/large_output/'

n = 20

names = ['ship_%i_%i.jpg' % (i, j) for i in range(n) \

for j in range(n)]

Applying concurrency to image processing 303

def process_threshold(im, output_name, thresh_method):

 gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

 thresh_im = cv2.adaptiveThreshold(

 gray_im, 255, thresh_method, \

 cv2.THRESH_BINARY, 11, 2

)

 cv2.imwrite(OUTPUT_PATH + output_name, thresh_im)

if __name__ == '__main__':

 for n_processes in range(1, 7):

 start = timer()

 with Pool(n_processes) as p:

 p.starmap(

 process_threshold,

 [(

 cv2.imread(INPUT_PATH + name), \

 name,THRESH_METHOD)

 for name in names

],

)

 print('Took %.4f seconds with %i process(es). \

 ' % (timer() - start, n_processes))

 print('Done.')

In this example, we are using the Pool class from the multiprocessing module to
manage our processes. As a refresher, a Pool object supplies convenient options to map
a sequence of inputs to separate processes using the Pool.map() method. We are using
the Pool.starmap() method in our example, however, to pass multiple arguments to
the target function.

304 Concurrent Image Processing

At the beginning of our program, we make several housekeeping assignments: the
thresholding method to perform adaptive thresholding when processing the images,
the paths for the input and output folders, and the names of the images to process. The
process_threshold() function is what we use to process the images; it takes in an
image object, the name for the processed version of the image, and which thresholding
method to use. Again, this is why we need to use the Pool.starmap() method instead
of the traditional Pool.map() method.

In the main program, to demonstrate the difference in performance between sequential
and multiprocessing image processing, we want to run our program with different
numbers of processes, specifically from one single process to six different processes.
In each iteration of the for loop, we initialize a Pool object and map the necessary
arguments of each image to the process_threshold() function, while keeping
track of how much time it takes to process and save all of the images.

After running the script, the processed images can be found in the output/large_
output/ subfolder in our current chapter's folder. You should obtain an output similar
to the following:

> python example5.py

Took 0.6590 seconds with 1 process(es).

Took 0.3190 seconds with 2 process(es).

Took 0.3227 seconds with 3 process(es).

Took 0.3360 seconds with 4 process(es).

Took 0.3338 seconds with 5 process(es).

Took 0.3319 seconds with 6 process(es).

Done.

We can see a big difference in execution time when we go from one single process to two
separate processes. However, there is negligible or even negative speedup after going from
two to higher numbers of processes. Generally, this is because of the heavy overhead,
which is the product of implementing many separate processes, in comparison to a
relatively low number of inputs.

So far, we have seen that concurrent programming could provide a significant speedup for
image processing applications. However, if we take a look at our preceding program, we
can see that there are additional adjustments that we can make to improve the execution
time even further. Specifically, in the preceding program, we are sequentially reading in
images by using list comprehension in the following line:

with Pool(n_processes) as p:

 p.starmap(process_threshold, [(

Applying concurrency to image processing 305

 cv2.imread(INPUT_PATH + name), \

 name,THRESH_METHOD)

 for name in names])

Theoretically, if we were to make the process of reading in different image files concurrent,
we could also gain additional speedup with our program. This is especially true in an
image processing application that deals with large input files, where significant time is
spent waiting for input to be read. With that in mind, let's consider the following example,
in which we will implement concurrent input/output processing:

from multiprocessing import Pool

import cv2

import sys

from functools import partial

from timeit import default_timer as timer

THRESH_METHOD = cv2.ADAPTIVE_THRESH_GAUSSIAN_C

INPUT_PATH = 'input/large_input/'

OUTPUT_PATH = 'output/large_output/'

n = 20

names = ['ship_%i_%i.jpg' % (i, j) for i in range(n) for \

 j in range(n)]

def process_threshold(name, thresh_method):

 im = cv2.imread(INPUT_PATH + name)

 gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

 thresh_im = cv2.adaptiveThreshold(\

 gray_im, 255, thresh_method, cv2.THRESH_BINARY, 11, 2 \

)

 cv2.imwrite(OUTPUT_PATH + name, thresh_im)

306 Concurrent Image Processing

if __name__ == '__main__':

 for n_processes in range(1, 7):

 start = timer()

 with Pool(n_processes) as p:

 p.map(partial(process_threshold, \

 thresh_method=THRESH_METHOD), names)

 print('Took %.4f seconds with %i process(es).' % \

 (timer() - start, n_processes))

 print('Done.')

The structure of this program is similar to that of the previous one. However, instead of
preparing the necessary images to be processed and other relevant input information, we
implement them inside the process_threshold() function, which now only takes
the name of the input image and handles reading the image itself.

As a side note, we are using Python's built-in functools.partial() method in our
main program to pass in a partial argument (hence the name), specifically thresh_
method, to the process_threshold() function, as this argument is fixed across
all images and processes. More information about this tool can be found at https://
docs.python.org/3/library/functools.html.

After running the script, you should obtain an output similar to the following:

> python example6.py

Took 0.5300 seconds with 1 process(es).

Took 0.4133 seconds with 2 process(es).

Took 0.2154 seconds with 3 process(es).

Took 0.2147 seconds with 4 process(es).

Took 0.2213 seconds with 5 process(es).

Took 0.2329 seconds with 6 process(es).

Done.

Compared to our previous output, this implementation of the application gives us a
significantly better execution time!

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html

Good concurrent image processing practices 307

Good concurrent image processing practices
So far, you have most likely realized that image processing is quite an involved process
and that implementing concurrent and parallel programming in an image processing
application can add more complexity to our work. There are, however, good practices that
will guide us in the right direction while developing our image processing applications.
The following sections discuss some of the most common practices that we should keep
in mind.

Choosing the correct way (out of many)
We have hinted at this practice briefly when we learned about thresholding. How an
image processing application handles and processes its image data heavily depends on the
problems it is supposed to solve, and what kind of data will be fed to it. Therefore, there
is significant variability when it comes to choosing specific parameters when processing
your image.

For example, as we saw earlier, there are various ways to threshold an image, and each will
result in a very different output: if you want to focus on only the large, distinct regions of
an image, simple constant thresholding will prove to be more beneficial than adaptive
thresholding; if, however, you want to highlight small changes in the details of an image,
adaptive thresholding will be significantly better.

Let's consider another example, in which we will see how tuning a specific parameter for an
image processing function results in better output. In this example, we are using a simple
Haar Cascade model to detect faces in images. We will not go too deeply into how the
model handles and processes its data since it is already built into OpenCV; again, we are
only using this model at a high level, changing its parameters to obtain different results.

Navigate to the example7.py file in this chapter's folder. The script is designed to detect
the faces in the obama1.jpeg and obama2.jpg images in our input folder:

import cv2

face_cascade = cv2.CascadeClassifier \

 ('input/haarcascade_frontalface_default.xml')

for filename in ['obama1.jpeg', 'obama2.jpg']:

 im = cv2.imread('input/' + filename)

 gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

 faces = face_cascade.detectMultiScale(im)

308 Concurrent Image Processing

 for (x, y, w, h) in faces:

 cv2.rectangle(im, (x, y), (x + w, y + h), \

 (0, 255, 0), 2)

 cv2.imshow('%i face(s) found' % len(faces), im)

 cv2.waitKey(0)

print('Done.')

First, the program loads the pre-trained Haar Cascade model from the input folder
using the cv2.CascadeClassifier class. For each input image, the script converts
it into grayscale and feeds it to the pre-trained model. The script then draws a green
rectangle around each face it found in the image and displays it in a separate window.

Run the program; you will see the following image with the title 5 face(s) found:

Figure 10.9 – Correct face detection

Good concurrent image processing practices 309

It looks like our program is working well so far. Press any key to continue. You should see
the following image with the title 7 face(s) found:

Figure 10.10 – Incorrect face detection

Now, our program is mistaking some other objects as actual faces, resulting in two
false positives. The reason behind this involves how the pre-trained model was created.
Specifically, the Haar Cascade model used a training dataset with images of specific (pixel)
sizes, and when an input image contains faces of different sizes – which is common when
it is a group picture with some people being close to the camera, while others being far
away – is fed into this model, it will cause false positives in the output.

The scaleFactor parameter in the detectMultiScale method of the cv2.
CascadeClassifier class addresses this issue. This parameter will scale down
different areas of the input image before trying to predict whether those areas contain a
face or not – doing this negates the potential difference in face sizes. To implement this,
change the line where we pass the input images to the model to the following to specify
the scaleFactor parameter as 1.2:

faces = face_cascade.detectMultiScale(im, scaleFactor=1.2)

Run the program; you will see that this time, our application can correctly detect all of the
faces in our input images without making any false positives.

310 Concurrent Image Processing

From this example, we can see that it is important to know about the potential challenges
that the input images will pose to your image processing application in execution, as well
as to try different methods or parameters within one method of processing to achieve the
best results.

Spawning an appropriate number of processes
One point we noticed in our example of concurrent image processing is that the task
of spawning processes takes a considerable amount of time. Due to this, if the number
of processes available to analyze the data is too high in comparison to the amount of
input, the improvement in execution time that's obtained from increasing the number
of working processes will diminish and sometimes even become negative.

However, there is no concrete way to tell whether a specific number of separate processes
is appropriate for a program unless we also take into account its input images. For
example, if the input images are relatively large files, and it takes a significant amount of
time for the program to load them from storage, having a larger number of processes
might be beneficial; when some processes are waiting for their images to load, others
can proceed to perform processing on theirs. In other words, having a larger number of
processes will allow for some overlapping between loading and processing time, which
will result in better speedup.

In short, it is important to test out different processes that are available for your image
processing application to see what the optimal number for scalability is.

Processing input/output concurrently
We saw that loading input images in a sequential way might harm the execution time of
an image processing application, as opposed to allowing separate processes to load their
inputs. This is specifically true if the image files are significantly large, as the loading time
in separate processes might overlap with the loading/processing time in other processes.
The same is applicable for writing output images to files.

Summary
Image processing is the task of analyzing and manipulating digital image files to create
new versions of the images or to extract important data from them. These digital images
are represented by tables of pixels, which are RGB values or, in essence, tuples of numbers.
Therefore, digital images are simply multi-dimensional matrices of numbers, which results
in the fact that image processing tasks typically come down to heavy number-crunching.

Questions 311

Since images can be analyzed and processed independently from each other in an
image processing application, concurrent and parallel programming – specifically,
multiprocessing – provides a way for us to make significant improvements to the
execution time of the application. Additionally, there are several good practices
to follow while implementing a concurrent image processing program.

We have seen how we can apply parallel programming to accelerate the task of image
processing. The exercises in this chapter allowed us to examine various aspects of the
workflow and how each of them could be parallelized, thus allowing us to build up
more confidence in implementing concurrent applications in Python.

In the next chapter, we will go through a similar exercise, where we aim to use
asynchronous programming to build communication channels.

Questions
1. What is an image processing task?
2. What is the smallest unit of digital imaging? How is it represented in computers?
3. What is grayscaling? What purpose does this technique serve?
4. What is thresholding? What purpose does this technique serve?
5. Why should image processing be made concurrent?
6. What are some good practices for concurrent image processing?

Further reading
• Automate the Boring Stuff with Python: Practical Programming for Total Beginners,

Al Sweigart, No Starch Press, 2015.

• Learning Image Processing with OpenCV, Garcia, Gloria Bueno, et al, Packt
Publishing Ltd, 2015.

• A Computational Introduction to Digital Image Processing, Alasdair McAndrew,
Chapman and Hall/CRC, 2015.

• Howse, J., P. Joshi, and M. Beyeler. OpenCV: Computer Vision Projects with Python.
Packt Publishing Ltd, 2016.

11
Building

Communication
Channels with

asyncio
Communication channels are a big part of applied concurrency in the field of computer
science. In this chapter, we will cover the fundamental theories of transports, which are
classes provided by the asyncio module to abstract various forms of communication
channels. We will also cover an implementation of a simple echoing server-client logic
in Python, to further illustrate the use of asyncio and concurrency in communication
systems. This chapter will help us frame what we have learned so far about asynchronous
programming in the practical context of communication channels, and the code we work
with will serve as a base for more complex applications.

314 Building Communication Channels with asyncio

The following topics will be covered in this chapter:

• The ecosystem of communication channels

• Getting started with Python and Telnet

• Client-side communication with aiohttp

Technical requirements
The code files for this chapter can be accessed through this link:

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter11

The ecosystem of communication channels
The term communication channel is used to denote both the physical wiring connection
between different systems and the logical communication of data that facilitates computer
networks. In this chapter, we will only be concerned with the latter, as it is a problem that
is related to computing and is more germane to the idea of asynchronous programming.

First, in this section, we will be discussing the general structure of a communication
channel, and two specific elements in that structure that are particularly relevant to
asynchronous programming. The first element is communication protocol layers.

Communication protocol layers
Most data transmission processes that are done through communication channels are
facilitated in the form of the Open Systems Interconnection (OSI) model protocol
layers. The OSI model lays out the major layers and topics in an intersystem
communication process.

The following diagram shows the general structure of the OSI model:

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition

The ecosystem of communication channels 315

Figure 11.1 – OSI model structure

As indicated, there are seven main layers of communication in a data transmission
process, with varying degrees of computing level and specificity. We will not be going into
the details of the purposes and specific functions of each layer, but it is still important that
you understand the general ideas behind the media and host layers.

The three bottom layers contain low-level operations that interact with the underlying
process of the communication channel. The operations in the physical and data link layers
include coding schemes, access schemes, low-level error detection and correction, bit
synchronization, and so on. These operations are used to implement and specify the logic
of processing and preparing data before transferring it. The network layer, on the other
hand, handles forwarding packets of data from one system (for example, the server) to
another (for example, the client) in a computer network, by determining the address of
the recipient and which path of data transfer to take.

316 Building Communication Channels with asyncio

On the other hand, the top layers deal with high-level data communication and
manipulation. Among these layers, we will be focusing on the transport layer, as it is
directly utilized by the asyncio module in the implementation of communication
channels. This layer is often viewed as the conceptual transition between the media
layers and the host layers (for example, the client and the server), responsible for sending
data along with end-to-end (E2E) connections between different systems. Additionally,
because packets of data (prepared by the network layer) might be lost or corrupted during
transmission processes due to network errors, the transport layer is also in charge of
detecting these errors via methods in error detection code.

The other host layers implement mechanisms for handling, interpreting, and providing
the data sent from another system. After receiving data from the transport layer,
the session layer handles the authentication, authorization, and session restoration
processes. The presentation layer then translates the same data and reorganizes it into
an interpretable representation. Finally, the application layer displays that data in a
user-friendly format. With that in mind, let's see how we can apply the framework of
asynchronous programming to communication channels.

Asynchronous programming for communication
channels
The asynchronous programming model nicely complements the process of facilitating
communication channels. For instance, in HyperText Transfer Protocol (HTTP)
communication, the server can asynchronously handle multiple clients at the same time:
while it is waiting for a specific client to make an HTTP request, it can switch to another
client and process that client's request. Similarly, if a client needs to make HTTP requests
to multiple servers and must wait for large responses from some servers, it can consider
the more lightweight responses, which have already been processed and were sent back
to the client first. The following diagram shows an example of how servers and clients
interact with each other asynchronously in HTTP requests:

The ecosystem of communication channels 317

Figure 11.2 – Asynchronous, interleaved HTTP requests

Overall, asynchronous programming is an attractive framework for building
communication channels. As such, we will see how this can be done with the
asyncio module.

Transports and protocols in asyncio
The asyncio module provides several different transport classes. In essence, these classes
are implementations of the functionalities of the transport layer that were discussed in
the preceding section. As the transport layer plays an integral role in communication
channels, the transport classes give asyncio (and, consequently, developers) more
control over the process of implementing our own communication channels.

The asyncio module combines the abstract of transports with the implementation of
an asynchronous program. Specifically, even though transports are the central elements
of communication channels, in order to utilize the transport classes and other relevant
communication channel tools, we need to initiate and call an event loop, which is an
instance of the asyncio.AbstractEventLoop class. The event loop itself will then
create transports and manage the low-level communication procedures.

318 Building Communication Channels with asyncio

It is important to note that a transport object in an established communication
channel in asyncio is always associated with an instance of the asyncio.Protocol
class. As the name suggests, the Protocol class specifies the underlying protocols that
the communication channels use; for each connection made with another system, a new
protocol object from this class will be created. While working closely with a transport
object, a protocol object can call various methods from the transport object; this is
where we can implement the specific inner workings of a communication channel.

For this reason, we generally need to focus on the implementation of an asyncio.
Protocol subclass and its methods while building a connection channel. In other words,
we use asyncio.Protocol as a parent class to derive a subclass that meets the needs
of our communication channel. To do this, we overwrite the following methods from the
asyncio.Protocol base class in our own custom protocol subclass:

• Protocol.connection_made(transport): This method is automatically
called whenever a connection from another system is made. The transport
argument holds the transport object that is associated with the connection.
Again, each transport object needs to be paired with a protocol; we generally
store this transport object as an attribute of this specific protocol object in the
connection_made() method.

• Protocol.data_received(data): This method is automatically called
whenever the one system that we are connected to sends its data. Note that the
data argument, which holds the sent information, is usually represented in bytes,
so the encode() function of Python should be used before data is processed
further.

Next, let's consider other important methods from the transport classes from
asyncio. All transport classes inherit from a parent transport class, called asyncio.
BaseTransport, for which we have the following common methods:

• BaseTransport.get_extra_info(): This method returns, as the name
suggests, additional channel-specific information for the calling transport
object. The result can include information regarding the socket, the pipe, and the
subprocess associated with that transport. Later in this chapter, we will be calling
BaseTransport.get_extra_info('peername') to obtain the remote
address from which the transport traveled.

• BaseTransport.close(): This method is used to close the calling transport
object, after which the connections between different systems will be stopped. The
corresponding protocol of the transport will automatically call its connection_
lost() method.

The ecosystem of communication channels 319

Out of the many implementations of transport classes, we will focus on the asyncio.
WriteTransport class, which again inherits the methods from the BaseTransport
class and additionally implements other methods that are used to facilitate write-only
transport functionalities. Here, we will be using the WriteTransport.write()
method, which will write the data that we would like to send to the other system that we
communicate with via the transport object. As a part of the asyncio module, this
method is not a blocking function; instead, it buffers and sends out the written data in an
asynchronous way.

Before we dive into a working example in Python, let's briefly discuss the big picture of
what we are trying to accomplish—or, in other words, the general structure of our program.

The big picture of asyncio's server client
As mentioned earlier, we need to implement a subclass of asyncio.Protocol to
specify the underlying organization of our communication channel. There is an event loop
at the heart of each asynchronous program, so we also need to create a server outside of
the context of the protocol class and initiate that server inside of the event loop of our
program. This process will set up the asynchronous architecture of our entire server and
can be done via the asyncio.create_server() method, which we will look at in
our upcoming example.

Finally, we will run the event loop of our asynchronous program forever by using the
AbstractEventLoop.run_forever() method. Similar to an actual, real-life server,
we would like to keep our server running until it encounters a problem, in which case we
will close the server gracefully. The following diagram illustrates this whole process:

Figure 11.3 – Asynchronous program structure in communication channels

And with that, we are ready to start building our application, starting from the next section.

320 Building Communication Channels with asyncio

Getting started with Python and Telnet
Let's look at a specific Python example that implements a server that facilitates
asynchronous communication.

Starting a server
Let's look at the EchoServerClientProtocol class, as follows:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):

 def connection_made(self, transport):

 peername = transport.get_extra_info('peername')

 print('Connection from {}'.format(peername))

 self.transport = transport

 def data_received(self, data):

 message = data.decode()

 print('Data received: {!r}'.format(message))

Here, our EchoServerClientProtocol class is a subclass of asyncio.Protocol.
As we discussed earlier, inside of this class, we need to implement the connection_
made(transport) and data_received(data) methods. In the connection_
made() method, we simply obtain the address of the connected system via the
get_extra_info() method (with the 'peername' argument), print a message out
with that information, and finally store the transport object in an attribute of the class.
To print out a similar message in the data_received() method, we again use the
decode() method to obtain a string object from byte data.

Let's move on to the main program of our script, as follows:

loop = asyncio.get_event_loop()

coro = loop.create_server(EchoServerClientProtocol, \

 '127.0.0.1', 8888)

server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed

print('Serving on {}'.format(server.sockets[0] \

 .getsockname()))

try:

Getting started with Python and Telnet 321

 loop.run_forever()

except KeyboardInterrupt:

 pass

Close the server

server.close()

loop.run_until_complete(server.wait_closed())

loop.close()

We are using the familiar asyncio.get_event_loop() function to create an event
loop for our asynchronous program. Then, we create a server for our communication
by having that event loop call the create_server() method; this method takes in
a subclass from the asyncio.Protocol class, an address for our server (in this case,
it is our localhost: 127.0.0.1), and finally, a port for that address (typically, 8888).

Note that this method does not create a server itself; it only initiates the process of creating
a server asynchronously and returns a coroutine that will finish the process. For this
reason, we need to store the returned coroutine from the method in a variable (coro, in
our case) and have our event loop run that coroutine. After printing out a message using
the sockets attribute of our server object, we will run the event loop forever, to keep the
server running, except for the case of a KeyboardInterrupt exception being invoked.

Finally, at the end of our program, we will handle the house-cleaning portion of the script,
which is closing the server gracefully. This is typically done by having the server object call
the close() method (to initiate the closing process of the server) and using the event
loop to run the wait_closed() method on the server object, to make sure that the
server is properly closed. Finally, we close the event loop.

Installing Telnet
Before we can run our sample Python program, we have to install the Telnet program to
correctly simulate a connection channel between a client and a server. Telnet is a program
that provides Terminal commands that facilitate protocols for bidirectional, interactive,
text-oriented communication. If you already have Telnet working on your computer,
simply skip to the next section; otherwise, find the information appropriate to your system
in this section.

In Windows systems, Telnet is already installed, but might not be enabled. To enable it,
you can either utilize the Turn Windows features on or off window and make sure that
the Telnet Client box is checked, or run the following command:

dism /online /Enable-Feature /FeatureName:TelnetClient

322 Building Communication Channels with asyncio

Linux systems typically come with Telnet preinstalled, so if you own a Linux system,
simply move on to the next section.

In macOS systems, it is possible that Telnet has already been installed on your computer.
If not, you will need to do it via the Homebrew package management software, as follows:

brew install telnet

Note that macOS systems do have a preinstalled alternative to Telnet, called Netcat. If
you do not want Telnet installed on your macOS computer, simply use the nc command
instead of telnet in the following examples, and you will achieve the same effect.

Simulating a connection channel
There are multiple steps to running the following server example. First, we need to run the
script to start the server, from which you will obtain the following output:

> python example1.py

Serving on ('127.0.0.1', 8888)

Notice that the program will run until you invoke the Ctrl + C key combination. With
the program still running in one Terminal (this is our server Terminal), open another
Terminal and connect to the server (127.0.0.1) at the specified port (8888), as
illustrated here; this will serve as our client Terminal:

telnet 127.0.0.1 8888

Now, you will see some changes in both the server and the client Terminals. Most likely,
your client Terminal will have the following output:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.

This is from the interface of the Telnet program, which indicates that we have successfully
connected to our local server. The more interesting output is on our server Terminal,
which will be similar to the following:

> python example1.py

Serving on ('127.0.0.1', 8888)

Connection from ('127.0.0.1', 60332)

Getting started with Python and Telnet 323

Recall that this is an information message that we implemented in our
EchoServerClientProtocol class—specifically, in the connection_made()
method. Again, as a connection between the server and a new client is made, this method
will be called automatically to initiate the communication. From the output message, we
know that the client is making their requests from port 60332 of server 127.0.0.1
(which is the same as the running server, since they are both local).

Another feature that we implemented in the EchoServerClientProtocol class
was in the data_received() method. Specifically, we print the decoded data that is
sent from the client. To simulate this type of communication, simply type a message in
your client Terminal and press the Return (Enter, for Windows) key. You will not see any
changes in the client Terminal output, but the server Terminal should print out a message,
as specified in the data_received() method of our protocol class.

For example, this is my server Terminal output when I send the message Hello,
World! from my client Terminal:

> python example1.py

Serving on ('127.0.0.1', 8888)

Connection from ('127.0.0.1', 60332)

Data received: 'Hello, World!\r\n'

The \r and \n characters are simply the return characters included in the message string.
With our current protocol, you can send multiple messages to the server and can even
have multiple clients send messages to the server. To implement this, simply open another
Terminal and connect to the local server again. You will see from your server Terminal that a
different client (from a different port) has made a connection to the server, while the original
communication of our server with the old client is still being maintained. This is another
result achieved from asynchronous programming, allowing multiple clients to communicate
with the same server seamlessly, without using threading or multiprocessing.

Sending messages back to clients
So, in our current example, we can have our asynchronous server receive, read, and
process messages from clients. However, for our communication channel to be useful,
we would also like to send messages from the server to the clients. In this section, we will
update our server to an echo server, which, by definition, will send all data that it receives
from a specific client back to the client.

324 Building Communication Channels with asyncio

To do this, we will be using the write() method from the asyncio.
WriteTransport class. Consider the data_received() method of the
EchoServerClientProtocol class, as follows:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):

 def connection_made(self, transport):

 peername = transport.get_extra_info('peername')

 print('Connection from {}'.format(peername))

 self.transport = transport

 def data_received(self, data):

 message = data.decode()

 print('Data received: {!r}'.format(message))

 self.transport.write(('Echoed back: {}'.format \

 (message)).encode())

loop = asyncio.get_event_loop()

coro = loop.create_server(EchoServerClientProtocol, \

 '127.0.0.1', 8888)

server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed

print('Serving on {}'.format(server.sockets[0] \

 .getsockname()))

try:

 loop.run_forever()

except KeyboardInterrupt:

 pass

Close the server

server.close()

loop.run_until_complete(server.wait_closed())

loop.close()

Getting started with Python and Telnet 325

After receiving the data from the transport object and printing it out, we write a
corresponding message to the transport object, which will go back to the original
client. By running this script and simulating the same communication that we
implemented in the last example with Telnet or Netcat, you will see that after typing a
message in the client Terminal, the client receives an echoed message from the server.
This is my output after initiating the communication channel and typing in the Hello,
World! message:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.

Hello, World!

Echoed back: Hello, World!

In essence, this example illustrates the capability of a bidirectional communication
channel that we can implement through a custom asyncio.Protocol class. While
running a server, we can obtain data sent from various clients connected to the server,
process the data, and finally send the desired result back to the appropriate clients.

Closing transports
Occasionally, we will want to forcefully close a transport in a communication channel.
For example, even with asynchronous programming and other forms of concurrency, it is
possible for your server to be overwhelmed with constant communications from multiple
clients. On the other hand, it is undesirable to have the server completely handle some of
the sent requests and plainly reject the rest of the requests as soon as the server is at its
maximum capacity.

So, instead of keeping the communication open for each client connected to the server,
we can specify in our protocol that each connection should be closed after a successful
communication. We will do this by using the BaseTransport.close() method to
forcefully close the calling transport object, which will stop the connection between
the server and that specific client. Again, we are modifying the data_received()
method of the EchoServerClientProtocol class, as follows:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):

 def connection_made(self, transport):

 peername = transport.get_extra_info('peername')

 print('Connection from {}'.format(peername))

326 Building Communication Channels with asyncio

 self.transport = transport

 def data_received(self, data):

 message = data.decode()

 print('Data received: {!r}'.format(message))

 self.transport.write(('Echoed back: \

 {}'.format(message)).encode())

 print('Close the client socket')

 self.transport.close()

loop = asyncio.get_event_loop()

coro = loop.create_server(EchoServerClientProtocol, \

 '127.0.0.1', 8888)

server = loop.run_until_complete(coro)

Serve requests until Ctrl+C is pressed

print('Serving on {}'.format(server.sockets[0].getsockname()))

try:

 loop.run_forever()

except KeyboardInterrupt:

 pass

Close the server

server.close()

loop.run_until_complete(server.wait_closed())

loop.close()

Run the script, connect to the specified server, and type in some messages to see the changes
that we implemented. With our current setup, after a client connects and sends a message to
the server, it will receive an echoed message back, and its connection with the server will be
closed. This is the output (again, from the interface of the Telnet program) that I obtained
after simulating this process with our current implementation of the protocol:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.

Client-side communication with aiohttp 327

Hello, World!

Echoed back: Hello, World!

Connection closed by foreign host.

So far, we have covered examples of implementing asynchronous communication
channels with the asyncio module, mostly from the perspective of the server side of the
communication process; in other words, we have been handling and processing requests
sent from external systems. This, however, is only one side of the equation, and we also
have the client side of communication to explore. In the next section, we will discuss
applying asynchronous programming to make requests to servers.

Client-side communication with aiohttp
As you have most likely guessed, the end goal of this process is to efficiently collect data
from external systems by asynchronously making requests to those systems. We will be
revisiting the concept of web scraping, which is the process of automating HTTP requests
to various websites and extracting specific information from their HyperText Markup
Language (HTML) source code. If you have not read Chapter 9, Concurrent Web Requests,
I highly recommend going through it before proceeding with this section, as that chapter
covers the fundamental ideas of web scraping and other relevant, important concepts.

In this section, you will also be introduced to another module that supports asynchronous
programming options: aiohttp (which stands for asynchronous input/output
(I/O) HTTP). This module provides high-level functionalities that streamline HTTP
communication procedures, and it also works seamlessly with the asyncio module,
to facilitate asynchronous programming.

Installing aiohttp and aiofiles
The aiohttp module does not come preinstalled with your Python distribution;
however, similarly to other packages, you can easily install the module by using the pip
or conda commands. We will also be installing another module, aiofiles, which
facilitates asynchronous file writing. If you use pip as your package manager, simply
run the following commands:

pip install aiohttp

pip install aiofiles

If you'd like to use Anaconda, run the following commands:

conda install aiohttp

conda install aiofiles

328 Building Communication Channels with asyncio

As always, to confirm that you have successfully installed a package, open your Python
interpreter and try to import the module. In this case, run the following code:

>>> import aiohttp

>>> import aiofiles

There will be no error messages if the package has been successfully installed.

Fetching a website's HTML code
First, let's look at how to make a request and obtain the HTML source code from a single
website with aiohttp. Note that even with only one task (a website), our application
remains asynchronous, and the structure of an asynchronous program still needs to be
implemented as follows:

import aiohttp

import asyncio

async def get_html(session, url):

 async with session.get(url, ssl=False) as res:

 return await res.text()

async def main():

 async with aiohttp.ClientSession() as session:

 html = await get_html(session, ' \

 http://packtpub.com')

 print(html)

loop = asyncio.get_event_loop()

loop.run_until_complete(main())

Let's consider the main() coroutine first. We are initiating an instance from the
aiohttp.ClientSession class within a context manager; note that we are also
placing the async keyword in front of this declaration since the whole context block itself
will also be treated as a coroutine. Inside of this block, we are calling and waiting for the
get_html() coroutine to process and return.

Client-side communication with aiohttp 329

Turning our attention to the get_html() coroutine, we can see that it takes in a
session object and a Uniform Resource Locator (URL) for the website that we want to
extract the HTML source code from. Inside of this function, we make another context
manager asynchronous, which is used to make a GET request and store the response from
the server to the res variable. Finally, we return the HTML source code stored in the
response. Since the response is an object returned from the aiohttp.ClientSession
class, its methods are asynchronous functions, and therefore we need to specify the
await keyword when we call the text() function.

As you run the program, the entire HTML source code of Packt's website will be printed
out. For example, here is a portion of my output:

<!doctype html>

<html lang="en">

<head>

<script>

 var BASE_URL = 'https://www.packtpub.com/';

 var require = {

 "baseUrl": "https://www.packtpub.com/static

 /version1611744644/frontend/Packt/default/en_GB"

 };

</script>

<meta charset="utf-8" />

<meta name="title" content="Packt | Programming Books, eBooks

& Videos for Developers" />

<meta name="description" content="Packt is the online

library and learning platform for professional developers.

Learn Python, JavaScript, Angular and more with eBooks,

videos and courses" />

<meta name="robots" content="INDEX,FOLLOW" />

<meta name="viewport" content="width=device-width, initial-

scale=1, maximum-scale=1, user-scalable=1, shrink-to-

fit=no" />

<meta name="" content="charset=utf-8" />

<title>Packt | Programming Books, eBooks &

…

330 Building Communication Channels with asyncio

At this point, we can collect data by making requests to multiple websites asynchronously
and print out the response HTML. Most of the time, simply printing out the HTML
is inappropriate; instead, we'd like to write the returned HTML code to output files.
In essence, this process is asynchronous downloading, which is also implemented in
the underlying architecture of popular download managers. To do this, we will use the
aiofiles module, in combination with aiohttp and asyncio.

Writing files asynchronously
First, we will write a download_html() coroutine, as follows:

async def download_html(session, url):

 async with session.get(url, ssl=False) as res:

 filename = f'output/{os.path.basename(url)}.html'

 async with aiofiles.open(filename, 'wb') as f:

 while True:

 chunk = await res.content.read(1024)

 if not chunk:

 break

 await f.write(chunk)

 return await res.release()

This is an updated version of the get_html() coroutine from the last example. Instead
of using an aiohttp.ClientSession instance to make a GET request and print out
the returned HTML code, we now write the HTML code to the file using the aiofiles
module. For example, to facilitate asynchronous file writing, we use the asynchronous
open() function from aiofiles to read in a file in a context manager. Furthermore,
we read the returned HTML in chunks, asynchronously, using the read() function for
the content attribute of the response object; this means that after reading 1024 bytes
of the current response, the execution flow will be released back to the event loop, and the
task-switching event will take place.

The main() coroutine and the main program of this example remain relatively the same
as those in our last example, as we can see here:

async def main(url):

 async with aiohttp.ClientSession() as session:

 await download_html(session, url)

Client-side communication with aiohttp 331

urls = [

 'http://packtpub.com',

 'http://python.org',

 'http://docs.python.org/3/library/asyncio',

 'http://aiohttp.readthedocs.io',

 'http://google.com'

]

loop = asyncio.get_event_loop()

loop.run_until_complete(

 asyncio.gather(*(main(url) for url in urls))

)

The main() coroutine takes in a URL and passes it to the download_html()
coroutine, along with an aiohttp.ClientSession instance. Finally, in our main
program, we create an event loop and pass each item in a specified list of URLs to the
main() coroutine. After running the program, your output should look like this,
although the time it takes to run the program might vary:

> python3 example5.py

Took 0.72 seconds.

Additionally, a subfolder named output (inside of the Chapter18 folder) will be filled
with the downloaded HTML code from each website in our list of URLs. Again, these
files were created and written asynchronously, via the functionalities of the aiofiles
module, which we discussed earlier. As you can see, to compare the speed of this program
and its corresponding synchronous version, we are also keeping track of the time it takes
to run the entire program.

Now, head to the Chapter11/example6.py file. This script contains the code of the
synchronous version of our current program. Specifically, it makes HTTP GET requests
to individual websites in order, and the process of file writing is also implemented
sequentially. This script produced the following output:

> python3 example6.py

Took 1.47 seconds.

While it achieved the same results (downloading the HTML code and writing it to files),
our sequential program took significantly more time than its asynchronous counterpart.

332 Building Communication Channels with asyncio

Summary
Asynchronous programming can provide functionalities that complement the process
of efficiently facilitating communication channels. Together with the aiohttp module,
asyncio offers efficiency and flexibility regarding client-side communication processes.
The aiofiles module, which can work in conjunction with the other two asynchronous
programming modules, can also help to facilitate asynchronous file reading and writing.

We have now explored three of the biggest, most important topics in concurrent
programming: threading, multiprocessing, and asynchronous programming. We have
shown how each of them can be applied to various programming problems and provide
significant improvements in speed. The code we developed in this chapter serves as a
base that may be easily modified to build more complex applications.

In the next chapter of this book, we will start to discuss problems that concurrent
programming commonly poses to developers and programmers, starting with deadlocks.

Questions
1. What is a communication channel? What is its connection to asynchronous

programming?
2. What are the two main parts of the OSI model protocol layers? What purpose does

each of them serve?
3. What is the transport layer? Why is it crucial to communication channels?
4. How does asyncio facilitate the implementation of server-side communication

channels?
5. How does asyncio facilitate the implementation of client-side communication

channels?
6. What is aiofiles?

Further reading
For more information, you can refer to the following links:

• IoT Systems and Communication Channels (bridgera.com/
iot-communication-channels/), by Bridgera

• Automate the Boring Stuff with Python: Practical Programming for Total Beginners,
Al Sweigart, No Starch Press

• Transports and protocols (docs.python.org/3/library/asyncio-
protocol), Python documentation

bridgera.com/iot-communication-channels/
bridgera.com/iot-communication-channels/
docs.python.org/3/library/asyncio-protocol
docs.python.org/3/library/asyncio-protocol

12
Deadlocks

Deadlocks, one of the most common concurrency problems, will be the first problem
that we will analyze in this book. In this chapter, we will discuss the theoretical causes
of deadlocks in concurrent programming. We will cover a classical synchronization
problem in concurrency, called the dining philosophers problem, as a real-life example
of a deadlock. We will also illustrate an actual implementation of a deadlock in Python
and discuss several methods to address this problem. This chapter will also cover the
concept of livelocks, which are relevant to deadlocks and are also a common problem in
concurrent programming.

The following topics will be covered in this chapter:

• The concept of deadlocks

• Approaches to deadlock situations

• The concept of livelocks

By the end of this chapter, we will have gained a deep understanding of the problem,
its place in concurrent programming, and the practical approaches to solving it.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter12.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter12

334 Deadlocks

The concept of deadlocks
In concurrent programming, a deadlock refers to a specific situation in which no progress
can be made, and the program becomes locked in its current state. In most cases, this
phenomenon is caused by a lack of, or mishandled, coordination between different lock
objects (for thread synchronization purposes). In this section, we will discuss a thought
experiment, commonly known as the dining philosophers problem, to illustrate the
concept of a deadlock and its causes; from there, you will learn how to simulate the
problem in a Python concurrent program.

The dining philosophers problem
The dining philosophers problem was first introduced by Edgar Dijkstra, a leading pioneer
in concurrent programming, in 1965. This problem was first demonstrated using different
technical terms (resource contention in computer systems) and was later rephrased
by Tony Hoare, a British computer scientist and the inventor of the quicksort sorting
algorithm. The problem statement is as follows.

Five philosophers sit around a table, and each has a bowl of food in front of them. Placed
between these five bowls of food are five forks, so each philosopher has one fork to their
left and one fork to their right. This setup is shown in the following diagram:

Figure 12.1 – An illustration of the dining philosophers problem

The concept of deadlocks 335

Each silent philosopher is to alternate between thinking and eating. Each is required to
have both of the forks around them to be able to pick up the food from their bowl, and
no fork can be shared between two or more different philosophers. When a philosopher
finishes eating a specific amount of food, they are to place both of the forks back in their
respective, original locations. At this point, the philosophers around that philosopher will
be able to use those forks.

Since the philosophers are silent and cannot communicate with each other, they have no
way to let each other know they need the forks to eat. In other words, the only way for a
philosopher to eat is to have both of the forks already available to them. For this problem,
a set of instructions must be designed for the philosophers to efficiently switch between
eating and thinking so that each philosopher is provided with enough food.

Now, a potential approach to this problem would be the following set of instructions:

1. A philosopher must think until the fork on their left becomes available. When that
happens, the philosopher is to pick it up.

2. A philosopher must think until the fork on their right becomes available. When that
happens, the philosopher is to pick it up.

3. If a philosopher is holding two forks, they will eat a specific amount of food from
the bowl in front of them, and then the following will apply:

 � Afterward, the philosopher has to put the right fork down in its original place.

 � Afterward, the philosopher has to put the left fork down in its original place.

4. The process repeats from the first step.

It is clear to see how this set of instructions can lead to a situation where no progress
can be made; namely, if, in the beginning, all of the philosophers start to execute their
instructions at the same time. Since all of the forks are on the table at the beginning and
are therefore available to be picked up by nearby philosophers, each philosopher will be
able to execute the first instruction (picking up the fork on their left).

Now, after this step, each philosopher will be holding a fork with their left hand, and no
forks will be left on the table. Since no philosopher has both forks in their hands, they
cannot eat their food. Furthermore, the set of instructions that they were given specifies
that only after a philosopher has eaten a specific amount of food can they put their forks
down on the table. This means that so long as a philosopher has not eaten, they will not
release the fork that they are holding.

336 Deadlocks

So, as each philosopher is holding only one fork with their left hand, this means they
cannot eat or put down the fork they are holding. The only time a philosopher gets to
eat their food is when their neighboring philosopher puts their fork down, which is only
possible if they can eat their food; this creates a never-ending circle of conditions that can
never be satisfied. This situation is, in essence, the nature of a deadlock, in which all of the
elements of a system are stuck in place, and no progress can be made.

It is not difficult to imagine real-world situations that involve shared resources and are
modeled by this dining philosophers problem. For example, the original problems that
inspired Dijkstra to construct this formulation involved working with external devices
such as tape drives.

Another example is in terms of banks: to execute transactions between two bank
accounts, you must ensure that both accounts are locked from other transactions for the
correct amount of money to be transferred. Here, the analogy does not exactly hold – a
philosopher corresponds to a transaction that locks accounts (the forks) – but the same
technical difficulties could arise. Other examples include making online reservations and
allowing a database to be modified by multiple clients at the same time.

With that said, we will be exclusively focusing on the formal dining philosophers problem
as it provides a clean, abstract setting that could easily be analyzed and taken apart. With
that in mind, let's consider the formal concept of a deadlock and the relevant theories
around it.

A deadlock in a concurrent system
Given a concurrent program with multiple threads or processes, the execution flow
enters a deadlock if a process (or thread) is waiting on a resource that is being held and
utilized by another process, which is, in turn, waiting for another resource that is held
by a different process. In other words, processes cannot proceed with their execution
instructions while waiting for resources that can only be released after the execution is
completed; therefore, these processes are unable to change their execution states.

A deadlock is also defined by the conditions that a concurrent program needs to have
at the same time for a deadlock to occur. These conditions were first proposed by the
computer scientist Edward G. Coffman, Jr., and are therefore known as the Coffman
conditions. These conditions are as follows:

• At least one resource has to be in a non-shareable state. This means that that
resource is being held by an individual process (or thread) and cannot be accessed
by others; the resource can only be accessed and held by a single process (or thread)
at any given time. This condition is also known as mutual exclusion.

The concept of deadlocks 337

• One process (or thread) exists that is simultaneously accessing a resource and
waiting for another held by other processes (or threads). In other words, this
process (or thread) needs access to two resources to execute its instructions, one of
which it is already holding, the other of which it is waiting for from other processes
(or threads). This condition is called hold and wait.

• Resources can only be released by a process (or a thread) holding them if there are
specific instructions for the process (or thread) to do so. This is to say that unless
the process (or thread) voluntarily and actively releases the resource, that resource
remains in a non-shareable state. This is the no preemption condition.

• The final condition is called circular wait. As its name suggests, this condition
specifies that a set of processes (or threads) exist so that the first process (or thread)
in the set is waiting for a resource to be released by the second process (or thread),
which, in turn, needs to be waiting for the third process (or thread); finally, the last
process (or thread) in the set is waiting for the first one.

Let's quickly take a look at a basic example of a deadlock. Consider a concurrent program
in which there are two different processes (process A and process B) and two different
resources (resource R1 and resource R2), as follows:

Figure 12.2 – Sample deadlock diagram

Neither of the resources can be shared across separate processes, and each process needs
to access both resources to execute its instructions. Take process A, for example. It is
already holding resource R1, but it also needs R2 to proceed with its execution. However,
R2 cannot be acquired by process A, as it is being held by process B. So, process A cannot
proceed. The same goes for process B, which is holding R2 and needs R1 to proceed. R1
is, in turn, held by process A.

338 Deadlocks

Python simulation
In this section, we will implement the preceding situation in an actual Python program.
Specifically, we will have two locks (we will call them lock A and lock B) and two separate
threads interacting with the locks (thread A and thread B). In our program, we will set up
a situation in which thread A has acquired lock A and is waiting to acquire lock B, which
has already been acquired by thread B, which is, in turn, waiting for lock A to be released.

If you have already downloaded the code for this book from the relevant GitHub page,
then go ahead and navigate to the Chapter12 folder. Let's consider the Chapter12/
example1.py file, as follows:

import threading

import time

def thread_a():

 print('Thread A is starting...')

 print('Thread A waiting to acquire lock A.')

 lock_a.acquire()

 print('Thread A has acquired lock A, performing some \

 calculation...')

 time.sleep(2)

 print('Thread A waiting to acquire lock B.')

 lock_b.acquire()

 print('Thread A has acquired lock B, performing some \

 calculation...')

 time.sleep(2)

 print('Thread A releasing both locks.')

 lock_a.release()

 lock_b.release()

The concept of deadlocks 339

def thread_b():

 print('Thread B is starting...')

 print('Thread B waiting to acquire lock B.')

 lock_b.acquire()

 print('Thread B has acquired lock B, performing some \

 calculation...')

 time.sleep(5)

 print('Thread B waiting to acquire lock A.')

 lock_a.acquire()

 print('Thread B has acquired lock A, performing some \

 calculation...')

 time.sleep(5)

 print('Thread B releasing both locks.')

 lock_b.release()

 lock_a.release()

lock_a = threading.Lock()

lock_b = threading.Lock()

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print('Finished.')

340 Deadlocks

In this script, the thread_a() and thread_b() functions specify thread A and thread
B, respectively. In our main program, we also have two threading.Lock objects: lock
A and lock B. The general structure of the thread instructions is as follows:

1. Start the thread.
2. Try to acquire the lock with the same name as the thread (thread A will try to

acquire lock A, while thread B will try to acquire lock B).
3. Perform some calculations.
4. Try to acquire the other lock (thread A will try to acquire lock B, while thread B will

try to acquire lock A).
5. Perform some other calculations.
6. Release both locks.
7. End the thread.

Note
Note that we are using the time.sleep() function to simulate the action
of some calculations being processed.

First of all, we are starting both threads A and B almost simultaneously, within the main
program. With the structure of the thread instruction set in mind, we can see that at this
point, both threads will be initiated; thread A will try to acquire lock A and will succeed in
doing so since lock A is still available at this point. The same goes for thread B and lock B.
The two threads will then go on to perform some calculations on their own.

Let's consider the current state of our program: lock A has been acquired by thread A,
and lock B has been acquired by thread B. After their respective calculation processes are
complete, thread A will then try to acquire lock B, and thread B will try to acquire lock
A. We can easily see that this is the beginning of our deadlock situation: since lock B is
already being held by thread B and cannot be acquired by thread A, thread B, for the
same reason, cannot acquire lock A.

Both of the threads will now wait infinitely to acquire their respective second lock.
However, the only way a lock can be released is for a thread to continue its execution
instructions and release all of the locks it has at the end. So, our program will be stuck
in its execution at this point, and no further progress will be made.

The concept of deadlocks 341

The following diagram further illustrates the process of how the deadlock unfolds,
in sequence:

Figure 12.3 – Deadlock sequence diagram

Now, let's look at the deadlock that we have created in action. By running the script, you
should obtain the following output:

> python example1.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread B is starting...

Thread A has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...

Thread A waiting to acquire lock B.

Thread B waiting to acquire lock A.

As we discussed previously, since each thread is trying to acquire a lock that is currently
held by the other thread, the only way for a lock to be released is for a thread to continue
its execution. This is a deadlock, and your program will hang infinitely, never reaching the
final print statement in the last line of the program.

This behavior is undesirable in every way. In the next section, we will be discussing
potential approaches to prevent deadlocks from occurring.

342 Deadlocks

Approaches to deadlock situations
Intuitively, each of the following approaches looks to eliminate one of the four Coffman
conditions from our program to prevent deadlocks. Our first solution is to implement
ranking among the competing resources.

Implementing ranking among resources
From both the dining philosophers problem and our Python example, we can see that the
last condition of the four Coffman conditions, circular wait, is at the heart of the deadlock
problem. It specifies that the different processes (or threads) in our concurrent program
wait for resources held by other processes (or threads) circularly. By taking a closer look,
we can see that the root cause for this condition is the order (or lack thereof) in which the
processes (or threads) access the resources.

In the dining philosophers problem, each philosopher is instructed to pick up the fork
on their left first, while in our Python example, the threads always try to acquire the locks
with the same name before performing any calculations. As you have seen, when the
philosophers want to start eating at the same time, they will pick up their respective left
forks and will be stuck in an infinite waiting loop. Similarly, when the two threads start
their execution at the same time, they will acquire their locks and, again, wait for the other
locks infinitely.

The conclusion that we can infer from this is that if, instead of accessing the resources
arbitrarily, the processes (or threads) were to access them in a predetermined, static
order, the circular nature of the way that they acquire and wait for the resources will be
eliminated. So, for our two-lock Python example, instead of having thread A try to acquire
lock A and thread B try to acquire lock B in their respective execution instructions, we
will want both threads to try and acquire the locks in the same order. For example, both
threads will now try to acquire lock A first, perform some calculations, try to acquire lock
B, perform further calculations, and, finally, release both threads.

This change is implemented in the Chapter12/example2.py file, as follows:

import threading

import time

def thread_a():

 print('Thread A is starting...')

 print('Thread A waiting to acquire lock A.')

 lock_a.acquire()

Approaches to deadlock situations 343

 print('Thread A has acquired lock A, performing some \

 calculation...')

 time.sleep(2)

 print('Thread A waiting to acquire lock B.')

 lock_b.acquire()

 print('Thread A has acquired lock B, performing some \

 calculation...')

 time.sleep(2)

 print('Thread A releasing both locks.')

 lock_a.release()

 lock_b.release()

def thread_b():

 print('Thread B is starting...')

 print('Thread B waiting to acquire lock A.')

 lock_a.acquire()

 print('Thread B has acquired lock A, performing some \

 calculation...')

 time.sleep(5)

 print('Thread B waiting to acquire lock B.')

 lock_b.acquire()

 print('Thread B has acquired lock B, performing some \

 calculation...')

 time.sleep(5)

 print('Thread B releasing both locks.')

 lock_b.release()

 lock_a.release()

lock_a = threading.Lock()

lock_b = threading.Lock()

344 Deadlocks

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print('Finished.')

This version of the script is now able to finish its execution and should produce the
following output:

> python3 example2.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread A has acquired lock A, performing some calculation...

Thread B is starting...

Thread B waiting to acquire lock A.

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...

Thread A releasing both locks.

Thread B has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...

Thread B releasing both locks.

Finished.

This approach efficiently eliminates the deadlock problem in our two-lock example,
but how well does it hold up for the dining philosophers problem? To answer this
question, let's try to simulate the problem and the solution in Python by ourselves.
The Chapter12/example3.py file contains the implementation of the dining
philosophers problem in Python, as follows:

import threading

The philosopher thread

Approaches to deadlock situations 345

def philosopher(left, right):

 while True:

 with left:

 with right:

 print(f'Philosopher at \

 {threading.currentThread()} is eating.')

The chopsticks

N_FORKS = 5

forks = [threading.Lock() for n in range(N_FORKS)]

Create all of the philosophers

phils = [\

 threading.Thread(target=philosopher,args=(forks[n], forks \

 [(n + 1) % N_FORKS])) for n in range(N_FORKS)]

Run all of the philosophers

for p in phils:

 p.start()

Here, we have the philosopher() function as the underlying logic for our separate
threads. It takes in two Threading.Lock objects and simulates the previously discussed
eating procedure, with two context managers. In our main program, we create a list of five
lock objects, named forks, and a list of five threads, named phils, with the specification
that the first thread will take in the first and second locks, the second thread will take in
the second and third locks, and so on; and the fifth thread will take in the fifth and first
locks (in order). Finally, we start all five threads simultaneously.

If we run the script, we will see that deadlock occurs almost immediately. The following is
my output, up until the program hangs infinitely:

> python3 example3.py

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

346 Deadlocks

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

Philosopher at <Thread(Thread-5, started 123145466068992)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is

eating.

The question that naturally follows is: how can we implement an order in which the locks
are acquired in the philosopher() function? We will be using the built-in id()
function in Python here, which returns the unique, constant identity of the parameter,
as the keys to sort the lock objects. We will also implement a custom context manager to
factor out this sorting logic in a separate class. Navigate to Chapter12/example4.py
for this specific implementation, which looks as follows:

class acquire(object):

 def __init__(self, *locks):

 self.locks = sorted(locks, key=lambda x: id(x))

 def __enter__(self):

 for lock in self.locks:

Approaches to deadlock situations 347

 lock.acquire()

 def __exit__(self, ty, val, tb):

 for lock in reversed(self.locks):

 lock.release()

 return False

The philosopher thread

def philosopher(left, right):

 while True:

 with acquire(left,right):

 print(f'Philosopher at \

 {threading.currentThread()} is eating.')

With the main program remaining the same, this script will produce an output showing
that this solution of ranking can effectively address the dining philosophers problem.

However, there is a problem with this approach when it is applied to some particular
cases. Keeping the high-level idea of concurrency in mind, we know that one of our main
goals when applying concurrency to our programs is to improve the speed. Let's go back
to our two-lock example and examine the execution time of our program with resource
ranking implemented. Take a look at the Chapter12/example5.py file; it is simply
the two-lock program with ranked (or ordered) locking implemented, combined with a
timer that has been added to keep track of how much time it takes for the two threads
to finish executing.

After running the script, your output should look similar to the following:

> python3 example5.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread B is starting...

Thread A has acquired lock A, performing some calculation...

Thread B waiting to acquire lock A.

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...

Thread A releasing both locks.

Thread B has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

348 Deadlocks

Thread B has acquired lock B, performing some calculation...

Thread B releasing both locks.

Took 14.01 seconds.

Finished.

Here, you can see that the combined execution of both threads took around 14 seconds.
However, if we take a closer look at the specific instructions in the two threads, we will see
that aside from interacting with the locks, thread A would take around 4 seconds to do its
calculations (simulated by two time.sleep(2) commands), while thread B would take
around 10 seconds (two time.sleep(5) commands).

Does this mean that our program is taking as long as it would if we were to execute the
two threads sequentially? We will test this theory with our Chapter12/example6.py
file, in which we specify that each thread should execute its instructions one at a time with
the same thread_a() and thread_b() functions:

lock_a = threading.Lock()

lock_b = threading.Lock()

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

start = timer()

thread1.start()

thread1.join()

thread2.start()

thread2.join()

print('Took %.2f seconds.' % (timer() - start))

print('Finished.')

If you run this script, you will see that this sequential version of our two-lock program
will take the same amount of time as its concurrent counterpart:

> python3 example6.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread A has acquired lock A, performing some calculation...

Approaches to deadlock situations 349

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...

Thread A releasing both locks.

Thread B is starting...

Thread B waiting to acquire lock A.

Thread B has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...

Thread B releasing both locks.

Took 14.01 seconds.

Finished.

This interesting phenomenon is a direct result of the heavy requirements that we have
placed on the locks in the program. In other words, since each thread has to acquire both
locks to complete its execution, each lock cannot be acquired by more than one thread
at any given time. The locks must be acquired in a specific order, and the execution of
individual threads cannot happen simultaneously. If we were to go back and examine
the output produced by the Chapter12/example5.py file, it would be apparent that
thread B could not start its calculations after thread A released both locks at the end of
its execution.

It is quite intuitive, then, to conclude that if you placed enough locks on the resources
of your concurrent program, it would become entirely sequential in its execution, and,
combined with the overhead of concurrent programming functionalities, it would have
an even worse speed than the purely sequential version of the program. However, we
did not see this sequentiality that's created by locks in the dining philosophers problem
(simulated in Python). This is because, in the two-thread problem, two locks were enough
to sequentialize the program execution, while five were not enough to do the same for the
dining philosophers problem.

We will explore another instance of this phenomenon in Chapter 13, Starvation.

Ignoring locks and sharing resources
Locks are undoubtedly an important tool in synchronization tasks, and in concurrent
programming in general. However, if using locks leads to an undesirable situation, such
as a deadlock, then it is natural for us to explore the option of simply not using locks in
our concurrent programs. By ignoring locks, our program's resources effectively become
shareable among different processes/threads in a concurrent program, thus eliminating
the first of the four Coffman conditions: mutual exclusion.

350 Deadlocks

This approach to the problem of a deadlock is straightforward to implement; let's try this
with the two preceding examples. In the two-lock example, we simply remove the code
that specifies any interaction with the lock objects both inside the thread functions and
in the main program. In other words, we are not utilizing a locking mechanism anymore.
The Chapter12/example7.py file contains the implementation of this approach,
as follows:

import threading

import time

from timeit import default_timer as timer

def thread_a():

 print('Thread A is starting...')

 print('Thread A is performing some calculation...')

 time.sleep(2)

 print('Thread A is performing some calculation...')

 time.sleep(2)

def thread_b():

 print('Thread B is starting...')

 print('Thread B is performing some calculation...')

 time.sleep(5)

 print('Thread B is performing some calculation...')

 time.sleep(5)

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

start = timer()

thread1.start()

thread2.start()

Approaches to deadlock situations 351

thread1.join()

thread2.join()

print('Took %.2f seconds.' % (timer() - start))

print('Finished.')

If you run the script, your output should look similar to the following:

> python3 example7.py

Thread A is starting...

Thread A is performing some calculation...

Thread B is starting...

Thread B is performing some calculation...

Thread A is performing some calculation...

Thread B is performing some calculation...

Took 10.00 seconds.

Finished.

It is clear that since we are not using locks to restrict access to any calculation processes,
the executions of the two threads have become entirely independent of one another, so the
threads were run completely in parallel. For this reason, we also obtained a better speed:
since the threads ran in parallel, the total time that the whole program took was the same as
the time that the longer of the two threads took (in other words, thread B, with 10 seconds).

What about the dining philosophers problem? It seems that we can also conclude that
without locks (the forks), the problem can be solved easily. Since the resources (food)
are unique to each philosopher (in other words, no philosopher should eat another
philosopher's food), it should be the case that each philosopher can proceed with their
execution without worrying about the others. By ignoring the locks, each can be executed
in parallel, similar to what we saw in our two-lock example.

Doing this, however, means that we are completely misunderstanding the problem. We
know that locks are utilized so that processes and threads can access the shared resources
in a program in a systematic, coordinated way, to avoid mishandling the data. Therefore,
removing any locking mechanisms in a concurrent program means that the likelihood of
the shared resources, which are now free from access limitations, being manipulated in an
uncoordinated way (and therefore, becoming corrupted) increases significantly.

352 Deadlocks

So, by ignoring locks, it is relatively likely that we will need to completely redesign and
restructure our concurrent program. If the shared resources still need to be accessed
and manipulated in an organized way, other synchronization methods will need to be
implemented. The logic of our processes and threads might need to be altered to interact
with this new synchronization method appropriately, the execution time might be
negatively affected by this change in the structure of the program, and other potential
synchronization problems might also arise.

An additional note about locks
While the approach of dismissing locking mechanisms in our program to eliminate
deadlocks might raise some questions and concerns, it does effectively reveal a new point
for us about lock objects in Python: it is possible for an element of a concurrent program
to completely bypass the locks when accessing a given resource. In other words, lock
objects only prevent different processes/threads from accessing and manipulating a shared
resource if those processes or threads acquire the lock objects.

Locks, then, do not lock anything. They are simply flags that help indicate whether a
resource should be accessed at a given time; if a poorly instructed, or even malicious,
process/thread attempts to access that resource without checking that the lock object
exists, it will most likely be able to do that without difficulty. In other words, locks are not
connected to the resources that they are supposed to lock, and they most certainly do not
block processes/threads from accessing those resources.

So, simply using locks is inefficient for designing and implementing a secure, dynamic,
concurrent data structure. To achieve that, we would need to either add more concrete
links between the locks and their corresponding resources or utilize a different
synchronization tool altogether (for example, atomic message queues).

Concluding note on deadlock solutions
In this chapter, you have seen two of the most common approaches to the deadlock
problem. Each addresses one of the four Coffman conditions, and while both (somewhat)
successfully prevent deadlocks from occurring in our examples, each raises different,
additional problems and concerns. So, it is important to truly understand the nature of
your concurrent programs to know which of the two is applicable, if either of them is.

The concept of livelocks 353

It is also possible that some programs, through deadlocks, are revealed to us as unsuitable
to be made concurrent; some programs are better left sequential and will be made worse
with forced concurrency. As we have discussed, while concurrency provides significant
improvements in many areas of our applications, some are inherently inappropriate for
concurrent programming. In deadlock situations, developers should be ready to consider
different approaches to designing a concurrent program and should not be reluctant to
implement another method when one concurrent approach does not work.

The concept of livelocks
The concept of a livelock is connected to a deadlock; some even consider it an alternate
version of a deadlock. In a livelock situation, the processes (or threads) in the concurrent
program can switch their states; in fact, they switch states constantly. Yet, they simply
switch back and forth infinitely, and no progress is made. We will now consider an actual
scenario of a livelock.

Suppose that a pair of spouses are eating dinner together at a table. They only have one
fork to share, so only one of them can eat at any given point. Additionally, the spouses
are polite to each other, so even if one spouse is hungry and wants to eat their food, they
will leave the fork on the table if their partner is also hungry. This specification is at the
heart of creating a livelock for this problem: when both spouses are hungry, each will wait
for the other to eat first, creating an infinite loop in which each spouse switches between
wanting to eat and waiting for the other spouse to eat.

Let's simulate this problem in Python. Navigate to Chapter12/example8.py and take
a look at the Spouse class:

class Spouse(threading.Thread):

 def __init__(self, name, partner):

 threading.Thread.__init__(self)

 self.name = name

 self.partner = partner

 self.hungry = True

 def run(self):

 while self.hungry:

 print('%s is hungry and wants to eat.' % self.name)

354 Deadlocks

 if self.partner.hungry:

 print('%s is waiting for their partner to eat \

 first...' % self.name)

 else:

 with fork:

 print('%s has stared eating.' % self.name)

 time.sleep(5)

 print('%s is now full.' % self.name)

 self.hungry = False

This class inherits from the threading.Thread class and implements the logic that
we discussed previously. It takes in a name for the Spouse instance and another Spouse
object as its partner; when initialized, a Spouse object is also always hungry (the hungry
attribute is always set to True). The run() function in the class specifies the logic when
the thread is started: so long as the Spouse object's hungry attribute is set to True, the
object will attempt to use the fork, which is a lock object, to eat. However, it always checks
whether its partner also has its hungry attribute set to True, in which case it will not
proceed to acquire the lock, and will instead wait for its partner to do it.

In our main program, we create the fork as a lock object first; then, we create two Spouse
thread objects, which are each other's partner attributes. Finally, we start both threads
and run the program until both threads finish executing:

fork = threading.Lock()

partner1 = Spouse('Wife', None)

partner2 = Spouse('Husband', partner1)

partner1.partner = partner2

partner1.start()

partner2.start()

partner1.join()

partner2.join()

print('Finished.')

Summary 355

If you run the script, you will see that, as we discussed, each thread will go into an infinite
loop, switching between wanting to eat and waiting for its partner to eat; the program will
run forever until Python is interrupted. The following code shows the first few lines of
output that I obtained:

> python3 example8.py

Wife is hungry and wants to eat.

Wife is waiting for their partner to eat first...

Husband is hungry and wants to eat.

Wife is hungry and wants to eat.

Husband is waiting for their partner to eat first...

Wife is waiting for their partner to eat first...

Husband is hungry and wants to eat.

Wife is hungry and wants to eat.

Husband is waiting for their partner to eat first...

Wife is waiting for their partner to eat first...

Husband is hungry and wants to eat.

Wife is hungry and wants to eat.

Husband is waiting for their partner to eat first...

...

And with that, we can conclude our discussion on deadlocks and livelocks.

Summary
In this chapter, we covered the causes of deadlocks in concurrent applications and
implemented approaches to prevent them from occurring. Our examples have shown that
concurrency cannot always be achieved straightforwardly and that some situations may
require special handling. These discussions have prepared us for deadlocks in the real
world and pointed us toward potential solutions.

In the next chapter, we will discuss another common problem in concurrent
programming: starvation.

356 Deadlocks

Questions
1. What can lead to a deadlock situation, and why is it undesirable?
2. How is the dining philosophers problem related to the problem of a deadlock?
3. What are the four Coffman conditions?
4. How can resource ranking solve the problem of a deadlock? What other problems

can occur when this is implemented?
5. How can ignoring locks solve the problem of a deadlock? What other problems can

occur when this is implemented?
6. How is a livelock related to a deadlock?

Further reading
• Parallel Programming with Python, by Jan. Palach, Packt Publishing Ltd, 2014

• Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015

• Python Thread Deadlock Avoidance (dabeaz.blogspot.com/2009/11/
python-thread-deadlock-avoidance_20)

dabeaz.blogspot.com/2009/11/python-thread-deadlock-avoidance_20
dabeaz.blogspot.com/2009/11/python-thread-deadlock-avoidance_20

13
Starvation

In this chapter, we will discuss the concept of starvation and its potential causes in
concurrent programming. We will cover a number of variations of the readers-writers
problems, which are prime examples of starvation, and we will simulate them in example
Python code. This chapter will also cover the relationship between deadlock and starvation,
as well as some potential solutions for starvation.

The following topics will be covered in this chapter:

• Understanding starvation

• Approaching the readers-writers problem

• Solutions to starvation

By the end of the chapter, you will have a deep understanding of starvation, what causes it,
and what practical solutions can be implemented to address the problem.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter13.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter13

358 Starvation

Understanding starvation
Starvation is a problem in concurrent systems, in which a process (or a thread) cannot
gain access to the necessary resources in order to proceed with its execution and,
therefore, cannot make any progress. In this section, we will look into the characteristics
of a starvation situation, analyze its most common causes, and finally, consider a sample
program that exemplifies starvation.

What is starvation?
It is quite common for a concurrent program to implement some sort of ordering between
the different processes in its execution. For example, consider a program that has three
separate processes, as follows:

• One is responsible for handling extremely pressing instructions that need to be run
as soon as the necessary resources become available.

• Another process is responsible for other important executions, which are not as
essential as the tasks in the first process.

• The last one handles miscellaneous, very infrequent tasks.

Furthermore, these three processes need to utilize the same resources in order to execute
their respective instructions.

Intuitively, we have every reason to implement a specification that allows the first process
to have the highest priority of execution and access to resources, then the second process,
and then the last process, with the lowest priority. However, imagine situations in which
the first two processes (with higher priorities) run so often that the third process cannot
execute its instructions; anytime the third process needs to run, it checks to see whether
the resources are available to be used and finds out that one of the other higher-priority
processes is using them.

This is a situation of starvation – the third process is given no opportunity to execute and,
therefore, no progress can be made with that process. In a typical concurrent program,
it is quite common to have more than three processes at different priority levels, yet the
situation is fundamentally similar – some processes are given more opportunities to run
and, therefore, they are constantly executing. Others have lower priorities and cannot
access the necessary resources to execute.

Understanding starvation 359

Scheduling
In the next few subsections, we will be discussing the potential candidates that cause
starvation situations. Most of the time, a poorly coordinated set of scheduling instructions
is the main cause of starvation. For example, a considerably naive algorithm that deals
with three separate tasks might implement constant communication and interaction
between the first two tasks.

This setup leads to the fact that the execution flow of the algorithm switches solely
between the first and second tasks, while the third finds itself idle and unable to make
any progress with its execution – in this case, because it is starved of CPU execution flow.
Intuitively, we can identify the root of the problem as the fact that the algorithm allows the
first two tasks to always dominate the CPU and, hence, effectively prevents any other task
from also utilizing the CPU. A characteristic of a good scheduling algorithm is the ability
to distribute the execution flow and allocate the resources equally and appropriately.

As mentioned previously, many concurrent systems and programs implement a specific
order of priority, in terms of process and thread execution. This implementation of
ordered scheduling may very likely lead to the starvation of processes and threads of lower
priorities and can result in a condition called priority inversion.

Suppose that, in your concurrent program, you have process A of the highest priority,
process B of a medium priority, and finally, process C of the lowest priority; process C
would most likely be put in the situation of starvation. Additionally, if the execution of
process A, the prioritized process, is dependent on the completion of process C, which is
already in starvation, then process A might never be able to complete its execution either,
even though it is given the highest priority in the concurrent program.

360 Starvation

The following diagram further illustrates the concept of priority inversion – a
high-priority task running from the time t2 to t3 needs to access some resources,
which are being utilized by a low-priority task:

Figure 13.1 – A diagram of priority inversion

To reiterate, combining starvation and priority inversion can lead to a situation where
even the high-priority tasks are unable to execute their instructions.

Causes of starvation
With the complexity of designing a scheduling algorithm in mind, let's discuss the specific
causes of starvation. The situations that we described in the preceding section indicate
some potential causes of a starvation situation. However, starvation can arise from a
number of sources, as follows:

• Processes (or threads) with high priorities dominate the execution flow in the
CPU and, hence, low-priority processes (or threads) are not given the opportunity
to execute their own instructions.

• Processes (or threads) with high priorities dominate the usage of non-shareable
resources and, hence, low-priority processes (or threads) are not given the
opportunity to execute their own instructions. This situation is similar to the first
one but addresses the priority of accessing resources, instead of the priority of the
execution itself.

Understanding starvation 361

• Processes (or threads) with low priorities are waiting for resources to execute
their instructions, but as soon as the resources become available, other processes
(or threads) with higher priorities are immediately given access to them, so the
low-priority processes (or threads) wait indefinitely.

There are other causes of starvation as well, but the preceding are the most common
root causes.

Starvation's relationship to deadlock
Interestingly, deadlock situations can also lead to starvation, as the definition of starvation
states that if there is a process (or a thread) that is unable to make any progress because
it cannot gain access to the necessary process, the process (or thread) is experiencing
starvation.

Recall our example of deadlock, the Dining Philosophers problem, illustrated as follows:

Figure 13.2 – An illustration of the Dining Philosophers problem

362 Starvation

When deadlock occurs in this situation, no philosopher can obtain the necessary
resources to execute their instructions (each philosopher is required to have two forks to
start eating). Each philosopher that is in deadlock is therefore also in a state of starvation.

The readers-writers problem describes in detail the various types of starvation, which we
will consider next.

Approaching the readers-writers problem
The readers-writers problem is one of the classic use cases in concurrent programming,
illustrating problems that might occur in a concurrent program. Throughout the analysis
of the different variations of the readers-writers problem, we will reveal more about
starvation, as well as its common causes. We will also simulate the problem in Python
so that a deeper understanding of the problem can be gained.

Problem statement
In a readers-writers problem, first and foremost, we have a shared resource, which, in
most cases, is a text file. Different threads interact with that text file; each is either a reader
or a writer. A reader is a thread that simply accesses the shared resource (the text file) and
reads in the data included in that file, while a writer is a thread that accesses, and possibly
mutates, the contents of the text file.

We know that writers and readers cannot access the shared resources simultaneously since
if a thread is writing data to the file, no other thread should be accessing the file to read
any data from it. The goal of the readers-writers problem is therefore to find a correct and
efficient way to design and coordinate the scheduling of these reader and writer threads.
Successful implementation of that goal is not only that the program as a whole executes
in the most optimized way but also that all threads are given sufficient opportunity to
execute their instructions and no starvation can occur. Additionally, the shared resource
(the text file) needs to be handled appropriately so that no data will be corrupted.

Approaching the readers-writers problem 363

The following diagram further illustrates the setup of the readers-writers problem:

Figure 13.3 – A diagram of the readers-writers problem

In the following subsections, we will be exploring different variations of the problem
with increasing levels of complexity. From there, we will also implement sample solutions
to these problems, thus gaining hands-on experience in preventing starvation in
concurrent applications.

The first readers-writers problem
As we mentioned, the problem asks us to come up with a scheduling algorithm so
that readers and writers can access the text file appropriately and efficiently, without
mishandling or corrupting the data that is included. A naive solution to this problem is to
impose a lock on the text file so that it becomes a non-shareable resource; this means that
only one thread (either a reader or a writer) can access (and potentially manipulate) the
text file at any given time.

Yet, this approach simply equates to a sequential program – if the shared resource can be
utilized by only one thread at a given time, none of the processing time between different
threads can be overlapped and, effectively, the execution becomes sequential. Therefore,
this is not an optimal solution, as it is taking advantage of concurrent programming.

One insight regarding the reader threads can lead to a more optimal solution to this
problem – since readers simply read in the text file and do not alter the data in it, multiple
readers can be allowed to access the text file simultaneously. Indeed, even if more than one
reader is fetching data from the text file at the same time, the data is not being changed in
any way, and the consistency and accuracy of the data are therefore maintained.

364 Starvation

Following this approach, we will implement a specification in which no reader will be kept
waiting if the shared resource is being opened for reading by another reader. Specifically,
in addition to a lock on the shared resource, we will also have a counter for the number of
readers currently accessing the resource. If at any point in the program that counter goes
from zero to one (in other words, at least one reader is starting to access the resource), we
will lock the resource from the writers; similarly, whenever the counter decreases to zero
(in other words, no reader is asking for access to the resource), we will release the lock on
the resource so that writers can access it.

This specification is efficient for the readers in the sense that once the first reader has
accessed the resource and placed a lock on it, no writers can access it, and the subsequent
readers will not have to re-lock it until the last reader finishes reading the resource.

Let's try to implement this solution in Python. If you have already downloaded the code
for this book from the GitHub page, go ahead and navigate to the Chapter13 folder.
Let's take a look at the Chapter13/example1.py file – specifically, the writer()
and reader() functions, as follows:

def writer():

 global text

 while True:

 with resource:

 print(f'Writing being done by \

 {threading.current_thread().name}.')

 text += f'Writing was done by \

 {threading.current_thread().name}. '

def reader():

 global rcount

 while True:

 with rcounter:

 rcount += 1

 if rcount == 1:

 resource.acquire()

 print(f'Reading being done by \

 {threading.current_thread().name}:')

Approaching the readers-writers problem 365

 print(text)

 with rcounter:

 rcount -= 1

 if rcount == 0:

 resource.release()

In the preceding script, the writer() function, which is to be called by a
threading.Thread instance (in other words, a separate thread), specifies the logic of
the writer threads that we discussed previously – accessing the shared resource (in this
case, the global variable, text, which is simply a Python string) and writing some data
to the resource. Note that we are putting all of its instructions inside a while loop to
simulate the constant nature of the application (writers and readers constantly trying
to access the shared resource).

We can also see the reader logic in the reader() function. Before asking for access to
the shared resource, each reader will increment a counter for the number of readers that
are currently active and trying to access the resource. Similarly, after reading data off
the file, each reader needs to decrement the number of readers. During this process, if a
reader is the first reader to access the file (in other words, when the counter is one), it will
put a lock on the file so that no writers can access it; conversely, when a reader is the last
reader to read the file, it has to release that lock.

One note about the handling of that counter of readers – you might have noticed that
we are using a lock object named rcounter when incrementing/decrementing the
counter variable (rcount). This is a method that is used to avoid a race condition, which
is another common concurrency-related problem, for the counter variable; specifically,
without the lock, multiple threads can be accessing and altering the counter variable at the
same time, but the only way to ensure the integrity of the data is for this counter variable
to be handled sequentially. We will discuss race conditions (and the practice that is used
to avoid them) in more detail in the next chapter.

Going back to our current script – in the main program, we will set up the text variable,
the counter for readers, and two lock objects (for the reader counter and the shared
resource respectively). We are also initializing and starting three reader threads and
two writer threads, as follows:

text = 'This is some text. '

rcount = 0

rcounter = threading.Lock()

366 Starvation

resource = threading.Lock()

threads = [threading.Thread(target=reader) for i in \

 range(3)] + [\

 threading.Thread(target=writer) for i in \

 range(2)]

for thread in threads:

 thread.start()

It is important to note that, since the instructions of the reader and writer threads are both
wrapped in while loops, the script, when started, will run infinitely. You should cancel
the Python execution after around 3–4 seconds, when enough output has been produced
so that the general behavior of the program can be observed.

The following code shows the first few lines of output that I obtained after running
the script:

> python3 example1.py

Reading being done by Thread-1:

This is some text.

Reading being done by Thread-2:

Reading being done by Thread-1:

This is some text.

This is some text.

Reading being done by Thread-2:

Reading being done by Thread-1:

This is some text.

This is some text.

Reading being done by Thread-3:

Reading being done by Thread-1:

This is some text.

This is some text.

...

As you can see, there is a specific pattern in the preceding output – all of the threads that
were accessing the shared resource were readers. In fact, throughout my entire output, no
writer was able to access the file and, therefore, the text variable only contains the initial
string, This is some text., and was not altered in any way. The output that you
obtain should also have the same pattern (the shared resource not being altered).

Approaching the readers-writers problem 367

In this case, the writers are experiencing starvation, as none of them are able to access and
use the resource. This is a direct result of our scheduling algorithm; since multiple readers
are allowed to access the text file simultaneously, if there are multiple readers accessing the
text file frequently enough, it will create a continuous stream of readers going through the
text file, leaving no room for a writer to attempt to access the file.

This scheduling algorithm inadvertently gives priority to the readers over the writers and
is therefore called reader preference. So, this design is undesirable.

The second readers-writers problem
The problem with the first approach is that when a reader is accessing the text file and a
writer is waiting for the file to be unlocked, if another reader starts its execution and wants
to access the file, it will be given priority over the writer that has already been waiting.
Additionally, if more and more readers keep requesting access to the file, the writer will be
waiting indefinitely, and that was what we observed in our first code example.

To address this problem, we will implement the specification that once a writer makes a
request to access the file, no reader should be able to jump in line and access the file before
that writer. To do this, we will have an additional lock object in our program to specify
whether a writer is waiting for the file and, consequently, whether a reader thread can
attempt to read the file; we will call this lock read_try.

Similar to how the first of the readers accessing the text file always locks it from the
writers, we will now have the first of the multiple writers that are waiting to access the
read_try file lock, so that no reader can, again, jump in line before those writers that
requested access before it. As we discussed in reference to the readers, since we are keeping
track of the number of writers waiting for the text file, we will need to implement a
counter for the number of writers, and its corresponding lock, in our program.

The Chapter13/example2.py file contains the code for this implementation,
as follows (note that the reader() function is being omitted in the text):

import threading

def writer():

 global text

 global wcount

 while True:

 with wcounter:

 wcount += 1

368 Starvation

 if wcount == 1:

 read_try.acquire()

 with resource:

 print(f'Writing being done by \

 {threading.current_thread().name}.')

 text += f'Writing was done by \

 {threading.current_thread().name}. '

 with wcounter:

 wcount -= 1

 if wcount == 0:

 read_try.release()

def reader():

 ...

text = 'This is some text. '

wcount = 0

rcount = 0

wcounter = threading.Lock()

rcounter = threading.Lock()

resource = threading.Lock()

read_try = threading.Lock()

threads = [threading.Thread(target=reader) for i in \

 range(3)] +

 [threading.Thread(target=writer) for i in \

 range(2)]

for thread in threads:

 thread.start()

Approaching the readers-writers problem 369

Compared to our first solution to the problem, the main program remains relatively the
same (except for the initialization of the read_try lock, the wcount counter, and its
lock, wcounter), but in our writer() function, we are locking read_try as soon
as there is at least one writer waiting to access the file; when the last writer finishes its
execution, it will release the lock so that any reader waiting for the file can now access it.

Again, to see the output produced by the program, we will have it run for 3–4 seconds and
then cancel the execution, as the program would otherwise run forever. The following is
the output that I obtained via this script:

> python3 example2.py

Reading being done by Thread-1:

This is some text.

Reading being done by Thread-1:

This is some text.

Writing being done by Thread-4.

Writing being done by Thread-5.

Writing being done by Thread-4.

Writing being done by Thread-4.

Writing being done by Thread-4.

Writing being done by Thread-5.

Writing being done by Thread-4.

...

It can be observed that while some readers were able to access the text file (indicated by the
first four lines of my output), once a writer gained access to the shared resource, no reader
was able to access it anymore. The rest of my output included messages about writing
instructions – Writing being done by, and so on. As opposed to what we saw in the
first solution of the readers-writers problem, this solution is giving priority to writers, and,
as a consequence, the readers are starved. This is therefore called writer preference.

The priority that writers were given over readers resulted from the fact that while only
the first and the last writers have to acquire and release the read_try lock respectively,
each reader wanting to access the text file has to interact with that lock object individually.
Once read_try is locked by a writer, no reader can even attempt to execute its
instructions, let alone try to access the text file.

370 Starvation

There are cases in which some readers are able to gain access to the text file if the readers
are initialized and executed before the writers (for example, in our program, the readers
were the first three elements, and the writers were the last two, in our list of threads).
However, once a writer is able to access the file and acquire the read_try lock during
its execution, starvation will most likely occur for the readers.

This solution is also not desirable, as it gives higher priority to the writer threads in
our program.

The third readers-writers problem
You have seen that both of the solutions that we tried to implement can result in
starvation by not giving equal priorities to the separate threads; one can starve the writers,
and the other can starve the readers. A balance between these two approaches might give
us an implementation with equal priorities among the readers and writers, and, hence,
solve the problem of starvation.

Recall that – in our second approach, we placed a lock on a reader's attempt to access the
text file, requiring that no writer would be starved once it started waiting for the file. In
this solution, we will implement a lock that also utilizes this logic but is then applied to
both readers and writers. All of the threads will then be subjected to the constraints of the
lock, and equal priority will hence be achieved among the separate threads.

Specifically, this is a lock that specifies whether a thread will be given access to the text file
at a given moment; we will call this the service lock. Each writer or reader has to try to
acquire this service lock before executing any of its instructions. A writer, having obtained
this service lock, will also attempt to obtain the resource lock and release the service lock
immediately thereafter. The writer will then execute its writing logic and finally release the
resource lock at the end of its execution.

Let's take a look at the writer() function in the Chapter13/example3.py file for
our implementation in Python, as follows:

def writer():

 global text

 while True:

 with service:

 resource.acquire()

 print(f'Writing being done by \

 {threading.current_thread().name}.')

Approaching the readers-writers problem 371

 text += f'Writing was done by \

 {threading.current_thread().name}. '

 resource.release()

On the other hand, a reader will also need to acquire the service lock first. Since we
are still allowing multiple readers to access the resource at the same time, we are
implementing the reader counter and its corresponding lock.

The reader will acquire the service lock and the counter lock, increment the reader counter
(and, potentially, lock the resource), and then release the service lock and counter lock
sequentially. Now, it will actually read data off the text file, and finally, it will decrement the
reader counter and potentially release the resource lock if it is the last reader to access the
file at that time.

The reader() function contains the following specification:

def reader():

 global rcount

 while True:

 with service:

 rcounter.acquire()

 rcount += 1

 if rcount == 1:

 resource.acquire()

 rcounter.release()

 print(f'Reading being done by \

 {threading.current_thread().name}:')

 #print(text)

 with rcounter:

 rcount -= 1

 if rcount == 0:

 resource.release()

372 Starvation

Finally, in our main program, we initialize the text string, the reader counter, all of the
necessary locks, and the reader and writer threads, as follows:

text = 'This is some text. '

rcount = 0

rcounter = threading.Lock()

resource = threading.Lock()

service = threading.Lock()

threads = [threading.Thread(target=reader) for i in \

 range(3)] + [

 threading.Thread(target=writer) for i in range(2)]

for thread in threads:

 thread.start()

Note that we are commenting the code that prints out the current content of the text
file in the reader() function for readability for our output later on. Run the program
for 3–4 seconds and then cancel it. The following output is what I obtained on my
personal computer:

> python3 example3.py

Reading being done by Thread-3:

Writing being done by Thread-4.

Reading being done by Thread-1:

Writing being done by Thread-5.

Reading being done by Thread-2:

Reading being done by Thread-3:

Writing being done by Thread-4.

...

The pattern that we have with this current output is that the readers and writers are able to
access the shared resource cooperatively and efficiently; all of the readers and writers are
executing their instructions, and no thread is being starved by this scheduling algorithm.

Solutions to starvation 373

Note that as you work with a readers-writers problem in your concurrent program,
you do not have to reinvent the wheel regarding the approaches that we just discussed.
PyPI actually has an external library called readerwriterlock that contains the
implementation of the three approaches in Python, as well as support for timeouts. Go to
https://pypi.org/project/readerwriterlock/ to find out more about the
library and its documentation.

Solutions to starvation
Through an analysis of different approaches to the readers-writers problem, you have seen
the key to solving starvation – since some threads will be starved if they are not given a
high priority in accessing the shared resources, implementing fairness in the execution
of all of the threads will prevent starvation from occurring. Fairness, in this case, does
not require a program to forgo any order or priority that it has imposed on the different
threads; but to implement fairness, a program needs to ensure that all threads are given
sufficient opportunities to execute their instructions.

Keeping this idea in mind, we can potentially address the problem of starvation by
implementing one (or a combination) of the following approaches:

• Increasing the priority of low-priority threads: As we did with the writer
threads in the second approach and the reader threads in the third approach to the
readers-writers problem, prioritizing the threads that would otherwise not have any
opportunity to access the shared resource can successfully eliminate starvation.

• First-in-first-out thread queue: To ensure that a thread that started waiting for
the shared resource before another thread will be able to acquire the resource
before the other thread, we can keep track of the threads requesting access in
a first-in-first-out queue.

• Other methods: Several methods can also be implemented to balance the selection
frequency of different threads – for example, a priority queue that also gives
gradually increasing priority to threads that have been waiting in the queue for
a long time, or if a thread has been able to access the shared resource many times,
it will be given less priority.

Solving starvation in your concurrent program can be a rather complex and involved
process, and a deep understanding of its scheduling algorithm, combined with an
understanding of how processes and threads interact with the shared resources, is
necessary during the process. As you saw in the example of the readers-writers problem,
it can also take several implementations and revisions of different approaches to arrive
at a good solution to starvation.

https://pypi.org/project/readerwriterlock/

374 Starvation

Summary
In this chapter, we have covered starvation and the specific situations in which it could
occur by analyzing different instances of the readers-writers problem. We have gained
insight into how starvation can be solved with different scheduling algorithms – by
making sure that the priority is distributed appropriately among different processes and
threads, starvation can be eliminated. These discussions will serve as a guide to solutions
to real-life instances of starvation.

In the next chapter, we will discuss the last of the three common problems of concurrent
programming – race conditions. We will cover the basic foundation and causes of
race conditions, relevant concepts, and the connection of race conditions to other
concurrency-related problems.

Questions
1. What is starvation and why is it undesirable in a concurrent program?
2. What are the underlying causes of starvation? What are the common high-level

causes of starvation that can manifest from the underlying causes?
3. What is the connection between deadlock and starvation?
4. What is the readers-writers problem?
5. What is the first approach to the readers-writers problem? Why does starvation arise

in that situation?
6. What is the second approach to the readers-writers problem? Why does starvation

arise in that situation?
7. What is the third approach to the readers-writers problem? Why does it successfully

address starvation?
8. What are some common solutions to starvation?

Further reading
• Parallel Programming with Python, Jan Palach, Packt Publishing Ltd, 2014

• Python Parallel Programming Cookbook, Giancarlo Zaccone, Packt Publishing Ltd,
2015

• Starvation and Fairness, Jakob Jenkov (tutorials.jenkov.com/java-
concurrency/starvation-and-fairness)

• Faster Fair Solution for the Reader-Writer Problem, V. Popov and O. Mazonka

http://tutorials.jenkov.com/java-concurrency/starvation-and-fairness
http://tutorials.jenkov.com/java-concurrency/starvation-and-fairness

14
Race Conditions

In this chapter, we will discuss the concept of race conditions and their potential causes in
the context of concurrency. The definition of a critical section, which is a concept highly
relevant to race conditions and concurrent programming, will also be covered. We will
use some example code in Python to simulate race conditions and the solutions that are
commonly used to address them. Finally, real-life applications that commonly deal with
race conditions will also be discussed.

In this chapter, we will cover the following topics:

• The concept of race conditions

• Simulating race conditions in Python

• Locks as a solution to race conditions

• Race conditions in real life

This chapter, similar to the previous two chapters, offers a closer look at what could go
wrong in concurrent programming and exposes us to a wide range of approaches in terms
of how to avoid and prevent that. In this chapter, our focus will be on race conditions.

376 Race Conditions

Technical requirements
The code for this chapter can be found in the following GitHub repository: https://
github.com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter14.

The concept of race conditions
Typically, a race condition is defined as a phenomenon during which the output of a
system is both indeterminate and dependent on the scheduling algorithm and the order
in which tasks are scheduled and executed. When data becomes mishandled or corrupted
during this process, a race condition becomes a bug in the system. Given the nature of this
problem, it is quite common for a race condition to occur in concurrent systems, which
emphasizes the importance of scheduling and coordinating independent tasks.

A race condition can occur in both an electronic hardware system and a software
application; in this chapter, we will only discuss race conditions in the context of software
development – specifically, concurrent software applications. This section will cover the
theoretical foundations of race conditions and their root causes along with the concept
of critical sections.

Critical sections
Critical sections indicate shared resources that are accessed by multiple processes or
threads in a concurrent application, These can lead to unexpected, and even erroneous,
behavior. We have learned that there are multiple methods to protect the integrity of the
data contained in these resources, and we call these protected sections critical sections.

As you can imagine, the data in these critical sections, when interacted with and altered
concurrently or in parallel, can become mishandled or corrupted. This is especially true
when the threads and processes interacting with it are poorly coordinated and scheduled.
Therefore, the logical conclusion is to not allow multiple agents to go into a critical section
at the same time. We call this concept mutual exclusion.

In the next subsection, we will discuss the relationship between critical sections and the
causes of race conditions.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter14

The concept of race conditions 377

How race conditions occur
Let's consider a simple concurrent program in order to understand what can give rise
to a race condition:

1. Suppose that the program has a shared resource and two separate threads (thread 1
and thread 2) that will access and interact with that resource. Specifically, the shared
resource is a number and, as per their respective execution instructions, each thread
is to read in that number, increment it by 1, and finally, update the value of the
shared resource with the incremented number.

2. Next, suppose that the shared number is originally 2, and then thread 1 accesses and
interacts with the number; the shared resource will become 3.

3. After thread 1 successfully alters and exits the resource, thread 2 begins to execute its
instructions, and the shared resource that is a number is updated to 4. Throughout
this process, the number that was originally 2 was incremented twice (each time by
a separate thread) and held a value of 4 at the end. In this case, the shared number
was not mishandled or corrupted.

4. Then, imagine a scenario in which the shared number is still 2 at the beginning, yet
both of the threads access the number at the same time. Now, each of the threads
reads in the number 2 from the shared resource; they each increment the number
2 to 3 individually, and then write the number 3 back to the shared resource. Even
though the shared resource was accessed and interacted with twice by a thread, it
only held a value of 3 at the end of the process.

This is an example of a race condition occurring in a concurrent program: since the
second thread to access a shared resource does it before the first thread finishes its
execution (in other words, before writing the new value to the shared resource), the
second thread fails to take in the updated resource value. This leads to the fact that when
the second thread writes to the resource, the value that is processed and updated by the
first thread is overwritten. At the end of the execution of the two threads, the shared
resource has, technically, only been updated by the second thread.

378 Race Conditions

The following diagram further illustrates the contrast between a correct data handling
process and a situation involving a race condition:

Figure 14.1 – Mishandling shared data

Intuitively, we can see that a race condition results in the mishandling and corruption
of data. In the preceding example, we can see that a race condition only occurs with two
separate threads accessing a common resource, causing the shared resource to be updated
incorrectly and hold an incorrect value at the end of the program. We understand that
most real-life concurrent applications contain significantly more threads and processes
along with additional shared resources, and the more threads/processes that interact with
the shared resource, the more likely it is that a race condition will occur.

Before we discuss a solution that we can implement to solve the problem of race
conditions, let's try to simulate the problem in Python.

Simulating race conditions in Python 379

Simulating race conditions in Python
If you have already downloaded the code for this book from the GitHub page, go ahead
and navigate to the Chapter14 folder.
To simulate a race condition, first, we need a common resource. In this case, it's a counter
variable along with multiple threads that can access it simultaneously. Let's take a look at
the Chapter14/example1.py file—specifically, the update() function, as follows:

import random

import time

def update():

 global counter

 current_counter = counter # reading in shared resource

 time.sleep(random.randint(0, 1)) # simulating heavy

 calculations

 counter = current_counter + 1 # updating shared

 resource

The goal of the preceding update() function is to increment a global variable called
counter, and it is to be called by a separate thread in our script. Inside the function, we
are interacting with a shared resource—in this case, counter. Then, we assign the value
of counter to another local variable, called current_counter (this is to simulate the
process of reading data from more complex data structures for the shared resources).
Next, we will pause the execution of the function by using the time.sleep() method.
The length of the period during which the program will be paused is pseudo-randomly
chosen between 0 and 1, generated by the function call, random.randint(0, 1). So,
the program will either pause for one second or not at all. Finally, we assign the newly
computed value of current_counter (which is its one-increment) to the originally
shared resource (the counter variable).
Now, we can move on to our main program:

import threading

counter = 0

threads = [threading.Thread(target=update) for i in \

 range(20)]

380 Race Conditions

for thread in threads:

 thread.start()

for thread in threads:

 thread.join()

print(f'Final counter: {counter}.')

print('Finished.')

Here, we are initializing the counter global variable with a set of threading.Thread
objects in order to execute the update() function concurrently; we are initializing
20 thread objects to increment our shared counter 20 times. After starting and joining
all of the threads that we have, we can finally print out the end value of our shared
counter variable.

Theoretically, a well-designed concurrent program will successfully increment the shared
counter 20 times in total, and since its original value is 0, the end value of the counter
should be 20 at the end of the program. However, as you run this script, the counter
variable that you obtain will most likely not hold an end value of 20. The following is
my output, obtained from running the script:

> python3 example1.py

Final counter: 9.

Finished.

The preceding output indicates that the counter was only successfully incremented nine
times. This is a direct result of the race condition that our concurrent program has. This
race condition occurs when a specific thread spends time reading in and processing the
data from the shared resource (specifically, for one second using the time.sleep()
method), and another thread reads in the current value of the counter variable, which, at
this point, has not been updated by the first thread since it has not completed its execution.

Interestingly, if a thread does not spend any time processing the data (in other words,
when 0 is chosen by the pseudo-random random.randint() method), the value of
the shared resource can potentially be updated just in time for the next thread to read and
process it. This phenomenon is illustrated by the fact that the end value of the counter
varies within different runs of the program. For example, the following is the output that I
obtained after running the script three times. The output from the first run is as follows:

> python3 example1.py

Final counter: 9.

Finished.

Locks as a solution to race conditions 381

The output from the second run is as follows:

> python3 example1.py

Final counter: 12.

Finished.

The output from the third run is as follows:

> python3 example1.py

Final counter: 5.

Finished.

Again, the final value of the counter is dependent on the number of threads that spend
one second pausing and the number of threads not pausing at all. Since these two numbers
are, in turn, dependent on the random.randint() method, the final value of the
counter changes between different runs of the program. We will still have a race condition
in our program, except for when we can ensure that the final value of the counter is always
20 (that is, the counter is being successfully incremented 20 times in total).

In the next section, we will discuss the most common solution to race conditions: locks.

Locks as a solution to race conditions
Intuitively, since the race conditions that we observed arose when multiple threads or
processes accessed and wrote to a shared resource simultaneously, the key idea behind
solving race conditions is isolating the executions of different threads/processes, especially
when interacting with a shared resource. Specifically, we need to make sure that a thread/
process can only access the shared resource after any other threads/processes interacting
with the resource have finished their interactions with that resource.

With locks, we can turn a shared resource inside a concurrent program into a critical section,
whose integrity of data is guaranteed to be protected. We will see this in action next.

The effectiveness of locks
A critical section guarantees the mutual exclusion of a shared resource and cannot be
accessed concurrently by multiple processes or threads; this will prevent any protected data
from being updated or altered with conflicting information, resulting from race conditions.

382 Race Conditions

In the following diagram, Thread B is blocked from accessing the shared resource—the
critical section named var—by a mutex (mutual exclusion) lock. This is because Thread
A is already accessing the resource:

Figure 14.2 – Locks prevent simultaneous access to a critical section

Now, we will specify that, in order to gain access to a critical section in a concurrent
program, a thread or process needs to acquire a lock object that is associated with the
critical section; similarly, that thread or process also needs to release that lock upon
leaving the critical section. This setup will effectively prevent multiple accesses to the
critical section and will, therefore, prevent race conditions. The following diagram
illustrates the execution flow of multiple threads interacting with multiple critical sections,
with the implementation of locks in place:

Figure 14.3 – Locks and critical sections in multiple threads

As you can see in the preceding diagram, threads T1 and T2 both interact with three
critical sections in their respective execution instructions: CS1, CS2, and CS3. Here, T1
and T2 attempt to access CS1 at almost the same time. Additionally, since CS1 is protected
with lock L1, only T1 can acquire lock L1 and, hence, access/interact with the critical
section. In contrast, T2 has to spend time waiting for T1 to exit out of the critical section
and release the lock before accessing the section itself. Similarly, for the critical sections,
CS2 and CS3, although both threads require access to a critical section at the same time,
only one can process it, while the other has to wait to acquire the lock associated with the
critical section.

Now, let's implement this solution using Python.

Locks as a solution to race conditions 383

Implementation in Python
Navigate to the Chapter14/example2.py file and consider our corrected update()
function, as follows:

import random

import time

def update():

 global counter

 with count_lock:

 current_counter = counter # reading in shared

 resource

 time.sleep(random.randint(0, 1)) # simulating heavy

 calculations

 counter = current_counter + 1

Here, you can see that all of the execution instructions of a thread specified in the
update() function are under the context manager of a lock object named count_
lock. So, every time a thread is called to run the function, it will first have to acquire
the lock object before any instructions can be executed. In our main program, we simply
create the lock object in addition to what we already have, as follows:

import threading

counter = 0

count_lock = threading.Lock()

threads = [threading.Thread(target=update) for i in \

 range(20)]

for thread in threads:

 thread.start()

for thread in threads:

 thread.join()

print(f'Final counter: {counter}.')

print('Finished.')

384 Race Conditions

Run the program. Your output should look similar to the following:

> python3 example2.py

Final counter: 20.

Finished.

Here, you can see that the counter was successfully incremented 20 times and held the
correct value at the end of the program. Furthermore, no matter how many times the
script is executed, the final value of the counter will always be 20. This is the advantage
of using locks to implement critical sections in your concurrent programs.

The downside of locks
In Chapter 12, Deadlocks, we covered an interesting phenomenon in which the use of
locks can lead to undesirable results. Specifically, we discovered that with enough locks
implemented in a concurrent program, the whole program can become sequential. Let's
analyze this concept with our current program. Consider the Chapter14/example3.py
file, as follows:

import threading

import random; random.seed(0)

import time

def update(pause_period):

 global counter

 with count_lock:

 current_counter = counter # reading in shared

 resource

 time.sleep(pause_period) # simulating heavy

 calculations

 counter = current_counter + 1 # updating shared

 resource

pause_periods = [random.randint(0, 1) for i in range(20)]

###

Locks as a solution to race conditions 385

counter = 0

count_lock = threading.Lock()

start = time.perf_counter()

for i in range(20):

 update(pause_periods[i])

print('--Sequential version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

###

counter = 0

threads = [threading.Thread(target=update, \

 args=(pause_periods[i],)) for i in range(20)]

start = time.perf_counter()

for thread in threads:

 thread.start()

for thread in threads:

 thread.join()

print('--Concurrent version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

###

print('Finished.')

386 Race Conditions

The goal of this script is to compare the speed of our current concurrent program with
its sequential version. Here, we are still using the same update() function, with locks,
and we are running it 20 times, both sequentially and concurrently, as we did earlier.
Additionally, we are creating a list of determined periods for pausing:

pause_periods = [random.randint(0, 1) for i in range(20)]

This is so that these periods are consistent between when we simulate the sequential version
and when we simulate the concurrent version (for this reason, the update() function
now takes in a parameter that specifies the period of pausing each time it is called).

This is the setup we need to simulate the sequentiality of a program with many locks,
which we will see firsthand in the next subsection.

Turning a concurrent program into a sequential program
Here, we simply call the update() function inside a for loop, with 20 iterations, keeping
track of the time it takes for the loop to finish. Note that, even though this is to simulate
the sequential version of the program, the update() function still needs the lock object
to be created beforehand, so we are initializing it here:

counter = 0

count_lock = threading.Lock()

start = time.perf_counter()

for i in range(20):

 update(pause_periods[i])

print('--Sequential version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

The last step is to reset the counter and run the concurrent version of the program that
we already implemented. Again, we need to pass in the corresponding pause period while
initializing each of the threads that run the update() function. Additionally, we are
keeping track of the time it takes for this concurrent version of the program to run:

counter = 0

threads = [threading.Thread(target=update, \

args=(pause_periods[i],)) for i in range(20)]

Locks as a solution to race conditions 387

start = time.perf_counter()

for thread in threads:

 thread.start()

for thread in threads:

 thread.join()

print('--Concurrent version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

Now, after you have run the script, you will observe that both the sequential version and
the concurrent version of our program took the same amount of time to run. Specifically,
the following is the output that I obtained; in this case, they both took approximately
12 seconds. The actual time that your program takes might be different, but the speed
of the two versions should still be equal:

> python3 example3.py

--Sequential version--

Final counter: 20.

Took 12.03 seconds.

--Concurrent version--

Final counter: 20.

Took 12.03 seconds.

Finished.

So, our concurrent program is taking just as much time as its sequential version, which
negates one of the biggest purposes of implementing concurrency in a program: improving
speed. But why would concurrent and traditional sequential applications with the same
sets of instructions and elements also have the same speed? Should the concurrent
program always produce a faster speed than the sequential one?

Recall that, in our program, the critical section is being protected by a lock object, and
no multiple threads can access it at the same time. Since the execution of the program
(incrementing the counter 20 times) depends on a thread accessing the critical section,
the placement of the lock object in the critical section means that only one thread
can be executing at any given time. With this specification, the executions of any two
threads cannot overlap with each other, and no additional speed can be gained from
this implementation of concurrency.

388 Race Conditions

This is the phenomenon that we encountered when analyzing the problem of deadlock:
if enough locks are placed in a concurrent program, that program will become entirely
sequential. This is the reason why locks are sometimes undesirable solutions to problems
in concurrent programming. However, this situation only happens if all of the executions
of the concurrent program are dependent upon interacting with the critical section. Most
of the time, reading and manipulating the data of a shared resource is only a portion of
the entire program; therefore, concurrency still provides the intended additional speed
for our program.

An additional aspect of locks is the fact that they do not actually lock anything. We will
discuss this point in more detail next.

Locks do not lock anything
The only way that a lock object is utilized, with respect to a specific shared resource, is
for the threads and processes interacting with that resource to also interact with the lock.
In other words, if those threads and processes choose to not check with the lock before
accessing and altering the shared resource, the lock object itself cannot stop them from
doing so.

In our examples, you have discovered that to implement the acquiring/releasing process
of a lock object, the instructions of a thread or process need to be wrapped around by a
lock context manager; this specification is dependent on the implementation of the thread/
process execution logic and not the resource. That is because the lock objects that we have
seen are not in any way connected to the resources that they are supposed to protect. So,
if the thread/process execution logic does not require any interaction with the lock object
associated with the shared resource, that thread or process can simply gain access to the
resource without difficulty, potentially resulting in the mismanipulation and corruption
of data.

This is not only true in the scope of having multiple threads and processes in a single
concurrent program. Let's suppose that we have a concurrent system consisting of multiple
components that all interact and manipulate the data of a resource shared across the system,
and this resource is associated with a lock object; it follows that, if any of these components
fail to interact with that lock, it can simply bypass the protection implemented by the lock
and access the shared resource. More importantly, this characteristic of locks also has
implications regarding the security of a concurrent program. If an outside, malicious agent
is connected to the system (for instance, a malicious client interacting with a server) and
intends to corrupt the data shared across the system, that agent can be instructed to simply
ignore the lock object and access that data in an intrusive way.

Race conditions in real life 389

The view that locks don't lock anything was popularized by Raymond Hettinger, a Python
core developer who worked on the implementation of various elements in Python
concurrent programming. It is argued that using lock objects alone does not guarantee
a secure implementation of concurrent data structures and systems. Locks need to be
concretely linked to the resources that they are supposed to protect, and nothing should
be able to access a resource without first acquiring the lock that is associated with it.
Alternatively, other concurrent synchronization tools, such as atomic message queues
can provide a solution to this problem.

You have now learned about the concept of race conditions, how they are caused in
concurrent systems, and how to effectively prevent them. In the next section, we will
provide an overarching view of how race conditions can occur in real-life examples,
within the various subfields of computer science.

Race conditions in real life
In particular, we will discuss the topics of security, file management, and networking. Race
conditions don't simply exist in simple, minimal code examples about global counters. They
are present in many important tasks such as security, file management, and networking.
In this section, we will briefly discuss what some of these examples might look like from
a theoretical perspective.

Security
Concurrent programming can have significant implications in terms of the security of
the system in question. Recall that a race condition arises between the process of reading
and altering the data of a resource; a race condition in an authenticating system can cause
the corruption of data between the time of check (when the credentials of an agent are
checked) and the time of use (when the agent can utilize the resource). This problem
is also known as a Time-Of-Check-To-Time-Of-Use (TOCTTOU) bug, which is
undoubtedly detrimental to security systems.

The careless protection of shared resources when handling race conditions, as we briefly
touched upon in the last section, can provide external agents with access to those
supposedly protected resources. Those agents can then change the data of the resources
to create privilege escalation (simply put, to give themselves illegal access to more shared
resources), or they can simply corrupt the data, causing the whole system to malfunction.

390 Race Conditions

Interestingly, race conditions can also be used to implement computer security. As race
conditions result from the uncoordinated access of multiple threads/processes to a shared
resource, the specification in which a race condition occurs is significantly random. For
example, in our Python example, you learned that, when simulating a race condition,
the final value of the counter varies between different executions of the program; this is
(partly) because of the unpredictable nature of the situation in which multiple threads are
running and accessing the shared resources. (I say partly since the randomness also results
from the random pausing periods that we generate in each execution of the program.)
So, race conditions are sometimes intentionally provoked, and the information obtained
when the race condition occurs can be used to generate digital fingerprints for security
processes—again, this information is significantly random and is, therefore, valuable for
security purposes.

Operating systems
Race conditions can occur in the context of file and memory management in an operating
system, when two separate programs attempt to access the same resource, such as memory
space. Imagine a situation where two processes from different programs have been
running for a significant amount of time, and even though they were originally initialized
apart from each other in terms of memory space, enough data has been accumulated and
the stack of execution of one process now collides with that of the other process. This can
lead to the two processes sharing the same portion of memory space and, ultimately, can
result in unpredictable consequences.

Another aspect of the complexity of race conditions is illustrated by version 7 of Unix's
operating system — specifically, in the mkdir command. Typically, the mkdir command
is used to create a new directory in the Unix operating system; this is done by calling the
mknod command to create the actual directory and the chown command to specify the
owner of that directory. Because there are two separate commands to be run and a definite
gap exists between when the first command is finished and the second is called, this can
cause a race condition.

During the gap between the two commands, if someone deletes the new directory
created by the mknod command and links the reference to another file, when the chown
command is run, the ownership of that file will change. The following diagram further
illustrates this exploitation:

Summary 391

Figure 14.4 – The mkdir race condition

By exploiting this vulnerability, someone can, theoretically, change the ownership of any
file in an operating system so that someone can create a new directory.

Networking
In networking, race conditions can take the form of giving multiple users unique
privileges in a network. Specifically, let's say a given server should only have exactly one
user with admin privileges. If two users, who are both eligible to become the server admin,
request access to those privileges at the same time, then it is possible for both of them to
gain that access. This is because, at the point when both of the user requests are received
by the server, neither of the users have been granted admin privileges yet, and the server
thinks that admin privileges can still be given out.

This form of a race condition is quite common when a network is highly optimized for
parallel processing (for example, non-blocking sockets), without any careful consideration
of the resources shared across the network.

Overall, race conditions can manifest themselves in many important tasks in computer
science and engineering, such as security, operating systems, and as we just saw,
networking. This requires the concurrency engineer to be extra vigilant about the
correctness of their programs.

Summary
A race condition occurs when two or more threads/processes access and alter a shared
resource simultaneously, resulting in mishandled and corrupted data. Race conditions also
have significant implications in real-life applications, such as security, operating systems,
and networking.

392 Race Conditions

In this chapter, we learned how to isolate the execution of different threads/processes to
tackle many forms of race conditions. We have examined how to use locks to turn a shared
resource into a critical section to protect the integrity of its data. Additionally, we have
discussed a number of practical disadvantages when it comes to using locks.

In the next chapter, we will consider one of the biggest problems in Python concurrent
programming: the infamous Global Interpreter Lock (GIL). You will learn about the
basic idea behind the GIL, its purposes, and how to effectively work with it in concurrent
Python applications.

Questions
1. What is a critical section?
2. What is a race condition, and why is it undesirable in a concurrent program?
3. What is the underlying cause of a race condition?
4. How can locks solve the problem of race conditions?

5. Why are locks sometimes undesirable in a concurrent program?
6. What is the significance of race conditions in real-life systems and applications?

Further reading
For more information, please refer to the following resources:

• Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd, 2014.

• Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015.

• Race Conditions and Critical Sections (tutorials.jenkov.com/java-
concurrency/race-conditions-and-critical-sections),
by Jakob Jenkov.

• Race conditions, files, and security flaws; or the tortoise and the hare redux, by Matt
Bishop, Technical Report CSE-95-98 (1995).

• Computer and Information Security, Chapter 11, Software Flaws and Malware 1
Illustration (slideplayer.com/slide/10319860/).

15
The Global

Interpreter Lock
One of the major players in Python concurrent programming is the Global Interpreter
Lock (GIL). In this chapter, we will cover a definition and the purposes of the GIL and
how it affects concurrent Python applications. The problems that the GIL poses for Python
concurrent systems and the controversy around its implementation will also be discussed.
Finally, we will mention some thoughts on how Python programmers and developers
should think about, and interact with, the GIL.

The following topics will be covered in this chapter:

• Introducing the GIL

• The potential removal of the GIL from Python

• Working with the GIL

While our discussions in this chapter will mostly be theoretical, we will be able to gain
a deep insight into the ecosystem of concurrent programming in Python.

394 The Global Interpreter Lock

Technical requirements
The code for this chapter can be found in the following GitHub repository:

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter15

Introducing the GIL
The GIL is quite popular in the Python concurrent programming community. Designed
as a lock that will only allow one thread to access and control the Python interpreter
at any given time, the GIL in Python is often known as the infamous GIL that prevents
multithreaded programs from reaching their fully optimized speed.

In this section, we will discuss the concept behind the GIL, as well as its purpose: why it
was designed and implemented and how it affects multithreaded programming in Python.

Analyzing memory management in Python
Before we jump into the specifics of the GIL and its effects, let's consider the problems
that Python core developers encountered during the early days of Python that gave
rise to a need for the GIL. Specifically, there is a significant difference between Python
programming and programming in other popular languages, in terms of managing
objects in the memory space.

For example, in the programming language C++, a variable is actually a location in
the memory space where a value will be written. This setup leads to the fact that, when
a non-pointer variable is assigned with a specific value, the programming language
will effectively copy that specific value to the memory location (that is, the variable).
Additionally, when a variable is assigned with another variable (that is not a pointer), the
memory location of the latter will be copied to that of the former; no further connection
between these two variables will be maintained after the assignment.

On the other hand, Python considers a variable as simply a name, while the actual values
of its variables are isolated in another region in the memory space. When a value is
assigned to a variable, the variable is effectively given a reference to the location in the
memory space of the value (even though the term referencing is not used in the same
sense as C++ referencing). Memory management in Python is, therefore, fundamentally
different from the model of putting a value into a memory space that we see in C++.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter15

Introducing the GIL 395

This means that when an assignment instruction is executed, Python simply interacts
with references and switches them around—not the actual values themselves. Also, for this
reason, multiple variables can be referenced by the same value, and the changes made by
one variable will be reflected throughout all of the other associated variables.

Let's analyze this feature in Python. If you have already downloaded the code for this book
from the GitHub page, go ahead and navigate to the Chapter15 folder. Let's take a look
at the Chapter15/example1.py file here:

import sys

print(f'Reference count when direct-referencing: \

 {sys.getrefcount([7])}.')

a = [7]

print(f'Reference count when referenced once: \

 {sys.getrefcount(a)}.')

b = a

print(f'Reference count when referenced twice: \

 {sys.getrefcount(a)}.')

###

a[0] = 8

print(f'Variable a after a is changed: {a}.')

print(f'Variable b after a is changed: {b}.')

print('Finished.')

In this example, we are looking at the management of the value [7] (a list of one
element: the integer 7). We mentioned that values in Python are stored independently of
variables, and value management in Python simply references variables to the appropriate
values. The sys.getrefcount() method in Python takes in an object and returns
the counter of all references that the value associated with that object has. Here, we are
calling sys.getrefcount() three times: on the actual value, [7]; the variable a that
is assigned the value; and finally, the variable b that is assigned with the variable a.

396 The Global Interpreter Lock

Additionally, we are exploring the process of mutating the value by using a variable
referenced with it and the resulting values of all of the variables associated with that value.
Specifically, we are mutating the first element of the list via variable a, and printing out
the values of both a and b. Run the script, and your output should be similar to this:

> python3 example1.py

Reference count when direct-referencing: 1.

Reference count when referenced once: 2.

Reference count when referenced twice: 3.

Variable a after a is changed: [8].

Variable b after a is changed: [8].

Finished.

As you can see, this output is consistent with what we discussed as the following ways:

1. For the first sys.getrefcount() function call, there is only one reference count
for the value [7], which is created when we directly reference it.

2. When we assign the list to variable a, the value has two references, since a is now
associated with the value.

3. Finally, when a is assigned to b, [7] is additionally referenced by b, and the
reference count is now 3.

4. In the output of the second part of the program, we can see that when we changed
the value of the variable that a references, [7] was mutated instead of variable a.
As a result, variable b, which was referencing the same value as a, also had its
value changed.

The following diagram illustrates this process:

Figure 15.1 – Diagram of Python's referencing scheme

Introducing the GIL 397

Overall, in Python programs, variables simply make references to the actual values
(objects), and an assignment statement between two variables makes the two variables
reference the same object, as opposed to copying the actual value to another memory
location, as in C++.

The problem that the GIL addresses
Keeping Python's implementation of memory and variable management in mind,
we can see references to a given value in Python are constantly changing in a program,
and keeping track of the reference count for a value is therefore highly important.

Now, applying what you learned in Chapter 14, Race Conditions, you should know that
in a Python concurrent program, this reference count is a shared resource that needs
protection from race conditions. In other words, this reference count is a critical section
that, if handled carelessly, will result in an incorrect interpretation of how many variables
are referencing a particular value. This will cause memory leaks that will make Python
programs significantly inefficient and may even release a memory that is actually being
referenced by some variables, losing that value forever.

As you learned in the previous chapter, a solution to making sure that race conditions will
not occur with regard to a particular shared resource is to place a lock on that resource,
effectively allowing one thread, at the most, to access the resource at any given time within
a concurrent program. We also discussed that if enough locks are placed in a concurrent
program, that program will become entirely sequential, and no additional speed will be
gained by implementing concurrency.

The GIL is a solution to the combination of the two preceding problems, being one single
lock on the entire execution of Python. The GIL must first be acquired by any Python
instruction that wants to be executed (central processing unit (CPU)-bound tasks),
preventing a race condition from occurring for any reference count.

In the early days of the development of the Python language, other solutions to the problem
described here were also proposed, but the GIL was the most efficient and simple to
implement, by far. Since the GIL is a lightweight, overarching lock for the entire execution
of Python, no other lock needs to be implemented to guarantee the integrity of other
critical sections, keeping the performance overhead of Python programs at a minimum.

398 The Global Interpreter Lock

Problems raised by the GIL
Intuitively, with a lock guarding all CPU-bound tasks in Python, a concurrent program
will not be able to become fully multithreading. The GIL effectively prevents CPU-bound
tasks from being executed in parallel across multiple threads. To understand the effect of
this feature of the GIL, let's consider an example in Python. Navigate to Chapter15/
example2.py, which has the following content:

import time

import threading

COUNT = 50000000

def countdown(n):

 while n > 0:

 n -= 1

###

start = time.time()

countdown(COUNT)

print('Sequential program finished.')

print(f'Took {time.time() - start : .2f} seconds.')

###

thread1 = threading.Thread(target=countdown, args=(\

 COUNT // 2,))

thread2 = threading.Thread(target=countdown, args=(\

 COUNT // 2,))

start = time.time()

thread1.start()

thread2.start()

thread1.join()

Introducing the GIL 399

thread2.join()

print('Concurrent program finished.')

print(f'Took {time.time() - start : .2f} seconds.')

In this example, we are comparing the speed of executing a particular program in Python
sequentially and concurrently, via multithreading. Specifically, we have a function named
countdown() that simulates a heavy CPU-bound task, which takes in a number, n,
and decrements it until it becomes zero or negative. We then call countdown() on
50,000,000 once, as a sequential program. Finally, we call the function twice, each in
a separate thread, on 25,000,000, which is exactly half of 50,000,000; this is the
multithreading version of the program. We are also keeping track of the time it takes for
Python to run both the sequential program and the multithreading program.

Theoretically, the multithreading version of the program should take half as long as the
sequential version, as the task is effectively being split in half and run in parallel, via the
two threads that we created. However, the output produced by the program would suggest
otherwise. The following output is what I obtained through running the script:

> python3 example2.py

Sequential program finished.

Took 2.80 seconds.

Concurrent program finished.

Took 2.74 seconds.

Contrary to what we predicted, the concurrent version of the countdown took almost
as long as the sequential version; multithreading did not offer any considerable speedup
for our program. This is a direct effect of having the GIL guarding CPU-bound tasks,
as multiple threads are not allowed to run simultaneously. Sometimes, a multithreading
program can take even longer to complete its execution than its sequential counterpart,
since there is also the overhead of acquiring and releasing the GIL.

This is undoubtedly a significant problem for multithreading, and for concurrent
programming in Python in general, because as long as a program contains CPU-bound
instructions, those instructions will, in fact, be sequential in the execution of the program.
However, instructions that are not CPU-bound happen outside the GIL, and thus they are
not affected by the GIL (for example, input/output (I/O)-bound instructions).

With these problems identified, let's next see what the infamous GIL is.

400 The Global Interpreter Lock

The potential removal of the GIL from Python
You have learned that the GIL sets a significant constraint on our multithreading
programs in Python, especially those with CPU-bound tasks. For this reason, many
Python developers have come to view the GIL in a negative light, and the term the
infamous GIL has started to become popular. It is not surprising, then, that some have
even advocated the complete removal of the GIL from the Python language.

In fact, multiple attempts to remove the GIL have been made by prominent Python users.
However, the GIL is so deeply implanted in the implementation of the language, and
the execution of most libraries and packages that are not thread-safe is so significantly
dependent on the GIL, that the removal of the GIL will actually engender bugs as well
as backward-incompatibility issues for your Python programs. A number of Python
developers and researchers tried to completely omit the GIL from Python execution,
and most existing C extensions, which depend heavily on the functionalities of the GIL,
stopped working.

Now, there are other viable solutions to address the problems that we have discussed; in
other words, the GIL is in every way replaceable. However, most of these solutions contain
so many complex instructions that they actually decrease the performance of sequential and
I/O-bound programs, which are not affected by the GIL. So, these solutions will slow down
single-threaded or multithreaded I/O programs, which actually make up a large percentage
of existing Python applications. Interestingly, the creator of Python, Guido van Rossum, also
commented on this topic in his article It isn't Easy to Remove the GIL, as follows:

"I'd welcome a set of patches into Py3k only if the performance for a
single-threaded program (and for a multi-threaded but I/O-bound

program) does not decrease."
Unfortunately, this request has not been achieved by any of the proposed alternatives to
the GIL. The GIL remains an integral part of the Python language.

With this covered, let's now see how to work with the GIL.

Working with the GIL
There are a few ways to deal with the GIL in your Python applications, and these will be
addressed in the following sections.

Working with the GIL 401

Implementing multiprocessing, rather than
multithreading
This is perhaps the most popular and easiest method to circumvent the GIL and achieve
optimal speed in a concurrent program. As the GIL only prevents multiple threads from
executing CPU-bound tasks simultaneously, processes executing over multiple cores of
a system, each having its own memory space, are completely immune to the GIL.

Specifically, considering the preceding countdown example, let's compare the performance
of that CPU-bound program when it is sequential, multithreading, and multiprocessing.
Navigate to the Chapter15/example3.py file. The first part of the program is identical
to what we saw earlier, but at the end, we add in an implementation of a multiprocessing
solution for the problem of counting down from 50,000,000, using two separate processes,
as follows:

COUNT = 50000000

def countdown(n):

 while n > 0:

 n -= 1

if __name__ == '__main__':

 ###

 # Sequential

 start = time.time()

 countdown(COUNT)

 ###

 # Multithreading

 thread1 = threading.Thread(target=countdown, \

 args=(COUNT // 2,))

 thread2 = threading.Thread(target=countdown, \

 args=(COUNT // 2,))

402 The Global Interpreter Lock

 start = time.time()

 thread1.start()

 thread2.start()

 thread1.join()

 thread2.join()

 ###

 # Multiprocessing

 pool = Pool(processes=2)

 start = time.time()

 pool.apply_async(countdown, args=(COUNT//2,))

 pool.apply_async(countdown, args=(COUNT//2,))

 pool.close()

 pool.join()

After running the program, this was my output:

> python3 example3.py

Sequential program finished.

Took 2.95 seconds.

Multithreading program finished.

Took 2.69 seconds.

Multiprocessing program finished.

Took 1.54 seconds.

There is still a minimal difference in speed between the sequential and multithreading
versions of the program. However, the multiprocessing version was able to cut that
speed by almost half in its execution. As discussed in earlier chapters, since processes
are fairly heavyweight, multiprocessing instructions contain significant overhead, which
is the reason why the speed of the multiprocessing program was not exactly half of the
sequential program.

Summary 403

Getting around the GIL with native extensions
There are Python-native extensions that are written in C/C++ and are therefore able
to avoid the limitations that the GIL sets out; one example is the most popular Python
scientific computing package, NumPy. Within these extensions, manual releases of the
GIL can be made so that the execution can simply bypass the lock. However, these releases
need to be implemented carefully and accompanied by the reassertion of the GIL before
the execution goes back to the main Python execution.

Utilizing a different Python interpreter
The GIL only exists in CPython, which is the most common interpreter for the language
by far and is built in C. However, there are other interpreters for Python, such as Jython
(written in Java) and IronPython (written in C++), that can be used to avoid the GIL and
its effects on multithreading programs. Keep in mind that these interpreters are not as
widely used as CPython, and some packages and libraries might not be compatible with
one or both of what? please clarify.

Summary
While the GIL in Python offers a simple and intuitive solution to one of the more difficult
problems in the language, it also raises a number of problems of its own, concerning the
ability to run multiple threads in a Python program to process CPU-bound tasks. Multiple
attempts have been made to remove the GIL from the main implementation of Python,
but none has been able to achieve it while maintaining the effectiveness of processing
non-CPU-bound tasks, which are affected by the GIL.

Overall, we have discussed practical methods that make working with the GIL easier.
We have also learned that while it possesses considerable notoriety among the Python
community, the GIL only affects a certain portion of the ecosystem. This should better
inform our opinion about the GIL.

In the last four chapters, we discussed some of the most well-known and common
problems in concurrent programming in Python. For the remainder of the book, we will
be looking at a different topic—advanced design patterns in Python. In the next chapter,
we will start with the factory pattern.

404 The Global Interpreter Lock

Questions
1. What are the differences in memory management between Python and C++?
2. Which problem does the GIL solve for Python?
3. Which problem does the GIL create for Python?
4. What are some of the approaches to circumventing the GIL in Python programs?

Further reading
For more information, you can refer to the following sources:

• What Is the Python Global Interpreter Lock (GIL)? (realpython.com/python-
gil/), Abhinav Ajitsaria

• The Python GIL Visualized (dabeaz.blogspot.com/2010/01/python-gil-
visualized), Dave Beazley

• Copy Operations in Python (pythontic.com/modules/copy/
introduction)

• It isn't Easy to Remove the GIL (www.artima.com/weblogs/viewpost.
jsp?thread=214235), Guido van Rossum

• Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd (2014)

• Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications, Elliot Forbes (2017)

https://realpython.com/python-gil/
http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html
http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html
https://pythontic.com/modules/copy/introduction
https://pythontic.com/modules/copy/introduction
https://www.artima.com/weblogs/viewpost.jsp?thread=214235

Section 3:
Design Patterns

in Python

Design patterns offer specialized design solutions to various software engineering
problems, making software resilient, scalable, and robust. The chapters in Section 3 iterate
through a wide-ranging collection of design patterns, preparing you for most
software engineering use cases in the real world.

This section contains the following chapters:

• Chapter 16, The Factory Pattern
• Chapter 17, The Builder Pattern
• Chapter 18, Other Creational Patterns
• Chapter 19, The Adapter Pattern
• Chapter 20, The Decorator Pattern
• Chapter 21, The Bridge Pattern
• Chapter 22, The Façade Pattern
• Chapter 23, Other Structural Patterns
• Chapter 24, The Chain of Responsibility Pattern
• Chapter 25, The Command Pattern
• Chapter 26, The Observer Pattern

16
The Factory Pattern

Design patterns are reusable programming solutions that have been used in various
real-world contexts and have proved to produce the expected results. In this chapter, we will
learn about one of the most common design patterns: the factory design pattern. As we will
see later, this pattern makes it easier to track which objects are created within a program,
thus separating the code that creates an object from the code that uses it. We will study the
factory design pattern's two forms: the factory method and the abstract method.

In this chapter, we will cover the following topics:

• Understanding design patterns

• Implementing the factory method

• Applying the abstract factory

By the end of this chapter, we will have gained a deep understanding of the factory design
pattern and its benefits via a hands-on example.

Technical requirements
The code files for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter16.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter16

408 The Factory Pattern

Understanding design patterns
Design patterns are shared among programmers and continue to be improved over time.
This topic is popular thanks to the book by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, titled Design Patterns: Elements of Reusable Object-Oriented Software.

Gang of Four
The book by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
is also called the Gang of Four book for short (or the GOF book for an even
shorter name).

Generally, a design pattern helps the programmer create a commonly used
implementation pattern, especially in object-oriented programming (OOP). The benefits
of viewing applications from the design pattern's perspective are plenty. First, it narrows
down the most effective ways of building a given application and the necessary steps to do
it. Second, you could consult existing examples of the same design pattern to improve your
application. Overall, design patterns are highly useful guidelines in software engineering.

There are several categories of design patterns that are used in OOP, depending on the
type of problem they address and/or the types of solutions they help us build. In their
book, the Gang of Four presents 23 design patterns, split into three categories: creational,
structural, and behavioral.

Creational design patterns are the first category we will cover in this chapter; Chapter
17, The Builder Pattern, and Chapter 18, Other Creational Patterns, will cover the latter.
These patterns deal with different aspects of object creation. Their goal is to provide better
alternatives for situations where direct object creation, which in Python happens within
the __init__() function, is not convenient.

Important Note
See https://docs.python.org/3/tutorial/classes.html
for a quick overview of object classes and the special __init__() method
that Python uses to initialize a new class instance.

We will start with the first creational design pattern from the Gang of Four book: the
factory design pattern. In the factory design pattern, a client (meaning client code) asks
for an object without knowing where the object is coming from (that is, which class is
used to generate it). The idea behind a factory is to simplify the object creation process.
It is easier to track which objects are created if this is done through a central function,
compared to letting a client create objects using a direct class instantiation. A factory
reduces the complexity of maintaining an application by decoupling the code that creates
an object from the code that uses it.

https://docs.python.org/3/tutorial/classes.html

Implementing the factory method 409

Factories typically come in two forms: the factory method, which is a method (or simply
a function for a Python developer) that returns a different object per input parameter, and
the abstract factory, which is a group of factory methods that are used to create a family
of related objects.

That is all the theory we need to get started. In the next section, we will discuss the
factory method.

Implementing the factory method
The factory method is based on a single function that's written to handle our object
creation task. We execute it, passing a parameter that provides information about what
we want. As a result, the object we wanted is created.

Interestingly, when we use the factory method, we don't need to know any details about
how the resulting object is implemented and where it is coming from. First, we will discuss
some real-life applications that use the factory method and then implement an example
application that processes XML and JSON files.

Real-world examples
An example of the factory method pattern that's used in real life is in the context of a
plastic toy construction kit. The molding material that's used to construct plastic toys is
the same, but different toys (different figures or shapes) can be produced using the right
plastic molds. This is like having a factory method in which the input is the name of the
toy that we want (for example, duck or car) and the output (after the molding) is the
plastic toy that was requested.

In the software world, the Django web framework uses the factory method pattern to
create the fields of a web form. The forms module, which is included in Django, supports
the ability to create different kinds of fields (for example, CharField, EmailField, and
so on). Parts of their behavior can be customized using attributes such as max_length or
required (j.mp/djangofac).

Consider the following example:

from django import forms

class PersonForm(forms.Form):

 name = forms.CharField(max_length=100)

 birth_date = forms.DateField(required=False)

http://j.mp/djangofac

410 The Factory Pattern

The preceding code could be written by a developer for a form (the PersonForm form,
which contains the name and birth_date fields) as part of a Django application's
UI code.

Use cases
If you realize that you cannot track the objects that are created by your application because
the code that creates them is in many different places instead of in a single function/
method, you should consider using the factory method pattern. The factory method
centralizes object creation and tracking your objects becomes much easier. Note that it
is absolutely fine to create more than one factory method, and this is how it is typically
done in practice. Each factory method logically groups objects that have similarities.
For example, one factory method might be responsible for connecting you to different
databases (MySQL and SQLite), another factory method might be responsible for creating
the geometrical object that you've requested (circle and triangle), and so on.

The factory method is also useful when you want to decouple object creation from object
usage. We are not coupled/bound to a specific class when creating an object; we just
provide partial information about what we want by calling a function. This means that
introducing changes to the function is easy and does not require any changes to be made
to the code that uses it.

Another use case worth mentioning is related to improving the performance and memory
usage of an application. A factory method can improve performance and memory usage
by creating new objects only if it is necessary. When we create objects using a direct class
instantiation, extra memory is allocated every time a new object is created (unless the
class uses caching internally, which is usually not the case). We can see that, in practice,
in the following code (in the id.py file), it creates two instances of the same class, A, and
uses the id() function to compare their memory addresses. These addresses are also
printed in the output so that we can inspect them. The fact that the memory addresses
are different means that two distinct objects are created, as follows:

class A:

 pass

if __name__ == '__main__':

 a = A()

 b = A()

 print(id(a) == id(b))

 print(a, b)

Implementing the factory method 411

Executing the python id.py command on my computer results in the following output:

False

<__main__.A object at 0x7f5771de8f60> <__main__.A object at

0x7f5771df2208>

Note that the addresses that you see if you execute the file are not the same as the ones
I can see because they depend on the current memory layout and allocation. But the
result must be the same: the two addresses should be different. There's one exception that
happens if you write and execute the code in the Python Read-Eval-Print Loop (REPL)
– or, simply put, the interactive prompt – but that's a REPL-specific optimization that does
not happen normally.

Implementing the factory method
Data comes in many forms. There are two main file categories for storing/retrieving data:
human-readable files and binary files. Examples of human-readable files include XML,
RSS/Atom, YAML, and JSON. Examples of binary files include the .sq3 file format that's
used by SQLite and the .mp3 audio file format, which is used to listen to music.

In this example, we will focus on two popular human-readable formats: XML and JSON.
Although human-readable files are generally slower to parse than binary files, they make
data exchange, inspection, and modification much easier. For this reason, it is advised
that you work with human-readable files unless other restrictions do not allow it (mainly
unacceptable performance and proprietary binary formats).

In this case, we have some input data stored in an XML file and a JSON file, and we want
to parse them and retrieve some information. At the same time, we want to centralize
the client's connection to those (and all future) external services. We will use the factory
method to solve this problem. This example focuses only on XML and JSON but adding
support for more services should be straightforward.

First, let's take a look at the data files.

The JSON file, movies.json, which can be found in the data subfolder of this chapter's
code folder, is an example of a dataset containing information about American movies
(title, year, director name, genre, and so on). This is a big file but here is a portion of its
content to illustrate how its content is organized:

[

 {"title":"After Dark in Central Park",

 "year":1900,

 "director":null, "cast":null, "genre":null},

412 The Factory Pattern

 {"title":"Boarding School Girls' Pajama Parade",

 "year":1900,

 "director":null, "cast":null, "genre":null},

 {"title":"Buffalo Bill's Wild West Parad",

 "year":1900,

 "director":null, "cast":null, "genre":null},

 {"title":"Caught",

 "year":1900,

 "director":null, "cast":null, "genre":null},

 {"title":"Clowns Spinning Hats",

 "year":1900,

 "director":null, "cast":null, "genre":null},

 ...

]

The XML file, person.xml, is based on a Wikipedia example (j.mp/wikijson) and
contains information about individuals (firstName, lastName, gender, and so on),
as follows:

1. We start with the enclosing tag of the persons XML container:

<persons>

2. Then, an XML element representing a person's data code is presented, as follows:

<person>

 <firstName>John</firstName>

 <lastName>Smith</lastName>

 <age>25</age>

 <address>

 <streetAddress>21 2nd Street</streetAddress>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10021</postalCode>

 </address>

 <phoneNumbers>

 <phoneNumber type="home">

 212 555-1234</phoneNumber>

 <phoneNumber type="fax">646 555-4567</phoneNumber>

http://j.mp/wikijson

Implementing the factory method 413

 </phoneNumbers>

 <gender>

 <type>male</type>

 </gender>

</person>

3. An XML element representing another person's data must then be provided:

<person>

 <firstName>Jimy</firstName>

 <lastName>Liar</lastName>

 <age>19</age>

 <address>

 <streetAddress>18 2nd Street</streetAddress>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10021</postalCode>

 </address>

 <phoneNumbers>

 <phoneNumber type="home">212 555-1234</phoneNumber>

 </phoneNumbers>

 <gender>

 <type>male</type>

 </gender>

</person>

4. An XML element representing a third person's data is then shown:

<person>

 <firstName>Patty</firstName>

 <lastName>Liar</lastName>

 <age>20</age>

 <address>

 <streetAddress>18 2nd Street</streetAddress>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10021</postalCode>

 </address>

414 The Factory Pattern

 <phoneNumbers>

 <phoneNumber type="home">

 212 555-1234</phoneNumber>

 <phoneNumber type="mobile">

 001 452-8819</phoneNumber>

 </phoneNumbers>

 <gender>

 <type>female</type>

 </gender>

</person>

5. Finally, we must close the XML container:

</persons>

6. We will use two libraries that are part of the Python distribution for working with
JSON and XML, json and xml.etree.ElementTree, as follows:

import json

import xml.etree.ElementTree as etree

7. The JSONDataExtractor class parses the JSON file and has a parsed_data()
method that returns all the data as a dictionary (dict). The property decorator is
used to make parsed_data() appear as a normal attribute instead of a method,
as follows:

class JSONDataExtractor:

 def __init__(self, filepath):

 self.data = dict()

 with open(filepath, mode='r', encoding='utf-8') as

 f:self.data = json.load(f)

 @property

 def parsed_data(self):

 return self.data

8. The XMLDataExtractor class parses the XML file and has a parsed_data()
method that returns all the data as a list of xml.etree.Element, as follows:

class XMLDataExtractor:

 def __init__(self, filepath):

 self.tree = etree.parse(filepath)

Implementing the factory method 415

 @property

 def parsed_data(self):

 return self.tree

9. The dataextraction_factory() function is a factory method. It returns an
instance of JSONDataExtractor or XMLDataExtractor, depending on the
extension of the input file path, as follows:

def dataextraction_factory(filepath):

 if filepath.endswith('json'):

 extractor = JSONDataExtractor

 elif filepath.endswith('xml'):

 extractor = XMLDataExtractor

 else:

 raise ValueError('Cannot extract data from

 {}'.format(filepath))

 return extractor(filepath)

10. The extract_data_from() function is a wrapper of dataextraction_
factory(). It adds exception handling, as follows:

def extract_data_from(filepath):

 factory_obj = None

 try:

 factory_obj = dataextraction_factory(filepath)

 except ValueError as e:

 print(e)

 return factory_obj

11. The main() function demonstrates how the factory method design pattern can be
used. The first part makes sure that exception handling is effective, as follows:

def main():

 sqlite_factory =

 extract_data_from('data/person.sq3')

 print()

416 The Factory Pattern

12. The next part shows how to work with the JSON files using the factory method.
Based on the parsing, the title, year, director name, and genre of the movie can be
shown (when the value is not empty), as follows:

json_factory = extract_data_from('data/movies.json')

json_data = json_factory.parsed_data

print(f'Found: {len(json_data)} movies')

for movie in json_data:

 print(f"Title: {movie['title']}")

 year = movie['year']

 if year:

 print(f"Year: {year}")

 director = movie['director']

 if director:

 print(f"Director: {director}")

 genre = movie['genre']

 if genre:

 print(f"Genre: {genre}")

 print()

13. The final part shows you how to work with the XML files using the factory method.
XPath is used to find all the person elements that have Liar as the last name (using
liars = xml_data.findall(f".//person[lastName='Liar']")).
For each matched person, their basic name and phone number information is
shown, as follows:

xml_factory = extract_data_from('data/person.xml')

xml_data = xml_factory.parsed_data

liars =

 xml_data.findall(f".//person[lastName='Liar']")

print(f'found: {len(liars)} persons')

for liar in liars:

 firstname = liar.find('firstName').text

 print(f'first name: {firstname}')

 lastname = liar.find('lastName').text

 print(f'last name: {lastname}')

 [print(f"phone number ({p.attrib['type']}):",

 p.text)

Implementing the factory method 417

 for p in liar.find('phoneNumbers')]

 print()

Here is the summary of the implementation (you can find the code in the factory_
method.py file):

1. We start by importing the modules we need (json and ElementTree).
2. We define the JSON data extractor class (JSONDataExtractor).
3. We define the XML data extractor class (XMLDataExtractor).
4. We add the factory function, dataextraction_factory(), to get the right

data extractor class.
5. We also add our wrapper for handling exceptions – the extract_data_from()

function.
6. Finally, we have the main() function, followed by Python's conventional trick for

calling it when invoking this file from the command line. The following are the
aspects of the main function:

 � We try to extract data from a SQL file (data/person.sq3) to show how the
exception is handled.

 � We extract data from a JSON file and parse the result.

 � We extract data from an XML file and parse the result.

The following is the type of output (for the different cases) you will get by calling the
python factory_method.py command.

First, there is an exception message that you'll see when you try to access a SQLite
(.sq3) file:

Cannot extract data from data/person.sq3

Then, we get the following result from processing the movies file (JSON):

Found: 9 movies

Title: After Dark in Central Park

Year: 1900

Title: Boarding School Girls' Pajama Parade

Year: 1900

418 The Factory Pattern

Title: Buffalo Bill's Wild West Parad

Year: 1900

Title: Caught

Year: 1900

Title: Clowns Spinning Hats

Year: 1900

Title: Capture of Boer Battery by British

Year: 1900

Director: James H. White

Genre: Short documentary

Title: The Enchanted Drawing

Year: 1900

Director: J. Stuart Blackton

Title: Family Troubles

Year: 1900

Title: Feeding Sea Lions

Year: 1900

Finally, we get this result from processing the person XML file to find the people whose
last name is Liar:

found: 2 persons

first name: Jimy

last name: Liar

phone number (home): 212 555-1234

first name: Patty

last name: Liar

phone number (home): 212 555-1234

phone number (mobile): 001 452-8819

Applying the abstract factory 419

Notice that although JSONDataExtractor and XMLDataExtractor have the same
interfaces, what is returned by parsed_data() is not handled uniformly. Different
Python code must be used to work with each data extractor. Although it would be nice to
be able to use the same code for all extractors, this is not realistic for the most part, unless
we use some kind of common mapping for the data, which is often provided by external
data providers. A useful exercise would be to assume that you can use the same code to
handle the XML and JSON files and see what changes are required to support a third
format, such as SQLite. Find a SQLite file or create your own and try it.

At this point, we have learned about the factory method, which, again, is the first form of
the factory design pattern. In the next section, we will talk about the second: the abstract
factory design pattern.

Applying the abstract factory
The abstract factory design pattern is a generalization of the factory method. An abstract
factory is a (logical) group of factory methods, where each factory method is responsible
for generating a different kind of object.

In this section, we are going to discuss some examples, use cases, and a possible
implementation of this pattern.

Real-world examples
The abstract factory is used in car manufacturing. The same machinery is used for stamping
the parts (doors, panels, hoods, fenders, and mirrors) of different car models. The model
that is assembled by the machinery is configurable and easy to change at any time.

In the software category, the factory_boy (https://github.com/FactoryBoy/
factory_boy) package provides an abstract factory implementation for creating
Django models in tests. It is used to create instances of models that support test-specific
attributes. This is important because, this way, your tests become readable, and you avoid
sharing unnecessary code.

Important Note
Django models are special classes that are used by the framework to help store
and interact with data in the database (tables). See the Django documentation
(https://docs.djangoproject.com) for more details.

https://github.com/FactoryBoy/factory_boy
https://github.com/FactoryBoy/factory_boy
https://docs.djangoproject.com

420 The Factory Pattern

Use cases
Since the abstract factory pattern is a generalization of the factory method pattern, it
offers the same benefits, it makes tracking an object creation easier, it decouples object
creation from object usage, and it gives us the potential to improve the memory usage
and performance of our application.

But a question is raised: How do we know when to use the factory method versus using an
abstract factory? The answer is that we usually start with the factory method, which is
simpler. If we find out that our application requires many factory methods, which it
makes sense to combine to create a family of objects, we end up with an abstract factory.

A benefit of the abstract factory that is usually not very visible from a user's point of
view when they're using the factory method is that we can modify the behavior of our
application dynamically (at runtime) by changing the active factory method. The classic
example is the ability to change the look and feel of an application (for example, Apple-like,
Windows-like, and so on) for the user while the application is in use, without the need to
terminate it and start it again.

Implementing the abstract factory pattern
To demonstrate the abstract factory pattern, I will reuse one of my favorite examples,
which is included in the book Python 3 Patterns, Recipes, and Idioms, by Bruce Eckel.
Imagine that we are creating a game, or we want to include a mini-game as part of
our application to entertain our users. We want to include at least two games – one for
children and one for adults. We will decide which game to create and launch at runtime,
based on user input. An abstract factory takes care of the game creation part.

Let's start with the kid's game. It is called FrogWorld. The main hero is a frog who enjoys
eating bugs. Every hero needs a good name, and in our case, the name is given by the user
at runtime. The interact_with() method is used to describe how the frog interacts
with an obstacle (for example, a bug, a puzzle, and other frogs), as follows:

class Frog:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return self.name

 def interact_with(self, obstacle):

 act = obstacle.action()

Applying the abstract factory 421

 msg = f'{self} the Frog encounters {obstacle}

 and {act}!'

 print(msg)

There can be many different kinds of obstacles but for our example, an obstacle can only
be a bug. When the frog encounters a bug, only one action is supported. It eats it:

class Bug:

 def __str__(self):

 return 'a bug'

 def action(self):

 return 'eats it'

The FrogWorld class is an abstract factory. Its main responsibilities are creating the
main character and the obstacle(s) in the game. Keeping the creation methods separate
and their names generic (for example, make_character() and make_obstacle())
allows us to change the active factory (and therefore the active game) dynamically without
making any code changes. In a statically typed language, the abstract factory would be an
abstract class/interface with empty methods, but in Python, this is not required because
the types are checked at runtime (j.mp/ginstromdp). The code is as follows:

class FrogWorld:

 def __init__(self, name):

 print(self)

 self.player_name = name

 def __str__(self):

 return '\n\n\t------ Frog World -------'

 def make_character(self):

 return Frog(self.player_name)

 def make_obstacle(self):

 return Bug()

The WizardWorld game is similar. The only difference is that the wizard battles against
monsters such as orcs instead of eating bugs!

http://j.mp/ginstromdp

422 The Factory Pattern

Here is the definition of the Wizard class, which is similar to the Frog one:

class Wizard:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return self.name

 def interact_with(self, obstacle):

 act = obstacle.action()

 msg = f'{self} the Wizard battles against

 {obstacle} and {act}!'

 print(msg)

Then, the definition of the Ork class is as follows:

class Ork:

 def __str__(self):

 return 'an evil ork'

 def action(self):

 return 'kills it'

We also need to define the WizardWorld class, similar to the FrogWorld one that we
have discussed; the obstacle, in this case, is an Ork instance:

class WizardWorld:

 def __init__(self, name):

 print(self)

 self.player_name = name

 def __str__(self):

 return '\n\n\t------ Wizard World -------'

 def make_character(self):

 return Wizard(self.player_name)

Applying the abstract factory 423

 def make_obstacle(self):

 return Ork()

The GameEnvironment class is the main entry point of our game. It accepts the factory
as input and uses it to create the world of the game. The play() method initiates the
interaction between the created hero and the obstacle, as follows:

class GameEnvironment:

 def __init__(self, factory):

 self.hero = factory.make_character()

 self.obstacle = factory.make_obstacle()

 def play(self):

 self.hero.interact_with(self.obstacle)

The validate_age() function prompts the user to give a valid age. If the age is not
valid, it returns a tuple with the first element set to False. If the age is fine, the first
element of the tuple is set to True. This is where we care about the second element
of the tuple, which is the age given by the user, as follows:

def validate_age(name):

 try:

 age = input(f'Welcome {name}. How old are you? ')

 age = int(age)

 except ValueError as err:

 print(f"Age {age} is invalid, please try again...")

 return (False, age)

 return (True, age)

Last but not least comes the main() function. It asks for the user's name and age, and
decides which game should be played, given the age of the user, as follows:

def main():

 name = input("Hello. What's your name? ")

 valid_input = False

 while not valid_input:

 valid_input, age = validate_age(name)

 game = FrogWorld if age < 18 else WizardWorld

 environment = GameEnvironment(game(name))

 environment.play()

424 The Factory Pattern

The following is a summary of the implementation we just discussed (see the complete
code in the abstract_factory.py file):

1. First, we define the Frog and Bug classes for the FrogWorld game.
2. We add the FrogWorld class, where we use our Frog and Bug classes.
3. We define the Wizard and Ork classes for the WizardWorld game.
4. We add the WizardWorld class, where we use our Wizard and Ork classes.
5. We define the GameEnvironment class.
6. We add the validate_age() function.
7. Finally, we have the main() function, followed by the conventional trick for calling

it. The following are the aspects of this function:

 � We get the user's input for their name and age.

 � We decide which game class to use based on the user's age.

 � We instantiate the right game class, and then the GameEnvironment class.

 � We call play() on the environment object to play the game.

Let's call this program using the python abstract_factory.py command and see
some sample output.

The sample output for a teenager is as follows:

Hello. What's your name? Billy

Welcome Billy. How old are you? 12

 ------ Frog World -------

Billy the Frog encounters a bug and eats it!

The sample output for an adult is as follows:

Hello. What's your name? Charles

Welcome Charles. How old are you? 25

 ------ Wizard World -------

Charles the Wizard battles against an evil ork and kills

it!

Summary 425

Try extending the game to make it more complete. You can go as far as you want; create
many obstacles, many enemies, and whatever else you like.

Summary
In this chapter, we learned how to use the factory method and the abstract factory design
patterns. Both patterns are used when we want to track object creation, decouple object
creation from object usage, or even improve the performance and resource usage of an
application. Improving performance was not demonstrated in this chapter. You may
consider trying it as a good exercise.

The factory method design pattern is implemented as a single function that doesn't belong
to any class and is responsible for creating a single kind of object (a shape, a connection
point, and so on). We saw how the factory method relates to toy construction, mentioned
how it is used by Django to create different form fields, and discussed other possible use
cases for it. As an example, we implemented a factory method that provided access to
XML and JSON files.

The abstract factory design pattern is implemented as several factory methods that belong
to a single class and are used to create a family of related objects (the parts of a car, the
environment of a game, and so forth). We mentioned how the abstract factory is related
to car manufacturing, how the django_factory package for Django makes use of it
to create clean tests, and then we covered its common use cases. Our implementation
example of the abstract factory was a mini-game that shows how we can use many related
factories in a single class.

In the next chapter, we will discuss the builder pattern, which is another creational pattern
that can be used for fine-tuning the creation of complex objects.

Questions
1. What are the high-level benefits of using the factory pattern?
2. What are the two forms of the factory pattern and their main differences?
3. How should we decide which form of the factory pattern we should use when

building an application?

17
The Builder Pattern

In the previous chapter, we covered the first two creational patterns—the factory method
and abstract factory, both of which offer approaches to improve the way we create
objects in nontrivial cases. The builder design pattern, on the other hand, as we'll discuss
in this chapter, is useful for managing objects that consist of multiple parts that need
to be implemented sequentially. By decoupling the construction of an object and its
representation, the builder pattern allows us to reuse a construction multiple times.

Just as with the previous chapter, we will discuss real-life applications that use this design
pattern as well as implementing a hands-on example ourselves.

In this chapter, we will discuss the following topics:

• Understanding the builder pattern

• Real-world examples

• Use cases

• Implementing an ordering application

By the end of the chapter, we will understand how to use the builder pattern and its
practical benefits.

428 The Builder Pattern

Technical requirements
The code files for this chapter can be accessed through this link:

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter17

Understanding the builder pattern
Imagine that we want to create an object that is composed of multiple parts and the
composition needs to be done step by step. The object is not complete unless all its parts
are fully created. That's where the builder-design pattern can help us. The builder pattern
separates the construction of a complex object from its representation. By keeping the
construction separate from the representation, the same construction can be used to
create several different representations (j.mp/builderpat).

A practical example can help us understand what the purpose of the builder pattern is.
Suppose that we want to create a HyperText Markup Language (HTML) page generator.
The basic structure (construction part) of an HTML page is always the same: it begins
with <html> and finishes with </html>; inside the HTML section are the <head> and
</head> elements; inside the head section are the <title> and </title> elements;
and so forth. But the representation of the page can differ. Each page has its own title, its
own headings, and different <body> contents. Moreover, the page is usually built in steps:
one function adds the title, another adds the main heading, another the footer, and so on.
Only after the whole structure of a page is complete can it be shown to the client using a
final render function. We can take it even further and extend the HTML generator so that
it can generate totally different HTML pages. One page might contain tables, another page
might contain image galleries, yet another page contains the contact form, and so on.

The HTML page-generation problem can be solved using the builder pattern. In this
pattern, there are two main participants, outlined as follows:

• The builder: The component responsible for creating the various parts of
a complex object. In this example, these parts are the title, heading, body,
and the footer of the page.

• The director: The component that controls the building process using a builder
instance. It calls the builder's functions for setting the title, the heading, and so on,
and using a different builder instance allows us to create a different HTML page
without touching any of the code of the director.

First, let's discuss in the next section some real-life examples where this pattern applies.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter17
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter17
http://j.mp/builderpat

Real-world examples 429

Real-world examples
In our everyday life, the builder design pattern is used in fast-food restaurants. The same
procedure is always used to prepare a burger and the packaging (box and paper bag), even
if there are many different kinds of burgers (classic, cheeseburger, and more) and different
packages (small-sized box, medium-sized box, and so forth). The difference between a
classic burger and a cheeseburger is in the representation, and not in the construction
procedure. In this case, the director is the cashier who gives the crew instructions about
what needs to be prepared, and the builder is the person from the crew that takes care
of a specific order.

We can also find software examples, as follows:

• The HTML example that was mentioned at the beginning of the chapter is actually
used by django-widgy (https://wid.gy/), a third-party tree editor for
Django that can be used as a content management system (CMS). The django-
widgy editor contains a page builder that can be used for creating HTML pages
with different layouts.

• The django-query-builder library (https://github.com/
ambitioninc/django-query-builder) is another third-party Django
library that relies on the builder pattern. This library can be used for building
Structured Query Language (SQL) queries dynamically, allowing you to control
all aspects of a query and create a different range of queries, from simple to very
complex ones.

In the next section, we will see how this design pattern actually works.

Use cases
We use the builder pattern when we know that an object must be created in multiple steps,
and different representations of the same construction are required. These requirements
exist in many applications, such as page generators (for example, the HTML page
generator mentioned in this chapter), document converters, and user interface (UI)
form creators (j.mp/pipbuild).

https://wid.gy/
https://github.com/ambitioninc/django-query-builder
https://github.com/ambitioninc/django-query-builder
http://j.mp/pipbuild

430 The Builder Pattern

Some online resources mention that the builder pattern can also be used as a solution to
the telescopic constructor problem. The telescopic constructor problem occurs when we
are forced to create a new constructor for supporting different ways of creating an object.
The problem is that we end up with many constructors and long parameter lists that are
hard to manage. An example of the telescopic constructor is listed on the Stack Overflow
website (j.mp/sobuilder). Fortunately, this problem does not exist in Python, because
it can be solved in at least two ways, as outlined here:

• With named parameters that define different behaviors in the constructor of the
class (j.mp/sobuipython)

• With argument list unpacking, which is similar in spirit to named parameters
(j.mp/arglistpy)

These features that are specific to Python help us control the behavior of its code easily,
thus avoiding the problem we described previously.

At this point, the distinction between the builder pattern and the factory pattern might
not be very clear. The main difference is that the factory pattern creates an object in a
single step, whereas the builder pattern creates an object in multiple steps, and almost
always through the use of a director. Some targeted implementations of the builder
pattern, such as Java's StringBuilder, bypass the use of a director, but that's the
exception to the rule.

Another difference is that while the factory pattern returns a created object immediately,
in the builder pattern the client code explicitly asks the director to return the final object
when it needs it (j.mp/builderpat).

The new computer analogy might help you to distinguish between the builder pattern and
the factory pattern. Assume that you want to buy a new computer. If you decide to buy
a specific, preconfigured computer model—for example, the latest Apple 1.4 gigahertz
(GHz) Mac mini—you use the factory pattern. All the hardware specifications are already
predefined by the manufacturer, who knows what to do without consulting you. The
manufacturer typically receives just a single instruction. Code-wise, this is how it would
look (apple_factory.py):

MINI14 = '1.4GHz Mac mini'

class AppleFactory:

 class MacMini14:

 def __init__(self):

 self.memory = 4 # in gigabytes

 self.hdd = 500 # in gigabytes

http://j.mp/sobuilder
http://j.mp/sobuipython
http://j.mp/arglistpy
http://j.mp/builderpat

Use cases 431

 self.gpu = 'Intel HD Graphics 5000'

 def __str__(self):

 info = (f'Model: {MINI14}',

 f'Memory: {self.memory}GB',

 f'Hard Disk: {self.hdd}GB',

 f'Graphics Card: {self.gpu}')

 return '\n'.join(info)

 def build_computer(self, model):

 if model == MINI14:

 return self.MacMini14()

 else:

 msg = f"I don't know how to build {model}"

 print(msg)

Now, we add the main part of the program—the snippet that uses the AppleFactory
class. The code is illustrated here:

if __name__ == '__main__':

 afac = AppleFactory()

 mac_mini = afac.build_computer(MINI14)

 print(mac_mini)

Note
Notice the nested MacMini14 class. This is a neat way of forbidding the
direct instantiation of a class.

Another option would be to buy a custom PC. In this case, you use the builder pattern.
You are the director who gives orders to the manufacturer (builder) about your ideal
computer specifications. Code-wise, this is how it looks (computer_builder.py):

1. We define a Computer class, as follows:

class Computer:

 def __init__(self, serial_number):

 self.serial = serial_number

 self.memory = None # in gigabytes

432 The Builder Pattern

 self.hdd = None # in gigabytes

 self.gpu = None

 def __str__(self):

 info = (f'Memory: {self.memory}GB',

 f'Hard Disk: {self.hdd}GB',

 f'Graphics Card: {self.gpu}')

 return '\n'.join(info)

2. We define a ComputerBuilder class, as follows:

class ComputerBuilder:

 def __init__(self):

 self.computer = Computer('AG23385193')

 def configure_memory(self, amount):

 self.computer.memory = amount

 def configure_hdd(self, amount):

 self.computer.hdd = amount

 def configure_gpu(self, gpu_model):

 self.computer.gpu = gpu_model

3. We define a HardwareEngineer class, as follows:

class HardwareEngineer:

 def __init__(self):

 self.builder = None

 def construct_computer(self, memory, hdd, gpu):

 self.builder = ComputerBuilder()

 steps = (self.builder.configure_memory(memory),

 self.builder.configure_hdd(hdd),

 self.builder.configure_gpu(gpu))

 [step for step in steps]

Implementing an ordering application 433

 @property

 def computer(self):

 return self.builder.computer

4. We end our code with the main() function, followed by a trick to call it when the
file is called from the command line, as illustrated in the following code snippet:

def main():

 engineer = HardwareEngineer()

 engineer.construct_computer(hdd=500,

 memory=8,

 gpu='GeForce GTX 650 Ti')

 computer = engineer.computer

 print(computer)

if __name__ == '__main__':

 main()

The basic changes are the introduction of a builder (ComputerBuilder), a director
(HardwareEngineer), and the step-by-step construction of a computer, which now
supports different configurations (notice that memory, hdd, and gpu are parameters and
are not preconfigured). What do we need to do if we want to support the construction of
tablets? Implement this as an exercise.

You might also want to change the computer's serial_number value into something
different for each computer because as it is now, this means that all computers will have
the same serial number (which is impractical).

Implementing an ordering application
Let's see how we can use the builder design pattern to make a pizza-ordering application.
The pizza example is particularly interesting because a pizza is prepared in steps that
should follow a specific order. To add the sauce, you first need to prepare the dough. To
add the topping, you first need to add the sauce. And you can't start baking the pizza
unless both the sauce and the topping are placed on the dough. Moreover, each pizza
usually requires a different baking time, depending on the thickness of its dough and
the topping used.

434 The Builder Pattern

We start by importing the required modules and declaring a few Enum parameters
(j.mp/pytenum) plus a constant that is used many times in the application. The
STEP_DELAY constant is used to add a time delay between the different steps of
preparing a pizza (prepare the dough, add the sauce, and so on), as follows:

from enum import Enum

import time

PizzaProgress = Enum('PizzaProgress', 'queued preparation \

 baking ready')

PizzaDough = Enum('PizzaDough', 'thin thick')

PizzaSauce = Enum('PizzaSauce', 'tomato creme_fraiche')

PizzaTopping = Enum('PizzaTopping', 'mozzarella \

 double_mozzarella bacon ham mushrooms red_onion oregano')

STEP_DELAY = 3 # in seconds for the sake of the example

Our end product is a pizza, which is described by the Pizza class. When using the builder
pattern, the end product does not have many responsibilities since it is not supposed to be
instantiated directly. A builder creates an instance of the end product and makes sure that
it is properly prepared. That's why the Pizza class is so minimal. It basically initializes all
data to sane default values. An exception is the prepare_dough() method.

The prepare_dough() method is defined in the Pizza class instead of a builder for
two reasons—first, to clarify the fact that the end product is typically minimal, which does
not mean that you should never assign it any responsibilities; second, to promote code
reuse through composition.

So, we define our Pizza class as follows:

class Pizza:

 def __init__(self, name):

 self.name = name

 self.dough = None

 self.sauce = None

 self.topping = []

 def __str__(self):

 return self.name

http://j.mp/pytenum

Implementing an ordering application 435

 def prepare_dough(self, dough):

 self.dough = dough

 print(f'preparing the {self.dough.name} dough of your \

 {self}...')

 time.sleep(STEP_DELAY)

 print(f'done with the {self.dough.name} dough')

There are two builders: one for creating a margarita pizza (MargaritaBuilder)
and another for creating a creamy bacon pizza (CreamyBaconBuilder). Each
builder creates a Pizza instance and contains methods that follow the pizza-making
procedure: prepare_dough(), add_sauce(), add_topping(), and bake(). To
be precise, prepare_dough() is just a wrapper to the prepare_dough() method
of the Pizza class.

Notice how each builder takes care of all the pizza-specific details. For example, the
topping of the margarita pizza is double mozzarella and oregano, while the topping of
the creamy bacon pizza is mozzarella, bacon, ham, mushrooms, red onion, and oregano.

This part of our code is laid out as follows:

1. We define a MargaritaBuilder class, as follows:

class MargaritaBuilder:

 def __init__(self):

 self.pizza = Pizza('margarita')

 self.progress = PizzaProgress.queued

 self.baking_time = 5 # in seconds for the sake of

 the example

 def prepare_dough(self):

 self.progress = PizzaProgress.preparation

 self.pizza.prepare_dough(PizzaDough.thin)

 def add_sauce(self):

 print('adding the tomato sauce to your \

 margarita...')

 self.pizza.sauce = PizzaSauce.tomato

 time.sleep(STEP_DELAY)

 print('done with the tomato sauce')

436 The Builder Pattern

 def add_topping(self):

 topping_desc = 'double mozzarella, oregano'

 topping_items = (PizzaTopping.double_mozzarella,

 PizzaTopping.oregano)

 print(f'adding the topping ({topping_desc}) to \

 your margarita')

 self.pizza.topping.append([t for t in \

 topping_items])

 time.sleep(STEP_DELAY)

 print(f'done with the topping ({topping_desc})')

 def bake(self):

 self.progress = PizzaProgress.baking

 print(f'baking your margarita for \

 {self.baking_time} seconds')

 time.sleep(self.baking_time)

 self.progress = PizzaProgress.ready

 print('your margarita is ready')

2. We define a CreamyBaconBuilder class, as follows:

class CreamyBaconBuilder:

 def __init__(self):

 self.pizza = Pizza('creamy bacon')

 self.progress = PizzaProgress.queued

 self.baking_time = 7 # in seconds for the sake of

 the example

 def prepare_dough(self):

 self.progress = PizzaProgress.preparation

 self.pizza.prepare_dough(PizzaDough.thick)

 def add_sauce(self):

 print('adding the crème fraîche sauce to your \

 creamy bacon')

 self.pizza.sauce = PizzaSauce.creme_fraiche

 time.sleep(STEP_DELAY)

Implementing an ordering application 437

 print('done with the crème fraîche sauce')

 def add_topping(self):

 topping_desc = 'mozzarella, bacon, ham, \

 mushrooms, red onion, oregano'

 topping_items = (PizzaTopping.mozzarella,

 PizzaTopping.bacon,

 PizzaTopping.ham,

 PizzaTopping.mushrooms,

 PizzaTopping.red_onion,

 PizzaTopping.oregano)

 print(f'adding the topping ({topping_desc}) to \

 your creamy bacon')

 self.pizza.topping.append([t for t in \

 topping_items])

 time.sleep(STEP_DELAY)

 print(f'done with the topping ({topping_desc})')

 def bake(self):

 self.progress = PizzaProgress.baking

 print(f'baking your creamy bacon for \

 {self.baking_time} seconds')

 time.sleep(self.baking_time)

 self.progress = PizzaProgress.ready

 print('your creamy bacon is ready')

The director in this example is the waiter. The core of the Waiter class is the
construct_pizza() method, which accepts a builder as a parameter and executes
all the pizza-preparation steps in the right order. Choosing the appropriate builder, which
can even be done at runtime, gives us the ability to create different pizza styles without
modifying any of the code of the director (Waiter). The Waiter class also contains the
pizza() method, which returns the end product (prepared pizza) as a variable to the
caller, as follows:

class Waiter:

 def __init__(self):

 self.builder = None

438 The Builder Pattern

 def construct_pizza(self, builder):

 self.builder = builder

 steps = (builder.prepare_dough,

 builder.add_sauce,

 builder.add_topping,

 builder.bake)

 [step() for step in steps]

 @property

 def pizza(self):

 return self.builder.pizza

The validate_style() function is similar to the validate_age() function, as
described in Chapter 16, The Factory Pattern. It is used to make sure that the user gives valid
input, which in this case is a character that is mapped to a pizza builder. The m character uses
the MargaritaBuilder class, and the c character uses the CreamyBaconBuilder
class. These mappings are in the builder parameter. A tuple is returned, with the first element
set to True if the input is valid or False if it is invalid, as follows:

def validate_style(builders):

 try:

 input_msg = 'What pizza would you like, [m]argarita or \

 [c]reamy bacon? '

 pizza_style = input(input_msg)

 builder = builders[pizza_style]()

 valid_input = True

 except KeyError:

 error_msg = 'Sorry, only margarita (key m) and creamy \

 bacon (key c) are available'

 print(error_msg)

 return (False, None)

 return (True, builder)

Implementing an ordering application 439

The last part is the main() function. The main() function contains code for instantiating
a pizza builder. The pizza builder is then used by the Waiter director for preparing
the pizza. The created pizza can be delivered to the client at any later point. The code is
illustrated in the following snippet:

def main():

 builders = dict(m=MargaritaBuilder, c=CreamyBaconBuilder)

 valid_input = False

 while not valid_input:

 valid_input, builder = validate_style(builders)

 print()

 waiter = Waiter()

 waiter.construct_pizza(builder)

 pizza = waiter.pizza

 print()

 print(f'Enjoy your {pizza}!')

Here is a summary of the implementation (see the complete code in the builder.py file):

1. We start with a couple of imports we need, for the standard Enum class and the
time module.

2. We declare variables for a few constants: PizzaProgress, PizzaDough,
PizzaSauce, PizzaTopping, and STEP_DELAY.

3. We define our Pizza class.
4. We define classes for two builders, MargaritaBuilder and

CreamyBaconBuilder.
5. We define our Waiter class.
6. We add the validate_style() function to improve things regarding

exception handling.
7. Finally, we have the main() function, followed by the snippet for calling it when

the program is run. In the main function, the following happens:

 � We make it possible to choose the pizza builder based on the user's input, after
validation via the validate_style() function.

 � The pizza builder is used by the waiter for preparing the pizza.

 � The created pizza is then delivered.

440 The Builder Pattern

Here is the output produced by calling the python builder.py command to execute
this example program:

What pizza would you like, [m]argarita or [c]reamy bacon? r

Sorry, only margarita (key m) and creamy bacon (key c) are

available

What pizza would you like, [m]argarita or [c]reamy bacon? m

preparing the thin dough of your margarita...

done with the thin dough

adding the tomato sauce to your margarita...

done with the tomato sauce

adding the topping (double mozzarella, oregano) to your

margarita

done with the topping (double mozzarella, oregano)

baking your margarita for 5 seconds

your margarita is ready

Enjoy your margarita!

But…supporting only two pizza types is a shame. Feel like getting a Hawaiian pizza builder?
Consider using inheritance after thinking about the advantages and disadvantages. Check
the ingredients of a typical Hawaiian pizza and decide which class you need to extend:
MargaritaBuilder or CreamyBaconBuilder? Perhaps both (j.mp/pymulti)?

In his book, Effective Java (Second Edition), Joshua Bloch describes an interesting variation
of the builder pattern where calls to builder methods are chained. This is accomplished by
defining the builder itself as an inner class and returning itself from each of the setter-like
methods on it. The build() method returns the final object. This pattern is called the
fluent builder. Here's a Python implementation, which was kindly provided by a reviewer
of the book:

class Pizza:

 def __init__(self, builder):

 self.garlic = builder.garlic

 self.extra_cheese = builder.extra_cheese

http://j.mp/pymulti

Implementing an ordering application 441

 def __str__(self):

 garlic = 'yes' if self.garlic else 'no'

 cheese = 'yes' if self.extra_cheese else 'no'

 info = (f'Garlic: {garlic}', f'Extra cheese: {cheese}')

 return '\n'.join(info)

 class PizzaBuilder:

 def __init__(self):

 self.extra_cheese = False

 self.garlic = False

 def add_garlic(self):

 self.garlic = True

 return self

 def add_extra_cheese(self):

 self.extra_cheese = True

 return self

 def build(self):

 return Pizza(self)

if __name__ == '__main__':

 pizza = Pizza.PizzaBuilder().add_garlic().add_extra_ \

 cheese().build()

 print(pizza)

With this fluent builder pattern, we see that we could quickly build the final Pizza object
by chaining the add_garlic(), add_extra_cheese(), and build() methods on
one line of code, which could come in handy in many situations.

442 The Builder Pattern

Summary
In this chapter, we have seen how to use the builder design pattern. We use the builder
pattern for creating an object in situations where using the factory pattern (either a
factory method or an abstract factory) is not a good option. The builder pattern is usually
a better candidate than the factory pattern when we want to create a complex object, when
different representations of an object are required, or when we want to create an object at
one point in time but access it at a later point.

We saw how the builder pattern is used in fast-food restaurants for preparing meals, and
how two third-party Django packages, django-widgy and django-query-builder,
use it for generating HTML pages and dynamic SQL queries, respectively. We focused
on the differences between the builder pattern and the factory pattern and provided
a preconfigured (factory) and customer (builder) computer order analogy to clarify
them. We also looked at how to create a pizza-ordering application with preparation
dependencies. Throughout these examples, we have clearly seen the benefits and flexibility
of the builder pattern, which will help you better approach future applications that require
the design pattern.

In the next chapter, you will learn about other useful creational patterns.

Questions
1. What are the high-level applications of the builder pattern?
2. What are some common computer applications that require or benefit from the

builder pattern?
3. How does the builder pattern create an object and how is that process different from

what the factory pattern does?

18
Other Creational

Patterns
In the previous chapter, we covered a third creational pattern, builder, which offers a nice
way of creating the various parts of a complex object. Apart from the factory method,
the abstract factory, and the builder patterns covered so far, other creational patterns are
interesting to discuss, such as the prototype pattern and the singleton pattern.

In this chapter, we will discuss the following topics:

• Implementing the prototype pattern

• Implementing the singleton pattern

These topics will complete our discussions on creational patterns and help cover the use
cases where the design patterns we have seen so far are not appropriate. By the end of the
chapter, we will have an overall understanding of creational patterns and the use cases of
each one.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter18.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter18
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter18
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter18

444 Other Creational Patterns

Implementing the prototype pattern
The prototype pattern is useful when you need to create objects based on an existing
object using the cloning technique. As you may have guessed, the idea is to use a copy
of that object's complete structure to produce the new object. We will see that this is
almost natural in Python because we have a copy feature that helps greatly in using this
technique. In the general case of creating a copy of an object, what happens is that you
make a new reference to the same object, a method called a shallow copy. But if you need
to duplicate the object, which is the case with a prototype, you make a deep copy.

Sometimes, we need to create an exact copy of an object. For instance, assume that you
want to create an application for storing, sharing, and editing presentation and marketing
content for products promoted by a group of salespeople. Think of the popular distribution
model called direct selling or network marketing, the home-based activity where
individuals partner with a company to distribute products within their social network
using promotional tools (brochures, PowerPoint presentations, videos, and so on).

Let's say a user, Bob, leads a team of distributors within a network marketing organization.
They use a presentation video daily to introduce the product to their prospects. At some
point, Bob gets his friend, Alice, to join him and she also uses the same video (one of the
governing principles is to follow the system or, as they say, Duplicate what already works).
But Alice soon finds prospects that could join her team and help her business grow, if
only the video was in French, or at least subtitled. What should they do? The original
presentation video cannot be used for the different custom needs that may arise.

To help everyone, the system could allow distributors with certain rank or trust levels,
such as Bob, to create independent copies of the original presentation video, as long as the
new version is validated by the compliance team of the backing company before public
use. Each copy is called a clone; it is an exact copy of the original object at a specific point
in time.

So, Bob, with the validation of the compliance team, makes a copy of the presentation
video to address the new need and hands it over to Alice. She could then adapt that
version by adding French subtitles.

With cloning, Bob and Alice can have their own copy of a video, and as such, changes
by each one of them will not affect the other person's version of the material. In the
alternative situation, which is what actually happens by default, each person would hold
a reference to the same (reference) object; changes made by Bob would impact Alice, and
vice versa.

Implementing the prototype pattern 445

The prototype design pattern helps us with creating object clones. In its simplest version,
this pattern is just a clone() function that accepts an object as an input parameter and
returns a clone of it. In Python, this can be done using the deepcopy() function from
the copy module.

The structure of our discussions will be the same as in previous chapters. First, we will
briefly discuss real-life applications and use cases, and then implement a hands-on
example in Python.

Real-world examples
A famous non-technical example is the sheep named Dolly, which was created by
researchers in Scotland by cloning a cell from a mammary gland.

Many Python applications make use of the prototype pattern (j.mp/pythonprot),
but it is seldom referred to as prototype since cloning objects is a built-in feature of
the language.

Use cases
The prototype pattern is useful when we have an existing object that needs to stay
untouched, and we want to create an exact copy of it, allowing changes in some parts
of the copy.

There is also the frequent need for duplicating an object that is populated from a database
and has references to other database-based objects. It is costly (multiple queries to a
database) to clone such a complex object, so a prototype is a convenient way to solve
the problem.

Implementation
Nowadays, some organizations, even of small size, deal with many websites and apps via
their infrastructure/DevOps teams, hosting providers, or cloud service providers.

When you have to manage multiple websites, there is a point where it becomes difficult
to manage everything. You need to access information quickly, such as IP addresses that
are involved, domain names and their expiration dates, and maybe details about the DNS
parameters. So, you need a kind of inventory tool.

446 Other Creational Patterns

Let's imagine how these teams deal with this type of data for daily activities and touch on
the implementation of a piece of software that helps consolidate and maintain the data
(other than in Excel spreadsheets):

1. First, we need to import Python's standard copy module, as follows:

import copy

2. At the heart of this system, we will have a Website class for holding all the useful
information such as the name, the domain name, the description, and the author of
a website we are managing.

In the __init__() method of the class, only some parameters are fixed, name,
domain, description, and author, which correspond to the information
we listed previously. But we also want flexibility, and client code can pass more
parameters in the form of keywords (name=value) using the kwargs variable-
length collection (a Python dictionary).

Note that there is a Python idiom to set an arbitrary attribute named attr
with a value, val, on an object, obj, using the setattr() built-in function:
setattr(obj, attr, val).

So, we are using this technique for the optional attributes of our class, at the end of
the initialization method, as follows:

for key in kwargs:

 setattr(self, key, kwargs[key])

So, our Website class is defined as follows:
class Website:

 def __init__(self, name, domain, description, \

 author, **kwargs):

 '''Examples of optional attributes (kwargs):

 category, creation_date, technologies, \

 keywords.

 '''

 self.name = name

 self.domain = domain

 self.description = description

 self.author = author

Implementing the prototype pattern 447

 for key in kwargs:

 setattr(self, key, kwargs[key])

 def __str__(self):

 summary = [f'Website "{self.name}"\n',]

 infos = vars(self).items()

 ordered_infos = sorted(infos)

 for attr, val in ordered_infos:

 if attr == 'name':

 continue

 summary.append(f'{attr}: {val}\n')

 return ''.join(summary)

3. Next, the Prototype class implements the prototype design pattern.

At the heart of the Prototype class is the clone() method, which is in charge
of cloning the object using the copy.deepcopy() function. Since cloning means
we allow values to be set for optional attributes, notice how we use the setattr()
technique here with the attrs dictionary.

Also, for more convenience, the Prototype class contains the register() and
unregister() methods, which can be used to keep track of the cloned objects in
a dictionary:

class Prototype:

 def __init__(self):

 self.objects = dict()

 def register(self, identifier, obj):

 self.objects[identifier] = obj

 def unregister(self, identifier):

 del self.objects[identifier]

 def clone(self, identifier, **attrs):

 found = self.objects.get(identifier)

 if not found:

448 Other Creational Patterns

 raise ValueError(f'Incorrect object \

 identifier:{identifier}')

 obj = copy.deepcopy(found)

 for key in attrs:

 setattr(obj, key, attrs[key])

 return obj

4. In the main() function, as shown in the following code, we can clone a first
Website instance, site1, to get a second object, site2. Basically, we instantiate
the Prototype class and we use its .clone() method. That is what the following
code shows:

def main():

 keywords = ('python', 'data', 'apis', \

 'automation')

 site1 = Website('ContentGardening',

 domain='contentgardening.com',

 description='Automation and data-driven \

 apps',

 author='Kamon Ayeva',

 category='Blog',

 keywords=keywords)

 prototype = Prototype()

 identifier = 'ka-cg-1'

 prototype.register(identifier, site1)

 site2 = prototype.clone(identifier,

 name='ContentGardeningPlayground',

 domain='play.contentgardening.com',

 description='Experimentation for \

 techniques featured on the blog',

 category='Membership site',

 creation_date='2018-08-01')

Implementing the prototype pattern 449

5. To end that function, we can use the id() function, which returns the memory
address of an object, for comparing both objects' addresses, as follows. When we
clone an object using a deep copy, the memory addresses of the clone must be
different from the memory addresses of the original object:

 for site in (site1, site2):

 print(site)

 print(f'ID site1 : {id(site1)} != ID site2 : \

 {id(site2)}')

You will find the program's full code in the prototype.py file. Here is a summary of
what we do in the code:

1. We start by importing the copy module.
2. We define the Website class, with its initialization method, (__init__()), and

its string representation method (__str__()), as shown earlier.
3. We define our Prototype class as shown earlier.
4. Then, we have the main() function, where we do the following:

 � We define the keywords list we need.

 � We create the instance of the Website class, called site1 (we use the
keywords list here).

 � We create the Prototype object and we use its register() method to register
site1 with its identifier (this helps us keep track of the cloned objects in a
dictionary).

 � We clone the site1 object to get site2.

 � We display the result (both Website objects)

Following is the sample output when I execute the python prototype.py command
on my machine:

Website "ContentGardening"

author: Kamon Ayeva

category: Blog

description: Automation and data-driven apps

domain: contentgardening.com

keywords: ('python', 'data', 'apis', 'automation')

450 Other Creational Patterns

Website "ContentGardeningPlayground"

author: Kamon Ayeva

category: Membership site

creation_date: 2018-08-01

description: Experimentation for techniques featured on the

blog

domain: play.contentgardening.com

keywords: ('python', 'data', 'apis', 'automation')

ID site1 : 140263689073376 != ID site2 : 140263689058816

Indeed, Prototype works as expected. We can see the information about the original
Website object and its clone. Looking at the output of the id() function, we can see
that the two addresses are different.

With this program, we mark the end of our discussion on the prototype pattern. In the
next section, we will cover the singleton pattern.

Implementing the singleton pattern
The singleton pattern offers a way to implement a class from which you can only create
one object, hence the name singleton. As you will understand with our exploration of this
pattern, or while doing your own research, there have always been discussions about this
pattern, and some even consider it an anti-pattern.

Besides that, what is interesting is that it is useful when we need to create one and only
one object, for example, to store and maintain a global state for our program. In Python,
this pattern can be implemented using some special built-in features.

The singleton pattern restricts the instantiation of a class to one object, which is useful
when you need one object to coordinate actions for the system.

The basic idea is that only one instance of a particular class is created for the needs of the
program. To ensure that this works, we need mechanisms that prevent the instantiation of
the class more than once and also prevent cloning.

First, let's discuss some real-life examples of the singleton pattern.

Implementing the singleton pattern 451

Real-world examples
We can think of a captain of a ship or a boat as a real-life example of the singleton pattern.
On the ship, he is the one in charge. He is responsible for important decisions, and several
requests are directed to him because of this responsibility.

In software, the Plone CMS has, at its core, an implementation of the singleton. There are
actually several singleton objects available at the root of a Plone site, called tools, each in
charge of providing a specific set of features for the site. For example, the Catalog tool
deals with content indexation and search features (built-in search engines for small sites
where you don't need to integrate products such as ElasticSearch), the Membership tool
deals with things related to user profiles, and the Registry tool provides a configuration
registry to store and maintain different kinds of configuration properties for the Plone
site. Each tool is global to the site, created from a specific singleton class, and you can't
create another instance of that singleton class in the context of the site.

Use cases
As stated previously, one use case of the singleton pattern is to create a single object that
maintains the global state of your program. Other possible use cases are as follows:

• Controlling concurrent access to a shared resource; for example, an object class that
manages the connection to a database

• A service or resource that is transversal in the sense that it can be accessed from
different parts of the application or by different users and does its work; for example,
the class at the core of the logging system or utility

Implementation
Let's implement a program to fetch content from web pages, inspired by the tutorial from
Michael Ford (https://docs.python.org/3/howto/urllib2.html). We have
only taken the simple part since the focus is to illustrate our pattern more than it is to
build a special web-scraping tool.

We will use the urllib module to connect to web pages using their URLs; the core of
the program would be the URLFetcher class, which takes care of doing the work via
a fetch() method.

https://docs.python.org/3/howto/urllib2.html

452 Other Creational Patterns

We want to be able to track the list of web pages that were tracked, hence the use of the
singleton pattern. We need a single object to maintain that global state:

1. First, our naive version, inspired by the tutorial but modified to help us track the list
of URLs that were fetched, would be as follows:

import urllib.parse

import urllib.request

class URLFetcher:

 def __init__(self):

 self.urls = []

 def fetch(self, url):

 req = urllib.request.Request(url)

 with urllib.request.urlopen(req) as response:

 if response.code == 200:

 the_page = response.read()

 print(the_page)

 urls = self.urls

 urls.append(url)

 self.urls = urls

2. As an exercise, add the usual if __name__ == '__main__' block with a few
lines of code to call the .fetch() method on an instance of URLFetcher.

But then, does our class implement a singleton? Here is a clue. To create a singleton,
we need to make sure you can only create one instance of it. So, to see whether our
class implements a singleton, we could use a trick that consists of comparing two
instances using the is operator.

You may have guessed the second exercise. Put the following code in your if
__name__ == '__main__' block instead of what you had previously:

f1 = URLFetcher()

f2 = URLFetcher()

print(f1 is f2)

Implementing the singleton pattern 453

As an alternative, use this concise, but still elegant, form:
print(URLFetcher() is URLFetcher())

With this change, when executing the program, you should get False as the output.

3. Okay! This means that the first try does not yet give us a singleton. Remember, we
want to manage a global state, using one, and only one, instance of the class for the
program. The current version of the class does not yet implement a singleton.

After checking the literature and the forums on the web, you will find that there are
several techniques, each with pros and cons, and some are probably outdated.

Since many people use Python 3 nowadays, the recommended technique we will
choose is the metaclass technique. We first implement a metaclass for the singleton.
This class implements the singleton pattern as follows:

class SingletonType(type):

 _instances = {}

 def __call__(cls, *args, **kwargs):

 if cls not in cls._instances:

 cls._instances[cls] = super \

 (SingletonType,cls).__call__(*args, \

 **kwargs)

 return cls._instances[cls]

4. Now, we will rewrite our URLFetcher class to use that metaclass. We also add a
dump_url_registry() method, which is useful for getting the current list of
URLs tracked:

class URLFetcher(metaclass=SingletonType):

 def fetch(self, url):

 req = urllib.request.Request(url)

 with urllib.request.urlopen(req) as response:

 if response.code == 200:

 the_page = response.read()

 print(the_page)

 urls = self.urls

 urls.append(url)

 self.urls = urls

454 Other Creational Patterns

 def dump_url_registry(self):

 return ', '.join(self.urls)

if __name__ == '__main__':

 print(URLFetcher() is URLFetcher())

This time, you get True by executing the program.

5. Let's complete the program to do what we wanted, using a main() function that we
will call as follows:

def main():

 MY_URLS = ['http://google.com',

 'http://python.org',

 'https://www.python.org/error',

]

 print(URLFetcher() is URLFetcher())

 fetcher = URLFetcher()

 for url in MY_URLS:

 try:

 fetcher.fetch(url)

 except Exception as e:

 print(e)

 print('-------')

 done_urls = fetcher.dump_url_registry()

 print(f'Done URLs: {done_urls}')

You will find the program's full code in the singleton.py file. Here is a summary
of what we do:

1. We start with our required module imports (urllib.parse and
urllib.request).

2. As shown earlier, we define the SingletonType class, with its special
__call__() method.

Implementing the singleton pattern 455

3. As shown earlier, we define URLFetcher, the class implementing the fetcher
for the web pages, initializing it with the urls attribute. As discussed, we add
its fetch() and dump_url_registry() methods.

4. Then, we add our main() function.
5. Lastly, we add Python's conventional snippet used to call the main function.

The following is the output when executing the python singleton.py command:

[output truncated]

</script>\n <script>window.jQuery ||

document.write(\'<script src="/static/js/libs/jquery-

1.8.2.min.js"><\\/script>\')</script>\n <script

src="//ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery

-ui.min.js"></script>\n <script>window.jQuery ||

document.write(\'<script src="/static/js/libs/jquery-ui-

1.12.1.min.js"><\\/script>\')</script>\n\n <script

src="/static/js/libs/masonry.pkgd.min.js"></script>\n

<script src="/static/js/libs/html-

includes.js"></script>\n\n <script

type="text/javascript" src="/static/js/main-

min.dd72c1659644.js" charset="utf-8"></script>\n \n\n

<!--[if lte IE 7]>\n <script type="text/javascript"

src="/static/js/plugins/IE8-min.8af6e26c7a3b.js"

charset="utf-8"></script>\n \n \n <![endif]--

>\n\n

<!--[if lte IE 8]>\n <script type="text/javascript"

src="/static/js/plugins/getComputedStyle-

min.d41d8cd98f00.js" charset="utf-8"></script>\n \n

\n <![endif]-->\n\n \n\n \n

\n\n</body>\n</html>\n'

HTTP Error 404: Not Found

Done URLs: http://google.com, http://python.org

We can see that we get the expected result: both the content of the pages that the program
was able to connect to and the list of URLs the operation was successful for.

456 Other Creational Patterns

We see that the URL, https://www.python.org/error, does not come in the list
returned by fetcher.dump_url_registry(); indeed, it is an erroneous URL and
the urlllib request to it gets a 404 response code.

Note
The link to the preceding URL is not supposed to work; that's exactly the point.

Summary
In this chapter, we have seen how to use two other creational design patterns: the
prototype and the singleton.

A prototype is used to create exact copies of objects. As seen in the implementation
example we discussed, using a prototype in Python is natural and based on built-in
features, so it is not something even mentioned. The singleton pattern can be implemented
by making the singleton class use a metaclass, its type, having previously defined said
metaclass. As required, the metaclass's __call__() method holds the code that ensures
that only one instance of the class can be created.

Overall, these two design patterns help us implement the use cases that other creational
patterns do not support; in effect, we have grown our design pattern toolbox to cover
more use cases.

The next chapter is about the adapter pattern, a structural design pattern that can be used
to make two incompatible software interfaces compatible.

Questions
1. What are the high-level benefits of using the prototype pattern?
2. How is the prototype pattern useful in the specific case of database management?
3. What are the high-level benefits of using the singleton pattern?
4. In the context of concurrency, in which situation should the singleton pattern

be used?

Further reading
Design Patterns by Gamma Enrich, Helm Richard, Johnson Ralph, and Vlissides
John available at https://www.amazon.com/Design-Patterns-Object-
Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

19
The Adapter Pattern

In previous chapters, we covered creational patterns, which are Object-Oriented
Programming (OOP) patterns that help us with object creation procedures. The next
category of patterns we want to present is structural design patterns.

A structural design pattern proposes a way of composing objects to create new
functionality. The first of these patterns we will cover is the adapter pattern.

In this chapter, we will discuss the following topics:

• Understanding the adapter pattern

• Real-world examples

• Use cases

• Implementation

By the end of the chapter, you will know how to use this design pattern to create interfaces
that could help application layers that otherwise could not communicate.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter19.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter19
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter19
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter19

458 The Adapter Pattern

Understanding the adapter pattern
The adapter pattern is a structural design pattern that helps us make two incompatible
interfaces compatible. What does that really mean? If we have an old component and we
want to use it in a new system, or a new component that we want to use in an old system,
the two can rarely communicate without requiring code changes. But changing the code
is not always possible, either because we don't have access to it or because it is impractical.
In such cases, we can write an extra layer that makes all the required modifications for
enabling communication between the two interfaces. This layer is called an adapter.

To further understand this design pattern, let's consider some real-life examples.

Real-world examples
When you are traveling from most European countries to the UK or US, or the other way
around, you need to use a plug adapter for charging your laptop. Another kind of adapter
is needed for connecting some devices to your computer: a USB adapter.

In the software category, the Zope application server (http://www.zope.org)
is known for its Zope Component Architecture (ZCA), which contributed to the
implementation of interfaces and adapters used by several big Python web projects.
Pyramid, built by former Zope developers, is a Python web framework that took good
ideas from Zope to provide a more modular approach for developing web apps. Pyramid
uses adapters to make it possible for existing objects to conform to specific APIs without
the need to modify them. Another project from the Zope ecosystem, Plone CMS, uses
adapters under the hood.

Use cases
Usually, one of the two incompatible interfaces is either foreign or old/legacy. If the
interface is foreign, it means that we have no access to the source code. If it is old, it is
usually impractical to refactor it.

Using an adapter to make things work after they have been implemented is a good
approach because it does not require access to the source code of the foreign interface.
It is also often a pragmatic solution if we have to reuse some legacy code.

With that, let's start implementing a hands-on application in Python.

http://www.zope.org

Implementation 459

Implementation
Let's look at a relatively simple application to illustrate the concept of adaptation. Consider
an example of a club's activities. It mainly needs to organize performances and events for
the entertainment of its clients, by hiring talented artists.

At the core, we have a Club class that represents the club where hired artists perform
some evenings. The organize_performance() method is the main action that the
club can perform. The code is as follows:

class Club:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return f'the club {self.name}'

 def organize_event(self):

 return 'hires an artist to perform for the people'

Most of the time, our club hires a DJ to perform, but our application addresses the need
to organize a diverse range of performances by a musician or music band, a dancer,
a one-man or one-woman show, and so on.

Through our research to try and reuse existing code, we find an open source contributed
library that brings us two interesting classes: Musician and Dancer. In the Musician
class, the main action is performed by the play() method. In the Dancer class, it is
performed by the dance() method.

In our example, to indicate that these two classes are external, we place them in a separate
module. The code for the Musician class is as follows:

class Musician:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return f'the musician {self.name}'

 def play(self):

 return 'plays music'

460 The Adapter Pattern

Then, the Dancer class is defined as follows:

class Dancer:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return f'the dancer {self.name}'

 def dance(self):

 return 'does a dance performance'

The client code, using these classes, only knows how to call the organize_
performance() method (on the Club class); it has no idea about play() or
dance() (on the respective classes from the external library).

How can we make the code work without changing the Musician and Dancer classes?

Adapters to the rescue! We create a generic Adapter class that allows us to adapt several
objects with different interfaces into one unified interface. The obj argument of the
__init__() method is the object that we want to adapt, and adapted_methods
is a dictionary containing key/value pairs matching the method the client calls and the
method that should be called.

The code for the Adapter class is as follows:

class Adapter:

 def __init__(self, obj, adapted_methods):

 self.obj = obj

 self.__dict__.update(adapted_methods)

 def __str__(self):

 return str(self.obj)

When dealing with different instances of the classes, we have two cases:

• The compatible object that belongs to the Club class needs no adaptation. We can
treat it as it is.

• The incompatible objects need to be adapted first, using the Adapter class.

Implementation 461

The result is that the client code can continue using the known organize_
performance() method on all objects without the need to be aware of any interface
differences between the used classes. Consider the following code:

def main():

 objects = [Club('Jazz Cafe'), Musician('Roy Ayers'), \

 Dancer('Shane Sparks')]

 for obj in objects:

 if hasattr(obj, 'play') or hasattr(obj, 'dance'):

 if hasattr(obj, 'play'):

 adapted_methods = \

 dict(organize_event=obj.play)

 elif hasattr(obj, 'dance'):

 adapted_methods = \

 dict(organize_event=obj.dance)

 # referencing the adapted object here

 obj = Adapter(obj, adapted_methods)

 print(f'{obj} {obj.organize_event()}')

Let's recapitulate the complete code of our adapter pattern implementation:

1. We define the Musician and Dancer classes (in external.py).
2. Then, we need to import those classes from the external module (in adapter.py):

from external import Musician, Dance

3. We then define the Adapter class (in adapter.py).
4. We add the main() function, as shown earlier, and the usual trick to call it (in

adapter.py).

Here is the output when executing the python adapter.py command, as usual:

the club Jazz Cafe hires an artist to perform for the

people

the musician Roy Ayers plays music

the dancer Shane Sparks does a dance performance

462 The Adapter Pattern

As you can see, we managed to make the Musician and Dancer classes compatible with
the interface expected by the client, without changing their source code.

Summary
This chapter covered the adapter design pattern. The adapter makes things work after they
have been implemented. The Pyramid web framework, the Plone CMS, and other Zope-
based or related frameworks use the adapter pattern to achieve interface compatibility.
In the Implementation section, we saw how to achieve interface conformance using the
adapter pattern without modifying the source code of the incompatible model. This is
achieved through a generic Adapter class that does the work for us.

Overall, we could use the adapter pattern to make two (or more) incompatible interfaces
compatible, which has a lot of usage in software engineering.

In the next chapter, we will cover the decorator pattern.

20
The Decorator

Pattern
As we saw in the previous chapter, using an adapter, the first structural design pattern,
you can adapt an object implementing a given interface to implement another interface.
This is called interface adaptation and includes the kinds of patterns that encourage
composition over inheritance, and it could bring benefits when you have to maintain
a large codebase.

A second interesting structural pattern to learn about is the decorator pattern, which
allows us to add responsibilities to an object dynamically and transparently (without
affecting other objects); this will be the topic of this chapter. Throughout our discussions,
we will learn more about a specific usage of this design pattern: memoization.

We will discuss the following topics:

• Introducing the decorator pattern

• Real-world examples

• Use cases

• Implementation

464 The Decorator Pattern

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter20.

Introducing the decorator pattern
As Python developers, we can write decorators in a Pythonic way (meaning using the
language's features), thanks to the built-in decorator feature (https://docs.python.
org/3/reference/compound_stmts.html#function). What exactly is this
feature? A Python decorator is a callable (function, method, or class) that gets a function
object, func_in, as input and returns another function object, func_out. It is a
commonly used technique for extending the behavior of a function, method, or class.

But this feature should not be completely new to you. We have already seen how to use the
built-in property decorator, which makes a method appear as a variable in both Chapter
16, The Factory Pattern, and Chapter 17, The Builder Pattern. There are also several other
useful built-in decorators in Python. In the Implementation section of this chapter, we will
learn how to implement and use our own decorators.

Note that there is no one-to-one relationship between the decorator pattern and Python's
decorator feature. Python decorators can actually do much more than the decorator
pattern. One of the things they can be used for is to implement the decorator pattern
(j.mp/moinpydec).

Now, let's discuss some examples where the decorator pattern applies.

Real-world examples
The decorator pattern is generally used for extending the functionality of an object. In
everyday life, examples of functionality extensions are adding a holder stand to a phone
or using different camera lenses.

In the Django framework, which uses decorators a lot, we have the View decorators,
which can be used for the following (j.mp/djangodec):

• Restricting access to views based on the HTTP request

• Controlling the caching behavior on specific views

• Controlling compression on a per-view basis

• Controlling caching based on specific HTTP request headers

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter20
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter20
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter20
https://docs.python.org/3/reference/compound_stmts.html#function
https://docs.python.org/3/reference/compound_stmts.html#function
http://j.mp/moinpydec
http://j.mp/djangodec

Use cases 465

Both the Pyramid framework and the Zope application server also use decorators to
achieve various goals, such as the following:

• Registering a function as an event subscriber

• Protecting a method with a specific permission

• Implementing the adapter pattern

To be more concrete, we will iterate the specific use cases of the design pattern in the
next section.

Use cases
The decorator pattern shines when used for implementing cross-cutting concerns
(j.mp/wikicrosscut). Examples of cross-cutting concerns are as follows:

• Data validation

• Caching

• Logging

• Monitoring

• Debugging

• Business rules

• Encryption

In general, all parts of an application that are generic and can be applied to many different
parts of it are considered to be cross-cutting concerns.

Another popular example of using the decorator pattern is graphical user interface
(GUI) toolkits. In a GUI toolkit, we want to be able to add features such as borders,
shadows, colors, and scrolling to individual components/widgets.

Now, let's move on to the implementation part of the chapter, in which we will see how the
decorator pattern helps with memoization.

http://j.mp/wikicrosscut

466 The Decorator Pattern

Implementation
Python decorators are generic and very powerful. You can find many examples of how they
can be used in the decorator library of python.org (j.mp/pydeclib). In this section,
we will see how we can implement a memoization decorator (j.mp/memoi). All recursive
functions can benefit from memoization, so let's try a function, number_sum(), that
returns the sum of the first n numbers. Note that this function is already available in the
math module as fsum(), but let's pretend it is not.

First, let's look at the naive implementation (the number_sum_naive.py file):

def number_sum(n):

 '''Returns the sum of the first n numbers'''

 assert(n >= 0), 'n must be >= 0'

 if n == 0:

 return 0

 else:

 return n + number_sum(n-1)

if __name__ == '__main__':

 from timeit import Timer

 t = Timer('number_sum(30)', 'from __main__ import \

 number_sum')

 print('Time: ', t.timeit())

A sample execution of this example shows how slow this implementation is. It takes
roughly 3 seconds to calculate the sum of the first 30 numbers on a MacBook, which
can be seen when executing the python number_sum_naive.py command:

Time: 3.023907012

Let's see whether using memoization can help us improve the performance number. In the
following code, we use dict for caching the already computed sums. We also change the
parameter passed to the number_sum() function. We want to calculate the sum of the
first 300 numbers instead of only the first 30.

http://j.mp/pydeclib
http://j.mp/memoi

Implementation 467

Here is the new version of the code, using memoization:

sum_cache = {0:0}

def number_sum(n):

 '''Returns the sum of the first n numbers'''

 assert(n >= 0), 'n must be >= 0'

 if n in sum_cache:

 return sum_cache[n]

 res = n + number_sum(n-1)

 # Add the value to the cache

 sum_cache[n] = res

 return res

if __name__ == '__main__':

 from timeit import Timer

 t = Timer('number_sum(300)', 'from __main__ import \

 number_sum')

 print('Time: ', t.timeit())

Executing the memoization-based code shows that performance improves dramatically
and is acceptable even for computing large values.

A sample execution, using python number_sum.py, is as follows:

Time: 0.12304591899999999

But there are already a few problems with this approach. While the performance is not
an issue any longer, the code is not as clean as it is when not using memoization. And
what happens if we decide to extend the code with more math functions and turn it into
a module? We can think of several functions that would be useful for our module, for
problems such as Pascal's triangle or the Fibonacci numbers suite algorithm.

468 The Decorator Pattern

So, if we wanted a function in the same module as number_sum(), for the Fibonacci
numbers suite, using the same memoization technique, we would add code that looks
as follows:

cache_fib = {0:0, 1:1}

def fibonacci(n):

 '''Returns the suite of Fibonacci numbers'''

 assert(n >= 0), 'n must be >= 0'

 if n in cache_fib:

 return cache_fib[n]

 res = fibonacci(n-1) + fibonacci(n-2)

 cache_fib[n] = res

 return res

Do you notice the problem already? We ended up with a new dict called cache_fib,
which acts as our cache for the fibonacci() function, and a function that is more
complex than it would be without using memoization. Our module is becoming
unnecessarily complex. Is it possible to write these functions keeping them as simple
as the naive versions, but achieving performance similar to the performance of the
functions that use memoization?

Fortunately, it is, and the solution is to use the decorator pattern.

First, we create a memoize() decorator, as shown in the following example. Our
decorator accepts the fn function, which needs to be memoized, as an input. It uses dict
named cache as the cached data container. The functools.wraps() function is used
for convenience when creating decorators. It is not mandatory but a good practice to use
it since it makes sure that the documentation, and the signature of the function that is
decorated, is preserved (j.mp/funcwraps). The *args argument list is required in
this case because the functions that we want to decorate accept input arguments (such as
the n argument for our two functions):

import functools

def memoize(fn):

 cache = dict()

http://j.mp/funcwraps

Implementation 469

 @functools.wraps(fn)

 def memoizer(*args):

 if args not in cache:

 cache[args] = fn(*args)

 return cache[args]

 return memoizer

Now, we can use our memoize() decorator with the naive version of our functions. This
has the benefit of readable code without performance impact. We apply a decorator using
what is known as decoration (or a decoration line). A decoration uses the @name syntax,
where name is the name of the decorator that we want to use. It is nothing more than
syntactic sugar for simplifying the usage of decorators. We can even bypass this syntax
and execute our decorator manually, but that is left as an exercise for you.

So, the memoize() decorator can be used with our recursive functions as follows:

@memoize

def number_sum(n):

 '''Returns the sum of the first n numbers'''

 assert(n >= 0), 'n must be >= 0'

 if n == 0:

 return 0

 else:

 return n + number_sum(n-1)

@memoize

def fibonacci(n):

 '''Returns the suite of Fibonacci numbers'''

 assert(n >= 0), 'n must be >= 0'

 if n in (0, 1):

 return n

 else:

 return fibonacci(n-1) + fibonacci(n-2)

470 The Decorator Pattern

In the last part of the code, via the main() function, we show how to use the decorated
functions and measure their performance. The to_execute variable is used to hold
a list of tuples containing the reference to each function and the corresponding
timeit.Timer() call (to execute it while measuring the time spent), thus avoiding
code repetition. Note how the __name__ and __doc__ method attributes show the
proper function names and documentation values, respectively. Try removing the
@functools.wraps(fn) decoration from memoize(), and see whether this is
still the case.

Here is the last part of the code:

def main():

 from timeit import Timer

 to_execute = [

 (number_sum,

 Timer('number_sum(300)', 'from __main__ import \

 number_sum')),

 (fibonacci,

 Timer('fibonacci(100)', 'from __main__ import \

 fibonacci'))

]

 for item in to_execute:

 fn = item[0]

 print(f'Function "{fn.__name__}": {fn.__doc__}')

 t = item[1]

 print(f'Time: {t.timeit()}')

 print()

if __name__ == '__main__':

 main()

Let's recapitulate how we write the complete code of our math module (the mymath.py
file):

1. After the import of Python's functools module that we will be using, we define
the memoize() decorator function.

2. Then, we define the number_sum() function, decorated using memoize().

Summary 471

3. We also define the fibonacci() function, as decorated.
4. Finally, we add the main() function, as shown earlier, and use the usual trick to call it.

Here is a sample output when executing the python mymath.py command:

Function "number_sum": Returns the sum of the first n

numbers

Time: 0.152614356

Function "fibonacci": Returns the suite of Fibonacci

numbers

Time: 0.142395913

(The execution times might differ in your case.)

At this point, we end up with readable code and acceptable performance. Now, you might
argue that this is not the decorator pattern, since we don't apply it at runtime. The truth
is that a decorated function cannot be undecorated, but you can still decide at runtime
whether the decorator will be executed or not. That's an interesting exercise left for you.

Note
Use a decorator that acts as a wrapper, which decides whether or not the real
decorator is executed based on some condition.

Another interesting property of decorators not covered in this chapter is that you can
decorate a function with more than one decorator. So, here's another exercise: create
a decorator that helps you to debug recursive functions, apply it to number_sum()
and fibonacci(), and finally, determine the order in which the multiple decorators
are executed.

Summary
This chapter covered the decorator pattern and its relationship to the Python programming
language. We used the decorator pattern conveniently to extend the behavior of an object
without using inheritance. Python, with its built-in decorator feature, extends the decorator
concept even more, by allowing us to extend the behavior of any callable (function, method,
or class) without using inheritance or composition.

We have seen a few examples of real-world objects that are decorated, such as cameras.
From a software point of view, both Django and Pyramid use decorators to achieve
different goals, such as controlling HTTP compression and caching.

472 The Decorator Pattern

The decorator pattern is a great solution for implementing cross-cutting concerns because
they are generic and do not fit well into the OOP paradigm. We mentioned several
categories of cross-cutting concerns in the Use cases section. In fact, in the Implementation
section, a cross-cutting concern was demonstrated: memoization. We saw how decorators
can help us to keep our functions clean, without sacrificing performance.

The next chapter covers the bridge pattern.

Questions
1. What is the main motivation for the decorator pattern?
2. Why is the decorator pattern particularly relevant in Python?
3. How does the decorator pattern help with memoization?

21
The Bridge Pattern

In the previous two chapters, we covered our first structural pattern, adapter, which is
used to make two incompatible interfaces compatible, and decorator, which allows us to
add responsibilities to an object in a dynamic way. There are more similar patterns. Let's
continue with the series!

A third structural pattern to look at is the bridge pattern. We can actually compare the
bridge and the adapter patterns by looking at the way they work. While the adapter is
used to make unrelated classes work together (as we saw in the implementation example
discussed in Chapter 19, The Adapter Pattern), the bridge pattern is designed upfront to
decouple an implementation from its abstraction, as we are going to see in this chapter.

Specifically, we will discuss the following topics:

• Real-world examples

• Use cases

• Implementation

By the end of this chapter, we will know how to implement this design pattern and
understand better the aforementioned difference with the adapter pattern.

474 The Bridge Pattern

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter21.

Real-world examples
In our modern, everyday lives, one example of the bridge pattern that I can think of is
information products from the digital economy. Nowadays, the information product, or
infoproduct is part of the resources you can find online for training, self-improvement,
or your ideas and business development. The purpose of an information product found
on certain marketplaces, or the website of the provider, is to deliver information on a
given topic in such a way that it is easy to access and consume. The material provided can
be a PDF document or ebook, an ebook series, a video, a video series, an online course,
a subscription-based newsletter, or a combination of all those formats.

In the software realm, device drivers are often cited as an example of the bridge pattern,
when the developer of an operating system (OS) defines the interface for device vendors
to implement it.

Next, let's discuss when this design pattern should be employed.

Use cases
Using the bridge pattern is a good idea when you want to share an implementation among
multiple objects. Basically, instead of implementing several specialized classes, defining all
that is required within each class, you can define the following special components:

• An abstraction that applies to all the classes

• A separate interface for the different objects involved

Next, we will see an implementation example that illustrates this approach.

Implementation
Let's assume we are building an application where the user is going to manage and deliver
content after fetching it from diverse sources, which could be the following:

• A web page (based on its URL)

• A resource accessed on an FTP server

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter21
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter21
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter21

Implementation 475

• A file on the local filesystem

• A database server

So, here is the idea: instead of implementing several content classes, each holding the
methods responsible for getting the content pieces, assembling them, and showing them
inside the application, we can define an abstraction for the Resource Content and a
separate interface for the objects that are responsible for fetching the content. Let's try it!

We begin with the class for our Resource Content abstraction, called
ResourceContent. Then, we will need to define the interface for implementation
classes that help fetch content, that is, the ResourceContentFetcher class. This
concept is called the Implementor.

The first trick we use here is to use the _imp attribute on the ResourceContent
class to maintain a reference to the object, which represents the Implementor:

class ResourceContent:

 """

 Define the abstraction's interface.

 Maintain a reference to an object which represents \

 the Implementor.

 """

 def __init__(self, imp):

 self._imp = imp

 def show_content(self, path):

 self._imp.fetch(path)

As you may know by now, we define the equivalent of an interface in the Python language
using two features: the metaclass feature (which helps define the type of a type), and
abstract base classes (ABC), as shown here:

class ResourceContentFetcher(metaclass=abc.ABCMeta):

 """

 Define the interface for implementation classes that \

 fetch content.

 """

476 The Bridge Pattern

 @abc.abstractmethod

 def fetch(path):

 pass

Now, we can add an implementation class called URLFetcher to fetch content from
a web page or resource:

class URLFetcher(ResourceContentFetcher):

 """

 Implement the Implementor interface and define its \

 concrete

 implementation.

 """

 def fetch(self, path):

 # path is an URL

 req = urllib.request.Request(path)

 with urllib.request.urlopen(req) as response:

 if response.code == 200:

 the_page = response.read()

 print(the_page)

We can also add an implementation class called LocalFileFecher to fetch content
from a file on the local filesystem:

class LocalFileFetcher(ResourceContentFetcher):

 """

 Implement the Implementor interface and define its \

 concrete

 implementation.

 """

 def fetch(self, path):

 # path is the filepath to a text file

 with open(path) as f:

 print(r.read())

Implementation 477

Based on that, our main function for showing content using both content fetchers could
look like the following:

def main():

 url_fetcher = URLFetcher()

 iface = ResourceContent(url_fetcher)

 iface.show_content('http://python.org')

 print('===================')

 localfs_fetcher = LocalFileFetcher()

 iface = ResourceContent(localfs_fetcher)

 iface.show_content('file.txt')

Overall, our process could be summarized in the following UML diagram,
where LocalFileFetcher and URLFetcher both inherit from
ResrouceContentFetcher, and ResourceContent stores a Fetcher object
in its _imp field:

Figure 21.1 — UML diagram of the content-fetching application

Let's see a summary for the complete code of our example (the bridge.py file):

1. We import the three modules we need for the program (abc, urllib.parse, and
urllib.request).

2. We define the ResourceContent class for the interface of the abstraction.
3. We define the ResourceContentFetcher class for the implementator.

478 The Bridge Pattern

4. We define two implementation classes:

 � URLFetcher for fetching content from a URL

 � LocalFileFetcher for fetching content from the local filesystem

5. Finally, we add the main() function, as shown previously, and the usual trick
to call it.

Here is some sample output when executing the python bridge.py command:

[output truncated]

des.js"></script>\n\n <script type="text/javascript"

src="/static/js/main-min.dd72c1659644.js" charset="utf-

8"></script>\n \n\n <!--[if lte IE 7]>\n <script

type="text/javascript" src="/static/js/plugins/IE8-

min.8af6e26c7a3b.js" charset="utf-8"></script>\n \n

\n <![endif]-->\n\n <!--[if lte IE 8]>\n <script

type="text/javascript"

src="/static/js/plugins/getComputedStyle-

min.d41d8cd98f00.js" charset="utf-8"></script>\n \n

\n <![endif]-->\n\n \n\n \n

\n\n</body>\n</html>\n'

===================

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Proin in nibh in enim euismod mattis placerat in velit.

Donec malesuada risus sed venenatis pharetra. Proin

tincidunt porttitor euismod. Etiam non odio sodales,

tincidunt elit ac, sodales nisi. Donec massa felis,

pharetra ut libero nec, consectetur venenatis dui.

Phasellus nec sem non erat ultricies finibus. Donec sed

blandit arcu. Aliquam erat volutpat. Donec aliquam ipsum

risus, et accumsan nibh faucibus non. Aenean faucibus

feugiat diam vitae rutrum. Sed ullamcorper leo sed orci

efficitur rhoncus.

Duis vitae dolor vestibulum nibh semper faucibus. Vivamus

libero quam, ultrices quis sapien vel, blandit ultricies

purus. Nunc nisl lorem, rutrum id aliquam nec, dictum non

Summary 479

ligula. Duis ullamcorper, nulla quis luctus commodo, massa

lorem tristique orci, quis aliquam diam est semper nisi.

Maecenas tempor odio auctor nulla efficitur, non convallis

tellus iaculis. Fusce quis purus nibh. Nulla tempor est vel

metus sodales, in dapibus risus molestie. Donec tristique

tellus in pretium pulvinar. Pellentesque ut vehicula

mauris. Vivamus pellentesque, tellus in dictum vehicula,

justo ex volutpat sem, at cursus nisl elit non ex. Sed sed

leo eget eros lobortis laoreet. Sed ornare vitae mi a

vestibulum. Suspendisse potenti. Donec sed ligula ac enim

mattis posuere.

This is a basic illustration of how, using the bridge pattern in your design, you can extract
content from different sources and integrate the results in the same data manipulation
system or user interface.

Summary
In this chapter, we discussed the bridge pattern. Sharing similarities with the adapter
pattern, the bridge pattern differs in the sense that it is used upfront to define
an abstraction and its implementation in a decoupled way so that both can vary
independently.

The bridge pattern is useful when writing software for problem domains such as OSs,
device drivers, GUIs, and website builders where we have multiple themes, and we need
to change the theme of a website based on certain properties.

To help you understand this pattern, we discussed an example in the domain of content
extraction and management, where we defined an interface for the abstraction, an
interface for the Implementor, and two implementations.

In the next chapter, we are going to cover the façade pattern.

Questions
1. What is the main motivation for the bridge pattern?
2. How does the bridge pattern differ from the adapter pattern?
3. How is the bridge pattern implemented in the Python example of content extraction

we considered?

22
The Façade Pattern

In the previous chapter, we covered a third structural pattern, the bridge pattern, which
helps to define an abstraction and its implementation in a decoupled way, so that both
can vary independently. Now, we will learn about another structural pattern, the façade
pattern, which achieves an important goal in many software use cases: hiding the inner
workings of an application and only giving access to what is necessary.

In the chapter, we will discuss the following topics:

• Understanding the façade pattern

• Real-world examples

• Use cases

• Implementation

Throughout this chapter, we will see why façade is a good pattern to employ and what its
benefits are, and as always, implement a hands-on example in Python.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter22.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter22
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter22
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter22

482 The Façade Pattern

Understanding the façade pattern
As systems evolve, they can get very complex. It is not unusual to end up with a very large
(and sometimes confusing) collection of classes and interactions. In many cases, we don't
want to expose this complexity to the client. This is where façade comes to our rescue.

The façade design pattern helps us to hide the internal complexity of our systems and
expose only what is necessary to the client through a simplified interface. In essence, a
façade is an abstraction layer implemented over an existing complex system.

Let's take the example of a computer to illustrate things. A computer is a complex machine
that depends on several parts to be fully functional. To keep things simple, the word
computer, in this case, refers to an IBM derivative that uses a von Neumann architecture.
Booting a computer is a particularly complex procedure. The CPU, main memory, and
hard disk need to be up and running, the boot loader must be loaded from the hard disk
to the main memory, the CPU must boot the operating system (OS) kernel, and so forth.
Instead of exposing all this complexity to the client, we create a façade that encapsulates
the whole procedure, making sure that all steps are executed in the right order.

In terms of object design and programming, we should have several classes, but only
the Computer class needs to be exposed to the client code. The client will only have to
execute the start() method of the Computer class, for example, and all the other
complex parts are taken care of by the façade Computer class.

Let's discuss more real-life examples of the façade pattern in the next section.

Real-world examples
The façade pattern is quite common in life. When you call a bank or a company, you
are usually first connected to the customer service department. The customer service
employee acts as a façade between you and the actual department (billing, technical
support, general assistance, and so on), and the employee that will help you with your
specific problem.

Another example is the key used to turn on a car or motorcycle, which can also be
considered a façade. It is a simple way of activating a system that is very complex
internally. And, of course, the same is true for other complex electronic devices that
we can activate with a single button, such as computers.

In software, the django-oscar-datacash module is a Django third-party module
that integrates with the DataCash payment gateway. The module has a gateway class that
provides fine-grained access to the various DataCash APIs. On top of that, it also offers a
façade class that provides a less granular API (for those who don't want to mess with the
details), and the ability to save transactions for auditing purposes.

Use cases 483

In the next section, we will see why the façade pattern is important in software.

Use cases
The most common reason to use the façade pattern is to provide a single, simple entry
point to a complex system. By introducing a façade, the client code can use a system by
simply calling a single method/function. At the same time, the internal system does not
lose any functionality; it just encapsulates it.

Not exposing the internal functionality of a system to the client code gives us an extra
benefit: we can introduce changes to the system, but the client code remains unaware of
and unaffected by the changes. No modifications are required to the client code.

The façade is also useful if you have more than one layer in your system. You can introduce
one façade entry point per layer, and let all layers communicate with each other through
their façades. This, in turn, promotes loose coupling and keeps the layers as independent
as possible.

With that, we are now ready to try our hand at an actual implementation example in the
next section.

Implementation
Assume that we want to create an OS using a multiserver approach, similar to how it is
done in MINIX 3 (j.mp/minix3) or GNU Hurd (j.mp/gnuhurd). A multiserver OS
has a minimal kernel, called the microkernel, which runs in privileged mode. All the other
services of the system are following a server architecture (driver server, process server, file
server, and so forth). Each server belongs to a different memory address space and runs
on top of the microkernel in user mode. The pros of this approach are that the OS can
become more fault-tolerant, reliable, and secure. For example, since all drivers are running
in user mode on a driver server, a bug in a driver cannot crash the whole system, nor can
it affect the other servers. The cons of this approach are the performance overhead and the
complexity of system programming. These are a result of the communication happening
between a server and the microkernel, as well as between the independent servers, using
message passing. Message passing is more complex than the shared memory model used
in monolithic kernels, such as Linux (j.mp/helenosm).

http://j.mp/minix3
http://j.mp/gnuhurd
http://j.mp/helenosm

484 The Façade Pattern

We begin with a Server interface. An Enum parameter describes the different possible
states of a server. We use the Abstract Base Class (ABC) module to forbid direct
instantiation of the Server interface and make the fundamental boot() and kill()
methods mandatory, assuming that different actions are needed to be taken for booting,
killing, and restarting each server. If you have not used the ABC module before, note the
following important things:

• We need to subclass ABCMeta using the metaclass keyword.

• We use the @abstractmethod decorator for stating which methods should be
implemented (mandatory) by all subclasses of the server.

Try removing the boot() or kill() method of a subclass and see what happens. Do
the same after removing the @abstractmethod decorator as well. Do things work as
you expected?

Let's consider the following code:

 State = Enum('State', 'new running sleeping restart \

 zombie')

 class Server(metaclass=ABCMeta):

 @abstractmethod

 def __init__(self):

 pass

 def __str__(self):

 return self.name

 @abstractmethod

 def boot(self):

 pass

 @abstractmethod

 def kill(self, restart=True):

 pass

Implementation 485

A modular OS can have a great number of interesting servers: a file server, a process
server, an authentication server, a network server, a graphical/window server, and so forth.
The following example includes two stub servers: FileServer and ProcessServer.
Apart from the methods required to be implemented by the Server interface, each server
can have its own specific methods. For instance, FileServer has a create_file()
method for creating files, and ProcessServer has a create_process() method for
creating processes.

The FileServer class is as follows:

class FileServer(Server):

 def __init__(self):

 '''actions required for initializing the file \

 server'''

 self.name = 'FileServer'

 self.state = State.new

 def boot(self):

 print(f'booting the {self}')

 '''actions required for booting the file server'''

 self.state = State.running

 def kill(self, restart=True):

 print(f'Killing {self}')

 '''actions required for killing the file server'''

 self.state = State.restart if restart else \

 State.zombie

 def create_file(self, user, name, permissions):

 '''check validity of permissions, user rights, \

 etc.'''

 print(f"trying to create the file '{name}' for \

 user '{user}' with permissions {permissions}")

486 The Façade Pattern

The ProcessServer class is as follows:

class ProcessServer(Server):

 def __init__(self):

 '''actions required for initializing the process \

 server'''

 self.name = 'ProcessServer'

 self.state = State.new

 def boot(self):

 print(f'booting the {self}')

 '''actions required for booting the process \

 server'''

 self.state = State.running

 def kill(self, restart=True):

 print(f'Killing {self}')

 '''actions required for killing the process \

 server'''

 self.state = State.restart if restart else \

 State.zombie

 def create_process(self, user, name):

 '''check user rights, generate PID, etc.'''

 print(f"trying to create the process '{name}' for \

 user '{user}'")

The OperatingSystem class is a façade. In its __init__() method, all the necessary
server instances are created. The start() method, used by the client code, is the entry
point to the system. More wrapper methods can be added, if necessary, as access points
to the services of the servers, such as the create_file(), and create_process()
wrappers. From the client's point of view, all those services are provided by the
OperatingSystem class. The client should not be confused by unnecessary details
such as the existence of servers and the responsibility of each server.

Implementation 487

The code for the OperatingSystem class is as follows:

class OperatingSystem:

 '''The Facade'''

 def __init__(self):

 self.fs = FileServer()

 self.ps = ProcessServer()

 def start(self):

 [i.boot() for i in (self.fs, self.ps)]

 def create_file(self, user, name, permissions):

 return self.fs.create_file(user, name, permissions)

 def create_process(self, user, name):

 return self.ps.create_process(user, name)

As you are going to see in a minute, when we present a summary of the example, there are
many dummy classes and servers. They are there to give you an idea about the required
abstractions (User, Process, File, and so forth) and servers (WindowServer,
NetworkServer, and so forth) for making the system functional. A recommended
exercise is to implement at least one service of the system (for example, file creation). Feel
free to change the interface and the signature of the methods to fit your needs. Make sure
that after your changes, the client code does not need to know anything other than the
façade OperatingSystem class.

488 The Façade Pattern

This application could be summarized in the following UML diagram, where
OperatingSystem interacts with both FileServer and ProcessServer,
hiding their methods away from the client code:

Figure 22.1 — UML diagram for the OS example

We are going to recapitulate the details of our implementation example; the full code is in
the facade.py file:

1. We start with the imports we need:

from enum import Enum

from abc import ABCMeta, abstractmethod

2. We define the State constant using Enum, as shown earlier.
3. We then add the User, Process, and File classes, which do nothing in this

minimal but functional example:

class User:

 pass

class Process:

Implementation 489

 pass

class File:

 pass

4. We define the base Server class, as shown earlier.
5. We then define the FileServer class and the ProcessServer class, which are

both subclasses of Server.
6. We add two other dummy classes, WindowServer and NetworkServer:

class WindowServer:

 pass

class NetworkServer:

 pass

7. Then, we define our façade class, OperatingSystem, as shown earlier.
8. Finally, here is the main part of the code, where we use the façade we have defined:

def main():

 os = OperatingSystem()

 os.start()

 os.create_file('foo', 'hello', '-rw-r-r')

 os.create_process('bar', 'ls /tmp')

if __name__ == '__main__':

 main()

As you can see, executing the python facade.py command shows the starting
message of our two stub servers:

booting the FileServer

booting the ProcessServer

trying to create the file 'hello' for user 'foo' with

permissions -rw-r-r

trying to create the process 'ls /tmp' for user 'bar'

490 The Façade Pattern

The façade OperatingSystem class does a good job. The client code can create files and
processes without needing to know internal details about the OS, such as the existence of
multiple servers. To be precise, the client code can call the methods for creating files and
processes, but they are currently dummies. As an interesting exercise, you can implement
one of the two methods, or even both.

Summary
In this chapter, we have learned how to use the façade pattern. This pattern is ideal for
providing a simple interface to client code that wants to use a complex system but does
not need to be aware of the system's complexity. We discussed a Django third-party
module that uses façade: django-oscar-datacash. It uses the façade pattern to
provide a simple DataCash API and the ability to save transactions.

We also learned how to implement the interface used by a multiserver OS. Overall,
we learned that a façade is an elegant way of hiding the complexity of a system because,
in most cases, the client code should not be aware of such details.

In the next chapter, we will cover other structural design patterns.

Questions
1. What are the high-level benefits of using the façade pattern?
2. How does using the façade pattern help when it comes to making changes to

an application?
3. How is the façade pattern implemented in the Python example of the OS

we considered?

Further reading
Design Patterns by Gamma Enrich, Helm Richard, Johnson Ralph, and Vlissides
John available at https://www.amazon.com/Design-Patterns-Object-
Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

23
Other Structural

Patterns
Besides the patterns we covered in the previous chapters, there are other structural
patterns we can cover: flyweight, model-view-controller (MVC), and proxy. These
patterns are different from those discussed in previous chapters. The flyweight pattern is
an optimization design pattern that's suitable for memory usage minimization. The MVC
pattern, on the other hand, is popular in object-orient programming and is designed
to separate different parts of a larger application. Finally, the proxy pattern is used to
maintain actions that are taken on important objects.

These three patterns will complete our discussion on structural patterns.

In this chapter, we will cover the following topics:

• Implementing the flyweight pattern

• Implementing the model-view-controller pattern

• Applying the proxy pattern

By the end of this chapter, we will have gained an overall understanding of various
structural patterns and the use cases of each.

492 Other Structural Patterns

Technical requirements
The code files for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter23.

Implementing the flyweight pattern
What is the flyweight pattern? Object-oriented systems can face performance issues due
to the overhead of object creation. Performance issues usually appear in embedded
systems with limited resources, such as smartphones and tablets. They can also appear
in large and complex systems where we need to create a very large number of objects
(and possibly users) that need to coexist at the same time. The flyweight pattern teaches
programmers how to minimize memory usage by sharing resources with similar objects
as much as possible.

Whenever we create a new object, extra memory needs to be allocated. Although virtual
memory provides us, theoretically, with unlimited memory, the reality is different. If
all the physical memory of a system gets exhausted, it will start swapping pages with
the secondary storage – usually a hard disk drive (HDD) – which, in most cases, is
unacceptable due to the performance differences between the main memory and the
HDD. Solid-state drives (SSDs) generally have better performance than HDDs, but not
everybody is expected to use SSDs. So, SSDs are not going to completely replace HDDs
anytime soon.

Apart from memory usage, performance is also a consideration. Graphics software,
including computer games, should be able to render 3D information (for example, a
forest with thousands of trees, a village full of soldiers, or an urban area with a lot of cars)
extremely quickly. If each object in a 3D terrain is created individually and no data
sharing is used, the performance will be prohibitive.

As software engineers, we should solve software problems by writing better software, instead
of forcing the customer to buy extra or better hardware. The flyweight design pattern is a
technique that's used to minimize memory usage and improve performance by introducing
data sharing between similar objects (http://j.mp/wflyw). A flyweight is a shared
object that contains state-independent, immutable (also known as intrinsic) data. The
state-dependent, mutable (also known as extrinsic) data should not be part of the flyweight
pattern because this information cannot be shared since it differs per object. If the flyweight
pattern needs extrinsic data, it should be provided explicitly by the client code.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter23
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter23
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter23
http://j.mp/wflyw

Implementing the flyweight pattern 493

An example may help clarify how the flyweight pattern can be used practically. Let's
assume that we are creating a performance-critical game, such as a first-person shooter
(FPS). In FPS games, the players (soldiers) share some states, such as representation
and behavior. In Counter-Strike, for instance, all the soldiers on the same team (counter-
terrorists versus terrorists) look the same (representation). In the same game, all the
soldiers (on both teams) have some common actions, such as jump, duck, and so forth
(behavior). This means that we can create a flyweight that will contain all of the common
data. Of course, the soldiers also have a lot of data that is different per soldier and will not
be a part of the flyweight, such as weapons, health, and location.

What are other real-world examples of the flyweight pattern? We will discuss them in the
next section.

Real-world examples
Flyweight is an optimization design pattern. Therefore, it is not easy to find a good
non-computing example of it. We can think of flyweight as caching in real life. For
example, many bookstores have dedicated shelves containing the newest and most popular
publications. This is a cache: first, you can look at the dedicated shelves for the book you
are looking for, and if you cannot find it, you can ask the bookseller to assist you.

The Exaile music player uses flyweight to reuse objects (in this case, music tracks) that are
identified by the same URL. There's no point in creating a new object if it has the same
URL as an existing object, so the same object is reused to save resources.

Peppy, an XEmacs-like editor that's implemented in Python, uses the flyweight pattern to
store the state of a major mode status bar. That's because, unless they're modified by the
user, all the status bars share the same properties.

Use cases
Flyweight is all about improving performance and memory usage. All embedded systems
(phones, tablets, games consoles, microcontrollers, and so forth) and performance-critical
applications (games, 3D graphics processing, real-time systems, and so forth) can benefit
from it.

494 Other Structural Patterns

The Gang of Four (GoF) book lists the following requirements that need to be satisfied to
effectively use the flyweight pattern:

• The application needs to use many objects.

• There are so many objects that it's too expensive to store/render them. Once the
mutable state is removed (because if it is required, it should be passed explicitly to
the flyweight pattern by the client code), many groups of distinct objects can be
replaced by relatively few shared objects.

• Object identity is not important for the application. We cannot rely on object
identity because object sharing causes identity comparisons to fail (objects that
appear different to the client code end up having the same identity).

Now, let's look at our hands-on implementation of the flyweight pattern.

Implementation
Let's see how we can implement the example that we briefly mentioned in the introduction
to this section for cars in an area. We will create a small car park to illustrate the idea,
making sure that the whole output can be read on a single Terminal page. However, no
matter how large you make the car park, the memory allocation stays the same.

Before diving into the code, let's spend a moment noting the differences between
memoization and the flyweight pattern. Memoization is an optimization technique that uses
a cache to avoid recomputing results that were already computed in an earlier execution step.
Memoization does not focus on a specific programming paradigm such as object-oriented
programming (OOP). In Python, memoization can be applied to both methods and simple
functions. Flyweight is an OOP-specific optimization design pattern that focuses on sharing
object data.

First, we need an Enum parameter that describes the three different types of cars that are
in the car park:

CarType = Enum('CarType', 'subcompact compact suv')

Then, we will define the class at the core of our implementation: Car. The pool variable is
the object pool (in other words, our cache). Notice that pool is a class attribute (a variable
that's shared by all instances).

Implementing the flyweight pattern 495

Using the __new__() special method, which is called before __init__(), we are
converting the Car class into a metaclass that supports self-references. This means that
cls references the Car class. When the client code creates an instance of Car, it passes
the type of the car as car_type. The car's type is used to check if a car of the same
type has already been created. If that's the case, the previously created object is returned;
otherwise, the new car type is added to the pool and returned:

class Car:

 pool = dict()

 def __new__(cls, car_type):

 obj = cls.pool.get(car_type, None)

 if not obj:

 obj = object.__new__(cls)

 cls.pool[car_type] = obj

 obj.car_type = car_type

 return obj

The render() method is what will be used to render a car on the screen. Notice how all
the mutable information not known by flyweight needs to be explicitly passed by the client
code. In this case, a random color and the coordinates of a location (of the x, y form) are
used for each car.

Also, note that to make render() more useful, it is necessary to ensure that no cars are
rendered on top of each other. Consider this as an exercise: if you want to make rendering
more fun, you can use a graphics toolkit such as Tkinter, Pygame, or Kivy.

The render() method is defined as follows:

 def render(self, color, x, y):

 type = self.car_type

 msg = f'render a car of type {type} and color \

 {color} at ({x}, {y})'

 print(msg)

The main() function shows how we can use the flyweight pattern. The color of a car is a
random value from a predefined list of colors. The coordinates use random values between
1 and 100. As we will see shortly, although 18 cars are rendered, memory is only allocated
for 3. The last line of the output, which we will see later, proves that when using flyweight,
we cannot rely on object identity.

496 Other Structural Patterns

The id() function returns the memory address of an object. This is not the default
behavior in Python because, by default, id() returns a unique ID (the memory address
of an object as an integer) for each object. In our case, even if two objects appear to be
different, they have the same identity if they belong to the same flyweight family (in this
case, the family is defined by car_type). Of course, different identity comparisons can
still be used for objects of different families, but that is only possible if the client knows
the implementation details.

Our example main() function's code is as follows:

def main():

 rnd = random.Random()

 colors = 'white black silver gray red blue brown \

 beige yellow green'.split()

 min_point, max_point = 0, 100

 car_counter = 0

 for _ in range(10):

 c1 = Car(CarType.subcompact)

 c1.render(random.choice(colors),

 rnd.randint(min_point, max_point),

 rnd.randint(min_point, max_point))

 car_counter += 1

 ...

 print(f'cars rendered: {car_counter}')

 print(f'cars actually created: {len(Car.pool)}')

 c4 = Car(CarType.subcompact)

 c5 = Car(CarType.subcompact)

 c6 = Car(CarType.suv)

 print(f'{id(c4)} == {id(c5)}? {id(c4) == id(c5)}')

 print(f'{id(c5)} == {id(c6)}? {id(c5) == id(c6)}')

Implementing the flyweight pattern 497

Here is the full code listing (the flyweight.py file) to show you how the flyweight
pattern is implemented and used:

1. First, we need a couple of imports:

import random

from enum import Enum

2. The Enum for the types of cars is shown here:

CarType = Enum('CarType', 'subcompact compact suv')

3. Then, we have the Car class, with its pool attribute and the __new__() and
render() methods:

class Car:

 pool = dict()

 def __new__(cls, car_type):

 obj = cls.pool.get(car_type, None)

 if not obj:

 obj = object.__new__(cls)

 cls.pool[car_type] = obj

 obj.car_type = car_type

 return obj

 def render(self, color, x, y):

 type = self.car_type

 msg = f'render a car of type {type} and \

 color {color} at ({x}, {y})'

 print(msg)

4. In the first part of the main function, we define some variables and render a set of
cars of the subcompact type:

def main():

 rnd = random.Random()

 colors = 'white black silver gray red blue \

 brown beige yellow green'.split()

 min_point, max_point = 0, 100

498 Other Structural Patterns

 car_counter = 0

 for _ in range(10):

 c1 = Car(CarType.subcompact)

 c1.render(random.choice(colors),

 rnd.randint(min_point, max_point),

 rnd.randint(min_point, max_point))

 car_counter += 1

5. The second part of the main function is as follows, which renders another set of
cars of the compact type:

for _ in range(3):

 c2 = Car(CarType.compact)

 c2.render(random.choice(colors),

 rnd.randint(min_point, max_point),

 rnd.randint(min_point, max_point))

 car_counter += 1

6. The third part of the main function is as follows, this time with suv cars:

for _ in range(5): c3 = Car(CarType.suv)

 c3.render(random.choice(colors),

 rnd.randint(min_point, max_point),

 rnd.randint(min_point, max_point))

 car_counter += 1

 print(f'cars rendered: {car_counter}')

 print(f'cars actually created: {len(Car.pool)}')

7. Finally, here is the fourth part of the main function, where we create three
additional cars of the three types:

c4 = Car(CarType.subcompact)

c5 = Car(CarType.subcompact)

c6 = Car(CarType.suv)

print(f'{id(c4)} == {id(c5)}? {id(c4) == id(c5)}')

print(f'{id(c5)} == {id(c6)}? {id(c5) == id(c6)}')

Implementing the flyweight pattern 499

8. We do not forget our usual __name__ == '__main__' trick and good practice,
as follows:

if __name__ == '__main__':

 main()

The execution of the Python flyweight.py command shows the type, random color,
and coordinates of the rendered objects, as well as the identity comparison results between
flyweight objects of the same/different families:

render a car of type CarType.subcompact and color yellow at

(57, 51)

render a car of type CarType.subcompact and color blue at

(10, 61)

render a car of type CarType.subcompact and color gray at

(65, 74)

render a car of type CarType.subcompact and color red at

(10, 19)

render a car of type CarType.subcompact and color green at

(89, 5)

render a car of type CarType.subcompact and color green at

(88, 76)

render a car of type CarType.subcompact and color black at

(0, 18)

render a car of type CarType.subcompact and color silver at

(43, 12)

render a car of type CarType.subcompact and color red at

(25, 71)

render a car of type CarType.subcompact and color blue at

(68, 38)

render a car of type CarType.compact and color white at

(79, 48)

render a car of type CarType.compact and color green at

(18, 93)

render a car of type CarType.compact and color brown at

(71, 43)

render a car of type CarType.suv and color silver at

(2, 71)

500 Other Structural Patterns

render a car of type CarType.suv and color blue at (70, 42)

render a car of type CarType.suv and color silver at

(100, 98)

render a car of type CarType.suv and color gray at (83, 49)

render a car of type CarType.suv and color brown at (77, 2)

cars rendered: 18

cars actually created: 3

140569248959360 == 140569248959360? True

140569248959360 == 140569298067216? False

Do not expect to see the same output since the colors and coordinates are random, and the
object identities depend on the memory map.

This program marks the end of our discussion of the flyweight pattern. In the next section,
we will learn about the MVC pattern.

Implementing the model-view-controller
pattern
The MVC pattern is useful mainly in application development and helps developers
improve the maintainability of their applications by avoiding mixing the business logic
with the user interface.

One of the design principles related to software engineering is the separation of concerns
(SoC) principle. The idea behind the SoC principle is to split an application into distinct
sections, where each section addresses a separate concern. Examples of such concerns
are the layers that are used in a layered design (data access layer, business logic layer,
presentation layer, and so forth). Using the SoC principle simplifies the development
and maintenance of software applications.

The MVC pattern is nothing more than the SoC principle applied to OOP. The name
of the pattern comes from the three main components that are used to split a software
application: the model, the view, and the controller. MVC is considered an architectural
pattern rather than a design pattern. The difference between an architectural and a design
pattern is that the former has a broader scope than the latter. Nevertheless, MVC is too
important to skip just for this reason. Even if we will never have to implement it from
scratch, we need to be familiar with it because all common frameworks use MVC or
a slightly different version of it (more on this shortly).

Implementing the model-view-controller pattern 501

The model is the core component. It represents knowledge. It contains and manages the
(business) logic, data, state, and rules of an application. The view is a visual representation
of the model. Examples of views include a computer GUI, the text output of a computer
terminal, a smartphone's application GUI, a PDF document, a pie chart, a bar chart, and
so forth. The view only displays the data; it doesn't handle it. The controller is the link/
glue between the model and view. All communication between the model and the view
happens through a controller.

A typical use case for an application that uses MVC, after the initial screen is rendered for
the user, is as follows:

1. The user triggers a view by clicking (typing, touching, and so on) a button.
2. The view informs the controller of the user's action.
3. The controller processes user input and interacts with the model.
4. The model performs all the necessary validation and state changes and informs the

controller about what should be done.
5. The controller instructs the view to update and display the output appropriately,

following the instructions that are given by the model.

This is summarized in the following diagram:

Figure 23.1 — An MVC diagram for a typical computer program

502 Other Structural Patterns

You might be wondering, why is the controller part necessary? Can't we just skip it? We
could, but then we would lose a big benefit that MVC provides: the ability to use more
than one view (even at the same time, if that's what we want) without modifying the
model. To achieve decoupling between the model and its representation, every view
typically needs a controller. If the model communicated directly with a specific view,
we wouldn't be able to use multiple views (or at least, not in a clean and modular way).

Now, let's see where the MVC pattern is used in the real world.

Real-world examples
As we mentioned previously, MVC is the SoC principle applied to OOP. The SoC principle
is used a lot in real life. For example, if you build a new house, you usually assign different
professionals to do the following:

• Install the plumbing and electricity

• Paint the house

Another example is a restaurant. In a restaurant, the waiters receive orders and serve
dishes to the customers, but the meals are cooked by the chefs.

In web development, several frameworks use the MVC idea:

• The Web2py framework (http://j.mp/webtopy) is a lightweight Python
framework that embraces the MVC pattern. If you have never tried Web2py, I
encourage you to do so since it is extremely simple to install. Many examples
demonstrate how MVC can be used in Web2py on the project's web page.

• Django is also an MVC framework, although it uses different naming conventions.
The controller is called view, and the view is called template. Django uses the name
Model-Template-View (MTV). According to the designers of Django, the view
describes what data is seen by the user, so it uses the name view as the Python
callback function for a particular URL. The term template in Django is used to
separate content from its representation. It describes how the data is seen by the
user, not which data is seen.

In the next section, we will detail the specific use cases of the MVC pattern.

http://j.mp/webtopy

Implementing the model-view-controller pattern 503

Use cases
MVC is a very generic and useful design pattern. All popular web frameworks (Django,
Rails, and Symfony or Yii) and application frameworks (iPhone SDK, Android, and
QT) make use of MVC or a variation of it – model-view-adapter (MVA), model-view-
presenter (MVP), and so forth. However, even if we don't use any of these frameworks,
it makes sense to implement the pattern on our own because of the benefits it provides,
which are as follows:

• The separation between the view and model allows graphic designers to focus on
the UI part and programmers to focus on development, without them interfering
with each other.

• Because of the loose coupling between the view and the model, each part can be
modified/extended without them affecting the other. For example, adding a new
view is trivial – just implement a new controller for it.

• Maintaining each part is easier because the responsibilities are clear.

When you implement MVC from scratch, ensure that you create smart models, thin
controllers, and dumb views.

A model is considered smart because it does the following:

• Contains all the validation/business rules/logic

• Handles the state of the application

• Has access to application data (database, cloud, and so on)

• Does not depend on the UI

A controller is considered thin because it does the following:

• Updates the model when the user interacts with the view

• Updates the view when the model changes

• Processes the data before delivering it to the model/view, if necessary

• Does not display the data

• Does not access the application data directly

• Does not contain validation/business rules/logic

504 Other Structural Patterns

A view is considered dumb because it does the following:

• Displays the data

• Allows the user to interact with it

• Does only minimal processing, usually provided by a template language (for example,
using simple variables and loop controls)

• Does not store any data

• Does not access the application data directly

• Does not contain validation/business rules/logic

If you are implementing MVC from scratch and want to find out if you did it right, you
can try answering some key questions:

• If your application has a GUI, is it skinnable? How easily can you change the skin/look
and feel of it? Can you give the user the ability to change the skin of your application
during runtime? If these tasks cannot be done easily, it means that something is
going wrong with your MVC implementation.

• If your application has no GUI (for instance, if it's a terminal application), how hard
is it to add GUI support? Or, if adding a GUI is irrelevant, is it easy to add views to
display the results in a chart (pie chart, bar chart, and so on) or a document (PDF,
spreadsheet, and so on)? If these changes are not trivial (a matter of creating a new
controller with a view attached to it, without modifying the model), MVC has not
been implemented properly.

If you make sure that these conditions are satisfied, your application will be more flexible
and maintainable compared to an application that does not use MVC. We'll look at an
example of this in the next section, where we will implement an application to maintain
a collection of quotes.

Implementation
I could use any of the common frameworks to demonstrate how to use MVC, but I feel
that the picture would be incomplete. So, I have decided to show you how to implement
MVC from scratch using a very simple example: a quote printer. The idea is extremely
simple. The user enters a number and sees the quote related to that number. The quotes
are stored in a quotes tuple. This is the data that normally exists in a database, a file,
and so on, and only the model has direct access to it.

Implementing the model-view-controller pattern 505

Let's consider the following code example:

quotes =

(

 'A man is not complete until he is married. Then he is \

 finished.',

 'As I said before, I never repeat myself.',

 'Behind a successful man is an exhausted woman.',

 'Black holes really suck...',

 'Facts are stubborn things.'

)

The model is minimalistic; it only has a get_quote() method that returns the quote
(string) of the quotes tuple based on its index, n. Note that n can be less than or equal
to 0, due to the way indexing works in Python:

class QuoteModel:

 def get_quote(self, n):

 try:

 value = quotes[n]

 except IndexError as err:

 value = 'Not found!'

 return value

The view has three methods:

• Show(), which is used to print a quote (or the message; that is, Not found!) on
the screen.

• error(), which is used to print an error message on the screen.

• select_quote(), which reads the user's selection.

This can be seen in the following code:

class QuoteTerminalView:

 def show(self, quote):

 print(f'And the quote is: "{quote}"')

 def error(self, msg):

 print(f'Error: {msg}')

506 Other Structural Patterns

 def select_quote(self):

 return input('Which quote number would you like \

 to see? ')

The controller does the coordination. The __init__() method initializes the model and
view. The run() method validates the quoted index that's been given by the user, gets
the quote from the model, and passes it back to the view to be displayed, as shown in the
following code:

class QuoteTerminalController:

 def __init__(self):

 self.model = QuoteModel()

 self.view = QuoteTerminalView()

 def run(self):

 valid_input = False

 while not valid_input:

 try:

 n = self.view.select_quote()

 n = int(n)

 valid_input = True

 except ValueError as err:

 self.view.error(f"Incorrect index '{n}'")

 quote = self.model.get_quote(n)

 self.view.show(quote)

Last but not least, the main() function initializes and fires the controller, as shown in the
following code:

def main():

 controller = QuoteTerminalController()

 while True:

 controller.run()

The following is the complete workflow for this example (the mvc.py file):

1. We start by defining a variable for the list of quotes.
2. We implement the model class, QuoteModel.
3. Then, we implement the view class, QuoteTerminalView.

Applying the proxy pattern 507

4. Finally, we implement the controller class, QuoteTerminalController.
5. At the end of our example code with the main() function, we initialize and run

the controller.

The following sample execution of the Python mvc.py command shows how the
program prints out quotes for the user:

Which quote number would you like to see? 2

And the quote is: "Behind a successful man is an exhausted

woman."

Which quote number would you like to see? 4

And the quote is: "Facts are stubborn things."

Which quote number would you like to see? 1

And the quote is: "As I said before, I never repeat

myself."

Which quote number would you like to see? 6

And the quote is: "Not found!"

Which quote number would you like to see? 3

And the quote is: "Black holes really suck..."

Which quote number would you like to see? 0

And the quote is: "A man is not complete until he is

married. Then he is finished."

Which quote number would you like to see?

Here, we can see that everything is working as intended!

And with that, we will move on to the last topic of this chapter: the proxy pattern.

Applying the proxy pattern
In some applications, we want to execute one or more important actions before accessing
an object. This is where the proxy pattern comes in. An example is accessing sensitive
information. Before we allow any user to access sensitive information, we want to make
sure that the user has sufficient privileges. The important action is not necessarily related
to security issues. Lazy initialization (http://j.mp/wikilazy) is another case; we
want to delay the creation of a computationally expensive object until the first time the
user needs to use it. The idea of the proxy pattern is to help with performing such an
action before accessing the actual object.

http://j.mp/wikilazy

508 Other Structural Patterns

The proxy design pattern gets its name from the proxy (also known as surrogate) object,
which is used to perform an important action before the actual object is accessed.
There are four different well-known proxy types (http://j.mp/proxypat). They
are as follows:

• A remote proxy, which acts as the local representation of an object that exists in
a different address space (for example, a network server).

• A virtual proxy, which uses lazy initialization to defer the creation of a
computationally expensive object until the moment it is needed.

• A protection/protective proxy, which controls access to a sensitive object.

• A smart (reference) proxy, which performs extra actions when an object is accessed.
Examples of such actions include reference counting and thread-safety checks.

I find virtual proxies very useful, so let's look at an example of how we can implement
them in Python right now. In the Implementation subsection of this section, you will
learn how to create protective proxies.

There are many ways to create a virtual proxy in Python, but I always like focusing on the
idiomatic/Pythonic implementations. The code shown here is based on the great answer
by Cyclone, a user of the following site: http://stackoverflow.com/ (http://j.
mp/solazyinit). To avoid confusion, I should clarify that in this section, the terms
property, variable, and attribute are used interchangeably.

First, we must create a LazyProperty class that can be used as a decorator. When it
decorates a property, LazyProperty loads the property lazily (on the first use), instead
of instantly. The __init__() method creates two variables that are used as aliases
to the method that initializes a property. The method variable is an alias to the actual
method, while the method_name variable is an alias to the method's name. To get a
better understanding of how the two aliases are used, print their values to the output
(uncomment the two commented lines in the following code):

class LazyProperty:

 def __init__(self, method):

 self.method = method

 self.method_name = method.__name__

 # print(f"function overriden: {self.fget}")

 # print(f"function's name: {self.func_name}")

http://j.mp/proxypat
http://stackoverflow.com/
http://j.mp/solazyinit
http://j.mp/solazyinit

Applying the proxy pattern 509

The LazyProperty class is a descriptor (http://j.mp/pydesc). Descriptors are
the recommended mechanisms to use in Python to override the default behavior of
its attribute access methods: __get__(), __set__(), and __delete__(). The
LazyProperty class only overrides __set__() because that is the only access method
it needs to override. In other words, we don't have to override all the access methods. The
__get__() method accesses the value of the property the underlying method wants to
assign and uses setattr() to do the assignment manually.

What __get()__does is very neat: it replaces the method with the value! This means
that not only is the property lazily loaded, but it can also only be set once. We will see what
this means in a moment. Again, uncomment the commented line in the following code to
get some extra information:

def __get__(self, obj, cls):

 if not obj:

 return None

 value = self.method(obj)

 # print(f'value {value}')

 setattr(obj, self.method_name, value)

 return value

The Test class shows how we can use the LazyProperty class. There are three
attributes: x, y, and _resource. We want the _resource variable to be loaded lazily;
thus, we must initialize it to None, as shown in the following code:

class Test:

 def __init__(self):

 self.x = 'foo'

 self.y = 'bar'

 self._resource = None

The resource() method is decorated with the LazyProperty class. For
demonstration purposes, the LazyProperty class initializes the _resource attribute
as a tuple, as shown in the following code. Normally, this would be a slow/expensive
initialization process (database, graphics, and so on):

@LazyProperty

def resource(self):

 print(f'initializing self._resource which is: \

 {self._resource}')

 self._resource = tuple(range(5)) # expensive

 return self._resource

http://j.mp/pydesc

510 Other Structural Patterns

The main() function, as follows, shows how lazy initialization behaves:

def main():

 t = Test()

 print(t.x)

 print(t.y)

 # do more work...

 print(t.resource)

 print(t.resource)

Notice how overriding the __get()__ access method makes it possible to treat the
resource() method as a simple attribute (we can use t.resource instead of
t.resource()).

In the execution output of this example (the lazy.py file), we can see the following:

• The _resource variable is initialized not by the time the t instance is created,
but the first time that we use t.resource.

• The second time t.resource is used, the variable is not initialized again.
That's why the initialization string that's initializing self._resource is shown
only once.

Here is the output we get when we execute the Python lazy.py command:

foo

bar

initializing self._resource which is: None

(0, 1, 2, 3, 4)

(0, 1, 2, 3, 4)

There are two basic, different kinds of lazy initialization in OOP. They are as follows:

• At the instance level: This means that an object's property is initialized lazily, but
the property has an object scope. Each instance (object) of the same class has its
own (different) copy of the property.

• At the class or module level: In this case, we do not want a different copy per
instance, but all the instances share the same property, which is lazily initialized. This
case is not covered in this chapter. If you find it interesting, consider it as an exercise.

Now, let's see what real-world examples follow the proxy pattern.

Applying the proxy pattern 511

Real-world examples
Chip (also known as Chip and PIN) cards (http://j.mp/wichpin) offer a good
example of how a protective proxy is used in real life. A debit/credit card contains a chip
that needs to be read by the ATM or card reader. Once the chip has been verified,
a password (PIN) is required to complete the transaction. This means that you cannot
make any transactions without physically presenting the card and knowing the PIN.

A bank check, which is used instead of cash to make purchases and deals, is an example
of a remote proxy. The check gives access to a bank account.

In software, the weakref module of Python contains a proxy() method, which accepts
an input object and returns a smart proxy to it. Weak references are the recommended way
to add reference-counting support to an object.

Use cases
Since there are at least four common proxy types, the proxy design pattern has many use
cases, as follows:

• It is used to create a distributed system using either a private network or the cloud.
In a distributed system, some objects exist in the local memory, while other objects
exist in the memory of remote computers. If we don't want the client code to be
aware of such differences, we can create a remote proxy that hides/encapsulates
them, making the distributed nature of the application transparent.

• It is used when our application is suffering from performance issues due to the early
creation of expensive objects. Introducing lazy initialization using a virtual proxy
to create the objects only at the moment they are required can give us significant
performance improvements.

• It is used to check if a user has sufficient privileges to access a piece of information.
If our application handles sensitive information (for example, medical data),
we want to make sure that the user who's trying to access/modify it is allowed
to do so. A protection/protective proxy can handle all security-related actions.

• It is used when our application (or library, toolkit, framework, and so forth)
uses multiple threads and we want to move the burden of thread safety from the
client code to the application. In this case, we can create a smart proxy to hide the
thread-safety complexities from the client.

http://j.mp/wichpin

512 Other Structural Patterns

• An object-relational mapping (ORM) API is also an example of how to use a
remote proxy. Many popular web frameworks, including Django, use an ORM
to provide OOP-like access to a relational database. An ORM acts as a proxy to a
relational database that can be located anywhere, either at a local or remote server.

Now, let's apply the proxy pattern to build a simple interface that provides example
users' information.

Implementation
To demonstrate the proxy pattern, we will implement a simple protection proxy to view
and add users. The service provides two options:

• Viewing the list of users: This operation does not require special privileges.

• Adding a new user: This operation requires the client to provide a special
secret message.

The SensitiveInfo class contains the information that we want to protect. The users
variable contains the list of existing users. The read() method prints the list of users.
The add() method adds a new user to the list.

Let's consider the following code:

class SensitiveInfo:

 def __init__(self):

 self.users = ['nick', 'tom', 'ben', 'mike']

 def read(self):

 nb = len(self.users)

 print(f"There are {nb} users: {' ' \

 .join(self.users)}")

 def add(self, user):

 self.users.append(user)

 print(f'Added user {user}')

Applying the proxy pattern 513

The Info class is a protection proxy of SensitiveInfo. The secret variable is the
message that's required to be known/provided by the client code to add a new user. Note
that this is just an example. In reality, you should never do the following:

• Store passwords in the source code

• Store passwords in a cleartext form

• Use a weak (for example, MD5) or custom form of encryption

In the Info class, as shown in the following code, the read() method is a wrapper
to SensitiveInfo.read(), and the add() method ensures that a new user can
only be added if the client code knows the secret message:

class Info:

 '''protection proxy to SensitiveInfo'''

 def __init__(self):

 self.protected = SensitiveInfo()

 self.secret = '0xdeadbeef'

 def read(self):

 self.protected.read()

 def add(self, user):

 sec = input('what is the secret? ')

 self.protected.add(user) if sec == self.secret \

 else print("That's wrong!")

The main() function shows how the proxy pattern can be used by the client code. The
client code creates an instance of the Info class and uses the displayed menu to read the
list, add a new user, or exit the application. Let's consider the following code:

def main():

 info = Info()

 while True:

 print('1. read list |==| 2. add user |==| 3. \

 quit')

 key = input('choose option: ')

514 Other Structural Patterns

 if key == '1':

 info.read()

 elif key == '2':

 name = input('choose username: ')

 info.add(name)

 elif key == '3':

 exit()

 else:

 print(f'unknown option: {key}')

The following is the sample output of the program when executing the Python proxy.py
command:

1. read list |==| 2. add user |==| 3. quit

choose option: 1

There are 4 users: nick tom ben mike

1. read list |==| 2. add user |==| 3. quit

choose option: 2

choose username: bill

what is the secret? 12345

That's wrong!

1. read list |==| 2. add user |==| 3. quit

choose option: 2

choose username: bill

what is the secret? 0xdeadbeef

Added user bill

1. read list |==| 2. add user |==| 3. quit

choose option: 1

There are 5 users: nick tom ben mike bill

1. read list |==| 2. add user |==| 3. quit

Have you already spotted flaws or missing features that could improve our proxy example?
I have a few suggestions. They are as follows:

• This example has a very big security flaw. Nothing prevents the client code
from bypassing the security of the application by creating an instance of
SensitiveInfo directly. Improve this example to prevent this situation.
One way to do this is to use the abc module to forbid direct instantiation of
SensitiveInfo. What other code changes are required in this case?

Summary 515

• A basic security rule is that we should never store cleartext passwords. Storing
a password safely is not very hard, so long as we know which libraries to use
(http://j.mp/hashsec). If you are interested in security, try to implement a
secure way to store the secret message externally (for example, in a file or database).

• The application only supports adding new users, but what about removing an existing
user? Add a remove() method.

Summary
In this chapter, we covered three other structural design patterns: flyweight, MVC, and
proxy. Throughout this chapter, we learned about the differences between these and the
other structural patterns we have discussed. Then, we implemented each of these patterns
in hands-on examples. As we saw, the flyweight pattern is designed for memory usage
minimization, the MVC pattern maintains a logical organization of different parts of an
application, and the proxy pattern is typically used when sensitive information is accessed.

In the next chapter, we will start exploring behavioral design patterns. Behavioral patterns
cope with object interconnection and algorithms. The first behavioral pattern we will
cover is the chain of responsibility.

Questions
1. What is the main motivation for the flyweight pattern?
2. What is the main motivation for the MVC pattern?
3. What is the main motivation for the proxy pattern?

http://j.mp/hashsec

24
The Chain of

Responsibility
Pattern

We now cover the Chain of Responsibility design pattern, which should be used, as we
will see, when we do not know the number and type of requests/events we would need
to support. While this may seem vague, this pattern is useful among a wide range of use
cases, such as event-based systems, purchase systems, and shipping systems.

In this chapter, we will learn what the Chain of Responsibility pattern is, its benefits,
and—as always—how to implement it in a practical Python example. We will discuss
the following topics:

• Understanding the Chain of Responsibility pattern

• Real-world examples

• Use cases

• Implementation

518 The Chain of Responsibility Pattern

Technical requirements
The code files for this chapter can be accessed through this link:

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter24

Understanding the Chain of Responsibility
pattern
When developing an application, most of the time, we know which method should satisfy
a particular request in advance. However, this is not always the case. For example, think
of any broadcast computer network, such as the original Ethernet implementation. In
broadcast computer networks, all requests are sent to all nodes (broadcast domains are
excluded for simplicity), but only the nodes that are interested in a sent request process it.

All computers that participate in a broadcast network are connected to each other using
a common medium such as the cable that connects all nodes. If a node is not interested
or does not know how to handle a request, it can perform the following actions:

• Ignore the request and do nothing

• Forward the request to the next node

The way in which the node reacts to a request is an implementation detail. However, we
can use the analogy of a broadcast computer network to understand what the Chain of
Responsibility pattern is all about. The Chain of Responsibility pattern is used when we
want to give multiple objects the chance to satisfy a single request or when we don't know
in advance which object (from a chain of objects) should process a specific request.

To illustrate the principle, imagine a chain (linked list, tree, or any other convenient data
structure) of objects and the following flow:

1. We start by sending a request to the first object in the chain.
2. The object decides whether it should satisfy the request or not.
3. The object forwards the request to the next object.
4. This procedure is repeated until we reach the end of the chain.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter24
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter24

Real-world examples 519

At the application level, instead of talking about cables and network nodes, we can focus
on objects and the flow of a request. The following diagram shows how the client code
sends a request to all processing elements of an application:

Figure 24.1 – Client code sending a request

Note that the client code only knows about the first processing element, instead of having
references to all of them, and each processing element only knows about its immediate next
neighbor (called the successor), not about every other processing element. This is usually a
one-way relationship, which in programming terms means a singly linked list in contrast
to a doubly linked list. A singly linked list does not allow navigation in both ways, while a
doubly linked list allows that. This chain organization is used for a good reason. It achieves
decoupling between the sender (client) and the receivers (processing elements).

We will see some real-world examples of this pattern in the next section.

Real-world examples
Automated teller machines (ATMs) and, in general, any kind of machine that accepts/
returns banknotes or coins (for example, a snack-vending machine) use the Chain of
Responsibility pattern.

520 The Chain of Responsibility Pattern

There is always a single slot for all banknotes, as shown in the following diagram, courtesy
of SourceMaking (www.sourcemaking.com):

Figure 24.2 – An ATM has a single slot for all banknotes

When a banknote is dropped, it is routed to the appropriate receptacle. When it is
returned, it is taken from the appropriate receptacle. We can think of the single slot as a
shared communication medium and the different receptacles as processing elements. The
result contains cash from one or more receptacles. For example, in the preceding diagram,
we see what happens when we request United States dollars (USD) $175 from the ATM.

In software, the servlet filters of Java are pieces of code that are executed before a
HyperText Transfer Protocol (HTTP) request arrives at a target. When using servlet
filters, there is a chain of filters. Each filter performs a different action (user authentication,
logging, data compression, and so forth) and either forwards the request to the next
filter until the chain is exhausted or breaks the flow if there is an error—for example,
the authentication failed three consecutive times (j.mp/soservl).

As another software example, Apple's Cocoa and Cocoa Touch frameworks use the Chain
of Responsibility to handle events. When a view receives an event that it doesn't know how
to handle, it forwards the event to its superview. This goes on until a view is capable of
handling the event or the chain of views is exhausted (j.mp/chaincocoa).

When is this design pattern useful? Let's discuss that in the next section.

http://www.sourcemaking.com
http://j.mp/soservl
http://j.mp/chaincocoa

Use cases 521

Use cases
By using the Chain of Responsibility pattern, we provide a chance to a number of different
objects to satisfy a specific request. This is useful when we don't know which object should
satisfy a request in advance. An example is a purchase system. In purchase systems, there
are many approval authorities. One approval authority might be able to approve orders up
to a certain value—let's say $100. If the order is for more than $100, the order is sent to the
next approval authority in the chain that can approve orders up to $200, and so forth.

Another case where the Chain of Responsibility is useful is when we know that more than
one object might need to process a single request. This is what happens in event-based
programming. A single event, such as a left-mouse click, can be caught by more than
one listener.

It is important to note that the Chain of Responsibility pattern is not very useful if all the
requests can be taken care of by a single processing element unless we really don't know
which element that is. The value of this pattern is the decoupling that it offers. Instead of
having a many-to-many relationship between a client and all processing elements (and
the same is true regarding the relationship between a processing element and all other
processing elements), a client only needs to know how to communicate with the start
(head) of the chain.

The following diagram illustrates the difference between tight and loose coupling:

Figure 24.3 – Loose versus tight coupling

522 The Chain of Responsibility Pattern

The idea behind loosely coupled systems is to simplify maintenance and make it easier for
us to understand how they function (j.mp/loosecoup).

We will see that this is the case in the next section, where we implement an event-based
system.

Implementation
There are many ways to implement a Chain of Responsibility in Python, but my favorite
implementation is the one by Vespe Savikko (https://legacy.python.org/
workshops/1997-10/proceedings/savikko.html). Vespe's implementation uses
dynamic dispatching in a Pythonic style to handle requests (http://j.mp/ddispatch).

Let's implement a simple event-based system using Vespe's implementation as a guide.
Here is a Unified Modeling Language (UML) class diagram of an event-based system:

Figure 24.4 – UML class diagram of an event-based system

The Event class describes an event. We'll keep it simple, so in our case, an event has only
name, as illustrated in the following code snippet:

class Event:

 def __init__(self, name):

 self.name = name

 def __str__(self):

 return self.name

http://j.mp/loosecoup
https://legacy.python.org/workshops/1997-10/proceedings/savikko.html
https://legacy.python.org/workshops/1997-10/proceedings/savikko.html
http://j.mp/ddispatch

Implementation 523

The Widget class is the core class of the application. The parent aggregation shown in the
UML diagram indicates that each widget can have a reference to a parent object, which,
by convention, we assume is a Widget instance. Note, however, that according to the rules
of inheritance, an instance of any of the subclasses of Widget (for example, an instance
of MsgText) is also an instance of Widget. The default value of parent is None, as
illustrated in the following code snippet:

class Widget:

 def __init__(self, parent=None):

 self.parent = parent

The handle() method uses dynamic dispatching through hasattr() and
getattr() to decide who is the handler of a specific request (event). If the widget that
is asked to handle an event does not support it, there are two fallback mechanisms. If the
widget has a parent, then the handle() method of the parent is executed. If the widget
has no parent but a handle_default() method, handle_default() is executed,
as illustrated in the following code snippet:

def handle(self, event):

 handler = f'handle_{event}'

 if hasattr(self, handler):

 method = getattr(self, handler)

 method(event)

 elif self.parent is not None:

 self.parent.handle(event)

 elif hasattr(self, 'handle_default'):

 self.handle_default(event)

At this point, you might have realized why the Widget and Event classes are only
associated (no aggregation or composition relationships) in the UML class diagram. The
association is used to show that the Widget class knows about the Event class but does
not have any strict references to it, since an event needs to be passed only as a parameter
to handle().

MainWindow, MsgText, and SendDialog are all widgets with different behaviors. Not
all these three widgets are expected to be able to handle the same events, and even if they
can handle the same event, they might behave differently. MainWindow can only handle
close and default events, as illustrated in the following code snippet:

class MainWindow(Widget):

 def handle_close(self, event):

524 The Chain of Responsibility Pattern

 print(f'MainWindow: {event}')

 def handle_default(self, event):

 print(f'MainWindow Default: {event}')

SendDialog can only handle paint events, as illustrated in the following code snippet:

class SendDialog(Widget):

 def handle_paint(self, event):

 print(f'SendDialog: {event}')

Finally, MsgText can only handle down events, as illustrated in the following code snippet:

class MsgText(Widget):

 def handle_down(self, event):

 print(f'MsgText: {event}')

The main() function shows how we can create a few widgets and events and how
the widgets react to those events. All events are sent to all the widgets. Note the parent
relationship of each widget. The sd object (an instance of SendDialog) has as its parent
the mw object (an instance of MainWindow). However, not all objects need to have a
parent that is an instance of MainWindow. For example, the msg object (an instance
of MsgText) has the sd object as a parent, as illustrated in the following code snippet:

def main():

 mw = MainWindow()

 sd = SendDialog(mw)

 msg = MsgText(sd)

 for e in ('down', 'paint', 'unhandled', 'close'):

 evt = Event(e)

 print(f'Sending event -{evt}- to MainWindow')

 mw.handle(evt)

 print(f'Sending event -{evt}- to SendDialog')

 sd.handle(evt)

 print(f'Sending event -{evt}- to MsgText')

 msg.handle(evt)

Implementation 525

Executing the python chain.py command gives us the following output:

Sending event -down- to MainWindow

MainWindow Default: down

Sending event -down- to SendDialog

MainWindow Default: down

Sending event -down- to MsgText

MsgText: down

Sending event -paint- to MainWindow

MainWindow Default: paint

Sending event -paint- to SendDialog

SendDialog: paint

Sending event -paint- to MsgText

SendDialog: paint

Sending event -unhandled- to MainWindow

MainWindow Default: unhandled

Sending event -unhandled- to SendDialog

MainWindow Default: unhandled

Sending event -unhandled- to MsgText

MainWindow Default: unhandled

Sending event -close- to MainWindow

MainWindow: close

Sending event -close- to SendDialog

MainWindow: close

Sending event -close- to MsgText

MainWindow: close

There are some interesting things that we can see in the output. For instance, sending
a down event to MainWindow ends up being handled by the default MainWindow
handler. Another nice case is that although a close event cannot be handled directly
by SendDialog and MsgText, all close events end up being handled properly by
MainWindow. That's the beauty of using the parent relationship as a fallback mechanism.

If you want to spend some more creative time on the event example, you can replace
the dumb print statements and add some actual behavior to the listed events. Of course,
you are not limited to the listed events. Just add your favorite event and make it do
something useful!

Another exercise is to add a MsgText instance during runtime that has MainWindow as
the parent and do the same for an event (add a new event to an existing widget).

526 The Chain of Responsibility Pattern

Summary
In this chapter, we covered the Chain of Responsibility design pattern. This pattern is
useful to model requests and/or handle events when the number and type of handlers
aren't known in advance.

Overall, we have learned how to use this design pattern to facilitate loose coupling
between the sender and the receiver(s). Some examples that we have seen where this
is particularly beneficial include Java's servlet and Apple's Cocoa frameworks.

That's it for the Chain of Responsibility pattern. In the next chapter, we will cover the
Command pattern.

Questions
The answers for the following questions can be found in the Assessments section at the end
of the book.

1. What are the high-level benefits of the Chain of Responsibility pattern?
2. How is the Chain of Responsibility pattern implemented in the Python example of

the event-based system we considered?
3. What is an example of a situation in which the Chain of Responsibility pattern is

not useful?

25
The Command

Pattern
In this chapter, we will cover the command pattern. Using this design pattern, we can
encapsulate an operation, such as copy and paste, as an object. The command pattern
is also great for grouping multiple commands. It's useful for implementing macros,
multilevel undoing, and transactions. Throughout our discussions, we will learn about
the idea of treating an operation as an object and use this command mindset to handle
application transactions.

We will discuss the following:

• Understanding the command pattern

• Real-world examples

• Use cases

• Implementation

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter25.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter25
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter25
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter25

528 The Command Pattern

Understanding the command pattern
Most applications nowadays have an undo operation. It is hard to imagine, but undo did
not exist in any software for many years. Undo was introduced in 1974 (j.mp/wiundo),
but Fortran and Lisp, two programming languages that are still widely used, were created
in 1957 and 1958, respectively (j.mp/proghist)! The user had no easy way to fix a
mistake. I wouldn't like to have been an application user during those years.

Enough with the history! We want to know how we can implement the undo functionality
in our applications, and since you have read the title of this chapter, you already know
which design pattern is recommended to implement undo: the command pattern.

The command design pattern helps us encapsulate an operation (undo, redo, copy, paste,
and so forth) as an object. What this simply means is that we create a class that contains all
the logic and the methods required to implement the operation. The advantages of doing
this are as follows (j.mp/cmdpattern):

• We don't have to execute a command directly. It can be executed at will.

• The object that invokes the command is decoupled from the object that knows how
to perform it. The invoker does not need to know any implementation details about
the command.

• If it makes sense, multiple commands can be grouped to allow the invoker to
execute them in order. This is useful, for instance, when implementing a multilevel
undo command.

As you can imagine, this pattern has a wide range of use cases in the real world, which
we will see in the next section.

Real-world examples
When we go to a restaurant for dinner, we give the order to the waiter. The order pad
(usually paper) that they use to write the order is an example of a command. After writing
the order, the waiter places it in the queue that is executed by the cook. Each check is
independent and can be used to execute many different commands, for example, one
command for each item that will be cooked.

As you would expect, we also have several examples in software. Here are two I can
think of:

• PyQt is the Python binding of the QT toolkit. PyQt contains a QAction class that
models an action as a command. Extra optional information is supported for every
action, such as description, tooltip, or shortcut (j.mp/qaction).

http://j.mp/wiundo
http://j.mp/proghist
http://j.mp/cmdpattern
http://j.mp/qaction

Use cases 529

• Git Cola (j.mp/git-cola), a Git GUI written in Python, uses the Command
pattern to modify the model, amend a commit, apply a different election, check out,
and so forth (j.mp/git-cola-code).

Let's now be more general and discuss when the command pattern will prove useful in the
next section.

Use cases
Many developers use the undo example as the only use case of the command pattern.
The truth is that undo is the killer feature of the command pattern. However, the
command pattern can actually do much more (j.mp/commddp):

• GUI buttons and menu items: The PyQt example that was already mentioned uses
the command pattern to implement actions on buttons and menu items.

• Other operations: Apart from undo, commands can be used to implement any
operation. A few examples are cut, copy, paste, redo, and capitalize text.

• Transactional behavior and logging: Transactional behavior and logging
are important to keep a persistent log of changes. They are used by operating
systems to recover from system crashes, relational databases to implement
transactions, filesystems to implement snapshots, and installers (wizards) to
revert canceled installations.

• Macros: By macros, in this case, we mean a sequence of actions that can be recorded
and executed on demand at any point in time. Popular editors such as Emacs and
Vim support macros.

To demonstrate what we have discussed so far, we will implement a file utility
management application next.

Implementation
In this section, we will use the command pattern to implement the most basic file utilities:

• Creating a file and optionally writing text (a string) to it

• Reading the contents of a file

• Renaming a file

• Deleting a file

http://j.mp/git-cola
http://j.mp/git-cola-code
http://j.mp/commddp

530 The Command Pattern

We will not implement these utilities from scratch, since Python already offers good
implementations of them in the os module. What we want is to add an extra abstraction
level on top of them so that they can be treated as commands. By doing this, we get all
the advantages offered by commands.

From the operations shown, renaming a file and creating a file support undo. Deleting a file
and reading the contents of a file do not support undo. Undo can actually be implemented
on delete file operations. One technique is to use a special trash/wastebasket directory that
stores all the deleted files so that they can be restored when the user requests them. This
is the default behavior used on all modern desktop environments and is left as an exercise
to you.

Each command has two parts:

• The initialization part: This is taken care of by the __init__() method and
contains all the information required by the command to be able to do something
useful (the path of a file, the contents that will be written to the file, and so forth).

• The execution part: This is taken care of by the execute() method. We call
the execute() method when we want to actually run a command. This is not
necessarily right after initializing it.

Let's start with the rename utility, which is implemented using the RenameFile class.
The __init__() method accepts the source (src) and destination (dest) file paths as
parameters (strings). If no path separators are used, the current directory is used to create
the file. An example of using a path separator is passing the /tmp/file1 string as src
and the /home/user/file2 string as dest. Another example, where we would not
use a path, is passing file1 as src and file2 as dest:

class RenameFile:

 def __init__(self, src, dest):

 self.src = src

 self.dest = dest

We add the execute() method to the class. This method does the actual renaming
using os.rename(). The verbose variable corresponds to a global flag, which, when
activated (by default, it is activated), gives feedback to the user about the operation that
is performed. You can deactivate it if you prefer silent commands. Note that although
print() is good enough for an example, normally something more mature and powerful
can be used, for example, the logging module (j.mp/py3log):

 def execute(self):

 if verbose:

http://j.mp/py3log

Implementation 531

 print(f"[renaming '{self.src}' to \

 '{self.dest}']")

 os.rename(self.src, self.dest)

Our rename utility (RenameFile) supports the undo operation through its undo()
method. In this case, we use os.rename() again to revert the name of the file to its
original value:

 def undo(self):

 if verbose:

 print(f"[renaming '{self.dest}' back to \

 '{self.src}']")

 os.rename(self.dest, self.src)

In this example, deleting a file is implemented in a function, instead of a class. That is to
show it is not mandatory to create a new class for every command that you want to add
(more on that will be covered later). The delete_file() function accepts a file path
as a string and uses os.remove() to delete it:

def delete_file(path):

 if verbose:

 print(f"deleting file {path}")

 os.remove(path)

Back to using classes again. The CreateFile class is used to create a file. The __init__
() method for that class accepts the familiar path parameter and a txt parameter for
the content (a string) that will be written to the file. If nothing is passed as txt, the default
hello world text is written to the file. Normally, the same default behavior is to create
an empty file, but for the needs of this example, I decided to write a default string in it.

The definition of the CreateFile class starts as follows:

class CreateFile:

 def __init__(self, path, txt='hello world\n'):

 self.path = path

 self.txt = txt

532 The Command Pattern

Then we add an execute() method, in which we use the with statement and Python's
open() built-in function to open the file (mode='w' means write mode), and the
write() function to write the txt string to it, as follows:

 def execute(self):

 if verbose:

 print(f"[creating file '{self.path}']")

 with open(self.path, mode='w', encoding='utf-8') \

 as out_file:

 out_file.write(self.txt)

The undo action for the operation of creating a file is to delete that file. So, the undo()
method, which we add to the class, simply uses the delete_file() function to achieve
that, as follows:

 def undo(self):

 delete_file(self.path)

The last utility gives us the ability to read the contents of a file. The execute() method
of the ReadFile class uses open() again, this time in read mode, and just prints the
content of the file using print().

The ReadFile class is defined as follows:

class ReadFile:

 def __init__(self, path):

 self.path = path

 def execute(self):

 if verbose:

 print(f"[reading file '{self.path}']")

 with open(self.path, mode='r', encoding='utf-8') \

 as in_file:

 print(in_file.read(), end='')

Implementation 533

The main() function makes use of the utilities we have defined. The orig_name and
new_name parameters are the original and new names of the file that is created and
renamed. A commands list is used to add (and configure) all the commands that we want
to execute at a later point. Note that the commands are not executed unless we explicitly
call execute() for each command:

def main():

 orig_name, new_name = 'file1', 'file2'

 commands = (

 CreateFile(orig_name),

 ReadFile(orig_name),

 RenameFile(orig_name, new_name)

)

 [c.execute() for c in commands]

The next step is to ask the users whether they want to undo the executed commands or
not. The user selects whether the commands will be undone or not. If they choose to
undo them, undo() is executed for all commands in the commands list. However, since
not all commands support undo, exception handling is used to catch (and ignore) the
AttributeError exception generated when the undo() method is missing. The code
would look like the following:

answer = input('reverse the executed commands? [y/n] ')

if answer not in 'yY':

 print(f"the result is {new_name}")

 exit()

for c in reversed(commands):

 try:

 c.undo()

except AttributeError as e:

 print("Error", str(e))

Using exception handling for such cases is an acceptable practice, but if you don't like it,
you can check explicitly whether a command supports the undo operation by adding a
Boolean method, for example, supports_undo() or can_be_undone(). Again, that
is not mandatory.

534 The Command Pattern

Let's see two sample executions using the python command.py command line.

In the first one, there is no undo of commands:

[creating file 'file1']

[reading file 'file1']

hello world

[renaming 'file1' to 'file2']

reverse the executed commands? [y/n] y

[renaming 'file2' back to 'file1']

Error 'ReadFile' object has no attribute 'undo'

deleting file file1

In the second one, we have the undo of commands:

[creating file 'file1']

[reading file 'file1']

hello world

[renaming 'file1' to 'file2']

reverse the executed commands? [y/n] n

the result is file2

But wait! Let's see what can be improved in our command implementation example.
Among the things to consider are the following:

• What happens if we try to rename a file that doesn't exist?

• What about files that exist but cannot be renamed because we don't have the proper
filesystem permissions?

We can try improving the utilities by doing some kind of error handling. Checking the
return status of the functions in the os module can be useful. We could check whether
the file exists before trying the delete action, using the os.path.exists() function.

Also, the file creation utility creates a file using the default file permissions as decided by
the filesystem. For example, in POSIX systems, the permissions are -rw-rw-r--. You
might want to give the ability to the user to provide their own permissions by passing the
appropriate parameter to CreateFile. How can you do that? Hint: one way is by using
os.fdopen().

Implementation 535

And now, here's something for you to think about. I mentioned earlier that a command
does not necessarily need to be a class. That's how the delete utility was implemented; there
is just a delete_file() function. What are the advantages and disadvantages of this
approach? Here's a hint: is it possible to put a delete command in the commands list as
was done for the rest of the commands? We know that functions are first-class citizens in
Python, so we can do something such as the following (see the first-class.py file):

import os

verbose = True

class CreateFile:

 def undo(self):

 try:

 delete_file(self.path)

 except:

 print('delete action not successful...')

 print('... file was probably already deleted.')

def main():

 orig_name = 'file1'

 df=delete_file

 commands = [CreateFile(orig_name),]

 commands.append(df)

 for c in commands:

 try:

 c.execute()

 except AttributeError as e:

 df(orig_name)

 for c in reversed(commands):

 try:

 c.undo()

536 The Command Pattern

 except AttributeError as e:

 pass

if __name__ == "__main__":

 main()

Running first-class.py gives us the following output:

[creating file 'file1']

deleting file file1...

deleting file file1...

delete action not successful...

... file was probably already deleted.

We see that this variant of the implementation example works as intended, as the second
delete throws an error saying that the action was not successful.

With that said, there are some potential improvements to this program that you could
think about. First, the code we have is not uniform; we rely too much on exception
handling, which is not the normal flow of a program. While all the other commands we
implemented have an execute() method, in this case, there is no execute().

Furthermore, the delete file utility currently has no undo support. What happens if we
eventually decide to add undo support for it? Normally, we add an undo() method to the
class that represents the command. However, in this case, there is no class. We could create
another function to handle undo, but creating a class is a better approach.

Summary
In this chapter, we covered the command pattern. Using this design pattern, we can
encapsulate an operation, such as copy and paste, as an object. Using this pattern, we can
execute a command whenever we want, and not necessarily at creation time, while the
client code that executes a command does not need to know any details about how it is
implemented. Moreover, we can group commands and execute them in a specific order.

To demonstrate command, we implemented some basic file utilities on top of Python's os
module. Our utilities supported undo and had a uniform interface, which makes grouping
commands easy.

The next chapter covers the Observer pattern.

Questions 537

Questions
The answers to these questions can be found in the Assessments section at the end of
the book:

1. What are the high-level benefits of the command pattern?
2. From the perspective of the client of an application, how is the command pattern

specifically useful?
3. How is the command pattern implemented in the Python example of file

management?

26
The Observer

Pattern
We use the observer pattern when we want to be able to inform/notify all stakeholders
(an object or a group of objects) when the state of an object changes. An important feature
of the observer pattern is that the number of subscribers/observers, as well as who the
subscribers are, may vary and can be changed at runtime.

In this chapter, we will learn about this design pattern while comparing it to a similar
one we have seen in the past, known as the MVC pattern, and use it to implement
a data formatter.

Specifically, we will cover the following topics:

• Understanding the observer pattern

• Real-world examples

• Use cases

• Implementation

540 The Observer Pattern

Technical requirements
The code files for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter26.

Understanding the observer pattern
When we need to update a group of objects when the state of another object changes, a
popular solution is offered by the Model-View-Controller (MVC) pattern. Let's assume
that we are using the data of the same model in two views; for instance, in a pie chart and
a spreadsheet. Whenever the model is modified, both views need to be updated. That's the
role of the observer pattern.

The observer pattern describes a publish-subscribe relationship between a single object –
the publisher, which is also known as the subject or observable – and one or more objects
– the subscribers, also known as observers.

In the case of MVC, the publisher is the model, while the subscribers are the views. There
are other examples that we will discuss throughout this chapter.

The ideas behind the observer pattern are the same as those behind the separation of
concerns principle; that is, to increase decoupling between the publisher and subscribers,
and to make it easy to add/remove subscribers at runtime. Let's look at a couple of
examples of this.

Real-world examples
In reality, an auction resembles the observer pattern. Every auction bidder has a numbered
paddle that is raised whenever they want to place a bid. Whenever the paddle is raised by a
bidder, the auctioneer acts as the subject by updating the price of the bid and broadcasting
the new price to all bidders (subscribers).

In software, we can cite at least two examples:

• Kivy, the Python framework for developing user interfaces, has a module called
Properties, which implements the observer pattern. Using this technique, you can
specify what should happen when a property's value changes.

• The RabbitMQ library can be used to add asynchronous messaging support to
an application. Several messaging protocols are supported, such as HTTP and
AMQP. RabbitMQ can be used in a Python application to implement a publish-
subscribe pattern, which is nothing more than the observer design pattern
(j.mp/rabbitmqobs).

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter26
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter26
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter26
http://j.mp/rabbitmqobs

Use cases 541

In the next section, we will discuss when this design pattern could and should be used.

Use cases
We generally use the observer pattern when we want to inform/update one or more
objects (observers/subscribers) about a change that happened on a given object (subject/
publisher/observable). The number of observers, as well as who those observers are, may
vary and can be changed dynamically.

We can think of many cases where the observer pattern can be useful. One such use case
is newsfeeds. With RSS, Atom, or other related formats, you follow a feed, and every time
it is updated, you receive a notification about the update.

The same concept exists in social networking. If you are connected to another person
using a social networking service, and your connection updates something, you are
notified about it. It doesn't matter if the connection is a Twitter user that you follow,
a real friend on Facebook, or a business colleague on LinkedIn.

Event-driven systems is another example where the observer pattern is usually used. In
such systems, you have listeners that listen for specific events. The listeners are triggered
when an event they are listening to is created. This can be typing a specific key (on the
keyboard), moving the mouse, and more. The event plays the role of the publisher, and the
listeners play the role of the observers. The key point, in this case, is that multiple listeners
(observers) can be attached to a single event (publisher).

Finally, in the next section, we will implement a data formatter.

Implementation
The ideas described here are based on the ActiveState Python Observer code recipe
(https://code.activestate.com/). There is a default formatter that shows a value
in decimal format. However, we can add/register more formatters. In this example, we will
add a hex formatter and a binary formatter. Every time the value of the default formatter is
updated, the registered formatters will be notified and take action. In this case, the action
is to show the new value in the relevant format.

The observer pattern is one of the patterns where inheritance makes sense. We can have a
base Publisher class that contains the common functionality of adding, removing, and
notifying observers. Our DefaultFormatter class derives from Publisher and adds
the formatter-specific functionality. We can also dynamically add and remove observers
on demand.

https://code.activestate.com/

542 The Observer Pattern

We will begin with the Publisher class. The observers are kept in the observer's list.
The add() method registers a new observer or throws an error if it already exists. The
remove() method unregisters an existing observer or throws an exception if it does not
exist. Finally, the notify() method informs all observers about a change. This is shown
in the following code block:

class Publisher:

 def __init__(self):

 self.observers = []

 def add(self, observer):

 if observer not in self.observers:

 self.observers.append(observer)

 else:

 print(f'Failed to add: {observer}')

 def remove(self, observer):

 try:

 self.observers.remove(observer)

 except ValueError:

 print(f'Failed to remove: {observer}')

 def notify(self):

 [o.notify(self) for o in self.observers]

Let's continue with the DefaultFormatter class. The first thing that __init__()
does is call the __init__() method of the base class since this is not done automatically
in Python.

A DefaultFormatter instance has a name to make it easier for us to track its status.
We use name mangling in the _data variable to state that it should not be accessed
directly. Note that this is always possible in Python but fellow developers have no excuse
for doing so since the code already states that they shouldn't. DefaultFormatter treats
the _data variable as an integer, and the default value is 0:

class DefaultFormatter(Publisher):

 def __init__(self, name):

 Publisher.__init__(self)

Implementation 543

 self.name = name

 self._data = 0

The __str__() method returns information about the name of the publisher and the
value of the _data attribute. type(self).__name__ is a handy trick to get the name
of a class without hardcoding it. It is one of those tricks that makes your code easier
to maintain:

def __str__(self):

 return f"{type(self).__name__}: '{self.name}' \

 has data =

 {self._data}"

There are two data() methods. The first one uses the @property decorator to give
read access to the _data variable. Using this, we can just execute object.data instead
of object.data():

@property

def data(self):

 return self._data

The second data() method is more interesting. It uses the @setter decorator, which is
called every time the assignment (=) operator is used to assign a new value to the _data
variable. This method also tries to cast a new value to an integer, and does exception
handling in case this operation fails:

@data.setter

def data(self, new_value):

 try:

 self._data = int(new_value)

 except ValueError as e:

 print(f'Error: {e}')

 else:

 self.notify()

544 The Observer Pattern

The next step is to add the observers. The functionality of HexFormatter and
BinaryFormatter is very similar. The only difference between them is how they format
the value of the data that's received by the publisher – that is, in hexadecimal and binary,
respectively:

class HexFormatterObs:

 def notify(self, publisher):

 value = hex(publisher.data)

 print(f"{type(self).__name__}: '{publisher.name}' \

 has now hex data = {value}")

class BinaryFormatterObs:

 def notify(self, publisher):

 value = bin(publisher.data)

 print(f"{type(self).__name__}: '{publisher.name}' \

 has now bin data = {value}")

To help us use those classes, the main() function initially creates a DefaultFormatter
instance named test1 and, afterward, attaches (and detaches) the two available observers.
We also have some exception handling to ensure that the application doesn't crash when
erroneous data is passed by the user.

The code is as follows:

def main():

 df = DefaultFormatter('test1')

 print(df)

 print()

 hf = HexFormatterObs()

 df.add(hf)

 df.data = 3

 print(df)

 print()

 bf = BinaryFormatterObs()

 df.add(bf)

 df.data = 21

 print(df)

Implementation 545

Moreover, tasks such as trying to add the same observer twice or removing an observer
that does not exist should cause no crashes:

print()

df.remove(hf)

df.data = 40

print(df)

print()

df.remove(hf)

df.add(bf)

df.data = 'hello'

print(df)

print()

df.data = 15.8

print(df)

Before we run this code and observe the output, let's have a recap on the full code
(the observer.py file):

1. First, we define the Publisher class.
2. Then, we define the DefaultFormatter class, along with its

special __init__ and __str__ methods.
3. We add the data property getter and setter methods to the DefaultFormatter

class.
4. We define our two observer classes.
5. Finally, we take care of the main part of the program.

Executing the python observer.py command gives us the following output:

DefaultFormatter: 'test1' has data = 0

HexFormatterObs: 'test1' has now hex data = 0x3

DefaultFormatter: 'test1' has data = 3

HexFormatterObs: 'test1' has now hex data = 0x15

546 The Observer Pattern

BinaryFormatterObs: 'test1' has now bin data = 0b10101

DefaultFormatter: 'test1' has data = 21

BinaryFormatterObs: 'test1' has now bin data = 0b101000

DefaultFormatter: 'test1' has data = 40

Failed to remove: <__main__.HexFormatterObs object at

0x7fe6e4c9d670>

Failed to add: <__main__.BinaryFormatterObs object at

0x7fe6e4c9d5b0>

Error: invalid literal for int() with base 10: 'hello'

DefaultFormatter: 'test1' has data = 40

BinaryFormatterObs: 'test1' has now bin data = 0b1111

DefaultFormatter: 'test1' has data = 15

Here, we can see that as the extra observers are added, the more (and more relevant)
output is shown, and when an observer is removed, it is not notified any longer. That's
exactly what we want: runtime notifications that we can enable/disable on demand.

The defensive programming part of the application also seems to work fine. Trying to
do funny things, such as removing an observer that does not exist or adding the same
observer twice, is not allowed. The messages that are shown are not very user-friendly, but
I leave it up to you to make them friendlier as an exercise. Runtime failures such as trying
to pass a string when the API expects a number are also handled properly without causing
the application to crash/terminate.

This example would be much more interesting if it were interactive. Even a simple menu
that allows the user to attach/detach observers at runtime and modify the value of
DefaultFormatter would be nice because the runtime aspect becomes much
more visible. Feel free to do this.

Another nice exercise is to add more observers. For example, you can add an octal
formatter, a Roman numeral formatter, or any other observer that uses your favorite
representation. Be creative! With this, we have completed our discussion on the
observer pattern.

Summary 547

Summary
In this chapter, we covered the observer design pattern, including many examples,
such as Kivy, the framework for developing innovative user interfaces, along with its
Properties concept and module, and the Python bindings of RabbitMQ (we referred to
a specific example of RabbitMQ that's used to implement the publish-subscribe, or the
observer, pattern).

We also learned how to use the observer pattern to create data formatters that can be
attached and detached at runtime to enrich the behavior of an object. Hopefully, you
will find the recommended exercises interesting.

This also marks the end of this book. Congratulations on making it to the end, and I hope
that the material that's been covered has been helpful for you in taking your Python skills
to the next level!

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is the main motivation for the observer pattern?
2. How is the observer pattern different from the MVC pattern when it comes to

updating other components of an application when a target component changes?
3. How is the observer pattern implemented in the Python example of value formatters?

Assessments

Chapter 1
1. In the order of importance: functionality, correctness, and efficiency.
2. An assert statement raises an error when the condition it checks for is not

satisfied. As such, these statements are used in tests, where we determine whether
a program computes and outputs values as it is supposed to.

3. A benchmark is a small but representative use case that can be used to estimate the
speed of a program. Benchmarks can be used to compare different versions of a
program to see if a new implementation leads to an improvement in efficiency.

4. In IPython or Jupyter notebooks, the timeit magic command, when placed in
front of a code snippet, will run that code several times and record the running
time of each run. The output of the command will show summary statistics of the
recorded times so that we can estimate the average running time of the code we
are interested in.

5. cProfile includes the following in its output:

A. ncalls: The number of times the function was called.
B. tottime: The total time spent in the function without considering the calls

to other functions.
C. cumtime: The time in the function, including other function calls.
D. percall: The time spent for a single call of the function, which can be

obtained by dividing the total or cumulative time by the number of calls.
E. filename:lineno: The filename and corresponding line numbers. This

information is not available when calling C extensions modules.

6. The dis module analyzes the low-level bytecode and shows how Python code
is converted. This is helpful when we are interested in the number of low-level
instructions that correspond to a specific statement.

550 Assessments

7. Using IPython, we may profile the function as follows:

In [1]: %load_ext line_profiler

In [2]: from exercise import close, benchmark

In [3]: %lprun -f close benchmark()

Function: close at line 5

Line # Hits Time Per Hit % Time Line

Contents

===

=====

 5 def

close(particles, eps=1e-5):

 6 1 6.0 6.0 66.7 p0,

p1 = particles

 7

 8 1 2.0 2.0 22.2 x_

dist = abs(p0.x - p1.x)

 9 1 1.0 1.0 11.1 y_

dist = abs(p0.y - p1.y)

 10

 11 1 0.0 0.0 0.0

return x_dist < eps and y_dist < eps

Perhaps surprisingly, the unpacking and p0 and p1 takes two thirds of the
execution time of the close() function.

Chapter 2
1. The most appropriate data structure for each of the following use cases is as follows:

A. Mapping items to another set of items (with set being used in the most general
sense): dictionaries.

B. Accessing, modifying, and appending elements: lists.
C. Maintaining a collection of unique elements: sets.
D. Keeping track of the minimum/maximum of a set (in the most general sense):

heaps.

Chapter 3 551

E. Appending and removing elements at the endpoints of a sequence (in the most
general sense): deques.

F. Fast searching according to some similarity criterion (used by, for example,
autocompletion engines): tries.

2. Caching is a design where we store expensive results in a temporary location, which
can be in memory, on-disk, or a remote location. Memoization is specifically about
storing and reusing the results of previous function calls in an application. As such,
memoization is a form of caching.

3. Comprehensions and generators are optimized under the hood, so they are
generally more efficient than explicit for loops. They are also more compact in code
and are more readable.

4. A dictionary would be a more appropriate data structure. If the numbers represented
the counts, a Counter data structure would be the best data structure to use.

Chapter 3
1. NumPy offers efficient operations on multidimensional arrays, such as array

creation, accessing elements (indexing) and slicing along specific axes, and
optimized mathematical operations.

2. Using pandas, you can apply "mapping" operations to data, group, aggregate, and
summarize data.

3. NumPy cannot handle labeled data, while pandas cannot process multidimensional
data. xarray combines the best features of the two libraries to offer APIs the ability
to handle multi-dimensional, labeled data.

Chapter 4
1. Static types allow the compiler to generate type-specific optimization, making the

compiled code more efficient.
2. A memory view belongs to Cython's interface, which helps it work with different

data types such as byte, bytearray, or array.array easier. Specifically, it
offers a universal interface that simplifies the process of accessing the values that
are stored in these different data types.

3. To profile Cython, we can use the annotated view to identify hard-to-find
interpreter-related calls, as well as the familiar cProfile tool.

552 Assessments

Chapter 5
1. JIT compilers perform compilation at runtime rather than before running the code.

This allows a piece of code that is expected to run many times to become more
efficient, as recompilation is no longer necessary.

2. We use the signature of an nb.jit function to specify the data types that the
function works with, which allows for further optimization for specific numerical
data types. When Numba encounters other, unsupported types, it simply registers
them as the generic pyobject type.

3. Tracing JIT compilation refers to the process of identifying the most intensive loops
in a program, tracing the operations involved, and compiling the corresponding
optimized, interpreter-free code. This allows us to actively optimize the most
inefficient part of our code.

Chapter 6
1. The main components of a typical machine learning pipeline are the predictive

model (model assumptions, parameters), the loss function, and the optimization
of the model parameters to minimize the loss function.

2. The loss function may be minimized using gradient descent, in which we compute
the gradient of the loss with the current values of the model parameters and
adjust those values in the opposite direction of the gradient. JAX can compose this
gradient loss function using grad.

3. In our example, we utilized kernels to create nonlinear features from the features
we were given. Naïve implementations of kernels are hard to vectorize, which may
lead to inefficient for loops. JAX can automatically vectorize these kernels to address
this problem.

Chapter 7
1. At a high level, asynchronous programming aims to avoid idle waiting for unavailable

resources. This typically involves interacting with slow and unpredictable resources.
2. A callback is a function that will be called at a given, later time. A future, on

the other hand, is a more convenient abstraction that helps us keep track of
requested resources and whether they are available. Futures are generally easier
to use than callbacks.

3. A reactive application should be responsive, elastic, resilient, and message-driven.

Chapter 8 553

Chapter 8
1. Multithreading cannot possibly speed up Python code due to the global interpreter

lock (GIL). In this chapter, we examined different approaches to multiprocessing;
that is, running code using multiple processes.

2. Using the Process interface, we can have more low-level control by subclassing it.
The Pool interface, on the other hand, offers a convenient way to distribute tasks
across processes using the apply and map methods.

3. Theano and TensorFlow automatically translate our code into a parallelized version
by taking advantage of special operations such as matrix multiplication.

Chapter 9
1. HTML stands for Hypertext Markup Language, which is the standard and most

common language for developing web pages and applications.
2. Most of the communication that's done via the internet (more specifically, the

World Wide Web (WWW)) uses HTTP. In HTTP, request methods are used to
convey information on what data is being requested and should be sent back
from a server.

3. HTTP response status codes are three-digit numbers that signify the state of
communication between a server and its client. They are split into five categories,
each indicating a specific state.

4. The requests module manages the communication between a Python program
and a web server through HTTP requests.

5. A ping test is a tool that's typically used by web administrators to make sure that
their sites are still available to clients. A ping test does this by making requests to
the websites and analyzing the returned response status code.

6. Both the process of making different requests to a web server and parsing the
processing downloaded HTML source code are independent across separate requests.

7. The following considerations should be made when you're developing applications
that make concurrent web requests:

A. The terms of service and data-collecting policies
B. Error handling
C. Updating your program regularly
D. Avoiding over-scraping

554 Assessments

Chapter 10
1. Image processing is the task of analyzing and manipulating digital image files to

create new versions of the images, or to extract important data from them.
2. The smallest unit of a digital image is a pixel, which typically contains an RGB value:

a tuple of integers between 0 and 255.
3. Grayscaling is the processing of converting an image into gray colors by considering

only the intensity of each pixel, represented by the amount of light available. It
reduces the dimensionality of the image pixel matrix by mapping traditional
three-dimensional color data to one-dimensional gray data.

4. Thresholding replaces each pixel in an image with a white pixel if the pixel's
intensity is greater than a previously specified threshold, and with a black pixel if
the pixel's intensity is less than that threshold. After performing thresholding on
an image, each pixel of that image can only hold two possible values, significantly
reducing the complexity of image data.

5. Heavy computational number-crunching processes are typically involved when it
comes to image processing, as each image is a matrix of integer tuples. However,
these processes can be executed independently, which suggests that the whole task
should be made concurrent.

6. Some good practices for concurrent image processing are as follows:

A. Choose the correct method (out of many)
B. Spawn an appropriate number of processes
C. Process the input/output concurrently

Chapter 11
1. Communication channels are used to denote both the physical wiring connection

between different systems and the logical communication of data that facilitates
computer networks. The latter is related to computing and is more relevant to the
idea of asynchronous programming. Asynchronous programming can provide
functionalities that complement the process of facilitating communication
channels efficiently.

2. The media layers contain fairly low-level operations that interact with the
underlying process of the communication channel, while the host layers deal
with high-level data communication and manipulation.

Chapter 12 555

3. The transport layer is often viewed as the conceptual transition between the media
layers and the host layers. It is responsible for sending data along end-to-end
connections between different systems.

4. Server-wise, the asyncio module combines the abstraction of transport with the
implementation of an asynchronous program. Specifically, via its BaseTransport
and BaseProtocol classes, asyncio provides different ways to customize the
underlying architecture of a communication channel.

5. Together with the aiohttp module and, specifically, aiohttp.ClientSession,
asyncio also offers efficiency and flexibility regarding client-side communication
processes, via asynchronously making requests and reading the returned responses.

6. The aiofiles module, which can work in conjunction with asyncio and
aiohttp, helps facilitate asynchronous file reading/writing.

Chapter 12
1. A lack of (or mishandled) coordination between different lock objects can cause

a deadlock, in which no progress can be made, and the program is locked in its
current state.

2. In the dining philosophers problem, since each philosopher is holding only one
fork with their left hand, they cannot proceed to eat or put down the fork they are
holding. The only way a philosopher gets to eat their food is for their neighbor
philosopher to put their fork down, which is only possible if they can eat their
food; this creates a never-ending circle of conditions that can never be satisfied.
This situation is, in essence, the nature of a deadlock, in which all the elements
of a system are stuck in place and no progress can be made.

3. A deadlock is also defined by the necessary conditions that a concurrent program
needs to have at the same time for a deadlock to occur. These conditions were first
proposed by the computer scientist Edward G. Coffman Jr, and are therefore known
as the Coffman conditions. These conditions are as follows:

A. At least one resource has to be in a non-shareable state. This means that the
resource is being held by an individual process (or thread) and cannot be accessed
by others; the resource can only be accessed and held by a single process (or
thread) at any given time. This condition is also known as mutual exclusion.

B. One process (or thread) exists that is simultaneously accessing a resource and
waiting for another that's held by other processes (or threads). In other words,
this process (or thread) needs access to two resources to execute its instructions,
one of which it is already holding, and the other of which it is waiting for from
other processes (or threads). This condition is called hold and wait.

556 Assessments

C. Resources can only be released by a process (or a thread) holding them if there
are specific instructions for the process (or thread) to do so. This is to say that
unless the process (or thread) voluntarily and actively releases the resource, the
resource remains in a non-shareable state. This is the no preemption condition.

D. The final condition is called circular wait. As its name suggests, this condition
specifies that a set of processes (or threads) exists where the first process (or
thread) in the set is waiting for a resource to be released by the second process
(or thread), which, in turn, needs to be waiting for the third process (or thread);
finally, the last process (or thread) in the set is waiting for the first one.

4. Instead of accessing the resources arbitrarily, if the processes (or threads) are to
access them in a predetermined, static order, the circular nature of the way that they
acquire and wait for the resources will be eliminated. However, if you place enough
locks on the resources of your concurrent program, it will become entirely sequential
in its execution, and, combined with the overhead of concurrent programming
functionalities, it will have an even worse speed than the purely sequential version
of the program.

5. By ignoring locks, our program resources effectively become shareable among
different processes/threads in a concurrent program, thus eliminating the first of
the four Coffman conditions: mutual exclusion. Doing this, however, can be seen as
misunderstanding the problem completely. We know that locks are utilized so that
processes and threads can access the shared resources in a program in a systematic,
coordinated way, to avoid mishandling the data. Removing any locking mechanisms
in a concurrent program means that the likelihood of the shared resources, which
are now free from accessing limitations, being manipulated in an uncoordinated
way (and therefore becoming corrupted) increases significantly.

6. In a livelock situation, the processes (or threads) in the concurrent program can
switch their states, yet they simply switch back and forth infinitely, and no progress
can be made.

Chapter 13
1. Starvation is a problem in concurrent systems in which a process (or thread) cannot

gain access to the necessary resources to proceed with its execution, which means it
cannot make any progress.

2. Most of the time, a poorly coordinated set of scheduling instructions is the main
cause of starvation. Some high-level causes for starvation may include the following:

A. Processes (or threads) with high priorities dominate the execution flow in
the CPU, so low-priority processes (or threads) are not allowed to execute
their instructions.

Chapter 13 557

B. Processes (or threads) with high priorities dominate the usage of non-shareable
resources, so low-priority processes (or threads) are not allowed to execute their
instructions. This situation is similar to the first one but addresses the priority of
accessing resources, instead of the priority of execution itself.

C. Processes (or threads) with low priorities are waiting for resources to execute
their instructions, but as soon as the resources become available, other processes
(or threads) with higher priorities are immediately given access to them, so the
low-priority processes (or threads) wait infinitely.

3. Deadlock situations can also lead to starvation, as the definition of starvation states
that if a process (or thread) exists that is unable to make any progress because it
cannot gain access to the necessary process, the process (or thread) is experiencing
starvation. This is also illustrated in the dining philosophers' problem.

4. The readers-writers problem asks for a scheduling algorithm so that readers and
writers can access the text file appropriately and efficiently, without mishandling/
corrupting the data that's included.

5. The first approach allows for multiple readers to access the text file simultaneously
since readers simply read in the text file and do not alter the data in it. The problem
with the first approach is that when a reader is accessing the text file and a writer is
waiting for the file to be unlocked, if another reader starts its execution and wants to
access the file, it will be given priority over the writer, who has already been waiting.
Additionally, if more and more readers keep requesting access to the file, the writer
will be waiting infinitely.

6. This approach implements the specification that once a writer requests to access the
file, no reader should be able to jump in line and access the file before that writer.
As opposed to what we see in the first solution to the readers-writers problem, this
solution is giving priority to writers and, as a consequence, the readers are starved.

7. This approach implements a lock on both readers and writers. All threads will then
be subject to the constants of the lock, so equal priority will be achieved among
separate threads.

8. Some common solutions to starvation include the following:

A. Increasing the priority of low-priority threads.
B. Implementing a first-in-first-out thread queue.
C. Implementing a priority queue that also gives gradually increasing priority

to threads that have been waiting in the queue for a long time.
D. If a thread has been able to access the shared resource many times, it should be

given less priority.

558 Assessments

Chapter 14
1. Critical sections indicate shared resources that are accessed by multiple processes

or threads in a concurrent application, which can lead to unexpected, and even
erroneous, behaviors.

2. A race condition occurs when two or more threads/processes access and alter
a shared resource simultaneously, resulting in mishandled and corrupted data.

3. The root cause of a race condition is multiple threads/processes reading in and
altering a shared resource simultaneously. When all of the threads/processes
finish their execution, only the result of the last thread/process is registered.

4. Since race conditions arise when multiple threads or processes access and write to
a shared resource simultaneously, the solution is to isolate the execution of different
threads/processes, especially when interacting with the shared resource. With locks,
we can turn a shared resource in a concurrent program into a critical section, whose
data integrity is guaranteed to be protected.

5. There are several disadvantages to using locks: with enough locks implemented in
a concurrent program, the whole program may become entirely sequential; locks
don't lock anything.

6. The problems that race conditions raise in real-life systems and applications are
as follows:

A. Security: A race condition can be both exploited as a security vulnerability
(to give external agents illegal access to a system) and used as random key
generation, for security processes.

B. Operating systems: A race condition occurring when two agents (users and
applications) interact with the same memory space can lead to unpredictable
behaviors.

C. Networking: In networking, a race condition can lead to giving multiple users
powerful privileges in a network.

Chapter 15
1. C++ associates a variable with its value by simply writing the value to the memory

location of the variable; Python has its variables reference point to the memory
location of the values that they hold. For this reason, Python needs to maintain
a reference count for every value in its memory space.

2. To avoid race conditions and, consequently, value reference counts from being
corrupted, the GIL is implemented so that only one thread can access and mutate
the counts at any given time.

Chapter 16 559

3. The GIL effectively prevents multiple threads from taking advantage of the CPU and
executing CPU-bound instructions at the same time. This means that if multiple
threads that are meant to be executed concurrently are CPU-bound, they will be
executed sequentially.

4. There are a few ways to deal with the GIL in your Python applications; namely,
implementing multiprocessing instead of multithreading and utilizing other,
alternative Python interpreters.

Chapter 16
1. The factory pattern makes it easy to keep track of the objects that are created within

a program. Another benefit lies in the separation of code, which creates an object
and the code that the object uses.

2. There are two forms of the factory pattern: the factory method and the abstract
method. The former is used to handle the creation of a single object, while the latter
is a group of factory methods.

3. You should start with the factory method first since it is the simpler of the two. If
you find yourself needing many factory methods, then you should start thinking
about grouping them into different abstract methods.

Chapter 17
1. The builder pattern helps manage objects that contain many individual components

that need to be created sequentially. The pattern allows you to reuse a construction
multiple times as well since it decouples an object's construction and the object itself.

2. Many applications, such as HTML page generators, document converters, and UI
form creators, are implemented with the builder pattern.

3. The builder pattern uses a director to create an object via multiple steps sequentially,
while the factory pattern creates an object in a single step.

Chapter 18
1. The prototype pattern helps us create objects that are based on an existing

object (or prototype) via cloning. This can easily be done in Python using the
copy function.

2. Objects in a database need to be duplicated many times, depending on the
application and its users. This may be an expensive operation without prototypes.

560 Assessments

3. The singleton pattern is helpful when we want to implement a class that should only
have one instance. This is useful, for example, when we'd like to maintain the global
state of a Python program.

4. The singleton pattern may be used to control concurrent access to a shared resource,
preventing many concurrency-based bugs and errors.

Chapter 20
1. The decorator pattern specifies the usage and responsibilities of an object

dynamically in a transparent and readable way.
2. Python has a built-in decorator feature, allowing programmers to extend the

functionalities of a function, method, or class.
3. With the decorator pattern, we can implement memoization with minimal code,

which, as we have seen in the main text, helps keep the computation of Fibonacci
numbers fast and its code readable.

Chapter 21
1. The bridge pattern is useful when there is a need to share an implementation among

different objects without having to implement individual specialized classes. This is
typically done with either an abstract class that generalizes the different use cases or
the individual specialized classes themselves.

2. The adapter is generally used to make two incompatible interfaces compatible, while
the bridge abstracts out the generalization of different classes.

3. We define an abstract content fetcher class, from which two specialized classes
inherit: a local file fetcher and a URL fetcher.

Chapter 22
1. The façade pattern helps hide the inner implementation of an application and

only exposing the necessary interface. This is particularly important when we are
working with a large code base but our user only needs to interact with a small
portion of our code.

2. When we need to make a change to an application, the abstraction that the façade
pattern provides helps keep the client code separate and safe, which is useful in
making the client side unaffected by pending software changes.

3. The operating system class works as a façade, hiding access to the different server
classes from client code.

Chapter 23 561

Chapter 23
1. The flyweight pattern is designed to keep memory usage at a minimum by sharing

resources among similar objects.
2. The MVC pattern generalizes a common structure among different applications

with a model, a view, and a controller. This helps prevent mixing the backend logic
with user interfaces.

3. The proxy pattern is useful in requiring the necessary code to be run before an
important object is accessed.

Chapter 24
1. The chain of responsibility pattern gracefully handles an unknown number of

requests or events that our program needs to process. This is useful in event-based
logic such as purchase applications and shipping systems.

2. In our system, if an object does not know how to handle a given request, it passes
the request along the chain. As we have seen, a close event cannot be handled
directly by SendDialog and MsgText and is passed to MainWindow.

3. The chain of responsibility pattern may not be useful if there are multiple requests,
but they may be processed by a single object. This renders all the bookkeeping that's
done by the pattern useless.

Chapter 25
1. The command pattern helps encapsulate operational logic (copy, paste, undo, redo,

and so on) in an object. This leads to better abstraction and management of the
logical steps to be taken for each operation, such as grouping multiple operations
and implementing macros.

2. The command pattern abstracts out the implementation of the operations that are
used, so any client code that executes it does not need to know about the details of
their implementation.

3. In our example, we implemented an abstraction on top of various functionalities
provided by the os module. A particular feature is its undoing function. Moreover,
as commands have a consistent interface, grouping them can be done with ease.

562 Assessments

Chapter 26
1. The observer pattern maintains a list of objects that are interested in the state of a

target object and notifies the former when the latter changes.
2. While the MVC pattern may implement the same function logic of updating views

when the model changes, the observer pattern is more effective at maintaining and
managing the list of subscribers for a given publisher, making it easy to, for example,
add or remove subscribers.

3. We implement data formatters that display an object in different ways. Here, we have
multiple subscribing formatters that are interested in a publishing default formatter.
When the default formatter is updated, the subscribers are notified and proceed
with their respective logic.

Index

Symbols
__init__() method 506

A
Abstract Base Class (ABC)

module 475, 484
abstract factory

about 409
applying 419
implementing 420-425
real-world examples 419
use cases 420

adapter 458
adapter pattern

about 458
implementation 459-461
real-world examples 458
use cases 458

Adaptive Gaussian Thresholding 299
Adaptive Mean Thresholding 299
adaptive thresholding 307
aiofiles module

installing 327

aiohttp module
files asynchronously, writing 330, 331
HTML code, fetching 328-330
installing 327
using, in client-side communication 327

algorithms
running times 36, 37

Anaconda Python distribution
reference link 9

annotated view 127
anti-pattern 450
application programming

interface (API) 208, 231
arrays

about 37
C arrays 116-118
NumPy arrays, working with 118-120
pointers 116-118
typed memoryviews, working

with 120, 121
working with 115

asynchronous input/output (I/O)
HTTP (aiohttp) 211, 327

564 Index

asynchronous programming
about 190
callbacks 193-197
concurrency 191-193
event loops 200-203
for communication channels 316, 317
futures 197-200
input/output (I/O) 190, 191

asyncio
about 203
blocking code, converting into

non-blocking code 208-210
coroutines, working with 204-208

asyncio.BaseTransport
methods 318

asyncio module
protocols 317-319
transports 317-319

asyncio's server client 319
Automated teller machines (ATMs) 519
automatic differentiation

about 169
dataset, making 170
for loss minimization 169, 170
gradient descent algorithm 173-175
linear model, building 171, 172

automatic parallelism 245
automatic vectorization

for efficient kernels 177
for kernelized models 181-184
kernel method, in machine

learning 179, 180
linearly non-separable dataset 178, 179

awaitable resources 206
axes 61

B
Basic Linear Algebra Subprograms

(BLAS) 248
behavioral design patterns 408
benchmark

about 3, 13
timing 13-16
writing 11-13
writing, with pytest-benchmark 16-19

Big O notation 36
bisect

reference link 39
blind error-catching 283
blocking code

converting, into non-blocking
code 208-210

Boolean method 533
bottleneck

finding, with cProfile 19-22
bridge pattern

implementation 474-479
real-world examples 474
use cases 474

broadcasting 68-71
buffer 120
buffer syntax 119
builder-design pattern

about 428
builder 428
director 428
ordering application,

implementing 433-441
software examples 429
use cases 429-433

busy-waiting loop 201
bytecode 28

Index 565

C
cache 50, 190
caching

about 50
used, for improving efficiency 50-53

callable function
reference link 464

callbacks
about 194
working 194-197

C arrays 116-118
Catalog tool 451
cell magics 15
cells 15
central processing units (CPUs) 14
Chain of Responsibility design pattern

about 518, 519
implementation 522-525
real-world examples 519, 520
use cases 521, 522

Chip card 511
circular wait 337
classes

declaring 113, 114
reference link 408

client-side communication
with aiohttp module 327

clone 444
cloning technique 444
Coffman conditions

about 336
circular wait 337
hold and wait 337
mutual exclusion 336
no preemption condition 337

cold observables 218, 219

column-major 117
command-line interfaces (CLIs) 15
command pattern

about 528
advantages 528
execution part 530
GUI buttons 529
implementing 529-536
initialization part 530
logging 529
macros 529
menu items 529
other operations 529
real-world examples 528, 529
transactional behavior 529
use case 529

communication channels
asynchronous programming 316, 317
asyncio's server client 319
communication protocol layers 314-316
ecosystem 314
protocols, in asyncio module 317-319
transport, closing 325, 326
transports, in asyncio module 317-319

communication protocol layers 315, 316
comprehension

used, for efficient iteration 54-56
computation graph 254
computer image basics

about 290
coordinating, inside image 292
image files 291
pixels files 291
RGB values 290

Compute Unified Device
Architecture (CUDA) 231

566 Index

concurrency
about 191
applying, to image processing 302-306
implementing 191-193

concurrent image processing,
best practices

about 307
appropriate number of

processes, spawning 310
correct way, selecting 307-309
input/output concurrently,

processing 310
concurrent program

turning, into sequential
program 386-388

concurrent web requests
about 272
multiple threads, spawning 273, 274
request logic, refactoring 275, 276

content management system (CMS) 429
control group 88
controller 500
coroutines

about 204
generator-based coroutine 205
native coroutines 206
working with 204-208

cProfile
used, for finding bottleneck 19-22

cProfile module 19
CPU monitor

building 222-225
creational design patterns 408
critical sections 376
cross-cutting concerns

examples 465
reference link 465

Cython
particle simulator, using 122-126
profiling 127-130
reference link 106
using, with Jupyter 131-134

Cython compiler directives
reference link 128

Cython extensions
compiling 106-108

D
database-style data

working, with pandas 80
database-style operations

with pandas 85
data collection 264
data containers 110
data extractor 419
data science 264
dataset 163
data structures

running times 37
deadlock

about 334, 336
concurrent system 336, 337
Dining Philosophers problem 334-336
Python simulation 338-341
starvation, relationship to 361, 362

deadlock situations, approaches
about 342
locks, ignoring 349
ranking, implementing among

resources 342-349
resources, sharing 349

deadlock solutions 352

Index 567

declarations
sharing 114, 115

decorator pattern
about 464
real-world examples 464, 465
use cases 465

decorators, Numba
using 139, 140

deep copy 444
deep learning (DL) 254
definition files 114
Denial of Service (DoS) 284
deque 38-40
design patterns 408, 409
device drivers 474
dictionaries 40
digital/computational image

processing 288
Dining Philosophers problem 334-336
direct selling 444
disassemble (dis) module

using 29
Distributed Denial of Service (DDoS) 284
distributed memory 229
Django

about 419, 502
reference link 419, 502

double-ended queue 38
doubly linked list 519
dynamic programming 50

E
Elastic Compute Cloud (EC2)

reference link 256
ElasticSearch 451
embarrassingly parallel problems 228

EMV card
reference link 511

end-to-end (E2E) connections 316
ensure_future function 208
event-driven systems 541
event loop

about 200
breakpoints 207
notifications 203
working 200-203

Executor interface 234, 235
extrinsic data 492

F
façade pattern

about 482
implementation 483-489
real-world examples 482, 483
use cases 483

factory design pattern 408
factory method

about 409
implementing 409-419
real-world examples 409, 410
use cases 410, 411

fancy indexing 66-68
first-in-first-out thread queue 373
first-person shooter (FPS) 493
fluent builder 440
flyweight pattern

about 492
example 493
implementing 494-500
reference link 492
use cases 493

functional transformations 167

568 Index

functions
declaring 112

functools
reference link 306

functools.wraps() function
about 468
reference link 468

futures
about 197, 198
using 199

G
generalized universal function (gufunc)

about 146
Numba, applying 146-149

generator-based coroutine 205
generators

used, for efficient iteration 54-56
versus iterators 213

GET method 266
global flag 530
Global Interpreter Lock (GIL)

about 230, 394
addressing, issue 397
memory management, analyzing

in Python 394-397
multiprocessing, implementing 401, 402
raising, problems 398, 399
utilizing, Python interpreter 403
with native extensions 403
working with 400

GNU Compiler Collection
(GCC) 106, 242

GNU Hurd 483
Google Colab

using 168

Gprof2Dot
reference link 25

graphical user interface (GUI) 22
graphical user interface (GUI) toolkit 465
graphics processing unit (GPU)

about 168, 230, 231
code, running on 256-260

grayscaling 288, 295-297
group_by operator 215, 216

H
Haar Cascade model 307
hard disk drive (HDD) 191, 492
hash map

about 40, 41
used, for building in-memory

search index 42, 43
heaps 46, 47
Hidden Markov models 288
high-performance labeled data

with xarray 92
hold and wait condition 337
hot observables

about 220
creating 221
example 221

HTTP requests 265, 266
HTTP response status code

1xx (informational status code) 267
2xx (successful status code) 267
3xx (redirectional status code) 267
4xx (error status code for client) 267
5xx (error status code for server) 267
about 267

HTTP status code 266, 267

Index 569

HyperText Markup Language
(HTML) 127, 264, 327, 428

HyperText Transfer Protocol
(HTTP) 265, 316, 520

I
image files 291
image processing

concurrency, applying to 302-306
image processing techniques

about 295
grayscaling 295-297
thresholding 297-302

image processing tool
Python as 289

image segmentation 297
Implementor 475
independent component analysis 288
indexing 63-65
infamous GIL 394, 400
in-memory search index

building, with hash map 42, 43
input and output (I/O) language 107
inspect_types function 142
interface adaptation 463
Internet Assigned Numbers

Authority (IANA) 267
internet resources fetching,

with urllib package
reference link 451

intrinsic data 492
inverted index 43, 44
IPython, limitation

reference link 116
iterable 212
iterators

versus generators 213

J
JAX

installing 168
running 167

jax.numpy package
reference link 171

JIT classes
about 150
using 150-153

Joblib 53
joins 91
JSON file 411
Jupyter

Cython, using with 131-134
Just-In-Time compilation

for improved efficiency 176, 177
Just-In-Time compiler (JIT) 175, 245

K
KCachegrind 3, 22-25
kernel trick 179

L
latency 231
lazy initialization

about 507, 510
reference link 507

line_profiler module
used, for profiling line by line 25-27

lists 37-40
livelocks 353-355
locks

about 239-241, 352
as solution to race conditions 381
disadvantages 384-388

570 Index

effectiveness 381, 382
ignoring 349-351
solution, implementing with

Python 383, 384
loose coupling versus tight coupling 522
loss minimization

automatic differentiation 169, 170
Low-Level Virtual Machine (LLVM) 138
lru_cache decorator 51-53

M
machine learning (ML)

about 162, 163, 245
loss function 165
loss minimization 166, 167
model parameters 164

MacPorts
URL 22

map operator 214, 215
Membership tool 451
memoization

about 50, 494
used, for improving efficiency 50-53

memoization decorator
implementing 466-471
reference link 466

memory addresses 410
memory hierarchy

cache 190
illustration diagram 190
RAM 191
registers 190
storage 191

memory management
analyzing, in Python 394-397

memory_profiler module
used, for profiling memory usage 30-32

memory usage
profiling, with memory_

profiler module 30-32
memoryview 120
merge_all operator 217
metaclass technique 453
microkernel 483
MINIX 3 483
model 500
Model-Template-View (MTV) 502
model-view-adapter (MVA) 503
Model-View-Controller (MVC) pattern

about 540
benefits 503
controller, creating 503
example 502
implementing 500-507
models, creating 503
use case 501-504
view, creating 504

model-view-presenter (MVP) 503
Monte Carlo approximation of pi 236-239
moving window 223
multiprocessing

Executor interface 234-236
implementing 401, 402
locks 239-241
Monte Carlo approximation

of pi 236-239
Pool classes 232-234
process 232-234
reference link 241
synchronization 239-241
using, standard processes 231

mutual exclusion 336, 349, 376
mutual exclusion(mutex) lock 382

Index 571

N
native coroutines 206
native mode, Numba 142, 143
Netcat 322
network marketing 444
neural network models 288
no preemption condition 337
Nuitka 158
Numba

about 138, 259
applying, to generalized universal

function 146-149
decorators, using 139, 140
integrating, with NumPy 144
JIT classes, using 149-153
limitations 154
object mode, versus native

mode 142-144
type specializations 140-142
universal functions 145

numexpr
used, for reaching optimal

performance 77-79
NumPy

about 60
installing 289, 290
particle simulator, rewriting 73-77

NumPy arrays
accessing 63
broadcasting 68-71
creating 60-63
mathematical operations 71, 72
norm of set of coordinates,

calculating 73
working with 118-120

NumPy arrays, elements accessing
fancy indexing 66-68
indexing 63-65
slicing 63-66

NVIDIA CUDA Compiler
(NVCC) tool 231

O
object mode, Numba

about 142
versus native mode 142

object-oriented (OO) 7
object-oriented programming

(OOP) 408, 494
object-relational mapping (ORM) 512
observables 212-214
observer 212, 540
observer pattern

about 540
implementation 541-546
real-world examples 540
use cases 541

one-dimensional (1D) vector 247
Open Computing Language

(OpenCL) 231
OpenCV API 292-294
Open Multi-Processing (OpenMP)

about 242
parameters 249
used, for parallel processing

Cython 242-245
Open Source Computer Vision (OpenCV)

about 289
installing 289, 290
reference link 290

572 Index

Open Systems Interconnection
(OSI) model 314

operating system (OS) 474
operators, Reactive programming

group_by 215
map 214
merge_all 217

order of magnitude (OOM) 190

P
pandas

about 80
DataFrame objects 83, 84
fundamentals 80-82
indexing series 83, 84
used, for database-style operations 85
used, for working with

database-style data 80
pandas, used for database-style operations

aggregations 88-90
grouping 88-90
joining 91, 92
mapping 85-87
transforms 88-90

parallel processing Cython
with OpenMP 242-245

parallel programming
about 228-230
GPUs 230, 231

parallel programming, data
communication ways

distributed memory 229
shared memory 229

particle simulator
building 5-9
rewriting, in NumPy 73-77

using, in Cython 122-126
visualizing 9-11

particle simulator test application
designing 4

PIN card 511
ping test 270
pixels files 291
pointers 116-118
Pool classes 232-234
POST method 266
prefix tree 47
priority inversion 359, 360
priority of low-priority threads

increasing 373
privilege escalation 389
process 232-234
profile module 19
profiler 3
profiling 3
Properties module 540
protection/protective proxy 508
prototype pattern

about 444
implementing 444-450
non-technical example 445
use cases 445

proxy pattern
about 507
applying 507-510
example 511
implementing 512-515
reference link 508
use cases 511

proxy pattern, types
protection/protective proxy 508
remote proxy 508

Index 573

smart (reference) proxy 508
virtual proxy 508

PyPy
about 155
advanced usage 157
download link 155
particle simulator, running in 156, 157
setting up 155, 156

Pyston 158
pytest-benchmark

used, for writing benchmark 16-19
used, for writing test 16-19

Python
as image processing tool 289
memory management,

analyzing 394-397
race conditions, simulating 379-381
used, for implementing locks 383, 384
working 320

Python code
optimizing 27, 28

Python decorator
about 464
reference link 464

Python decorator library
reference link 466

Python interpreter
utilizing 403

Python Package Index (PyPI) 22
Python simulation 338-341

Q
QCacheGrind

reference link 22

R
race conditions

about 376
critical sections 376
locks, as solution to 381
occurring, in concurrent

program 377, 378
simulating, in Python 379-381

race conditions, in real life
about 389
networking 391
operating systems 390
security 389

random-access memory (RAM) 191
ranking

implementing, among resources 342-349
Reactive Extensions for Python

(RxPY) library 211
reactive programming

about 211
cold observables 218, 219
CPU monitor, building 222-225
elastic 211
hot observables 220, 221
message-driven 211
observables 212-214
operators 214-217
resilient 211
responsive 211

ReactiveX
URL 211

reader 362
readers preference 367
readers-writers problem

approaching 362-373
problem statement 362, 363

574 Index

Read-Eval-Print Loop (REPL) 411
red, green, and blue (RGB) values 290
registers 190
Registry tool 451
remote proxy 508
requests module

about 268
creating, in Python 268-270
ping test, running 270-272

resources
sharing 349-351

row-major 117
RPython (Restricted Python) 155
run() method 506

S
separation of concerns (SoC) 500
sequential program

concurrent program, turning
into 386, 387

service lock 370
sets 44, 45
shallow copy 444
shared memory 229
simple constant thresholding 307
single point of failure (SPOF) 211
singleton pattern

example 451
implementing 450-456
use cases 451

singly linked list 519
slicing 63-65
smart (reference) proxy 508
solid-state drives (SSDs) 191, 492
starvation

about 358
causes 360

relationship to deadlock 361, 362
scheduling algorithm 359, 360
solutions 373

static types
adding 109
classes, declaring 113, 114
functions, declaring 112
variables, declaring 109-111

storage
hard disk drives (HDDs) 191
solid-state drives (SSDs) 191

structural design patterns 408
Structured Query Language (SQL) 429
successor 519
surrogate object 508
synchronization 239-241

T
Telnet

connection channel, simulating 322, 323
installing 321
messages, sending to client 323-325
server, implementing 320, 321
working 320

template 502
TensorFlow

about 245, 253-256
version compatibility 253

tensor processing unit (TPU) 168
test

writing 11, 12
writing, with pytest-benchmark 16-19

test-specific attributes 419
Theano

about 245
profiling 251-253

Index 575

reference link 247
working with 245-250

threading.Timer 195
threads 229
thresholding 297-302
throughput 231
tight coupling

versus loose coupling 522
Time-Of-Check-To-Time-Of-

Use (TOCTTOU) 389
timeouts problem

about 277
implementing 278-282
response delay, simulating 277, 278

tools 451
tracing JIT compilation strategy 155
transforms 90
trie 47-49
two-dimensional (2D) array 119, 256
typed memoryviews

working with 120, 121
type inference 138
type specializations, Numba 140-142

U
undo operation 528
Unified Modeling Language (UML) 522
Uniform Resource Locator

(URL) 210, 329
universal functions

about 145
advantage 146
example 145
with Numba 145, 146

utility functions 165

V
variables

about 394
declaring 109-111

vectorization 177
view 500-502
View decorators

reference link 464
view methods

error() 505
select_quote() 505
Show() 505

virtual proxy 508

W
Web2py framework

about 502
reference link 502

web requests
about 264
data-collecting policies 282
error handling 283
HTTP requests 265, 266
HTTP status code 266, 267
HyperText Markup Language

(HTML) 264, 265
making 282
multiple requests, avoiding 284, 285
program, updating 283
terms of service, considering 282

web scraping 264
workers 233
World Wide Web (WWW) 265
writer 362
writers preference 369

576 Index

X
xarray

library 96-98
xarray, used for high-performance

labeled data
about 92
CO2 concentration, analyzing 92-96
performance, improving 98-100
plotting 100-102

XML file 411

Z
Zope

URL 458
Zope Component Architecture

(ZCA), 458

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Packt.com
packt.com
customercare@packtpub.com
www.packt.com

578 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python for Geeks

Muhammad Asif

ISBN: 9781801070119

• Understand how to design and manage complex Python projects

• Strategize test-driven development (TDD) in Python

• Explore multithreading and multiprogramming in Python

• Use Python for data processing with Apache Spark and Google Cloud Platform (GCP)

• Deploy serverless programs on public clouds such as GCP

• Use Python to build web applications and application programming interfaces

• Apply Python for network automation and serverless functions

• Get to grips with Python for data analysis and machine learning

https://packt.link/9781801070119

Other Books You May Enjoy 579

Expert Python Programming - Fourth Edition

Michał Jaworski, Tarek Ziadé

ISBN: 9781801071109

• Explore modern ways of setting up repeatable and consistent Python development
environments

• Effectively package Python code for community and production use

• Learn modern syntax elements of Python programming, such as f-strings, enums,
and lambda functions

• Demystify metaprogramming in Python with metaclasses

• Write concurrent code in Python

• Extend and integrate Python with code written in C and C++

https://packt.link/9781801071109

580

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Advanced Python Programming, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

authors.packtpub.com
authors.packtpub.com
https://packt.link/r/1801814015
https://packt.link/r/1801814015

	Cover
	Title Page
	Copyright and credits
	Contributors
	About the reviewers
	Table of Contents
	Preface
	Section 1:
Python-Native and Specialized Optimization
	Chapter 1: Benchmarking and Profiling
	Technical requirements
	Designing your application
	Building a particle simulator
	Visualizing the simulation

	Writing tests and benchmarks
	Timing your benchmark

	Writing better tests and benchmarks with pytest-benchmark
	Finding bottlenecks with cProfile
	Graphically analyzing profiling results
	Profiling line by line with line_profiler

	Optimizing our code
	Using the dis module
	Profiling memory usage with memory_profiler
	Summary
	Questions
	Further reading

	Chapter 2: Pure Python Optimizations
	Technical requirements
	Using the right algorithms and data structures
	Lists and deques
	Dictionaries
	Sets
	Heaps
	Tries

	Improved efficiency with caching and memoization
	Joblib

	Efficient iteration with comprehensions
and generators
	Summary
	Questions
	Further reading

	Chapter 3: Fast ArrayOperations withNumPy, Pandas,and Xarray
	Technical requirement
	Getting started with NumPy
	Creating arrays
	Accessing arrays
	Broadcasting
	Mathematical operations
	Calculating the norm

	Rewriting the particle simulator in NumPy
	Reaching optimal performance with numexpr
	Working with database-style data with pandas
	pandas fundamentals
	Database-style operations with pandas

	High-performance labeled data with xarray
	Analyzing ￼ concentration
	The xarray library
	Improved performance
	Plotting with xarray

	Chapter 4: C Performance with Cython
	Technical requirements
	Compiling Cython extensions
	Adding static types
	Declaring variables
	Declaring functions
	Declaring classes

	Sharing declarations
	Working with arrays
	C arrays and pointers
	Working with NumPy arrays
	Working with typed memoryviews

	Using a particle simulator in Cython
	Profiling Cython
	Using Cython with Jupyter
	Summary
	Questions

	Chapter 5: Exploring Compilers
	Technical requirements
	Getting started with Numba
	Using Numba decorators
	Type specializations
	Object mode versus native mode
	Numba and NumPy
	JIT classes
	Limitations in Numba

	The PyPy project
	Setting up PyPy
	Running a particle simulator in PyPy

	Other interesting projects
	Summary
	Questions
	Further reading

	Chapter 6: Automatic Differentiation
and Accelerated Linear Algebra for Machine Learning
	A crash course in machine learning
	Model parameters
	Loss function
	Loss minimization

	Getting JAX up and running
	Installing JAX
	Using Google Colab

	Automatic differentiation for loss minimization
	Making the dataset
	Building a linear model
	Gradient descent with automatic differentiation

	Just-In-Time compilation for improved efficiency
	Automatic vectorization for efficient kernels
	Data that is not linearly separable
	The kernel method in machine learning
	Automatic vectorization for kernelized models

	Summary
	Questions
	Further reading

	Section 2:
Concurrency and Parallelism
	Chapter 7: Implementing Concurrency
	Technical requirements
	Asynchronous programming
	Waiting for input/output
	Concurrency
	Callbacks
	Futures
	Event loops

	The asyncio framework
	Coroutines
	Converting blocking code into non-blocking code

	Reactive programming
	Observables
	Useful operators
	Hot and cold observables
	Building a CPU monitor

	Summary
	Questions
	Further reading

	Chapter 8: Parallel Processing
	Technical requirements
	Introduction to parallel programming
	GPUs

	Using multiple processes
	The Process and Pool classes
	The Executor interface
	Monte Carlo approximation of pi
	Synchronization and locks

	Parallel Cython with OpenMP
	Automatic parallelism
	Getting started with Theano
	Profiling Theano
	TensorFlow
	Running code on a GPU

	Summary
	Questions

	Chapter 9: Concurrent Web Requests
	The basics of web requests
	HTML
	HTTP requests
	HTTP status code

	The requests module
	Making a request in Python
	Running a ping test

	Concurrent web requests
	Spawning multiple threads
	Refactoring request logic

	The problem with timeouts
	Support from httpstat.us and simulation in Python
	Timeout specifications

	Good practices in making web requests
	Consider the terms of service and data-collecting policies
	Error handling
	Update your program regularly
	Avoid making a large number of requests

	Summary
	Questions
	Further reading

	Chapter 10: Concurrent Image Processing
	Technical requirements
	Image processing fundamentals
	Python as an image processing tool
	Computer image basics
	OpenCV API
	Image processing techniques

	Applying concurrency to image processing
	Good concurrent image processing practices
	Choosing the correct way (out of many)
	Spawning an appropriate number of processes
	Processing input/output concurrently

	Summary
	Questions
	Further reading

	Chapter 11: Building Communication Channels with asyncio
	Technical requirements
	The ecosystem of communication channels
	Communication protocol layers
	Asynchronous programming for communication channels
	Transports and protocols in asyncio
	The big picture of asyncio's server client

	Getting started with Python and Telnet
	Starting a server
	Installing Telnet
	Simulating a connection channel
	Sending messages back to clients
	Closing transports

	Client-side communication with aiohttp
	Installing aiohttp and aiofiles
	Fetching a website's HTML code
	Writing files asynchronously

	Summary
	Questions
	Further reading

	Chapter 12: Deadlocks
	Technical requirements
	The concept of deadlocks
	The dining philosophers problem
	A deadlock in a concurrent system
	Python simulation

	Approaches to deadlock situations
	Implementing ranking among resources
	Ignoring locks and sharing resources

	The concept of livelocks
	Summary
	Questions
	Further reading

	Chapter 13: Starvation
	Technical requirements
	Understanding starvation
	What is starvation?
	Scheduling
	Causes of starvation
	Starvation's relationship to deadlock

	Approaching the readers-writers problem
	Problem statement
	The first readers-writers problem
	The second readers-writers problem
	The third readers-writers problem

	Solutions to starvation
	Summary
	Questions
	Further reading

	Chapter 14: Race Conditions
	Technical requirements
	The concept of race conditions
	Critical sections
	How race conditions occur

	Simulating race conditions in Python
	Locks as a solution to race conditions
	The effectiveness of locks
	Implementation in Python
	The downside of locks

	Race conditions in real life
	Security
	Operating systems
	Networking

	Summary
	Questions
	Further reading

	Chapter 15: The Global Interpreter Lock
	Technical requirements
	Introducing the GIL
	Analyzing memory management in Python
	The problem that the GIL addresses
	Problems raised by the GIL

	The potential removal of the GIL from Python
	Working with the GIL
	Implementing multiprocessing, rather than multithreading
	Getting around the GIL with native extensions
	Utilizing a different Python interpreter

	Summary
	Questions
	Further reading

	Section 3:
Design Patterns
in Python
	Chapter 16: The Factory Pattern
	Technical requirements
	Understanding design patterns
	Implementing the factory method
	Real-world examples
	Use cases
	Implementing the factory method

	Applying the abstract factory
	Real-world examples
	Use cases
	Implementing the abstract factory pattern

	Summary
	Questions

	Chapter 17: The Builder Pattern
	Technical requirements
	Understanding the builder pattern
	Real-world examples
	Use cases
	Implementing an ordering application
	Summary
	Questions

	Chapter 18: Other Creational Patterns
	Technical requirements
	Implementing the prototype pattern
	Real-world examples
	Use cases
	Implementation

	Implementing the singleton pattern
	Real-world examples
	Use cases
	Implementation

	Summary
	Questions
	Further reading

	Chapter 19: The Adapter Pattern
	Technical requirements
	Understanding the adapter pattern
	Real-world examples
	Use cases
	Implementation
	Summary

	Chapter 20: The Decorator Pattern
	Technical requirements
	Introducing the decorator pattern
	Real-world examples
	Use cases
	Implementation
	Summary
	Questions

	Chapter 21: The Bridge Pattern
	Technical requirements
	Real-world examples
	Use cases
	Implementation
	Summary
	Questions

	Chapter 22: The Façade Pattern
	Technical requirements
	Understanding the façade pattern
	Real-world examples
	Use cases
	Implementation
	Summary
	Questions
	Further reading

	Chapter 23: Other Structural Patterns
	Technical requirements
	Implementing the flyweight pattern
	Real-world examples
	Use cases
	Implementation

	Implementing the model-view-controller pattern
	Real-world examples
	Use cases
	Implementation

	Applying the proxy pattern
	Real-world examples
	Use cases
	Implementation

	Summary
	Questions

	Chapter 24: The Chain of Responsibility Pattern
	Technical requirements
	Understanding the Chain of Responsibility pattern
	Real-world examples
	Use cases
	Implementation
	Summary
	Questions

	Chapter 25: The Command Pattern
	Technical requirements
	Understanding the command pattern
	Real-world examples
	Use cases
	Implementation
	Summary
	Questions

	Chapter 26: The Observer Pattern
	Technical requirements
	Understanding the observer pattern
	Real-world examples
	Use cases
	Implementation
	Summary
	Questions

	Assessments
	Index
	Other Books You May Enjoy

