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Python's powerful capabilities for implementing robust and effi  cient programs make it one of the 
most sought-after programming languages. In this book, you'll explore the tools that allow you to 
improve performance and take your Python programs to the next level.

This book starts by examining the built-in as well as external libraries that streamline tasks 
in the development cycle, such as benchmarking, profi ling, and optimizing. You'll then get to 
grips with using specialized tools such as dedicated libraries and compilers to increase your 
performance at number-crunching tasks, including training machine learning models. The book 
covers concurrency, a major solution to making programs more effi  cient and scalable, and various 
concurrent programming techniques such as multithreading, multiprocessing, and asynchronous 
programming. You'll also understand the common problems that cause undesirable behavior in 
concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, 
structural, and behavioral patterns that enable you to tackle complex design and architecture 
challenges, making your programs more robust and maintainable.

By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python 
and be equipped with the practical knowledge needed to apply them to your use cases.

Second Edition
Advanced Python Programming

Things you will learn: 

• Write effi  cient numerical code with 
NumPy, pandas, and Xarray

• Use Cython and Numba to achieve 
native performance

• Find bottlenecks in your Python code 
using profi lers

• Optimize your machine learning 
models with JAX

• Implement multithreaded, 
multiprocessing, and asynchronous 
programs

• Solve common problems in concurrent 
programming, such as deadlocks

• Tackle architecture challenges with 
design patterns
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To Julie. Please learn Python—it's better than R, I promise.

– Quan Nguyen



Contributors

About the author
Quan Nguyen is a Python programmer and machine learning enthusiast. He is interested 
in solving decision-making problems under uncertainty. Quan has authored several books 
on Python programming and scientific computing. He is currently pursuing a Ph.D. 
degree in computer science at Washington University in St. Louis, researching Bayesian 
methods in machine learning.



About the reviewers
Dhruv Thakkar is a full-stack developer with 7+ years of experience working in multiple 
Fortune 500 companies in industries such as telecoms, information technology, and 
finance. He holds a masters in computer science from the University of Bridgeport, 
Connecticut, and a Bachelor of Science (information technology) from the University  
of Mumbai. 

Having started his career working as a frontend developer, he later transitioned to backend 
technologies such as Python, PHP, Perl, and Node.js to name a few. He also has experience 
working on DevOps tools such as Git, Jenkins, Ansible, and Docker. He is always open to 
learning new skills and is also passionate about open source and blockchain technologies.

Marius Iulian Mihailescu, Ph.D. is an associate professor at Spiru Haret University 
and a software project manager at the company Institute for Computers, both based 
in Bucharest, Romania. As an associate professor at Spiru Haret University, Marius is 
responsible for information security, functional programming, and developing IoT 
application courses. For more than 6 years, he has served as a lecturer at well-known 
national and international universities and different companies.

His main activity involves fields such as information security and cryptography related 
business/industry and research projects, ethical hacking, and developing software projects 
using the latest technologies, such as DevOps, IoT, cloud computing, big data, C#, F#, Java, 
Haskell, and Python.

Marius has authored and coauthored more than 30 articles in conference proceedings,  
25 articles in journals, and 6 books. 





Table of Contents
Preface

Section 1: Python-Native and Specialized 
Optimization

1
Benchmarking and Profiling

Technical requirements   4
Designing your application   4
Building a particle simulator   5
Visualizing the simulation   9

Writing tests and benchmarks   11
Timing your benchmark   13

Writing better tests  
and benchmarks with  
pytest-benchmark   16

Finding bottlenecks with 
cProfile   19
Graphically analyzing profiling results   22
Profiling line by line with line_profiler   25

Optimizing our code   27
Using the dis module   28
Profiling memory usage with 
memory_profiler   30
Summary   32
Questions    33
Further reading   34

2
Pure Python Optimizations

Technical requirements   36
Using the right algorithms and 
data structures   36
Lists and deques   37

Dictionaries   40
Sets   44
Heaps   46
Tries   47



viii  Table of Contents

Improved efficiency with 
caching and memoization   50
Joblib   53

Efficient iteration with 
comprehensions and generators   54

Summary   56
Questions   57
Further reading   57

3
Fast Array Operations with NumPy, Pandas, and Xarray

Technical requirement   60
Getting started with NumPy   60
Creating arrays   60
Accessing arrays   63
Broadcasting   68
Mathematical operations   71
Calculating the norm   73

Rewriting the particle simulator 
in NumPy   73
Reaching optimal performance 
with numexpr   77

Working with database-style 
data with pandas   80
pandas fundamentals   80
Database-style operations with pandas   85

High-performance labeled data 
with xarray   92
Analyzing CO2  concentration   92
The xarray library   96
Improved performance   98
Plotting with xarray   100

Summary   102
Questions   103
Further reading   103

4
C Performance with Cython

Technical requirements   106
Compiling Cython extensions   106
Adding static types   109
Declaring variables   109
Declaring functions   112
Declaring classes   113

Sharing declarations   114
Working with arrays   115
C arrays and pointers   116

Working with NumPy arrays   118
Working with typed memoryviews   120

Using a particle simulator  
in Cython   122
Profiling Cython   127
Using Cython with Jupyter   131
Summary   135
Questions   135



Table of Contents  ix

5
Exploring Compilers

Technical requirements   138
Getting started with Numba   138
Using Numba decorators   139
Type specializations   140
Object mode versus native mode   142
Numba and NumPy   144
JIT classes   149
Limitations in Numba   154

The PyPy project   155
Setting up PyPy   155
Running a particle simulator in PyPy   156

Other interesting projects   158
Summary   158
Questions   159
Further reading   159

6
Automatic Differentiation and Accelerated Linear Algebra 
for Machine Learning

A crash course in machine 
learning   162
Model parameters   164
Loss function   165
Loss minimization   166

Getting JAX up and running   167
Installing JAX   168
Using Google Colab   168

Automatic differentiation for 
loss minimization   169
Making the dataset   170
Building a linear model   171

Gradient descent with automatic 
differentiation   173

Just-In-Time compilation for 
improved efficiency   176
Automatic vectorization for 
efficient kernels   177
Data that is not linearly separable   178
The kernel method in  
machine learning   179
Automatic vectorization for  
kernelized models   181

Summary   184
Questions   185
Further reading   185



x  Table of Contents

Section 2: Concurrency and Parallelism

7
Implementing Concurrency

Technical requirements   190
Asynchronous programming   190
Waiting for input/output   190
Concurrency   191
Callbacks   193
Futures   197
Event loops   200

The asyncio framework   203
Coroutines   204

Converting blocking code into non-
blocking code   208

Reactive programming   211
Observables   212
Useful operators   214
Hot and cold observables   218
Building a CPU monitor   222

Summary   226
Questions   226
Further reading   226

8
Parallel Processing

Technical requirements   228
Introduction to parallel 
programming   228
GPUs   230

Using multiple processes   231
The Process and Pool classes   232
The Executor interface   234
Monte Carlo approximation of pi   236
Synchronization and locks   239

Parallel Cython with OpenMP   242
Automatic parallelism   245
Getting started with Theano   245
Profiling Theano   251
TensorFlow   253
Running code on a GPU   256

Summary   261
Questions   261

9
Concurrent Web Requests

The basics of web requests   264
HTML   264

HTTP requests   265
HTTP status code   266



Table of Contents  xi

The requests module   268
Making a request in Python   268
Running a ping test   270

Concurrent web requests   272
Spawning multiple threads   273
Refactoring request logic   275

The problem with timeouts   277
Support from httpstat.us and 
simulation in Python   277
Timeout specifications   278

Good practices in making  
web requests   282
Consider the terms of service and 
data-collecting policies   282
Error handling   283
Update your program regularly   283
Avoid making a large number  
of requests   284

Summary   285
Questions   285
Further reading   286

10
Concurrent Image Processing

Technical requirements   288
Image processing  
fundamentals   288
Python as an image processing tool   289
Computer image basics   290
OpenCV API   292
Image processing techniques   295

Applying concurrency to image 
processing   302

Good concurrent image 
processing practices   307
Choosing the correct way (out of 
many)   307
Spawning an appropriate number of 
processes   310
Processing input/output concurrently   310

Summary   310
Questions   311
Further reading   311

11
Building Communication Channels with asyncio

Technical requirements   314
The ecosystem of 
communication channels   314
Communication protocol layers   314
Asynchronous programming for 
communication channels   316
Transports and protocols in asyncio   317

The big picture of asyncio's  
server client   319

Getting started with Python 
and Telnet   320
Starting a server   320
Installing Telnet   321
Simulating a connection channel   322



xii  Table of Contents

Sending messages back to clients   323
Closing transports   325

Client-side communication  
with aiohttp   327
Installing aiohttp and aiofiles   327

Fetching a website's HTML code   328
Writing files asynchronously   330

Summary   332
Questions   332
Further reading   332

12
Deadlocks

Technical requirements   333
The concept of deadlocks   334
The dining philosophers problem   334
A deadlock in a concurrent system   336
Python simulation   338

Approaches to deadlock 
situations   342

Implementing ranking among 
resources   342
Ignoring locks and sharing resources   349

The concept of livelocks   353
Summary   355
Questions   356
Further reading   356

13
Starvation

Technical requirements   357
Understanding starvation   358
What is starvation?   358
Scheduling   359
Causes of starvation   360
Starvation's relationship to deadlock   361

Approaching the readers-
writers problem   362

Problem statement   362
The first readers-writers problem   363
The second readers-writers problem   367
The third readers-writers problem   370

Solutions to starvation   373
Summary   374
Questions   374
Further reading   374

14
Race Conditions

Technical requirements   376
The concept of race conditions   376
Critical sections   376

How race conditions occur   377

Simulating race conditions in 
Python   379



Table of Contents  xiii

Locks as a solution to race 
conditions   381
The effectiveness of locks   381
Implementation in Python   383
The downside of locks   384

Race conditions in real life   389
Security   389

Operating systems   390
Networking   391

Summary   391
Questions   392
Further reading   392

15
The Global Interpreter Lock

Technical requirements   394
Introducing the GIL   394
Analyzing memory management in 
Python   394
The problem that the GIL addresses   397
Problems raised by the GIL   398

The potential removal of the 
GIL from Python   400
Working with the GIL   400

Implementing multiprocessing, rather 
than multithreading    401
Getting around the GIL with native 
extensions   403
Utilizing a different Python interpreter   403

Summary   403
Questions   404
Further reading   404

Section 3: Design Patterns in Python

16
The Factory Pattern

Technical requirements   407
Understanding design patterns   408
Implementing the factory 
method   409
Real-world examples    409
Use cases   410
Implementing the factory method   411

Applying the abstract factory   419
Real-world examples   419
Use cases   420
Implementing the abstract factory 
pattern   420

Summary   425
Questions   425



xiv  Table of Contents

17
The Builder Pattern

Technical requirements   428
Understanding the builder 
pattern   428
Real-world examples   429
Use cases   429

Implementing an ordering 
application   433
Summary   442
Questions   442

18
Other Creational Patterns

Technical requirements   443
Implementing the prototype 
pattern   444
Real-world examples   445
Use cases   445
Implementation   445

Implementing the singleton 
pattern   450
Real-world examples   451
Use cases   451
Implementation   451

Summary   456
Questions   456
Further reading   456

19
The Adapter Pattern

Technical requirements   457
Understanding the adapter 
pattern   458
Real-world examples   458

Use cases   458
Implementation   459
Summary   462

20
The Decorator Pattern

Technical requirements   464
Introducing the decorator 
pattern   464

Real-world examples   464
Use cases   465



Table of Contents  xv

Implementation   466
Summary   471

Questions   472

21
The Bridge Pattern

Technical requirements   474
Real-world examples   474
Use cases   474

Implementation   474
Summary   479
Questions   479

22
The Façade Pattern

Technical requirements   481
Understanding the façade 
pattern   482
Real-world examples   482
Use cases   483

Implementation   483
Summary   490
Questions   490
Further reading   490

23
Other Structural Patterns

Technical requirements   492
Implementing the flyweight 
pattern   492
Real-world examples   493
Use cases   493
Implementation   494

Implementing the model-view-
controller pattern   500
Real-world examples   502

Use cases   503
Implementation   504

Applying the proxy pattern   507
Real-world examples   511
Use cases   511
Implementation   512

Summary   515
Questions   515



xvi  Table of Contents

24
The Chain of Responsibility Pattern

Technical requirements   518
Understanding the Chain of 
Responsibility pattern   518
Real-world examples   519

Use cases   521
Implementation   522
Summary   526
Questions   526

25
The Command Pattern

Technical requirements   527
Understanding the command 
pattern   528
Real-world examples   528

Use cases   529
Implementation   529
Summary   536
Questions   537

26
The Observer Pattern

Technical requirements   540
Understanding the observer 
pattern   540
Real-world examples   540

Use cases   541
Implementation   541
Summary   547
Questions   547

Assessments

Index

Other Books You May Enjoy



Preface
Advanced Python Programming serves as a guide for you to take your Python skills to 
the next level. To beginners, Python is a great option for fast prototyping and software 
development due to its simple syntax, but some tend to lean toward other languages 
when they want to speed up and scale their code. However, this mindset is not necessarily 
correct. As this book will show us, Python comes with a wide range of support for 
optimizing, scaling, and overall high-performance computing.

This second edition includes both updated and new content from the first. Many 
chapters with overlapping materials have been combined to make a succinct, logical flow 
throughout the text. Further, a new chapter on JAX, the state-of-the-art high-performance 
computing tool in machine learning, has been added. These adjustments promise to make 
the book a high-quality text for all Python users who are looking to get the most out of 
their programs.

By the end of this book, you will have been exposed to a variety of techniques and libraries 
that are designed to streamline, protect, and optimize your software. You will gain practical 
skills on how to make your Python applications robust, efficient, and scalable.

Who this book is for
This book is for intermediate to experienced Python programmers who are looking 
to scale up their applications in a systematic and robust manner. Programmers from a 
range of backgrounds will find this book useful, including software engineers, scientific 
programmers, and software architects.

What this book covers
Chapter 1, Benchmarking and Profiling, teaches you how to assess the performance of 
Python programs and practical strategies on how to identify and isolate slow sections  
of your code.

Chapter 2, Pure Python Optimizations, discusses how to improve your running times by 
orders of magnitude using the efficient data structures and algorithms available in the 
Python standard library and pure-Python third-party modules.
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Chapter 3, Fast Array Operations with NumPy, Pandas, and Xarray, offers a guide to the 
NumPy and pandas packages. Mastery of these packages will allow you to implement fast 
numerical algorithms with an expressive, concise interface.

Chapter 4, C Performance with Cython, is a tutorial on Cython, a language that uses  
a Python-compatible syntax to generate efficient C code.

Chapter 5, Exploring Compilers, covers tools that can be used to compile Python to 
efficient machine code. The chapter will teach you how to use Numba, an optimizing 
compiler for Python functions, and PyPy, an alternative interpreter that can execute  
and optimize Python programs on the fly.

Chapter 6, Automatic Differentiation and Accelerated Linear Algebra for Machine Learning, 
covers high-performance Python programming, which is essential in scientific computing 
and machine learning. JAX implements many compiler-related optimizations under the 
hood, which speeds up NumPy operations by a significant amount. Further, the tool can 
automatically differentiate native Python functions, allowing for the wide application of 
gradient-based optimization routines.

Chapter 7, Implementing Concurrency, offers a guide to asynchronous and reactive 
programming. We will learn about key terms and concepts, and demonstrate how  
to write clean, concurrent code using the asyncio and RxPy frameworks.

Chapter 8, Parallel Processing, provides an introduction to parallel programming  
on multi-core processors and GPUs. In this chapter, you will learn how to achieve 
parallelism using the multiprocessing module and by expressing your code using  
Theano and TensorFlow.

Chapter 9, Concurrent Web Requests, covers one of the main applications of concurrent 
programming: web scraping. It also covers other relevant elements of web scraping, before 
discussing how threading can be applied to parallelize this process.

Chapter 10, Concurrent Image Processing, goes into a specific application of concurrency: 
image processing. The basic ideas behind image processing, in addition to some of 
the most common processing techniques, are discussed. We will, of course, see how 
concurrency, specifically multiprocessing, can speed up the task of image processing.

Chapter 11, Building Communication Channels with asyncio, combines the knowledge 
obtained regarding asynchronous programming covered in previous chapters with the 
topic of network communication. Specifically, we will look into using the aiohttp module 
as a tool to make asynchronous HTTP requests to web servers, as well as the aiofile 
module that implements asynchronous file reading/writing.
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Chapter 12, Deadlocks, introduces the first of the problems that are commonly faced in 
concurrent programming. We will learn about the classical dining philosophers problem 
as an example of how deadlocks can cause concurrent programs to stop functioning. This 
chapter also covers a number of potential approaches to deadlocks as well as relevant 
concepts, such as livelocks and distributed deadlocks.

Chapter 13, Starvation, considers another common problem in concurrent applications. 
The chapter uses the narrative of the classical readers-writers problem to explain the 
concept of starvation and its causes. We will, of course, also discuss potential solutions  
to these problems via hands-on examples in Python.

Chapter 14, Race Conditions, addresses arguably the most well-known concurrency 
problem: race conditions. We will also discuss the concept of a critical section, which 
is an essential element in the context of race conditions specifically, and concurrent 
programming in general. The chapter then covers mutual exclusion as a potential  
solution for this problem.

Chapter 15, The Global Interpreter Lock, introduces the infamous GIL, which is considered 
the biggest challenge in concurrent programming in Python. We will learn about the 
reason behind the GIL's implementation and the problems that it raises. This chapter 
concludes with some thoughts regarding how Python programmers and developers 
should think about and interact with the GIL.

Chapter 16, The Factory Pattern, teaches you how to use the Factory design pattern 
(Factory Method and Abstract Factory) to initialize objects, and also covers the benefits  
of using the Factory design pattern instead of direct object instantiation.

Chapter 17, The Builder Pattern, teaches you how to simplify the object creation  
process for cases typically composed of several related objects. We will review real-world 
examples and use cases, and then implement the builder pattern in developing a  
pizza-ordering application.

Chapter 18, Other Creational Patterns, teaches you how to handle other object creation 
situations with techniques such as creating a new object that is a full copy (a named clone) 
of an existing object, a technique offered by the Prototype pattern. You will also learn 
about the Singleton pattern.

Chapter 19, The Adapter Pattern, teaches you how to make your existing code compatible 
with a foreign interface (for example, an external library) with minimal changes. 
Specifically, you will see how you can achieve interface conformance using the Adapter 
pattern without modifying the source code of the incompatible model.
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Chapter 20, The Decorator Pattern, teaches you how to enhance the functionality of an 
object without using inheritance. We will mention several categories of cross-cutting 
concerns and specifically demonstrate memoization in this view. We will also describe 
how decorators can help us to keep our functions clean, without sacrificing performance.

Chapter 21, The Bridge Pattern, teaches you how to externalize an object's implementation 
details from its class hierarchy to another object class hierarchy. This chapter encourages 
the idea of preferring composition over inheritance. 

Chapter 22, The Façade Pattern, teaches you how to create a single entry point to hide the 
complexity of a system. We will cover the basic use cases of facade and the implementation 
of the interface used by a multiserver operating system.

Chapter 23, Other Structural Patterns, teaches you about the Flyweight, Model-View-
Controller (MVC), and Proxy patterns. With the Flyweight pattern, you will learn how 
to reuse objects from an object pool to improve the memory usage and possibly the 
performance of your applications. The MVC pattern is used in application development 
(desktop and the web) to improve maintainability by avoiding mixing the business logic 
with the user interface. And with the Proxy pattern, you provide a special object that 
acts as a surrogate or placeholder for another object to control access to it and reduce 
complexity and/or improve performance.

Chapter 24, The Chain of Responsibility Pattern, teaches you another technique to improve 
the maintainability of your applications by avoiding mixing the business logic with the 
user interface.

Chapter 25, The Command Pattern, teaches you how to encapsulate operations (such as 
undo, copy, and paste) as objects, to improve your application. Among the advantages of 
this technique, the object that invokes the command is decoupled from the object that 
performs it.

Chapter 26, The Observer Pattern, teaches you how to send a request to multiple receivers.

To get the most out of this book
The code used in this book has been tested on Python version 3.8 on macOS Big Sur, 
Windows, Ubuntu, and Monterey. 

You should first have Python installed, preferably in a virtual environment. The 
recommended way to do this is via Anaconda, which can be downloaded from https://
www.anaconda.com/products/individual. Individual chapters may discuss 
various external libraries and tools that have to be installed via a package manager, and 
specific instructions on how to do so are included in the corresponding text.

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
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Note
If you are using the digital version of this book, we advise you to type the 
code yourself or access the code from the book's GitHub repository (a link is 
available in the next section). Doing so will help you avoid any potential errors 
related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Advanced-Python-Programming-Second-
Edition. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801814010_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here 
is an example: "In our main program, we create the fork as a lock object first; then, we 
create two Spouse thread objects, which are each other's partner attributes."

A block of code is set as follows:

fork = threading.Lock()

partner1 = Spouse('Wife', None)

partner2 = Spouse('Husband', partner1)

partner1.partner = partner2

partner1.start()

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801814010_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801814010_ColorImages.pdf
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partner2.start()

partner1.join()

partner2.join()

print('Finished.')

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

fork = threading.Lock()

partner1 = Spouse('Wife', None)

partner2 = Spouse('Husband', partner1)

partner1.partner = partner2

partner1.start()

partner2.start()

partner1.join()

partner2.join()

print('Finished.')

Any command-line input or output is written as follows:

pip install numpy

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "The 
Coordinates section shows the values that each of these dimensions can take on."

Tips or important notes 
Appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata and fill in  
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
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If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

Share Your Thoughts
Once you've read Advanced Python Programming, we'd love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.
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Section 1:  
Python-Native 

and Specialized 
Optimization

Python, along with its many libraries and packages, offers specialized data structures and 
classes that facilitate highly optimized operations. You will learn how to navigate through 
these different tools and use them appropriately to accelerate your Python program.

This section contains the following chapters:

• Chapter 1, Benchmarking and Profiling

• Chapter 2, Pure Python Optimizations

• Chapter 3, Fast Array Operations with NumPy, Pandas, and Xarray

• Chapter 4, C Performance with Cython

• Chapter 5, Exploring Compilers

• Chapter 6, Automatic Differentiation and Accelerated Linear Algebra for  
Machine Learning
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Benchmarking and 

Profiling
Recognizing the slow parts of your program is the single most important task when it 
comes to speeding up your code. In most cases, the code that causes the application to 
slow down is a very small fraction of the program. By identifying these critical sections, 
you can focus on the parts that need the most improvement without wasting time in 
micro-optimization.

Profiling is a technique that allows us to pinpoint the most resource-intensive parts of an 
application. A profiler is a program that runs an application and monitors how long each 
function takes to execute, thus detecting the functions on which your application spends 
most of its time.

Python provides several tools to help us find these bottlenecks and measure important 
performance metrics. In this chapter, we will learn how to use the standard cProfile 
module and the line_profiler third-party package. We will also learn how to profile 
the memory consumption of an application through the memory_profiler tool. 
Another useful tool that we will cover is KCachegrind, which can be used to graphically 
display the data produced by various profilers.

Finally, benchmarks are small scripts used to assess the total execution time of your 
application. We will learn how to write benchmarks and use them to accurately time  
your programs.
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The topics we will cover in this chapter are listed here:

• Designing your application

• Writing tests and benchmarks

• Writing better tests and benchmarks with pytest-benchmark

• Finding bottlenecks with cProfile

• Optimizing our code

• Using the dis module

• Profiling memory usage with memory_profiler

By the end of the chapter, you will have gained a solid understanding of how to  
optimize a Python program and will be armed with practical tools that facilitate the 
optimization process.

Technical requirements
To follow the content of this chapter, you should have a basic understanding of Python 
programming and be familiar with core concepts such as variables, classes, and functions. 
You should also be comfortable with working with the command line to run Python 
programs. Finally, the code for this chapter can be found in the following GitHub 
repository: https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter01.

Designing your application
In the early development stages, the design of a program can change quickly and may 
require large rewrites and reorganizations of the code base. By testing different prototypes 
without the burden of optimization, you are free to devote your time and energy to ensure 
that the program produces correct results and that the design is flexible. After all, who 
needs an application that runs fast but gives the wrong answer?

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter01
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The mantras that you should remember when optimizing your code are outlined here:

• Make it run: We have to get the software in a working state and ensure that it 
produces the correct results. This exploratory phase serves to better understand  
the application and to spot major design issues in the early stages.

• Make it right: We want to ensure that the design of the program is solid. 
Refactoring should be done before attempting any performance optimization.  
This really helps separate the application into independent and cohesive units  
that are easy to maintain.

• Make it fast: Once our program is working and well structured, we can focus on 
performance optimization. We may also want to optimize memory usage if that 
constitutes an issue.

In this section, we will write and profile a particle simulator test application. A simulator 
is a program that considers some particles and simulates their movement over time 
according to a set of laws that we impose. These particles can be abstract entities or 
correspond to physical objects—for example, billiard balls moving on a table, molecules  
in a gas, stars moving through space, smoke particles, fluids in a chamber, and so on.

Building a particle simulator
Computer simulations are useful in fields such as physics, chemistry, astronomy, and  
many other disciplines. The applications used to simulate systems are particularly 
performance-intensive, and scientists and engineers spend an inordinate amount of time 
optimizing their code. In order to study realistic systems, it is often necessary to simulate  
a very high number of bodies, and every small increase in performance counts.

In our first example, we will simulate a system containing particles that constantly rotate 
around a central point at various speeds, just like the hands of a clock.
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The necessary information to run our simulation will be the starting positions of the 
particles, the speed, and the rotation direction. From these elements, we have to calculate 
the position of the particle in the next instant of time. An example system is shown in the 
following diagram. The origin of the system is the (0, 0) point, the position is indicated 
by the x, y vector, and the velocity is indicated by the vx, vy vector:

Figure 1.1 – An example of a particle system

The basic feature of a circular motion is that the particles always move perpendicular 
to the direction connecting the particle and the center. To move the particle, we simply 
change the position by taking a series of very small steps (which correspond to advancing 
the system for a small interval of time) in the direction of motion, as shown in the 
following diagram:

Figure 1.2 – Movement of a particle
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We will start by designing the application in an object-oriented (OO) way. According to 
our requirements, it is natural to have a generic Particle class that stores the particle 
positions, x and y, and their angular velocity, ang_vel, as illustrated in the following 
code snippet:

    class Particle: 

        def __init__(self, x, y, ang_vel): 

            self.x = x 

            self.y = y 

            self.ang_vel = ang_vel

Note that we accept positive and negative numbers for all the parameters (the sign of 
ang_vel will simply determine the direction of rotation).

Another class, called ParticleSimulator, will encapsulate the laws of motion and 
will be responsible for changing the positions of the particles over time. The __init__ 
method will store a list of Particle instances, and the evolve method will change the 
particle positions according to our laws. The code is illustrated in the following snippet:

class ParticleSimulator:

    def __init__(self, particles):

        self.particles = particles

We want the particles to rotate around the position corresponding to the x=0 and 
y=0 coordinates, at a constant speed. The direction of the particles will always be 
perpendicular to the direction from the center (refer to Figure 1.1 in this chapter). To find 
the direction of the movement along the x and y axes (corresponding to the Python v_x 
and v_y variables), it is sufficient to use these formulae:

    v_x = -y / (x**2 + y**2)**0.5

    v_y = x / (x**2 + y**2)**0.5

If we let one of our particles move, after a certain time t, it will reach another position 
following a circular path. We can approximate a circular trajectory by dividing the time 
interval, t, into tiny time steps, dt, where the particle moves in a straight line tangentially to 
the circle. (Note that higher-order curves could be used rather than straight lines for better 
accuracy, but we will stick with lines as the simplest approximation.) The final result is just 
an approximation of a circular motion. 
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In order to avoid a strong divergence, such as the one illustrated in the following diagram, 
it is necessary to take very small time steps:

Figure 1.3 – Undesired divergence in particle motion due to large time steps

In a more schematic way, we have to carry out the following steps to calculate the particle 
position at time t:

1. Calculate the direction of motion (v_x and v_y).
2. Calculate the displacement (d_x and d_y), which is the product of the time step, 

angular velocity, and direction of motion.
3. Repeat Steps 1 and 2 enough times to cover the total time t.

The following code snippet shows the full ParticleSimulator implementation:

    class ParticleSimulator: 

        def __init__(self, particles): 

            self.particles = particles 

        def evolve(self, dt): 

            timestep = 0.00001 

            nsteps = int(dt/timestep) 

     

            for i in range(nsteps):

                for p in self.particles:

                    # 1. calculate the direction 

                    norm = (p.x**2 + p.y**2)**0.5 
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                    v_x = -p.y/norm 

                    v_y = p.x/norm 

                    # 2. calculate the displacement 

                    d_x = timestep * p.ang_vel * v_x 

                    d_y = timestep * p.ang_vel * v_y 

                    p.x += d_x 

                    p.y += d_y 

                    # 3. repeat for all the time steps

And with that, we have finished building the foundation of our particle simulator. Next,  
we will see it in action by visualizing the simulated particles.

Visualizing the simulation
We can use the matplotlib library here to visualize our particles. This library is not 
included in the Python standard library, but it can be easily installed using the pip 
install matplotlib command.

Alternatively, you can use the Anaconda Python distribution (https://store.
continuum.io/cshop/anaconda/), which includes matplotlib and most of the 
other third-party packages used in this book. Anaconda is free and is available for Linux, 
Windows, and Mac.

To make an interactive visualization, we will use the matplotlib.pyplot.plot 
function to display the particles as points and the matplotlib.animation.
FuncAnimation class to animate the evolution of the particles over time.

The visualize function takes a ParticleSimulator particle instance as an 
argument and displays the trajectory in an animated plot. The steps necessary to display 
the particle trajectory using the matplotlib tools are outlined here:

1. Set up the axes and use the plot function to display the particles. The plot 
function takes a list of x and y coordinates.

2. Write an initialization function, init, and a function, animate, that updates  
the x and y coordinates using the line.set_data method. Note that in init,  
we need to return the line data in the form of line, due to syntactic reasons.

3. Create a FuncAnimation instance by passing the init and animate functions 
and the interval parameters, which specify the update interval, and blit, which 
improves the update rate of the image.

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
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4. Run the animation with plt.show(), as illustrated in the following code snippet:

    from matplotlib import pyplot as plt 

    from matplotlib import animation 

    def visualize(simulator): 

        X = [p.x for p in simulator.particles] 

        Y = [p.y for p in simulator.particles] 

        fig = plt.figure() 

        ax = plt.subplot(111, aspect='equal') 

        line, = ax.plot(X, Y, 'ro') 

     

        # Axis limits 

        plt.xlim(-1, 1) 

        plt.ylim(-1, 1) 

        # It will be run when the animation starts 

        def init(): 

            line.set_data([], []) 

            return line, # The comma is important!

        def animate(i): 

            # We let the particle evolve for 0.01 time 

              units 

            simulator.evolve(0.01) 

            X = [p.x for p in simulator.particles] 

            Y = [p.y for p in simulator.particles] 

            line.set_data(X, Y) 

            return line, 

        # Call the animate function each 10 ms 

        anim = animation.FuncAnimation(fig,

          animate,init_func=init,blit=True,

            interval=10) 

        plt.show()
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To test this code, we define a small function, test_visualize, that animates a 
system of three particles rotating in different directions. Note in the following code 
snippet that the third particle completes a round three times faster than the others:

    def test_visualize(): 

        particles = [

                     Particle(0.3, 0.5, 1), 

                     Particle(0.0, -0.5, -1), 

                     Particle(-0.1, -0.4, 3)

        ] 

        simulator = ParticleSimulator(particles) 

        visualize(simulator) 

    if __name__ == '__main__': 

        test_visualize()

The test_visualize function is helpful to graphically understand the system time 
evolution. Simply close the animation window when you'd like to terminate the program. 
With this program in hand, in the following section, we will write more test functions to 
properly verify program correctness and measure performance.

Writing tests and benchmarks
Now that we have a working simulator, we can start measuring our performance and tune 
up our code so that the simulator can handle as many particles as possible. As a first step, 
we will write a test and a benchmark.

We need a test that checks whether the results produced by the simulation are correct 
or not. Optimizing a program commonly requires employing multiple strategies; as we 
rewrite our code multiple times, bugs may easily be introduced. A solid test suite ensures 
that the implementation is correct at every iteration so that we are free to go wild and try 
different things with the confidence that, if the test suite passes, the code will still work as 
expected. More specifically, what we are implementing here are called unit tests, which aim 
to verify the intended logic of the program regardless of the implementation details, which 
may change during optimization.
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Our test will take three particles, simulate them for 0.1 time units, and compare the 
results with those from a reference implementation. A good way to organize your tests 
is using a separate function for each different aspect (or unit) of your application. Since 
our current functionality is included in the evolve method, our function will be named 
test_evolve. The following code snippet shows the test_evolve implementation. 
Note that, in this case, we compare floating-point numbers up to a certain precision 
through the fequal function:

    def test_evolve(): 

        particles = [Particle( 0.3,  0.5, +1), 

                     Particle( 0.0, -0.5, -1), 

                     Particle(-0.1, -0.4, +3)

            ] 

        simulator = ParticleSimulator(particles) 

        simulator.evolve(0.1) 

        p0, p1, p2 = particles 

        def fequal(a, b, eps=1e-5): 

            return abs(a - b) < eps 

        assert fequal(p0.x, 0.210269) 

        assert fequal(p0.y, 0.543863) 

        assert fequal(p1.x, -0.099334) 

        assert fequal(p1.y, -0.490034) 

        assert fequal(p2.x,  0.191358) 

        assert fequal(p2.y, -0.365227) 

    if __name__ == '__main__': 

        test_evolve()

The assert statements will raise an error if the included conditions are not satisfied. 
Upon running the test_evolve function, if you notice no error or output printed out, 
that means all the conditions are met.
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A test ensures the correctness of our functionality but gives little information about its 
running time. A benchmark is a simple and representative use case that can be run to 
assess the running time of an application. Benchmarks are very useful to keep score of 
how fast our program is with each new version that we implement.

We can write a representative benchmark by instantiating a thousand Particle 
objects with random coordinates and angular velocity and feeding them to a 
ParticleSimulator class. We then let the system evolve for 0.1 time units.  
The code is illustrated in the following snippet:

    from random import uniform 

    def benchmark(): 

        particles = [

          Particle(uniform(-1.0, 1.0), uniform(-1.0, 1.0), 

            uniform(-1.0, 1.0)) 

          for i in range(1000)] 

        simulator = ParticleSimulator(particles) 

        simulator.evolve(0.1) 

    if __name__ == '__main__': 

        benchmark()

With the benchmark program implemented, we now need to run it and keep track of 
the time needed for the benchmark to complete execution, which we will see next. (Note 
that when you run these tests and benchmarks on your own system, you are likely to see 
different numbers listed in the text, which is completely normal and dependent on your 
system configurations and Python version.)

Timing your benchmark
A very simple way to time a benchmark is through the Unix time command. Using  
the time command, as follows, you can easily measure the execution time of an  
arbitrary process:

    $ time python simul.py

real    0m1.051s

user    0m1.022s

sys     0m0.028s
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The time command is not available for Windows. To install Unix tools such as time 
on Windows, you can use the cygwin shell, downloadable from the official website 
(http://www.cygwin.com/). Alternatively, you can use similar PowerShell 
commands, such as Measure-Command (https://msdn.microsoft.com/en-us/
powershell/reference/5.1/microsoft.powershell.utility/measure-
command), to measure execution time.

By default, time displays three metrics, as outlined here:

• real: The actual time spent running the process from start to finish, as if it were 
measured by a human with a stopwatch.

• user: The cumulative time spent by all the central processing units (CPUs) during 
the computation.

• sys: The cumulative time spent by all the CPUs during system-related tasks, such as 
memory allocation.

Note 
Sometimes, user and sys might be greater than real, as multiple 
processors may work in parallel.

time also offers richer formatting options. For an overview, you can explore its manual 
(using the man time command). If you want a summary of all the metrics available,  
you can use the -v option.

The Unix time command is one of the simplest and most direct ways to benchmark a 
program. For an accurate measurement, the benchmark should be designed to have a long 
enough execution time (in the order of seconds) so that the setup and teardown of the 
process are small compared to the execution time of the application. The user metric is 
suitable as a monitor for the CPU performance, while the real metric also includes the 
time spent on other processes while waiting for input/output (I/O) operations.

Another convenient way to time Python scripts is the timeit module. This module runs 
a snippet of code in a loop for n times and measures the total execution time. Then, it 
repeats the same operation r times (by default, the value of r is 3) and records the time of 
the best run. Due to this timing scheme, timeit is an appropriate tool to accurately time 
small statements in isolation.

The timeit module can be used as a Python package, from the command line or  
from IPython.

http://www.cygwin.com/
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/measure-command
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/measure-command
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/measure-command
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IPython is a Python shell design that improves the interactivity of the Python interpreter. 
It boosts tab completion and many utilities to time, profile, and debug your code. We will 
use this shell to try out snippets throughout the book. The IPython shell accepts magic 
commands—statements that start with a % symbol—that enhance the shell with special 
behaviors. Commands that start with %% are called cell magics, which can be applied on 
multiline snippets (termed as cells).

IPython is available on most Linux distributions through pip and is included in 
Anaconda. You can use IPython as a regular Python shell (ipython), but it is also 
available in a Qt-based version (ipython qtconsole) and as a powerful browser-
based interface (jupyter notebook).

In IPython and command-line interfaces (CLIs), it is possible to specify the number of 
loops or repetitions with the -n and -r options. If not specified, they will be automatically 
inferred by timeit. When invoking timeit from the command line, you can also pass 
some setup code, through the -s option, which will execute before the benchmark. In the 
following snippet, the IPython command line and Python module version of timeit 
are demonstrated: 

# IPython Interface 

$ ipython 

In [1]: from simul import benchmark 

In [2]: %timeit benchmark() 

1 loops, best of 3: 782 ms per loop 

# Command Line Interface 

$ python -m timeit -s 'from simul import benchmark' 

'benchmark()'

10 loops, best of 3: 826 msec per loop 

# Python Interface 

# put this function into the simul.py script 

import timeit

result = timeit.timeit('benchmark()',

 setup='from __main__ import benchmark', number=10)
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# result is the time (in seconds) to run the whole loop 

result = timeit.repeat('benchmark()',

  setup='from __main__ import benchmark', number=10, \

    repeat=3) 

# result is a list containing the time of each repetition 

(repeat=3 in this case)

Note that while the command line and IPython interfaces automatically infer a reasonable 
number of loops n, the Python interface requires you to explicitly specify a value through 
the number argument.

Writing better tests and benchmarks with 
pytest-benchmark
The Unix time command is a versatile tool that can be used to assess the running time of 
small programs on a variety of platforms. For larger Python applications and libraries, a 
more comprehensive solution that deals with both testing and benchmarking is pytest, 
in combination with its pytest-benchmark plugin.

In this section, we will write a simple benchmark for our application using the pytest 
testing framework. For those who are, the pytest documentation, which can be found at 
http://doc.pytest.org/en/latest/, is the best resource to learn more about the 
framework and its uses.

You can install pytest from the console using the pip install pytest command. 
The benchmarking plugin can be installed, similarly, by issuing the pip install 
pytest-benchmark command.

A testing framework is a set of tools that simplifies writing, executing, and debugging  
tests, and provides rich reports and summaries of the test results. When using the  
pytest framework, it is recommended to place tests separately from the application 
code. In the following example, we create a test_simul.py file that contains the  
test_evolve function:

    from simul import Particle, ParticleSimulator

    def test_evolve():

        particles = [

                     Particle( 0.3,  0.5, +1),

                     Particle( 0.0, -0.5, -1),

http://doc.pytest.org/en/latest/
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                     Particle(-0.1, -0.4, +3)

          ]

        simulator = ParticleSimulator(particles)

        simulator.evolve(0.1)

    

        p0, p1, p2 = particles

        def fequal(a, b, eps=1e-5):

            return abs(a - b) < eps

        assert fequal(p0.x, 0.210269)

        assert fequal(p0.y, 0.543863)

        assert fequal(p1.x, -0.099334)

        assert fequal(p1.y, -0.490034)

        assert fequal(p2.x,  0.191358)

        assert fequal(p2.y, -0.365227)

The pytest executable can be used from the command line to discover and run tests 
contained in Python modules. To execute a specific test, we can use the pytest path/
to/module.py::function_name syntax. To execute test_evolve, we can type 
the following command in a console to obtain simple but informative output:

$ pytest test_simul.py::test_evolve

platform linux -- Python 3.5.2, pytest-3.0.5, py-1.4.32, 

pluggy-0.4.0

rootdir: /home/gabriele/workspace/hiperf/chapter1, inifile: 

plugins:

collected 2 items 

test_simul.py .

=========================== 1 passed in 0.43 seconds 
===========================
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Once we have a test in place, it is possible for you to execute your test as a benchmark 
using the pytest-benchmark plugin. If we change our test function so that it accepts 
an argument named benchmark, the pytest framework will automatically pass the 
benchmark resource as an argument (in pytest terminology, these resources are called 
fixtures). The benchmark resource can be called by passing the function that we intend 
to benchmark as the first argument, followed by the additional arguments. In the following 
snippet, we illustrate the edits necessary to benchmark the ParticleSimulator.
evolve function:

    from simul import Particle, ParticleSimulator

    def test_evolve(benchmark):

        # ... previous code

        benchmark(simulator.evolve, 0.1)

To run the benchmark, it is sufficient to rerun the pytest test_simul.py::test_
evolve command. The resulting output will contain detailed timing information 
regarding the test_evolve function, as shown here:

Figure 1.4 – Output from pytest

For each test collected, pytest-benchmark will execute the benchmark function 
several times and provide a statistic summary of its running time. The preceding output 
shown is very interesting as it shows how running times vary between runs.
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In this example, the benchmark in test_evolve was run 34 times (Rounds column), 
its timings ranged between 29 and 41 milliseconds (ms) (Min and Max), and the 
Average and Median times were fairly similar at about 30 ms, which is actually very 
close to the best timing obtained. This example demonstrates how there can be substantial 
performance variability between runs and that, as opposed to taking timings with 
one-shot tools such as time, it is a good idea to run the program multiple times and 
record a representative value, such as the minimum or the median.

pytest-benchmark has many more features and options that can be used to 
take accurate timings and analyze the results. For more information, consult the 
documentation at http://pytest-benchmark.readthedocs.io/en/stable/
usage.html.

Finding bottlenecks with cProfile
After assessing the correctness and timing of the execution time of the program, we are 
ready to identify the parts of the code that need to be tuned for performance. We typically 
aim to identify parts that are small compared to the size of the program.

Two profiling modules are available through the Python standard library, as outlined here:

• The profile module: This module is written in pure Python and adds significant 
overhead to the program execution. Its presence in the standard library is due  
to its vast platform support and the ease with which it can be extended.

• The cProfile module: This is the main profiling module, with an interface 
equivalent to profile. It is written in C, has a small overhead, and is suitable  
as a general-purpose profiler.

The cProfile module can be used in three different ways, as follows:

• From the command line

• As a Python module

• With IPython

http://pytest-benchmark.readthedocs.io/en/stable/usage.html
http://pytest-benchmark.readthedocs.io/en/stable/usage.html
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cProfile does not require any change in the source code and can be executed directly 
on an existing Python script or function. You can use cProfile from the command line 
in this way:

$ python -m cProfile simul.py

This will print a long output containing several profiling metrics of all of the functions 
called in the application. You can use the -s option to sort the output by a specific metric. 
In the following snippet, the output is sorted by the tottime metric, which will be 
described here:

$ python -m cProfile -s tottime simul.py

The data produced by cProfile can be saved in an output file by passing the -o option. 
The format that cProfile uses is readable by the stats module and other tools. The 
usage of the-o option is shown here:

$ python -m cProfile -o prof.out simul.py

The usage of cProfile as a Python module requires invoking the cProfile.run 
function in the following way:

    from simul import benchmark

    import cProfile

    cProfile.run("benchmark()")

You can also wrap a section of code between method calls of a cProfile.Profile 
object, as shown here:

    from simul import benchmark

    import cProfile

    pr = cProfile.Profile()

    pr.enable()

    benchmark()

    pr.disable()

    pr.print_stats()
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cProfile can also be used interactively with IPython. The %prun magic command lets 
you profile an individual function call, as illustrated in the following screenshot:

Figure 1.5 – Using cProfile within IPython

The cProfile output is divided into five columns, as follows:

• ncalls: The number of times the function was called.

• tottime: The total time spent in the function without taking into account the calls 
to other functions.

• cumtime: The time spent in the function including other function calls.

• percall: The time spent for a single call of the function—this can be obtained by 
dividing the total or cumulative time by the number of calls.

• filename:lineno: The filename and corresponding line numbers. This 
information is not available when calling C extension modules.

The most important metric is tottime, the actual time spent in the function body 
excluding subcalls, which tells us exactly where the bottleneck is.
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Unsurprisingly, the largest portion of time is spent in the evolve function. We 
can imagine that the loop is the section of the code that needs performance tuning. 
cProfile only provides information at the function level and does not tell us which 
specific statements are responsible for the bottleneck. Fortunately, as we will see in the 
next section, the line_profiler tool is capable of providing line-by-line information 
of the time spent in the function.

Analyzing the cProfile text output can be daunting for big programs with a lot of calls 
and subcalls. Some visual tools aid the task by improving navigation with an interactive, 
graphical interface.

Graphically analyzing profiling results
KCachegrind is a graphical user interface (GUI) useful for analyzing the profiling output 
emitted by cProfile.

KCachegrind is available in the Ubuntu 16.04 official repositories. The Qt port, 
QCacheGrind, can be downloaded for Windows from http://sourceforge.
net/projects/qcachegrindwin/. Mac users can compile QCacheGrind using 
MacPorts (http://www.macports.org/) by following the instructions present in 
the blog post at http://blogs.perl.org/users/rurban/2013/04/install-
kachegrind-on-macosx-with-ports.html.

KCachegrind can't directly read the output files produced by cProfile. Luckily, the 
pyprof2calltree third-party Python module is able to convert the cProfile  
output file into a format readable by KCachegrind.

You can install pyprof2calltree from the Python Package Index (PyPI) using the 
pip install pyprof2calltree command.

To best show the KCachegrind features, we will use another example with a more 
diversified structure. We define a recursive function, factorial, and two other 
functions that use factorial, named taylor_exp and taylor_sin. They represent 
the polynomial coefficients of the Taylor approximations of exp(x) and sin(x) and are 
illustrated in the following code snippet:

    def factorial(n): 

        if n == 0: 

            return 1.0 

        else: 

            return n * factorial(n-1) 

http://sourceforge.net/projects/qcachegrindwin/
http://sourceforge.net/projects/qcachegrindwin/
http://www.macports.org/
http://blogs.perl.org/users/rurban/2013/04/install-kachegrind-on-macosx-with-ports.html
http://blogs.perl.org/users/rurban/2013/04/install-kachegrind-on-macosx-with-ports.html
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    def taylor_exp(n): 

        return [1.0/factorial(i) for i in range(n)] 

    def taylor_sin(n): 

        res = [] 

        for i in range(n): 

            if i % 2 == 1: 

               res.append((-1)**((i-1)/2)/

                   float(factorial(i))) 

            else: 

               res.append(0.0) 

        return res 

    def benchmark(): 

        taylor_exp(500) 

        taylor_sin(500) 

    if __name__ == '__main__': 

        benchmark()

To access profile information, we first need to generate a cProfile output file, as follows:

$ python -m cProfile -o prof.out taylor.py

Then, we can convert the output file with pyprof2calltree and launch KCachegrind 
by running the following code:

$ pyprof2calltree -i prof.out -o prof.calltree

$ kcachegrind prof.calltree # or qcachegrind prof.calltree
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The output is shown in the following screenshot:

Figure 1.6 – Profiling output generated by pyprof2calltree and displayed by KCachegrind

The screenshot shows the KCachegrind UI. On the left, we have an output fairly similar 
to cProfile. The actual column names are slightly different: Incl. translates to the 
cProfile module's cumtime value and Self translates to tottime. The values are 
given in percentages by clicking on the Relative button on the menu bar. By clicking on 
the column headers, you can sort them by the corresponding property.

On the top right, a click on the Callee Map tab will display a diagram of the function 
costs. In the diagram shown in Figure 1.6, the time percentage spent by the function is 
proportional to the area of the rectangle. Rectangles can contain sub-rectangles that 
represent subcalls to other functions. In this case, we can easily see that there are two 
rectangles for the factorial function. The one on the left corresponds to the calls made 
by taylor_exp and the one on the right to the calls made by taylor_sin.
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On the bottom right, you can display another diagram, a call graph, by clicking on the 
Call Graph tab. A call graph is a graphical representation of the calling relationship 
between the functions; each square represents a function and the arrows imply a calling 
relationship. For example, taylor_exp calls factorial 500 times, and taylor_sin 
calls factorial 250 times. KCachegrind also detects recursive calls: factorial calls 
itself 187250 times.

You can navigate to the Call Graph or the Callee Map tab by double-clicking on the 
rectangles; the interface will update accordingly, showing that the timing properties are 
relative to the selected function. For example, double-clicking on taylor_exp will cause 
the graph to change, showing only the contribution of taylor_exp to the total cost.

Gprof2Dot (https://github.com/jrfonseca/gprof2dot) is another popular 
tool used to produce call graphs. Starting from output files produced by one of the 
supported profilers, it will generate a .dot diagram representing a call graph.

Profiling line by line with line_profiler
Now that we know which function we have to optimize, we can use the line_profiler 
module that provides information on how time is spent in a line-by-line fashion. This is very 
useful in situations where it's difficult to determine which statements are costly. The line_
profiler module is a third-party module that is available on PyPI and can be installed by 
following the instructions at https://github.com/rkern/line_profiler.

In order to use line_profiler, we need to apply a @profile decorator to the 
functions we intend to monitor. Note that you don't have to import the profile function 
from another module as it gets injected into the global namespace when running the 
kernprof.py profiling script. To produce profiling output for our program, we need  
to add the @profile decorator to the evolve function, as follows:

    @profile 

    def evolve(self, dt): 

        # code

The kernprof.py script will produce an output file and print the result of the profiling 
on the standard output. We should run the script with two options, as follows:

• -l to use the line_profiler function

• -v to immediately print the results on screen

https://github.com/jrfonseca/gprof2dot
https://github.com/rkern/line_profiler
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The usage of kernprof.py is illustrated in the following line of code:

$ kernprof.py -l -v simul.py

It is also possible to run the profiler in an IPython shell for interactive editing. You should 
first load the line_profiler extension that will provide the lprun magic command. 
Using that command, you can avoid adding the @profile decorator, as illustrated in the 
following screenshot:

Figure 1.7 – Using line_profiler within IPython

The output is quite intuitive and is divided into six columns, as follows:

• Line #: The number of the line that was run

• Hits: The number of times that line was run

• Time: The execution time of the line in microseconds (Time)

• Per Hit: Time/hits

• % Time: Fraction of the total time spent executing that line

• Line Contents: The content of the line
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By looking at the % Time column, we can get a pretty good idea of where the time is 
spent. In this case, there are a few statements in the for loop body with a cost of around 
10-20 percent each.

Optimizing our code
Now that we have identified where exactly our application is spending most of its time, we 
can make some changes and assess the resulting improvement in performance.

There are different ways to tune up our pure Python code. The way that typically produces 
the most significant results is to improve the algorithms used. In this case, instead of 
calculating the velocity and adding small steps, it will be more efficient (and correct, as it  
is not an approximation) to express the equations of motion in terms of radius, r, and 
angle, alpha, (instead of x and y), and then calculate the points on a circle using the 
following equation:

    x = r * cos(alpha) 

    y = r * sin(alpha)

Another optimization method lies in minimizing the number of instructions. For example, 
we can precalculate the timestep * p.ang_vel factor that doesn't change with time. 
We can exchange the loop order (first, we iterate on particles, then we iterate on time 
steps) and put the calculation of the factor outside the loop on the particles.

The line-by-line profiling also showed that even simple assignment operations can take  
a considerable amount of time. For example, the following statement takes more than  
10 percent of the total time:

    v_x = (-p.y)/norm

We can improve the performance of the loop by reducing the number of assignment 
operations performed. To do that, we can avoid intermediate variables by rewriting the 
expression into a single, slightly more complex statement (note that the right-hand side 
gets evaluated completely before being assigned to the variables), as follows:

    p.x, p.y = p.x - t_x_ang*p.y/norm, p.y + t_x_ang * 

    p.x/norm
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This leads to the following code:

        def evolve_fast(self, dt): 

            timestep = 0.00001 

            nsteps = int(dt/timestep) 

            # Loop order is changed 

            for p in self.particles: 

                t_x_ang = timestep * p.ang_vel 

                for i in range(nsteps): 

                    norm = (p.x**2 + p.y**2)**0.5 

                    p.x, p.y = (p.x - t_x_ang * p.y/norm,

                        p.y + t_x_ang * p.x/norm)

After applying the changes, we should verify that the result is still the same by running our 
test. We can then compare the execution times using our benchmark, as follows:

$ time python simul.py # Performance Tuned

real    0m0.756s

user    0m0.714s

sys    0m0.036s

$ time python simul.py # Original

real    0m0.863s

user    0m0.831s

sys    0m0.028s

As you can see, we obtained only a modest increment in speed by making a pure Python 
micro-optimization.

Using the dis module
In this section, we will dig into the Python internals to estimate the performance of 
individual statements. In the CPython interpreter, Python code is first converted to an 
intermediate representation, the bytecode, and then executed by the Python interpreter.
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To inspect how the code is converted to bytecode, we can use the dis Python module 
(dis stands for disassemble). Its usage is really simple; all we need to do is call the  
dis.dis function on the ParticleSimulator.evolve method, like this:

    import dis 

    from simul import ParticleSimulator 

    dis.dis(ParticleSimulator.evolve)

This will print, for each line in the function, a list of bytecode instructions. For example, 
the v_x = (-p.y)/norm statement is expanded in the following set of instructions:

    29           85 LOAD_FAST                5 (p) 

                 88 LOAD_ATTR                4 (y) 

                 91 UNARY_NEGATIVE        

                 92 LOAD_FAST                6 (norm) 

                 95 BINARY_TRUE_DIVIDE    

                 96 STORE_FAST               7 (v_x)

LOAD_FAST loads a reference of the p variable onto the stack and LOAD_ATTR loads 
the y attribute of the item present on top of the stack. The other instructions, UNARY_
NEGATIVE and BINARY_TRUE_DIVIDE, simply do arithmetic operations on top-of-
stack items. Finally, the result is stored in v_x (STORE_FAST).

By analyzing the dis output, we can see that the first version of the loop produces  
51 bytecode instructions, while the second gets converted into 35 instructions.

The dis module helps discover how the statements get converted and serves mainly 
as an exploration and learning tool of the Python bytecode representation. For a more 
comprehensive introduction and discussion on the Python bytecode, refer to the Further 
reading section at the end of this chapter.

To improve our performance even further, we can keep trying to figure out other 
approaches to reduce the number of instructions. It's clear, however, that this approach is 
ultimately limited by the speed of the Python interpreter, and it is probably not the right 
tool for the job. In the following chapters, we will see how to speed up interpreter-limited 
calculations by executing fast specialized versions written in a lower-level language (such 
as C or Fortran).
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Profiling memory usage with memory_profiler
In some cases, high memory usage constitutes an issue. For example, if we want to handle 
a huge number of particles, we will incur a memory overhead due to the creation of many 
Particle instances.

The memory_profiler module summarizes, in a way similar to line_profiler,  
the memory usage of a process.

The memory_profiler package is also available on PyPI. You should also install the 
psutil module (https://github.com/giampaolo/psutil) as an optional 
dependency that will make memory_profiler considerably faster.

Just as with line_profiler, memory_profiler also requires the instrumentation of 
the source code by placing a @profile decorator on the function we intend to monitor. 
In our case, we want to analyze the benchmark function.

We can slightly change benchmark to instantiate a considerable amount (100000) of 
Particle instances and decrease the simulation time, as follows:

    def benchmark_memory(): 

        particles = [

                     Particle(uniform(-1.0, 1.0), 

                              uniform(-1.0, 1.0), 

                              uniform(-1.0, 1.0)) 

                      for i in range(100000)

            ] 

        simulator = ParticleSimulator(particles) 

        simulator.evolve(0.001)

We can use memory_profiler from an IPython shell through the %mprun magic 
command, as shown in the following screenshot:

https://github.com/giampaolo/psutil
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Figure 1.8 – Output from memory_profiler

It is possible to run memory_profiler from the shell using the mprof run command 
after adding the @profile decorator.

From the Increment column, we can see that 100,000 Particle objects take 23.7 
MiB of memory.

1 mebibyte (MiB) is equivalent to 1,048,576 bytes. It is different from 1 megabyte (MB), 
which is equivalent to 1,000,000 bytes.

We can use __slots__ on the Particle class to reduce its memory footprint. This 
feature saves some memory by avoiding storing the variables of the instance in an internal 
dictionary. This strategy, however, has a small limitation—it prevents the addition of 
attributes other than the ones specified in __slots__. You can see this feature in use  
in the following code snippet: 

    class Particle:

        __slots__ = ('x', 'y', 'ang_vel') 

        def __init__(self, x, y, ang_vel): 

            self.x = x 
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            self.y = y 

            self.ang_vel = ang_vel

We can now rerun our benchmark to assess the change in memory consumption. The 
result is displayed in the following screenshot:

Figure 1.9 – Improvement in memory consumption

By rewriting the Particle class using __slots__, we can save about 10 MiB  
of memory.

Summary
In this chapter, we introduced the basic principles of optimization and applied those 
principles to a test application. When optimizing an application, the first thing to do 
is test and identify the bottlenecks in the application. We saw how to write and time a 
benchmark using the time Unix command, the Python timeit module, and the full-
fledged pytest-benchmark package. We learned how to profile our application using 
cProfile, line_profiler, and memory_profiler, and how to analyze and 
navigate the profiling data graphically with KCachegrind.
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Speed is undoubtedly an important component of any modern software. The techniques 
we have learned in this chapter will allow you to systematically tackle the problem of 
making your Python programs more efficient from different angles. Further, we have seen 
that these tasks can take advantage of Python built-in/native packages and do not require 
any special external tools.

In the next chapter, we will explore how to improve performance using algorithms and 
data structures available in the Python standard library. We will cover scaling and sample 
usage of several data structures, and learn techniques such as caching and memorization. 
We will also introduce Big O notation, which is a common computer science tool to 
analyze the running time of algorithms and data structures.

Questions 
1. Arrange the following three items in order of importance when building a software 

application: correctness (the program does what it is supposed to do), efficiency  
(the program is optimized in speed and memory management), and functionality 
(the program runs).

2. How could assert statements be used in Python to check for the correctness  
of a program?

3. What is a benchmark in the context of optimizing a software program?
4. How could timeit magic commands be used in Python to estimate the speed  

of a piece of code?
5. List three different types of information that are recorded and returned by 

cProfile (included as output columns) in the context of profiling a program.
6. On a high level, what is the role of the dis module in optimization?
7. In the exercise.py file, we write a simple function, close(), that checks 

whether a pair of particles are close to each other (with 1e-5 tolerance). In 
benchmark(), we randomly initialize two particles and call close() after 
running the simulation. Make a guess of what takes most of the execution time in 
close(), and profile the function via benchmark() using cProfile; does the 
result confirm your guess?
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Further reading
• Profilers in Python: https://docs.python.org/3/library/profile.

html

• Using PyCharm's profiler: https://www.jetbrains.com/help/pycharm/
profiler.html

• A beginner-friendly introduction to bytecode in Python: https://
opensource.com/article/18/4/introduction-python-bytecode

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://opensource.com/article/18/4/introduction-python-bytecode
https://opensource.com/article/18/4/introduction-python-bytecode
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Pure Python 

Optimizations
As mentioned in the previous chapter, one of the most effective ways of improving the 
performance of applications is through the use of better algorithms and data structures. 
The Python standard library provides a large variety of ready-to-use algorithms and data 
structures that can be directly incorporated into your applications. With the tools learned 
from this chapter, you will be able to use the right algorithm for the task and achieve 
massive speed gains.

Even though many algorithms have been around for quite a while, they are especially 
relevant in today's world as we continuously produce, consume, and analyze ever-increasing 
amounts of data. Buying a larger server or micro-optimizing can work for some time, but 
achieving better scaling through algorithmic improvement can solve the problem once  
and for all.

In this chapter, we will learn how to achieve better scaling using standard algorithms and 
data structures. More advanced use cases where we take advantage of third-party libraries 
will also be covered. We will also learn about tools to implement caching, a technique used 
to achieve faster response times by sacrificing some space in memory or on disk.
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The list of topics to be covered in this chapter is as follows:

• Using the right algorithms and data structures

• Improved efficiency with caching and memoization

• Efficient iteration with comprehensions and generators

Technical requirements
You will find the code files for this chapter here: https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter02.

Using the right algorithms and data structures
Algorithmic improvements are especially effective in increasing performance because they 
typically allow the application to scale better with increasingly large inputs.

Algorithm running times can be classified according to their computational complexity,  
a characterization of the resources required to perform a task. 

Such classification is expressed through the Big O notation, an upper bound on the 
operations required to execute the task, which usually depends on the input size. Specifically, 
Big O notation describes how the runtime or memory requirement of an algorithm grows 
in terms of the input size. For this reason, a lower Big O denotes a more efficient algorithm, 
which is what we aim for.

For example, incrementing each element of a list can be implemented using a for loop,  
as follows:

    input = list(range(10))

    for i, _ in enumerate(input):

        input[i] += 1 

If the operation does not depend on the size of the input (for example, accessing the first 
element of a list), the algorithm is said to take constant, or O(1), time. This means that, no 
matter how much data we have, the time to run the algorithm will always be the same.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter02
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In this simple algorithm, the input[i] += 1 operation will be repeated 10 times, 
which is the size of the input. If we double the size of the input array, the number of 
operations will increase proportionally. Since the number of operations is proportional  
to the input size, this algorithm is said to take O(N) time, where N is the size of the  
input array.

In some instances, the running time may depend on the structure of the input (for example, 
if the collection is sorted or contains many duplicates). In these cases, an algorithm 
may have different best-case, average-case, and worst-case running times. Unless stated 
otherwise, the running times presented in this chapter are considered to be average 
running times.

In this section, we will examine the running times of algorithms and data structures that 
are implemented in the Python standard library and understand how improving running 
times results in massive gains and allows us to solve large-scale problems with elegance.

You can find the code used to run the benchmarks in this chapter in the  
Algorithms.ipynb notebook, which can be opened using Jupyter.

First, we will examine lists and deques.

Lists and deques
Python lists are ordered collections of elements and, in Python, are implemented as 
resizable arrays. An array is a basic data structure that consists of a series of contiguous 
memory locations, and each location contains a reference to a Python object.

Lists shine in accessing, modifying, and appending elements. Accessing or modifying 
an element involves fetching the object reference from the appropriate position of the 
underlying array and has O(1) complexity. Appending an element is also very fast. When 
an empty list is created, an array of fixed size is allocated and, as we insert elements, the 
slots in the array are gradually filled up. Once all the slots are occupied, the list needs to 
increase the size of its underlying array, thus triggering a memory reallocation that can 
take O(N) time. Nevertheless, those memory allocations are infrequent, and the time 
complexity for the append operation is referred to as amortized O(1) time.

The list operations that may have efficiency problems are those that add or remove 
elements at the beginning (or somewhere in the middle) of the list. When an item is 
inserted or removed from the beginning of a list, all the subsequent elements of the  
array need to be shifted by a position, thus taking O(N) time.
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In the following table, the timings for different operations on a list of 10,000 size are 
shown; you can see how insertion and removal performances vary quite dramatically  
if performed at the beginning or the end of the list:

Table 1.1 – The speed of different list operations

In some cases, it is necessary to efficiently perform the insertion or removal of elements 
both at the beginning and the end of the collection. Python provides a data structure 
with those properties in the collections.deque class. The word deque stands for 
double-ended queue because this data structure is designed to efficiently put and remove 
elements at the beginning and the end of the collection, as it is in the case of queues. In 
Python, deques are implemented as doubly linked lists.

Deques, in addition to pop and append, expose the popleft and appendleft 
methods that have O(1) running time:

Table 1.2 – The speed of different deque operations

Despite these advantages, deques should not be used to replace regular lists in most cases. 
The efficiency gained by the appendleft and popleft operations comes at a cost 
– accessing an element in the middle of a deque is an O(N) operation, as shown in the 
following table:

Table 1.3 – The inefficiency of deques in accessing the middle element
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Searching for an item in a list is generally an O(N) operation and is performed using the 
list.index method. A simple way to speed up searches in lists is to keep the array 
sorted and perform a binary search using the bisect module.

The bisect module allows fast searches on sorted arrays. The bisect.bisect 
function can be used on a sorted list to find the index to place an element while 
maintaining the array in sorted order. In the following example, we can see that if we  
want to insert the 3 element in the array while keeping collection in sorted order,  
we should put 3 in the third position (which corresponds to index 2):

    insert bisect

    collection = [1, 2, 4, 5, 6]

    bisect.bisect(collection, 3)

    # Result: 2

This function uses the binary search algorithm that has O(log(N)) running time. Such 
a running time is exceptionally fast and, basically, means that your running time will 
increase by a constant amount every time you double your input size. This means that if, 
for example, your program takes 1 second to run on an input of 1000 size, it will take 2 
seconds to process an input of 2000 size, 3 seconds to process an input of 4000 size, and 
so on. If you had 100 seconds, you could theoretically process an input of 10^33 size, 
which is larger than the number of atoms in your body!

If the value we are trying to insert is already present in the list, the bisect.bisect 
function will return the location after the already present value. Therefore, we can use 
the bisect.bisect_left variant, which returns the correct index in the following 
way (taken from the module documentation at https://docs.python.org/3.5/
library/bisect.html):

    def index_bisect(a, x):

      'Locate the leftmost value exactly equal to x'

      i = bisect.bisect_left(a, x)

      if i != len(a) and a[i] == x:

      return i

      raise ValueError

https://docs.python.org/3.5/library/bisect.html
https://docs.python.org/3.5/library/bisect.html
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In the following table, you can see how the running time of the bisect solution is barely 
affected by these input sizes, making it a suitable solution when searching through very 
large collections:

Table 1.4 – The efficiency of the bisect function

Dictionaries
Dictionaries are extremely versatile and extensively used in the Python language, for 
example, in package-, module-, and class-level namespaces, as well as object and class 
annotations. Dictionaries are implemented as hash maps and are very good at element 
insertion, deletion, and access; all these operations have an average O(1) time complexity.

Important Note
In Python versions up to 3.5, dictionaries are unordered collections. Since 
Python 3.6, dictionaries are capable of maintaining their elements by order of 
insertion.

Hash map
A hash map is a data structure that associates a set of key-value pairs. The principle 
behind hash maps is to assign a specific index to each key so that its associated value can 
be stored in an array. The index can be obtained through the use of a hash function; 
Python implements hash functions for several data types. As a demonstration, the 
generic function to obtain hash codes is hash. In the following example, we show you 
how to obtain the hash code when given the "hello" string:

    hash("hello")

    # Result: -1182655621190490452

    # To restrict the number to be a certain range you can

      use

    # the modulo (%) operator

      hash("hello") % 10

    # Result: 8



Using the right algorithms and data structures     41

Hash maps can be tricky to implement because they need to handle collisions that happen 
when two different objects have the same hash code. However, all the complexity is 
elegantly hidden behind the implementation and the default collision resolution works 
well in most real-world scenarios.

The access to, insertion, and removal of an item in a dictionary scales as O(1) with the size 
of the dictionary. However, note that the computation of the hash function still needs 
to happen and, for strings, the computation scales with the length of the string. As string 
keys are usually relatively small, this doesn't constitute a problem in practice.

A dictionary can be used to efficiently count unique elements in a list. In this example, we 
define the counter_dict function that takes a list and returns a dictionary containing 
the number of occurrences of each value in the list:

    def counter_dict(items): 

        counter = {} 

        for item in items: 

            if item not in counter: 

                counter[item] = 1 

            else: 

                counter[item] += 1 

        return counter

The code can be somewhat simplified using collections.defaultdict, which can 
be used to produce dictionaries where each new key is automatically assigned a default 
value. In the following code, the defaultdict(int) call produces a dictionary where 
every new element is automatically assigned a zero value and can be used to streamline 
the counting:

    from collections import defaultdict

    def counter_defaultdict(items):

        counter = defaultdict(int)

        for item in items:

            counter[item] += 1

        return counter
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The collections module also includes a Counter class that can be used for the same 
purpose with a single line of code:

    from collections import Counter

    counter = Counter(items)

Speed-wise, all these ways of counting have the same time complexity, but the Counter 
implementation is the most efficient, as shown in the following table:

Table 1.5 – The different methods of computing counters

Building an in-memory search index using a hash map
Dictionaries can be used to quickly search for a word in a list of documents, similar to  
a search engine. In this subsection, we will learn how to build an inverted index based  
on a dictionary of lists. Let's say we have a collection of four documents:

    docs = ["the cat is under the table",

            "the dog is under the table",

            "cats and dogs smell roses",

            "Carla eats an apple"]

A simple way to retrieve all the documents that match a query is to scan each document 
and test for the presence of a word. For example, if we want to look up the documents 
where the word table appears, we can employ the following filtering operation:

    matches = [doc for doc in docs if "table" in doc]

This approach is simple and works well when we have one-off queries; however, if we need 
to query the collection very often, it can be beneficial to optimize querying time. Since the 
per-query cost of the linear scan is O(N), you can imagine that better scaling will allow us 
to handle much larger document collections.
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A better strategy is to spend some time preprocessing the documents so that they are 
easier to find at query time. We can build a structure, called the inverted index, that 
associates each word in our collection with the list of documents where that word is 
present. In our earlier example, the word "table" will be associated with the "the cat 
is under the table" and "the dog is under the table" documents; they 
correspond to 0 and 1 indices.

Such a mapping can be implemented by going over our collection of documents and 
storing in a dictionary the index of the documents where that term appears. The 
implementation is similar to the counter_dict function, except that, instead of 
incrementing a counter, we are growing the list of documents that match the current term:

    # Building an index

    index = {}

    for i, doc in enumerate(docs):

        # We iterate over each term in the document

        for word in doc.split():

            # We build a list containing the indices 

            # where the term appears

            if word not in index:

                index[word] = [i]

            else:

                index[word].append(i)

Once we have built our index, doing a query involves a simple dictionary lookup. For 
example, if we want to return all the documents containing the table term, we can 
simply query the index and retrieve the corresponding documents:

    results = index["table"]

    result_documents = [docs[i] for i in results]

Since all it takes to query our collection is dictionary access, the index can handle queries 
with O(1) time complexity! Thanks to the inverted index, we are now able to query any 
number of documents (as long as they fit in memory) in constant time. Needless to say, 
indexing is a technique widely used to quickly retrieve data, not only in search engines  
but also in databases and any system that requires fast searches.
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Important Note
Building an inverted index is an expensive operation and requires you to 
encode every possible query. This is a substantial drawback, but the benefits 
are great, and it may be worthwhile to pay the price in terms of decreased 
flexibility.

Sets
Sets are unordered collections of elements, with the additional restriction that 
the elements must be unique. The main use cases where sets are a good choice are 
membership tests (testing whether an element is present in the collection) and, 
unsurprisingly, set operations such as union, difference, and intersection.

In Python, sets are implemented using a hash-based algorithm, just like dictionaries; 
therefore, the time complexities for addition, deletion, and testing for membership  
scale as O(1) with the size of the collection.

Sets contain only unique elements. An immediate use case of sets is the removal of 
duplicates from a collection, which can be accomplished by simply passing the collection 
through the set constructor, as follows:

    # create a list that contains duplicates

    x = list(range(1000)) + list(range(500))

    # the set *x_unique* will contain only 

    # the unique elements in x

    x_unique = set(x)

The time complexity for removing duplicates is O(N), as it requires reading the input and 
putting each element in the set.

Sets offer a number of operations, such as union, intersection, and difference. The union of 
two sets is a new set containing all the elements of both the sets; the intersection is a new 
set that contains only the elements in common between the two sets, and the difference 
is a new set containing the elements of the first set that are not contained in the second 
set. The time complexities for these operations are shown in the following table. Note that 
since we have two different input sizes, we will use the letter S to indicate the size of the 
first set (called s), and T to indicate the size of the second set (called t):
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Table 1.6 – The running time of set operations

An application of set operations is, for example, Boolean queries. Going back to the 
inverted index example of the previous subsection, we may want to support queries 
that include multiple terms. For example, we may want to search for all the documents 
that contain the words cat and table. This kind of query can be efficiently computed 
by taking the intersection between the set of documents containing cat and the set of 
documents containing table.

In order to efficiently support those operations, we can change our indexing code so that 
each term is associated with a set of documents (rather than a list). After applying this 
change, calculating more advanced queries is a matter of applying the right set operation. 
In the following code, we show the inverted index based on sets and the query using  
set operations:

    # Building an index using sets

    index = {}

    for i, doc in enumerate(docs):

        # We iterate over each term in the document

        for word in doc.split():

            # We build a set containing the indices 

            # where the term appears

            if word not in index:

                index[word] = {i}

            else:

                index[word].add(i)

    

    # Querying the documents containing both "cat" and

        "table"

    index['cat'].intersection(index['table'])
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Heaps
Heaps are data structures designed to quickly find and extract the maximum (or minimum) 
value in a collection. A typical use case for heaps is to process a series of incoming tasks in 
order of maximum priority.

You can theoretically use a sorted list using the tools in the bisect module; however, 
while extracting the maximum value will take O(1) time (using list.pop), insertion will 
still take O(N) time (remember that, even if finding the insertion point takes O(log(N)) 
time, inserting an element in the middle of a list is still an O(N) operation). A heap is a 
more efficient data structure that allows for the insertion and extraction of maximum 
values with O(log(N)) time complexity.

In Python, heaps are built using the procedures contained in the heapq module on an 
underlying list. For example, if we have a list of 10 elements, we can reorganize it into  
a heap with the heapq.heapify function:

    import heapq

    collection = [10, 3, 3, 4, 5, 6]

    heapq.heapify(collection)

To perform the insertion and extraction operations on the heap, we can use the  
heapq.heappush and heapq.heappop functions. The heapq.heappop function 
will extract the minimum value in the collection in O(log(N)) time and can be used in  
the following way:

    heapq.heappop(collection)

    # Returns: 3

Similarly, you can push the 1 integer with the heapq.heappush function, as follows:

    heapq.heappush(collection, 1)

Another easy-to-use option is the queue.PriorityQueue class, which as a bonus, is 
thread- and process-safe. The PriorityQueue class can be filled up with elements using 
the PriorityQueue.put method, while PriorityQueue.get can be used to extract 
the minimum value in the collection:

    from queue import PriorityQueue

    queue = PriorityQueue()

    for element in collection:
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        queue.put(element)

    queue.get()

    # Returns: 3

If the maximum element is required, a simple trick is to multiply each element of the list 
by -1. In this way, the order of the elements will be inverted. Also, if you want to associate 
an object (for example, a task to run) with each number (which can represent the priority), 
you can insert tuples of the (number, object) form; the comparison operator for the 
tuple will be ordered with respect to its first element, as shown in the following example:

    queue = PriorityQueue()

    queue.put((3, "priority 3"))

    queue.put((2, "priority 2"))

    queue.put((1, "priority 1"))

    queue.get()

    # Returns: (1, "priority 1")

Tries
A perhaps less popular data structure, but very useful in practice, is the trie (sometimes 
called prefix tree). Tries are extremely fast at matching a list of strings against a prefix. 
This is especially useful when implementing features such as search as you type and 
autocompletion, where the list of available completions is very large and short response 
times are required.

Unfortunately, Python does not include a trie implementation in its standard library; 
however, many efficient implementations are readily available through PyPI. The one we 
will use in this subsection is patricia-trie, a single-file, pure Python implementation 
of trie. As an example, we will use patricia-trie to perform the task of finding the 
longest prefix in a set of strings (just like autocompletion).
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Here, we can demonstrate how fast a trie is able to search through a list of strings.  
In order to generate a large amount of unique random strings, we can define a function, 
random_string. The random_string function will return a string composed of 
random uppercase characters and, while there is a chance to get duplicates, we can greatly 
reduce the probability of duplicates to the point of being negligible if we make the string 
long enough. The implementation of the random_string function is shown as follows:

    from random import choice

    from string import ascii_uppercase

    def random_string(length):

     """Produce a random string made of *length* uppercase \

        ascii characters"""

     return ''.join(choice(ascii_uppercase) for i in \

       range(length))

We can build a list of random strings and time how fast it searches for a prefix (in our 
case, the "AA" string) using the str.startswith function:

    strings = [random_string(32) for i in range(10000)]

    matches = [s for s in strings if s.startswith('AA')]

List comprehension and str.startwith are already very optimized operations and,  
on this small dataset, the search takes only a millisecond or so:

    %timeit [s for s in strings if s.startswith('AA')]

    1000 loops, best of 3: 1.76 ms per loop

Now, let's try using a trie for the same operation. In this example, we will use the 
patricia-trie library that is installable through pip. The patricia.trie class 
implements a variant of the trie data structure with an interface similar to a dictionary.  
We can initialize our trie by creating a dictionary from our list of strings, as follows:

    from patricia import trie

    strings_dict = {s:0 for s in strings} 

    # A dictionary where all values are 0

    strings_trie = trie(**strings_dict)
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To query patricia-trie for a matching prefix, we can use the trie.iter method, 
which returns an iterator over the matching strings:

    matches = list(strings_trie.iter('AA'))

Now that we know how to initialize and query a trie, we can time the operation:

    %timeit list(strings_trie.iter('AA'))

    10000 loops, best of 3: 60.1 µs per loop

The timing for this input size is 60.1 µs, which is about 30 times faster (1.76 ms = 1760 µs)  
than linear search! This impressive speedup is because of the better computational 
complexity of the trie prefix search. Querying a trie has an O(S) time complexity, where S 
is the length of the longest string in the collection, while the time complexity of a simple 
linear scan is O(N), where N is the size of the collection. 

Note that if we want to return all the prefixes that match, the running time will be 
proportional to the number of results that match the prefix. Therefore, when designing 
timing benchmarks, care must be taken to ensure that we are always returning the same 
number of results.

The scaling properties of a trie versus a linear scan for datasets of different sizes that 
contains 10 prefix matches are shown in the following table:

Table 1.7 – The running time of a trie versus a linear scan

An interesting fact is that the implementation of patricia-trie is actually a single 
Python file; this clearly shows how simple and powerful a clever algorithm can be.  
For extra features and performance, other C-optimized trie libraries are also available, 
such as datrie and marisa-trie.

At this point, we have considered most of the important data structures that are native 
to Python. Appropriate use of these data structures will speed up your application by a 
significant degree. In addition to data structures, there are other computing techniques 
and concepts that we could utilize in order to make our programs even faster. In the next 
section, we will take a look at caching and memoization, which are common practices 
when you expect the same computations to be repeated multiple times.
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Improved efficiency with caching and 
memoization
Caching is a great technique used to improve the performance of a wide range of 
applications. The idea behind caching is to store expensive results in a temporary location, 
called a cache, that can be located in memory, on disk, or in a remote location.

Web applications make extensive use of caching. In a web application, it is often the 
case that multiple users request a certain page at the same time. In this case, instead of 
recomputing the page for each user, the web application can compute it once and serve the 
user the already rendered page. Ideally, caching also needs a mechanism for invalidation so 
that if the page needs to be updated, we can recompute it before serving it again. Intelligent 
caching allows web applications to handle the increasing number of users with fewer 
resources. Caching can also be done preemptively, such as the later sections of a video 
getting buffered when watching a video online.

Caching is also used to improve the performance of certain algorithms. A great example 
is computing the Fibonacci sequence. Since computing the next number in the Fibonacci 
sequence requires the previous number in the sequence, you can store and reuse previous 
results, dramatically improving the running time. Storing and reusing the results of the 
previous function calls in an application is usually termed memoization and is one of the 
forms of caching. Several other algorithms can take advantage of memoization to gain 
impressive performance improvements, and this programming technique is commonly 
referred to as dynamic programming, where you aim to solve a large problem by 
breaking it into smaller ones.

The benefits of caching, however, do not come for free. What we are actually doing is 
sacrificing some space to improve the speed of the application. Additionally, if the cache 
is stored in a location on the network, we may incur transfer costs and the general time 
needed for communication. You should evaluate when it is convenient to use a cache and 
how much space you are willing to trade for an increase in speed.

Given the usefulness of this technique, the Python standard library includes  
a simple in-memory cache out of the box in the functools module. The  
functools.lru_cache decorator can be used to easily cache the results of a function.

In the following example, we create a function, sum2, that prints a statement and returns 
the sum of two numbers. By running the function twice, you can see that the first time 
the sum2 function is executed, the "Calculating ..." string is produced, while the 
second time, the result is returned without running the function:

    from functools import lru_cache

    @lru_cache()
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    def sum2(a, b):

        print("Calculating {} + {}".format(a, b))

        return a + b

    print(sum2(1, 2))

    # Output: 

    # Calculating 1 + 2

    # 3

    print(sum2(1, 2))

    # Output: 

    # 3

The lru_cache decorator also provides other basic features. To restrict the size of  
the cache, you can set the number of elements that we intend to maintain through the 
max_size argument. If we want our cache size to be unbounded, we can specify a value 
of None. An example of max_size usage is shown here:

    @lru_cache(max_size=16)

    def sum2(a, b):

        ...

In this way, as we execute sum2 with different arguments, the cache will reach a 
maximum size of 16 and, as we keep requesting more calculations, new values will replace 
older values in the cache. The lru prefix originates from this strategy, which means least 
recently used.

The lru_cache decorator also adds extra functionalities to the decorated function. For 
example, it is possible to examine the cache performance using the cache_info method, 
and it is possible to reset the cache using the cache_clear method, as follows:

    sum2.cache_info()

    # Output: CacheInfo(hits=0, misses=1, maxsize=128,

      currsize=1)

    sum2.cache_clear()
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As an example, we can see how a problem, such as computing the Fibonacci series, may 
benefit from caching. We can define a fibonacci function and time its execution:

    def fibonacci(n):

        if n < 1:

            return 1

        else:

            return fibonacci(n - 1) + fibonacci(n - 2)

    # Non-memoized version

    %timeit fibonacci(20)

    100 loops, best of 3: 5.57 ms per loop

The execution takes 5.57 milliseconds, which is very long. The scaling of the function 
written in this way has poor performance; the previously computed Fibonacci sequences 
are not reused, causing this algorithm to have an exponential scaling of roughly O(2N).

Caching can improve this algorithm by storing and reusing the already-computed 
Fibonacci numbers. To implement the cached version, it is sufficient to apply the 
lru_cache decorator to the original fibonacci function. Also, to design a proper 
benchmark, we need to ensure that a new cache is instantiated for every run; to do this, 
we can use the timeit.repeat function, as shown in the following example:

    import timeit

    setup_code = '''

    from functools import lru_cache

    from __main__ import fibonacci

    fibonacci_memoized = lru_cache(maxsize=None)(fibonacci)'''

    results = timeit.repeat('fibonacci_memoized(20)',

                            setup=setup_code,

                            repeat=1000,

                            number=1)

    print("Fibonacci took {:.2f} us".format(min(results)))

    # Output: Fibonacci took 0.01 us

Even though we changed the algorithm by adding a simple decorator, the running time 
now is much less than a microsecond. The reason is, thanks to caching, we now have a 
linear time algorithm instead of an exponential one.
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The lru_cache decorator can be used to implement simple in-memory caching in your 
application. For more advanced use cases, third-party modules can be used for more 
powerful implementation and on-disk caching.

Joblib
A simple library that, among other things, provides a simple on-disk cache is joblib. 
The package can be used in a similar way as lru_cache, except that the results will be 
stored on disk and will persist between runs.

The joblib module can be installed from PyPI using the pip install joblib 
command.

The joblib module provides the Memory class, which can be used to memoize functions 
using the Memory.cache decorator:

    from joblib import Memory

    memory = Memory(cachedir='/path/to/cachedir')

    @memory.cache

    def sum2(a, b):

        return a + b

The function will behave similarly to lru_cache, with the exception that the results will 
be stored on disk in the directory specified by the cachedir argument during Memory 
initialization. Additionally, the cached results will persist over subsequent runs!

The Memory.cache method also allows limiting recomputation to only when certain 
arguments change, and the resulting decorated function supports basic functionalities  
to clear and analyze the cache. 

Perhaps the best joblib feature is, thanks to intelligent hashing algorithms, providing 
efficient memoization of functions that operate on numpy arrays, which is particularly 
useful in scientific and engineering applications.

At this point, we have seen that by using caching and memoization, our program can reuse 
computations in an efficient way. Another common strategy to improve running time is  
to utilize specifically designed techniques as appropriate. In the next section, we will  
see how we can take advantage of comprehensions and generators when working with 
Python loops.
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Efficient iteration with comprehensions  
and generators
In this section, we will explore a few simple strategies to speed up Python loops using 
comprehensions and generators. In Python, comprehension and generator expressions 
are fairly optimized operations and should be preferred in place of explicit for loops, 
as they are designed to avoid many unnecessary computational overheads during their 
construction. Another reason to use this construct is readability; even if the speedup over 
a standard loop is modest, the comprehension and generator syntax is more compact and 
(most of the time) more intuitive.

In the following example, we can see that both the list comprehension and generator 
expressions are faster than an explicit loop when combined with the sum function:

    def loop(): 

        res = [] 

        for i in range(100000): 

            res.append(i * i) 

        return sum(res) 

    def comprehension(): 

        return sum([i * i for i in range(100000)]) 

    def generator(): 

        return sum(i * i for i in range(100000)) 

    %timeit loop() 

    100 loops, best of 3: 16.1 ms per loop 

    %timeit comprehension() 

    100 loops, best of 3: 10.1 ms per loop 

    %timeit generator() 

    100 loops, best of 3: 12.4 ms per loop 

Just like lists, it is possible to use dict comprehension to build dictionaries slightly more 
efficiently and compactly, as shown in the following code:

    def loop(): 

        res = {} 

        for i in range(100000): 
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            res[i] = i

        return res

    def comprehension(): 

        return {i: i for i in range(100000)}

    %timeit loop() 

    100 loops, best of 3: 13.2 ms per loop 

    %timeit comprehension() 

    100 loops, best of 3: 12.8 ms per loop

Efficient looping (especially in terms of memory) can be implemented using iterators and 
functions such as filter and map. As an example, consider the problem of applying a 
series of operations to a list using list comprehension and then taking the maximum value:

    def map_comprehension(numbers):

        a = [n * 2 for n in numbers]

        b = [n ** 2 for n in a]

        c = [n ** 0.33 for n in b]

        return max(c)

The problem with this approach is that for every list comprehension, we are allocating a 
new list, increasing memory usage. Instead of using list comprehension, we can employ 
generators. Generators are objects that, when iterated upon, compute a value on the fly 
and return the result.

For example, the map function takes two arguments – a function and an iterator – and 
returns a generator that applies the function to every element of the collection. The 
important point is that the operation happens only while we are iterating, and not when 
map is invoked!

We can rewrite the previous function using map and by creating intermediate generators, 
rather than lists, thus saving memory by computing the values on the fly:

    def map_normal(numbers):

        a = map(lambda n: n * 2, numbers)

        b = map(lambda n: n ** 2, a)

        c = map(lambda n: n ** 0.33, b)

        return max(c)
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We can profile the memory of the two solutions using the memory_profiler extension 
from an IPython session. The extension provides a small utility, %memit, that will help  
us evaluate the memory usage of a Python statement in a way similar to %timeit,  
as illustrated in the following details:

    %load_ext memory_profiler

    numbers = range(1000000)

    %memit map_comprehension(numbers)

    peak memory: 166.33 MiB, increment: 102.54 MiB

    %memit map_normal(numbers)

    peak memory: 71.04 MiB, increment: 0.00 MiB

As you can see, the memory used by the first version is 102.54 MiB, while the second 
version consumes 0.00 MiB! For those who are interested, more functions that return 
generators can be found in the itertools module, which provides a set of utilities 
designed to handle common iteration patterns.

Summary
Algorithmic optimization can improve how your application scales as we process 
increasingly large data. In this chapter, we demonstrated use cases and running times of 
the most common data structures available in Python, such as lists, deques, dictionaries, 
heaps, and tries. We also covered caching, a technique that can be used to trade some 
space, in memory or on disk, in exchange for the increased responsiveness of an 
application. We also demonstrated how to get modest speed gains by replacing for  
loops with fast constructs, such as list comprehensions and generator expressions.

Overall, we have seen that by utilizing a specifically designed data structure or technique 
that is appropriate in certain situations, the efficiency of our program can be greatly 
improved. The topics covered in this chapter offer us the ability to do just that across  
a wide range of use cases.

In the subsequent chapters, we will learn how to improve performance further using 
numerical libraries such as numpy and how to write extension modules in a lower-level 
language with the help of Cython.
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Questions
1. Identify the best/most appropriate from the data structures covered in this chapter 

concerning the following use cases:

A. Mapping items to another set of items (set being used in the most general sense)
B. Accessing, modifying, and appending elements
C. Maintaining a collection of unique elements
D. Keeping track of the minimum/maximum of a set (in the most general sense)
E. Appending and removing elements at the endpoints of a sequence (in the most 

general sense).
F. Fast searching according to some similarity criterion (for example, being used 

by autocompletion engines).

2. What is the difference between caching and memoization?
3. Why are comprehensions and generators (in most situations) more preferred than 

explicit for loops?
4. Consider the problem of representing a pairwise association between a set of letters 

and a set of numbers (for example, a  2, b  1, c  3, and so on), where we need 
to look at what number a given letter is associated with in our application.

A. Is a list an appropriate data structure for this task, and if not, what is?
B. What if each number represented the number of instances of a given letter in  

a text document? What would the best data structure for this task be?

Further reading
• Lazy evaluation in Python: https://towardsdatascience.com/what-is-

lazy-evaluation-in-python-9efb1d3bfed0

• The yield statement in Python: https://realpython.com/
introduction-to-python-generators/

https://towardsdatascience.com/what-is-lazy-evaluation-in-python-9efb1d3bfed0
https://towardsdatascience.com/what-is-lazy-evaluation-in-python-9efb1d3bfed0
https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/




3
Fast Array 

Operations with 
NumPy, Pandas,  

and Xarray
NumPy is the de facto standard for scientific computing in Python. It offers flexible 
multidimensional arrays that allow you to perform fast and concise mathematical 
calculations.

NumPy provides common data structures and algorithms designed to express complex 
mathematical operations using a concise syntax. The multidimensional array, numpy.
ndarray, is internally based on C arrays. Apart from the performance benefits, this choice 
allows NumPy code to easily interface with the existing C and FORTRAN routines; NumPy 
helps bridge the gap between Python and the legacy code written using those languages.

In this chapter, we will learn how to create and manipulate NumPy arrays. We will also 
explore the NumPy broadcasting feature, which is used to rewrite complex mathematical 
expressions efficiently and succinctly.
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pandas is a tool that relies heavily on NumPy and provides additional data structures 
and algorithms targeted toward data analysis. We will introduce the main pandas features 
and their usage. We will also learn how to achieve high performance using pandas data 
structures and vectorized operations. 

Both NumPy and pandas are insufficient in many use cases concerning labeled, 
multidimensional data. The xarray library combines the best features from the other  
two tools and offers further optimized data processing functionalities. We will discuss  
the motivation for this tool and study the performance improvements it offers via  
explicit examples.

In this chapter, we will be covering the following topics:

• Getting started with NumPy
• Rewriting the particle simulator in NumPy
• Reaching optimal performance with numexpr
• Working with database-style data with pandas
• High-performance labeled data with xarray

Technical requirement
The code files for this chapter can be accessed by going to this book's GitHub 
repository at https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/Chapter03.

Getting started with NumPy
The NumPy library revolves around its multidimensional array object, numpy.ndarray. 
NumPy arrays are collections of elements of the same data type; this fundamental 
restriction allows NumPy to pack the data in a way that allows for high-performance 
mathematical operations.

Creating arrays
Let's explore NumPy's functionalities by following these steps:

1. You can create NumPy arrays using the numpy.array function. It takes a list-like 
object (or another array) as input and, optionally, a string expressing its data type. 
You can interactively test array creation using an IPython shell, as follows:

    import numpy as np 

    a = np.array([0, 1, 2]) 

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/Chapter03
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/Chapter03
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2. Every NumPy array has an associated data type that can be accessed using the 
dtype attribute. If we inspect the a array, we will find that its dtype is int64, 
which stands for 64-bit integer:

    a.dtype 

    # Result: 

    # dtype('int64') 

3. We may decide to convert those integer numbers into the float type. To do this, 
we can either pass the dtype argument at array initialization or cast the array to 
another data type using the astype method. These two ways to select a data type 
are shown in the following code:

    a = np.array([1, 2, 3], dtype='float32') 

    a.astype('float32') 

    # Result:

    # array([ 0.,  1.,  2.], dtype=float32) 

4. To create an array with two dimensions (an array of arrays), we can perform the 
required initialization using a nested sequence, as follows:

    a = np.array([[0, 1, 2], [3, 4, 5]]) 

    print(a) 

    # Output:

    # [[0 1 2]

    #  [3 4 5]] 

5. An array that's created in this way has two dimensions, which are called axes in terms 
of NumPy's jargon. An array that's formed in this way is like a table that contains two 
rows and three columns. We can access the axes using the ndarray.shape attribute:

    a.shape 

    # Result:

    # (2, 3) 
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6. Arrays can also be reshaped, so long as the product of the shape dimensions is equal 
to the total number of elements in the array (that is, the total number of elements 
is conserved). For example, we can reshape an array containing 16 elements in the 
following ways: (2, 8), (4, 4), or (2, 2, 4). To reshape an array, we can either 
use the ndarray.reshape method or assign a new value to the ndarray.shape 
tuple. The following code illustrates the use of the ndarray.reshape method:

    a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 

                  9, 10, 11, 12, 13, 14, 15]) 

    a.shape 

    # Output:

    # (16,)

    a.reshape(4, 4) # Equivalent: a.shape = (4, 4) 

    # Output: 

    # array([[ 0,  1,  2,  3],

    #        [ 4,  5,  6,  7],

    #        [ 8,  9, 10, 11],

    #        [12, 13, 14, 15]]) 

Thanks to this property, you can freely add dimensions of size 1. You can reshape 
an array with 16 elements to (16, 1), (1, 16), (16, 1, 1), and so on. In the 
next section, we will extensively use this feature to implement complex operations 
through broadcasting. 

7. NumPy provides convenience functions, as shown in the following code, to create 
arrays filled with zeros, ones, or with no initial value (in this case, their actual value 
is meaningless and depends on the memory state). Those functions take the array 
shape as a tuple and, optionally, its dtype:

    np.zeros((3, 3)) 

    np.empty((3, 3)) 

    np.ones((3, 3), dtype='float32') 

In our examples, we will use the numpy.random module to generate random 
floating-point numbers in the (0, 1) interval. numpy.random.rand will take  
a shape and return an array of random numbers with that shape:

    np.random.rand(3, 3) 
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8. Sometimes, it is convenient to initialize arrays that have the same shape as that of 
some other array. For that purpose, NumPy provides some handy functions, such  
as zeros_like, empty_like, and ones_like. These functions can be used  
as follows:

    np.zeros_like(a) 

    np.empty_like(a) 

    np.ones_like(a) 

These functions will return arrays with the specified values, whose shapes match exactly 
with that of array a.

Accessing arrays
The NumPy array interface is, at a shallow level, similar to that of Python lists. NumPy 
arrays can be indexed using integers and iterated using a for loop:

    A = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) 

    A[0] 

    # Result:

    # 0 

    [a for a in A] 

    # Result:

    # [0, 1, 2, 3, 4, 5, 6, 7, 8] 

However, explicitly looping over an array is, most of the time, not the most efficient way  
to access its elements. In this section, we will learn how to take advantage of NumPy's API 
to fully utilize its efficiency.

Indexing and slicing
Indexing and slicing refer to the act of accessing elements within an array that are at 
certain locations or satisfy some condition that we are interested in. In NumPy, array 
elements and sub-arrays can be conveniently accessed by using multiple values separated 
by commas inside the subscript operator, []. Let's get started:

1. If we take a (3,3) array (an array containing three triplets) and we access the 
element with an index of 0, we can obtain the first row, as follows:

    A = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 

    A[0] 
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    # Result:

    # array([0, 1, 2]) 

2. We can index the row again by adding another index separated by a comma. To get 
the second element of the first row, we can use the (0, 1) index. An important 
observation is that the A[0, 1] notation is shorthand for A[(0, 1)]; that is,  
we are indexing using a tuple! Both versions are shown in the following snippet:

    A[0, 1] 

    # Result:

    # 1

    # Equivalent version using tuple

    A[(0, 1)]

3. NumPy allows you to slice arrays into multiple dimensions. If we slice on the first 
dimension, we can obtain a collection of triplets, as follows:

    A[0:2] 

    # Result:

    # array([[0, 1, 2], 

    #        [3, 4, 5]]) 

4. If we slice the array again on the second dimension with 0:2, we are extracting the 
first two elements from the collection of triplets shown earlier. This results in an 
array whose shape is (2, 2), as shown in the following code:

    A[0:2, 0:2] 

    # Result:

    # array([[0, 1], 

    #        [3, 4]]) 

5. Intuitively, you can update the values in the array using both numerical indexes and 
slices. An example of this is illustrated in the following code snippet:

    A[0, 1] = 8 

    A[0:2, 0:2] = [[1, 1], [1, 1]]
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6. Indexing with the slicing syntax is very fast because, unlike lists, it doesn't produce 
a copy of the array. In NumPy's terminology, it returns a view of the same memory 
area. If we take a slice of the original array, and then we change one of its values, the 
original array will be updated as well. The following code illustrates an example of 
this feature:

    a= np.array([1, 1, 1, 1]) 

    a_view = a[0:2] 

    a_view[0] = 2 

    print(a) 

    # Output:

    # [2 1 1 1] 

It is important to be extra careful when mutating NumPy arrays. Since views share 
data, changing the values of a view can result in hard-to-find bugs. To prevent side 
effects, you can set the a.flags.writeable = False flag, which will prevent 
the array or any of its views from being accidentally mutated.

7. Let's look at another example that shows how the slicing syntax can be used in a 
real-world setting. Let's define an r_i array, as shown in the following line of code, 
which contains a set of 10 coordinates (x, y). Its shape will be (10, 2):

    r_i = np.random.rand(10, 2)

If you have a hard time distinguishing arrays that differ in the axes order, for example, 
between an array of shape (10, 2) and shape (2, 10), it is useful to think that every 
time you say the word of, you should introduce a new dimension. An array with 10 
elements of size two will be (10, 2). Conversely, an array with two elements of size 10 
will be (2, 10).

A typical operation we may be interested in is extracting the x component from each 
coordinate. In other words, you want to extract the (0, 0), (1, 0), and (2, 0), items, 
resulting in an array with a shape of (10,). It is helpful to think that the first index is 
moving while the second one is fixed (at 0). With this in mind, we will slice every index 
on the first axis (the moving one) and take the first element (the fixed one) on the second 
axis, as shown in the following line of code:

    x_i = r_i[:, 0] 
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On the other hand, the following expression will keep the first index fixed and the second 
index moving, returning the first (x, y) coordinate:

    r_0 = r_i[0, :] 

Slicing all the indexes over the last axis is optional; using r_i[0] has the same effect as 
using r_i[0, :].

Fancy indexing
NumPy allows you to index an array using another NumPy array made up of either 
integer or Boolean values. This is a feature called fancy indexing:

1. If you index an array (say, a) with another array of integers (say, idx), NumPy 
will interpret the integers as indexes and will return an array containing 
their corresponding values. If we index an array containing 10 elements with 
np.array([0, 2, 3]), we obtain an array of shape (3,) containing the 
elements at positions 0, 2, and 3. The following code illustrates this concept:

    a = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) 

    idx = np.array([0, 2, 3]) 

    a[idx] 

    # Result:

    # array([9, 7, 6]) 

2. You can use fancy indexing on multiple dimensions by passing an array for each 
dimension. If we want to extract the (0, 2) and (1, 2) elements, we have to 
pack all the indexes acting on the first axis in one array, and the ones acting on the 
second axis in another. This can be seen in the following code:

    a = np.array([[0, 1, 2], [3, 4, 5], \

                  [6, 7, 8], [9, 10, 11]]) 

    idx1 = np.array([0, 1]) 

    idx2 = np.array([2, 2]) 

    a[idx1, idx2]

3. You can also use normal lists as index arrays, but not tuples. For example, the 
following two statements are equivalent:

    a[np.array([0, 1])] # is equivalent to

    a[[0, 1]]
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However, if you use a tuple, NumPy will interpret the following statement as an 
index on multiple dimensions:

    a[(0, 1)] # is equivalent to

    a[0, 1] 

4. The index arrays are not required to be one-dimensional; we can extract elements 
from the original array in any shape. For example, we can select elements from the 
original array to form a (2,2) array, as shown here:

    idx1 = [[0, 1], [3, 2]] 

    idx2 = [[0, 2], [1, 1]] 

    a[idx1, idx2] 

    # Output: 

    # array([[ 0,  5],

    #        [10,  7]]) 

5. The array slicing and fancy indexing features can be combined. This is useful, for 
instance, when we want to swap the x and y columns in a coordinate array. In the 
following code, the first index will be running over all the elements (a slice) and, for 
each of those, we extract the element in position 1 (the y) first and then the one in 
position 0 (the x):

    r_i = np.random.rand(10, 2) 

    r_i[:, [0, 1]] = r_i[:, [1, 0]] 

6. When the index array is of the bool type, the rules are slightly different. The bool 
array will act as a mask; every element corresponding to True will be extracted and 
put in the output array. This is shown in the following code:

    a = np.array([0, 1, 2, 3, 4, 5]) 

    mask = np.array([True, False, True, False, \

      False, False]) 

    a[mask] 

    # Output:

    # array([0, 2]) 

The same rules apply when dealing with multiple dimensions. Furthermore, if the 
index array has the same shape as the original array, the elements corresponding  
to True will be selected and put in the resulting array.
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7. Indexing in NumPy is a reasonably fast operation. When speed is critical, you can 
use the slightly faster numpy.take and numpy.compress functions to squeeze 
out a little more performance. The first argument of numpy.take is the array we 
want to operate on, while the second is the list of indexes we want to extract. The 
last argument is axis; if this is not provided, the indexes will act on the flattened 
array; otherwise, they will act along the specified axis:

    r_i = np.random.rand(100, 2) 

    idx = np.arange(50) # integers 0 to 50 

    %timeit np.take(r_i, idx, axis=0) 

    1000000 loops, best of 3: 962 ns per loop 

    %timeit r_i[idx] 

    100000 loops, best of 3: 3.09 us per loop 

8. The similar but faster version for Boolean arrays is numpy.compress, which 
works in the same way. The use of numpy.compress is shown here:

    In [51]: idx = np.ones(100, dtype='bool') # all 

      True values 

    In [52]: %timeit np.compress(idx, r_i, axis=0) 

    1000000 loops, best of 3: 1.65 us per loop 

    In [53]: %timeit r_i[idx] 

    100000 loops, best of 3: 5.47 us per loop 

As we can see, compress gives us a slight speed improvement, which will prove useful if 
you are dealing with large-sized arrays.

Broadcasting
The true power of NumPy lies in its fast mathematical operations. The approach that's 
used by NumPy is to avoid stepping into the Python interpreter by performing element-
wise calculations using optimized C code. Broadcasting is a clever set of rules that enables 
fast array calculations for arrays of similar (but not equal!) shapes. Let's see how that goes.
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Whenever you perform an arithmetic operation on two arrays (such as a product), if 
the two operands have the same shape, the operation will be applied in an element-wise 
fashion. For example, upon multiplying two (2,2) arrays, the operation will be done 
between pairs of corresponding elements, producing another (2, 2) array, as shown  
in the following code:

    A = np.array([[1, 2], [3, 4]]) 

    B = np.array([[5, 6], [7, 8]]) 

    A * B 

    # Output:

    # array([[ 5, 12],           

    #        [21, 32]]) 

If the shapes of the operands don't match, NumPy will attempt to match them using 
broadcasting rules. If one of the operands is a scalar (for example, a number), it will be 
applied to every element of the array, as shown in the following code:

    A * 2 

    # Output: 

    # array([[2, 4], 

    #        [6, 8]]) 

If the operand is another array, NumPy will try to match the shapes starting from the  
last axis. For example, if we want to combine an array of shape (3, 2) with one of  
shape (2,), the second array will be repeated three times to generate a (3, 2) array.  
In other words, the array is broadcasted along a dimension to match the shape of the  
other operand, as shown in the following diagram:

Figure 3.1 – Illustration of array broadcasting

If the shapes don't match – for example, when combining a (3, 2) array with a (2, 2) 
array – NumPy will throw an exception.
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If one of the axis's sizes is 1, the array will be repeated over this axis until the shapes 
match. To illustrate this point, let's consider that we have an array of the following shape:

    5, 10, 2 

Now, let's consider that we want to broadcast it with an array of shape (5, 1, 2); the 
array will be repeated on the second axis 10 times, as shown here:

    5, 10, 2 

    5,  1, 2 → repeated 

    - - - - 

    5, 10, 2 

Earlier, we saw that it is possible to freely reshape arrays to add axes of size 1. Using 
the numpy.newaxis constant while indexing will introduce an extra dimension. For 
instance, if we have a (5, 2) array and we want to combine it with one of shape  
(5, 10, 2), we can add an extra axis in the middle, as shown in the following code,  
to obtain a compatible (5, 1, 2) array:

    A = np.random.rand(5, 10, 2) 

    B = np.random.rand(5, 2) 

    A * B[:, np.newaxis, :] 

This feature can be used, for example, to operate on all possible combinations of the two 
arrays. One of these applications is the outer product. Let's consider that we have the 
following two arrays:

    a = [a1, a2, a3] 

    b = [b1, b2, b3] 

The outer product is a matrix containing the product of all the possible combinations (i, j) 
of the two array elements, as shown in the following snippet:

    a x b = a1*b1, a1*b2, a1*b3 

            a2*b1, a2*b2, a2*b3 

            a3*b1, a3*b2, a3*b3 
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To calculate this using NumPy, we will repeat the [a1, a2, a3] elements in one 
dimension, the [b1, b2, b3] elements in another dimension, and then take their 
element-wise product, as shown in the following diagram:

Figure 3.2 – Illustration of an outer product

Using code, our strategy will be to transform the a array from shape (3,) into shape 
(3, 1), and the b array from shape (3,) into shape (1, 3). These two arrays are 
broadcasted in the two dimensions and get multiplied together using the following code:

    AB = a[:, np.newaxis] * b[np.newaxis, :] 

This operation is very fast and extremely effective as it avoids Python loops and can 
process a high number of elements at speeds comparable with pure C or FORTRAN code.

Mathematical operations
NumPy includes the most common mathematical operations available for broadcasting by 
default, ranging from simple algebra to trigonometry, rounding, and logic.

For instance, to take the square root of every element in the array, we can use numpy.sqrt, 
as shown in the following code:

    np.sqrt(np.array([4, 9, 16])) 

    # Result:

    # array([2., 3., 4.]) 

The comparison operators are useful when we're trying to filter certain elements based on 
a condition. Imagine that we have an array of random numbers from 0 to 1, and we want 
to extract all the numbers greater than 0.5. We can use the > operator on the array to 
obtain a bool array, as follows:

    a = np.random.rand(5, 3) 

    a > 0.3 
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    # Result:

    # array([[ True, False,  True],

    #        [ True,  True,  True],

    #        [False,  True,  True],

    #        [ True,  True, False],

    #        [ True,  True, False]], dtype=bool) 

The resulting bool array can then be reused as an index to retrieve the elements that are 
greater than 0.5:

    a[a > 0.5] 

    print(a[a>0.5]) 

    # Output:

    # [ 0.9755  0.5977  0.8287  0.6214  0.5669  0.9553  

        0.5894  0.7196  0.9200  0.5781  0.8281 ] 

NumPy also implements methods such as ndarray.sum, which takes the sum of all the 
elements on an axis. If we have an array of shape (5, 3), we can use the ndarray.sum 
method to sum the elements on the first axis, the second axis, or over all the elements of 
the array, as illustrated in the following snippet:

    a = np.random.rand(5, 3) 

    a.sum(axis=0) 

    # Result:

    # array([ 2.7454,  2.5517,  2.0303]) 

    a.sum(axis=1) 

    # Result:

    # array([ 1.7498,  1.2491,  1.8151,  1.9320,  0.5814]) 

    a.sum() # With no argument operates on flattened array 

    # Result:

    # 7.3275 

Note that by summing the elements over an axis, we eliminate that axis. From the 
preceding example, the sum on axis 0 produces an array of shape (3,), while the  
sum on axis 1 produces an array of shape (5,).
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Calculating the norm
We can review the basic concepts illustrated in this section by calculating the norm of  
a set of coordinates. The norm of a pair of coordinates is an important concept in linear 
algebra and is often interpreted as the magnitude of the corresponding line segment.  
For a two-dimensional vector, the norm is defined as follows:

    norm = sqrt(x**2 + y**2) 

Given an array of 10 coordinates (x, y), we want to find the norm of each coordinate. We 
can calculate the norm by performing these steps:

1. Square the coordinates, obtaining an array that contains (x**2, y**2) elements.
2. Sum those with numpy.sum over the last axis.
3. Take the square root, element-wise, with numpy.sqrt.

The final expression can be compressed into a single line:

    r_i = np.random.rand(10, 2) 

    norm = np.sqrt((r_i ** 2).sum(axis=1)) 

    print(norm)

    # Output:

    # [ 0.7314  0.9050  0.5063  0.2553  0.0778   0.9143   

        1.3245  0.9486  1.010   1.0212] 

We can verify that this method of calculating norm gives us the correct answer while 
having compact code.

Rewriting the particle simulator in NumPy
In this section, we will optimize our particle simulator by rewriting some parts of it in 
NumPy. From the profiling we did in Chapter 1, Benchmarking and Profiling, we found 
that the slowest part of our program is the following loop, which is contained in the 
ParticleSimulator.evolve method:

    for i in range(nsteps): 

      for p in self.particles: 

        norm = (p.x**2 + p.y**2)**0.5 
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        v_x = (-p.y)/norm 

        v_y = p.x/norm 

        d_x = timestep * p.ang_vel * v_x 

        d_y = timestep * p.ang_vel * v_y 

        p.x += d_x 

        p.y += d_y 

You may have noticed that the body of the loop acts solely on the current particle. If we 
had an array containing the particle positions and angular speed, we could rewrite the 
loop using a broadcasted operation. In contrast, the loop's steps depend on the previous 
step and cannot be parallelized in this way.

So, it is natural to store all the array coordinates in an array of shape (nparticles, 2) 
and the angular speed in an array of shape (nparticles,), where nparticles is the 
number of particles. We'll call those arrays r_i and ang_vel_i:

    r_i = np.array([[p.x, p.y] for p in self.particles]) 

    ang_vel_i = np.array([p.ang_vel for p in \

      self.particles]) 

The velocity direction, which is perpendicular to the vector (x, y), was defined as follows:

    v_x = -y / norm 

    v_y = x / norm 

The norm can be calculated using the strategy illustrated in the Calculating the norm 
section under the Getting started with NumPy heading:

    norm_i = ((r_i ** 2).sum(axis=1))**0.5 

For the (-y, x) components, we need to swap the x and y columns in r_i and then 
multiply the first column by -1, as shown in the following code:

    v_i = r_i[:, [1, 0]] / norm_i 

    v_i[:, 0] *= -1 
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To calculate the displacement, we need to compute the product of v_i, ang_vel_i, 
and timestep. Since ang_vel_i is of shape (nparticles,), it needs a new axis to 
operate with v_i of shape (nparticles, 2). We will do that using numpy.newaxis, 
as follows:

    d_i = timestep * ang_vel_i[:, np.newaxis] * v_i 

    r_i += d_i 

Outside the loop, we have to update the particle instances with the new coordinates,  
x and y, as follows:

    for i, p in enumerate(self.particles): 

      p.x, p.y = r_i[i] 

To summarize, we will implement a method called ParticleSimulator.
evolve_numpy and benchmark it against the pure Python version, renamed as 
ParticleSimulator.evolve_python:

    def evolve_numpy(self, dt): 

      timestep = 0.00001 

      nsteps = int(dt/timestep) 

      r_i = np.array([[p.x, p.y] for p in self.particles]) 

      ang_vel_i = np.array([p.ang_vel for p in \

        self.particles]) 

      for i in range(nsteps): 

        norm_i = np.sqrt((r_i ** 2).sum(axis=1)) 

        v_i = r_i[:, [1, 0]] 

        v_i[:, 0] *= -1 

        v_i /= norm_i[:, np.newaxis] 

        d_i = timestep * ang_vel_i[:, np.newaxis] * v_i 

        r_i += d_i 

        for i, p in enumerate(self.particles): 

          p.x, p.y = r_i[i] 
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We will also update the benchmark to conveniently change the number of particles and 
the simulation method, as follows:

    def benchmark(npart=100, method='python'): 

      particles = [Particle(uniform(-1.0, 1.0),     

                            uniform(-1.0, 1.0),

                            uniform(-1.0, 1.0))  

                            for i in range(npart)] 

      simulator = ParticleSimulator(particles) 

      if method=='python': 

        simulator.evolve_python(0.1) 

      elif method == 'numpy': 

        simulator.evolve_numpy(0.1) 

Let's run the benchmark in an IPython session:

    from simul import benchmark 

    %timeit benchmark(100, 'python') 

    1 loops, best of 3: 614 ms per loop 

    %timeit benchmark(100, 'numpy') 

    1 loops, best of 3: 415 ms per loop 

We have made some improvements, but it doesn't look like a huge speed boost. The power 
of NumPy is revealed when handling big arrays. If we increase the number of particles,  
we will note a more significant performance boost:

    %timeit benchmark(1000, 'python') 

    1 loops, best of 3: 6.13 s per loop 

    %timeit benchmark(1000, 'numpy') 

    1 loops, best of 3: 852 ms per loop 
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The plot in the following diagram was produced by running the benchmark with different 
particle numbers:

Figure 3.3 – The running time growth of pure Python versus NumPy

The plot shows that both implementations scale linearly with particle size, but the runtime 
in the pure Python version grows much faster than the NumPy version; at greater sizes, we 
have a greater NumPy advantage. In general, when using NumPy, you should try to pack 
things into large arrays and group the calculations using the broadcasting feature.

Reaching optimal performance with numexpr
When handling complex expressions, NumPy stores intermediate results in memory. 
David M. Cooke wrote a package called numexpr, which optimizes and compiles array 
expressions on the fly. It works by optimizing the usage of the CPU cache and by taking 
advantage of multiple processors.

Its usage is generally straightforward and is based on a single function: numexpr.
evaluate. The function takes a string containing an array expression as its first 
argument. The syntax is basically identical to that of NumPy. For example, we can  
calculate a simple a + b * c expression in the following way:

    a = np.random.rand(10000) 

    b = np.random.rand(10000) 

    c = np.random.rand(10000) 

    d = ne.evaluate('a + b * c') 
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The numexpr package increases performance in almost all cases, but to get a substantial 
advantage, you should use it with large arrays. An application that involves a large array is 
the calculation of a distance matrix. In a particle system, a distance matrix contains all the 
possible distances between the particles. To calculate it, we should calculate all the vectors 
connecting any two particles, (i,j), as follows:

    x_ij = x_j - x_i 

    y_ij = y_j - y_i. 

Then, we must calculate the length of this vector by taking its norm, as shown in the 
following code:

    d_ij = sqrt(x_ij**2 + y_ij**2) 

We can write this in NumPy by employing the usual broadcasting rules (the operation is 
similar to the outer product):

    r = np.random.rand(10000, 2) 

    r_i = r[:, np.newaxis] 

    r_j = r[np.newaxis, :] 

    d_ij = r_j - r_i 

Finally, we must calculate the norm over the last axis using the following line of code:

    d_ij = np.sqrt((d_ij ** 2).sum(axis=2)) 

Rewriting the same expression using the numexpr syntax is extremely easy. The 
numexpr package (aliased ne in our following code) doesn't support slicing in its array 
expression; therefore, we first need to prepare the operands for broadcasting by adding  
an extra dimension, as follows:

    r = np.random.rand(10000, 2) 

    r_i = r[:, np.newaxis] 

    r_j = r[np.newaxis, :] 

At this point, we should try to pack as many operations as possible into a single expression 
to allow significant optimization.
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Most of the NumPy mathematical functions are also available in numexpr. However, there 
is a limitation – the reduction operations (the ones that reduce an axis, such as sum)  
have to happen last. Therefore, we have to calculate the sum first, then step out of numexpr, 
and finally calculate the square root in another expression:

    import numexpr as ne

    d_ij = ne.evaluate('sum((r_j - r_i)**2, 2)') 

    d_ij = ne.evaluate('sqrt(d_ij)') 

The numexpr compiler will avoid redundant memory allocation by not storing 
intermediate results. When possible, it will also distribute the operations over multiple 
processors. In the distance_matrix.py file, you will find two functions that implement 
the two versions – distance_matrix_numpy and distance_matrix_numexpr:

    from distance_matrix import (distance_matrix_numpy, \

       distance_matrix_numexpr) 

    %timeit distance_matrix_numpy(10000) 

    1 loops, best of 3: 3.56 s per loop 

    %timeit distance_matrix_numexpr(10000) 

    1 loops, best of 3: 858 ms per loop 

By simply converting the expressions to use numexpr, we were able to obtain a 4.5x 
increase in performance over standard NumPy. The numexpr package can be used every 
time you need to optimize a NumPy expression that involves large arrays and complex 
operations, and you can do so while making minimal changes to the code.

Overall, we have seen that NumPy, in combination with numexpr, offers powerful APIs 
when it comes to working with multidimensional data. However, in many use cases, data 
is only two-dimensional but is labeled in the sense that the data axes include explicit 
information about the type of data they contain. This is the case for data extracted from 
database tables. In such situations, pandas is the most popular and one of the best libraries 
in Python for this, as we will see next.
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Working with database-style data with pandas
pandas is a library that was originally developed by Wes McKinney. It was designed to 
analyze datasets in a seamless and performant way. In recent years, this powerful library 
has seen incredible growth and a huge adoption by the Python community. In this section, 
we will introduce the main concepts and tools provided in this library, and we will use 
them to increase the performance of various use cases that can't otherwise be addressed 
with NumPy's vectorized operations and broadcasting.

pandas fundamentals
While NumPy deals mostly with arrays, pandas's main data structures are pandas.
Series, pandas.DataFrame, and pandas.Panel. In the rest of this chapter,  
we will abbreviate pandas to pd.

The main difference between a pd.Series object and an np.array is that a 
pd.Series object associates a specific key with each element of an array. Let's see  
how this works in practice with an example.

Let's assume that we are trying to test a new blood pressure drug and we want to store, for 
each patient, whether the patient's blood pressure improved after administering the drug. 
We can encode this information by associating each subject ID (represented by an integer) 
with True if the drug was effective and False otherwise:

1. We can create a pd.Series object by associating an array of keys – the patients – 
to the array of values that represent the drug's effectiveness. This array of keys can 
be passed to the Series constructor using the index argument, as shown in the 
following snippet:

    import pandas as pd

    patients = [0, 1, 2, 3]

    effective = [True, True, False, False]

    effective_series = pd.Series(effective, \

      index=patients)

2. Associating a set of integers from 0 to N with a set of values can technically be 
implemented with np.array since, in this case, the key will simply be the position 
of the element in the array. In pandas, keys are not limited to integers; they can also be 
strings, floating-point numbers, and generic (hashable) Python objects. For example, 
we can easily turn our IDs into strings with little effort, as shown in the following code:

    patients = ["a", "b", "c", "d"]

    effective = [True, True, False, False]
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    effective_series = pd.Series(effective, \

      index=patients)

An interesting observation is that, while NumPy arrays can be thought of as a 
contiguous collection of values similar to Python lists, the pandas pd.Series 
object can be thought of as a structure that maps keys to values, similar to Python 
dictionaries.

3. What if you want to store the initial and final blood pressure for each patient?  
In pandas, you can use a pd.DataFrame object to associate multiple data with 
each key.

pd.DataFrame can be initialized, similarly to a pd.Series object, by passing  
a dictionary of columns and an index. In the following example, we will see how  
to create pd.DataFrame containing four columns that represent the initial and 
final measurements of systolic and diastolic blood pressure for our patients:

    patients = ["a", "b", "c", "d"]

    columns = {

      "sys_initial": [120, 126, 130, 115],

      "dia_initial": [75, 85, 90, 87],

      "sys_final": [115, 123, 130, 118],

      "dia_final": [70, 82, 92, 87]

    }

    

    df = pd.DataFrame(columns, index=patients)

4. Equivalently, you can think of pd.DataFrame as a collection of pd.Series. It 
is possible to directly initialize pd.DataFrame using a dictionary of pd.Series 
instances:

    columns = {

      "sys_initial": pd.Series([120, 126, 130, 115], \

        index=patients),

      "dia_initial": pd.Series([75, 85, 90, 87], \

        index=patients),

      "sys_final": pd.Series([115, 123, 130, 118], \

        index=patients),
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      "dia_final": pd.Series([70, 82, 92, 87], \

        index=patients)

    }

    df = pd.DataFrame(columns)

5. To inspect the content of a pd.DataFrame or pd.Series object, you can use the 
pd.Series.head and pd.DataFrame.head methods, which print the first few 
rows of the dataset:

    effective_series.head()

    # Output:

    # a True

    # b True

    # c False

    # d False

    # dtype: bool

    df.head()

    # Output:

    #    dia_final  dia_initial  sys_final sys_initial

    # a         70           75        115          

    120

    # b         82           85        123          

    126

    # c         92           90        130          

    130

    # d         87           87        118          

    115

Just like a pd.DataFrame can be used to store a collection of pd.Series, you can  
use a pd.Panel to store a collection of pd.DataFrames. We will not cover the usage  
of pd.Panel as it is not used as often as pd.Series and pd.DataFrame. To learn 
more about pd.Panel, make sure that you refer to the excellent documentation at 
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#panel.

http://pandas.pydata.org/pandas-docs/stable/dsintro.html#panel
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Indexing Series and DataFrame objects
In many instances, we might want to access certain elements stored inside a pd.Series 
or a pd.DataFrame object. In the following steps, we will see how we can index  
these objects:

1. Retrieving data from a pd.Series, given its key, can be done intuitively by 
indexing the pd.Series.loc attribute:

    effective_series.loc["a"]

    # Result:

    # True

2. It is also possible to access the elements, given their position in the underlying array, 
using the pd.Series.iloc attribute:

    effective_series.iloc[0]

    # Result:

    # True

3. Indexing pd.DataFrame works similarly. For example, you can use 
pd.DataFrame.loc to extract a row by key, and you can use pd.DataFrame.
iloc to extract a row by position:

    df.loc["a"]

    df.iloc[0]

    # Result:

    # dia_final 70

    # dia_initial 75

    # sys_final 115

    # sys_initial 120

    # Name: a, dtype: int64

4. An important aspect is that the return type in this case is a pd.Series, where 
each column is a new key. To retrieve a specific row and column, you can use the 
following code. The loc attribute will index both the row and the column by key, 
while the iloc version will index the row and the column by an integer:

    df.loc["a", "sys_initial"] # is equivalent to

    df.loc["a"].loc["sys_initial"]
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    df.iloc[0, 1] # is equivalent to

    df.iloc[0].iloc[1]

5. Retrieving a column from a pd.DataFrame by name can be achieved by regular 
indexing or attribute access. To retrieve a column by position, you can either use iloc 
or use the pd.DataFrame.column attribute to retrieve the name of the column:

    # Retrieve column by name

    df["sys_initial"] # Equivalent to

    df.sys_initial

    # Retrieve column by position

    df[df.columns[2]] # Equivalent to

    df.iloc[:, 2]

These methods also support more advanced indexing, similar to those of NumPy, such as 
bool, lists, and int arrays.

Now, it's time for some performance considerations. There are some differences between 
an index in pandas and a dictionary. For example, while the keys of a dictionary cannot 
contain duplicates, pandas indexes can contain repeated elements. This flexibility, however, 
comes at a cost – if we try to access an element in a non-unique index, we may incur 
substantial performance loss – the access will be O(N), like a linear search, rather than 
O(1), like a dictionary.

A way to mitigate this effect is to sort the index; this will allow pandas to use a binary 
search algorithm with a computational complexity of O(log(N)), which is much better. 
This can be accomplished using the pd.Series.sort_index function, as shown  
in the following code (the same applies for pd.DataFrame):

    # Create a series with duplicate index

    index = list(range(1000)) + list(range(1000))

    # Accessing a normal series is a O(N) operation

    series = pd.Series(range(2000), index=index)

    # Sorting the will improve look-up scaling to O(log(N))

    series.sort_index(inplace=True)
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The timings for the different versions are summarized in the following table. If you'd like 
to rerun this benchmarking yourself, please refer to Chapter03/Pandas.ipynb:

Table 3.1 – Performance analysis for pandas indexing

Database-style operations with pandas
You may have noted that the tabular data is similar to what is usually stored in a database. 
A database is usually indexed using a primary key, and the various columns can have 
different data types, just like in a pd.DataFrame. 

The efficiency of the index operations in pandas makes it suitable for database-style 
manipulations, such as counting, joining, grouping, and aggregations.

Mapping
pandas supports element-wise operations, just like NumPy (after all, pd.Series stores 
their data using np.array).

For example, it is possible to apply transformation very easily to both pd.Series and 
pd.DataFrame:

    np.log(df.sys_initial) # Logarithm of a series

    df.sys_initial ** 2    # Square a series

    np.log(df)             # Logarithm of a dataframe

    df ** 2                # Square of a dataframe

You can also perform element-wise operations between two pd.Series objects in a way 
similar to NumPy. An important difference is that the operands will be matched by key, 
rather than by position; if there is a mismatch in the index, the resulting value will be set 
to NaN. Both scenarios are exemplified in the following example:

    # Matching index

    a = pd.Series([1, 2, 3], index=["a", "b", "c"])

    b = pd.Series([4, 5, 6], index=["a", "b", "c"])
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    a + b

    # Result: 

    # a 5

    # b 7

    # c 9

    # dtype: int64

    # Mismatching index

    b = pd.Series([4, 5, 6], index=["a", "b", "d"])

    a + b

    # Result:

    # a 5.0

    # b 7.0

    # c NaN

    # d NaN

    # dtype: float64

For added flexibility, pandas offers the map, apply, and applymap methods, which can 
be used to apply specific transformations.

The pd.Series.map method can be used to execute a function for each value and 
return a pd.Series containing each result. In the following example, we can see how  
to apply the superstar function to each element of a pd.Series:

    a = pd.Series([1, 2, 3], index=["a", "b", "c"])

    def superstar(x):

        return '*' + str(x) + '*'

    a.map(superstar)

    # Result:

    # a *1*

    # b *2*

    # c *3*

    # dtype: object
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The pd.DataFrame.applymap function is the equivalent of pd.Series.map,  
but for DataFrames:

    df.applymap(superstar)

    # Result:

    #    dia_final  dia_initial  sys_final  sys_initial

    # a       *70*         *75*      *115*        *120*

    # b       *82*         *85*      *123*        *126*

    # c       *92*         *90*      *130*        *130*

    # d       *87*         *87*      *118*        *115*

Finally, the pd.DataFrame.apply function can apply the passed function to each 
column or each row, rather than element-wise. This selection can be performed with the 
argument axis, where a value of 0 (the default) corresponds to columns and 1 corresponds 
to rows. Also, note that the return value of apply is a pd.Series:

    df.apply(superstar, axis=0)

    # Result:

    # dia_final *a 70nb 82nc 92nd 87nName: dia...

    # dia_initial *a 75nb 85nc 90nd 87nName: dia...

    # sys_final *a 115nb 123nc 130nd 118nName:...

    # sys_initial *a 120nb 126nc 130nd 115nName:...

    # dtype: object

    df.apply(superstar, axis=1)

    # Result:

    # a *dia_final 70ndia_initial 75nsys_f...

    # b *dia_final 82ndia_initial 85nsys_f...

    # c *dia_final 92ndia_initial 90nsys_f...

    # d *dia_final 87ndia_initial 87nsys_f...

    # dtype: object

pandas also supports efficient numexpr-style expressions with the convenient eval 
method. For example, if we want to calculate the difference between the final and initial 
blood pressure, we can write the expression as a string, as shown in the following code:

    df.eval("sys_final - sys_initial")

    # Result:

    # a -5
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    # b -3

    # c 0

    # d 3

    # dtype: int64

It is also possible to create new columns using the assignment operator in the 
pd.DataFrame.eval expression. Note that if the inplace=True argument is used, the 
operation will be applied directly to the original pd.DataFrame; otherwise, the function 
will return a new DataFrame. In the following example, we are computing the difference 
between sys_final and sys_initial, and we store it in the sys_delta column:

df.eval("sys_delta = sys_final - sys_initial", \

  inplace=False)

# Result:

#     dia_final   dia_initial   sys_final   sys_initial   

   sys_delta

# a          70            75         115           120     

-5

# b          82            85         123           126     

  -3

# c          92            90         130           130     

  0

# d          87            87         118           115     

  3

Grouping, aggregations, and transforms
One of the most appreciated features of pandas is its simple and concise method of 
grouping, transforming, and aggregating data. To demonstrate this concept, let's extend 
our dataset by adding two new patients that we didn't administer the treatment to  
(this is usually called a control group). We will also include a column, drug_admst,  
which records whether the patient was administered the treatment:

    patients = ["a", "b", "c", "d", "e", "f"]

    columns = {

      "sys_initial": [120, 126, 130, 115, 150, 117],

      "dia_initial": [75, 85, 90, 87, 90, 74],

      "sys_final": [115, 123, 130, 118, 130, 121],
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      "dia_final": [70, 82, 92, 87, 85, 74],

      "drug_admst": [True, True, True, True, False, False]

    }

    df = pd.DataFrame(columns, index=patients)

At this point, we may be interested to know how the blood pressure changed between 
the two groups. You can group the patients according to drug_amst using the 
pd.DataFrame.groupby function. The return value will be the DataFrameGroupBy 
object, which can be iterated to obtain a new pd.DataFrame for each value of the 
drug_admst column:

    df.groupby('drug_admst')

    for value, group in df.groupby('drug_admst'):

        print("Value: {}".format(value))

        print("Group DataFrame:")

        print(group)

# Output:

# Value: False

# Group DataFrame:

#    dia_final   dia_initial   drug_admst   sys_final   

   sys_initial

# e         85            90        False         130       

  150

# f         74            74        False         121       

  117

# Value: True

# Group DataFrame:

#    dia_final   dia_initial   drug_admst   sys_final   

   sys_initial

# a         70            75         True         115       

  120

# b         82            85         True         123       

  126

# c         92            90         True         130       

  130

# d         87            87         True         118       

  115
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Iterating the DataFrameGroupBy object is rarely necessary because, thanks to method 
chaining, it is possible to calculate group-related properties directly. For example, we may 
want to calculate the mean, max, or standard deviation for each group. All those operations 
that summarize the data in some way are called aggregations and can be performed using 
the agg method. The result of agg is another pd.DataFrame that relates the grouping 
variables and the result of the aggregation, as illustrated in the following code:

df.groupby('drug_admst').agg(np.mean)

#              dia_final   dia_initial   sys_final   sys_in

  itial

# drug_admst 

# False            79.50         82.00       125.5        

  133.50

# True             82.75         84.25       121.5        

  122.75

Note
It is also possible to perform processing on the DataFrame groups that do not 
represent a summarization. One common example of such an operation is 
filling in missing values. Those intermediate steps are called transforms.

We can illustrate this concept with an example. Let's assume that we have a few missing 
values in our dataset, and we want to replace those values with the average of the other 
values in the same group. This can be accomplished using a transform, as follows:

df.loc['a','sys_initial'] = None

df.groupby('drug_admst').transform(lambda df: \

  df.fillna(df.mean())) 

#     dia_final    dia_initial   sys_final   sys_initial

# a          70             75         115    123.666667

# b          82             85         123    126.000000

# c          92             90         130    130.000000

# d          87             87         118    115.000000

# e          85             90         130    150.000000

# f          74             74         121    117.000000
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Joining
Joins are useful for aggregating data that is scattered among different tables. Let's say that 
we want to include the location of the hospital in which patient measurements were taken 
in our dataset. We can reference the location for each patient using the H1, H2, and H3 
labels, and we can store the address and identifier of the hospital in a hospital table:

    hospitals = pd.DataFrame(

      { "name" : ["City 1", "City 2", "City 3"],

        "address" : ["Address 1", "Address 2", "Address \

          3"],

        "city": ["City 1", "City 2", "City 3"] },

      index=["H1", "H2", "H3"])

    hospital_id = ["H1", "H2", "H2", "H3", "H3", "H3"]

    df['hospital_id'] = hospital_id

Now, we want to find the city where the measure was taken for each patient. We need to 
map the keys from the hospital_id column to the city stored in the hospitals table.

This can be implemented in Python using dictionaries:

    hospital_dict = {

     "H1": ("City 1", "Name 1", "Address 1"),

     "H2": ("City 2", "Name 2", "Address 2"),

     "H3": ("City 3", "Name 3", "Address 3")

    }

    cities = [hospital_dict[key][0] 

             for key in hospital_id]

This algorithm runs efficiently with an O(N) time complexity, where N is the size of 
hospital_id. pandas allows you to encode the same operation using simple indexing; 
the advantage is that the join will be performed in heavily optimized Cython and with 
efficient hashing algorithms. The preceding simple Python expression can easily be 
converted into pandas in this way:

    cities = hospitals.loc[hospital_id, "city"]
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More advanced joins can also be performed with the pd.DataFrame.join method, 
which will produce a new pd.DataFrame that will attach the hospital information for 
each patient:

    result = df.join(hospitals, on='hospital_id')

    result.columns

    # Result:

    # Index(['dia_final', 'dia_initial', 'drug_admst', 

    # 'sys_final', 'sys_initial',

    # 'hospital_id', 'address', 'city', 'name'],

    # dtype='object')

This concludes our discussion on pandas. In the next section, we will talk about xarray,  
the state-of-the-art tool for working with multidimensional labeled data in Python.

High-performance labeled data with xarray
With NumPy, we can manipulate multidimensional numerical data and perform 
mathematical computations that are highly optimized by low-level C and FORTRAN 
code. On the other hand, we have seen that pandas allows us to work with labeled, 
categorical data that resembles data tables using database-like operations.

These two tools complement each other: NumPy does not allow categorical data to be 
mixed in with numerical values, while pandas is mostly limited to two-dimensional, 
database-like datasets. Combining these tools can help address many data processing 
needs, but when we are faced with big, multidimensional data that is also labeled, many 
performance-related problems arise.

In the last section of this chapter, we will discuss xarray, a library that combines the best of 
both the NumPy and the pandas worlds and offers one of the best tools for working with 
labeled multidimensional data. We will explore some of its most prominent features while 
noting the improvements we achieve with xarray over other Python libraries.

Analyzing CO2  concentration
To guide our discussion, we will be using the carbon dioxide concentration data, which 
was collected concerning the volcano Mauna Loa in Hawaii. The dataset is a time series of 
monthly measurements of the CO2  level, starting from 1958 to this day. We have prepared 
a cleaned version of this dataset for you, which is included in the code repository for this 
book in the monthly_co2.csv file. 
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The data has three simple columns: 

• The year of measurement

• The month of measurement

• The measurement itself

Our goal is to analyze this dataset and visualize any time-related trends. Since we are 
already familiar with using pandas to work with a .csv file, let's proceed with the library 
to start:

import pandas as pd

df = pd.read_csv('monthly_co2.csv', index_col=[0, 1])

df.head()

Make sure that the data file is in the same directory as this code. You may remember that 
this will read in the file and store the data in a DataFrame object. Here, we are using the 
first two columns (by using the index_col=[0, 1] argument) as the index of this 
DataFrame object. Finally, we print out the first five rows of this dataset, which look  
as follows:

          co2

year    month    

1958    3    315.70

     4     317.45

     5     317.51

     6     317.24

     7     315.86

Here, we can see that in March 1958, the CO2  level was 315.70, and that the following 
month's measurement was 317.45.

The first thing we'd like to look at is a simple line graph corresponding to the co2 column, 
which is simply the graph of the CO2  level as a function of time (in month). With the help 
of Matplotlib, the go-to plotting tool in Python, we can do this very easily:

import matplotlib.pyplot as plt

plt.plot(df.co2.values);
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The preceding code will produce the following output:

Figure 3.4 – Monthly CO2  level

We can notice two very distinct trends:

• The first is the global increasing trend, which roughly goes from 320 to 420 during 
our timeline.

• The second looks like a seasonal zigzag trend, which is present locally and repeats 
itself every year.

To verify this intuition, we can inspect the average data across the years, which will tell 
us that the CO2  level has been rising as a global trend. We can also compute the average 
measurement for each month and consider how the data changed from January to 
December. To accomplish this, we will utilize the groupby function by computing the 
yearly averages and plotting them:

by_year = df.groupby('year').mean().co2

plt.plot(by_year);
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This gives us the following output:

Figure 3.5 – Yearly CO2  level, averaged across months

Just as we expected, we can see the global rising trend of the CO2  level:

by_month = df.groupby('month').mean().co2

plt.plot(by_month);

Similarly, the preceding code generates the following average-by-month data:

Figure 3.6 – Monthly CO2  level, averaged across years
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The seasonal trend we suspected now becomes clear: the CO2  level tends to rise during the 
summer and fall between fall and winter.

So far, we have been using pandas to manipulate our data. Even with this minimal 
example, we can notice a few things:

• Loading the data, specifically the co2 column, as a NumPy array would be 
inappropriate since we would lose information about the year and month each 
measurement was made. pandas is the better choice here.

• On the other hand, the groupby function can be unintuitive and costly to work 
with. Here, we simply want to compute the average-by-month and average-by-year 
measurements, but that requires us to group our data by the month column and 
then by year. Although pandas takes care of this grouping for us behind the  
scenes, it is an expensive operation, especially if we are working with a significantly 
large dataset.

• To bypass this inefficiency, we can think of representing the co2 column as a 
two-dimensional NumPy array, where the rows represent years and the columns 
represent months, and each cell in the array holds the measurement. Now, to 
compute the averages we want, we could simply calculate the mean along each of 
the two axes, which we know NumPy can do efficiently. However, once again, we 
lose the expressiveness of the labeled month and year data we have under pandas.

This dilemma we are currently facing is similar to the one that motivated the development 
of xarray, the premiere tool in Python for working with labeled, multidimensional data. 
The idea is to extend NumPy's support for fast, multidimensional array computations  
and allow dimensions (or axes) to have labels, which is one of the main selling points  
of pandas.

The xarray library
xarray is developed and actively maintained by PyData and a part of the NumFOCUS 
project. To use the library, you must head to http://xarray.pydata.org/en/
stable/installing.html for more details on how to install it. To continue with 
our example of the CO2  concentration level, we will feed the data we have into a Dataset 
object in xarray using the following code:

import xarray as xr

ds = xr.Dataset.from_dataframe(df)

http://xarray.pydata.org/en/stable/installing.html
http://xarray.pydata.org/en/stable/installing.html
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If we were to print this object out in a Jupyter notebook, the output would be  
formatted nicely:

Figure 3.7 – A Dataset instance of xarray, printed in Jupyter

xarray was able to infer that month and year (the index columns in DataFrame) should 
be the dimension, as indicated by the Dimensions section of the output. The Coordinates 
section shows the values that each of these dimensions can take on; in our case, the year 
could be anything between 1958 and 2021, while the month could be anything between  
1 and 12. The Data variables section shows the actual co2 data we care about, which is 
now a two-dimensional array indexed by year and month.

xarray makes interacting and inspecting its objects easy and interactive; you can 
inspect the values of the coordinates and data variables further by clicking on the icons 
highlighted in the preceding screenshot.

We mentioned earlier that xarray combines the best features of NumPy and pandas; this 
is best illustrated via the slicing/indexing interface it provides. For example, let's say that 
we'd like to extract the measurements within the first 10 years of the dataset. For the first  
5 months, we could apply NumPy-style slicing to the 'co2' variable of the ds object:

ds['co2'][:10, :5]
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This gives us a DataArray object containing the requested values:

Figure 3.8 – A DataArray instance of xarray, printed in Jupyter

While NumPy slicing can be flexible, it does not offer much expressiveness for labeled 
data: we would have to know that the first axis of the implied multidimensional array is 
year, that the second is month, and that ds['co2'][:10, :5] doesn't explicitly say 
which years we are selecting for.

As such, we could use the sel function, which roughly offers the same functionality as 
pandas filtering. To select the values within the example year of 1960, we can simply  
use the following code:

ds['co2'].sel(year=1960)

This explicitly tells us that we are selecting 1960 along the year axis. For more  
examples of the different APIs the library offers, you can check out the documentation  
at http://xarray.pydata.org/en/stable/api.html.

Improved performance
Now, we will consider the performance improvements that xarray offers. Recall that our 
goal is to compute the average measurement, first for each year to visualize the global 
trend, and then for each month for the seasonal trend. To do this, we can simply call the 
mean function while specifying the appropriate (labeled!) dimension.

http://xarray.pydata.org/en/stable/api.html
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First, to obtain the average-by-year, we must compute the mean across the month 
dimension:

ds.mean(dim='month')

This returns another Dataset object containing the computed values:

Figure 3.9 – Taking the average across a dimension in xarray

From here, we can simply access the co2 variable and pass the array to the plot function 
of Matplotlib to replicate Figure 3.5. For Figure 3.6, we can follow the same procedure 
using ds.mean(dim='year').

The advantage we are gaining here is the expressiveness in our code. If we were using 
NumPy, we would need to specify the axis number (for example, 0, 1, 2, and so on), not 
the dimension name, (for example, 'month', 'year'). This might lead to hard-to-find 
bugs if you confuse which axis is which type of data in NumPy.

Furthermore, the code is simpler and can take advantage of the optimized mean operation, 
which is managed under the hood by xarray, compared to the expensive groupby 
function from pandas. To see this, we can benchmark the two ways of computing the 
average-by-year that we have. First, we have the pandas way:

%timeit df.groupby('year').mean().co2

# Result:

# 534 µs ± 10.8 µs per loop (mean ± std. dev. of 7 runs, 

  1000 loops each)
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Then, we have the xarray way:

%timeit ds.mean(dim='month').co2.values

# Result:

# 150 µs ± 1.27 µs per loop (mean ± std. dev. of 7 runs, 

  10000 loops each)

Here, we can see a clear performance improvement, achieved almost for free by passing 
our data to xarray!

Plotting with xarray
Labeled multidimensional arrays are ubiquitous in time series (where one of the 
dimensions is time), geospatial data (where some dimensions represent the coordinates 
on a map), or data that is both geospatial and time-dependent. In these data analysis tasks, 
data visualization is crucial; as such, xarray makes it easy to implement and call complex 
plotting functions on its data.

Let's look at this through a quick example. First, we will read in an example dataset we 
have prepared for you, saved in a file named 2d_measurement.npy, which can be  
read into a Python program using NumPy:

measures = np.load('2d_measure.npy')

measures.shape

# Result:

# (100, 100, 3)

As you can see, it is a 100x100x3 array. Let's say that this dataset contains a specific type  
of measurement, taken over a 100x100 grid of a two-dimensional space (corresponding  
to the first two axes) at three specific timestamps (corresponding to the third axis).

We would like to visualize these measurements as three squares, where each square 
represents a specific time stamp, and each pixel in each square represents the intensity  
of the corresponding measurement.

To do this in Matplotlib, we could use the imshow function, which takes in a 
two-dimensional array and plots it as an image. So, we would iterate through the three 
timestamps that we have and plot the corresponding grids one by one, as follows:

fig, ax = plt.subplots(1, 3, figsize=(10, 3))

for i in range(3):
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    c = ax[i].imshow(measures[:, :, i], origin='lower')

    plt.colorbar(c, ax=ax[i])

    

plt.show()

Note 
The index, i, iterates through the three indices of the third axis in the 
measures array. Again, we can see that this indexing scheme is not very 
expressive and readable. Here, we are also using the colorbar function to 
add a color bar to each of the plots. 

The preceding code produces the following output:

Figure 3.10 – Regular imshow from Matplotlib

Although there is noise in the measurements, we can observe some global trends; 
specifically, we seem to have low-intensity measurements in the lower-left corner in the 
first plot, in the center in the second, and in the top-right corner in the third. As the final 
note, something we might want to change about this plot is making the three color bars 
have the same range, which may be hard to do with Matplotlib.

Now, let's see how we can produce this plot using xarray. First, we must convert the 
NumPy array into a DataArray object:

da = xr.DataArray(measures, dims=['x', 'y', 'time'])

Here, we are also specifying the names for the three dimensions: 'x', 'y', and 'time'. 
This will allow us to manipulate the data more expressively, as we saw previously. To plot 
out the 2D grids, we can use the similarly named imshow method:

da.plot.imshow(x='x', y='y', col='time', robust=True);
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This results in the following output:

Figure 3.11 – Specialized imshow from xarray

The plotting function is much simpler than the for loop we had earlier. Furthermore,  
with minimal code, xarray has taken care of many different aesthetics-related aspects  
of this plot: 

• First, the plots have their titles and x- and y-axis labels automatically created. 

• Second, by using a common color range, the fact that the measurements at the 
second timestamp are lower than those in the other two is now more obvious. This 
demonstrates that functions and methods in xarray are optimized to make working 
with labeled multidimensional data more efficient.

On the topic of plotting, many data scientists work with map data. xarray nicely integrates 
with the popular Cartopy library for geospatial data processing and offers many plotting 
functionalities that incorporate world and country maps. More details can be found in their 
documentation: http://xarray.pydata.org/en/stable/plotting.html.

Summary
In this chapter, we learned how to manipulate NumPy arrays and how to write fast 
mathematical expressions using array broadcasting. This knowledge will help you write 
more concise, expressive code and, at the same time, obtain substantial performance gains. 
We also introduced the numexpr library to further speed up NumPy calculations with 
minimal effort.

pandas implements efficient data structures that are useful when analyzing large datasets. 
In particular, pandas shines when the data is indexed by non-integer keys and provides 
very fast hashing algorithms.

http://xarray.pydata.org/en/stable/plotting.html
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NumPy and pandas work well when handling large, homogenous inputs, but they are not 
suitable when the expressions become complex and the operations cannot be expressed 
using the tools provided by these libraries. xarray comes in handy as an alternative option 
where we need to work with labeled, multidimensional data.

In combination, the three libraries offer Python users powerful APIs and flexible 
functionalities to work with a wide range of data. By keeping them in your toolbox, you 
are well situated to tackle most data processing and engineering tasks using Python.

In other cases, we can also leverage Python capabilities as a glue language by interfacing  
it with C using the Cython package, as we will see in the next chapter.

Questions
1. Name the advantages NumPy has over Python-native lists when working with 

multidimensional data.
2. What are some of the database-style operations that pandas offers in its API?
3. What problems does xarray address and why can they not be addressed by NumPy 

or pandas?

Further reading
• An overview tutorial on NumPy and pandas: https://cloudxlab.com/blog/

numpy-pandas-introduction/

• Data structures in xarray: https://towardsdatascience.com/basic-
data-structures-of-xarray-80bab8094efa

https://cloudxlab.com/blog/numpy-pandas-introduction/
https://cloudxlab.com/blog/numpy-pandas-introduction/
https://towardsdatascience.com/basic-data-structures-of-xarray-80bab8094efa
https://towardsdatascience.com/basic-data-structures-of-xarray-80bab8094efa
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Cython
Cython is a language that extends Python by supporting the declaration of types for 
functions, variables, and classes. These typed declarations enable Cython to compile 
Python scripts to efficient C code. Cython can also act as a bridge between Python and C 
as it provides easy-to-use constructs to write interfaces to external C and C++ routines.

In this chapter, we will learn about the following topics:

• Compiling Cython extensions

• Adding static types

• Sharing declarations

• Working with arrays

• Using a particle simulator in Cython

• Profiling Cython

• Using Cython with Jupyter

Through this chapter, we will learn how to leverage Cython to improve the efficiency of our 
programs. While a minimum knowledge of C is helpful, this chapter focuses only on Cython 
in the context of Python optimization. Therefore, it doesn't require any C background.
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Technical requirements
You can access the code used in this chapter on GitHub at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter04.

Compiling Cython extensions
The Cython syntax is, by design, a superset of Python. Cython can compile, with a few 
exceptions, most Python modules without requiring any change. Cython source files have 
the .pyx extension and can be compiled to produce a C file using the cython command.

All that is required to convert Python code to Cython is some syntactic modifications 
that we will see throughout this chapter (such as when declaring variables and functions) 
as well as compilation. While this procedure may seem intimidating at first, Cython will 
more than make up for itself via the computational benefits that it offers.

First off, to install Cython, we can simply run the pip command, like this:

$pip install cython

Refer to the documentation at https://pypi.org/project/Cython/ for more 
details. Our first Cython script will contain a simple function that prints Hello, 
World! as the output. Follow these next steps:

1. Create a new hello.pyx file containing the following code:

    def hello(): 

      print('Hello, World!') 

2. The cython command will read hello.pyx and generate a hello.c file,  
as follows:

$ cython hello.pyx

3. To compile hello.c to a Python extension module, we will use the GNU 
Compiler Collection (GCC) compiler (more details on how to install it can be 
found at https://gcc.gnu.org/install/). We need to add some Python-
specific compilation options that depend on the operating system. It's important  
to specify the directory that contains the header files; in the following example,  
the directory is /usr/include/python3.5/:

$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -fno-

strict-aliasing -lm -I/usr/include/python3.5/ -o 

hello.so hello.c

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter04
https://pypi.org/project/Cython/
https://gcc.gnu.org/install/
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Note
To find your Python include directory, you can use the distutils 
utility and run sysconfig.get_python_inc. To execute it, you can 
simply issue the following command: python -c "from distutils 
import sysconfig; print(sysconfig.get_python_
inc())".

4. This will produce a file called hello.so, a C extension module that is directly 
importable into a Python session. The code is illustrated in the following snippet:

    >>> import hello 

    >>> hello.hello() 

    Hello, World!

5. Cython accepts both Python 2 and Python 3 as input and output (I/O) languages. 
In other words, you can compile a Python 3 script hello.pyx file using the -3 
option, as illustrated in the following code snippet:

$ cython -3 hello.pyx

6. The generated hello.c file can be compiled without any changes to Python 2 and 
Python 3 by including the corresponding headers with the -I option, as follows:

$ gcc -I/usr/include/python3.5 # ... other options

$ gcc -I/usr/include/python2.7 # ... other options

7. A Cython program can be compiled in a more straightforward way using 
distutils, the standard Python packaging tool. By writing a setup.py script, 
we can compile the .pyx file directly to an extension module. To compile our 
hello.pyx example, we can write a minimal setup.py script containing the 
following code:

    from distutils.core import setup 

    from Cython.Build import cythonize 

    setup( 

      name='Hello',

      ext_modules = cythonize('hello.pyx')

    ) 

In the first two lines of the preceding code snippet, we import the setup function 
and the cythonize helper. The setup function contains a few key-value pairs 
that specify the name of the application and the extensions that need to be built.
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8. The cythonize helper takes either a string or a list of strings containing the 
Cython modules we want to compile. You can also use glob patterns by running  
the following code:

    cythonize(['hello.pyx', 'world.pyx', '*.pyx']) 

9. To compile our extension module using distutils, you can execute the  
setup.py script using the following code:

$ python setup.py build_ext --inplace

The build_ext option tells the script to build the extension modules indicated in 
ext_modules, while the --inplace option tells the script to place the hello.
so output file in the same location as the source file (instead of a build directory).

10. Cython modules can also be automatically compiled using pyximport. All that's 
needed is a call to pyximport.install() at the beginning of your script (or 
you need to issue the command in your interpreter), as illustrated in the following 
code snippet. After doing that, you can import .pyx files directly and pyximport 
will transparently compile the corresponding Cython modules:

    >>> import pyximport 

    >>> pyximport.install() 

    >>> import hello # This will compile hello.pyx 

Unfortunately, pyximport will not work for all kinds of configurations (for example, 
when they involve a combination of C and Cython files), but it comes in handy for 
testing simple scripts.

11. Since version 0.13, IPython includes the cythonmagic extension to interactively 
write and test a series of Cython statements. You can load the extensions in an 
IPython shell using load_ext, as follows:

    %load_ext Cython

Once the extension is loaded, you can use the %%cython cell magic to write a 
multiline Cython snippet. In the following example, we define a hello_snippet 
function that will be compiled and added to the IPython session namespace:

    %%cython 

    def hello_snippet(): 

        print("Hello, Cython!") 

    hello_snippet()

    Hello,  Cython! 
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It is that simple to work with Cython source code. In the next section, we will see how we 
can add static types to our program, getting it closer to C code.

Adding static types
In Python, a variable can be associated with objects of different types during the execution 
of the program. While this feature is desirable as it makes the language flexible and 
dynamic, it also adds significant overhead to the interpreter as it needs to look up the 
type and methods of the variables at runtime, making it difficult to perform various 
optimizations. Cython extends the Python language with explicit type declarations so  
that it can generate efficient C extensions through compilation.

The main way to declare data types in Cython is through cdef statements. The cdef 
keyword can be used in multiple contexts, such as variables, functions, and extension  
types (statically typed classes). We will see how to do this in the following subsections.

Declaring variables
In Cython, you can declare the type of a variable by prepending the variable with cdef 
and its respective type. For example, we can declare the i variable as a 16-bit integer in  
the following way:

    cdef int i 

The cdef statement supports multiple variable names on the same line along with 
optional initialization, as seen in the following line of code:

    cdef double a, b = 2.0, c = 3.0 

Typed variables are treated differently from regular variables. In Python, variables are 
often described as labels that refer to objects in memory. For example, we could assign  
the value 'hello' to the a variable at any point in the program without restriction,  
as illustrated here:

    a = 'hello' 

The a variable holds a reference to the 'hello' string. We can also freely assign another 
value (for example, the integer 1) to the same variable later in the code, as follows:

    a = 1 

Python will assign the integer 1 to the a variable without any problem.
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Typed variables behave quite differently and are usually described as data containers:  
we can only store values that fit into the container that is determined by its data type.  
For example, if we declare the a variable as int, and then we try to assign it to a double 
data type, Cython will trigger an error, as shown in the following code snippet:

    %%cython 

    cdef int i 

    i = 3.0 

    # Output has been cut 

    ...cf4b.pyx:2:4 Cannot assign type 'double' to 'int' 

Static typing makes it easy for the compiler to perform useful optimizations. For example, 
if we declare a loop index as int, Cython will rewrite the loop in pure C without needing 
to step into the Python interpreter. The typing declaration guarantees that the type of the 
index will always be int and cannot be overwritten at runtime so that the compiler is free 
to perform optimizations without compromising the program's correctness.

We can assess the speed gain in this case with a small test case. In the following example, 
we implement a simple loop that increments a variable 100 times. With Cython, the 
example function can be coded as follows:

    %%cython 

    def example(): 

       cdef int i, j=0 

       for i in range(100):

           j += 1 

       return j 

    example() 

    # Result:

    # 100 

We can compare the speed of an analogous, untyped, pure Python loop, as follows:

    def example_python(): 

        j=0 

        for i in range(100):

            j += 1 
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        return j 

    %timeit example() 

    10000000 loops, best of 3: 25 ns per loop 

    %timeit example_python() 

    100000 loops, best of 3: 2.74 us per loop 

The speedup obtained by implementing this simple type declaration is a whopping 100 
times! This works because the Cython loop has first been converted to pure C and then  
to efficient machine code, while the Python loop still relies on the slow interpreter.

In Cython, it is possible to declare a variable to be of any standard C type, and it is also 
possible to define custom types using classic C constructs, such as struct, enum,  
and typedef.

An interesting example is that if we declare a variable to be of the object type, the 
variable will accept any kind of Python object, as illustrated in the following code snippet:

    cdef object a_py 

    # both 'hello' and 1 are Python objects 

    a_py = 'hello' 

    a_py = 1 

Note that declaring a variable as object has no performance benefits, as accessing and 
operating on the object will still require the interpreter to look up the underlying type of 
the variable and its attributes and methods.

Sometimes, certain data types (such as float and int numbers) are compatible in the 
sense that they can be converted into each other. In Cython, it is possible to convert (cast) 
between types by surrounding the destination type with pointy brackets, as shown in the 
following code snippet:

    cdef int a = 0 

    cdef double b 

    b = <double> a 

Together with static types for variables, we can provide information about functions, 
which we will learn how to do next.
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Declaring functions
You can add type information to the arguments of a Python function by specifying the 
type in front of each of the argument names. Functions specified in this way will work  
and perform like regular Python functions, but their arguments will be type-checked. We 
can write a max_python function that returns the greater value between two integers,  
as follows:

    def max_python(int a, int b):

        return a if a > b else b 

A function specified in this way will perform type checking and treat the arguments as 
typed variables, just as in cdef definitions. However, the function will still be a Python 
function, and calling it multiple times will still need to switch back to the interpreter. To 
allow Cython for function call optimizations, we should declare the type of the return  
type using a cdef statement, as follows:

    cdef int max_cython(int a, int b): 

        return a if a > b else b 

Functions declared in this way are translated to native C functions and have much less 
overhead compared to Python functions. A substantial drawback is that they can't be used 
from Python but only from Cython, and their scope is restricted to the same Cython file 
unless they're exposed in a definition file (refer to the Sharing declarations section).

Fortunately, Cython allows you to define functions that are both callable from Python and 
translatable to performant C functions. If you declare a function with a cpdef statement, 
Cython will generate two versions of the function: a Python version available to the 
interpreter, and a fast C function usable from Cython. The cpdef syntax is equivalent  
to cdef, shown as follows:

    cpdef int max_hybrid(int a, int b): 

        return a if a > b else b 

Sometimes, the call overhead can be a performance issue even with C functions, especially 
when the same function is called many times in a critical loop. When the function body 
is small, it is convenient to add the inline keyword in front of the function definition; 
the function call will be replaced by the function body itself. Our max function is a good 
candidate for inlining, as illustrated in the following code snippet:

    cdef inline int max_inline(int a, int b): 

        return a if a > b else b 

Finally, we will see how to work with class types next.
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Declaring classes
We can define an extension type using the cdef class statement and declare its 
attributes in the class body. For example, we can create a Point extension type, as shown 
in the following code snippet, which stores two coordinates (x, y) of the double type:

    cdef class Point:

        cdef double x 

        cdef double y

        def __init__(self, double x, double y): 

            self.x = x 

            self.y = y 

Accessing the declared attributes in the class methods allows Cython to bypass expensive 
Python attribute lookups by direct access to the given fields in the underlying C struct. For 
this reason, attribute access in typed classes is an extremely fast operation.

To use the cdef class statement in your code, you need to explicitly declare the type of 
the variables you intend to use at compile time. You can use the extension type name (such 
as Point) in any context where you will use a standard type (such as double, float, 
and int). For example, if we want a Cython function that calculates the distance from the 
origin (in the example, the function is called norm) of a Point, we have to declare the 
input variable as Point, as shown in the following code snippet:

    cdef double norm(Point p): 

        return (p.x**2 + p.y**2)**0.5 

Just as with typed functions, typed classes have some limitations. If you try to access  
an extension type attribute from Python, you will get an AttributeError warning,  
as follows:

    >>> a = Point(0.0, 0.0) 

    >>> a.x 

    AttributeError: 'Point' object has no attribute 'x' 

In order to access attributes from Python code, you have to use the public (for read/
write access) or readonly specifiers in the attribute declaration, as shown in the 
following code snippet:

    cdef class Point: 

        cdef public double x 
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Additionally, methods can be declared with the cpdef statement, just as with  
regular functions.

Extension types do not support the addition of extra attributes at runtime. To do that, 
a solution is defining a Python class that is a subclass of the typed class and extends its 
attributes and methods in pure Python.

And with that, we have seen how to add static types to various objects in Cython. In the 
next section, we will begin our discussion regarding declarations.

Sharing declarations
When writing your Cython modules, you may want to reorganize your most-used 
functions and classes declaration in a separate file so that they can be reused in different 
modules. Cython allows you to put these components in a definition file and access them 
with cimport statements.

Let's say that we have a module with the max and min functions, and we want to reuse 
those functions in multiple Cython programs. If we simply write a bunch of functions  
in a .pyx file, the declarations will be confined to the same file.

Note
Definition files are also used to interface Cython with external C code. The idea 
is to copy (or, more accurately, translate) the types and function prototypes in 
the definition file and leave the implementation in the external C code that will 
be compiled and linked in a separate step.

To share the max and min functions, we need to write a definition file with a .pxd 
extension. Such a file only contains the types and function prototypes that we want to 
share with other modules—a public interface. We can declare the prototypes of our max 
and min functions in a file named mathlib.pxd, as follows:

    cdef int max(int a, int b) 

    cdef int min(int a, int b) 

As you can see, we only write the function name and arguments without implementing 
the function body.
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The function implementation goes into the implementation file with the same base name 
but the .pyx extension mathlib.pyx, as follows:

    cdef int max(int a, int b): 

      return a if a > b else b 

    cdef int min(int a, int b): 

      return a if a < b else b 

The mathlib module is now importable from another Cython module.

To test our new Cython module, we will create a file named distance.pyx containing a 
function named chebyshev. The function will calculate the Chebyshev distance between 
two points, as shown in the following code snippet. The Chebyshev distance between 
two coordinates—(x1, y1) and (x2, y2—is defined as the maximum value of the 
difference between each coordinate:

    max(abs(x1 - x2), abs(y1 - y2)) 

To implement the chebyshev function, we will use the max function declared in 
mathlib.pxd by importing it with the cimport statement, as shown in the following 
code snippet:

    from mathlib cimport max 

    def chebyshev(int x1, int y1, int x2, int y2): 

        return max(abs(x1 - x2), abs(y1 - y2)) 

The cimport statement will read mathlib.pxd and the max definition will be used to 
generate a distance.c file.

Along with static types and declarations, one factor that allows C to be generally faster 
than Python is its highly optimized array operations, which we will examine in the  
next section.

Working with arrays
Numerical and high-performance calculations often make use of arrays. Cython provides 
an easy way to interact with different types of arrays, using directly low-level C arrays, or the 
more general typed memoryviews. We will see how to do this in the following subsections.
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C arrays and pointers
C arrays are a collection of items of the same type, stored contiguously in memory. Before 
digging into the details, it is helpful to understand (or review) how memory is managed  
in C.

Variables in C are like containers. When creating a variable, a space in memory is reserved 
to store its value. For example, if we create a variable containing a 64-bit floating-point 
number (double), the program will allocate 64 bits (16 bytes) of memory. This portion  
of memory can be accessed through an address to that memory location.

To obtain the address of a variable, we can use the address operator denoted by the & 
symbol. We can also use the printf function, as follows, available in the libc.stdio 
Cython module to print the address of this variable:

    %%cython 

    cdef double a 

    from libc.stdio cimport printf 

    printf("%p", &a)

    # Output:

    # 0x7fc8bb611210 

Note 
The output will only be generated when the code is run from a standard Python 
terminal. This limitation of IPython is detailed at https://github.com/
ipython/ipython/issues/1230.

Memory addresses can be stored in special variables, pointers, that can be declared by 
putting a * prefix in front of the variable name, as follows:

    from libc.stdio cimport printf 

    cdef double a 

    cdef double *a_pointer 

    a_pointer = &a # a_pointer and &a are of the same type 

If we have a pointer and we want to grab the value contained in the address it's pointing at, 
we can use the zero-index notation shown here:

    cdef double a 

    cdef double *a_pointer 

https://github.com/ipython/ipython/issues/1230
https://github.com/ipython/ipython/issues/1230
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    a_pointer = &a 

    a = 3.0 

    print(a_pointer[0]) # prints 3.0 

When declaring a C array, the program allocates enough space to accommodate all the 
elements requested. For instance, to create an array that has 10 double values (16 bytes 
each), the program will reserve 16  * 10  = 160 bytes of contiguous space in memory. In 
Cython, we can declare such arrays using the following syntax:

    cdef double arr[10]

We can also declare a multidimensional array, such as an array with 5 rows and 2 
columns, using the following syntax:

    cdef double arr[5][2] 

The memory will be allocated in a single block of memory, row after row. This order is 
commonly referred to as row-major and is depicted in the following screenshot. Arrays 
can also be column-major ordered, as is the case for the Fortran programming language:

Figure 4.1 – Row-major order

Array ordering has important consequences. When iterating a C array over the last 
dimension, we access contiguous memory blocks (in our example, 0, 1, 2, 3 ...), while when 
we iterate on the first dimension, we skip a few positions (0, 2, 4, 6, 8, 1 ... ). You should 
always try to access memory sequentially as this optimizes cache and memory usage.

We can store and retrieve elements from the array using standard indexing, as shown here; 
C arrays don't support fancy indexing or slices:

    arr[0] = 1.0 
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C arrays have many of the same behaviors as pointers. The arr variable, in fact, points to 
the memory location of the first element of the array. We can verify that the address of the 
first element of the array is the same as the address contained in the arr variable using 
the dereference operator, as follows:

%%cython 

from libc.stdio cimport printf 

cdef double arr[10] 

printf("%p\n", arr) 

printf("%p\n", &arr[0])

# Output

# 0x7ff6de204220 

# 0x7ff6de204220

Note
The output will only be generated when the aforementioned code is run from a 
standard Python terminal. This limitation of IPython is detailed at https://
github.com/ipython/ipython/issues/1230.

You should use C arrays and pointers when interfacing with existing C libraries or when 
you need fine control over the memory (also, they are very performant). This level of 
fine control is also prone to mistakes as it doesn't prevent you from accessing the wrong 
memory locations. For more common use cases and improved safety, you can use NumPy 
arrays or typed memoryviews.

Working with NumPy arrays
NumPy arrays can be used as normal Python objects in Cython, using their already 
optimized broadcasted operations. However, Cython provides a numpy module with 
better support for direct iteration.

When we normally access an element of a NumPy array, a few other operations take place 
at the interpreter level, causing a major overhead. Cython can bypass those operations  
and checks by acting directly on the underlying memory area used by NumPy arrays,  
thus obtaining impressive performance gains.

https://github.com/ipython/ipython/issues/1230
https://github.com/ipython/ipython/issues/1230
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NumPy arrays can be declared as the ndarray data type. To use the data type in our 
code, we first need to cimport the numpy Cython module (which is not the same as 
the Python numpy module). We will bind the module to the c_np variable to make the 
difference with the Python numpy module more explicit, as follows:

    cimport numpy as c_np

    import numpy as np

We can now declare a NumPy array by specifying its type and the number of dimensions 
between square brackets (this is called buffer syntax). To declare a two-dimensional (2D) 
array of type double, we can use the following code:

    cdef c_np.ndarray[double, ndim=2] arr 

Access to this array will be performed by directly operating on the underlying memory 
area; the operation will avoid stepping into the interpreter, giving us a tremendous  
speed boost.

In the next example, we will show the usage of typed NumPy arrays and compare them 
with the normal Python version.

We first write a numpy_bench_py function that increments each element of py_arr. 
We declare the i index as an integer so that we avoid the for loop overhead, as follows:

    %%cython 

    import numpy as np 

    def numpy_bench_py(): 

        py_arr = np.random.rand(1000) 

        cdef int i 

        for i in range(1000): 

            py_arr[i] += 1 

Then, we write the same function using the ndarray type. Note that after we define 
the c_arr variable using c_np.ndarray, we can assign to it an array from the numpy 
Python module. The code is illustrated in the following snippet:

    %%cython 

    import numpy as np 

    cimport numpy as c_np 
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    def numpy_bench_c(): 

        cdef c_np.ndarray[double, ndim=1] c_arr 

        c_arr = np.random.rand(1000) 

        cdef int i

        for i in range(1000): 

           c_arr[i] += 1 

We can time the results using timeit, and we can see here how the typed version is  
50 times faster:

    %timeit numpy_bench_c() 

    100000 loops, best of 3: 11.5 us per loop 

    %timeit numpy_bench_py() 

    1000 loops, best of 3: 603 us per loop 

This gives us a significant speedup from the Python code!

Working with typed memoryviews
C and NumPy arrays, as well as the built-in bytes, bytearray, and array.array 
objects, are similar in the sense that they all operate on a contiguous memory area (also 
called a memory buffer). Cython provides a universal interface—a typed memoryview—
that unifies and simplifies access to all these data types.

A memoryview is an object that maintains a reference on a specific memory area. It doesn't 
actually own the memory, but it can read and change its contents; in other words, it is a view 
of the underlying data. Memoryviews can be defined using a special syntax. For example, we 
can define a memoryview of int and a 2D memoryview of double in the following way:

    cdef int[:] a 

    cdef double[:, :] b 

The same syntax applies to the declaration of any type in variables, function definitions, class 
attributes, and so on. Any object that exposes a buffer interface (for example, NumPy arrays, 
bytes, and array.array objects) will be bound to the memoryview automatically. 
For example, we can bind the memoryview to a NumPy array using a simple variable 
assignment, as follows:

    import numpy as np 

    cdef int[:] arr 



Working with arrays     121

    arr_np = np.zeros(10, dtype='int32') 

    arr = arr_np # We bind the array to the memoryview 

It is important to note that the memoryview does not own the data, but it only provides 
a way to access and change the data it is bound to; the ownership, in this case, is left to 
the NumPy array. As you can see in the following example, changes made through the 
memoryview will act on the underlying memory area and will be reflected in the original 
NumPy structure (and vice versa):

    arr[2] = 1 # Changing memoryview 

    print(arr_np) 

    # [0 0 1 0 0 0 0 0 0 0] 

In a certain sense, the mechanism behind memoryviews is similar to what NumPy 
produces when we slice an array. As we have seen in Chapter 3, Fast Array Operations with 
NumPy, Pandas, and Xarray, slicing a NumPy array does not copy the data but returns a 
view on the same memory area, and changes to the view will reflect on the original array.

Memoryviews also support array slicing with the standard NumPy syntax, as illustrated  
in the following code snippet:

    cdef int[:, :, :] a 

    arr[0, :, :] # Is a 2-dimensional memoryview 

    arr[0, 0, :] # Is a 1-dimensional memoryview 

    arr[0, 0, 0] # Is an int 

To copy data between one memoryview and another, you can use syntax similar to slice 
assignment, as shown in the following code snippet:

    import numpy as np 

    cdef double[:, :] b 

    cdef double[:] r 

    b = np.random.rand(10, 3) 

    r = np.zeros(3, dtype='float64') 

    b[0, :] = r # Copy the value of r in the first row of b 

In the next section, we will use typed memoryviews to declare types for the arrays in our 
particle simulator.
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Using a particle simulator in Cython
Now that we have a basic understanding of how Cython works, we can rewrite the 
ParticleSimulator.evolve method. Thanks to Cython, we can convert our  
loops in C, thus removing the overhead introduced by the Python interpreter.

In Chapter 3, Fast Array Operations with NumPy, Pandas, and Xarray, we wrote a fairly  
efficient version of the evolve method using NumPy. We can rename the old version 
evolve_numpy to differentiate it from the new version. The code is illustrated in the 
following snippet:

    def evolve_numpy(self, dt): 

        timestep = 0.00001 

        nsteps = int(dt/timestep) 

        r_i = np.array([[p.x, p.y] for p in \

            self.particles])     

        ang_speed_i = np.array([p.ang_speed for p in \

          self.particles]) 

        v_i = np.empty_like(r_i) 

        for i in range(nsteps): 

            norm_i = np.sqrt((r_i ** 2).sum(axis=1)) 

            v_i = r_i[:, [1, 0]] 

            v_i[:, 0] *= -1 

            v_i /= norm_i[:, np.newaxis]         

            d_i = timestep * ang_speed_i[:, np.newaxis] * \

                v_i 

            r_i += d_i 

        for i, p in enumerate(self.particles): 

            p.x, p.y = r_i[i] 

We want to convert this code to Cython. Our strategy will be to take advantage of the fast 
indexing operations by removing the NumPy array broadcasting, thus reverting to an 
indexing-based algorithm. Since Cython generates efficient C code, we are free to use as 
many loops as we like without any performance penalty.
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As a design choice, we can decide to encapsulate the loop in a function that we will rewrite 
in a Cython module called cevolve.pyx. The module will contain a single Python 
function, c_evolve, that will take the particle positions, angular velocities, timestep,  
and the number of steps as input.

At first, we are not adding typing information; we just want to isolate the function and 
ensure that we can compile our module without errors. The code is illustrated in the 
following snippet:

    # file: simul.py 

    def evolve_cython(self, dt): 

        timestep = 0.00001 

        nsteps = int(dt/timestep) 

    

        r_i = np.array([[p.x, p.y] for p in \

            self.particles])     

        ang_speed_i = np.array([p.ang_speed for p in \

            self.particles]) 

    

        c_evolve(r_i, ang_speed_i, timestep, nsteps) 

    

        for i, p in enumerate(self.particles): 

            p.x, p.y = r_i[i] 

    

    # file: cevolve.pyx 

    import numpy as np 

    

    def c_evolve(r_i, ang_speed_i, timestep, nsteps): 

        v_i = np.empty_like(r_i) 

    

        for i in range(nsteps): 

            norm_i = np.sqrt((r_i ** 2).sum(axis=1)) 

    

            v_i = r_i[:, [1, 0]] 

            v_i[:, 0] *= -1 

            v_i /= norm_i[:, np.newaxis]         
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            d_i = timestep * ang_speed_i[:, np.newaxis] * 

                v_i 

    

            r_i += d_i 

Note that we don't need a return value for c_evolve as values are updated in place in the 
r_i array. We can benchmark the untyped Cython version against the old NumPy version 
by slightly changing our benchmark function, as follows:

    def benchmark(npart=100, method='python'): 

        particles = [

                     Particle(uniform(-1.0, 1.0),

                              uniform(-1.0, 1.0),

                              uniform(-1.0, 1.0)) 

                              for i in range(npart)

            ] 

        simulator = ParticleSimulator(particles) 

        if method=='python': 

            simulator.evolve_python(0.1)

        elif method == 'cython': 

            simulator.evolve_cython(0.1) 

        elif method == 'numpy': 

            simulator.evolve_numpy(0.1) 

We can time the different versions in an IPython shell, as follows:

    %timeit benchmark(100, 'cython') 

    1 loops, best of 3: 401 ms per loop 

    %timeit benchmark(100, 'numpy') 

    1 loops, best of 3: 413 ms per loop 

The two versions have the same speed. Compiling the Cython module without static 
typing doesn't have any advantage over pure Python. The next step is to declare the type  
of all the important variables so that Cython can perform its optimizations.
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We can start adding types to the function arguments and see how the performance 
changes. We can declare the arrays as typed memoryviews containing double values.  
It's worth mentioning that if we pass an array of the int or float32 type, the casting 
won't happen automatically and we will get an error. The code is illustrated in the 
following snippet:

    def c_evolve(double[:, :] r_i,

                 double[:] ang_speed_i,

                 double timestep,

                 int nsteps): 

At this point, we can rewrite the loops over the particles and timesteps. We can declare the 
i and j iteration indices and the nparticles particle number as int, as follows:

    cdef int i, j 

    cdef int nparticles = r_i.shape[0] 

The algorithm is very similar to the pure Python version; we iterate over the particles 
and timesteps, and we compute the velocity and displacement vectors for each particle 
coordinate using the following code:

      for i in range(nsteps): 

          for j in range(nparticles): 

              x = r_i[j, 0] 

              y = r_i[j, 1] 

              ang_speed = ang_speed_i[j] 

    

              norm = sqrt(x ** 2 + y ** 2) 

    

              vx = (-y)/norm 

              vy = x/norm 

    

              dx = timestep * ang_speed * vx 

              dy = timestep * ang_speed * vy 

    

              r_i[j, 0] += dx 

              r_i[j, 1] += dy 
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In the preceding code snippet, we added the x, y, ang_speed, norm, vx, vy, dx, and dy 
variables. To avoid the Python interpreter overhead, we have to declare them with their 
corresponding types at the beginning of the function, as follows:

    cdef double norm, x, y, vx, vy, dx, dy, ang_speed 

We also used a function called sqrt to calculate the norm. If we use the sqrt function 
present in the math module or the one in numpy, we will again include a slow Python 
function in our critical loop, thus killing our performance. A fast sqrt function is 
available in the standard C library, already wrapped in the libc.math Cython module. 
Run the following code to import it:

    from libc.math cimport sqrt 

We can rerun our benchmark to assess our improvements, as follows:

    In [4]: %timeit benchmark(100, 'cython') 

    100 loops, best of 3: 13.4 ms per loop 

    In [5]: %timeit benchmark(100, 'numpy') 

    1 loops, best of 3: 429 ms per loop 

For small particle numbers, the speedup is massive as we obtained a 40 times faster 
performance over the previous version. However, we should also try to test the 
performance scaling with a larger number of particles, as follows:

    In [2]: %timeit benchmark(1000, 'cython') 

    10 loops, best of 3: 134 ms per loop 

    In [3]: %timeit benchmark(1000, 'numpy') 

    1 loops, best of 3: 877 ms per loop

As we increase the number of particles, the two versions get closer in speed. By increasing 
the particle size to 1000, we already decreased our speedup to a more modest 6 times. 
This is likely because, as we increase the number of particles, the Python for loop 
overhead becomes less and less significant compared to the speed of other operations.

The topic of benchmarking naturally transitions us to our next section: profiling.
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Profiling Cython
Cython provides a feature called annotated view that helps find which lines are executed 
in the Python interpreter and which are good candidates for ulterior optimizations. We 
can turn this feature on by compiling a Cython file with the -a option. In this way, Cython 
will generate a HyperText Markup Language (HTML) file containing our code annotated 
with some useful information. The usage of the -a option is shown here:

$ cython -a cevolve.pyx

$ firefox cevolve.html

The HTML file displayed in the following screenshot shows our Cython file line by line:

Figure 4.2 – Generated HTML containing annotated code
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Each line in the source code can appear in different shades of yellow. A more intense color 
corresponds to more interpreter-related calls, while white lines are translated to regular  
C code. Since interpreter calls substantially slow down execution, the objective is to make 
the function body as white as possible. By clicking on any of the lines, we can inspect the 
code generated by the Cython compiler. For example, the v_y = x/norm line checks 
that the norm is not 0 and raises a ZeroDivisionError error if the condition is not 
verified. The x = r_i[j, 0] line shows that Cython checks whether the indexes are 
within the bounds of the array. You may have noted that the last line is of a very intense 
color; by inspecting the code, we can see that this is actually a glitch—the code refers to  
a boilerplate related to the end of the function.

Cython can shut down checks such as division by zero so that it can remove those extra 
interpreter-related calls; this is usually accomplished through compiler directives. There 
are a few different ways to add compiler directives, as outlined here:

• Using a decorator or a context manager

• Using a comment at the beginning of the file

• Using the Cython command-line options

For a complete list of the Cython compiler directives, you can refer to the official 
documentation at http://docs.cython.org/src/reference/compilation.
html#compiler-directives.

For example, to disable bounds checking for arrays, it is sufficient to decorate a function 
with cython.boundscheck, in the following way:

    cimport cython 

    @cython.boundscheck(False) 

    def myfunction(): 

        # Code here 

Alternatively, we can use cython.boundscheck to wrap a block of code into a context 
manager, as follows:

    with cython.boundscheck(False): 

        # Code here 

If we want to disable bounds checking for a whole module, we can add the following line 
of code at the beginning of the file:

    # cython: boundscheck=False 

http://docs.cython.org/src/reference/compilation.html#compiler-directives
http://docs.cython.org/src/reference/compilation.html#compiler-directives
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To alter the directives with the command-line options, you can use the -X option,  
as follows:

$ cython -X boundscheck=True

To disable the extra checks in our c_evolve function, we can disable the boundscheck 
directive and enable cdivision (this prevents checks for ZeroDivisionError),  
as in the following code snippet:

    cimport cython 

    @cython.boundscheck(False) 

    @cython.cdivision(True) 

    def c_evolve(double[:, :] r_i,double[:] ang_speed_i, \

                 double timestep,int nsteps): 

If we look at the annotated view again, the loop body has become completely white—we 
removed all traces of the interpreter from the inner loop. In order to recompile, just type 
python setup.py build_ext --inplace again. By running the benchmark, 
however, we note that we didn't obtain a performance improvement, suggesting that  
those checks are not part of the bottleneck, as we can see here:

    In [3]: %timeit benchmark(100, 'cython') 

    100 loops, best of 3: 13.4 ms per loop 

Another way to profile Cython code is using the cProfile module. As an example, we 
can write a simple function that calculates the Chebyshev distance between coordinate 
arrays. Create a cheb.py file, as follows:

    import numpy as np 

    from distance import chebyshev 

    def benchmark(): 

        a = np.random.rand(100, 2) 

        b = np.random.rand(100, 2) 

        for x1, y1 in a: 

            for x2, y2 in b: 

                chebyshev(x1, x2, y1, y2) 
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If we try profiling this script as-is, we won't get any statistics regarding the functions that 
we implemented in Cython. If we want to collect profiling information for the max and 
min functions, we need to add the profile=True option to the mathlib.pyx file,  
as shown in the following code snippet:

    # cython: profile=True 

    cdef int max(int a, int b): 

        # Code here 

We can now profile our script with %prun using IPython, as follows:

    import cheb 

    %prun cheb.benchmark() 

# Output:

2000005 function calls in 2.066 seconds 

  Ordered by: internal time 

  ncalls tottime percall cumtime percall 

  filename:lineno(function) 

       1   1.664   1.664   2.066   2.066 

 cheb.py:4(benchmark) 

 1000000   0.351   0.000   0.401   0.000

 {distance.chebyshev} 

 1000000   0.050   0.000   0.050   0.000 mathlib.pyx:2(max) 

       2   0.000   0.000   0.000   0.000 {method 'rand' of 

'mtrand.RandomState' objects} 

       1   0.000   0.000   2.066   2.066 

 <string>:1(<module>) 

       1   0.000   0.000   0.000   0.000 {method 'disable' 

 of        '_lsprof.Profiler' objects} 

From the output, we can see that the max function is present and is not a bottleneck. Most 
of the time seems to be spent in the benchmark function, meaning that the bottleneck is 
likely a pure Python for loop. In this case, the best strategy will be rewriting the loop in 
NumPy or porting the code to Cython.
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One feature in Python that many users enjoy is the ability to work with Jupyter Notebooks. 
When working with Cython, you don't have to give up on this feature. In the next and last 
section of this chapter, we will see how we can use Cython with Jupyter.

Using Cython with Jupyter
Optimizing Cython code requires substantial trial and error. Fortunately, Cython tools 
can be conveniently accessed through Jupyter Notebooks for a more streamlined and 
integrated experience.

You can launch a notebook session by typing jupyter notebook in the command line, 
and you can load the Cython magic by typing %load_ext cython in a cell.

As mentioned earlier, the %%cython magic can be used to compile and load the Cython 
code inside the current session. As an example, we may copy the contents of the cheb.py 
file into a notebook cell, like this:

    %%cython

    import numpy as np

    cdef int max(int a, int b):

        return a if a > b else b

    cdef int chebyshev(int x1, int y1, int x2, int y2):

        return max(abs(x1 - x2), abs(y1 - y2))

    def c_benchmark():

        a = np.random.rand(1000, 2)

        b = np.random.rand(1000, 2)

        for x1, y1 in a:

           for x2, y2 in b:

               chebyshev(x1, x2, y1, y2)
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A useful feature of the %%cython magic is the -a option that will compile the code and 
produce an annotated view (just as with the -a command-line option) of the source code 
directly in the notebook, as shown in the following screenshot:

Figure 4.3 – Generated annotated code

This allows you to quickly test different versions of your code and use the other integrated 
tools available in Jupyter. For example, we can time and profile the code (provided that 
we activate the profile directive in the cell) in the same session using tools such as %prun 
and %timeit. We can also inspect the profiling results by taking advantage of the %prun 
magic, as shown in the following screenshot:
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Figure 4.4 – Profiling output

It is also possible to use the line_profiler tool we discussed in Chapter 1, 
Benchmarking and Profiling, directly in the notebook. To support line annotations,  
it is necessary to do the following things:

• Enable the linetrace=True and binding=True compiler directives.

• Enable the CYTHON_TRACE=1 flag at compile time.

This can be easily accomplished by adding the respective arguments to the %%cython 
magic and by setting the compiler directives, as shown in the following code snippet:

    %%cython -a -f -c=-DCYTHON_TRACE=1

    # cython: linetrace=True

    # cython: binding=True

    import numpy as np

    cdef int max(int a, int b):

        return a if a > b else b

    def chebyshev(int x1, int y1, int x2, int y2):

        return max(abs(x1 - x2), abs(y1 - y2))

    def c_benchmark():

        a = np.random.rand(1000, 2)

        b = np.random.rand(1000, 2)
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        for x1, y1 in a:

            for x2, y2 in b:

                chebyshev(x1, x2, y1, y2)

Once the code is instrumented, we can install the line_profiler package via pip 
install line_profiler and profile using the %lprun magic, as follows:

%load_ext line_profiler

%lprun -f c_benchmark c_benchmark()

# Output:

Timer unit: 1e-06 s

Total time: 2.322 s

File: /home/gabriele/.cache/ipython/cython/_cython_

magic_18ad8204e9d29650f3b09feb48ab0f44.pyx

Function: c_benchmark at line 11

Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

    11                                           def 

c_benchmark():

    12         1          226    226.0      0.0      a = 

np.random.rand...

    13         1           67     67.0      0.0      b = 

np.random.rand...    

    14                                               

    15      1001         1715      1.7      0.1      for 

x1, y1 in a:

    16   1001000      1299792      1.3     56.0          

for x2, y2 in b:

    17   1000000      1020203      1.0     43.9              

chebyshev...

As you can see, a good chunk of time is spent in line 16, which is a pure Python loop and  
a good candidate for further optimization.

The tools available in Jupyter Notebook allow for a fast edit-compile-test cycle so that you 
can quickly prototype and save time when testing different solutions.
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Summary
Cython is a tool that bridges the convenience of Python with the speed of C. Compared to 
C bindings, Cython programs are much easier to maintain and debug, thanks to the tight 
integration and compatibility with Python and the availability of excellent tools.

In this chapter, we introduced the basics of the Cython language and how to make our 
programs faster by adding static types to our variables and functions. We also learned  
how to work with C arrays, NumPy arrays, and memoryviews.

We optimized our particle simulator by rewriting the critical evolve function, obtaining 
a tremendous speed gain. Finally, we learned how to use the annotated view to spot hard-
to-find interpreter-related calls and how to enable cProfile support in Cython. Also, 
we learned how to take advantage of the Jupyter Notebook for integrated profiling and 
analysis of Cython code.

All these tasks provide us with the high level of flexibility, which we already enjoy with  
Python, when working with Cython, while allowing our programs to be more optimized  
with low-level C code.

In the next chapter, we will explore other tools that can generate fast machine code on  
the fly, without requiring the compilation of our code to C ahead of time (AOT).

Questions
1. What is the benefit of implementing static types?
2. What is the benefit of a memoryview?
3. Which tools for profiling Cython were introduced in this chapter?
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Exploring Compilers

Python is a mature and widely used language, and there is great interest in improving 
its performance by compiling functions and methods directly to machine code rather 
than executing instructions in the interpreter. We have already seen a compiler example 
in Chapter 4, C Performance with Cython, where Python code is enhanced with types, 
compiled to efficient C code, and the interpreter calls are sidestepped.

In this chapter, we will explore two projects, Numba and PyPy, that approach compilation 
in a slightly different way. Numba is a library designed to compile small functions on 
the fly. Instead of transforming Python code to C, Numba analyzes and compiles Python 
functions directly to machine code. PyPy is a replacement interpreter that works by 
analyzing the code at runtime and optimizing the slow loops automatically.

These tools are called Just-In-Time (JIT) compilers because the compilation is performed 
at runtime rather than before running the code (in other cases, the compiler is called 
Ahead-Of-Time or AOT).

The list of topics to be covered in this chapter is as follows:

• Getting started with Numba

• The PyPy project

• Other interesting projects
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Overall, Numba and PyPy offer us flexibility in leveraging JIT compilation to accelerate 
our programs. This chapter adds another instrument to our toolbox for improving the 
speed of Python applications.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter05.

Getting started with Numba
Numba was started in 2012 by Travis Oliphant, the original author of NumPy, as a library 
for compiling individual Python functions at runtime using the Low-Level Virtual 
Machine (LLVM) toolchain.

LLVM is a set of tools designed to write compilers. LLVM is language-agnostic and is 
used to write compilers for a wide range of languages (an important example is the Clang 
compiler). One of the core aspects of LLVM is the intermediate representation (the LLVM 
IR), a very low-level, platform-agnostic language-like assembly, that can be compiled to 
machine code for the specific target platform.

Numba works by inspecting Python functions and compiling them, using LLVM, to the 
IR. As we saw in the last chapter, speed gains can be obtained when we introduce types  
for variables and functions. Numba implements clever algorithms to guess the types  
(this is called type inference) and compiles type-aware versions of the functions for  
fast execution.

Note that Numba was developed to improve the performance of numerical code. The 
development efforts often prioritize the optimization of applications that intensively  
use NumPy arrays.

Important Note
Numba is evolving fast and can have substantial improvements between 
releases and, sometimes, backward-incompatible changes. To keep up, ensure 
that you refer to the release notes for each version. In the rest of this chapter, 
we will use Numba version 0.53.1; ensure that you install the correct version to 
avoid any error by using pip install numba==0.53.1. The complete 
code examples in this chapter can be found in the Numba.ipynb notebook.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter05
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For the rest of this section, we will explore different aspects of Numba usage such as  
type specializations and JIT classes, as well as its limitations. First, we will discuss how  
to integrate Numba into a Python program via decorators.

Using Numba decorators
In most cases, the way we point Numba to specific Python functions is via decorators.  
Let's see how to do this:

1. As a first example, we will implement a function that calculates the sum of the 
squares of an array. The function definition is as follows:

    def sum_sq(a):

        result = 0

        N = len(a)

        for i in range(N):

            result += a[i]

        return result

2. To set up this function with Numba, it is sufficient to apply the nb.jit decorator:

    from numba import nb

    @nb.jit

    def sum_sq(a):

        ...

The nb.jit decorator won't do much when applied. However, when the function  
is invoked for the first time, Numba will detect the type of the input argument, a, 
and compile a specialized, performant version of the original function.

3. To measure the performance gain obtained by the Numba compiler, we can compare 
the timings of the original and the specialized functions. The original, undecorated 
function can be easily accessed through the py_func attribute. The timings for the 
two functions are as follows:

    import numpy as np

    x = np.random.rand(10000)

    # Original

    %timeit sum_sq.py_func(x)
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    4.3 ms ± 81.6 µs per loop

    # Numba

    %timeit sum_sq(x)

    12.8 µs ± 5.41 µs per loop

From the previous code, you can see how the Numba version (12.8 µs) is one order 
of magnitude faster than the Python version (4.3 ms).

4. We can also compare how this implementation stacks up against NumPy standard 
operators:

    %timeit (x**2).sum()

    9.44 µs ± 93.7 ns per loop

In this case, the Numba compiled function is marginally slower than NumPy 
vectorized operations, although this difference might change across different runs.

Considering that all we needed to do was apply a simple decorator to obtain an incredible 
speed up over different data types, it's no wonder that what Numba does looks like magic. 
In the following sections, we will dig deeper to understand how Numba works and 
evaluate the benefits and limitations of the Numba compiler.

Type specializations
As shown earlier, the nb.jit decorator works by compiling a specialized version of the 
function once it encounters a new argument type. To better understand how this works, 
we can inspect the decorated function in the sum_sq example:

1. Numba exposes the specialized types using the signatures attribute. Right after 
the sum_sq definition, we can inspect the available specialization by accessing 
sum_sq.signatures, as follows:

    sum_sq.signatures

    # Output:

    # []

2. If we call this function with a specific argument, for instance, an array of float64 
numbers, we can see how Numba compiles a specialized version on the fly. If we also 
apply the function on an array of float32, we can see how a new entry is added  
to the sum_sq.signatures list:

    x = np.random.rand(1000).astype('float64')

    sum_sq(x)



Getting started with Numba     141

    sum_sq.signatures

    # Result:

    # [(array(float64, 1d, C),)]

    x = np.random.rand(1000).astype('float32')

    sum_sq(x)

    sum_sq.signatures

    # Result:

    # [(array(float64, 1d, C),), (array(float32, 1d, 

        C),)]

It is possible to explicitly compile the function for certain types by passing a 
signature to the nb.jit function.

3. An individual signature can be passed as a tuple that contains the type we would 
like to accept. Numba provides a great variety of types that can be found in the 
nb.types module, and they are also available in the top-level nb namespace. If we 
want to specify an array of a specific type, we can use the slicing operator, [:], on 
the type itself. In the following example, we demonstrate how to declare a function 
that takes an array of float64 as its only argument:

    @nb.jit((nb.float64[:],))

    def sum_sq(a):

4. Note that when we explicitly declare a signature, we are prevented from using  
other types, as demonstrated in the following example. If we try to pass an array, x, 
as float32, Numba will raise a TypeError exception: 

    sum_sq(x.astype('float32'))

    # TypeError: No matching definition for argument 

      type(s) 

    array(float32, 1d, C)

5. Another way to declare signatures is through type strings. For example, a function 
that takes float64 as input and returns float64 as output can be declared with 
the float64(float64) string. Array types can be declared using a [:] suffix. To 
put this together, we can declare a signature for our sum_sq function, as follows:

    @nb.jit("float64(float64[:])")

    def sum_sq(a):
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6. You can also pass multiple signatures by passing a list:

    @nb.jit(["float64(float64[:])",

             "float64(float32[:])"])

    def sum_sq(a):

These APIs ensure that Numba has the correct information about what data type a 
function works with.

Object mode versus native mode
So far, we have shown how Numba behaves when handling a simple function. In this case, 
Numba worked exceptionally well, and we obtained great performance on arrays and lists.

The degree of optimization obtainable from Numba depends on how well Numba can 
infer the variable types and how well it can translate those standard Python operations to 
fast type-specific versions. If this happens, the interpreter is sidestepped, and we can get 
performance gains such as those of Cython.

When Numba cannot infer variable types, it will still try and compile the code, reverting 
to the interpreter when the types can't be determined or when certain operations are 
unsupported. In Numba, this is called object mode and contrasts with the interpreter-free 
scenario called native mode.

Numba provides a function called inspect_types that helps understand how effective 
the type inference was and which operations were optimized. Let's see how to use the 
following function:

1. As an example, we can look at the types inferred for our sum_sq function:

    sum_sq.inspect_types()

2. When this function is called, Numba will print the type inferred for each specialized 
version of the function. The output consists of blocks that contain information 
about variables and types associated with them. For example, we can examine  
the N = len(a) line:

    # --- LINE 4 --- 

    #  label  0

    #   a = arg(0, name=a)  :: array(float64, 1d, A)

    #   $2load_global.0 = global(len: <built-in  \

          function len>) :: Function (<built-in  \

            function len>)
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    #   N = call $2load_global.0(a, func= \

          $2load_global.0, args=[Var(a, \

            <ipython-in put-19-4687c4bff0ac>:4)], \

              kws=(), vararg=None)  :: (array( \

                float64, 1d, A),) -> int64

    N = len(a)

For each line, Numba prints a thorough description of variables, functions, and 
intermediate results. In the preceding example, you can see (on the second line) that 
the a argument is correctly identified as an array of float64 numbers. At LINE 4, 
the input and return type of the len function is also correctly identified (and likely 
optimized) as taking an array of float64 numbers and returning int64.

If you scroll through the output, you can see how all the variables have a well-defined 
type. Therefore, we can be certain that Numba is able to compile the code quite 
efficiently. This form of compilation is called native mode.

As a counterexample, we can see what happens if we write a function with 
unsupported operations. For example, as of version 0.53.1, Numba has limited 
support for string operations.

3. We can implement a function that concatenates a series of strings and compiles it  
as follows:

    @nb.jit

    def concatenate(strings):

        result = ''

        for s in strings:

            result += s

        return result

4. Now, we can invoke this function with a list of strings and inspect the types:

    concatenate(['hello', 'world'])

    concatenate.signatures

    # Output: concatenate (reflected 

      list(unicode_type)<iv=None>,)

    concatenate.inspect_types()
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5. Numba will return the output of the function for the reflected list 
(unicode type) type. We can, for instance, examine how the third line gets 
inferred. The output of concatenate.inspect_types() is reproduced here:

    

    # --- LINE 3 --- 

    # label 0

    #   strings = arg(0, name=strings)  :: reflected \

     list(unicode_type)<iv=None>

    #   result = const(str, )  :: Literal[str]()

    result = ''

You can see that this time, each variable, or function is of the unicode or str type. 
Once again by timing the original and compiled function, we can note a significant 
improvement in performance:

    x = ['hello'] * 1000

    %timeit concatenate.py_func(x)

    81.9 µs ± 1.25 µs per loop

    %timeit concatenate(x)

    1.27 ms ± 23.3 µs per loop

This is because the Numba compiler is not able to optimize the code and adds some 
extra overhead to the function call.

An Equivalent Decorator
Note that from version 0.12, the more concise @nb.njit decorator could be 
used instead.

Numba and NumPy
Numba was originally developed to easily increase the performance of code that 
uses NumPy arrays. Currently, many NumPy features are implemented efficiently by 
the compiler. Here, we will see how to combine the two tools to achieve even better 
performance for universal functions.
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Universal functions with Numba
Universal functions are special functions defined in NumPy that can operate on arrays  
of different sizes and shapes according to the broadcasting rules. One of the best features 
of Numba is the implementation of fast ufunc instances.

We have already seen some ufunc examples in Chapter 3, Fast Array Operations with 
NumPy, Pandas, and Xarray. For instance, the np.log function is a ufunc instance because 
it can accept scalars and arrays of different sizes and shapes. Also, universal functions that 
take multiple arguments still work according to the broadcasting rules. Examples of universal 
functions that take multiple arguments are np.sum and np.difference.

Universal functions can be defined in standard NumPy by implementing the scalar 
version and using the np.vectorize function to enhance the function with the 
broadcasting feature. As an example, let's see how to write the Cantor pairing function:

1. A pairing function is a function that encodes two natural numbers into a single 
natural number so that you can easily interconvert between the two representations. 
The Cantor pairing function can be written as follows:

    import numpy as np

    def cantor(a, b):

        return  int(0.5 * (a + b)*(a + b + 1) + b)

2. As already mentioned, it is possible to create a ufunc instance in pure Python using 
the np.vectorized decorator:

    @np.vectorize

    def cantor(a, b):

        return  int(0.5 * (a + b)*(a + b + 1) + b)

    cantor(np.array([1, 2]), 2)

    # Result:

    # array([ 8, 12])

Except for the convenience, defining universal functions in pure Python is not very 
useful, as it requires a lot of function calls affected by interpreter overhead. For this 
reason, ufunc implementation is usually done in C or Cython, but Numba beats all 
these methods with its convenience.

All that is needed in order to perform the conversion is to use the equivalent 
decorator, nb.vectorize.
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3. We can compare the speed of the standard np.vectorized version, which, in the 
following code, is called cantor_py, and the same function is implemented using 
standard NumPy operations:

    # Pure Python

    %timeit cantor_py(x1, x2)

    2.4 ms ± 23.7 µs per loop

    # Numba

    %timeit cantor(x1, x2)

    9.1 µs ± 204 ns per loop

    # NumPy

    %timeit (0.5 * (x1 + x2)*(x1 + x2 + 1) + \

      x2).astype(int)

    33.2 µs ± 1.12 µs per loop

You can see how the Numba version beats all the other options by a large margin! Numba 
works extremely well because the function is simple and type inference is possible.

Important Note
An additional advantage of universal functions is that, since they depend 
on individual values, their evaluation can also be executed in parallel. 
Numba provides an easy way to parallelize such functions by passing 
the target="cpu" or target="gpu" keyword argument to the 
nb.vectorize decorator.

Generalized universal functions
One of the main limitations of universal functions is that they must be defined on scalar 
values. A generalized universal function, abbreviated as gufunc, is an extension of 
universal functions to procedures that take arrays. Let's see how we can apply Numba  
to these functions:

1. A classic example is matrix multiplication. In NumPy, matrix multiplication can 
be applied using the np.matmul function, which takes two 2D arrays and returns 
another 2D array. An example of the usage of np.matmul is as follows:

    a = np.random.rand(3, 3)

    b = np.random.rand(3, 3)
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    c = np.matmul(a, b)

    c.shape

    # Result:

    # (3, 3)

As we saw in the previous subsection, a ufunc instance broadcasts the operation 
over arrays of scalars; its natural generalization will be to broadcast over an array 
of arrays. If, for instance, we take two arrays of 3 by 3 matrices, we will expect 
np.matmul to match the matrices and take their product.

2. In the following example, we take two arrays containing 10 matrices of the (3, 3) 
shape. If we apply np.matmul, the product will be applied matrix-wise to obtain a 
new array containing the 10 results (which are, again, (3, 3) matrices):

    a = np.random.rand(10, 3, 3)

    b = np.random.rand(10, 3, 3)

    c = np.matmul(a, b)

    c.shape

    # Output

    # (10, 3, 3)

3. The usual rules for broadcasting will work in a similar way. For example, if we have 
an array of (3, 3) matrices, which will have a shape of (10, 3, 3), we can use 
np.matmul to calculate the matrix multiplication of each element with a single 
(3, 3) matrix. According to the broadcasting rules, we find that the single matrix 
will be repeated to obtain a size of (10, 3, 3):

    a = np.random.rand(10, 3, 3)

    b = np.random.rand(3, 3) # Broadcasted to shape  

     (10, 3, 3)

    c = np.matmul(a, b)

    c.shape

    # Result:

    # (10, 3, 3)

Numba supports the implementation of efficient generalized universal functions 
through the nb.guvectorize decorator. As an example, we will implement a 
function that computes the Euclidean distance between two arrays as a gufunc 
instance. To create a gufunc instance, we must define a function that takes the 
input arrays, plus an output array where we will store the result of our calculation.
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The nb.guvectorize decorator requires two arguments: 

 � The types of input and output – two 1D arrays as input and a scalar as output.

 � The so-called layout string, which is a representation of the input and output sizes; 
in our case, we take two arrays of the same size (denoted arbitrarily by n) and 
output a scalar.

4. In the following example, we can see the implementation of the euclidean 
function using the nb.guvectorize decorator:

    @nb.guvectorize(['float64[:], float64[:], \

      float64[:]'], '(n), (n) -> ()')

    def euclidean(a, b, out):

        N = a.shape[0]

        out[0] = 0.0

        for i in range(N):

            out[0] += (a[i] - b[i])**2

There are a few very important points to be made. Predictably, we declared the a 
and b input types as float64[:] because they are 1D arrays. However, what 
about the output argument? Wasn't it supposed to be a scalar? Yes, but Numba treats 
a scalar argument as arrays of size 1. That's why it was declared as float64[:].

Similarly, the layout string indicates that we have two arrays of size (n) and the 
output is a scalar, denoted by empty brackets – (). However, the array out will 
be passed as an array of size 1. Also, note that we don't return anything from the 
function; all the output must be written in the out array.

Important Note
The letter n in the layout string is completely arbitrary; you may choose to use 
k or other letters of your liking. Also, if you want to combine arrays of uneven 
sizes, you can use layout strings, such as (n, m).

5. Our brand-new euclidean function can be conveniently used on arrays of 
different shapes, as shown in the following example:

    a = np.random.rand(2)

    b = np.random.rand(2)

    c = euclidean(a, b) # Shape: (1,)
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    a = np.random.rand(10, 2)

    b = np.random.rand(10, 2)

    c = euclidean(a, b) # Shape: (10,)

    a = np.random.rand(10, 2)

    b = np.random.rand(2)

    c = euclidean(a, b) # Shape: (10,)

6. How does the speed of euclidean compare to standard NumPy? In the following 
code, we will benchmark a NumPy vectorized version with our previously defined 
euclidean function:

    a = np.random.rand(10000, 2)

    b = np.random.rand(10000, 2)

    %timeit ((a - b)**2).sum(axis=1)

    153 µs ± 13.2 µs per loop

    %timeit euclidean(a, b)

    47.1 µs ± 3.19 µs per loop

The Numba version, again, beats the NumPy version by a large margin!

JIT classes
As of today, Numba doesn't support the optimization of generic Python objects. This 
limitation, however, doesn't have a huge impact on numerical codes, as they usually 
involve arrays and math operations exclusively.

Nevertheless, certain data structures are much more naturally implemented using objects; 
therefore, Numba provides support for defining classes that can be used and compiled to 
fast native code. Bear in mind that this is one of the newest (and almost experimental) 
features, and it is extremely useful, as it allows us to extend Numba to support fast data 
structures that are not easily implemented with arrays.
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As an example, we will show how to implement a simple linked list using JIT classes. A 
linked list can be implemented by defining a Node class that contains two fields – a value 
and the next item in the list. As you can see in the following figure, each Node connects  
to the next and holds a value, and the last Node contains a broken link, to which we assign 
a value of None:

Figure 5.1 – An illustration of a linked list

We will explore various JIT-related features in the following steps:

1. In Python, we can define the Node class as follows:

    class Node:

        def __init__(self, value):

            self.next = None

            self.value = value

2. We can manage the collection of Node instances by creating another class, called 
LinkedList. This class will keep track of the head of the list (in the preceding 
figure, this corresponds to the Node instance with value 3). To insert an element 
in the front of the list, we can simply create a new Node instance and link it to the 
current head.

In the following code, we develop the initialization function for LinkedList and 
the LinkedList.push_back method that inserts an element in the front of the 
list using the strategy outlined earlier:

    class LinkedList:

    

        def __init__(self):

            self.head = None

    

        def push_front(self, value):

            if self.head == None:

                self.head = Node(value)

            else:

                # We replace the head
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                new_head = Node(value)

                new_head.next = self.head

                self.head = new_head

3. For debugging purposes, we can also implement the LinkedList.show  
method that traverses and prints each element in the list. The method is shown  
in the following snippet:

        def show(self):

            node = self.head

            while node is not None:

                print(node.value)

                node = node.next

4. At this point, we can test our LinkedList and see whether it behaves correctly.  
We can create an empty list, add a few elements, and print its content. Note that 
since we are pushing elements to the front of the list, the last elements inserted  
will be the first to be printed:

    lst = LinkedList()

    lst.push_front(1)

    lst.push_front(2)

    lst.push_front(3)

    lst.show()

    # Output:

    # 3

    # 2

    # 1

5. Finally, we can implement a function, sum_list, that returns the sum of the 
elements in the linked list. We will use this method to time differences between  
the Numba and pure Python versions:

    @nb.jit

    def sum_list(lst):

        result = 0

        node = lst.head

        while node is not None: 

            result += node.value

            node = node.next

        return result
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6. If we measure the execution time of the original sum_list version and the 
nb.jit version, we see that there is not much difference. The reason is that  
Numba cannot infer the type of classes:

    lst = LinkedList()

    [lst.push_front(i) for i in range(10000)]

    

    %timeit sum_list(lst)

    1.73 ms ± 159 µs per loop

    %timeit sum_list.py_func(lst)

    1.01 ms ± 175 µs per loop

7. We can improve the performance of sum_list by compiling the Node and 
LinkedList classes using the nb.jitclass decorator.

The nb.jitclass decorator takes a single argument that contains the attribute 
types. In the Node class, the attribute types are int64 for value and Node for 
next. The nb.jitclass decorator will also compile all the methods defined  
for the class. Before delving into the code, we need to make two observations.

First, the attribute declaration must be done before the class is defined, but  
how do we declare a type that we haven't defined yet? Numba provides the 
nb.deferred_type() function that can be used for this purpose.

Second, the next attribute can be either None or a Node instance. This is what is 
called an optional type, and Numba provides a utility called nb.optional that  
lets you declare variables that can be (optionally) None.

This Node class is illustrated in the following code sample. As you can see,  
node_type is predeclared using nb.deferred_type(). The attributes are 
declared as a list of pairs containing the attribute name and the type (also note the 
use of nb.optional). After the class declaration, we are required to declare the 
deferred type:

    node_type = nb.deferred_type()

    node_spec = [

        ('next', nb.optional(node_type)),

        ('value', nb.int64)

    ]
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    @nb.jitclass(node_spec)

    class Node:

        # Body of Node is unchanged

    node_type.define(Node.class_type.instance_type)

8. The LinkedList class can be easily compiled, as follows. All that's needed is to 
define the head attribute and to apply the nb.jitclass decorator:

    ll_spec = [

        ('head', nb.optional(Node.class_type. \

          instance_type))

    ]

    @jitclass(ll_spec)

    class LinkedList:

        # Body of LinkedList is unchanged

9. We can now measure the execution time of the sum_list function when we pass  
a JIT LinkedList:

    lst = LinkedList()

    [lst.push_front(i) for i in range(10000)]

    %timeit sum_list(lst)

    106 µs ± 2.64 µs per loop

    %timeit sum_list.py_func(lst)

    2.42 ms ± 51.8 µs per loop

Interestingly, when using a JIT class from a compiled function, we obtain a substantial 
performance improvement against the pure Python version. However, using the JIT class 
from the original sum_list.py_func actually results in a worse performance. Ensure 
that you use JIT classes only inside compiled functions!
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Limitations in Numba
There are some instances where Numba cannot properly infer the variable types. In the 
following example, we define a function that takes a nested list of integers and returns  
the sum of the element in every sublist. In this case, Numba will raise a warning:

    a = [[0, 1, 2], 

         [3, 4], 

         [5, 6, 7, 8]]

    @nb.jit

    def sum_sublists(a):

        result = []

        for sublist in a:

            result.append(sum(sublist))

        return result

    sum_sublists(a)

    # NumbaWarning: Compilation is falling back to object 

      mode WITH looplifting enabled because Function 

        "sum_sublists" failed type inference...

The problem with this code is that Numba is not able to determine the list type and fails.  
A way to fix this problem is to help the compiler determine the right type by initializing 
the list with a sample element and removing it at the end:

    @nb.jit

    def sum_sublists(a):

        result = [0]

        for sublist in a:

            result.append(sum(sublist))

        return result[1:]

Among other features that are not yet implemented in the Numba compiler are function 
and class definitions, list, set, and dict comprehensions, generators, the with 
statement, and try and except blocks. Note, however, that many of these features  
may become supported in the future.



The PyPy project     155

Overall, we have seen multiple approaches of working with Numba to speed up our 
applications, such as type specializations, NumPy's universal functions, and JIT classes.  
We will now move on to our second main topic in this chapter – PyPy.

The PyPy project
PyPy is a very ambitious project at improving the performance of the Python interpreter. 
The way PyPy improves performance is by automatically compiling slow sections of the 
code at runtime.

PyPy is written in a special language called RPython (rather than C) that allows 
developers to implement advanced features and improvements quickly and reliably. 
RPython means Restricted Python because it implements a restricted subset of the 
Python language targeted to the compiler development.

As of today, PyPy version 7.3.5 supports a lot of Python features and is a possible choice 
for a large variety of applications, such as game and web development. PyPy compiles code 
using a very clever strategy called tracing JIT compilation. At first, the code is executed 
normally using interpreter calls. PyPy then starts to profile the code and identifies the most 
intensive loops. After the identification takes place, the compiler then observes (traces) the 
operations and can compile its optimized, interpreter-free version.

Once an optimized version of the code is present, PyPy can run the slow loop much faster 
than the interpreted version.

This strategy can be contrasted with what Numba does. In Numba, the units of compilation 
are methods and functions, while the PyPy focus is just slow loops. Overall, the focus of the 
projects is also very different, as Numba has limited scope for numerical code and requires  
a lot of instrumentation, while PyPy aims at replacing the CPython interpreter.

In this section, we will demonstrate and benchmark PyPy on our particle simulator 
application. We will begin by setting up Python and then look at running a particle 
simulator in PyPy.

Setting up PyPy
PyPy is distributed as a precompiled binary that can be downloaded from http://
pypy.org/download.html, and it currently supports Python versions 2.7 and 3.7.  
In this chapter, we will demonstrate the usage of the 3.7 version.

http://pypy.org/download.html
http://pypy.org/download.html
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Once PyPy is downloaded and unpacked, you can locate the interpreter in the bin/pypy 
directory relative to the unpacked archive. You can initialize a new virtual environment, 
where we can install additional packages using the following command:

$ /path/to/bin/pypy -m ensurepip

$ /path/to/bin/pypy -m pip install virtualenv

$ /path/to/bin/virtualenv my-pypy-env

To activate the environment, we will use the following command:

$ source my-pypy-env/bin/activate

At this point, you can verify that the binary Python is linked to the PyPy executable by 
typing python -V. At this point, we can go ahead and install some packages we may 
need. Note that PyPy may have limited support for software that uses the Python C API 
(most notably, packages such as numpy and matplotlib). We can go ahead and install 
them in the usual way:

(my-pypy-env) $ pip install numpy matplotlib

On certain platforms, the installation of numpy and matplotlib can be tricky. You can 
skip the installation step and remove any imports on these two packages from the scripts 
we will run.

Running a particle simulator in PyPy
Now that we have successfully set up the PyPy installation, we can go ahead and run 
our particle simulator. As a first step, we will time the particle simulator from Chapter 1, 
Benchmarking and Profiling, on the standard Python interpreter. If the virtual environment 
is still active, you can issue the deactivate command to exit the environment:

(my-pypy-env) $ deactivate

At this point, we can time our code using the timeit command-line interface:

$ python -m timeit --setup "from simul import benchmark" 

  "benchmark()"

10 loops, best of 3: 886 msec per loop
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We can reactivate the environment and run the exact same code from PyPy. On Ubuntu, 
you may have problems importing the matplotlib.pyplot module. You can try 
issuing the following export command to fix the issue or removing the matplotlib 
imports from simul.py:

$ export MPLBACKEND='agg'

Now, we can go ahead and time the code using PyPy:

$ source my-pypy-env/bin/activate

(my-pypy-env) $ python -m timeit --setup "from simul import 

  benchmark" "benchmark()"

WARNING: timeit is a very unreliable tool. use perf or 

something else for real measurements

10 loops, average of 7: 106 +- 0.383 msec per loop (using 

standard deviation)

Note that we obtained a large (more than eight times) speed-up! PyPy, however, warns us 
that the timeit module can be unreliable. We can confirm our timings using the perf 
module, as suggested by PyPy:

(my-pypy-env) $ pip install perf

(my-pypy-env) $ python -m perf timeit --setup 'from simul 

  import benchmark' 'benchmark()'

.......

Median +- std dev: 97.8 ms +- 2.3 ms

This gives us a more reliable assurance that our speed-up is consistent. Overall, we can  
see that with a simple reinstallation of Python, we are able to achieve significant speed-up 
via PyPy.

Advanced PyPy
Although not within the scope of this chapter, for more advanced usage of 
PyPy, one could integrate it with Pyglet for game development and PyLongs 
and Django for web development.

Overall, Numba and PyPy together offer us many options regarding how we might want 
to go about leveraging JIT compilers to supercharge our Python programs. In the next 
section, we examine several other options that may be of interest.
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Other interesting projects
Over the years, many projects attempted to improve Python performance through several 
strategies, and, sadly, many of them failed. As of today, there are a few projects that survive 
and hold the promise for a faster Python.

Numba and PyPy are mature projects that are steadily improving over the years. Features 
are continuously being added, and they hold great promise for the future of Python:

• Nuitka is a program developed by Kay Hayen that compiles Python code to C. 
At the time of writing (version 0.6.15), it provides extreme compatibility with the 
Python language and produces efficient code that results in moderate performance 
improvements over CPython.

Nuitka is quite different than Cython in the sense that it focuses on extreme 
compatibility with the Python language, and it doesn't extend the language with 
additional constructs.

• Pyston is a new interpreter developed by Dropbox that powers JIT compilers. 
It differs substantially from PyPy as it doesn't employ a tracing JIT but rather a 
method-at-a-time JIT (similar to what Numba does). Pyston, like Numba, is also 
built on top of the LLVM compiler infrastructure.

Pyston is in active development and supports both Python 2.7 and 3.8. Benchmarks 
show that it is faster than CPython but slower than PyPy; that said, it is still  
an interesting project to follow as new features are added and compatibility  
is increased.

At this point, we have been introduced to four different JIT compilers. You may find in 
your own experience that, when developing an application, different situations and use 
cases may call for different compilers. It is, therefore, important to explore our options 
when it comes to using a JIT compiler to speed up our Python code.

Summary
Numba is a tool that compiles fast, specialized versions of Python functions at runtime. 
In this chapter, we learned how to compile, inspect, and analyze functions compiled by 
Numba. We also learned how to implement fast NumPy universal functions that are 
useful in a wide array of numerical applications. Finally, we implemented more complex 
data structures using the nb.jitclass decorator. Overall, Numba is built to accelerate 
numeric loops that are common in scientific computing. As we have seen, Numba works 
seamlessly with the popular NumPy library.
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Tools such as PyPy allow us to run Python programs unchanged to obtain significant 
speed improvements. We demonstrated how to set up PyPy, and we assessed the 
performance improvements on our particle simulator application. We have also seen that, 
unlike Numba, PyPy doesn't operate on a function level but instead seeks to implement  
a more efficient interpreter for a whole Python program.

We also, briefly, described the current ecosystem of the Python compilers and compared 
them with each other. These discussions will give you the confidence to explore and work 
with different JIT compilers and select the most appropriate for your applications. In  
the next chapter, we will see a specialized version of a JIT compiler that is optimized  
for machine learning operations and tasks.

Questions
1. What are JIT compilers and why are they useful?
2. How does Numba determine the types of variables in a Python program? What 

happens when these variables are not of the type that Numba works well with?
3. What is the high-level idea of tracing a JIT compilation of PyPy?

Further reading
• More on JIT compilers: https://www.freecodecamp.org/news/just-

in-time-compilation-explained/

https://www.freecodecamp.org/news/just-in-time-compilation-explained/
https://www.freecodecamp.org/news/just-in-time-compilation-explained/
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With the recent explosion of data and data generating systems, machine learning has 
grown to be an exciting field, both in research and industry. However, implementing a 
machine learning model might prove to be a difficult endeavor. Specifically, common tasks 
in machine learning, such as deriving the loss function and its derivative, using gradient 
descent to find the optimal combination of model parameters, or using the kernel method 
for nonlinear data, demand clever implementations to make predictive models efficient. 
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In this chapter, we will discuss the JAX library, the premier high-performance machine 
learning tool in Python. We will explore some of its most powerful features, such as 
automatic differentiation, JIT compilation, and automatic vectorization. These features 
streamline the tasks that are central to machine learning mentioned previously, making 
training a predictive model as simple and accessible as possible. All these discussions  
will revolve around a hands-on example of a binary classification problem.

By the end of the chapter, you will be able to use JAX to power your machine learning 
applications and explore the more advanced features that it offers.

The list of topics covered in this chapter is as follows:

• A crash course in machine learning

• Getting JAX up and running

• Automatic differentiation for loss minimization

• Just-In-Time compilation for improved efficiency

• Automatic vectorization for efficient kernels

A crash course in machine learning
To fully appreciate the functionalities that JAX offers, let's first talk about the principal 
components of a typical workflow of training a machine learning model. If you are  
already familiar with the basics, feel free to skip to the next section, where we begin 
discussing JAX.

In machine learning, we set out to solve the problem of predicting an unknown target 
value of interest of a data point by considering its observable features. The goal is to design 
a predictive model that processes the observable features and outputs an estimate of what 
the target value might be. For example, image recognition models analyze the pixel values 
of an image to predict which object the image depicts, while a model processing weather 
data could predict the probability of rainy weather for tomorrow by accounting for 
temperature, wind, and humidity.

In general, a machine learning model could be viewed as a general mathematical function 
that takes in the observable features, typically referred to as X, and produces a prediction 
about the target value, Y. Implicitly assumed by the model is the fact that there is a certain 
mathematical relationship between the features (input) and the target values (output). 
Machine learning models in turn aim to learn about this relationship by studying a large 
number of examples. As such, data is crucial in any machine learning workflow.
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A dataset is a collection of labeled examples – data points whose observable features, X, 
and target values, Y, are both available. It is through these labeled points that a model will 
attempt to uncover the relationship between X and Y; this is known as training the model. 
After training, the learned model can then take in the features of unlabeled data points, 
whose target values are unknown to us, and output its predictions. These predictions are 
what the model believes the target values of the unlabeled data points to be, given the 
observable features that they have.

In this section, we will talk about how training is facilitated for many common machine 
learning models. Specifically, it consists of three core components—the model's 
parameters, the model's loss function, and the minimization of that loss function—which 
we will consider one by one.

We will ground our discussions with an explicit example problem. Assume that we have 
a number of points in a two-dimensional space (which is simply the xy plane), each of 
which belongs to either the positive class or the negative class. The following is an example 
where the yellow points are the positives, and the purple ones are the negatives:

Figure 6.1 – An example binary classification problem

In this case, the observable features are the x and y coordinates of the points, so X 
consists of two features, while the target value y is their class membership, a positive or a 
negative. Our goal is to train a machine learning model on a set of labeled data and make 
predictions on unlabeled points. For example, after training, our model should be able to 
predict whether point (2, 1) is positive or negative.

It is quite clear to us what the separation between the positives and the negatives is, 
where the lower-right corner corresponds to the positive class, and the upper-left corner 
corresponds to the negative class. Point (2, 1) specifically is likely a positive (a yellow 
point). But how does a machine learning model do this automatically, without humans 
having to hardcode such a classification rule? We will see this in the next section.
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Model parameters
A predictive model starts out with a formula that attempts to explain the relationship 
between the observable features and the target value. We will consider the class of linear 
models (one of the most common and simplest types of machine learning models),  
which assume that the target value is a linear combination of the features (hence the 
model's name)

𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2, 

where 𝑥𝑥1  and 𝑥𝑥2  are the x and y coordinates of the points, and the numbers 𝑤𝑤𝑖𝑖  are the 
model's parameters.

We do not know the values of these parameters, and each combination of values for these 
parameters defines a unique relationship between x and y, a unique hypothesis. It is the 
values of these parameters that we need to identify during the training phase, such that  
the aforementioned relationship fits the labeled data that we have access to.

In our classification model, we constrain the target values y to be either positive (+1) or 
negative (-1), but y as defined by the linear relationship discussed earlier can take on any 
real value. As such, it is customary to transform a real-valued y to be either +1 or -1 by 
simply taking the sign of the value. In other words, the actual model we are working  
with is:

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2) 

Performing predictions is at the heart of a common machine learning task. Given the 
linear relationship between features X and the target value y, predicting the target value 𝑦𝑦∗  
of a new data point with features 𝑥𝑥∗1   and 𝑥𝑥∗2   simply involves applying the mathematical 
model we have:

𝑦𝑦∗ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥∗1 + 𝑤𝑤2𝑥𝑥∗2) 

The only missing piece of our puzzle is how to identify the correct values for our 
parameters 𝑤𝑤𝑖𝑖 . Again, we need to determine the values for the model's parameters to fit 
our training data. But how can we exactly quantify how well a specific value combination 
for the parameters explains a given labeled dataset? This question leads to the next 
component of a machine learning workflow: the model's loss function.
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Loss function
A model's loss function quantifies a property about the model that we'd like to minimize. 
This could, in general, be the cost incurred when the model is trained a certain way. 
Within our context, the loss function is specifically the amount of predictive error that the 
model makes on the training dataset. This quantity approximates the error made on future 
unseen data, which is what we really care about. (In different settings, you might encounter 
utility functions, which, most of the time, are simply the negative of corresponding loss 
functions, which are to be maximized.) The lower the loss, the better our model is likely  
to perform (barring technical problems such as overfitting).

In a classification problem like ours, there are many ways to design an appropriate loss 
function. For example, the 0-1 loss simply counts how many instances there are in which 
the model makes an incorrect prediction, while the binary cross-entropy loss is a more 
popular choice as the function is smoother than 0-1 and thus easy to optimize (we will 
come back to this point later).

For our example, we will use a version of the support-vector loss function, which is 
formalized as:

𝐿𝐿 =  1
𝑛𝑛 ∑ max(0, 1 −  𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

where i, indicating the index of unique examples in the training set, ranges from 1 to n, the 
training set size. 𝑦𝑦𝑖𝑖  is the true label of the i-th example, while  �̅�𝑦𝑖𝑖  is the corresponding label 
predicted by the learning model.

This non-negative function calculates the average of the max(0, 1 −  𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖)  term across all 
training examples. It is easy to see that for each example i, if 𝑦𝑦𝑖𝑖  and  �̅�𝑦𝑖𝑖  are similar to each 
other, the max term will evaluate to a small value. On the other hand, if 𝑦𝑦𝑖𝑖  and  �̅�𝑦𝑖𝑖  have 
opposite signs (in other words, if the model misclassifies the example), the max term will 
increase. As such, this function is appropriate to quantify the error that our predictive 
model is making for a given parameter combination.

Given this loss function, the problem of training our linear model reduces to finding the 
optimal parameter 𝑤𝑤𝑖𝑖  that minimizes the loss (preferably at 0). Of course, the search space 
of 𝑤𝑤𝑖𝑖  is very large—each parameter could be any real-valued number—so exhaustively 
trying out all possible combinations of values for 𝑤𝑤𝑖𝑖  is out of the question. This leads us  
to the final subsection: intelligently minimizing a loss function.
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Loss minimization
Without going into too much technical detail, you can mathematically find the minimum 
of a given function by utilizing its derivative information. Derivates of a function denote 
the rate of change in the function value with respect to the rate of change of its input. By 
analyzing the value of the derivative, or more commonly referred to in machine learning 
as the gradient, we could algorithmically identify input locations at which the objective 
function is likely to be low-valued.

However, derivatives are only informative in helping us locate the function minimum  
if the function itself is smooth. Smoothness is a mathematical property that states that if 
the input value of a function only changes by a little, the function value (output) should 
not change by too much. Notable examples of non-smooth functions include the step 
function and the absolute value function, but most functions that you will encounter  
are likely to be smooth. The smoothness property explains our preference for the binary 
cross-entropy loss over the 0-1 loss, the latter of which is a non-smooth function. The 
support vector-style loss function we will be using is also smooth.

The overall takeaway is that if we have access to the derivate of a smooth function, finding 
its minimum will be easy to do. But how do we do this exactly? Many gradient-based 
optimization routines have been studied, but we will consider arguably the most common 
method: gradient descent. The high-level idea is to inspect the gradient of the loss function 
at a given location and move in the direction opposite to that gradient (in other words, 
descending the gradient, hence the name), illustrated next:

Figure 6.2 – Illustration of gradient descent
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Due to the definition of the gradient, the function value f(x') evaluated at the point x' 
that is immediately in the opposite direction of the gradient with respect to a given point 
x is lower than f(x). As such, by using the gradient of the loss function as a guide and 
incrementally moving in the opposite direction, we can theoretically arrive at the function 
minimum. One important consideration is that, if we move our evaluation by a large 
amount, even in the correct direction, we could end up missing the true minimum. To 
address this, we typically adjust our step to be only a fraction of the loss gradient.

Concretely, denote ∇𝐿𝐿𝑖𝑖  as the gradient of the loss function L with respect to the i-th 
parameter 𝑤𝑤𝑖𝑖 , so the gradient descent update rule is to adjust the value of 𝑤𝑤𝑖𝑖  as:

𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 −  𝛾𝛾∇𝐿𝐿𝑖𝑖 

where γ is a small number (much lower than 1) that acts as a step size. By repeatedly 
applying this update rule, we could incrementally adjust the values of the model's 
parameters to lower the model's loss, thereby improving its predictive performance.

And with that, we have finished sketching out the main components of a typical machine 
learning workflow. As a summary, we work with a predictive model (in our case, a linear 
one) that has a certain number of adjusting parameters that seek to explain the data 
we have. Each parameter combination leads to a different hypothesis whose validity is 
quantified by the loss function. Finally, by taking the derivative of the loss function and 
using gradient descent, we have a way to incrementally update the model's parameters  
to achieve better performance.

We will now begin the main topic of this chapter: the JAX library.

Getting JAX up and running
As briefly mentioned, JAX is a combination of different tools for developing accelerated, 
high-performance computations with a focus on machine learning applications. 
Remember from the last chapter that the NumPy library offers optimized computation 
for numerical operations such as finding the min/max or taking the sum of the average 
along an axis. We can think of JAX as the NumPy equivalent for machine learning, where 
common tasks in machine learning could be done in highly optimized code. These, as we 
will see, include automatic differentiation, accelerated linear algebra using a Just-In-Time 
compiler, and efficient vectorization and parallelization of code, among other things.

JAX offers these functionalities through what's known as functional transformations. 
In the simplest sense, a functional transformation in JAX converts a function, typically 
one that we build ourselves, to an optimized version where different functionalities are 
facilitated. This is done via a simple API, as we will see later.

But first, we will talk about installing the library on a local system.
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Installing JAX
A barebones version of JAX could be simply installed using the regular Python package 
manager pip:

pip install --upgrade pip

pip install --upgrade jax jaxlib

These commands will install a CPU-only version of JAX, which is recommended if you 
are planning to try it out on a local system such as a laptop. The full version of JAX, with 
support for NVIDIA GPUs (commonly used by deep learning models), could also be 
installed via a more involved procedure, outlined in their documentation: https://
jax.readthedocs.io/en/latest/developer.html.

Furthermore, note that JAX can only be installed on Linux (Ubuntu 16.04 or above) or 
macOS (10.12 or above). To run JAX on a Windows machine, you would need the Windows 
Subsystem for Linux, which lets you run a GNU/Linux environment on Windows. If you 
typically run your machine learning jobs on a cluster, you should talk to your system 
administrator about finding the correct way to install JAX.

If you are an independent machine learning practitioner, you might find these technical 
requirements to install the full version of JAX intimidating. Luckily, there is a free 
platform that we could use to see JAX in action: Google Colab.

Using Google Colab
Generally, Google Colab is a free Jupyter notebook platform that is integrated with a  
high-performance backend and machine learning tools on which you could build 
prototypes of machine learning models with ease.

There are two main advantages to using Google Colab. First, the platform comes with most 
machine learning-related libraries (for example, TensorFlow, PyTorch, and scikit-learn) 
and tools preinstalled, including a GPU (graphics processing unit) and a TPU (tensor 
processing unit), free of charge! This allows independent machine learning researchers 
and students to try out expensive hardware on their machine learning pipelines at no 
cost. Second, Google Colab allows collaborative editing between different users, enabling 
streamlined group work when building models.

To utilize this platform, all you need is a Google/Gmail account when signing in at 
https://colab.research.google.com/. Using this platform is generally 
simple and intuitive, but you can also refer to several readings included at the end of this 
chapter for further content relating to Google Colab. Note that the code presented in the 
remainder of this chapter is run on Google Colab, which means you could go to [INSERT 
LINK] and simply run the code yourself to follow along with our later discussions.

https://jax.readthedocs.io/en/latest/developer.html
https://jax.readthedocs.io/en/latest/developer.html
https://colab.research.google.com/
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And with that, we are ready to begin talking about the functionalities that JAX offers.

Automatic differentiation for loss 
minimization
Recall from our previous discussion that to fit a predictive model to a training dataset, we 
first analyze an appropriate loss function, derive the gradient of this loss, and then adjust 
the parameters of the model in the opposite direction of the gradient to achieve a lower 
loss. This procedure is only possible if we have access to the derivative of the loss function.

Earlier machine learning models were able to do this because researchers derived the 
derivatives of common loss functions by hand using calculus, which were then hardcoded 
into the training algorithm so that a loss function could be minimized. Unfortunately, 
taking the derivative of a function could be difficult to do at times, especially if the loss 
function being used is not well behaved. In the past, you would have to choose a different, 
more mathematically convenient loss function to make your model run even if the new 
function was less appropriate, potentially sacrificing some of the expressiveness of the 
original function.

Recent advances in computational algebra have resulted in the technique called automatic 
differentiation. Exactly as it sounds, this technique allows for an automated process to 
numerically evaluate the derivative of a given function, expressed in computer code, 
without relying on a human to provide the closed-form solution for that derivative. On the 
highest level, automatic differentiation traces the order in which the considered function 
is computed and which arithmetic operations (for example, addition, multiplication, and 
exponentiation) were involved, and then applies the chain rule to obtain the numerical 
value of the derivative in an automated manner. By intelligently taking advantage of the 
information present in the computational calculation of the function itself, automatic 
differentiation can compute its derivative efficiently and accurately.

Recall that in our running toy problem, we would like to minimize the loss function:

𝐿𝐿 =  1
𝑛𝑛 ∑ max(0, 1 −  𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

where  �̅�𝑦𝑖𝑖  is the prediction made by our linear predictive model for the i-th data point. Of 
course, we could derive the gradient of this loss function when implementing gradient 
descent (which would require us to brush up on our calculus!), but with automatic 
differentiation, we will not have to.
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The technique is widely used in deep learning tools such as TensorFlow and PyTorch, 
where computing the gradient of a loss function is a central task. We could use the API for 
automatic differentiation from these libraries to compute the loss gradient, but by using 
JAX's API, we will be able to utilize other powerful functionalities that we will get to later. 
For now, let's build our model and the gradient descent algorithm using JAX's automatic 
differentiation tool.

Making the dataset
First, we need to generate the toy dataset shown in Figure 6.1. To do this, we will make 
use of the make_blobs function from the datasets module in scikit-learn. If you are 
running your code locally, you would need to install scikit-learn using the pip command:

pip install sklearn

Otherwise, if you are using Google Colab, scikit-learn, as well as all the other external 
libraries used in this chapter's code, already comes preinstalled, so you only need to 
import it into your program.

The make_blobs function, as the name suggests, generates blobs (in other words, 
clusters) of data points. Its API is simple and readable:

X, y = make_blobs(

    n_samples=500, n_features=2, centers=2, \

      cluster_std=0.5, random_state=0

)

Here we are creating a two-dimensional (specified by n_features) dataset of 500 
points (specified by n_samples). These data points should belong to one of two classes 
(specified by centers). The cluster_std argument controls how tightly the points 
belonging to the same class cluster together; in this case, we are setting it to 0.5. At this 
point, we have a dataset of 500 points, each of which has two features and belongs to either 
the positive class or the negative class. The variable X is a NumPy array that contains the 
features, having a shape of (500, 2), while y is a 500-long, one-dimensional, binary 
array containing the labels.

By default, the negative class has the label of 0 in y. As a data preprocessing step, we  
will convert all the instances of 0 in y to -1 using NumPy's convenient conditional 
indexing syntax:

y[y == 0] = -1
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We are also adding to X a third feature column that only contains instances of 1. This 
column is a constant and corresponds to the free coefficient 𝑤𝑤0  in our model:

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2) 

On the other hand, 𝑤𝑤1  and 𝑤𝑤2  are the coefficients for the first and second features in X.

We have now generated our toy example. If you now call Matplotlib to generate a scatter 
plot on X, for example, via the following code:

plt.scatter(X[:, 0], X[:, 1], c=y);

You will obtain the same plot as in Figure 6.1. And with that, we are ready to begin 
building our predictive model.

Building a linear model
Remember two core components of a machine learning pipeline: the model and the loss 
function. To build our model, we first need to write functions that correspond to these 
components. First, the model comes in the form of the predict function:

import jax.numpy as jnp

def predict(w, X):

    return jnp.dot(X, w)

This function takes in the model's parameters w, implicitly assumed to be in the form of 
a NumPy array, and the features of the training data points X, a NumPy two-dimensional 
matrix. Here we are using the dot function from the NumPy module of JAX, aliased 
jnp in the code, to take the dot product of w and X. If you are unfamiliar with the dot 
product, it is simply an algebraic operation that is a shorthand for the linear combination 
𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2  that corresponds to our model. Overall, this function encodes for our 
model that the prediction we make about the label of a data point is (the sign of) the dot 
product of the parameters and the data features.

While not a focus of our discussion, it is important at this point to note that the numpy 
module of JAX provides nearly identical APIs for mathematical operations as NumPy. 
The dot function is simply one example; others could be found on their documentation 
site: https://jax.readthedocs.io/en/latest/jax.numpy.html. This is 
to say that if you have accumulated a significant amount of code in NumPy but would 
like to convert it to JAX, replacing your import statement of import numpy as np 
with import jax.numpy as np would, in most cases, do the trick; no complicated, 
painstaking conversion is necessary.

https://jax.readthedocs.io/en/latest/jax.numpy.html
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So, we have implemented the prediction function of our model. Our next task is to write 
the loss function

𝐿𝐿 =  1
𝑛𝑛 ∑ max(0, 1 −  𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖) ,

𝑛𝑛

𝑖𝑖=1
 

 
The loss function can be written with the following code:

def loss(w):

    preds = predict(w, X)

    return jnp.mean(jnp.clip(1 - jnp.multiply(y, preds), \

      a_min=0))

Let's take a moment to break this code down. This loss function is a function of w, since, 
if w changes, the loss will change accordingly.

Now, let's focus on the term inside the summation symbol in the previous formula: it is 
the max between 0 and 1 −  𝑦𝑦𝑖𝑖 �̅�𝑦𝑖𝑖 , where 𝑦𝑦𝑖𝑖  is the true label of a data point and  �̅�𝑦𝑖𝑖  is the 
corresponding prediction made by the model. As such, we compute this quantity with 
jnp.clip(1 - jnp.multiply(y, preds), a_min=0), before which we call  
the predict function to obtain the values for  �̅�𝑦𝑖𝑖 , stored in the preds variable.

If you are familiar with the NumPy equivalent, you might have noticed that these 
functions that we are using, clip and multiply, have an identical interface in NumPy; 
again, JAX tries to make the transition for NumPy users as seamless as possible. Finally, we 
compute the mean of this max term across all training examples with the mean function.

Believe it or not, we have successfully implemented our linear model! With a specific 
value for w, we will be able to predict what the label of a data point is using the predict 
function and compute our loss with the loss function. At this point, we can try out 
different values for w; as a common practice, we will initialize w to be random numbers:

np.random.seed(0)

w = np.random.randn(3)

The last step of our training procedure is to find the best value for w that minimizes the 
loss, which we will implement next.



Automatic differentiation for loss minimization     173

Gradient descent with automatic differentiation
Recall that in the gradient descent algorithm, we compute the gradient of the loss function 
for the current value of w and then adjust w by subtracting a fraction of the gradient 
(effectively moving in the opposite direction of the gradient).

Again, in the past, we would need to derive the gradient in closed form and implement it 
in our code. With automatic differentiation, we simply need the following:

from jax import grad

loss_grad = grad(loss)

loss is the function we implemented in the last subsection. Here we are using the grad 
function from JAX to obtain the gradient function of loss. This is to say that if we were to 
call loss_grad, the gradient function, on a given value of w using loss_grad(w), we 
would obtain the gradient of the loss function at w, in the same way loss(w) gives us 
the loss itself at w.

This is a so-called function transformation, which takes in a function in Python (loss in 
our case) and returns a related function (loss_grad) that could then be called on actual 
inputs to compute quantities that we are interested in. Function transformations are a 
powerful interface that makes it easy to work with functional logic and are the main way 
in which you use JAX. We will see that all other functionalities offered by JAX discussed  
in this chapter are function transformations.

With our gradient function in hand, we now implement gradient descent using a simple 
for loop:

n_iters = 200

lr = 0.01

loss_grad = grad(loss)

for i in range(n_iters):

    grads = loss_grad(w)

    w = w - lr * grads

    tmp_loss = loss(w)

    if tmp_loss == 0:

        break
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If you are looking at the Google Colab notebook, you might see some other book-keeping 
code that is used to show a real-time progress bar, but the preceding code is the main logic 
of gradient descent.

At each iteration of the for loop, we compute the gradient of the loss function at the 
current value of w, and then use that gradient to adjust the value of w: w = w - lr 
* grads. How big of a step we will take in the opposite direction of the gradient is 
controlled by the lr variable, set to 0.01. This variable is typically referred to as the 
learning rate in the language of machine learning.

After the adjustment, we will check to see whether this new value of w does, in fact, 
minimize our loss at 0, in which case we simply exit the for loop with the break 
statement. If not, we repeat this process until some termination condition is satisfied;  
in our case, we simply say that we only do this for at most 200 times (specified by the 
n_iters variable).

When we run the code, we will observe that as the for loop progresses, the value of the 
loss decreases for each adjustment. At the end of the loop, our loss decreases to a small 
number: roughly 0.013. Using Matplotlib, we could quickly sketch out the progression  
of this decrease with plt.plot(losses), which produces the following plot:

Figure 6.3 – The decrease in loss of the linear model

We see that with the random guess for the value of w at the beginning, we receive a loss of 
roughly 2.5, but using gradient descent, we have reduced it to almost zero. At this point, we 
can be confident that the value of w that we currently have after gradient descent fits our 
data well.

This concludes the training of our linear predictive model. A customary task that follows 
training a model is to examine the predictions made by the model across a whole feature 
space. This process helps ensure that our model is learning appropriately. When working 
in a low-dimensional space such as ours, we can even visualize this space.
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Specifically, our decision boundary is a straight line that (hopefully) separates the two 
classes that we'd like to perform classification: 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 = 0 , where 𝑥𝑥1  and 𝑥𝑥2  are 
coordinates of points within our two-dimensional space. As such, we can draw this line by 
first generating a fine-grid array for the x coordinates (𝑥𝑥1) :

xs = np.linspace(X[:, 0].min(), X[:, 0].max(), 100)

We can derive the y coordinates (𝑥𝑥2)  using the equation for the line we had previously:

plt.plot(xs, (xs * w[0] + w[2]) / - w[1])

Plotting this line together with the scattered points corresponding to our training data,  
we obtain the following plot:

Figure 6.4 – The decision boundary of the learned model

We see that our decision boundary nicely separates the two classes that we have. Now, 
when we'd like to make a prediction regarding which class an unseen point belongs to, we 
simply put its features through our predict function and look at the sign of the output.

And that is all there is to it! Of course, when we work with more complicated models, 
other more specialized considerations need to be made. However, the high-level process 
remains unchanged: designing a model and its loss function and then using gradient 
descent (or some other loss minimization strategy) to find the optimal combination of 
parameters. We have seen that using the automatic differentiation module in JAX, we were 
able to do this easily with minimal code while avoiding the hairy math that is usually 
involved with deriving the gradient of a loss function.

With that said, the benefits that JAX offers don't stop there. In our next section, we will see 
how to make our current code more efficient by using JAX's internal Just-In-Time (JIT) 
compiler.
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Just-In-Time compilation for improved 
efficiency
As we have learned from the last chapter, JIT compilation allows a piece of code that is 
expected to run many times to be executed more efficiently. This process is specifically 
useful in machine learning where functions such as the loss or the gradient of the loss of 
a model need to be computed many times during the loss minimization phase. We hence 
expect that by leveraging a JIT compiler, we can make our machine learning models  
train faster.

You might think that to do this, we would need to hook one of the JIT compilers we 
considered in the last chapter into JAX. However, JAX comes with its own JIT compiler, 
which requires minimal code to integrate in an existing program. We will see how to use  
it by modifying the training loop we made in the last section.

First, we reset the 𝑤𝑤𝑖𝑖  parameters of our models:

np.random.seed(0)

w = np.random.randn(3)

Now, the way we will integrate the JIT compiler into our program is to point it to the 
gradient of our loss function. Remember that we can reap the benefits of JIT compilation 
by applying it to a piece of code that we expect to execute many times, which we have 
mentioned is exactly the case for the loss gradient. Recall that we were able to derive  
this gradient in the last section using the grad function transformation:

loss_grad = grad(loss)

To obtain the JIT-compiled version of this function, we can follow a very similar process, 
in which we transform this loss gradient function using jit:

from jax import jit

loss_grad = jit(grad(loss))

Amazingly, that is all we need to do. Now, if we run the same training loop we currently 
have, with this one line changed, we will obtain the same result, including the learning 
curve and the decision boundary we plotted earlier.
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However, upon inspecting the running time of the training loop, we will notice that the 
training loop is now much more efficient: within our Google Colab notebook, the speed 
goes from roughly 77 iterations to 175 iterations per second! Note that although these 
numbers might vary across different runs of the code, the improvement should stay 
apparent. While this speedup might not be meaningful to us and our simple linear model, 
it will prove useful for more heavyweight models such as neural networks, with millions  
to billions of parameters, which take weeks and months to train.

Furthermore, this speedup was achieved with a single line of code changed using the 
function transformation, jit. This means that however complicated the functions you  
are working with are, if they are JAX-compatible, you can simply pass them through jit 
to enjoy the benefits of JIT compilation.

At this point, we have explored two powerful techniques to accelerate our machine 
learning pipeline: automatic differentiation and JIT compilation. In the next section,  
we will look at a final valuable feature of JAX – automatic vectorization.

Automatic vectorization for efficient kernels
You might remember from our discussions on NumPy that the library is efficient at 
applying numerical operations to all elements in an array or the elements along specific 
axes. By exploiting the fact that the same operation is to be applied to multiple elements, 
the library optimizes low-level code that performs the operation, making the computation 
much more efficient than doing the same thing via an iterative loop. This process is  
called vectorization.

When working with machine learning models, we would like to go through a procedure 
of vectorizing a specific function, rather than looping through an array or a matrix, to gain 
performance speedup. Vectorization is typically not easy to do and might involve clever 
tricks to rewrite the function that we'd like to vectorize into another form that admits 
vectorization easily.

JAX addresses this concern by providing a function transformation that automatically 
vectorizes a given function, even if the function is only designed to take in single-valued 
variables (which means traditionally, an iterative loop would be necessary). In this section, 
we will see how to use this feature by going through the process of kernelizing our 
predictive model. First, we need to briefly discuss what kernels are as well as their place  
in machine learning.
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Data that is not linearly separable
Remember that the predictive model we currently have assumes that the target we'd like 
to predict for can be expressed as a linear combination of the data features; the model is 
thus a linear one. This assumption is quite restrictive in practice, as data can present highly 
nonlinear and still meaningful patterns.

For example, here we use the make_moons function from the same datasets module 
of scikit-learn to generate another toy dataset and visualize it, again using a scatter plot:

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=200, noise=0.1, random_state=0)

X = np.hstack((X, np.ones_like(y).reshape(-1, 1)))

y[y == 0] = -1

plt.scatter(X[:, 0], X[:, 1], c=y);

This will generate the following plot:

Figure 6.5 – A linearly non-separable dataset

Once again, this is a binary classification problem where we need to distinguish between 
the yellow and the dark blue points. As you can see, these data points are not linearly 
separable since, unlike our previous dataset, a straight line that perfectly separates the two 
classes here does not exist. In fact, if we were to try to fit a linear model to this data, we 
would obtain a model with a relatively high loss (roughly 0.7) and a decision boundary 
that is clearly unsuitable, as shown here:
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Figure 6.6 – Fitting a linear model on nonlinear data

How, then, could we modify our current model so that it can handle nonlinear data? A 
typical solution in these kinds of situations is the kernel method in machine learning, 
which we will briefly discuss next.

The kernel method in machine learning
Without going into much technical detail, the kernel method (sometimes referred to as the 
kernel trick) refers to the process of transforming a low-dimensional dataset, such as ours, 
that is nonlinear to higher dimensions, with the hope that in higher dimensions, linear 
hyperplanes that separate the data will exist.

To take a data point to higher dimensions, additional features are created from the features 
already included in the original data. In our running example, we are given the x and y 
coordinates of the data points; hence, our data is two-dimensional. A common way to 
compose more features in this case is to compute polynomials of these coordinates up to 
a degree, d. For instance, polynomials that are up to degree 2 for features x and y include 
xy and 𝑥𝑥2 . The larger d is, the more expressiveness we will gain from these new features we 
are creating, but we will also incur a higher computational cost.

Notice that these polynomial features are nonlinear, which motivates their use in helping 
us find a model that separates our nonlinear data. With these new, nonlinear features in 
hand, we will then fit our predictive model on this bigger, more expressive dataset we just 
engineered. Note that while the predictive model remains in the same form as the linear 
parameters 𝑤𝑤𝑖𝑖 , the data features that the model learns from are nonlinear, so the resulting 
decision boundary will also be nonlinear.
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I mentioned earlier that the more expressive we want the features we are synthetically 
creating to be, the more computational costs we will incur. Here, kernels are a way to 
manipulate the data points so that we can interact with them in higher dimensions 
without having to explicitly compute the high-dimensional features. In essence, a kernel 
is simply a function that takes in a pair of data points and returns the inner product of 
some transformation of the feature vectors. This is just to say that it returns a matrix that 
represents the two data points in higher dimensions.

In this chapter, we will use one of the most popular kernels in machine learning: the radial 
basis function, or RBF, kernel, which is defined as follows:

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) =  𝑒𝑒−(𝑥𝑥−𝑥𝑥′)2/𝑙𝑙 

where x and x' are the low-dimensional feature vectors of the two data points, and l is 
commonly referred to as the length scale, a tunable parameter of the kernel. There are 
many benefits to using the RBF kernel that we won't be going into in much detail here, but 
on the highest level, RBF can be regarded as an infinite-dimensional kernel, which means 
that it will provide us with a high level of expressiveness in the features we are computing.

The new model using this kernel method, modified from our previous linear model, now 
makes the following assumption for each pair of feature vector x and label y:

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝐾𝐾(𝑥𝑥, 𝑥𝑥1) + 𝛼𝛼2𝐾𝐾(𝑥𝑥, 𝑥𝑥2) + ⋯ +  𝛼𝛼𝑛𝑛𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛) 

where 𝑥𝑥𝑖𝑖  is the i-th data point in the training set and 𝛼𝛼𝑖𝑖  are the model parameters to be 
optimized. While this assumption is written to contrast the linear assumption that we  
had earlier:

𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 

𝑥𝑥𝑖𝑖  now refers to the entire feature vector of a data point, not the i-th feature of a data point. 
Further, we now have n terms of 𝛼𝛼𝑖𝑖 , as opposed to 2 (or d) terms of 𝑤𝑤𝑖𝑖  as before.

We see the role of the kernel here is to transform the feature of x by computing the inner 
product of its features and those of each of the data points in the training set. The output 
of the kernel is then used as the new features to be multiplied by the model parameters 𝛼𝛼𝑖𝑖 , 
whose values will be optimized as part of the training process.

Let's now implement this kernel in our code:

lengthscale = 0.3

def rbf_kernel(x, z):

    return jnp.exp(- jnp.linalg.norm(x - z) ** 2  \

      / lengthscale)
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Here we are setting the length scale at 0.3, but feel free to play around with this value and 
observe its effect on the learned model afterward. The rbf_kernel function takes in x 
and z, two given data points. The code inside the function is self-explanatory: we compute 
the squared norm of the difference between x and z (linalg.norm in JAX follows the 
same API as in NumPy), divide it by lengthscale, and use its negative as the input of 
the natural exponential function, exp.

Now, we need to implement the new version of the predict function for our kernelized 
model, which we will see how to do in the next subsection.

Automatic vectorization for kernelized models
You might remember that the job of the prediction function is to implement the 
assumption our model is making, which in this case is:

𝑦𝑦 = 𝛼𝛼0 + 𝛼𝛼1𝐾𝐾(𝑥𝑥, 𝑥𝑥1) + 𝛼𝛼2𝐾𝐾(𝑥𝑥, 𝑥𝑥2) + ⋯ +  𝛼𝛼𝑛𝑛𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛) 

The challenge here is in the sum 𝛼𝛼1𝐾𝐾(𝑥𝑥, 𝑥𝑥1) + 𝛼𝛼2𝐾𝐾(𝑥𝑥, 𝑥𝑥2) + ⋯ + 𝛼𝛼𝑛𝑛𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛) , where 𝑥𝑥1 , 𝑥𝑥2 , …, 
𝑥𝑥𝑛𝑛  are the individual data points in our training set. In a naïve implementation, we would 
iterate through each data point 𝑥𝑥𝑖𝑖 , compute 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) , multiply it by 𝛼𝛼𝑖𝑖 , and finally, add these 
terms together. Computing the inner product of two vectors is generally a computationally 
expensive operation, so repeating this computation n times would be prohibitively costly.

To make this kernelized model more practical, we'd like to vectorize this procedure. 
Normally, this would require reimplementing our kernel function using various tricks to 
enable vectorization. However, with JAX, we can effortlessly obtain the vectorized version 
of the rbf_kernel function using the vmap transformation:

from jax import vmap

kernel = rbf_kernel

vec_kernel = jit(vmap(vmap(kernel, (0, None)), (None, 0)))

Don't let the last line of code intimidate you. Here we are simply getting the vectorized 
form of our kernel function along the first axis (remember the kernel has two inputs)  
with vmap(kernel, (0, None), and then vectorizing that very vectorized-along-
the-first-axis kernel along the second axis with vmap(vmap(kernel, (0, None)), 
(None, 0)). Finally, we derive the JIT-compiled version of the function with jit.
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Aside from being a concise one-liner, this code perfectly illustrates why function 
transformation (JAX's design choice) is so useful: we can compose different function 
transformations in a nested way, repeatedly calling a transformation on the output of 
another transformation; in this case, we have the JIT-compiled function of a twice-
vectorized function.

With this vectorized kernel function composed, we are now ready to implement the 
corresponding predict and loss functions:

def predict(alphas, X_test):

    return jnp.dot(vec_kernel(X, X_test), alphas)

def loss(alphas):

    preds = predict(alphas, X)

    return jnp.mean(jnp.clip(1 - jnp.multiply(y, preds), \

      a_min=0))

Of note here is the predict function, where we are calling vec_kernel(X, X_test) 
to compute the vector of [1, 𝐾𝐾(𝑥𝑥, 𝑥𝑥1), 𝐾𝐾(𝑥𝑥, 𝑥𝑥2), … , 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)]  via vectorization. Remember 
that without vmap, we would need to either iterate through the individual data points 
(for example, using a for loop), which is specifically more inefficient, or rewrite our 
rbf_kernel function so that the function itself facilitates the vectorization. In the end, 
we simply compute the dot product between the returned output and the vector of the 
parameters we'd like to optimize, alphas.

Our loss function stays the same. We now can apply the same training procedure as we 
have before, this time on the alphas variable:

np.random.seed(0)

alphas = np.random.randn(y.size)

for i in range(n_iters):

    grads = loss_grad(alphas)

    alphas = alphas - lr * grads

    tmp_loss = loss(alphas)

    if tmp_loss == 0:

        break
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We can also plot out the progression of the loss throughout this training:

Figure 6.7 – The decrease in loss of the kernelized model

We see a steady decrease in loss, indicating that the model is fitting its parameters to the 
data. In the end, our loss is well below 0.7, which was the loss of the purely linear model 
we previously had.

Finally, we'd like to visualize what our model has learned. This is a bit more involved as  
we no longer have a nice linear equation that we can translate into a line as before. Instead, 
we visualize the predictions made by the model itself. In the following figure, we show 
these predictions made on a fine grid that spans across our training data points, where the 
colors show the predicted classes, and the hues show the confidence in the predictions:

Figure 6.8 – Predictions made by the learned kernelized model

We see that the model was able to identify the nonlinear pattern in our data, indicated 
by the yellow and dark blue blobs lying right in the center of the moons. As such, we 
have successfully modified our predictive model to learn from nonlinear data, which was 
done by using a kernel to create nonlinear features and JAX's automatic vectorization 
transformation to accelerate this computation.
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Here, the speed we achieve is roughly 160 iterations per second. To once again see how big 
a speedup the JIT compiler offers our program, we remove the jit() function calls from 
the implementation of our model and rerun the code with the following changes:

kernel = rbf_kernel

vec_kernel = vmap(vmap(kernel, (0, None)), (None, 0))

loss_grad = grad(loss)

This time, the speedup is even more impressive: without JIT, the speed drops to 47 
iterations per second.

This concludes our discussion on JAX and some of its main features. However, there are 
other more advanced tools included in JAX that we didn't cover but could prove useful 
in your machine learning applications such as asynchronous dispatch, parallelization, 
or computing convolutions. Information on these features may be found on the 
documentation page: https://jax.readthedocs.io/en/latest/.

Summary
JAX is a Python- and NumPy-friendly library that offers high-performance tools 
that are specific to machine learning tasks. JAX centers its API around function 
transformations, allowing users, in one line of code, to pass in generic Python functions 
and receive transformed versions of the functions that would otherwise either be 
expensive to compute or require more advanced implementations. The syntax of function 
transformations also enables flexible and complex compositions of functions, which are 
common in machine learning.

Throughout this chapter, we have seen how to utilize JAX to compute the gradient of 
machine learning loss functions using automatic differentiation, JIT-compile our code for 
further optimization, and vectorize kernel functions via a binary classification example. 
However, these tasks are present in most use cases, and you will be able to seamlessly  
apply what we have discussed here to your own machine learning needs.

At this point, we have reached the end of the first part of this book, in which we discuss 
Python-native and various other techniques to accelerate our Python applications. In 
the second part of the book, we examine parallel and concurrent programming, the 
techniques of which allow us to distribute computational loads across multiple threads 
and processes, making our applications more efficient on a linear scale.

https://jax.readthedocs.io/en/latest/
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Questions
1. What are the main components of a machine learning pipeline?
2. How is the loss function of a machine learning model typically minimized and  

how does JAX help with this process?
3. How can the predictive model used in this chapter handle nonlinear data and  

how does JAX help with this process?

Further reading
• Linear models in machine learning: https://blog.dataiku.com/

top-machine-learning-algorithms-how-they-work-in-plain-
english-1

• The JAX ecosystem: https://moocaholic.medium.com/
jax-a13e83f49897

• A brief tutorial that further explores JAX: https://colinraffel.com/blog/
you-don-t-know-jax.html

https://blog.dataiku.com/top-machine-learning-algorithms-how-they-work-in-plain-english-1
https://blog.dataiku.com/top-machine-learning-algorithms-how-they-work-in-plain-english-1
https://blog.dataiku.com/top-machine-learning-algorithms-how-they-work-in-plain-english-1
https://moocaholic.medium.com/jax-a13e83f49897
https://moocaholic.medium.com/jax-a13e83f49897
https://colinraffel.com/blog/you-don-t-know-jax.html
https://colinraffel.com/blog/you-don-t-know-jax.html




Section 2:  
Concurrency and 

Parallelism

Advances in modern hardware allow parallel and concurrent processing of data, further 
increasing the performance of computer programs. The chapters in Section 2 discuss tools 
and libraries for implementing parallelism and concurrency, including hands-on examples 
that allow you to immediately apply the knowledge you learn.

This section contains the following chapters:

• Chapter 7, Implementing Concurrency

• Chapter 8, Parallel Processing

• Chapter 9, Concurrent Web Requests

• Chapter 10, Concurrent Image Processing

• Chapter 11, Building Communication Channels with asyncio

• Chapter 12, Deadlocks

• Chapter 13, Starvation

• Chapter 14, Race Conditions

• Chapter 15, The Global Interpreter Lock





7
Implementing 

Concurrency
So far, we have explored how to measure and improve the performance of programs by 
reducing the number of operations performed by the central processing unit (CPU) 
through clever algorithms and more efficient machine code. In this chapter, we will shift 
our focus to programs where most of the time is spent waiting for resources that are  
much slower than the CPU, such as persistent storage and network resources.

Asynchronous programming is a programming paradigm that helps to deal with slow 
and unpredictable resources (such as users) and is widely used to build responsive 
services and user interfaces (UIs). In this chapter, we will show you how to program 
asynchronously in Python using techniques such as coroutines and reactive programming. 
As we will see, the successful application of these techniques will allow us to speed up our 
programs without the use of specialized data structures or algorithms.

In this chapter, we will cover the following topics:

• Asynchronous programming

• The asyncio framework

• Reactive programming
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Technical requirements
The code for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter07.

Asynchronous programming
Asynchronous programming is a way of dealing with slow and unpredictable resources. 
Rather than waiting idly for resources to become available, asynchronous programs can 
handle multiple resources concurrently and efficiently. Programming in an asynchronous 
way can be challenging because it is necessary to deal with external requests that can 
arrive in any order, may take a variable amount of time, or may fail unpredictably. In this 
section, we will introduce the topic by explaining the main concepts and terminology as 
well as by giving an idea of how asynchronous programs work.

Waiting for input/output
A modern computer employs different kinds of memory to store data and perform 
operations. In general, a computer possesses a combination of expensive memory that is 
capable of operating efficiently and cheaply and more abundant memory that is slower 
and is used to store a larger amount of data.

The memory hierarchy is shown in the following diagram:

Figure 7.1 – Illustration of the memory hierarchy

At the top of the memory hierarchy, are the CPU registers. Those are integrated with the 
CPU and are used to store and execute machine instructions. Accessing data in a register 
generally takes one clock cycle. This means that if the CPU operates at 3 gigahertz (GHz), 
the time it takes to access one element in a CPU register is in the order of 0.3 nanoseconds.

At the layer just below the registers, you can find the CPU cache, which comprise multiple 
levels and is integrated with the processor. The cache operates at a slightly slower speed 
than the registers but within the same order of magnitude (OOM).

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter07
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The next item in the hierarchy is the main memory (random-access memory, or RAM), 
which holds much more data but is slower than the cache. Fetching an item from memory 
can take a few hundred clock cycles.

At the bottom layer, you can find persistent storage, such as rotating disks (hard disk drives 
(HDDs)) and solid-state drives (SSDs). These devices hold the most data and are OOMs 
slower than the main memory. An HDD may take a few milliseconds to seek and retrieve  
an item, while an SSD is substantially faster and takes only a fraction of a millisecond.

To put the relative speed of each memory type into perspective, if you were to have the 
CPU with a clock speed of about 1 second, a register access would be equivalent to picking 
up a pen from a table. A cache access would be equivalent to picking up a book from a 
shelf. Moving higher up the hierarchy, a RAM access would be equivalent to loading up 
the laundry (about 20 times slower than the cache). When we move to persistent storage, 
things are quite different. Retrieving an element from an SSD will be equivalent to going 
on a 4-day road trip while retrieving an element from an HDD can take up to 6 months! 
The duration can stretch even further if we move on to access resources over the network.

Overall, accessing data from storage and other input/output (I/O) devices is much slower 
compared to the CPU; therefore, it is very important to handle those resources so that 
the CPU is never stuck waiting aimlessly. This can be accomplished by carefully designed 
software capable of managing multiple ongoing requests at the same time. This is the idea 
of concurrency or concurrent programming.

Concurrency
Concurrency is a way to implement a system that can deal with multiple requests at the 
same time. The idea is that we can move on and start handling other resources while we 
wait for a resource to become available. Concurrency works by splitting a task into smaller 
subtasks that can be executed out of order so that multiple tasks can be partially advanced 
without waiting for the previous tasks to finish.

As a first example, we will describe how to implement concurrent access to a slow 
network resource; the code for this example is included in Chapter07/example1.py. 
Let's say we have a web service that takes the square of a number, and the time between 
our request and the response will be approximately 1 second. We can implement the 
network_request function that takes a number and returns a dictionary that contains 
information about the success of the operation and the result. We can simulate such 
services using the time.sleep function, as follows:

    import time

    def network_request(number):
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        time.sleep(1.0)

        return {"success": True, "result": number ** 2}

We will also write some additional code that performs the request, verifies that the 
request was successful, and prints the result. In the following code snippet, we define the 
fetch_square function and use it to calculate the square of the number 2 using a call 
to network_request:

    def fetch_square(number):

        response = network_request(number)

        if response["success"]:

            print("Result is: \

              {}".format(response["result"]))

    fetch_square(2)

    # Output:

    # Result is: 4

Fetching a number from the network will take 1 second because of the slow network. What 
if we want to calculate the square of multiple numbers? We can call fetch_square, 
which will start a network request as soon as the previous one is done. Its use is illustrated 
in the following code snippet:

    fetch_square(2)

    fetch_square(3)

    fetch_square(4)

    # Output:

    # Result is: 4

    # Result is: 9

    # Result is: 16

This code as-is will take roughly 3 seconds to run, but it's not the best we can do. Notice 
that the calculation of the square of 2 is independent of that of the square of 3, and both 
are in turn independent of calculating the square of 4. As such, waiting for a previous 
result to finish before moving on to the next number is unnecessary, if we can technically 
submit multiple requests and wait for them at the same time.
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In the following diagram, the three tasks are represented as boxes. The time spent by 
the CPU processing and submitting the request is in orange, while the waiting times are 
in blue. You can see how most of the time is spent waiting for the resources while our 
machine sits idle without doing anything else:

Figure 7.2 – Illustration of the execution time of independent calculations

Ideally, we would like to start another new task while we are waiting for the already 
submitted tasks to finish. In the following screenshot, you can see that as soon as we submit 
our request in fetch_square(2), we can start preparing for fetch_square(3), and 
so on. This allows us to reduce the CPU waiting time and to start processing the results as 
soon as they become available:

Figure 7.3 – A more efficient way of performing independent calculations

Again, this strategy is made possible by the fact that the three requests are completely 
independent, and we don't need to wait for the completion of a previous task to start 
the next one. Also, note how a single CPU can comfortably handle this scenario. While 
distributing the work on multiple CPUs can further speed up the execution, if the waiting 
time is large compared to the processing times, the speedup will be minimal.

To implement concurrency, it is necessary to think about our programs and their design 
differently; in the following sections, we'll demonstrate techniques and best practices to 
implement robust concurrent applications, starting with a new concept: callbacks.

Callbacks
The code we have seen so far blocks the execution of the program until the resource is 
available. The call responsible for the waiting is time.sleep. To make the code start 
working on other tasks, we need to find a way to avoid blocking the program flow so  
that the rest of the program can move on to these other tasks.
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One of the simplest ways to accomplish this behavior is through callbacks. The strategy 
is quite similar to what we do when we request a cab. Imagine that you are at a restaurant 
and you've had a few drinks. It's raining outside, and you'd rather not take the bus; 
therefore, you request a taxi and ask them to call when they're outside so that you can 
come out and you don't have to wait in the rain. What you did, in this case, is request a taxi 
(that is, the slow resource), but instead of waiting outside until the taxi arrives, you provide 
your number and instructions (callback) so that you can come outside when they're ready 
and go home.

We will now show how this mechanism can work in code. We will compare the blocking 
code of time.sleep with the equivalent non-blocking code of threading.Timer.

For this example, which is implemented in example2.py, we will write a function, 
wait_and_print, that will block the program execution for 1 second and then print  
a message, as follows:

    def wait_and_print(msg):

        time.sleep(1.0)

        print(msg)

If we want to write the same function in a non-blocking way, we can use the 
threading.Timer class. We can initialize a threading.Timer instance by passing 
the amount of time we want to wait and a callback. A callback is simply a function that 
will be called when the timer expires. Note in the following code snippet that we also  
must call the Timer.start method to activate the timer:

    import threading

    def wait_and_print_async(msg):

        def callback():

            print(msg)

        timer = threading.Timer(1.0, callback)

        timer.start()

An important feature of the wait_and_print_async function is that none of the 
statements is blocking the execution flow of the program.
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How Is threading.Timer Capable of Waiting without Blocking?
The strategy used by threading.Timer involves starting a new thread 
that can execute code in parallel. If this is confusing, don't worry, as we will 
explore threading and parallel programming in detail in the following chapters.

This technique of registering callbacks for execution in response to certain events is 
commonly called the Hollywood principle. This is because, after auditioning for a movie 
or TV role at Hollywood, you may be told Don't call us, we'll call you, meaning that they 
won't tell you if they chose you for the role immediately, but they'll call you if they do.

To highlight the difference between the blocking and non-blocking versions of  
wait_and_print, we can test and compare the execution of the two versions. In the 
output comments, the waiting periods are indicated by <wait...>, as illustrated in the 
following code snippet:

    # Synchronous

    wait_and_print("First call")

    wait_and_print("Second call")

    print("After call")

    # Output:

    # <wait...>

    # First call  

    # <wait...>

    # Second call

    # After call

    # Asynchronous

    wait_and_print_async("First call async")

    wait_and_print_async("Second call async")

    print("After submission")

    # Output:

    # After submission 

    # <wait...>

    # First call

    # Second call
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The synchronous version behaves in a very familiar, expected way. The code waits for a 
second, prints First call, waits for another second, and then prints Second call 
and After call messages.

In the asynchronous version, wait_and_print_async submits (rather than executes) 
those calls and moves on immediately. You can see this mechanism in action by noticing 
that the "After submission" message is printed immediately.

With this in mind, we can explore a slightly more complex situation by rewriting  
our network_request function using callbacks. In example3.py, we define  
a network_request_async function, as follows:

    def network_request_async(number, on_done):

        def timer_done():

            on_done({"success": True, \

                     "result": number ** 2})

        timer = threading.Timer(1.0, timer_done)

        timer.start()

The biggest difference between network_request_async and its blocking counterpart 
is that network_request_async doesn't return anything. This is because we are merely 
submitting the request when network_request_async is called, but the value is 
available only when the request is completed.

If we can't return anything, how do we pass the result of the request? Rather than 
returning the value, we will pass the result as an argument to the on_done callback. 
The rest of the function consists of submitting a callback (called timer_done) to the 
threading.Timer class that will call on_done when it's ready.

The usage of network_request_async is quite similar to threading.Timer; all we 
have to do is pass the number we want to square and a callback that will receive the result 
when it's ready. This is demonstrated in the following code snippet:

    def on_done(result):

        print(result)

    network_request_async(2, on_done)
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Now, if we submit multiple network requests, we note that the calls get executed 
concurrently and do not block the code, as illustrated in the following code snippet:

    network_request_async(2, on_done)

    network_request_async(3, on_done)

    network_request_async(4, on_done)

    print("After submission")

In order to use network_request_async in fetch_square, we need to adapt  
the code to take advantage of asynchronous constructs. In the following code snippet,  
we modify fetch_square by defining and passing the on_done callback to  
network_request_async:

    def fetch_square(number):

        def on_done(response):

            if response["success"]:

                print("Result is: \

                  {}".format(response["result"]))

        network_request_async(number, on_done)

You may have noted that the asynchronous code is significantly more convoluted than its 
synchronous counterpart. This is due to the fact that we are required to write and pass a 
callback every time we need to retrieve a certain result, causing the code to become nested 
and hard to follow.

Fortunately, a concept that is essential to concurrent programming that we are examining 
next, futures, will help simplify matters.

Futures
Futures are a more convenient pattern that can be used to keep track of the results of 
asynchronous calls. In the preceding code snippet, we saw that rather than returning 
values, we accept callbacks and pass the results when they are ready. It is interesting  
to note that, so far, there is no easy way to track the status of the resource.
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A future is an abstraction that helps us keep track of the requested resources that we 
are waiting to become available. In Python, you can find a future implementation in the 
concurrent.futures.Future class. A Future instance can be created by calling  
its constructor with no arguments, as in the following IPython snippet:

    from concurrent.futures import Future

    fut = Future()

    # Result:

    # <Future at 0x7f03e41599e8 state=pending>

A future represents a value that is not yet available. You can see that its string 
representation reports the current status of the result, which, in our case, is still pending. 
In order to make a result available, we can use the fut.set_result method, as follows:

    fut.set_result("Hello")

    # Result:

    # <Future at 0x7f03e41599e8 state=finished returned 

      str>

    fut.result()

    # Result:

    # "Hello"

You can see that once we set the result, the Future instance will report that the task 
is finished and can be accessed using the fut.result method. It is also possible to 
subscribe a callback to a future so that, as soon as the result is available, the callback is 
executed. To attach a callback, it is sufficient to pass a function to the fut.add_done_
callback method. When the task is completed, the function will be called with the 
Future instance as its first argument and the result can be retrieved using the  
future.result() method, as illustrated in the following code snippet:

    fut = Future()

    fut.add_done_callback(lambda future: 

      print(future.result(), flush=True))

    fut.set_result("Hello")

    # Output:

    # Hello
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To understand how futures can be used in practice, we will adapt the network_
request_async function to use futures in example4.py. The idea is that this time, 
instead of returning nothing, we return a Future instance that will keep track of the 
result for us. Note the following two things:

• We don't need to accept an on_done callback as callbacks can be connected 
later using the fut.add_done_callback method. Also, we pass the generic 
fut.set_result method as the callback for threading.Timer.

• This time, we are able to return a value, thus making the code a bit more similar  
to the blocking version we saw in the preceding section, as illustrated here:

    from concurrent.futures import Future

    def network_request_async(number):

        future = Future()

        result = {"success": True, "result": number  \

          ** 2}

        timer = threading.Timer(1.0, lambda:  \

          future.set_result(result))

        timer.start()

        return future

    fut = network_request_async(2)

Note
Even though we instantiate and manage futures directly in these examples, in 
practical applications, futures are handled by frameworks. 

If you execute the preceding code, nothing will happen as the code only consists of 
preparing and returning a Future instance. To enable further operation of the future 
results, we need to use the fut.add_done_callback method. In the following code 
snippet, we adapt the fetch_square function to use futures:

    def fetch_square(number):

        fut = network_request_async(number)

        def on_done_future(future):

            response = future.result()

            if response["success"]:
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                print("Result is: \

                  {}".format(response["result"]))

        

        fut.add_done_callback(on_done_future)

As you can see, the code still looks quite similar to the callback version, but when  
fetch_square is called, the corresponding future will be processed, and the result 
string will be printed out.

Overall, futures are a different and slightly more convenient way of working with callbacks. 
Futures are also advantageous in the sense that they can keep track of the resource status, 
cancel (unschedule) scheduled tasks, and handle exceptions more naturally.

Event loops
So far, we have implemented parallelism using operating system (OS) threads. However, 
in many asynchronous frameworks, the coordination of concurrent tasks is managed by 
an event loop.

The idea behind an event loop is to continuously monitor the status of the various 
resources (for example, network connections and database queries) and trigger the 
execution of callbacks when specific events take place (for example, when a resource  
is ready or when a timer expires).

Why Not Just Stick to Threading?
Events loops are sometimes preferred as every unit of execution never runs at 
the same time as another, and this can simplify dealing with shared variables, 
data structures, and resources.

As the first example in example5.py, we will implement a thread-free version 
of threading.Timer. We can define a Timer class that will take a timeout and 
implement the Timer.done method, which returns True if the timer has expired.  
The code is illustrated in the following snippet:

    class Timer:

    

        def __init__(self, timeout):

            self.timeout = timeout

            self.start = time.time()
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        def done(self):

            return time.time() - self.start > self.timeout

To determine whether the timer has expired, we can write a loop that continuously checks 
the timer status by calling the Timer.done method. When the timer expires, we can 
print a message and exit the cycle. The code is illustrated in the following snippet:

    timer = Timer(1.0)

  

    while True:

        if timer.done():

            print("Timer is done!")

            break

By implementing the timer in this way, the flow of execution is never blocked, and we can, 
in principle, do other work inside the while loop.

Busy-Waiting
Waiting for events to happen by continuously polling using a loop is commonly 
termed busy-waiting.

Ideally, we would like to attach a custom function that executes when the timer goes 
off, just as we did in threading.Timer. To do this, we can implement a Timer.on_
timer_done method that will accept a callback to be executed when the timer goes off 
in example6.py, as follows:

    class Timer:

       # ... previous code 

       def on_timer_done(self, callback):

            self.callback = callback

Note that on_timer_done merely stores a reference to the callback. The entity that 
monitors the event and executes the callback is the loop. This concept is demonstrated 
as follows. Rather than using the print function, the loop will call timer.callback 
when appropriate:

    timer = Timer(1.0)

    timer.on_timer_done(lambda: print("Timer is done!"))
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    while True:

        if timer.done():

            timer.callback()

            break

As you can see, an asynchronous framework is starting to take place. All we did outside 
the loop was define the timer and the callback, while the loop took care of monitoring 
the timer and executing the associated callback. We can further extend our code by 
implementing support for multiple timers.

A natural way to implement multiple timers is to add a few Timer instances to a list and 
modify our event loop to periodically check all the timers and dispatch the callbacks when 
required. In the following code snippet, we define two timers and attach a callback to each 
of them. Those timers are added to a list, timers, that is continuously monitored by our 
event loop. As soon as a timer is done, we execute the callback and remove the event from 
the list:

    timers = []

    timer1 = Timer(1.0)

    timer1.on_timer_done(lambda: print("First timer is  \

      done!"))

    timer2 = Timer(2.0)

    timer2.on_timer_done(lambda: print("Second timer is  \

      done!"))

    timers.append(timer1)

    timers.append(timer2)

    while True:

        for timer in timers:

            if timer.done():

                timer.callback()

                timers.remove(timer)

        # If no more timers are left, we exit the loop 

        if len(timers) == 0:

            break
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The main restriction of an event loop is, since the flow of execution is managed by a 
continuously running loop, that it never uses blocking calls. If we use any blocking 
statement (such as time.sleep) inside the loop, you can imagine how the event 
monitoring and callback dispatching will stop until the blocking call is done.

To avoid this, rather than using a blocking call such as time.sleep, we let the event loop 
detect and execute the callback when the resource is ready. By not blocking the execution 
flow, the event loop is free to monitor multiple resources in a concurrent way.

How Is the Event Loop Notified of Events?
Events notification is usually implemented through OS calls (such as the 
select Unix tool) that will resume the execution of the program whenever 
an event is ready (in contrast to busy-waiting).

The Python standard libraries include a very convenient event loop-based concurrency 
framework, asyncio, which will be the topic of the next section.

The asyncio framework
At this point, we have seen how concurrency works and how to use callbacks and futures. 
We can now move on and learn how to use the asyncio package, which has been present 
in the standard Python library since version 3.4. We will also explore the async/await 
syntax to deal with asynchronous programming in a very natural way.

As a first example, we will see how to retrieve and execute a simple callback using 
asyncio. The asyncio loop can be retrieved by calling the asyncio.get_event_
loop() function. We can schedule a callback for execution using loop.call_later, 
which takes a delay in seconds and a callback. We can also use the loop.stop method to 
halt the loop and exit the program. To start processing the scheduled call, it is necessary to 
start the loop, which can be done using loop.run_forever. The following example in 
example7.py demonstrates the usage of these basic methods by scheduling a callback 
that will print a message and halt the loop:

    import asyncio

    loop = asyncio.get_event_loop()

    def callback():

        print("Hello, asyncio")
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        loop.stop()

    loop.call_later(1.0, callback)

    loop.run_forever()

This code schedules a callback that will print out a message and then halt the loop. One of 
the main problems with callbacks is that they require you to break the program execution 
into small functions that will be invoked when a certain event takes place. As we saw  
in the earlier sections, callbacks can quickly become cumbersome. In the next section, 
we will see how to work with coroutines to, as with futures, simplify many aspects of 
concurrent programming.

Coroutines
Coroutines are another, perhaps more natural, way to break up the program execution 
into chunks. They allow the programmer to write code that resembles synchronous code 
but will execute asynchronously. You may think of a coroutine as a function that can be 
stopped and resumed. A basic example of coroutines is generators.

Generators can be defined in Python using the yield statement inside a function. In 
the following code example in example8.py, we implement the range_generator 
function, which produces and returns values from 0 to n. We also add a print statement 
to log the internal state of the generator:

    def range_generator(n):

        i = 0

        while i < n:

            print("Generating value {}".format(i))

            yield i

            i += 1

When we call the range_generator function, the code is not executed immediately. 
Note that nothing is printed to output when the following snippet is executed. Instead,  
a generator object is returned:

    generator = range_generator(3)

    generator

    # Result:

    # <generator object range_generator at 0x7f03e418ba40>
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In order to start pulling values from a generator, it is necessary to use the next function, 
as follows:

    next(generator)

    # Output:

    # Generating value 0

    next(generator)

    # Output:

    # Generating value 1

Note that every time we invoke next, the code runs until it encounters the next yield 
statement, and it is necessary to issue another next statement to resume the generator 
execution. You can think of a yield statement as a breakpoint where we can stop and 
resume execution (while also maintaining the internal state of the generator). This 
ability to stop and resume execution can be leveraged by the event loop to allow for and 
implement concurrency.

It is also possible to inject (rather than extract) values in the generator through the yield 
statement. In the following code example in example9.py, we declare a parrot 
function that will repeat each message that we send: 

    def parrot():

        while True:

            message = yield

            print("Parrot says: {}".format(message))

    generator = parrot()

    generator.send(None)

    generator.send("Hello")

    generator.send("World")

To allow a generator to receive a value, you can assign yield to a variable (in our case, it 
is message = yield). To insert values in the generator, we can use the send method. 
In the Python world, a generator that can also receive values is called a generator-based 
coroutine.

Note that we also need to issue a generator.send(None) request before we can start 
sending messages; this is to bootstrap the function execution and bring us to the first 
yield statement. Also, note that there is an infinite loop inside parrot; if we implement 
this without using generators, we will get stuck running the loop forever!
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With this in mind, you can imagine how an event loop can partially progress several of 
these generators without blocking the execution of the whole program, as well as how a 
generator can be advanced only when some resource is ready, therefore eliminating the 
need for a callback.

It is possible to implement coroutines in asyncio using the yield statement. However, 
Python supports the definition of powerful coroutines using a more intuitive syntax. To 
define a coroutine with asyncio, you can use the async def statement, as follows: 

    async def hello():

        print("Hello, async!")

    coro = hello()

    coro

    # Output:

    # <coroutine object hello at 0x7f314846bd58>

As you can see, if we call the hello function, the function body is not executed 
immediately, but a coroutine object instance is returned. The asyncio coroutines 
do not support next, but they can be easily run in the asyncio event loop using the 
run_until_complete method, as follows:

    import asyncio

    loop = asyncio.get_event_loop()

    loop.run_until_complete(coro)

Native Coroutines
Coroutines defined with the async def statement are also called native 
coroutines.

The asyncio module provides resources (called awaitables) that can be requested inside 
coroutines through the await syntax. For example, in example10.py, if we want to 
wait for a certain time and then execute a statement, we can use the asyncio.sleep 
function, as follows:

    async def wait_and_print(msg):

        await asyncio.sleep(1)

        print("Message: ", msg)
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    loop = asyncio.get_event_loop()

    loop.run_until_complete(wait_and_print("Hello"))

The result is beautiful, clean code. We are writing perfectly functional asynchronous code 
without all the ugliness of callbacks!

Breakpoints for Event Loops
You may have noted how await provides a breakpoint for the event loop so 
that, as it waits for the resource, the event loop can move on and concurrently 
manage other coroutines.

Even better, coroutines are also awaitable, and we can use the await statement  
to chain coroutines asynchronously. In the following example, we rewrite the network_
request function, which we defined earlier, by replacing the call to time.sleep  
with asyncio.sleep:

    async def network_request(number):

         await asyncio.sleep(1.0)

         return {"success": True, "result": number ** 2}

We can follow up by reimplementing fetch_square, as illustrated in the following 
code snippet. As you can see, we await network_request directly without needing 
additional futures or callbacks:

    async def fetch_square(number):

         response = await network_request(number)

         if response["success"]:

             print("Result is: \

              {}".format(response["result"]))

The coroutines can be executed individually using loop.run_until_complete,  
as follows:

    loop.run_until_complete(fetch_square(2))

    loop.run_until_complete(fetch_square(3))

    loop.run_until_complete(fetch_square(4))

Running tasks using run_until_complete serves as a demonstration for testing and 
debugging. However, our program will be started with loop.run_forever most of the 
time, and we will need to submit our tasks while the loop is already running.
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asyncio provides the ensure_future function, which schedules coroutines (as well 
as futures) for execution. ensure_future can be used by simply passing the coroutine 
we want to schedule. The following code snippet in example11.py will schedule 
multiple calls to fetch_square that will be executed concurrently:

    asyncio.ensure_future(fetch_square(2))

    asyncio.ensure_future(fetch_square(3))

    asyncio.ensure_future(fetch_square(4))

    loop.run_forever()

    # Hit Ctrl-C to stop the loop

As a bonus, when passing a coroutine, the asyncio.ensure_future function will 
return a Task instance (which is a subclass of Future) so that we can take advantage  
of the await syntax without having to give up the resource-tracking capabilities of 
regular futures.

Converting blocking code into non-blocking code
While asyncio supports connecting to resources in an asynchronous way, it is required 
to use blocking calls in certain cases. This happens, for example, when third-party 
application programming interfaces (APIs) exclusively expose blocking calls (which is 
the case for many database libraries), but also when executing long-running computations. 
In this subsection, we will learn how to deal with blocking APIs and make them 
compatible with asyncio. Here are the steps:

1. An effective strategy for dealing with blocking code is to run it in a separate thread. 
Threads are implemented at the OS level and allow parallel execution of blocking 
code. For this purpose, Python provides the Executor interface designed to run 
tasks in a separate thread and to monitor their progress using futures.

2. You can initialize a ThreadPoolExecutor instance by importing it from the 
concurrent.futures module. The executor will spawn a collection of threads 
(called workers) that will wait to execute whichever task we throw at them. Once a 
function is submitted, the executor will take care of dispatching its execution to an 
available worker thread and keep track of the result. The max_workers argument 
can be used to select the number of threads.

Note that the executor will not destroy a thread once a task is completed. By doing 
so, it reduces the cost associated with the creation and destruction of threads. 
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3. In the following code example in example12.py, we create a 
ThreadPoolExecutor instance with three workers, and we submit a wait_and_
return function that will block the program execution for 1 second and return a 
message string. We then use the submit method to schedule its execution:

    import time

    from concurrent.futures import ThreadPoolExecutor

    executor = ThreadPoolExecutor(max_workers=3)

    def wait_and_return(msg):

        time.sleep(1)

        return msg

    print(executor.submit(wait_and_return, "Hello. \

      executor"))

    # Result:

    # <Future at 0x7ff616ff6748 state=running>

4. The executor.submit method immediately schedules the function and returns 
a future. It is possible to manage the execution of tasks in asyncio using the 
loop.run_in_executor method, which works quite similarly to executor.
submit. The code is illustrated in the following snippet:

    fut = loop.run_in_executor(executor, \

      wait_and_return, "Hello, asyncio executor")

    # <Future pending ...more info...>

5. The run_in_executor method will also return an asyncio.Future instance 
that can be awaited from other code, the main difference being that the future  
will not be run until we start the loop. We can run and obtain the response using 
loop.run_until_complete, as illustrated in the following snippet:

    loop.run_until_complete(fut)

    # Result:

    # 'Hello, executor'
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6. As a practical example, we can use this technique to implement concurrent fetching 
of several web pages. To do this, we will import the popular (blocking) requests 
library and run the requests.get function in the executor in example13.py, 
as follows:

    import requests

    async def fetch_urls(urls):

        responses = []

        for url in urls:

            responses.append(await \

              loop.run_in_executor(executor, \

                requests.get, url))

        return responses

    responses = loop.run_until_complete(

      fetch_urls(

        [

      'http://www.google.com', 

      'http://www.example.com',

      'http://www.facebook.com'

        ]

      )

    )

    print(response)

    # Result

    # [<Response [200]>, <Response [200]>, <Response 

      [200]>] 

7. This version of fetch_url will not block the execution and allow other coroutines 
in asyncio to run; however, it is not optimal as the function will not fetch a 
Uniform Resource Locator (URL) in parallel. To do this, we can use asyncio.
ensure_future or employ the asyncio.gather convenience function that 
will submit all the coroutines at once and gather the results as they come. The usage 
of asyncio.gather is demonstrated in example14.py, as follows:

    def fetch_urls(urls):

        return asyncio.gather(
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          *[loop.run_in_executor(executor, \

             requests.get, url) for url in urls])

Upper Bound for the Number of Threads
The number of URLs you can fetch in parallel with this method will be 
dependent on the number of worker threads you have. To avoid this limitation, 
you should use a natively non-blocking library, such as aiohttp.

So far, we have seen how to work with concurrent programs in Python using core concepts 
such as callbacks, futures, and coroutines. For the remaining portion of this chapter, we 
will discuss a more streamlined programming paradigm for implementing concurrency.

Reactive programming
Reactive programming is a paradigm that aims at building better concurrent systems. 
Reactive applications are designed to comply with the following requirements exemplified 
by the reactive manifesto:

• Responsive: The system responds immediately to the user.
• Elastic: The system is capable of handling different levels of load and can adapt  

to accommodate increasing demands.
• Resilient: The system deals with failure gracefully. This is achieved by modularity 

and avoiding having a single point of failure (SPOF).
• Message-driven: The system should not block and take advantage of events and 

messages. A message-driven application helps achieve all the previous requirements.

The requirements for reactive systems are quite reasonable but abstract, which leads us to 
a natural question: how exactly does reactive programming work? In this section, we will 
learn about the principles of reactive programming using the Reactive Extensions for 
Python (RxPY) library.

Additional Information
The RxPY library is part of ReactiveX (http://reactivex.io/), which 
is a project that implements reactive programming tools for a large variety of 
languages.

To install the library, simply run pip install rx.

Note that the following code uses RxPY v3, the syntax of which is quite 
different from RxPY v1. If you are familiar with RxPY v1 and the discussion 
from this book's previous version, watch out for changes in syntax!

http://reactivex.io/
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Observables
As the name implies, the main idea of reactive programming is to react to events. In the 
preceding section, we saw some examples of this idea with callbacks; you subscribe to 
them and the callback is executed as soon as the event takes place.

In reactive programming, this idea is expanded if we think of events as streams of data. 
This can be exemplified by showing examples of such streams in RxPY. A data stream can 
be created from an iterator using the from_iterable method in IPython, as follows: 

    from rx import from_iterable

    obs = from_iterable(range(4))

In order to receive data from obs, we can use the Observable.subscribe method, 
which will execute the function we pass for each value that the data source emits. This 
method is shown in the following code snippet:

    obs.subscribe(print)

    # Output:

    # 0

    # 1

    # 2

    # 3

You may have noticed that observables are ordered collections of items just like lists or, 
more generally, iterators. This is not a coincidence.

The term observable comes from the combination of observer and iterable. An observer 
is an object that reacts to changes of the variable it observes, while an iterable is an object 
that can produce and keep track of an iterator.

In Python, iterators are objects that define the __next__ method, and whose elements 
can be extracted by calling next. An iterator can generally be obtained by a collection 
using iter; then, we can extract elements using next or a for loop. Once an element  
is consumed from the iterator, we can't go back. We can demonstrate its usage by creating 
an iterator from a list, as follows:

    collection = list([1, 2, 3, 4, 5])

    iterator = iter(collection)

    print("Next")

    print(next(iterator))
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    print(next(iterator))

    print("For loop")

    for i in iterator:

         print(i)

    # Output:

    # Next

    # 1

    # 2

    # For loop

    # 3

    # 4

    # 5

You can see how, every time we call next or we iterate, the iterator produces a value and 
advances. In a sense, we are pulling results from the iterator.

Iterators versus Generators
Iterators sound a lot like generators; however, they are more general. In Python, 
generators are returned by functions that use yield expressions. As we saw, 
generators support next; therefore, they are a special class of iterators.

Now, you can appreciate the contrast between an iterator and an observable. An 
observable pushes a stream of data to us whenever it's ready, but that's not everything. An 
observable can also tell us when there is an error and where there is no more data. In fact, 
it is possible to register further callbacks to the Observable.subscribe method.

In the following example in IPython, we create an observable and register callbacks to be 
called using on_next whenever the next item is available and using the on_completed 
argument when there is no more data:

    obs = from_iterable(range(4))

    obs.subscribe(on_next=lambda x: print("Next item:", x),

                  on_completed=lambda: print("No more  \

                    data"))

    # Output:

    # Next element: 0

    # Next element: 1
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    # Next element: 2

    # Next element: 3

    # No more data

With that said, the similarity between observables and iterators is more important, because 
we can use the same techniques that can be used with iterators to handle streams of events.

RxPy provides operators that can be used to create, transform, filter, and group observables. 
The power of reactive programming lies in the fact that those operations return other 
observables that can be conveniently chained and composed together. For a quick 
demonstration, we will examine the usage of the take operator next.

Given an observable, take will return a new observable that will stop after n items. Its 
usage is straightforward, as we can see here:

    from rx.operators import take

    

    op = take(4)

    obs = from_iterable(range(1000))

    op(obs).subscribe(print)

    # Output:

    # 0

    # 1

    # 2

    # 3

The collection of operations implemented in RxPy is varied and rich and can be used  
to build complex applications using these operators as building blocks.

Useful operators
In this subsection, we will explore operators that transform the elements of a source 
observable in some way. The most prominent member of this family of operators is the 
familiar map operator, which emits the elements of the source observable after applying  
a function to them.
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For example, we may use map to calculate the square of a sequence of numbers, as follows:

    from rx.operators import map

    map(lambda x: x**2)(from_iterable(range(4))). \

        subscribe(print)

    # Output:

    # 0

    # 1

    # 4

    # 9

Operators can be represented with marble diagrams that help us better understand 
how the operator works, especially when taking into account the fact that elements can 
be emitted over a region of time. In a marble diagram, a data stream (in our case, an 
observable) is represented by a solid line. A circle (or another shape) identifies a value 
emitted by the observable, an X symbol represents an error, and a vertical line represents 
the end of the stream.

Here, we can see a marble diagram of map:

Figure 7.4 – Marble diagram illustrating the procedure of squaring numbers

The source observable is placed at the top of the diagram, the transformation is placed in 
the middle, and the resulting observable is placed at the bottom.

Another example of a transformation is group_by, which sorts items into groups based 
on a key. The group_by operator takes a function that extracts a key when given an 
element and produces an observable for each key with the elements associated with it.
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The group_by operation can be expressed more clearly using a marble diagram. In the 
following diagram, you can see how group_by emits two observables. Additionally,  
the items are dynamically sorted into groups as soon as they are emitted:

Figure 7.5 – Marble diagram illustrating grouping

We can further understand how group_by works with a simple example. Let's say that 
we want to group a number according to the fact that it's even or odd. We can implement 
this using group_by by passing the lambda x: x % 2 expression as a key function, 
which will return 0 if the number is even and 1 if the number is odd, as follows:

    from rx.operators import group_by

    obs = group_by(lambda x: x %  \

      2)(from_iterable(range(4)))

At this point, if we subscribe and print the content of obs, two observables are actually 
printed, as illustrated in the following code snippet:

    obs.subscribe(print)

    # <rx.linq.groupedobservable.GroupedObservable object 

      at 0x7f0fba51f9e8>

    # <rx.linq.groupedobservable.GroupedObservable object 

      at 0x7f0fba51fa58>

You can determine the group key using the key attribute. To extract all the even numbers, 
we can take the first observable (corresponding to a key equal to 0) and subscribe to it. In 
the following code snippet, we show how this works:

    obs.subscribe(lambda x: print("group key: ", x.key))

    # Output:

    # group key:  0



Reactive programming     217

    # group key:  1

    take(1)(obs).subscribe(lambda x: x.subscribe(print))

    # Output:

    # 0

    # 2

With group_by, we introduced an observable that emits other observables. This turns 
out to be quite a common pattern in reactive programming, and there are functions that 
allow you to combine different observables.

A useful tool for combining observables is merge_all which takes multiple observables 
and produces a single observable that contains the element of the two observables in the 
order they are emitted. This is better illustrated using a marble diagram, as follows:

Figure 7.6 – Marble diagram illustrating merging

To demonstrate its usage, we can apply the operation to the observable of observables 
returned by group_by, as follows:

    from rx.operators import merge_all

    merge_all()(obs).subscribe(print)

    # Output

    # 0

    # 1

    # 2

    # 3

With merge_all, the items are returned in the same order as they were initially 
(remember that group_by emits elements in the two groups as they come).

Tip
RxPy also provides the merge operation, which can be used to combine 
individual observables.
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Hot and cold observables
In the preceding section, we learned how to create an observable using the from_
iterable method. RxPy provides many other tools to create more interesting  
event sources.

interval takes a time interval in seconds, period, and creates an observable that 
emits a value every time the period has passed. The following code can be used to define 
an observable, obs, that will emit a number, starting from zero, every second. We use the 
take operator to limit the timer to four events:

    from rx import interval

    from rx.operators import take

    

    take(4)(interval(1)).subscribe(print)

    # Output:

    # 0

    # 1

    # 2

    # 3

A very important fact about interval is that the timer doesn't start until we subscribe. 
We can observe this by printing both the index and the delay from when the timer starts 
definition using time.time(), as follows:

    import time

    start = time.time()

    obs = map(lambda a: (a, time.time() - \

      start))(interval(1))

    # Let's wait 2 seconds before starting the subscription

    time.sleep(2)

    take(4)(obs).subscribe(print)

    # Output:

    # (0, 3.003735303878784)

    # (1, 4.004871129989624)

    # (2, 5.005947589874268)

    # (3, 6.00749135017395)
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As you can see, the first element (corresponding to a 0 index) is produced after 3 seconds, 
which means that the timer started when we issue the subscribe(print) method.

Observables such as interval are called lazy because they start producing values 
only when requested (think of them as vending machines that won't dispense food 
unless we press the button). In Rx jargon, these kinds of observables are called cold. A 
property of cold observables is that, if we attach two subscribers, the interval timer will 
be started multiple times. This is quite evident from the following example. Here, we add 
a new subscription 0.5 seconds after the first, and you can see how the output of the two 
subscriptions comes at different times:

    start = time.time()

    obs = map(lambda a: (a, time.time() - \

      start))(interval(1))

    # Let's wait 2 seconds before starting the subscription

    time.sleep(2)

    take(4)(obs).subscribe(lambda x: print("First \

      subscriber: {}".format(x)))

    time.sleep(0.5)

    take(4)(obs).subscribe(lambda x: print("Second  \

      subscriber: {}".format(x)))

    # Output:

    # First subscriber: (0, 3.0036110877990723)

    # Second subscriber: (0, 3.5052847862243652)

    # First subscriber: (1, 4.004414081573486)

    # Second subscriber: (1, 4.506155252456665)

    # First subscriber: (2, 5.005316972732544)

    # Second subscriber: (2, 5.506817102432251)

    # First subscriber: (3, 6.0062034130096436)

    # Second subscriber: (3, 6.508296489715576)

Sometimes, we may not want this behavior as we may want multiple subscribers to 
subscribe to the same data source. To make the observable produce the same data, we can 
delay the data production and ensure that all the subscribers will get the same data using 
the publish method.



220     Implementing Concurrency

publish will transform our observable into ConnectableObservable, which won't 
start pushing data immediately, but only when we call the connect method. The usage  
of publish and connect is demonstrated in the following code snippet:

    from rx.operators import publish

    start = time.time()

    obs = publish()(map(lambda a: (a, time.time() - \

    start))(interval(1)))

    take(4)(obs).subscribe(lambda x: print("First \

      subscriber: {}".format(x)))

    obs.connect() # Data production starts here

    time.sleep(2)

    take(4)(obs).subscribe(lambda x: print("Second \

      subscriber: {}".format(x)))

    # Output:

    # First subscriber: (0, 1.0016899108886719)

    # First subscriber: (1, 2.0027990341186523)

    # First subscriber: (2, 3.003532648086548)

    # Second subscriber: (2, 3.003532648086548)

    # First subscriber: (3, 4.004265308380127)

    # Second subscriber: (3, 4.004265308380127)

    # Second subscriber: (4, 5.005320310592651)

    # Second subscriber: (5, 6.005795240402222)

In this example, you can see how we first issue publish, then we subscribe the first 
subscriber, and finally, we issue connect. When connect is issued, the timer will start 
producing data. The second subscriber joins the party late and, in fact, won't receive the 
first two messages but will start receiving data from the third, and so on. Note that, this 
time around, the subscribers share the exact same data. This kind of data source, where 
data is produced independently of the subscribers, is called hot.

Similar to publish, you can use the replay method that will produce the data from the 
beginning for each new subscriber. This is illustrated in the following example, which is 
identical to the preceding one except that we replaced publish with replay:

    from rx.operators import replay

    start = time.time()
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    obs = replay()(map(lambda a: (a, time.time() - start) \

      ( interval(1)))

    take(4)(obs).subscribe(lambda x: print("First  \

     subscriber: {}".format(x)))

    obs.connect()

    time.sleep(2)

    take(4)(obs).subscribe(lambda x: print("Second  \

      subscriber: {}".format(x)))

    First subscriber: (0, 1.0008857250213623)

    First subscriber: (1, 2.0019824504852295)

    Second subscriber: (0, 1.0008857250213623)

    Second subscriber: (1, 2.0019824504852295)

    First subscriber: (2, 3.0030810832977295)

    Second subscriber: (2, 3.0030810832977295)

    First subscriber: (3, 4.004604816436768)

    Second subscriber: (3, 4.004604816436768)

Notice that even though the second subscriber arrives late to the party, it is still given all 
the items that have been given out so far.

Another way of creating hot observables is through the Subject class. Subject is 
interesting because it's capable of both receiving and pushing data, and thus it can be used 
to manually push items to an observable. Using Subject is very intuitive; in the following 
code snippet, we create a Subject instance and subscribe to it. Later, we push values to it 
using the on_next method; as soon as we do that, the subscriber is called:

    from rx.subject import Subject

    s = Subject()

    s.subscribe(lambda x: print("Subject emitted value: \

      {}".format(x)))

    s.on_next(1)

    # Subject emitted value: 1

    s.on_next(2)

    # Subject emitted value: 2

Note that Subject is another example of a hot observable.
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Building a CPU monitor
Now that we have a grasp of the main reactive programming concepts, we can implement 
an example application: a monitor that will give us real-time information about our CPU 
usage and that can detect spikes.

Note
The complete code for the CPU monitor can be found in the cpu_
monitor.py file.

As a first step, let's implement a data source. We will use the psutil module that provides 
a function, psutil.cpu_percent, that returns the latest available CPU usage as a 
percentage (and doesn't block). The code is illustrated in the following snippet:

    import psutil

    psutil.cpu_percent()

    # Result: 9.7

Since we are developing a monitor, we would like to sample this information over a 
few time intervals. To accomplish, this we can use the familiar interval observable, 
followed by map, just as we did in the previous section. Also, we would like to make this 
observable hot as, for this application, all subscribers should receive a single source of data; 
to make interval hot, we can use the publish and connect methods. The full code 
for the creation of a cpu_data observable is shown here:

    cpu_data = publish()(map(lambda x: \

      psutil.cpu_percent())(interval(0.1)))

    cpu_data.connect() # Start producing data

We can test our monitor by printing a sample of four items, as follows:

    take(4)(cpu_data).subscribe(print)

    # Output:

    # 12.5

    # 5.6

    # 4.5

    # 9.6
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Now that our main data source is in place, we can implement a monitor visualization 
using matplotlib. The idea is to create a plot that contains a fixed number of 
measurements and, as new data arrives, we include the newest measurement and remove 
the oldest one. This is commonly referred to as a moving window and is better understood 
with an illustration. In the following diagram, our cpu_data stream is represented as a 
list of numbers. The first plot is produced as soon as we have the first four numbers and, 
each time a new number arrives, we shift the window by one position and update the plot:

Figure 7.7 – Illustration of a moving window

To implement this algorithm, we can write a function called monitor_cpu that will 
create and update our plotting window. The function will do the following things:

• Initialize an empty plot and set up the correct plot limits.

• Transform our cpu_data observable to return a moving window over the data. This 
can be accomplished using the buffer_with_count operator, which will take the 
number of points in our window, npoints, as parameters and the shift as 1.

• Subscribe to this new data stream and update the plot with the incoming data.

The complete code for the function is implemented in cpu_monitor.py and shown 
here and, as you can see, is extremely compact. Go ahead and install matplotlib if  
you don't have it in your environment already, using pip install matplotlib.

Take some time to run the function and play with the parameters. You can view the  
code here:

    from rx.operators import buffer_with_count

    import numpy as np

    import pylab as plt



224     Implementing Concurrency

    def monitor_cpu(npoints):

        lines, = plt.plot([], [])

        plt.xlim(0, npoints) 

        plt.ylim(0, 100) # 0 to 100 percent

        cpu_data_window = buffer_with_count(npoints, \ 

          1)(cpu_data)

        def update_plot(cpu_readings):

            lines.set_xdata(np.arange(len(cpu_readings)))

            lines.set_ydata(np.array(cpu_readings))

            plt.draw()

        cpu_data_window.subscribe(update_plot)

        plt.show()

Another feature we may want to develop is an alert that triggers when the CPU has been 
high for a certain amount of time, as this may indicate that some of the processes in our 
machine are working very hard. This can be accomplished by combining buffer_with_
count and map. We can take the CPU stream and a window, and test whether all items 
have a value higher than 20% usage (in a quad-core CPU, that corresponds to about one 
processor working at 100%) in the map function. If all the points in the window have a 
higher-than-20% usage, we display a warning in our plot window.

The implementation of the new observable can be written as follows and will produce  
an observable that emits True if the CPU has high usage, and False otherwise:

    alertpoints = 4    

    high_cpu = map(lambda readings: all(r > 20 for r in \

      readings))(

        buffer_with_count(alertpoints, 1)(cpu_data)

    )

Now that the high_cpu observable is ready, we can create a matplotlib label and 
subscribe to it for updates, as follows:

    label = plt.text(1, 1, "normal")

    def update_warning(is_high):

        if is_high:
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            label.set_text("high")

        else:

            label.set_text("normal")

    high_cpu.subscribe(update_warning)

Run the program from your terminal, and an interactive window will open to display your 
CPU usage data in real time. Here is a screenshot showing the output of our program:

Figure 7.8 – Monitoring CPU usage

Here, the blue curve denotes the CPU usage, which stays below the normal threshold.

While this example is relatively simple, it possesses the core components of a reactive 
program, and more complex applications that fully utilize the power of RxPY may be  
built using this as a blueprint.
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Summary
Asynchronous programming is useful when our code deals with slow and unpredictable 
resources, such as I/O devices and networks. In this chapter, we explored the fundamental 
concepts of concurrency and asynchronous programming and how to write concurrent 
code with the asyncio and RxPy libraries.

asyncio coroutines are an excellent choice when dealing with multiple, interconnected 
resources as they greatly simplify the code logic by cleverly avoiding callbacks. Reactive 
programming is also very good in these situations, but it truly shines when dealing with 
streams of data that are common in real-time applications and UIs.

Questions
1. How does asynchronous programming help programs run at higher speed?
2. What are the main differences between callbacks and futures in asynchronous 

programming?
3. What are the core characteristics/requirements of a reactive application?

Further reading
• Migrating to RxPY v3: https://rxpy.readthedocs.io/en/latests/

migration.html

https://rxpy.readthedocs.io/en/latests/migration.html
https://rxpy.readthedocs.io/en/latests/migration.html
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With parallel processing using multiple cores, you can increase the number of calculations 
your program can do in a given time frame without needing a faster processor. The main 
idea is to divide a problem into independent subunits and use multiple cores to solve those 
subunits in parallel.

Parallel processing is necessary to tackle large-scale problems. Every day, companies 
produce massive quantities of data that needs to be stored in multiple computers and 
analyzed. Scientists and engineers run parallel code on supercomputers to simulate 
massive systems.

Parallel processing allows you to take advantage of multicore central processing units 
(CPUs) as well as graphics processing units (GPUs) that work extremely well with  
highly parallel problems. 

In this chapter, we will cover the following topics:

• Introduction to parallel programming

• Using multiple processes

• Parallel Cython with Open Multi-Processing (OpenMP)

• Automatic parallelism
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Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter08.

Introduction to parallel programming
To parallelize a program, it is necessary to divide the problem into subunits that can run 
independently (or almost independently) from each other.

A problem where the subunits are totally independent of each other is called 
embarrassingly parallel. An element-wise operation on an array is a typical example—the 
operation needs to only know the element it is handling now. Another example is our 
particle simulator. Since there are no interactions, each particle can evolve independently 
from the others. Embarrassingly parallel problems are very easy to implement and 
perform very well on parallel architectures.

Other problems may be divided into subunits but must share some data to perform their 
calculations. In those cases, the implementation is less straightforward and can lead to 
performance issues because of the communication costs.

We will illustrate the concept with an example. Imagine that you have a particle simulator, 
but this time, the particles attract other particles within a certain distance (as shown in the 
following figure): 

Figure 8.1 – Illustration of a neighboring region

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter08
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To parallelize this problem, we divide the simulation box into regions and assign each 
region to a different processor. If we evolve the system one step at a time, some particles 
will interact with particles in a neighboring region. To perform the next iteration, 
communication with the new particle positions of the neighboring region is required.

Communication between processes is costly and can seriously hinder the performance of 
parallel programs. There exist two main ways to handle data communication in parallel 
programs: shared memory and distributed memory.

In shared memory, the subunits have access to the same memory space. An advantage 
of this approach is that you don't have to explicitly handle the communication as it 
is sufficient to write or read from the shared memory. However, problems arise when 
multiple processes try to access and change the same memory location at the same time. 
Care should be taken to avoid such conflicts using synchronization techniques.

In the distributed memory model, each process is completely separated from the others 
and possesses its own memory space. In this case, communication is handled explicitly 
between the processes. The communication overhead is typically costlier compared to 
shared memory as data can potentially travel through a network interface.

One common way to achieve parallelism with the shared memory model is through 
threads. Threads are independent subtasks that originate from a process and share 
resources, such as memory. This concept is further illustrated in the following diagram: 

Figure 8.2 – Illustration of the difference between threads and processes

Threads produce multiple execution contexts and share the same memory space, while 
processes provide multiple execution contexts that possess their own memory space,  
and communication must be handled explicitly.
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Python can spawn and handle threads, but they can't be used to increase performance; 
due to the Python interpreter design, only one Python instruction is allowed to run at a 
time—this mechanism is called the Global Interpreter Lock (GIL). What happens is that 
each time a thread executes a Python statement, the thread acquires a lock and, when the 
execution is completed, the same lock is released. Since the lock can be acquired only by 
one thread at a time, other threads are prevented from executing Python statements while 
some other thread holds the lock.

Even though the GIL prevents parallel execution of Python instructions, threads can still 
be used to provide concurrency in situations where the lock can be released, such as in 
time-consuming input/output (I/O) operations or in C extensions.

Why Not Remove the GIL?
In past years, many attempts have been made, including the most recent 
Gilectomy experiment. First, removing the GIL is not an easy task and requires 
modification of most of the Python data structures. Additionally, such fine-
grained locking can be costly and may introduce substantial performance 
loss in single-threaded programs. Despite this, some Python implementations 
(notable examples are Jython and IronPython) do not use the GIL.

The GIL can be completely sidestepped using processes instead of threads. Processes don't 
share the same memory area and are independent of each other—each process has its 
own interpreter. Processes have a few disadvantages: starting up a new process is generally 
slower than starting a new thread, they consume more memory, and inter-process 
communication (IPC) can be slow. On the other hand, processes are still very flexible,  
and they scale better as they can be distributed on multiple machines.

GPUs
GPUs are special processors designed for computer graphics applications. Those 
applications usually require processing the geometry of a three-dimensional (3D) scene 
and output an array of pixels to the screen. The operations performed by GPUs involve 
array and matrix operations on floating-point numbers.

GPUs are designed to run this graphics-related operation very efficiently, and they achieve 
this by adopting a highly parallel architecture. Compared to a CPU, a GPU has many more 
(thousands) of small processing units. GPUs are intended to produce data at about 60 
frames per second (FPS), which is much slower than the typical response time of a CPU, 
which possesses higher clock speeds.
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GPUs possess a very different architecture from a standard CPU and are specialized 
for computing floating-point operations. Therefore, to compile programs for GPUs, it is 
necessary to utilize special programming platforms, such as Compute Unified Device 
Architecture (CUDA) and Open Computing Language (OpenCL).

CUDA is a proprietary NVIDIA technology. It provides an application programming 
interface (API) that can be accessed from other languages. CUDA provides the NVIDIA 
CUDA Compiler (NVCC) tool that can be used to compile GPU programs written in 
a language such as C (CUDA C), as well as numerous libraries that implement highly 
optimized mathematical routines.

OpenCL is an open technology with an ability to write parallel programs that can be 
compiled for a variety of target devices (CPUs and GPUs of several vendors) and is  
a good option for non-NVIDIA devices.

GPU programming sounds wonderful on paper. However, don't throw away your CPU 
yet. GPU programming is tricky, and only specific use cases benefit from the GPU 
architecture. Programmers need to be aware of the costs incurred in memory transfers to 
and from the main memory and how to implement algorithms to take advantage of the 
GPU architecture.

Generally, GPUs are great at increasing the number of operations you can perform per 
unit of time (also called throughput); however, they require more time to prepare the data 
for processing. In contrast, CPUs are much faster at producing an individual result from 
scratch (also called latency).

For the right problem, GPUs provide extreme (10 to 100 times) speedup. For this reason, 
they often constitute a very inexpensive solution (the same speedup will require hundreds 
of CPUs) to improve the performance of numerically intensive applications. We will 
illustrate how to execute some algorithms on a GPU in the Automatic parallelism section.

Having said that, we will begin our discussion on multiprocessing using standard 
processes in the next section.

Using multiple processes
The standard multiprocessing module can be used to quickly parallelize simple tasks 
by spawning several processes while avoiding the GIL problem. Its interface is easy to use 
and includes several utilities to handle task submission and synchronization.



232     Parallel Processing

The Process and Pool classes
You can create a process that runs independently by subclassing multiprocessing.
Process. You can extend the __init__ method to initialize resources, and you can 
write a portion of the code that will be executed in a subprocess by implementing the 
Process.run method. In the following code snippet, we define a Process class that 
will wait for 1 second and print its assigned id value:

    import multiprocessing 

    import time 

    class Process(multiprocessing.Process): 

        def __init__(self, id): 

            super(Process, self).__init__() 

            self.id = id 

        def run(self): 

            time.sleep(1) 

            print("I'm the process with id: 

              {}".format(self.id))

To spawn the process, we must instantiate the Process class and call the Process.
start method. Note that you don't directly call Process.run; the call to Process.
start will create a new process that, in turn, will call the Process.run method. We  
can add the following lines at the end of the preceding snippet to create and start the  
new process:

    if __name__ == '__main__': 

        p = Process(0) 

        p.start()

The special __name__ Variable
Note that we need to place any code that manages processes inside the if 
__name__ == '__main__' condition, as shown in the previous code 
snippet, to avoid many undesirable behaviors. All the code shown in this 
chapter will be assumed to follow this practice.
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The instructions after Process.start will be executed immediately without waiting for 
the p process to finish. To wait for the task completion, you can use the Process.join 
method, as follows:

    if __name__ == '__main__': 

       p = Process(0) 

       p.start() 

       p.join()

We can launch four different processes that will run in parallel in the same way. In a serial 
program, the total required time will be 4 seconds. Since the execution is concurrent, the 
resulting wall clock time will be of 1 second. In the following code snippet, we create four 
processes that will execute concurrently:

    if __name__ == '__main__': 

        processes = Process(1), Process(2), Process(3), 

          Process(4) 

        [p.start() for p in processes]

Note that the order of the execution for parallel processes is unpredictable and ultimately 
depends on how the operating system (OS) schedules this. You can verify this behavior by 
executing the program multiple times; the order will likely be different between runs.

The multiprocessing module exposes a convenient interface that makes it easy to 
assign and distribute tasks to a set of processes that reside in the multiprocessing.
Pool class.

The multiprocessing.Pool class spawns a set of processes—called workers—and lets 
us submit tasks through the apply/apply_async and map/map_async methods.

The pool.map method applies a function to each element of a list and returns a list of 
results. Its usage is equivalent to the built-in (serial) map.

To use a parallel map, you should first initialize a multiprocessing.Pool object that 
takes the number of workers as its first argument; if not provided, that number will be equal 
to the number of cores in the system. You can initialize a multiprocessing.Pool object 
in the following way:

    pool = multiprocessing.Pool() 

    pool = multiprocessing.Pool(processes=4)
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Let's see pool.map in action. If you have a function that computes the square of a 
number, you can map the function to the list by calling pool.map and passing the 
function and the list of inputs as arguments, as follows:

    def square(x): 

        return x * x 

    inputs = [0, 1, 2, 3, 4] 

    outputs = pool.map(square, inputs)

The pool.map_async function is just like pool.map but returns an AsyncResult 
object instead of the actual result. When we call pool.map, the execution of the main 
program is stopped until all the workers are finished processing the result. With map_
async, the AsyncResult object is returned immediately without blocking the main 
program and the calculations are done in the background. We can then retrieve the result 
using the AsyncResult.get method at any time, as shown in the following lines of code:

    outputs_async = pool.map_async(square, inputs) 

    outputs = outputs_async.get()

pool.apply_async assigns a task consisting of a single function to one of the workers. 
It takes the function and its arguments and returns an AsyncResult object. We can 
obtain an effect similar to map using apply_async, as shown here:

    results_async = [pool.apply_async(square, i) for i in \

      range(100))] 

    results = [r.get() for r in results_async]

To use the results computed and returned by these processes, we can simply access the 
data stored in results.

The Executor interface
From version 3.2 onward, it is possible to execute Python code in parallel using 
the Executor interface provided in the concurrent.futures module. We 
already saw the Executor interface in action in the previous chapter, when we used 
ThreadPoolExecutor to perform multiple tasks concurrently. In this subsection,  
we'll demonstrate the usage of the ProcessPoolExecutor class.
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ProcessPoolExecutor exposes a very lean interface, at least when compared to the 
more featureful multiprocessing.Pool. A ProcessPoolExecutor class can be 
instantiated, similar to ThreadPoolExecutor, by passing a number of worker threads 
using the max_workers argument (by default, max_workers will be the number of 
CPU cores available). The main methods available to the ProcessPoolExecutor class 
are submit and map.

The submit method will take a function and return a Future instance that will keep 
track of the execution of the submitted function. The map method works similarly to 
the pool.map function, except that it returns an iterator rather than a list. The code is 
illustrated in the following snippet:

    from concurrent.futures import ProcessPoolExecutor

    executor = ProcessPoolExecutor(max_workers=4)

    fut = executor.submit(square, 2)

    # Result:

    # <Future at 0x7f5b5c030940 state=running>

    result = executor.map(square, [0, 1, 2, 3, 4])

    list(result)

    # Result:

    # [0, 1, 4, 9, 16]

To extract the result from one or more Future instances, you can use the concurrent.
futures.wait and concurrent.futures.as_completed functions. The wait 
function accepts a list of future instances and will block the execution of the programs 
until all the futures have completed their execution. The result can then be extracted  
using the Future.result method. The as_completed function also accepts a 
function but will, instead, return an iterator over the results. The code is illustrated in  
the following snippet:

    from concurrent.futures import wait, as_completed

    fut1 = executor.submit(square, 2)

    fut2 = executor.submit(square, 3)

    wait([fut1, fut2])

    # Then you can extract the results using fut1.result() 

      and fut2.result()
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    results = as_completed([fut1, fut2])

    list(results)

    # Result:

    # [4, 9]

Alternatively, you can generate futures using the asyncio.run_in_executor 
function and manipulate the results using all the tools and syntax provided by the 
asyncio libraries so that you can achieve concurrency and parallelism at the same time.  

Monte Carlo approximation of pi
As an example, we will implement a canonical, embarrassingly parallel program—the 
Monte Carlo approximation of pi. Imagine that we have a square of size 2 units; its 
area will be 4 units. Now, we inscribe a circle of 1 unit radius in this square; the area of 
the circle will be 𝑝𝑝𝑝𝑝 ∗  𝑟𝑟2 . By substituting the value of r in the previous equation, we get 
that the numerical value for the area of the circle is 𝑝𝑝𝑝𝑝 ∗  (1) 2  = pi. You can refer to the 
following screenshot for a graphical representation of this:

Figure 8.3 – Illustration of our strategy of approximation of pi

If we shoot a lot of random points on this, some points will fall into the circle, which 
we'll call hits, while the remaining points, misses, will be outside the circle. The area of 
the circle will be proportional to the number of hits, while the area of the square will be 
proportional to the total number of shots. To get the value of pi, it is sufficient to divide 
the area of the circle (equal to pi) by the area of the square (equal to 4), as illustrated in  
the following code snippet:

    hits/total = area_circle/area_square = pi/4 

    pi = 4 * hits/total
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The strategy we will employ in our program will be as follows:

• Generate a lot of uniformly random (x, y) numbers in the range (-1, 1).

• Test whether those numbers lie inside the circle by checking whether  
x**2 + y**2 <= 1.

The first step when writing a parallel program is to write a serial version and verify that 
it works. In a real-world scenario, you also want to leave parallelization as the last step of 
your optimization process—first, because we need to identify the slow parts, and second, 
parallelization is time-consuming and gives you at most a speedup equal to the number of 
processors. The implementation of the serial program is shown here:

    import random 

    samples = 1000000 

    hits = 0 

    for i in range(samples): 

        x = random.uniform(-1.0, 1.0) 

        y = random.uniform(-1.0, 1.0) 

        if x**2 + y**2 <= 1: 

            hits += 1 

     

    pi = 4.0 * hits/samples

The accuracy of our approximation will improve as we increase the number of  
samples. Note that each loop iteration is independent of the other—this problem is 
embarrassingly parallel.

To parallelize this code, we can write a function, called sample, that corresponds to a 
single hit-miss check. If the sample hits the circle, the function will return 1; otherwise, it 
will return 0. By running sample multiple times and summing the results, we'll get the 
total number of hits. We can run sample over multiple processors with apply_async 
and get the results in the following way:

    def sample(): 

        x = random.uniform(-1.0, 1.0) 

        y = random.uniform(-1.0, 1.0) 
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        if x**2 + y**2 <= 1: 

            return 1 

        else: 

            return 0 

    pool = multiprocessing.Pool() 

    results_async = [pool.apply_async(sample) for i in \

      range(samples)] 

    hits = sum(r.get() for r in results_async)

We can wrap the two versions in the pi_serial and pi_apply_async functions  
(you can find their implementation in the pi.py file) and benchmark the execution 
speed, as follows:

$ time python -c 'import pi; pi.pi_serial()'

real    0m0.734s

user    0m0.731s

sys     0m0.004s

$ time python -c 'import pi; pi.pi_apply_async()'

real    1m36.989s

user    1m55.984s

sys     0m50.386

As shown in the earlier benchmark, our first parallel version literally cripples our code,  
the reason being that the time spent doing the actual calculation is small compared to  
the overhead required to send and distribute the tasks to the workers.

To solve the issue, we have to make the overhead negligible compared to the calculation 
time. For example, we can ask each worker to handle more than one sample at a time, 
thus reducing the task communication overhead. We can write a sample_multiple 
function that processes more than one hit and modifies our parallel version by dividing 
our problem by 10; more intensive tasks are shown in the following code snippet:

    def sample_multiple(samples_partial): 

        return sum(sample() for i inrange(samples_partial)) 

    n_tasks = 10 

    chunk_size = samples/n_tasks 

    pool = multiprocessing.Pool() 
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    results_async = [pool.apply_async(sample_multiple, \

      chunk_size) for i in range(n_tasks)] 

    hits = sum(r.get() for r in results_async)

We can wrap this in a function called pi_apply_async_chunked and run it as follows:

$ time python -c 'import pi; pi.pi_apply_async_chunked()'

real    0m0.325s

user    0m0.816s

sys     0m0.008s

The results are much better; we more than doubled the speed of our program. You can also 
notice that the user metric is larger than real; the total CPU time is larger than the total 
time because more than one CPU worked at the same time. If you increase the number 
of samples, you will note that the ratio of communication to calculation decreases, giving 
even better speedups.

Everything is nice and simple when dealing with embarrassingly parallel problems. 
However, you sometimes have to share data between processes.

Synchronization and locks
Even if multiprocessing uses processes (with their own independent memory), it lets 
you define certain variables and arrays as shared memory. You can define a shared variable 
using multiprocessing.Value, passing its data type as a string (i for integer, d for 
double, f for float, and so on). You can update the content of the variable through the 
value attribute, as shown in the following code snippet:

    shared_variable = multiprocessing.Value('f') 

    shared_variable.value = 0

When using shared memory, you should be aware of concurrent access. Imagine that you 
have a shared integer variable, and each process increments its value multiple times. You 
will define a Process class, as follows:

    class Process(multiprocessing.Process): 

        def __init__(self, counter): 

            super(Process, self).__init__() 

            self.counter = counter 
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        def run(self): 

            for i in range(1000): 

                self.counter.value += 1

You can initialize the shared variable in the main program and pass it to 4 processes,  
as shown in the following code snippet:

    def main(): 

        counter = multiprocessing.Value('i', lock=True) 

        counter.value = 0 

        processes = [Process(counter) for i in range(4)] 

        [p.start() for p in processes] 

        [p.join() for p in processes] # processes are done 

        print(counter.value)

If you run this program (shared.py in the code directory), you will note that the 
final value of counter is not 4000, but it has random values (on my machine, they are 
between 2000 and 2500). If we assume that the arithmetic is correct, we can conclude 
that there's a problem with the parallelization.

What happens is that multiple processes are trying to access the same shared variable at the 
same time. The situation is best explained by looking at the following diagram. In a serial 
execution, the first process reads the number (0), increments it, and writes the new value 
(1); the second process reads the new value (1), increments it, and writes it again (2). 

In parallel execution, the two processes read the number (0), increment it, and write the 
value (1) at the same time, leading to a wrong answer:

Figure 8.4 – Multiple processes accessing the same variable, leading to incorrect behavior



Using multiple processes     241

To solve this problem, we need to synchronize the access to this variable so that only one 
process at a time can access, increment, and write the value on the shared variable. This 
feature is provided by the multiprocessing.Lock class. A lock can be acquired and 
released through the acquire and release methods respectively or by using the lock 
as a context manager. Since the lock can be acquired by only one process at a time, this 
method prevents multiple processes from executing the protected section of code at the 
same time.

We can define a global lock and use it as a context manager to restrict access to the 
counter, as shown in the following code snippet:

    class Process(multiprocessing.Process): 

        def __init__(self, counter): 

            super(Process, self).__init__() 

            self.counter = counter 

        def run(self): 

            for i in range(1000): 

                with lock: # acquire the lock 

                    self.counter.value += 1 

                # release the lock

Synchronization primitives, such as locks, are essential to solving many problems, but they 
should be kept to a minimum to improve the performance of your program.

Tip
The multiprocessing module includes other communication and 
synchronization tools; you can refer to the official documentation at http://
docs.python.org/3/library/multiprocessing.html for a 
complete reference.

In Chapter 4, C Performance with Cython, we discussed Cython as a method of speeding 
up our programs. Cython itself also allows parallel processing via OpenMP, which we will 
examine next.

http://docs.python.org/3/library/multiprocessing.html
http://docs.python.org/3/library/multiprocessing.html
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Parallel Cython with OpenMP
Cython provides a convenient interface to perform shared-memory parallel processing 
through OpenMP. This lets you write extremely efficient parallel code directly in Cython 
without having to create a C wrapper.

OpenMP is a specification and an API designed to write multithreaded, parallel programs. 
The OpenMP specification includes a series of C preprocessor directives to manage 
threads and provides communication patterns, load balancing, and other synchronization 
features. Several C/C++ and Fortran compilers (including the GNU Compiler Collection 
(GCC)) implement the OpenMP API.

We can introduce the Cython parallel features with a small example. Cython provides  
a simple API based on OpenMP in the cython.parallel module. The simplest way  
to achieve parallelism is through prange, which is a construct that automatically 
distributes loop operations in multiple threads.

First of all, we can write the serial version of a program that computes the square of each 
element of a NumPy array in the hello_parallel.pyx file. We define a function, 
square_serial, that takes a buffer as input and populates an output array with the 
squares of the input array elements; square_serial is shown in the following  
code snippet:

    import numpy as np 

    def square_serial(double[:] inp): 

        cdef int i, size 

        cdef double[:] out 

        size = inp.shape[0] 

        out_np = np.empty(size, 'double') 

        out = out_np 

        for i in range(size): 

            out[i] = inp[i]*inp[i] 

        return out_np

Implementing a parallel version of the loop over the array elements involves substituting 
the range call with prange. There's a caveat—to use prange, the body of the loop must 
be interpreter-free. As already explained, we need to release the GIL and, since interpreter 
calls generally acquire the GIL, they need to be avoided to make use of threads.
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In Cython, you can release the GIL using the nogil context, as follows:

    with nogil: 

        for i in prange(size): 

            out[i] = inp[i]*inp[i]

Alternatively, you can use the nogil=True option of prange that will automatically 
wrap the loop body in a nogil block, as follows:

    for i in prange(size, nogil=True): 

        out[i] = inp[i]*inp[i]

Attempts to call Python code in a prange block will produce an error. Prohibited 
operations include function calls, object initialization, and so on. To enable such operations 
in a prange block (you may want to do so for debugging purposes), you have to re-enable 
the GIL using a with gil statement, as follows:

    for i in prange(size, nogil=True): 

        out[i] = inp[i]*inp[i] 

        with gil:   

            x = 0 # Python assignment

We can now test our code by compiling it as a Python extension module. To enable 
OpenMP support, it is necessary to change the setup.py file so that it includes the 
-fopenmp compilation option. This can be achieved by using the distutils.
extension.Extension class in distutils and passing it to cythonize. The 
complete setup.py file looks like this:

    from distutils.core import setup 

    from distutils.extension import Extension 

    from Cython.Build import cythonize 

    hello_parallel = Extension(

        'hello_parallel', 

        ['hello_parallel.pyx'], 

        extra_compile_args=['-fopenmp'], 

        extra_link_args=['-fopenmp']) 

    setup( 

       name='Hello', 
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       ext_modules = cythonize(['cevolve.pyx', 

         hello_parallel]), 

    )

Using prange, we can easily parallelize the Cython version of our ParticleSimulator 
class. The following code snippet contains the c_evolve function of the cevolve.pyx 
Cython module that was written in Chapter 4, C Performance with Cython:

    def c_evolve(double[:, :] r_i,double[:] ang_speed_i, \

                 double timestep,int nsteps): 

        # cdef declarations 

        for i in range(nsteps): 

            for j in range(nparticles): 

                # loop body

First, we will invert the order of the loops so that the outermost loop will be executed  
in parallel (each iteration is independent of the other). Since the particles don't interact 
with each other, we can change the order of iteration safely, as shown in the following  
code snippet:

        for j in range(nparticles): 

            for i in range(nsteps): 

                # loop body

Next, we will replace the range call of the outer loop with prange and remove calls that 
acquire the GIL. Since our code was already enhanced with static types, the nogil option 
can be applied safely, as follows:

    for j in prange(nparticles, nogil=True)

We can now compare the functions by wrapping them in the benchmark function to 
assess any performance improvement, as follows:

    In [3]: %timeit benchmark(10000, 'openmp') # Running on 

      4 processors

    1 loops, best of 3: 599 ms per loop 

    In [4]: %timeit benchmark(10000, 'cython') 

    1 loops, best of 3: 1.35 s per loop
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Interestingly, we achieved a two-times speedup by writing a parallel version using prange.

As we mentioned earlier, normal Python programs have trouble achieving thread 
parallelism because of the GIL. So far, we worked around this problem using separate 
processes; starting a process, however, takes significantly more time and memory than 
starting a thread.

We also saw that sidestepping the Python environment allowed us to achieve a two-times 
speedup on already fast Cython code. This strategy allowed us to achieve lightweight 
parallelism but required a separate compilation step. In the next section, we will further 
explore this strategy using special libraries that are capable of automatically translating 
our code into a parallel version for efficient execution.

Automatic parallelism
Examples of packages that implement automatic parallelism are the (by now) familiar 
just-in-time (JIT) compilers numexpr and Numba. Other packages have been developed 
to automatically optimize and parallelize array and matrix-intensive expressions, which 
are crucial in specific numerical and machine learning (ML) applications.

Theano is a project that allows you to define a mathematical expression on arrays  
(more generally, tensors), and compile them to a fast language, such as C or C++. Many  
of the operations that Theano implements are parallelizable and can run on both the  
CPU and GPU.

TensorFlow is another library that, similar to Theano, is targeted toward array-intensive 
mathematical expressions but, rather than translating the expressions to specialized C 
code, executes the operations on an efficient C++ engine.

Both Theano and TensorFlow are ideal when the problem at hand can be expressed in  
a chain of matrix and element-wise operations (such as neural networks).

Getting started with Theano
Theano is somewhat similar to a compiler but with the added bonus of being able to 
express, manipulate, and optimize mathematical expressions as well as run code on 
the CPU and GPU. Since 2010, Theano has improved release after release and has been 
adopted by several other Python projects as a way to automatically generate efficient 
computational models on the fly.

The package may be installed using the following command:

$pip install Theano
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In Theano, you first define the function you want to run by specifying variables and 
transformation using a pure Python API. This specification will then be compiled into 
machine code for execution.

As a first example, let's examine how to implement a function that computes the square of 
a number. The input will be represented by a scalar variable, a, and then we will transform 
it to obtain its square, indicated by a_sq. In the following code snippet, we will use the 
T.scalar function to define a variable and use the normal ** operator to obtain  
a new variable:

    import theano.tensor as T

    import theano as th

    a = T.scalar('a')

    a_sq = a ** 2

    print(a_sq)

    # Output:

    # Elemwise{pow,no_inplace}.0

As you can see, no specific value is computed, and the transformation we apply is purely 
symbolic. In order to use this transformation, we need to generate a function. To compile 
a function, you can use the th.function utility that takes a list of the input variables 
as its first argument and the output transformation (in our case, a_sq) as its second 
argument, as illustrated in the following code snippet:

    compute_square = th.function([a], a_sq)

Theano will take some time and translate the expression to efficient C code and compile it, 
all in the background! The return value of th.function will be a ready-to-use Python 
function, and its usage is demonstrated in the next line of code:

    compute_square(2)

    4.0

Unsurprisingly, compute_square correctly returns the input value squared. Note, 
however, that the return type is not an integer (like the input type) but a floating-point 
number. This is because the Theano default variable type is float64. You can verify  
that by inspecting the dtype attribute of the a variable, as follows:

    a.dtype

    # Result: 

    # float64
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The Theano behavior is very different compared to what we saw with Numba. Theano 
doesn't compile generic Python code and, also, doesn't do any type of inference; defining 
Theano functions requires a more precise specification of the types involved.

The real power of Theano comes from its support for array expressions. Defining a 
one-dimensional (1D) vector can be done with the T.vector function; the returned 
variable supports broadcasting operations with the same semantics of NumPy arrays.  
For instance, we can take two vectors and compute the element-wise sum of their squares, 
as follows:

    a = T.vector('a')

    b = T.vector('b')

    ab_sq = a**2 + b**2

    compute_square = th.function([a, b], ab_sq)

    compute_square([0, 1, 2], [3, 4, 5])

    # Result:

    # array([  9.,  17.,  29.])

The idea is, again, to use the Theano API as a mini-language to combine various NumPy 
array expressions that will be compiled as efficient machine code.

Note
One of the selling points of Theano is its ability to perform arithmetic 
simplifications and automatic gradient calculations. For more information, 
refer to the official documentation (https://theano-pymc.
readthedocs.io/en/latest/).

To demonstrate Theano functionality on a familiar use case, we can implement our 
parallel calculation of pi again. Our function will take a collection of two random 
coordinates as input and return the pi estimate. The input random numbers will be 
defined as vectors named x and y, and we can test their position inside the circle using 
a standard element-wise operation that we will store in the hit_test variable, as 
illustrated in the following code snippet:

    x = T.vector('x')

    y = T.vector('y')

    hit_test = x ** 2 + y ** 2 < 1

https://theano-pymc.readthedocs.io/en/latest/
https://theano-pymc.readthedocs.io/en/latest/
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At this point, we need to count the number of True elements in hit_test, which can be 
done by taking its sum (it will be implicitly cast to integer). To obtain the pi estimate, we 
finally need to calculate the ratio of hits versus the total number of trials. The calculation 
is illustrated in the following code snippet:

    hits = hit_test.sum()

    total = x.shape[0]

    pi_est = 4 * hits/total

We can benchmark the execution of the Theano implementation using th.function 
and the timeit module. In our test, we will pass two arrays of size 30000 and use the 
timeit.timeit utility to execute the calculate_pi function multiple times, as 
illustrated in the following code snippet:

    calculate_pi = th.function([x, y], pi_est)

    x_val = np.random.uniform(-1, 1, 30000)

    y_val = np.random.uniform(-1, 1, 30000)

    import timeit

    res = timeit.timeit("calculate_pi(x_val, y_val)", \

    "from __main__ import x_val, y_val, calculate_pi", \

      number=100000)

    print(res)

    # Output:

    # 10.905971487998613

The serial execution of this function takes about 10 seconds. Theano is capable  
of automatically parallelizing the code by implementing element-wise and matrix 
operations using specialized packages, such as OpenMP and the Basic Linear Algebra 
Subprograms (BLAS) linear algebra routines. Parallel execution can be enabled using 
configuration options.

In Theano, you can set up configuration options by modifying variables in the theano.
config object at import time. For example, you can issue the following commands to 
enable OpenMP support:

import theano

theano.config.openmp = True

theano.config.openmp_elemwise_minsize = 10
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The parameters relevant to OpenMP are outlined here:

• openmp_elemwise_minsize: This is an integer number that represents the 
minimum size of the arrays where element-wise parallelization should be enabled 
(the overhead of the parallelization can harm performance for small arrays).

• openmp: This is a Boolean flag that controls the activation of OpenMP compilation 
(it should be activated by default).

Controlling the number of threads assigned for OpenMP execution can be done by setting 
the OMP_NUM_THREADS environmental variable before executing the code.

We can now write a simple benchmark to demonstrate OpenMP usage in practice. In a 
test_theano.py file, we will put the complete code for the pi estimation example,  
as follows:

    # File: test_theano.py

    import numpy as np

    import theano.tensor as T

    import theano as th

    th.config.openmp_elemwise_minsize = 1000

    th.config.openmp = True

    x = T.vector('x')

    y = T.vector('y')

    hit_test = x ** 2 + y ** 2 <= 1

    hits = hit_test.sum()

    misses = x.shape[0]

    pi_est = 4 * hits/misses

    calculate_pi = th.function([x, y], pi_est)

    x_val = np.random.uniform(-1, 1, 30000)

    y_val = np.random.uniform(-1, 1, 30000)

    import timeit

    res = timeit.timeit("calculate_pi(x_val, y_val)", 

                        "from __main__ import x_val, y_val, 

                        calculate_pi", number=100000)

    print(res)
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At this point, we can run the code from the command line and assess the scaling with an 
increasing number of threads by setting the OMP_NUM_THREADS environment variable, 
as follows:

    $ OMP_NUM_THREADS=1 python test_theano.py

    10.905971487998613

    $ OMP_NUM_THREADS=2 python test_theano.py

    7.538279129999864

    $ OMP_NUM_THREADS=3 python test_theano.py

    9.405846934998408

    $ OMP_NUM_THREADS=4 python test_theano.py

    14.634153957000308

Interestingly, there is a small speedup when using two threads, but the performance 
degrades quickly as we increase their number. This means that for this input size, it is not 
advantageous to use more than two threads as the price you pay to start new threads and 
synchronize their shared data is higher than the speedup that you can obtain from the 
parallel execution. 

Achieving good parallel performance can be tricky as this will depend on the specific 
operations and how they access the underlying data. As a general rule, measuring the 
performance of a parallel program is crucial, and obtaining substantial speedups is  
a work of trial and error.

As an example, we can see that the parallel performance quickly degrades using slightly 
different code. In our hit test, we used the sum method directly and relied on the explicit 
casting of the hit_tests Boolean array. If we make the cast explicit, Theano will 
generate slightly different code that benefits less from multiple threads. We can modify  
the test_theano.py file to verify this effect, as follows:

    # Older version

    # hits = hit_test.sum()

    hits = hit_test.astype('int32').sum()

If we rerun our benchmark, we see that the number of threads does not affect the running 
time significantly, as illustrated here:

    $ OMP_NUM_THREADS=1 python test_theano.py

    5.822126664999814

    $ OMP_NUM_THREADS=2 python test_theano.py

    5.697357518001809
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    $ OMP_NUM_THREADS=3 python test_theano.py 

    5.636914656002773

    $ OMP_NUM_THREADS=4 python test_theano.py

    5.764030176000233

Despite that, the timings improved considerably compared to the original version.

Profiling Theano
Given the importance of measuring and analyzing performance, Theano provides 
powerful and informative profiling tools. To generate profiling data, the only modification 
needed is the addition of the profile=True option to th.function, as illustrated in 
the following code snippet:

    calculate_pi = th.function([x, y], pi_est, 

      profile=True)

The profiler will collect data as the function is being run (for example, through timeit 
or direct invocation). The profiling summary can be printed to the output by issuing the 
summary command, as follows:

    calculate_pi.profile.summary()

To generate profiling data, we can rerun our script after adding the profile=True 
option (for this experiment, we will set the OMP_NUM_THREADS environmental variable 
to 1). Also, we will revert our script to the version that performed the casting of  
hit_tests implicitly.

Note
You can also set up profiling globally using the config.profile option.

The output printed by calculate_pi.profile.summary() is quite long and 
informative. A part of it is reported in the next block of code. The output is comprised of 
three sections that refer to timings sorted by Class, Ops, and Apply. In our example, we 
are concerned with Ops, which roughly maps to the functions used in the Theano compiled 
code. As you can see here, roughly 80% of the time is spent in taking the element-wise 
square and sum of the two numbers, while the rest of the time is spent calculating the sum:

Function profiling

==================
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  Message: test_theano.py:15

... other output

   Time in 100000 calls to Function.__call__: 1.015549e+01s

... other output

Class

---

<% time> <sum %> <apply time> <time per call> <type> 

<#call> <#apply> <Class name>

.... timing info by class

Ops

---

<% time> <sum %> <apply time> <time per call> <type> <#call> 

<#apply> <Op name>

  80.0%    80.0%       6.722s       6.72e-

05s     C     100000        1   Elemwise{Composite{LT((sqr(

i0) + sqr(i1)), i2)}}

  19.4%    99.4%       1.634s       1.63e-

05s     C     100000        1   Sum{acc_dtype=int64}

   0.3%    99.8%       0.027s       2.66e-

07s     C     100000        1   Elemwise{Composite{((i0 * 

i1) / i2)}}

   0.2%   100.0%       0.020s       2.03e-

07s     C     100000        1   Shape_i{0}

   ... (remaining 0 Ops account for   0.00%(0.00s) of the 

     runtime)

Apply

------

<% time> <sum %> <apply time> <time per call> <#call> <id> 

<Apply name>

... timing info by apply
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This information is consistent with what was found in our first benchmark. The code went 
from about 11 seconds to roughly 8 seconds when two threads were used. From these 
numbers, we can analyze how the time was spent.

Out of these 11 seconds, 80% of the time (about 8.8 seconds) was spent doing element-
wise operations. This means that, in perfectly parallel conditions, the increase in speed 
by adding two threads will be 4.4 seconds. In this scenario, the theoretical execution time 
would be 6.6 seconds. Considering that we obtained a timing of about 8 seconds, it looks 
like there is some extra overhead (1.4 seconds) for the thread usage.

TensorFlow
TensorFlow is another library designed for fast numerical calculations and automatic 
parallelism. It was released as an open source project by Google in 2015. TensorFlow 
works by building mathematical expressions similar to Theano, except that the 
computation is not compiled as machine code but is executed on an external engine 
written in C++. TensorFlow supports the execution and deployment of parallel code  
on one or more CPUs and GPUs.

We can install TensorFlow using the following command:

$pip install tensorflow

TensorFlow Version Compatibility
Note that as the default option, TensorFlow 2.x will be installed without 
further specifications. However, since the number of users of TensorFlow 
1.x is still considerable, the code we use next will follow the syntax 
of TensorFlow 1.x. You can either install version 1 by specifying pip 
install tensorflow==1.15 or disable version 2's behavior using 
import tensorflow.compat.v1 as tf; tf.disable_v2_
behavior() when importing the library, as shown next.

The usage of TensorFlow is quite similar to that of Theano. To create a variable in 
TensorFlow, you can use the tf.placeholder function that takes a data type as input, 
as follows:

    import tensorflow.compat.v1 as tf

    tf.disable_v2_behavior()

    a = tf.placeholder('float64')
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TensorFlow mathematical expressions can be expressed quite similarly to Theano,  
except for a few different naming conventions as well as more restricted support for  
the NumPy semantics.

TensorFlow doesn't compile functions to C and then machine code like Theano does, but 
serializes the defined mathematical functions (the data structure containing variables and 
transformations is called a computation graph) and executes them on specific devices. 
The configuration of devices and context can be done using the tf.Session object.

Once the desired expression is defined, a tf.Session object needs to be initialized  
and can be used to execute computation graphs using the Session.run method. In  
the following example, we demonstrate the usage of the TensorFlow API to implement  
a simple element-wise sum of squares:

    a = tf.placeholder('float64')

    b = tf.placeholder('float64')

    ab_sq = a**2 + b**2

    with tf.Session() as session:

        result = session.run(ab_sq, feed_dict={a: [0, 1, \

          2], b: [3, 4, 5]})

        print(result)

    # Output:

    # array([  9.,  17.,  29.])

Parallelism in TensorFlow is achieved automatically by its smart execution engine, and it 
generally works well without much fiddling. However, note that it is mostly suited for deep 
learning (DL) workloads that involve the definition of complex functions that use a lot of 
matrix multiplications and calculate their gradient.

We can now replicate the estimation of pi example using TensorFlow capabilities and 
benchmark its execution speed and parallelism against the Theano implementation.  
What we will do is this:

• Define our x and y variables and perform a hit test using broadcasted operations.

• Calculate the sum of hit_tests using the tf.reduce_sum function.

• Initialize a Session object with the inter_op_parallelism_threads 
and intra_op_parallelism_threads configuration options. These options 
control the number of threads used for different classes of parallel operations.  
Note that the first Session instance created with such options sets the number  
of threads for the whole script (even future Session instances).
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We can now write a script name, test_tensorflow.py, containing the following  
code. Note that the number of threads is passed as the first argument of the script  
(sys.argv[1]):

    import tensorflow.compat.v1 as tf

    tf.disable_v2_behavior()

    import numpy as np

    import time

    import sys

    NUM_THREADS = int(sys.argv[1])

    samples = 30000

    print('Num threads', NUM_THREADS)

    x_data = np.random.uniform(-1, 1, samples)

    y_data = np.random.uniform(-1, 1, samples)

    x = tf.placeholder('float64', name='x')

    y = tf.placeholder('float64', name='y')

    hit_tests = x ** 2 + y ** 2 <= 1.0

    hits = tf.reduce_sum(tf.cast(hit_tests, 'int32'))

    with tf.Session

        (config=tf.ConfigProto

            (inter_op_parallelism_threads=NUM_THREADS,

             intra_op_parallelism_threads=NUM_THREADS)) as \

               sess:

        start = time.time()

        for i in range(10000):

            sess.run(hits, {x: x_data, y: y_data})

        print(time.time() - start)
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If we run the script multiple times with different values of NUM_THREADS, we see that the 
performance is quite similar to Theano and that the speedup increased by parallelization  
is quite modest, as illustrated here:

    $ python test_tensorflow.py 1

    13.059704780578613

    $ python test_tensorflow.py 2

    11.938535928726196

    $ python test_tensorflow.py 3

    12.783955574035645

    $ python test_tensorflow.py 4

    12.158143043518066

The main advantage of using software packages such as TensorFlow and Theano is the 
support for parallel matrix operations that are commonly used in ML algorithms. This is 
very effective because those operations can achieve impressive performance gains on GPU 
hardware that is designed to perform these operations with high throughput. 

Running code on a GPU
In this subsection, we will demonstrate the usage of a GPU with Theano and TensorFlow. 
As an example, we will benchmark the execution of very simple matrix multiplication on 
the GPU and compare it to its running time on a CPU.

Note
The code in this subsection requires the possession of a GPU. For learning 
purposes, it is possible to use the Amazon Elastic Compute Cloud (EC2) 
service (https://aws.amazon.com/ec2) to request a GPU-enabled 
instance.

The following code performs a simple matrix multiplication using Theano. We use the 
T.matrix function to initialize a two-dimensional (2D) array, and then we use the 
T.dot method to perform the matrix multiplication:

    from theano import function, config

    import theano.tensor as T

    import numpy as np

    import time

https://aws.amazon.com/ec2
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    N = 5000

    A_data = np.random.rand(N, N).astype('float32')

    B_data = np.random.rand(N, N).astype('float32')

    A = T.matrix('A')

    B = T.matrix('B')

    f = function([A, B], T.dot(A, B))

    start = time.time()

    f(A_data, B_data)

    print("Matrix multiply ({}) took {} seconds".format(N, \

      time.time() - start))

    print('Device used:', config.device)

It is possible to ask Theano to execute this code on a GPU by setting the config.
device=gpu option. For added convenience, we can set up the configuration value from 
the command line using the THEANO_FLAGS environmental variable, shown as follows. 
After copying the previous code into the test_theano_matmul.py file, we can 
benchmark the execution time by issuing the following command:

    $ THEANO_FLAGS=device=gpu python test_theano_gpu.py 

    Matrix multiply (5000) took 0.4182612895965576 seconds

    Device used: gpu

We can analogously run the same code on the CPU using the device=cpu configuration 
option, as follows:

    $ THEANO_FLAGS=device=cpu python test_theano.py 

    Matrix multiply (5000) took 2.9623231887817383 seconds

    Device used: cpu

As you can see, the GPU is 7.2 times faster than the CPU version for this example!
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For comparison, we may benchmark equivalent code using TensorFlow. The implementation 
of a TensorFlow version is shown in the next code snippet. The main differences with the 
Theano version are outlined here:

• The usage of the tf.device config manager that serves to specify the target device 
(/cpu:0 or /gpu:0).

• The matrix multiplication is performed using the tf.matmul operator.

This is illustrated in the following code snippet:

    import tensorflow as tf

    import time

    import numpy as np

    N = 5000

    A_data = np.random.rand(N, N)

    B_data = np.random.rand(N, N)

    # Creates a graph.

    with tf.device('/gpu:0'):

        A = tf.placeholder('float32')

        B = tf.placeholder('float32')

        C = tf.matmul(A, B)

    with tf.Session() as sess:

        start = time.time()

        sess.run(C, {A: A_data, B: B_data})

        print('Matrix multiply ({}) took: {}'.format(N, \

          time.time() - start))

If we run the test_tensorflow_matmul.py script with the appropriate tf.device 
option, we obtain the following timings:

    # Ran with tf.device('/gpu:0')

    Matrix multiply (5000) took: 1.417285680770874

    # Ran with tf.device('/cpu:0')

    Matrix multiply (5000) took: 2.9646761417388916 
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As you can see, the performance gain is substantial (but not as good as the Theano 
version) in this simple case.

Another way to achieve automatic GPU computation is the now-familiar Numba. With 
Numba, it is possible to compile Python code to programs that can be run on a GPU.  
This flexibility allows for advanced GPU programming as well as more simplified 
interfaces. In particular, Numba makes extremely easy-to-write, GPU-ready, generalized 
universal functions.

In the next example, we will demonstrate how to write a universal function that applies  
an exponential function on two numbers and sums the results. As we already saw in 
Chapter 5, Exploring Compilers, this can be accomplished using the nb.vectorize 
function (we'll also specify the cpu target explicitly). The code is shown here:

    import numba as nb

    import math

    @nb.vectorize(target='cpu')

    def expon_cpu(x, y):

        return math.exp(x) + math.exp(y)

The expon_cpu universal function can be compiled for the GPU device using the 
target='cuda' option. Also, note that it is necessary to specify the input types for 
CUDA universal functions. The implementation of expon_gpu is shown here:

    @nb.vectorize(['float32(float32, float32)'], 

      target='cuda')

    def expon_gpu(x, y):

        return math.exp(x) + math.exp(y)

We can now benchmark the execution of the two functions by applying the functions on 
two arrays of size 1000000. Also, note in the following code snippet that we execute the 
function before measuring the timings to trigger the Numba JIT compilation:

    import numpy as np

    import time

    N = 1000000

    niter = 100

    a = np.random.rand(N).astype('float32')

    b = np.random.rand(N).astype('float32')
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    # Trigger compilation

    expon_cpu(a, b)

    expon_gpu(a, b)

    # Timing

    start = time.time()

    for i in range(niter):

       expon_cpu(a, b)

    print("CPU:", time.time() - start)

    start = time.time()

    for i in range(niter): 

        expon_gpu(a, b) 

    print("GPU:", time.time() - start) 

    # Output:

    # CPU: 2.4762887954711914

    # GPU: 0.8668839931488037

Thanks to the GPU execution, we were able to achieve a three-times speedup over the 
CPU version. Note that transferring data on the GPU is quite expensive; therefore, GPU 
execution becomes advantageous only for very large arrays.

When To Use Which Package
To close out this chapter, we will include a brief discussion regarding the 
parallel processing tools that we have examined thus far. First, we have seen 
how to use multiprocessing to manage multiple processes natively in 
Python. If you are using Cython, you may appeal to OpenMP to implement 
parallelism while being able to avoid working with C wrappers.

Finally, we study Theano and TensorFlow as two packages that automatically 
compile array-centric code and parallelize the execution. While these two 
packages offer similar advantages when it comes to automatic parallelism, at 
the time of this writing, TensorFlow has gained significant popularity, especially 
within the DL community, where the parallelism of matrix multiplications is 
the norm.

On the other hand, the active development of Theano stopped in 2018. While 
the package may still be utilized for automatic parallelism and DL uses, no 
new versions will be released. For this reason, TensorFlow is often preferred by 
Python programmers nowadays.
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Summary
Parallel processing is an effective way to improve performance on large datasets. 
Embarrassingly parallel problems are excellent candidates for parallel execution  
that can be easily implemented to achieve good performance scaling.

In this chapter, we illustrated the basics of parallel programming in Python. We learned 
how to circumvent Python threading limitations by spawning processes using the 
tools available in the Python standard library. We also explored how to implement a 
multithreaded program using Cython and OpenMP.

For more complex problems, we learned how to use the Theano, TensorFlow, and Numba 
packages to automatically compile array-intensive expressions for parallel execution on 
CPU and GPU devices.

In the next chapter, we will learn how to apply parallel programming techniques to build  
a hands-on application that makes and handles web requests concurrently.

Questions
1. Why doesn't running Python code across multiple threads offer any speedup? What 

is the alternative approach that we have discussed in this chapter?
2. In the multiprocessing module, what is the difference between the Process 

and the Pool interface in terms of implementing multiprocessing?
3. On a high level, how do libraries such as Theano and TensorFlow help in 

parallelizing Python code?
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Concurrent Web 

Requests
This chapter will focus on concurrently making web requests. Intuitively, making requests 
to a web page to collect information about it is independent of applying the same task to 
another web page. This means that concurrency, specifically threading in this case, can 
be a powerful tool that provides a significant speedup in this process. In this chapter, 
we will learn about the fundamentals of web requests and how to interact with websites 
using Python. We will also learn how concurrency can help us make multiple requests 
efficiently. Finally, we will look at several good practices regarding web requests.

Overall, this chapter serves as a practical exercise for us to become more comfortable 
with concurrency in Python, which will help you tackle future concurrent programming 
projects with more confidence.

In this chapter, we will cover the following topics:

• The basics of web requests

• The requests module

• Concurrent web requests

• The problem with timeouts

• Good practices in making web requests
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The basics of web requests
The worldwide capacity to generate data is estimated to double in size every 2 years. Even 
though there is an interdisciplinary field known as data science that is entirely dedicated 
to studying data, almost every programming task in software development also has 
something to do with collecting and analyzing data. A significant part of this is, of course, 
data collection. However, the data that we need for our applications is sometimes not 
stored nicely and cleanly in a database – sometimes, we need to collect the data we need 
from web pages.

For example, web scraping is a data extraction method that automatically makes requests 
to web pages and downloads specific information. Web scraping allows us to comb 
through numerous websites and collect any data we need systematically and consistently. 
The collected data can be analyzed later by our applications or simply saved on our 
computers in various formats. An example of this would be Google, which maintains and 
runs numerous web scrapers of its own to find and index web pages for its search engines.

The Python language itself provides several good options for applications of this kind.  
In this chapter, we will mainly work with the requests module to make client-side  
web requests from our Python programs. However, before we look into this module in 
more detail, we need to understand some web terminology to be able to effectively design 
our applications.

HTML
Hypertext Markup Language (HTML) is the standard and most common markup 
language for developing web pages and web applications. An HTML file is simply a 
plaintext file with the .html file extension. In an HTML document, text is surrounded 
and delimited by tags, written in angle brackets; that is, <p>, <img>, <i>, and so on. 
These tags typically consist of pairs – an opening tag and a closing tag – indicating the 
styling or the nature of the data included inside.

It is also possible to include other forms of media in HTML code, such as images or 
videos. Numerous other tags are used in common HTML documents. Some specify a 
group of elements that share some common characteristics, such as <id></id> and 
<class></class>.
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The following is an example of HTML code:

Figure 9.1 – Sample HTML code

Fortunately, detailed knowledge of what each HTML tag accomplishes is not required for 
us to make effective web requests. As we will see later in this chapter, the more essential 
part of making web requests is the ability to interact with web pages efficiently.

HTTP requests
In a typical communication process on the web, HTML text is the data that is to be saved 
and/or further processed. This kind of data needs to be collected from web pages, but how 
can we go about doing that? Most of the communication is done via the internet – more 
specifically, the World Wide Web (WWW) – and this utilizes the Hypertext Transfer 
Protocol (HTTP). In HTTP, request methods are used to convey the information of what 
data is being requested and should be sent back from a server.
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For example, when you type packtpub.com in your browser, the browser sends a request 
method via HTTP to the Packt website's main server, asking for data from the website. Now, 
if both your internet connection and Packt's server are working well, then your browser will 
receive a response from the server, as shown in the following diagram. This response will 
be in the form of an HTML document, which will be interpreted by your browser, and your 
browser will display the corresponding HTML output on the screen:

Figure 9.2 – Diagram of HTTP communication

Generally, request methods are defined as verbs that indicate the desired action to be 
performed while the HTTP client (web browsers) and the server communicate with each 
other: GET, HEAD, POST, PUT, DELETE, and so on. Of these methods, GET and POST 
are two of the most common request methods that are used in web scraping applications; 
their functionality is described here:

• The GET method requests specific data from the server. This method only retrieves 
data and has no other effect on the server and its databases.

• The POST method sends data in a specific form that is accepted by the server. This 
data could be, for example, a message to a bulletin board, mailing list, or newsgroup, 
information to be submitted to a web form, or an item to be added to a database.

All general-purpose HTTP servers that we commonly see on the internet are required  
to implement at least the GET (and HEAD) method, while the POST method is  
considered optional.

HTTP status code
It is not always the case that when a web request is made and sent to a web server, the 
server will process the request and return the requested data without fail. Sometimes, 
the server might be completely down or already busy interacting with other clients and 
therefore unresponsive to a new request; sometimes, the client itself makes bad requests  
to a server (for example, incorrectly formatted or malicious requests).
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As a way to categorize these problems as well as provide the most information possible 
during the communication resulting from a web request, HTTP requires servers to 
respond to each request from its clients with an HTTP response status code. A status 
code is typically a three-digit number that indicates the specific characteristics of the 
response that the server sends back to a client.

In total, there are five large categories of HTTP response status codes, indicated by the 
first digit of the code. They are as follows:

• 1xx (informational status code): The request was received, and the server is 
processing it. For example, 100 means that the request header has been received 
and that the server is waiting for the request body; 102 indicates that the request is 
currently being processed (this is used for large requests and to prevent clients from 
timing out).

• 2xx (successful status code): The request was successfully received, understood, 
and processed by the server. For example, 200 means the request was successfully 
fulfilled; 202 indicates that the request has been accepted for processing, but the 
processing itself is not complete.

• 3xx (redirectional status code): Additional actions need to be taken so that the 
request can be successfully processed. For example, 300 means that there are multiple 
options regarding how the response from the server should be processed (for example, 
giving the client multiple video format options when a video file is to be downloaded); 
301 indicates that the server has been moved permanently and all requests should be 
directed to another address (provided in the response from the server).

• 4xx (error status code for the client): The request was incorrectly formatted by the 
client and could not be processed. For example, 400 means that the client sent in a 
bad request (for example, a syntax error or the size of the request is too large); 404 
(arguably the most well-known status code) indicates that the request method is not 
supported by the server.

• 5xx (error status code for the server): The request, although valid, could not be 
processed by the server. For example, 500 means that there is an internal server 
error in which an unexpected condition was encountered; 504 (Gateway Timeout) 
means that the server, which was acting as a gateway or a proxy, did not receive a 
response from the final server in time.

A lot more can be said about these status codes, but it is already sufficient for us to keep 
the big five categories previously mentioned in mind when making web requests from 
Python. If you would like to find more specific information about these or other status 
codes, the Internet Assigned Numbers Authority (IANA) maintains the official registry 
of HTTP status codes. Now, let's start learning about making web requests in Python.
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The requests module
The requests module allows its users to make and send HTTP request methods. In the 
applications that we will be considering, it is mainly used to make contact with the server 
of the web pages we want to extract data from and obtain the response for the server.

Note
According to the official documentation of the module, the use of Python 3 is 
highly recommended over Python 2 for requests.

To install the module on your computer, run one of the following commands:

pip install requests

conda install requests

These commands should install requests and any other required dependencies (idna, 
certifi, urllib3, and so on) for you if your system does not have those already. 
After this, run import requests in a Python interpreter to confirm that the module 
has been installed successfully. Next, we will use requests to build the sequential, 
non-concurrent version of our program.

Making a request in Python
Let's look at an example usage of the module, as shown in the following code:

import requests

url = 'http://www.google.com'

res = requests.get(url)

print(res.status_code)

print(res.headers)

with open('google.html', 'w') as f:

    f.write(res.text)

print('Done.')
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In this example, we are using the requests module to download the HTML code of 
a web page; that is, www.google.com. The requests.get() method sends a GET 
request method to url and we store the response in the res variable. After checking  
the status and headers of the response by printing them out, we create a file called 
google.html and write the HTML code, which is stored in the response text, to the file.

After running the program (assuming that your internet is working and that the Google 
server is not down), you should get the following output:

200

{'Date': 'Sat, 17 Nov 2018 23:08:58 GMT', 'Expires': '-1', 

'Cache-Control': 'private, max-age=0', 'Content-Type': 'text/

html; charset=ISO-8859-1', 'P3P': 'CP="This is not a P3P 

policy! See g.co/p3phelp for more info."', 'X-XSS-Protection': 

'1; mode=block', 'X-Frame-Options': 'SAMEORIGIN', 'Content-

Encoding': 'gzip', 'Server': 'gws', 'Content-Length': '4958', 

'Set-Cookie': '1P_JAR=2018-11-17-23; expires=Mon, 17-Dec-2018 

23:08:58 GMT; path=/; domain=.google.com, NID=146=NHT7fic3mjBO_

vdiFB3-gqnFPyGN1EGxyMkkNPnFMEVsqjGJ8S0EwrivDBWBgUS7hCPZGHbos

LE4uxz31shnr3X4adRpe7uICEiK8qh3Asu6LH_bIKSLWStAp8gMK1f9_GnQ0_

JKQoMvG-OLrT_fwV0hwTR5r2UVYsUJ6xHtX2s; expires=Sun, 19-May-2019 

23:08:58 GMT; path=/; domain=.google.com; HttpOnly'}

Done.

The response had a 200 status code, which we know means that the request has been 
completed. The header of the response, which is stored in res.headers, also contains 
further specific information regarding the response. For example, we can see the date and 
time the request was made, that the content of the response is text and HTML, and that 
the total length of the content is 4958.

The data that was sent from the server was also written to the google.html file. When 
you open this file in a text editor, you will be able to see the HTML code of the web page 
that we have downloaded using requests. On the other hand, if you use a web browser 
to open the file, you will see how most of the information from the original web page is 
now being displayed through a downloaded offline file.
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For example, the following is how Google Chrome interprets the HTML file on my system:

Figure 9.3 – Downloaded HTML opened offline

There is other information that is stored on the server that the web pages of that server 
refer to. This means that not all of the information that an online web page provides can 
be downloaded via a GET request, and this is why offline HTML code sometimes fails to 
contain all of the information available on the online web page that it was downloaded 
from. (For example, the downloaded HTML code in the preceding screenshot does not 
display the Google icon correctly.)

Running a ping test
With the basic knowledge of HTTP requests and the requests module in Python in 
hand, we will, for the remaining portion of this chapter, tackle the central problem of 
running a ping test. A ping test is a procedure in which you test the communication 
between your system and specific web servers, simply by requesting each of the servers 
in question. By considering the HTTP response status code (potentially) returned by the 
server, the test is used to evaluate either the internet connection of your system or the 
availability of the servers.

Ping tests are quite common among web administrators, who usually have to manage a 
large number of websites simultaneously. It is a good tool to quickly identify pages that 
are unexpectedly unresponsive or down. Many tools provide you with powerful options 
regarding ping tests and, in this chapter, we will be designing a ping test application that 
can concurrently send multiple web requests at the same time.
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To simulate different HTTP response status codes to be sent back to our program, we will 
be using httpstat.us, a website that can generate various status codes and is commonly 
used to test how applications that make web requests can handle varying responses. 
Specifically, to use a request that will return a 200 status code in a program, we can simply 
send the request httpstat.us/200; the same applies to other status codes. In our ping 
test program, we will have a list of httpstat.us URLs with different status codes.

Let's take a look at the following code:

import requests

def ping(url):

    res = requests.get(url)

    print(f'{url}: {res.text}')

urls = [

    'http://httpstat.us/200',

    'http://httpstat.us/400',

    'http://httpstat.us/404',

    'http://httpstat.us/408',

    'http://httpstat.us/500',

    'http://httpstat.us/511'

]

for url in urls:

    ping(url)

print('Done.')

In this program, the ping() function takes in a URL and attempts to make a GET request 
to the site. Then, it prints out the content of the response returned by the server. In our 
main program, we have a list of different status codes that we mentioned earlier, each of 
which we will go through and call the ping() function on.

The final output, after running the preceding example, should be as follows:

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/404: 404 Not Found

http://httpstat.us/408: 408 Request Timeout

http://httpstat.us
http://httpstat.us/200
http://httpstat.us
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http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/511: 511 Network Authentication Required

Done.

Here, we can see that our ping test program was able to obtain the corresponding 
responses from the server. However, our current program is purely sequential, and we 
would like to implement a concurrent version of it. We will do this in the next section.

Concurrent web requests
In the context of concurrent programming, we can see that the process of making a 
request to a web server and obtaining the returned response is independent of the same 
procedure for a different web server. This is to say that we could apply concurrency and 
parallelism to our ping test application to speed up our execution.

In the concurrent ping test applications that we are designing, multiple HTTP requests 
will be made to the server simultaneously and the corresponding responses will be sent 
back to our program, as shown in the following diagram: 

Figure 9.4 – Parallel HTTP requests

As we mentioned previously, concurrency and parallelism have significant applications in 
web development, and most servers nowadays can handle a large number of requests at 
the same time.

Now, let's see how we can make multiple web requests at the same time, with the help  
of threading.
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Spawning multiple threads
To apply concurrency, we can simply use the threading module that we have been 
discussing to create separate threads to handle different web requests. Let's take a look  
at the following code:

import threading

import requests

import time

def ping(url):

    res = requests.get(url)

    print(f'{url}: {res.text}')

urls = [

    'http://httpstat.us/200',

    'http://httpstat.us/400',

    'http://httpstat.us/404',

    'http://httpstat.us/408',

    'http://httpstat.us/500',

    'http://httpstat.us/524'

]

start = time.time()

for url in urls:

    ping(url)

print(f'Sequential: {time.time() - start : .2f} seconds')

print()

start = time.time()

threads = []

for url in urls:

    thread = threading.Thread(target=ping, args=(url,))

    threads.append(thread)

    thread.start()
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for thread in threads:

    thread.join()

print(f'Threading: {time.time() - start : .2f} seconds')

In this example, we are including the sequential logic from the previous example to 
process our URL list so that we can compare the speed improvement when we apply 
threading to our ping test program. We are also creating a thread to ping each of the 
URLs in our URL list using the threading module; these threads will be executed 
independently from each other. The time it takes to process the URLs both sequentially 
and concurrently is also tracked using methods from the time module.

If you run the program, your output should be similar to the following:

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/404: 404 Not Found

http://httpstat.us/408: 408 Request Timeout

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/524: 524 A timeout occurred

Sequential: 0.82 seconds

http://httpstat.us/404: 404 Not Found

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/524: 524 A timeout occurred

http://httpstat.us/408: 408 Request Timeout

Threading: 0.14 seconds

While the specific time that the sequential logic and threading logic takes to process all 
the URLs might be different from system to system, there should still be a clear distinction 
between the two. Specifically, here, we can see that the threading logic was almost six times 
faster than the sequential logic (which corresponds to the fact that we had six threads 
processing six URLs in parallel). There is no doubt, then, that concurrency can provide 
a significant speedup for our ping test application and for the process of making web 
requests in general.



Concurrent web requests     275

Refactoring request logic
The current version of our ping test application works as intended, but we can improve 
its readability by refactoring the logic where we make web requests in a thread class. 
Consider the MyThread class:

import threading

import requests

class MyThread(threading.Thread):

    def __init__(self, url):

        threading.Thread.__init__(self)

        self.url = url

        self.result = None

    def run(self):

        res = requests.get(self.url)

        self.result = f'{self.url}: {res.text}'

In this example, MyThread inherits from the threading.Thread class and contains 
two additional attributes: url and result. The url attribute holds the URL that the 
thread instance should process; the response that's returned from the web server to that 
thread will be written to the result attribute (in the run() function).

Outside of this class, we can simply loop through the URL list and create and manage the 
threads accordingly, while not having to worry about the request logic in the main program:

urls = [

    'http://httpstat.us/200',

    'http://httpstat.us/400',

    'http://httpstat.us/404',

    'http://httpstat.us/408',

    'http://httpstat.us/500',

    'http://httpstat.us/524'

]

start = time.time()

threads = [MyThread(url) for url in urls]

for thread in threads:
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    thread.start()

for thread in threads:

    thread.join()

for thread in threads:

    print(thread.result)

print(f'Took {time.time() - start : .2f} seconds')

print('Done.')

Note that we are now storing the responses in the result attribute of the MyThread 
class, instead of directly printing them out, as we did in the old ping() function from the 
previous examples. This means that, after making sure that all the threads have finished, 
we will need to loop through the threads one more time and print out those responses.

Refactoring the request logic should not greatly affect the performance of our current 
program; we are keeping track of the execution speed to see if this is the case. If you 
execute the program, you will obtain an output similar to the following:

http://httpstat.us/200: 200 OK

http://httpstat.us/400: 400 Bad Request

http://httpstat.us/404: 404 Not Found

http://httpstat.us/408: 408 Request Timeout

http://httpstat.us/500: 500 Internal Server Error

http://httpstat.us/524: 524 A timeout occurred

Took 0.14 seconds

Done.

Just as we expected, we are still achieving a significant speedup from the sequential  
version of the program with this refactored request logic. Again, our main program is  
now more readable, and further adjustments to the request logic (as we will see in the  
next section) can simply be directed to the MyThread class, without affecting the rest  
of the program.

Our program can now make concurrent web requests to specific sites and display the 
returned status code. However, there is a problem common in working with web requests 
that our program cannot handle yet: timeouts. We will learn how to address this in the 
next section.
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The problem with timeouts
In this section, we will explore a potential improvement we can make to our ping test 
application: handling timeouts. Timeouts typically occur when the server takes an 
unusually long time to process a specific request, and the connection between the server 
and its client is terminated.

In the context of a ping test application, we will be implementing a customized threshold 
for the timeout. Recall that a ping test is used to determine whether specific servers are still 
responsive, so we can specify in our program that, if a request takes more than our timeout 
threshold for the server to respond, we will categorize that specific server with a timeout.

Support from httpstat.us and simulation in Python
In addition to different options for status codes, the httpstat.us website also provides 
us with a way to simulate a delay in its response when we send in requests. Specifically,  
we can customize the delay time (in milliseconds) with a query argument in our GET 
request. For example, httpstat.us/200?sleep=5000 will return a response after  
a 5-second delay.

Now, let's see how a delay like this would affect the execution of our program. Consider 
the following program, which contains the current request logic of our ping test 
application but has a different URL list:

import threading

import requests

class MyThread(threading.Thread):

    def __init__(self, url):

        threading.Thread.__init__(self)

        self.url = url

        self.result = None

    def run(self):

        res = requests.get(self.url)

        self.result = f'{self.url}: {res.text}'

urls = [

    'http://httpstat.us/200',

    'http://httpstat.us/200?sleep=20000',

    'http://httpstat.us/400'

http://httpstat.us
http://httpstat.us/200?sleep=5000
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]

threads = [MyThread(url) for url in urls]

for thread in threads:

    thread.start()

for thread in threads:

    thread.join()

for thread in threads:

    print(thread.result)

print('Done.')

Here, we have a URL that will take around 20 seconds to return a response. Considering 
that we will block the main program until all the threads finish their execution (with 
the join() method), our program will most likely appear to be hanging for 20 seconds 
before any response is printed out.

Run the program to experience this for yourself. A 20-second delay will occur (which  
will make the execution take significantly longer to finish) and we will obtain the 
following output:

http://httpstat.us/200: 200 OK

http://httpstat.us/200?sleep=20000: 200 OK

http://httpstat.us/400: 400 Bad Request

Took 22.60 seconds

Done.

Let's say that 20 seconds is too long of a response time, and we cannot afford to wait  
for a request that long. So, we would like to implement some logic that can handle long 
waiting times like this.

Timeout specifications
Overall, an efficient ping test application should not be waiting for responses from its 
websites for a long time; it should have a set threshold for a timeout that, if a server 
fails to return a response under that threshold, the application will deem that server 
non-responsive. So, we need to implement a way to keep track of how much time has 
passed since a request has been sent to a server. We will do this by counting down from 
the timeout threshold. Once that threshold has been passed, all the responses (whether 
they've returned yet or not) will be printed out.
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Additionally, we will also be keeping track of how many requests are still pending and 
have not had their responses returned. We will be using the is_alive() method from 
the threading.Thread class to indirectly determine whether a response has been 
returned for a specific request. If, at one point, the thread that's processing a specific 
request is alive, we can conclude that that specific request is still pending.

Let's consider the following process_requests() function first:

import time

UPDATE_INTERVAL = 0.01

def process_requests(threads, timeout=5):

    def alive_count():

        alive = [1 if thread.is_alive() else 0 for thread \

          in threads]

        return sum(alive)

    while alive_count() > 0 and timeout > 0:

        timeout -= UPDATE_INTERVAL

        time.sleep(UPDATE_INTERVAL)

    for thread in threads:

        print(thread.result)

This function takes in a list of threads that we have been using to make web requests in 
the previous examples, as well as an optional argument specifying the timeout threshold. 
Inside this function, we have an inner function, alive_count(), which returns the 
count of the threads that are still alive at the time of the function call.

In the process_requests() function, so long as there are threads that are currently 
alive and processing requests, we will allow the threads to continue with their execution 
(this is done in the while loop with the double condition). The UPDATE_INTERVAL 
variable, as you can see, specifies how often we check for this condition. If either condition 
fails (if there are no alive threads left or if the threshold timeout is passed), then we will 
proceed with printing out the responses (even if some might have not been returned).
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Let's turn our attention to the new MyThread class:

import threading

import requests

class MyThread(threading.Thread):

    def __init__(self, url):

        threading.Thread.__init__(self)

        self.url = url

        self.result = f'{self.url}: Custom timeout'

    def run(self):

        res = requests.get(self.url)

        self.result = f'{self.url}: {res.text}'

This class is almost identical to the one we considered in the previous example, except that 
the initial value for the result attribute is a message indicating a timeout. In the case that 
we discussed earlier, where the timeout threshold specified in the process_requests() 
function is passed, this initial value will be used when the responses are printed out.

Finally, let's consider our main program in example6.py:

urls = [

    'http://httpstat.us/200',

    'http://httpstat.us/200?sleep=4000',

    'http://httpstat.us/200?sleep=20000',

    'http://httpstat.us/400'

]

start = time.time()

threads = [MyThread(url) for url in urls]

for thread in threads:

    thread.setDaemon(True)

    thread.start()

process_requests(threads)

print(f'Took {time.time() - start : .2f} seconds')

print('Done.')
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Here, in our URL list, we have a request that would take 4 seconds and another that would 
take 20 seconds, aside from the ones that would respond immediately. As the timeout 
threshold that we are using is 5 seconds, theoretically, we should be able to see that the 
4-second-delay request will successfully obtain a response, while the 20-second-delay one 
will not.

There is another point to be made about this program: daemon threads. In the 
process_requests() function, if the timeout threshold is passed while there is still at 
least one thread being processed, then the function will proceed to print out the result 
attribute of each thread:

while alive_count() > 0 and timeout > 0:

    timeout -= UPDATE_INTERVAL

    time.sleep(UPDATE_INTERVAL)

for thread in threads:

    print(thread.result)

This means that we do not block our program until all of the threads have finished their 
execution by using the join() function, which means the program can simply move 
forward if the timeout threshold is reached. However, this also means that the threads 
themselves do not terminate at this point. The 20-second-delay request, specifically, will 
still most likely be running after our program exits out of the process_requests() 
function.

If the thread that's processing this request is not a daemon thread (as we know, daemon 
threads execute in the background and never terminate), it will block the main program 
from finishing until the thread itself finishes. By making this thread, and any other thread, 
a daemon thread, we allow the main program to finish as soon as it executes the last line 
of its instructions, even if there are threads still running.

Let's see this program in action. Execute this code; your output should be similar to  
the following:

http://httpstat.us/200: 200 OK

http://httpstat.us/200?sleep=4000: 200 OK

http://httpstat.us/200?sleep=20000: Custom timeout

http://httpstat.us/400: 400 Bad Request

Took 5.70 seconds

Done.
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As you can see, it took around 5 seconds for our program to finish this time. This is 
because it spent 5 seconds waiting for the threads that were still running and, as soon 
as the 5-second threshold was passed, the program printed out the results. Here, we can 
see that the result from the 20-second-delay request was simply the default value of the 
result attribute of the MyThread class, while the rest of the requests were able to 
obtain the correct response from the server (including the 4-second-delay request since  
it had enough time to obtain the response).

If you would like to see the effect of non-daemon threads, which we discussed earlier, 
simply comment out the corresponding line of code in our main program, as follows:

threads = [MyThread(url) for url in urls]

for thread in threads:

    #thread.setDaemon(True)

    thread.start()

process_requests(threads)

You will see that the main program will hang for around 20 seconds as the non-daemon 
thread processing the 20-second-delay request is still running, before being able to finish 
its execution (even though the output that's produced will be identical).

Good practices in making web requests
There are a few aspects of making concurrent web requests that require careful 
consideration and implementation. In this section, we will be going over those aspects  
and some of the best practices that you should use when developing your applications.

Consider the terms of service and data-collecting 
policies
Unauthorized data collection has been the topic of discussion in the technology world for 
the past few years, and it will continue to be for a long time – and for good reasons too. So, 
it is extremely important for developers who are making automated web requests in their 
applications to look for websites' policies on data collecting. You can find these policies in 
their terms of service or similar documents. When in doubt, it is generally a good rule of 
thumb to contact the website directly to ask for more details.
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Error handling
Errors are something that no one can easily avoid in the field of programming, and 
this is especially true when making web requests. Errors in these programs can include 
making bad requests (invalid requests or even bad internet connections), mishandling 
downloaded HTML code, or unsuccessfully parsing HTML code. So, it is important 
to make use of try...except blocks and other error-handling tools in Python to 
avoid crashing your application. Avoiding crashes is especially important if your code/
applications are used in production and larger applications.

Specifically, in concurrent web scraping, it might be possible for some threads to collect 
data successfully, while others fail. By implementing error-handling functionalities in 
multithreaded parts of your program, you can make sure that a failed thread will not be 
able to crash the entirety of your program and ensure that successful threads can still 
return their results.

However, it is important to note that blind error-catching is still undesirable. This term 
indicates the practice where we have a large try...except block in our program that 
will catch all errors that occur in the program's execution, and no further information 
regarding the errors can be obtained; this practice is also known as error swallowing. It's 
highly recommended that you have some specific error handling code in a program so 
that not only can appropriate actions be taken with regards to that specific error, but other 
errors that have not been taken into account might also reveal themselves.

Update your program regularly
It is quite common for websites to change their request-handling logic, as well as their 
displayed data, regularly. If a program that makes requests to a website has considerably 
inflexible logic to interact with the server of the website (for example, structuring its 
requests in a specific format, only handling one kind of response, and so on), then if and 
when the website alters the way it handles its client requests, the program will most likely 
stop functioning correctly. This situation happens frequently with web scraping programs 
that look for data in specific HTML tags; when the HTML tags are changed, these 
programs will fail to find their data.

This practice is implemented to prevent automated data collecting programs from 
functioning. The only way to keep using a website that has recently changed its request-
handling logic is to analyze the updated protocols and alter our programs accordingly.
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Avoid making a large number of requests
Each time one of the programs that we have been discussing runs, it makes HTTP 
requests to a server that manages the site that you'd like to extract data from. This process 
happens significantly more frequently and over a shorter amount of time in a concurrent 
program, where multiple requests are being submitted to that server.

As we mentioned previously, servers nowadays can handle multiple requests 
simultaneously with ease. However, to avoid having to overwork and overconsume 
resources, servers are also designed to stop answering requests that come in too frequently. 
The websites of big tech companies, such as Amazon or Twitter, look for large amounts 
of automated requests that are made from the same IP address and implement different 
response protocols; some requests might be delayed, some might be refused a response, or 
the IP address might even be banned from making further requests for a specific amount 
of time.

Interestingly, making repeated, heavy-duty requests to servers is a form of hacking a 
website. In Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks, 
a very large number of requests are made at the same time to the server, flooding the 
bandwidth of the targeted server with traffic. As a result, normal, non-malicious requests 
from other clients are denied because the servers are busy processing the concurrent 
requests, as illustrated in the following diagram:

Figure 9.5 – Illustration of a DDoS attack
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So, it is important to space out the concurrent requests that your application makes to a 
server so that the application will not be considered an attacker and be potentially banned 
or treated as a malicious client. This could be as simple as limiting the maximum number 
of threads/requests that can be implemented at a time in your program or pausing the 
threading for a specific amount of time (for example, using the time.sleep() function) 
before sending a request to the server.

Summary
In this chapter, we learned about the basics of HTML and web requests. The two most 
common web requests are GET and POST requests. There are five main categories 
of HTTP response status codes, each indicating a different concept regarding the 
communication between the server and its client. By considering the status codes that  
are received from different websites, we can write a ping test application that effectively 
checks the responsiveness of those websites.

Concurrency can be applied to the problem of making multiple web requests 
simultaneously via threading to provide a significant improvement in application speed. 
However, it is important to keep several considerations in mind when making concurrent 
web requests.

All in all, the exercise we just went through in this chapter will prove useful in helping 
us approach the general problem of converting a sequential program into its concurrent 
version. The simple ping test that we have built could also be extended to have more 
complex behaviors and functionalities. In the next chapter, we will consider a similar 
procedure for the application of image processing.

Questions
1. What is HTML?
2. What are HTTP requests?
3. What are HTTP response status codes?
4. How does the requests module help with making web requests?
5. What is a ping test and how is one typically designed?
6. Why is concurrency applicable in making web requests?
7. What are the considerations that need to be made while developing applications 

that make concurrent web requests?
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Further reading
• Automate the Boring Stuff with Python: Practical Programming for Total Beginners, 

Al. Sweigart, No Starch Press, 2015

• Web Scraping with Python, Richard Lawson, Packt Publishing Ltd, 2015

• Instant Web Scraping with Java, Ryan Mitchell, Packt Publishing Ltd, 2013
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Concurrent Image 

Processing
This chapter discusses the task of processing and manipulating images via concurrent 
programming, specifically multiprocessing. Since images are processed independently of 
one another, concurrent programming is an attractive option for achieving a significant 
speedup. This chapter lays out the basics behind image processing techniques, illustrates 
the improvements that concurrent programming provides, and goes over some of the best 
practices that are used in image processing applications. This discussion will consolidate 
our knowledge of how to leverage concurrent and parallel processing tools in Python.

The following topics will be covered in this chapter:

• Image processing fundamentals

• Applying concurrency to image processing

• Good concurrent image processing practices
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Technical requirements
The following is a list of prerequisites for this chapter:

• You must have Python 3 installed on your computer.
• You must have OpenCV and NumPy installed for your Python 3 distribution.

The code for this chapter can be found in the following GitHub repository: https://
github.com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter10.

Image processing fundamentals
Digital/computational image processing (which we will refer to as image processing 
from this point forward) has become so popular in the modern era that it exists in 
numerous aspects of our everyday life. Image processing and manipulation are involved 
when you take a picture with your camera or phone using different filters, such as when 
advanced image editing software such as Adobe Photoshop is used, or even when you 
simply edit images using Microsoft Paint.

Many of the techniques and algorithms that are used in image processing were developed 
in the early 1960s for various purposes such as medical imaging, satellite image analysis, 
character recognition, and so on. However, these image processing techniques required 
significant computing power, and the fact that the available computer equipment at the 
time was unable to accommodate the need for fast number-crunching slowed down the 
use of image processing.

Fast-forwarding to the future, when powerful computers with fast, multicore processors 
were developed, image processing techniques became much more accessible, and research 
on image processing increased significantly. Nowadays, numerous image processing 
applications are being actively developed and studied, including pattern recognition, 
classification, feature extraction, and more. Some of the specific image processing 
techniques that take advantage of concurrent and parallel programming, and would 
otherwise be extremely computationally time-consuming, include Hidden Markov 
models, independent component analysis, and even neural network models.

The following is one of the simplest forms of image processing, where we convert a fully 
colored image into a grayscale one. This process is called grayscaling:

Figure 10.1 – An example use of image processing – grayscaling

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter10
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Later in this chapter, we will see how grayscaling, along with other processing techniques, 
can be done using Python. To do this, we must install the necessary libraries and packages.

Python as an image processing tool
As we have stated multiple times throughout this book, the Python programming 
language is on its way to becoming the most popular programming language. This is 
especially true in the field of computational image processing, which, most of the time, 
requires fast prototyping and designing, as well as significant automation capabilities.

As we will find out in the following section, digital images are represented in 
two-dimensional and three-dimensional matrices so that computers can process them 
easily. Consequently, most of the time, digital image processing involves matrix calculation. 
Multiple Python libraries and modules not only provide efficient matrix calculation options 
but also interact seamlessly with other libraries that handle image reading/writing.

As we already know, automating tasks and making them concurrent is Python's strong suit. 
This makes Python the prime candidate to implement your image processing applications. 
For this chapter, we will be working with two main Python libraries: OpenCV (which stands 
for Open Source Computer Vision), which is a library that provides image processing and 
computer vision options in C++, Java, and Python, and NumPy, which, as we know, is one 
of the most popular Python modules and performs efficient and parallelizable number-
crunching calculations. Let's see how we can install these libraries.

Installing OpenCV and NumPy
To install NumPy for your Python distribution using the pip package manager, run the 
following command:

pip install numpy

If you are using Anaconda/Miniconda to manage your packages, you must run the 
following command instead:

conda install numpy
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Installing OpenCV might be more complicated, depending on your operating system. 
The easiest option is to have Anaconda handle the installation process by following 
the guide at https://anaconda.org/conda-forge/opencv after installing 
Anaconda (https://www.anaconda.com/download/) as your main Python 
package manager. If, however, you are not using Anaconda, the main option for installing 
OpenCV is to follow its official documentation guide, which can be found at https://
docs.opencv.org/master/df/d65/tutorial_table_of_content_
introduction.html. After successfully installing OpenCV, open a Python interpreter 
and try importing the library, as follows:

>>> import cv2

>>> print(cv2.__version__)

4.5.2

We will import OpenCV using the name cv2, which is the library alias of OpenCV in 
Python. The success message indicates the version of the OpenCV library that has been 
downloaded (4.5.2).

Computer image basics
Before we jump into processing and manipulating digital image files, we need to discuss 
the fundamentals of those files and how computers interpret data from them. Specifically, 
we need to understand how data regarding the colors and coordinates of individual pixels 
in an image file is represented, as well as how to extract it using Python.

RGB values
RGB values are the basics of how colors are represented digitally. Standing for red, green, 
and blue (RGB), these values are constructed from the fact that all colors can be generated 
from a specific combination of red, green, and blue. So, an RGB value is a tuple of three 
integer numbers, each of which ranges from 0 (which indicates no color at all) to 255 
(which indicates the deepest shade of that specific color).

For example, red corresponds to the tuple (255, 0, 0); in this tuple, there is only the highest 
value for red and no values for the other colors, so the whole tuple represents the pure 
color red. Similarly, blue is represented by (0, 0, 255), while green is represented by (0, 
255, 0). Yellow is the result of mixing equal amounts of red and green and is therefore 
represented by (255, 255, 0) (the maximum amount of red and green, with no blue). White, 
which is the combination of all three colors, is (255, 255, 255), while black, which is the 
opposite of white and therefore lacks all colors, is represented by (0, 0, 0). 

https://anaconda.org/conda-forge/opencv
https://www.anaconda.com/download/
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
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This is illustrated by the following diagram:

Figure 10.2 – Illustration of RGB values

Pixels and image files
So, an RGB value indicates a specific color, but how do we connect this to a computer 
image? If we were to view an image on our computer and try to zoom in as much as 
we could, we would observe that as we zoom in deeper and deeper, the image will start 
breaking apart into increasingly discernible colored squares. These squares are called 
pixels, which are the smallest units of color on a computer display or in a digital image:

Figure 10.3 – Examples of pixels in digital images

A set of different pixels arranged in a tabular format (rows and columns of pixels) makes 
up a computer image. Each pixel, in turn, is an RGB value; in other words, a pixel is a tuple 
of three integers. This means that a computer image is simply a two-dimensional array of 
tuples, whose sides correspond to the size of the image. For example, a 128 x 128 image 
has 128 rows and 128 columns of RGB tuples for its data.
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Coordinates inside an image
Like indexing two-dimensional arrays, the coordinate for a digital image pixel is a pair of 
two integers, representing the x- and y-coordinates of that pixel; the x-coordinate indicates 
the pixel's location along the horizontal axis starting from the left, while the y-coordinate 
indicates the pixel's location along the vertical axis starting from the top.

Here, we can see how heavy computational number-crunching processes are typically 
involved when it comes to image processing since each image is a matrix of integer  
tuples. This also suggests that, with the help of the NumPy library and concurrent 
programming, we can achieve significant improvements in execution time for Python 
image processing applications.

Following the convention of indexing two-dimensional arrays in NumPy, the location 
of a pixel is still a pair of integers, but the first number indicates the index of the row 
containing the pixel, which corresponds to the y-coordinate, and similarly, the second 
number indicates the x-coordinate of the pixel.

OpenCV API
There are a surprising number of methods for reading in, performing image processing, 
and displaying a digital image file in Python. However, OpenCV provides some of the 
easiest and most intuitive options to do this. One important thing to note regarding 
OpenCV is that it inverts RGB values as BGR values when interpreting its images. So, 
instead of red, green, and blue in order, the tuples in an image matrix will represent blue, 
green, and red, in that order.

Let's look at an example of interacting with OpenCV in Python:

import cv2

im = cv2.imread('input/ship.jpg')

cv2.imshow('Test', im)

cv2.waitKey(0) # press any key to move forward here

print(im)

print('Type:', type(im))

print('Shape:', im.shape)

print('Top-left pixel:', im[0, 0])

print('Done.')



Image processing fundamentals     293

There are a few methods from OpenCV that have been used in this script that we need  
to discuss:

• cv2.imread(): This method takes in a path to an image file (compatible file 
extensions include .jpeg, .jpg, .png, and so on) and returns an image object, 
which, as we will see later, is represented by a NumPy array.

• cv2.imshow(): This method takes in a string and an image object and displays 
it in a separate window. The title of the window is specified by the passed-in string. 
The method should always be followed by the cv2.waitKey() method.

• cv2.waitKey(): This method takes in a number and blocks the program for a 
corresponding number of milliseconds unless the number 0 is passed in, in which 
case it will block indefinitely until the user presses a key on their keyboard. This 
method should always follow the cv2.imshow() method.

After calling cv2.imshow() on the ship.jpg file inside the input subfolder so that 
it's displayed from the Python interpreter, the program will stop until a key is pressed, 
at which point it will execute the rest of the program. If run successfully, the script will 
display the following output:

Figure 10.4 – Displaying an image using OpenCV
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You should also obtain the following output for the rest of the main program after 
pressing any key to close the displayed picture:

> python example1.py

[[[199 136 86]

  [199 136 86]

  [199 136 86]

  ..., 

  [198 140 81]

  [197 139 80]

  [201 143 84]]

[...Truncated for readability...]

 [[ 56 23 4]

  [ 59 26 7]

  [ 60 27 7]

  ..., 

  [ 79 43 7]

  [ 80 44 8]

  [ 75 39 3]]]

Type: <class 'numpy.ndarray'>

Shape: (1118, 1577, 3)

Top-left pixel: [199 136 86]

Done.

The output confirms a few of the things that we discussed earlier:

• First, when printing out the image object that was returned by the cv2.imread() 
function, we obtained a matrix of numbers.

• Using the type() method from Python, we found that the class of this matrix is 
indeed a NumPy array: numpy.ndarray.

• Calling the shape attribute of the array, we can see that the image is a three-
dimensional matrix of the shape (1118, 1577, 3), which corresponds to a table with 
1118 rows and 1577 columns, each element of which is a pixel (three-number tuple). 
The numbers for the rows and columns also correspond to the size of the image.
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• Focusing on the top-left pixel in the matrix (the first pixel in the first row; that is, 
im[0, 0]), we obtained the BGR value of (199, 136, 86) – 199 blue, 136 green, 
and 86 red. By looking up this BGR value through any online converter, we can  
see that this is a light blue that corresponds to the sky, which is the upper part of  
the image.

Image processing techniques
We have already seen some Python APIs that are provided by OpenCV to read data from 
image files. Before we can use OpenCV to perform various image processing tasks, let's 
discuss the theoretical foundation for several techniques that are commonly used in  
image processing.

Grayscaling
We saw an example of grayscaling earlier in this chapter. Arguably one of the most 
widely used image processing techniques, grayscaling is the process of reducing the 
dimensionality of the image pixel matrix by only considering the intensity information  
of each pixel, which is represented by the amount of light available.

As a result, the pixels of grayscale images no longer hold three-dimensional information 
(red, green, and blue), and only one-dimensional black-and-white data. These images are 
exclusively composed of shades of gray, with black indicating the weakest light intensity 
and white indicating the strongest.

Grayscaling serves many important purposes in image processing. Firstly, as we 
mentioned previously, it reduces the dimensionality of the image pixel matrix by mapping 
traditional three-dimensional color data to one-dimensional gray data. So, instead of 
having to analyze and process three layers of color data, image processing programs only 
have to do one-third of the job with grayscale images. Additionally, by only representing 
colors using one spectrum, important patterns in the image are more likely to be 
recognized with just black and white data.

There are multiple algorithms for converting color into grayscale: colorimetric conversion, 
luma coding, single-channel, and more. Luckily, we do not have to implement one 
ourselves, as the OpenCV library provides a one-line method to convert normal images 
into grayscale ones. Still using the image of a ship from the previous example, let's look  
at another example:

import cv2

im = cv2.imread('input/ship.jpg')
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gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

cv2.imshow('Grayscale', gray_im)

cv2.waitKey(0) # press any key to move forward here

print(gray_im)

print('Type:', type(gray_im))

print('Shape:', gray_im.shape)

cv2.imwrite('output/gray_ship.jpg', gray_im)

print('Done.')

In this example, we are using the cvtColor() method from OpenCV to convert our 
original image into a grayscale one. After running this script, the following output should 
be displayed on your computer:

Figure 10.5 – Output from grayscaling
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By pressing any key to unblock your program, you should obtain the following output:

> python example2.py

[[128 128 128 ..., 129 128 132]

 [125 125 125 ..., 129 128 130]

 [124 125 125 ..., 129 129 130]

 ..., 

 [ 20 21 20 ..., 38 39 37]

 [ 19 22 21 ..., 41 42 37]

 [ 21 24 25 ..., 36 37 32]]

Type: <class 'numpy.ndarray'>

Shape: (1118, 1577)

Done.

Here, we can see that the structure of our grayscale image object is different from what we 
saw with our original image object. Even though it is still represented by a NumPy array, it 
is now a two-dimensional array of integers, each of which ranges from 0 (for black) to 255 
(for white). The table of pixels, however, still consists of 1118 rows and 1577 columns.

In this example, we also used the cv2.imwrite() method, which saves the image object 
to your local computer. This means that the grayscale image can be found in the output 
subfolder of this chapter's folder, as specified in our code.

Thresholding
Another important technique in image processing is thresholding. Intending to categorize 
each pixel in a digital image into different groups (also known as image segmentation), 
thresholding provides a quick and intuitive way to create binary images (with just black 
and white pixels).

The idea behind thresholding is to replace each pixel in an image with a white pixel if 
the pixel's intensity is greater than a previously specified threshold, and with a black 
pixel if the pixel's intensity is less than that threshold. Similar to the goal of grayscaling, 
thresholding amplifies the differences between high- and low-intensity pixels, and from 
that, important features and patterns in an image can be recognized and extracted.

Recall that grayscaling converts a fully colored image into a version that only has different 
shades of gray; in this case, each pixel has a value of an integer ranging from 0 to 255. 
From a grayscale image, thresholding can convert it into a fully black-and-white one, 
each pixel of which is now only either 0 (black) or 255 (white). So, after performing 
thresholding on an image, each pixel of that image can only hold two possible values, 
further reducing the complexity of our image data.
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So, the key to an effective thresholding process is finding an appropriate threshold so that 
the pixels in an image are segmented in a way that allows separate regions in the image to 
become more obvious. The simplest form of thresholding is to use a constant threshold to 
process all the pixels throughout a whole image. Let's consider an example of this method:

import cv2

im = cv2.imread('input/ship.jpg')

gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

ret, custom_thresh_im = cv2.threshold(gray_im, 127, 255, \

  cv2.THRESH_BINARY)

cv2.imwrite('output/custom_thresh_ship.jpg', \

  custom_thresh_im)

print('Done.')

In this example, after converting the image of a ship that we have been using to grayscale, 
we called the threshold(src, thresh, maxval, type) function from OpenCV, 
which takes in the following arguments:

• src: This argument takes in the input/source image.

• thresh: This is the constant threshold to be used throughout the image. Here, we 
are using 127, as it is simply the middle point between 0 and 255.

• maxval: Pixels whose original values are greater than the constant threshold will 
take this value after the thresholding process. We pass in 255 to specify that those 
pixels should be completely white.

• type: This value indicates the thresholding type that's used by OpenCV. We are 
performing simple binary thresholding, so we pass in cv2.THRESH_BINARY.

After running the script, you should be able to find the following image in the output with 
the name custom_thresh_ship.jpg:
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Figure 10.6 – Output from simple thresholding

Here, we can see that with a simple threshold (127), we have obtained an image that 
highlights separate regions of the image: the sky, the ship, and the sea. However, there are 
several problems that this simple thresholding method poses, the most common of which 
is finding the appropriate constant threshold. Since different images have different color 
tones, lighting conditions, and so on, it is undesirable to use a static value across different 
images as their thresholds.

This issue is addressed by adaptive thresholding methods, which use different thresholds 
whose values are dynamically determined for small regions of an image. This process 
allows the threshold to adjust according to the input image, and not depend solely on a 
static value. Let's consider two examples of these adaptive thresholding methods, namely 
Adaptive Mean Thresholding and Adaptive Gaussian Thresholding:

import cv2

im = cv2.imread('input/ship.jpg')

im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
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mean_thresh_im = cv2.adaptiveThreshold(im, 255, 

  cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

cv2.imwrite('output/mean_thresh_ship.jpg', mean_thresh_im)

gauss_thresh_im = cv2.adaptiveThreshold(im, 255, 

  cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

cv2.imwrite('output/gauss_thresh_ship.jpg', \

  gauss_thresh_im)

print('Done.')

Similar to what we did with the cv2.threshold() method earlier, here, we are 
converting the original image into its grayscale version, and then we are passing it to 
the adaptiveThreshold() method from OpenCV. This method takes in similar 
arguments to the cv2.threshold() method, except that instead of taking in a 
constant to be the threshold, it takes in an argument for the adaptive method. We used 
cv2.ADAPTIVE_THRESH_MEAN_C and cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
respectively.

The second to last argument specifies the size of the window to perform thresholding on; 
this number has to be an odd positive integer. Specifically, we used 11 in our example, so 
for each pixel in the image, the algorithm will consider the neighboring pixels (in an 11 
x 11 square surrounding the original pixel). The last argument specifies the adjustment 
to make for each pixel in the final output. These two arguments, again, help localize the 
threshold for different regions of the image, thus making the thresholding process more 
dynamic and, as its name suggests, adaptive.

After running the script, you should be able to find the following images as output with 
the names mean_thresh_ship.jpg and gauss_thresh_ship.jpg. The output for 
mean_thresh_ship.jpg is as follows:
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Figure 10.7 – Output from mean thresholding

The output for gauss_thresh_ship.jpg is as follows:

Figure 10.8 – Output from Gaussian thresholding
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Here, we can see that with adaptive thresholding, details in specific regions will be 
thresholded and highlighted in the final output image. These techniques are useful when 
we need to recognize small details in an image, while simple thresholding is useful when 
we only want to extract big regions of an image.

We have talked a lot about the basics of image processing and some common image 
processing techniques. We also know why image processing is a heavy number-
crunching task, and that concurrent and parallel programming can be applied to speed 
up independent processing tasks. In the next section, we will look at a specific example 
of how to implement a concurrent image processing application that can handle a large 
number of input images.

Applying concurrency to image processing
First, head to the current folder for this chapter's code. Inside the input folder, there  
is a subfolder called large_input, which contains 400 images that we will be using 
for this example. These pictures are of different regions in our original ship image, and 
they have been cropped from it using the array-indexing and -slicing options that NumPy 
provides for slicing OpenCV image objects. If you are curious as to how these images  
were generated, check out the generate_input.py file.

Our goal in this section is to implement a program that can concurrently process these 
images using thresholding. To do this, let's look at the example5.py file:

from multiprocessing import Pool

import cv2

    

import sys

from timeit import default_timer as timer

    

    

THRESH_METHOD = cv2.ADAPTIVE_THRESH_GAUSSIAN_C

INPUT_PATH = 'input/large_input/'

OUTPUT_PATH = 'output/large_output/'

    

n = 20

names = ['ship_%i_%i.jpg' % (i, j) for i in range(n) \

for j in range(n)]
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def process_threshold(im, output_name, thresh_method):

    gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

    thresh_im = cv2.adaptiveThreshold(

      gray_im, 255, thresh_method, \

        cv2.THRESH_BINARY, 11, 2

    )

    

    cv2.imwrite(OUTPUT_PATH + output_name, thresh_im)

    

    

if __name__ == '__main__':

    

    for n_processes in range(1, 7):

        start = timer()

    

        with Pool(n_processes) as p:

            p.starmap(

              process_threshold, 

              [(

                cv2.imread(INPUT_PATH + name), \

                name,THRESH_METHOD) 

                  for name in names

              ],

            )

    

        print('Took %.4f seconds with %i process(es). \

              ' % (timer() - start, n_processes))

    

    print('Done.')

In this example, we are using the Pool class from the multiprocessing module to 
manage our processes. As a refresher, a Pool object supplies convenient options to map 
a sequence of inputs to separate processes using the Pool.map() method. We are using 
the Pool.starmap() method in our example, however, to pass multiple arguments to 
the target function.
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At the beginning of our program, we make several housekeeping assignments: the 
thresholding method to perform adaptive thresholding when processing the images, 
the paths for the input and output folders, and the names of the images to process. The 
process_threshold() function is what we use to process the images; it takes in an 
image object, the name for the processed version of the image, and which thresholding 
method to use. Again, this is why we need to use the Pool.starmap() method instead 
of the traditional Pool.map() method.

In the main program, to demonstrate the difference in performance between sequential 
and multiprocessing image processing, we want to run our program with different 
numbers of processes, specifically from one single process to six different processes. 
In each iteration of the for loop, we initialize a Pool object and map the necessary 
arguments of each image to the process_threshold() function, while keeping  
track of how much time it takes to process and save all of the images.

After running the script, the processed images can be found in the output/large_
output/ subfolder in our current chapter's folder. You should obtain an output similar  
to the following:

> python example5.py

Took 0.6590 seconds with 1 process(es).

Took 0.3190 seconds with 2 process(es).

Took 0.3227 seconds with 3 process(es).

Took 0.3360 seconds with 4 process(es).

Took 0.3338 seconds with 5 process(es).

Took 0.3319 seconds with 6 process(es).

Done.

We can see a big difference in execution time when we go from one single process to two 
separate processes. However, there is negligible or even negative speedup after going from 
two to higher numbers of processes. Generally, this is because of the heavy overhead, 
which is the product of implementing many separate processes, in comparison to a 
relatively low number of inputs.

So far, we have seen that concurrent programming could provide a significant speedup for 
image processing applications. However, if we take a look at our preceding program, we 
can see that there are additional adjustments that we can make to improve the execution 
time even further. Specifically, in the preceding program, we are sequentially reading in 
images by using list comprehension in the following line:

with Pool(n_processes) as p:

    p.starmap(process_threshold, [(
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        cv2.imread(INPUT_PATH + name), \

          name,THRESH_METHOD)

         for name in names])

Theoretically, if we were to make the process of reading in different image files concurrent, 
we could also gain additional speedup with our program. This is especially true in an 
image processing application that deals with large input files, where significant time is 
spent waiting for input to be read. With that in mind, let's consider the following example, 
in which we will implement concurrent input/output processing:

from multiprocessing import Pool

import cv2

    

import sys

from functools import partial

from timeit import default_timer as timer

    

    

THRESH_METHOD = cv2.ADAPTIVE_THRESH_GAUSSIAN_C

INPUT_PATH = 'input/large_input/'

OUTPUT_PATH = 'output/large_output/'

    

n = 20

names = ['ship_%i_%i.jpg' % (i, j) for i in range(n) for \

  j in range(n)]

    

    

def process_threshold(name, thresh_method):

    im = cv2.imread(INPUT_PATH + name)

    gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

    thresh_im = cv2.adaptiveThreshold( \

      gray_im, 255, thresh_method, cv2.THRESH_BINARY, 11, 2 \

     )

    

    cv2.imwrite(OUTPUT_PATH + name, thresh_im)
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if __name__ == '__main__':

    

    for n_processes in range(1, 7):

        start = timer()

    

        with Pool(n_processes) as p:

            p.map(partial(process_threshold, \

              thresh_method=THRESH_METHOD), names)

    

        print('Took %.4f seconds with %i process(es).' % \

          (timer() - start, n_processes))

        

    print('Done.')

The structure of this program is similar to that of the previous one. However, instead of 
preparing the necessary images to be processed and other relevant input information, we 
implement them inside the process_threshold() function, which now only takes 
the name of the input image and handles reading the image itself.

As a side note, we are using Python's built-in functools.partial() method in our 
main program to pass in a partial argument (hence the name), specifically thresh_
method, to the process_threshold() function, as this argument is fixed across 
all images and processes. More information about this tool can be found at https://
docs.python.org/3/library/functools.html.

After running the script, you should obtain an output similar to the following:

> python example6.py

Took 0.5300 seconds with 1 process(es).

Took 0.4133 seconds with 2 process(es).

Took 0.2154 seconds with 3 process(es).

Took 0.2147 seconds with 4 process(es).

Took 0.2213 seconds with 5 process(es).

Took 0.2329 seconds with 6 process(es).

Done.

Compared to our previous output, this implementation of the application gives us a 
significantly better execution time!

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
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Good concurrent image processing practices
So far, you have most likely realized that image processing is quite an involved process 
and that implementing concurrent and parallel programming in an image processing 
application can add more complexity to our work. There are, however, good practices that 
will guide us in the right direction while developing our image processing applications. 
The following sections discuss some of the most common practices that we should keep  
in mind.

Choosing the correct way (out of many)
We have hinted at this practice briefly when we learned about thresholding. How an 
image processing application handles and processes its image data heavily depends on the 
problems it is supposed to solve, and what kind of data will be fed to it. Therefore, there 
is significant variability when it comes to choosing specific parameters when processing 
your image.

For example, as we saw earlier, there are various ways to threshold an image, and each will 
result in a very different output: if you want to focus on only the large, distinct regions of 
an image, simple constant thresholding will prove to be more beneficial than adaptive 
thresholding; if, however, you want to highlight small changes in the details of an image, 
adaptive thresholding will be significantly better.

Let's consider another example, in which we will see how tuning a specific parameter for an 
image processing function results in better output. In this example, we are using a simple 
Haar Cascade model to detect faces in images. We will not go too deeply into how the 
model handles and processes its data since it is already built into OpenCV; again, we are 
only using this model at a high level, changing its parameters to obtain different results.

Navigate to the example7.py file in this chapter's folder. The script is designed to detect 
the faces in the obama1.jpeg and obama2.jpg images in our input folder:

import cv2

    

face_cascade = cv2.CascadeClassifier \

  ('input/haarcascade_frontalface_default.xml')

    

for filename in ['obama1.jpeg', 'obama2.jpg']:

    im = cv2.imread('input/' + filename)

    gray_im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

    faces = face_cascade.detectMultiScale(im)
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    for (x, y, w, h) in faces:

        cv2.rectangle(im, (x, y), (x + w, y + h), \

          (0, 255, 0), 2)

    

    cv2.imshow('%i face(s) found' % len(faces), im)

    cv2.waitKey(0)

    

print('Done.')

First, the program loads the pre-trained Haar Cascade model from the input folder 
using the cv2.CascadeClassifier class. For each input image, the script converts 
it into grayscale and feeds it to the pre-trained model. The script then draws a green 
rectangle around each face it found in the image and displays it in a separate window.

Run the program; you will see the following image with the title 5 face(s) found:

Figure 10.9 – Correct face detection
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It looks like our program is working well so far. Press any key to continue. You should see 
the following image with the title 7 face(s) found:

Figure 10.10 – Incorrect face detection

Now, our program is mistaking some other objects as actual faces, resulting in two 
false positives. The reason behind this involves how the pre-trained model was created. 
Specifically, the Haar Cascade model used a training dataset with images of specific (pixel) 
sizes, and when an input image contains faces of different sizes – which is common when 
it is a group picture with some people being close to the camera, while others being far 
away – is fed into this model, it will cause false positives in the output.

The scaleFactor parameter in the detectMultiScale method of the cv2.
CascadeClassifier class addresses this issue. This parameter will scale down 
different areas of the input image before trying to predict whether those areas contain a 
face or not – doing this negates the potential difference in face sizes. To implement this, 
change the line where we pass the input images to the model to the following to specify 
the scaleFactor parameter as 1.2:

faces = face_cascade.detectMultiScale(im, scaleFactor=1.2)

Run the program; you will see that this time, our application can correctly detect all of the 
faces in our input images without making any false positives.
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From this example, we can see that it is important to know about the potential challenges 
that the input images will pose to your image processing application in execution, as well 
as to try different methods or parameters within one method of processing to achieve the 
best results.

Spawning an appropriate number of processes
One point we noticed in our example of concurrent image processing is that the task  
of spawning processes takes a considerable amount of time. Due to this, if the number  
of processes available to analyze the data is too high in comparison to the amount of 
input, the improvement in execution time that's obtained from increasing the number  
of working processes will diminish and sometimes even become negative.

However, there is no concrete way to tell whether a specific number of separate processes 
is appropriate for a program unless we also take into account its input images. For 
example, if the input images are relatively large files, and it takes a significant amount of 
time for the program to load them from storage, having a larger number of processes 
might be beneficial; when some processes are waiting for their images to load, others 
can proceed to perform processing on theirs. In other words, having a larger number of 
processes will allow for some overlapping between loading and processing time, which 
will result in better speedup.

In short, it is important to test out different processes that are available for your image 
processing application to see what the optimal number for scalability is.

Processing input/output concurrently
We saw that loading input images in a sequential way might harm the execution time of 
an image processing application, as opposed to allowing separate processes to load their 
inputs. This is specifically true if the image files are significantly large, as the loading time 
in separate processes might overlap with the loading/processing time in other processes. 
The same is applicable for writing output images to files.

Summary
Image processing is the task of analyzing and manipulating digital image files to create 
new versions of the images or to extract important data from them. These digital images 
are represented by tables of pixels, which are RGB values or, in essence, tuples of numbers. 
Therefore, digital images are simply multi-dimensional matrices of numbers, which results 
in the fact that image processing tasks typically come down to heavy number-crunching.
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Since images can be analyzed and processed independently from each other in an 
image processing application, concurrent and parallel programming – specifically, 
multiprocessing – provides a way for us to make significant improvements to the 
execution time of the application. Additionally, there are several good practices  
to follow while implementing a concurrent image processing program.

We have seen how we can apply parallel programming to accelerate the task of image 
processing. The exercises in this chapter allowed us to examine various aspects of the 
workflow and how each of them could be parallelized, thus allowing us to build up  
more confidence in implementing concurrent applications in Python.

In the next chapter, we will go through a similar exercise, where we aim to use 
asynchronous programming to build communication channels.

Questions
1. What is an image processing task?
2. What is the smallest unit of digital imaging? How is it represented in computers?
3. What is grayscaling? What purpose does this technique serve?
4. What is thresholding? What purpose does this technique serve?
5. Why should image processing be made concurrent?
6. What are some good practices for concurrent image processing?

Further reading
• Automate the Boring Stuff with Python: Practical Programming for Total Beginners,  

Al Sweigart, No Starch Press, 2015.

• Learning Image Processing with OpenCV, Garcia, Gloria Bueno, et al, Packt 
Publishing Ltd, 2015.

• A Computational Introduction to Digital Image Processing, Alasdair McAndrew, 
Chapman and Hall/CRC, 2015.

• Howse, J., P. Joshi, and M. Beyeler. OpenCV: Computer Vision Projects with Python. 
Packt Publishing Ltd, 2016.
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Communication channels are a big part of applied concurrency in the field of computer 
science. In this chapter, we will cover the fundamental theories of transports, which are 
classes provided by the asyncio module to abstract various forms of communication 
channels. We will also cover an implementation of a simple echoing server-client logic 
in Python, to further illustrate the use of asyncio and concurrency in communication 
systems. This chapter will help us frame what we have learned so far about asynchronous 
programming in the practical context of communication channels, and the code we work 
with will serve as a base for more complex applications.
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The following topics will be covered in this chapter:

• The ecosystem of communication channels

• Getting started with Python and Telnet

• Client-side communication with aiohttp

Technical requirements
The code files for this chapter can be accessed through this link: 

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter11

The ecosystem of communication channels
The term communication channel is used to denote both the physical wiring connection 
between different systems and the logical communication of data that facilitates computer 
networks. In this chapter, we will only be concerned with the latter, as it is a problem that 
is related to computing and is more germane to the idea of asynchronous programming.

First, in this section, we will be discussing the general structure of a communication 
channel, and two specific elements in that structure that are particularly relevant to 
asynchronous programming. The first element is communication protocol layers.

Communication protocol layers
Most data transmission processes that are done through communication channels are 
facilitated in the form of the Open Systems Interconnection (OSI) model protocol  
layers. The OSI model lays out the major layers and topics in an intersystem 
communication process.

The following diagram shows the general structure of the OSI model:

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition
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Figure 11.1 – OSI model structure

As indicated, there are seven main layers of communication in a data transmission 
process, with varying degrees of computing level and specificity. We will not be going into 
the details of the purposes and specific functions of each layer, but it is still important that 
you understand the general ideas behind the media and host layers.

The three bottom layers contain low-level operations that interact with the underlying 
process of the communication channel. The operations in the physical and data link layers 
include coding schemes, access schemes, low-level error detection and correction, bit 
synchronization, and so on. These operations are used to implement and specify the logic 
of processing and preparing data before transferring it. The network layer, on the other 
hand, handles forwarding packets of data from one system (for example, the server) to 
another (for example, the client) in a computer network, by determining the address of 
the recipient and which path of data transfer to take.
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On the other hand, the top layers deal with high-level data communication and 
manipulation. Among these layers, we will be focusing on the transport layer, as it is 
directly utilized by the asyncio module in the implementation of communication 
channels. This layer is often viewed as the conceptual transition between the media 
layers and the host layers (for example, the client and the server), responsible for sending 
data along with end-to-end (E2E) connections between different systems. Additionally, 
because packets of data (prepared by the network layer) might be lost or corrupted during 
transmission processes due to network errors, the transport layer is also in charge of 
detecting these errors via methods in error detection code.

The other host layers implement mechanisms for handling, interpreting, and providing 
the data sent from another system. After receiving data from the transport layer, 
the session layer handles the authentication, authorization, and session restoration 
processes. The presentation layer then translates the same data and reorganizes it into 
an interpretable representation. Finally, the application layer displays that data in a 
user-friendly format. With that in mind, let's see how we can apply the framework of 
asynchronous programming to communication channels.

Asynchronous programming for communication 
channels
The asynchronous programming model nicely complements the process of facilitating 
communication channels. For instance, in HyperText Transfer Protocol (HTTP) 
communication, the server can asynchronously handle multiple clients at the same time: 
while it is waiting for a specific client to make an HTTP request, it can switch to another 
client and process that client's request. Similarly, if a client needs to make HTTP requests 
to multiple servers and must wait for large responses from some servers, it can consider 
the more lightweight responses, which have already been processed and were sent back 
to the client first. The following diagram shows an example of how servers and clients 
interact with each other asynchronously in HTTP requests:
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Figure 11.2 – Asynchronous, interleaved HTTP requests

Overall, asynchronous programming is an attractive framework for building 
communication channels. As such, we will see how this can be done with the  
asyncio module.

Transports and protocols in asyncio
The asyncio module provides several different transport classes. In essence, these classes 
are implementations of the functionalities of the transport layer that were discussed in 
the preceding section. As the transport layer plays an integral role in communication 
channels, the transport classes give asyncio (and, consequently, developers) more 
control over the process of implementing our own communication channels.

The asyncio module combines the abstract of transports with the implementation of 
an asynchronous program. Specifically, even though transports are the central elements 
of communication channels, in order to utilize the transport classes and other relevant 
communication channel tools, we need to initiate and call an event loop, which is an 
instance of the asyncio.AbstractEventLoop class. The event loop itself will then 
create transports and manage the low-level communication procedures.
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It is important to note that a transport object in an established communication 
channel in asyncio is always associated with an instance of the asyncio.Protocol 
class. As the name suggests, the Protocol class specifies the underlying protocols that 
the communication channels use; for each connection made with another system, a new 
protocol object from this class will be created. While working closely with a transport 
object, a protocol object can call various methods from the transport object; this is 
where we can implement the specific inner workings of a communication channel.

For this reason, we generally need to focus on the implementation of an asyncio.
Protocol subclass and its methods while building a connection channel. In other words, 
we use asyncio.Protocol as a parent class to derive a subclass that meets the needs 
of our communication channel. To do this, we overwrite the following methods from the 
asyncio.Protocol base class in our own custom protocol subclass:

• Protocol.connection_made(transport): This method is automatically 
called whenever a connection from another system is made. The transport 
argument holds the transport object that is associated with the connection. 
Again, each transport object needs to be paired with a protocol; we generally 
store this transport object as an attribute of this specific protocol object in the 
connection_made() method.

• Protocol.data_received(data): This method is automatically called 
whenever the one system that we are connected to sends its data. Note that the 
data argument, which holds the sent information, is usually represented in bytes, 
so the encode() function of Python should be used before data is processed 
further.

Next, let's consider other important methods from the transport classes from 
asyncio. All transport classes inherit from a parent transport class, called asyncio.
BaseTransport, for which we have the following common methods:

• BaseTransport.get_extra_info(): This method returns, as the name 
suggests, additional channel-specific information for the calling transport 
object. The result can include information regarding the socket, the pipe, and the 
subprocess associated with that transport. Later in this chapter, we will be calling 
BaseTransport.get_extra_info('peername') to obtain the remote 
address from which the transport traveled.

• BaseTransport.close(): This method is used to close the calling transport 
object, after which the connections between different systems will be stopped. The 
corresponding protocol of the transport will automatically call its connection_
lost() method.
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Out of the many implementations of transport classes, we will focus on the asyncio.
WriteTransport class, which again inherits the methods from the BaseTransport 
class and additionally implements other methods that are used to facilitate write-only 
transport functionalities. Here, we will be using the WriteTransport.write() 
method, which will write the data that we would like to send to the other system that we 
communicate with via the transport object. As a part of the asyncio module, this 
method is not a blocking function; instead, it buffers and sends out the written data in an 
asynchronous way.

Before we dive into a working example in Python, let's briefly discuss the big picture of 
what we are trying to accomplish—or, in other words, the general structure of our program.

The big picture of asyncio's server client
As mentioned earlier, we need to implement a subclass of asyncio.Protocol to 
specify the underlying organization of our communication channel. There is an event loop 
at the heart of each asynchronous program, so we also need to create a server outside of 
the context of the protocol class and initiate that server inside of the event loop of our 
program. This process will set up the asynchronous architecture of our entire server and 
can be done via the asyncio.create_server() method, which we will look at in  
our upcoming example.

Finally, we will run the event loop of our asynchronous program forever by using the 
AbstractEventLoop.run_forever() method. Similar to an actual, real-life server, 
we would like to keep our server running until it encounters a problem, in which case we 
will close the server gracefully. The following diagram illustrates this whole process:

Figure 11.3 – Asynchronous program structure in communication channels

And with that, we are ready to start building our application, starting from the next section.
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Getting started with Python and Telnet
Let's look at a specific Python example that implements a server that facilitates 
asynchronous communication.

Starting a server
Let's look at the EchoServerClientProtocol class, as follows:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):

    def connection_made(self, transport):

        peername = transport.get_extra_info('peername')

        print('Connection from {}'.format(peername))

        self.transport = transport

    def data_received(self, data):

        message = data.decode()

        print('Data received: {!r}'.format(message))

Here, our EchoServerClientProtocol class is a subclass of asyncio.Protocol. 
As we discussed earlier, inside of this class, we need to implement the connection_
made(transport) and data_received(data) methods. In the connection_
made() method, we simply obtain the address of the connected system via the  
get_extra_info() method (with the 'peername' argument), print a message out 
with that information, and finally store the transport object in an attribute of the class. 
To print out a similar message in the data_received() method, we again use the 
decode() method to obtain a string object from byte data.

Let's move on to the main program of our script, as follows:

loop = asyncio.get_event_loop()

coro = loop.create_server(EchoServerClientProtocol, \

  '127.0.0.1', 8888)

server = loop.run_until_complete(coro)

# Serve requests until Ctrl+C is pressed

print('Serving on {}'.format(server.sockets[0] \

  .getsockname()))

try:
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    loop.run_forever()

except KeyboardInterrupt:

    pass

# Close the server

server.close()

loop.run_until_complete(server.wait_closed())

loop.close()

We are using the familiar asyncio.get_event_loop() function to create an event 
loop for our asynchronous program. Then, we create a server for our communication  
by having that event loop call the create_server() method; this method takes in  
a subclass from the asyncio.Protocol class, an address for our server (in this case,  
it is our localhost: 127.0.0.1), and finally, a port for that address (typically, 8888).

Note that this method does not create a server itself; it only initiates the process of creating 
a server asynchronously and returns a coroutine that will finish the process. For this 
reason, we need to store the returned coroutine from the method in a variable (coro, in 
our case) and have our event loop run that coroutine. After printing out a message using 
the sockets attribute of our server object, we will run the event loop forever, to keep the 
server running, except for the case of a KeyboardInterrupt exception being invoked.

Finally, at the end of our program, we will handle the house-cleaning portion of the script, 
which is closing the server gracefully. This is typically done by having the server object call 
the close() method (to initiate the closing process of the server) and using the event 
loop to run the wait_closed() method on the server object, to make sure that the 
server is properly closed. Finally, we close the event loop.

Installing Telnet
Before we can run our sample Python program, we have to install the Telnet program to 
correctly simulate a connection channel between a client and a server. Telnet is a program 
that provides Terminal commands that facilitate protocols for bidirectional, interactive, 
text-oriented communication. If you already have Telnet working on your computer, 
simply skip to the next section; otherwise, find the information appropriate to your system 
in this section.

In Windows systems, Telnet is already installed, but might not be enabled. To enable it, 
you can either utilize the Turn Windows features on or off window and make sure that 
the Telnet Client box is checked, or run the following command:

dism /online /Enable-Feature /FeatureName:TelnetClient
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Linux systems typically come with Telnet preinstalled, so if you own a Linux system, 
simply move on to the next section.

In macOS systems, it is possible that Telnet has already been installed on your computer. 
If not, you will need to do it via the Homebrew package management software, as follows:

brew install telnet

Note that macOS systems do have a preinstalled alternative to Telnet, called Netcat. If 
you do not want Telnet installed on your macOS computer, simply use the nc command 
instead of telnet in the following examples, and you will achieve the same effect.

Simulating a connection channel
There are multiple steps to running the following server example. First, we need to run the 
script to start the server, from which you will obtain the following output:

> python example1.py

Serving on ('127.0.0.1', 8888)

Notice that the program will run until you invoke the Ctrl + C key combination. With 
the program still running in one Terminal (this is our server Terminal), open another 
Terminal and connect to the server (127.0.0.1) at the specified port (8888), as 
illustrated here; this will serve as our client Terminal:

telnet 127.0.0.1 8888

Now, you will see some changes in both the server and the client Terminals. Most likely, 
your client Terminal will have the following output:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.

This is from the interface of the Telnet program, which indicates that we have successfully 
connected to our local server. The more interesting output is on our server Terminal, 
which will be similar to the following:

> python example1.py

Serving on ('127.0.0.1', 8888)

Connection from ('127.0.0.1', 60332)
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Recall that this is an information message that we implemented in our 
EchoServerClientProtocol class—specifically, in the connection_made() 
method. Again, as a connection between the server and a new client is made, this method 
will be called automatically to initiate the communication. From the output message, we 
know that the client is making their requests from port 60332 of server 127.0.0.1 
(which is the same as the running server, since they are both local).

Another feature that we implemented in the EchoServerClientProtocol class 
was in the data_received() method. Specifically, we print the decoded data that is 
sent from the client. To simulate this type of communication, simply type a message in 
your client Terminal and press the Return (Enter, for Windows) key. You will not see any 
changes in the client Terminal output, but the server Terminal should print out a message, 
as specified in the data_received() method of our protocol class.

For example, this is my server Terminal output when I send the message Hello, 
World! from my client Terminal:

> python example1.py

Serving on ('127.0.0.1', 8888)

Connection from ('127.0.0.1', 60332)

Data received: 'Hello, World!\r\n'

The \r and \n characters are simply the return characters included in the message string. 
With our current protocol, you can send multiple messages to the server and can even 
have multiple clients send messages to the server. To implement this, simply open another 
Terminal and connect to the local server again. You will see from your server Terminal that a 
different client (from a different port) has made a connection to the server, while the original 
communication of our server with the old client is still being maintained. This is another 
result achieved from asynchronous programming, allowing multiple clients to communicate 
with the same server seamlessly, without using threading or multiprocessing.

Sending messages back to clients
So, in our current example, we can have our asynchronous server receive, read, and 
process messages from clients. However, for our communication channel to be useful, 
we would also like to send messages from the server to the clients. In this section, we will 
update our server to an echo server, which, by definition, will send all data that it receives 
from a specific client back to the client.



324     Building Communication Channels with asyncio

To do this, we will be using the write() method from the asyncio.
WriteTransport class. Consider the data_received() method of the 
EchoServerClientProtocol class, as follows:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):

    def connection_made(self, transport):

        peername = transport.get_extra_info('peername')

        print('Connection from {}'.format(peername))

        self.transport = transport

    def data_received(self, data):

        message = data.decode()

        print('Data received: {!r}'.format(message))

        self.transport.write(('Echoed back: {}'.format \

          (message)).encode())

loop = asyncio.get_event_loop()

coro = loop.create_server(EchoServerClientProtocol, \

  '127.0.0.1', 8888)

server = loop.run_until_complete(coro)

# Serve requests until Ctrl+C is pressed

print('Serving on {}'.format(server.sockets[0] \

  .getsockname()))

try:

    loop.run_forever()

except KeyboardInterrupt:

    pass

# Close the server

server.close()

loop.run_until_complete(server.wait_closed())

loop.close()



Getting started with Python and Telnet     325

After receiving the data from the transport object and printing it out, we write a 
corresponding message to the transport object, which will go back to the original 
client. By running this script and simulating the same communication that we 
implemented in the last example with Telnet or Netcat, you will see that after typing a 
message in the client Terminal, the client receives an echoed message from the server. 
This is my output after initiating the communication channel and typing in the Hello, 
World! message:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.

Hello, World!

Echoed back: Hello, World!

In essence, this example illustrates the capability of a bidirectional communication 
channel that we can implement through a custom asyncio.Protocol class. While 
running a server, we can obtain data sent from various clients connected to the server, 
process the data, and finally send the desired result back to the appropriate clients.

Closing transports
Occasionally, we will want to forcefully close a transport in a communication channel. 
For example, even with asynchronous programming and other forms of concurrency, it is 
possible for your server to be overwhelmed with constant communications from multiple 
clients. On the other hand, it is undesirable to have the server completely handle some of 
the sent requests and plainly reject the rest of the requests as soon as the server is at its 
maximum capacity.

So, instead of keeping the communication open for each client connected to the server, 
we can specify in our protocol that each connection should be closed after a successful 
communication. We will do this by using the BaseTransport.close() method to 
forcefully close the calling transport object, which will stop the connection between 
the server and that specific client. Again, we are modifying the data_received() 
method of the EchoServerClientProtocol class, as follows:

import asyncio

class EchoServerClientProtocol(asyncio.Protocol):

    def connection_made(self, transport):

        peername = transport.get_extra_info('peername')

        print('Connection from {}'.format(peername))



326     Building Communication Channels with asyncio

        self.transport = transport

    def data_received(self, data):

        message = data.decode()

        print('Data received: {!r}'.format(message))

        self.transport.write(('Echoed back: \

          {}'.format(message)).encode())

        print('Close the client socket')

        self.transport.close()

loop = asyncio.get_event_loop()

coro = loop.create_server(EchoServerClientProtocol, \

  '127.0.0.1', 8888)

server = loop.run_until_complete(coro)

# Serve requests until Ctrl+C is pressed

print('Serving on {}'.format(server.sockets[0].getsockname()))

try:

    loop.run_forever()

except KeyboardInterrupt:

    pass

# Close the server

server.close()

loop.run_until_complete(server.wait_closed())

loop.close()

Run the script, connect to the specified server, and type in some messages to see the changes 
that we implemented. With our current setup, after a client connects and sends a message to 
the server, it will receive an echoed message back, and its connection with the server will be 
closed. This is the output (again, from the interface of the Telnet program) that I obtained 
after simulating this process with our current implementation of the protocol:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.
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Hello, World!

Echoed back: Hello, World!

Connection closed by foreign host.

So far, we have covered examples of implementing asynchronous communication 
channels with the asyncio module, mostly from the perspective of the server side of the 
communication process; in other words, we have been handling and processing requests 
sent from external systems. This, however, is only one side of the equation, and we also 
have the client side of communication to explore. In the next section, we will discuss 
applying asynchronous programming to make requests to servers.

Client-side communication with aiohttp
As you have most likely guessed, the end goal of this process is to efficiently collect data 
from external systems by asynchronously making requests to those systems. We will be 
revisiting the concept of web scraping, which is the process of automating HTTP requests 
to various websites and extracting specific information from their HyperText Markup 
Language (HTML) source code. If you have not read Chapter 9, Concurrent Web Requests, 
I highly recommend going through it before proceeding with this section, as that chapter 
covers the fundamental ideas of web scraping and other relevant, important concepts.

In this section, you will also be introduced to another module that supports asynchronous 
programming options: aiohttp (which stands for asynchronous input/output 
(I/O) HTTP). This module provides high-level functionalities that streamline HTTP 
communication procedures, and it also works seamlessly with the asyncio module,  
to facilitate asynchronous programming.

Installing aiohttp and aiofiles
The aiohttp module does not come preinstalled with your Python distribution; 
however, similarly to other packages, you can easily install the module by using the pip 
or conda commands. We will also be installing another module, aiofiles, which 
facilitates asynchronous file writing. If you use pip as your package manager, simply  
run the following commands:

pip install aiohttp

pip install aiofiles

If you'd like to use Anaconda, run the following commands:

conda install aiohttp

conda install aiofiles
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As always, to confirm that you have successfully installed a package, open your Python 
interpreter and try to import the module. In this case, run the following code:

>>> import aiohttp

>>> import aiofiles

There will be no error messages if the package has been successfully installed.

Fetching a website's HTML code
First, let's look at how to make a request and obtain the HTML source code from a single 
website with aiohttp. Note that even with only one task (a website), our application 
remains asynchronous, and the structure of an asynchronous program still needs to be 
implemented as follows:

import aiohttp

import asyncio

async def get_html(session, url):

    async with session.get(url, ssl=False) as res:

        return await res.text()

async def main():

    async with aiohttp.ClientSession() as session:

        html = await get_html(session, ' \

          http://packtpub.com')

        print(html)

loop = asyncio.get_event_loop()

loop.run_until_complete(main())

Let's consider the main() coroutine first. We are initiating an instance from the 
aiohttp.ClientSession class within a context manager; note that we are also 
placing the async keyword in front of this declaration since the whole context block itself 
will also be treated as a coroutine. Inside of this block, we are calling and waiting for the 
get_html() coroutine to process and return.
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Turning our attention to the get_html() coroutine, we can see that it takes in a 
session object and a Uniform Resource Locator (URL) for the website that we want to 
extract the HTML source code from. Inside of this function, we make another context 
manager asynchronous, which is used to make a GET request and store the response from 
the server to the res variable. Finally, we return the HTML source code stored in the 
response. Since the response is an object returned from the aiohttp.ClientSession 
class, its methods are asynchronous functions, and therefore we need to specify the 
await keyword when we call the text() function.

As you run the program, the entire HTML source code of Packt's website will be printed 
out. For example, here is a portion of my output:

<!doctype html>

<html lang="en">

<head>

<script>

    var BASE_URL = 'https://www.packtpub.com/';

    var require = {

        "baseUrl": "https://www.packtpub.com/static

          /version1611744644/frontend/Packt/default/en_GB"

    };

</script>

<meta charset="utf-8" />

<meta name="title" content="Packt | Programming Books, eBooks 

&amp; Videos for Developers" />

<meta name="description" content="Packt is the online 

library and learning platform for professional developers. 

Learn Python, JavaScript, Angular and more with eBooks, 

videos and courses" />

<meta name="robots" content="INDEX,FOLLOW" />

<meta name="viewport" content="width=device-width, initial-

scale=1, maximum-scale=1, user-scalable=1, shrink-to-

fit=no" />

<meta name="" content="charset=utf-8" />

<title>Packt | Programming Books, eBooks &amp

…
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At this point, we can collect data by making requests to multiple websites asynchronously 
and print out the response HTML. Most of the time, simply printing out the HTML 
is inappropriate; instead, we'd like to write the returned HTML code to output files. 
In essence, this process is asynchronous downloading, which is also implemented in 
the underlying architecture of popular download managers. To do this, we will use the 
aiofiles module, in combination with aiohttp and asyncio.

Writing files asynchronously
First, we will write a download_html() coroutine, as follows:

async def download_html(session, url):

    async with session.get(url, ssl=False) as res:

        filename = f'output/{os.path.basename(url)}.html'

        async with aiofiles.open(filename, 'wb') as f:

            while True:

                chunk = await res.content.read(1024)

                if not chunk:

                    break

                await f.write(chunk)

        return await res.release()

This is an updated version of the get_html() coroutine from the last example. Instead 
of using an aiohttp.ClientSession instance to make a GET request and print out 
the returned HTML code, we now write the HTML code to the file using the aiofiles 
module. For example, to facilitate asynchronous file writing, we use the asynchronous 
open() function from aiofiles to read in a file in a context manager. Furthermore,  
we read the returned HTML in chunks, asynchronously, using the read() function for 
the content attribute of the response object; this means that after reading 1024 bytes 
of the current response, the execution flow will be released back to the event loop, and the 
task-switching event will take place.

The main() coroutine and the main program of this example remain relatively the same 
as those in our last example, as we can see here:

async def main(url):

    async with aiohttp.ClientSession() as session:

        await download_html(session, url)
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urls = [

    'http://packtpub.com',

    'http://python.org',

    'http://docs.python.org/3/library/asyncio',

    'http://aiohttp.readthedocs.io',

    'http://google.com'

]

loop = asyncio.get_event_loop()

loop.run_until_complete(

    asyncio.gather(*(main(url) for url in urls))

)

The main() coroutine takes in a URL and passes it to the download_html() 
coroutine, along with an aiohttp.ClientSession instance. Finally, in our main 
program, we create an event loop and pass each item in a specified list of URLs to the 
main() coroutine. After running the program, your output should look like this, 
although the time it takes to run the program might vary:

> python3 example5.py

Took 0.72 seconds.

Additionally, a subfolder named output (inside of the Chapter18 folder) will be filled 
with the downloaded HTML code from each website in our list of URLs. Again, these 
files were created and written asynchronously, via the functionalities of the aiofiles 
module, which we discussed earlier. As you can see, to compare the speed of this program 
and its corresponding synchronous version, we are also keeping track of the time it takes 
to run the entire program.

Now, head to the Chapter11/example6.py file. This script contains the code of the 
synchronous version of our current program. Specifically, it makes HTTP GET requests 
to individual websites in order, and the process of file writing is also implemented 
sequentially. This script produced the following output:

> python3 example6.py

Took 1.47 seconds.

While it achieved the same results (downloading the HTML code and writing it to files), 
our sequential program took significantly more time than its asynchronous counterpart.
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Summary
Asynchronous programming can provide functionalities that complement the process 
of efficiently facilitating communication channels. Together with the aiohttp module, 
asyncio offers efficiency and flexibility regarding client-side communication processes. 
The aiofiles module, which can work in conjunction with the other two asynchronous 
programming modules, can also help to facilitate asynchronous file reading and writing.

We have now explored three of the biggest, most important topics in concurrent 
programming: threading, multiprocessing, and asynchronous programming. We have 
shown how each of them can be applied to various programming problems and provide 
significant improvements in speed. The code we developed in this chapter serves as a  
base that may be easily modified to build more complex applications.

In the next chapter of this book, we will start to discuss problems that concurrent 
programming commonly poses to developers and programmers, starting with deadlocks.

Questions
1. What is a communication channel? What is its connection to asynchronous 

programming?
2. What are the two main parts of the OSI model protocol layers? What purpose does 

each of them serve?
3. What is the transport layer? Why is it crucial to communication channels?
4. How does asyncio facilitate the implementation of server-side communication 

channels?
5. How does asyncio facilitate the implementation of client-side communication 

channels?
6. What is aiofiles?

Further reading
For more information, you can refer to the following links:

• IoT Systems and Communication Channels (bridgera.com/
iot-communication-channels/), by Bridgera

• Automate the Boring Stuff with Python: Practical Programming for Total Beginners, 
Al Sweigart, No Starch Press 

• Transports and protocols (docs.python.org/3/library/asyncio-
protocol), Python documentation

bridgera.com/iot-communication-channels/
bridgera.com/iot-communication-channels/
docs.python.org/3/library/asyncio-protocol
docs.python.org/3/library/asyncio-protocol


12
Deadlocks

Deadlocks, one of the most common concurrency problems, will be the first problem 
that we will analyze in this book. In this chapter, we will discuss the theoretical causes 
of deadlocks in concurrent programming. We will cover a classical synchronization 
problem in concurrency, called the dining philosophers problem, as a real-life example 
of a deadlock. We will also illustrate an actual implementation of a deadlock in Python 
and discuss several methods to address this problem. This chapter will also cover the 
concept of livelocks, which are relevant to deadlocks and are also a common problem in 
concurrent programming.

The following topics will be covered in this chapter:

• The concept of deadlocks

• Approaches to deadlock situations

• The concept of livelocks

By the end of this chapter, we will have gained a deep understanding of the problem,  
its place in concurrent programming, and the practical approaches to solving it.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter12.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter12
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The concept of deadlocks
In concurrent programming, a deadlock refers to a specific situation in which no progress 
can be made, and the program becomes locked in its current state. In most cases, this 
phenomenon is caused by a lack of, or mishandled, coordination between different lock 
objects (for thread synchronization purposes). In this section, we will discuss a thought 
experiment, commonly known as the dining philosophers problem, to illustrate the 
concept of a deadlock and its causes; from there, you will learn how to simulate the 
problem in a Python concurrent program.

The dining philosophers problem
The dining philosophers problem was first introduced by Edgar Dijkstra, a leading pioneer 
in concurrent programming, in 1965. This problem was first demonstrated using different 
technical terms (resource contention in computer systems) and was later rephrased 
by Tony Hoare, a British computer scientist and the inventor of the quicksort sorting 
algorithm. The problem statement is as follows.

Five philosophers sit around a table, and each has a bowl of food in front of them. Placed 
between these five bowls of food are five forks, so each philosopher has one fork to their 
left and one fork to their right. This setup is shown in the following diagram:

Figure 12.1 – An illustration of the dining philosophers problem
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Each silent philosopher is to alternate between thinking and eating. Each is required to 
have both of the forks around them to be able to pick up the food from their bowl, and 
no fork can be shared between two or more different philosophers. When a philosopher 
finishes eating a specific amount of food, they are to place both of the forks back in their 
respective, original locations. At this point, the philosophers around that philosopher will 
be able to use those forks.

Since the philosophers are silent and cannot communicate with each other, they have no 
way to let each other know they need the forks to eat. In other words, the only way for a 
philosopher to eat is to have both of the forks already available to them. For this problem, 
a set of instructions must be designed for the philosophers to efficiently switch between 
eating and thinking so that each philosopher is provided with enough food.

Now, a potential approach to this problem would be the following set of instructions:

1. A philosopher must think until the fork on their left becomes available. When that 
happens, the philosopher is to pick it up.

2. A philosopher must think until the fork on their right becomes available. When that 
happens, the philosopher is to pick it up.

3. If a philosopher is holding two forks, they will eat a specific amount of food from 
the bowl in front of them, and then the following will apply:

 � Afterward, the philosopher has to put the right fork down in its original place.

 � Afterward, the philosopher has to put the left fork down in its original place.

4. The process repeats from the first step.

It is clear to see how this set of instructions can lead to a situation where no progress 
can be made; namely, if, in the beginning, all of the philosophers start to execute their 
instructions at the same time. Since all of the forks are on the table at the beginning and 
are therefore available to be picked up by nearby philosophers, each philosopher will be 
able to execute the first instruction (picking up the fork on their left).

Now, after this step, each philosopher will be holding a fork with their left hand, and no 
forks will be left on the table. Since no philosopher has both forks in their hands, they 
cannot eat their food. Furthermore, the set of instructions that they were given specifies 
that only after a philosopher has eaten a specific amount of food can they put their forks 
down on the table. This means that so long as a philosopher has not eaten, they will not 
release the fork that they are holding.
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So, as each philosopher is holding only one fork with their left hand, this means they 
cannot eat or put down the fork they are holding. The only time a philosopher gets to 
eat their food is when their neighboring philosopher puts their fork down, which is only 
possible if they can eat their food; this creates a never-ending circle of conditions that can 
never be satisfied. This situation is, in essence, the nature of a deadlock, in which all of the 
elements of a system are stuck in place, and no progress can be made.

It is not difficult to imagine real-world situations that involve shared resources and are 
modeled by this dining philosophers problem. For example, the original problems that 
inspired Dijkstra to construct this formulation involved working with external devices 
such as tape drives.

Another example is in terms of banks: to execute transactions between two bank 
accounts, you must ensure that both accounts are locked from other transactions for the 
correct amount of money to be transferred. Here, the analogy does not exactly hold – a 
philosopher corresponds to a transaction that locks accounts (the forks) – but the same 
technical difficulties could arise. Other examples include making online reservations and 
allowing a database to be modified by multiple clients at the same time.

With that said, we will be exclusively focusing on the formal dining philosophers problem 
as it provides a clean, abstract setting that could easily be analyzed and taken apart. With 
that in mind, let's consider the formal concept of a deadlock and the relevant theories 
around it.

A deadlock in a concurrent system
Given a concurrent program with multiple threads or processes, the execution flow 
enters a deadlock if a process (or thread) is waiting on a resource that is being held and 
utilized by another process, which is, in turn, waiting for another resource that is held 
by a different process. In other words, processes cannot proceed with their execution 
instructions while waiting for resources that can only be released after the execution is 
completed; therefore, these processes are unable to change their execution states.

A deadlock is also defined by the conditions that a concurrent program needs to have 
at the same time for a deadlock to occur. These conditions were first proposed by the 
computer scientist Edward G. Coffman, Jr., and are therefore known as the Coffman 
conditions. These conditions are as follows:

• At least one resource has to be in a non-shareable state. This means that that 
resource is being held by an individual process (or thread) and cannot be accessed 
by others; the resource can only be accessed and held by a single process (or thread) 
at any given time. This condition is also known as mutual exclusion.
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• One process (or thread) exists that is simultaneously accessing a resource and 
waiting for another held by other processes (or threads). In other words, this 
process (or thread) needs access to two resources to execute its instructions, one of 
which it is already holding, the other of which it is waiting for from other processes 
(or threads). This condition is called hold and wait.

• Resources can only be released by a process (or a thread) holding them if there are 
specific instructions for the process (or thread) to do so. This is to say that unless 
the process (or thread) voluntarily and actively releases the resource, that resource 
remains in a non-shareable state. This is the no preemption condition.

• The final condition is called circular wait. As its name suggests, this condition 
specifies that a set of processes (or threads) exist so that the first process (or thread) 
in the set is waiting for a resource to be released by the second process (or thread), 
which, in turn, needs to be waiting for the third process (or thread); finally, the last 
process (or thread) in the set is waiting for the first one.

Let's quickly take a look at a basic example of a deadlock. Consider a concurrent program 
in which there are two different processes (process A and process B) and two different 
resources (resource R1 and resource R2), as follows:

Figure 12.2 – Sample deadlock diagram

Neither of the resources can be shared across separate processes, and each process needs 
to access both resources to execute its instructions. Take process A, for example. It is 
already holding resource R1, but it also needs R2 to proceed with its execution. However, 
R2 cannot be acquired by process A, as it is being held by process B. So, process A cannot 
proceed. The same goes for process B, which is holding R2 and needs R1 to proceed. R1 
is, in turn, held by process A.
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Python simulation
In this section, we will implement the preceding situation in an actual Python program. 
Specifically, we will have two locks (we will call them lock A and lock B) and two separate 
threads interacting with the locks (thread A and thread B). In our program, we will set up 
a situation in which thread A has acquired lock A and is waiting to acquire lock B, which 
has already been acquired by thread B, which is, in turn, waiting for lock A to be released.

If you have already downloaded the code for this book from the relevant GitHub page, 
then go ahead and navigate to the Chapter12 folder. Let's consider the Chapter12/
example1.py file, as follows:

import threading

import time

def thread_a():

    print('Thread A is starting...')

    print('Thread A waiting to acquire lock A.')

    lock_a.acquire()

    print('Thread A has acquired lock A, performing some \

      calculation...')

    time.sleep(2)

    print('Thread A waiting to acquire lock B.')

    lock_b.acquire()

    print('Thread A has acquired lock B, performing some \

      calculation...')

    time.sleep(2)

    print('Thread A releasing both locks.')

    lock_a.release()

    lock_b.release()
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def thread_b():

    print('Thread B is starting...')

    print('Thread B waiting to acquire lock B.')

    lock_b.acquire()

    print('Thread B has acquired lock B, performing some \

      calculation...')

    time.sleep(5)

    print('Thread B waiting to acquire lock A.')

    lock_a.acquire()

    print('Thread B has acquired lock A, performing some \

      calculation...')

    time.sleep(5)

    print('Thread B releasing both locks.')

    lock_b.release()

    lock_a.release()

lock_a = threading.Lock()

lock_b = threading.Lock()

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print('Finished.')
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In this script, the thread_a() and thread_b() functions specify thread A and thread 
B, respectively. In our main program, we also have two threading.Lock objects: lock 
A and lock B. The general structure of the thread instructions is as follows:

1. Start the thread.
2. Try to acquire the lock with the same name as the thread (thread A will try to 

acquire lock A, while thread B will try to acquire lock B).
3. Perform some calculations.
4. Try to acquire the other lock (thread A will try to acquire lock B, while thread B will 

try to acquire lock A).
5. Perform some other calculations.
6. Release both locks.
7. End the thread.

Note
Note that we are using the time.sleep() function to simulate the action 
of some calculations being processed.

First of all, we are starting both threads A and B almost simultaneously, within the main 
program. With the structure of the thread instruction set in mind, we can see that at this 
point, both threads will be initiated; thread A will try to acquire lock A and will succeed in 
doing so since lock A is still available at this point. The same goes for thread B and lock B. 
The two threads will then go on to perform some calculations on their own.

Let's consider the current state of our program: lock A has been acquired by thread A, 
and lock B has been acquired by thread B. After their respective calculation processes are 
complete, thread A will then try to acquire lock B, and thread B will try to acquire lock 
A. We can easily see that this is the beginning of our deadlock situation: since lock B is 
already being held by thread B and cannot be acquired by thread A, thread B, for the  
same reason, cannot acquire lock A.

Both of the threads will now wait infinitely to acquire their respective second lock. 
However, the only way a lock can be released is for a thread to continue its execution 
instructions and release all of the locks it has at the end. So, our program will be stuck  
in its execution at this point, and no further progress will be made.
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The following diagram further illustrates the process of how the deadlock unfolds,  
in sequence:

Figure 12.3 – Deadlock sequence diagram

Now, let's look at the deadlock that we have created in action. By running the script, you 
should obtain the following output:

> python example1.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread B is starting...

Thread A has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...

Thread A waiting to acquire lock B.

Thread B waiting to acquire lock A.

As we discussed previously, since each thread is trying to acquire a lock that is currently 
held by the other thread, the only way for a lock to be released is for a thread to continue 
its execution. This is a deadlock, and your program will hang infinitely, never reaching the 
final print statement in the last line of the program. 

This behavior is undesirable in every way. In the next section, we will be discussing 
potential approaches to prevent deadlocks from occurring.
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Approaches to deadlock situations
Intuitively, each of the following approaches looks to eliminate one of the four Coffman 
conditions from our program to prevent deadlocks. Our first solution is to implement 
ranking among the competing resources.

Implementing ranking among resources
From both the dining philosophers problem and our Python example, we can see that the 
last condition of the four Coffman conditions, circular wait, is at the heart of the deadlock 
problem. It specifies that the different processes (or threads) in our concurrent program 
wait for resources held by other processes (or threads) circularly. By taking a closer look, 
we can see that the root cause for this condition is the order (or lack thereof) in which the 
processes (or threads) access the resources.

In the dining philosophers problem, each philosopher is instructed to pick up the fork 
on their left first, while in our Python example, the threads always try to acquire the locks 
with the same name before performing any calculations. As you have seen, when the 
philosophers want to start eating at the same time, they will pick up their respective left 
forks and will be stuck in an infinite waiting loop. Similarly, when the two threads start 
their execution at the same time, they will acquire their locks and, again, wait for the other 
locks infinitely.

The conclusion that we can infer from this is that if, instead of accessing the resources 
arbitrarily, the processes (or threads) were to access them in a predetermined, static 
order, the circular nature of the way that they acquire and wait for the resources will be 
eliminated. So, for our two-lock Python example, instead of having thread A try to acquire 
lock A and thread B try to acquire lock B in their respective execution instructions, we 
will want both threads to try and acquire the locks in the same order. For example, both 
threads will now try to acquire lock A first, perform some calculations, try to acquire lock 
B, perform further calculations, and, finally, release both threads.

This change is implemented in the Chapter12/example2.py file, as follows:

import threading

import time

def thread_a():

    print('Thread A is starting...')

    print('Thread A waiting to acquire lock A.')

    lock_a.acquire()
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    print('Thread A has acquired lock A, performing some \

      calculation...')

    time.sleep(2)

    print('Thread A waiting to acquire lock B.')

    lock_b.acquire()

    print('Thread A has acquired lock B, performing some \

      calculation...')

    time.sleep(2)

    print('Thread A releasing both locks.')

    lock_a.release()

    lock_b.release()

def thread_b():

    print('Thread B is starting...')

    print('Thread B waiting to acquire lock A.')

    lock_a.acquire()

    print('Thread B has acquired lock A, performing some \

      calculation...')

    time.sleep(5)

    print('Thread B waiting to acquire lock B.')

    lock_b.acquire()

    print('Thread B has acquired lock B, performing some \

      calculation...')

    time.sleep(5)

    print('Thread B releasing both locks.')

    lock_b.release()

    lock_a.release()

lock_a = threading.Lock()

lock_b = threading.Lock()
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thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print('Finished.')

This version of the script is now able to finish its execution and should produce the 
following output:

> python3 example2.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread A has acquired lock A, performing some calculation...

Thread B is starting...

Thread B waiting to acquire lock A.

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...

Thread A releasing both locks.

Thread B has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...

Thread B releasing both locks.

Finished.

This approach efficiently eliminates the deadlock problem in our two-lock example,  
but how well does it hold up for the dining philosophers problem? To answer this 
question, let's try to simulate the problem and the solution in Python by ourselves.  
The Chapter12/example3.py file contains the implementation of the dining 
philosophers problem in Python, as follows:

import threading

# The philosopher thread
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def philosopher(left, right):

    while True:

        with left:

             with right:

                 print(f'Philosopher at \

                  {threading.currentThread()} is eating.')

# The chopsticks

N_FORKS = 5

forks = [threading.Lock() for n in range(N_FORKS)]

# Create all of the philosophers

phils = [ \

  threading.Thread(target=philosopher,args=(forks[n], forks \

    [(n + 1) % N_FORKS])) for n in range(N_FORKS)]

# Run all of the philosophers

for p in phils:

    p.start()

Here, we have the philosopher() function as the underlying logic for our separate 
threads. It takes in two Threading.Lock objects and simulates the previously discussed 
eating procedure, with two context managers. In our main program, we create a list of five 
lock objects, named forks, and a list of five threads, named phils, with the specification 
that the first thread will take in the first and second locks, the second thread will take in 
the second and third locks, and so on; and the fifth thread will take in the fifth and first 
locks (in order). Finally, we start all five threads simultaneously.

If we run the script, we will see that deadlock occurs almost immediately. The following is 
my output, up until the program hangs infinitely:

> python3 example3.py

Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.
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Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

Philosopher at <Thread(Thread-1, started 123145445048320)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

Philosopher at <Thread(Thread-5, started 123145466068992)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

Philosopher at <Thread(Thread-3, started 123145455558656)> is 

eating.

The question that naturally follows is: how can we implement an order in which the locks 
are acquired in the philosopher() function? We will be using the built-in id() 
function in Python here, which returns the unique, constant identity of the parameter, 
as the keys to sort the lock objects. We will also implement a custom context manager to 
factor out this sorting logic in a separate class. Navigate to Chapter12/example4.py 
for this specific implementation, which looks as follows:

class acquire(object):

    def __init__(self, *locks):

        self.locks = sorted(locks, key=lambda x: id(x))

    def __enter__(self):

        for lock in self.locks:
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            lock.acquire()

    def __exit__(self, ty, val, tb):

        for lock in reversed(self.locks):

            lock.release()

        return False

# The philosopher thread

def philosopher(left, right):

    while True:

        with acquire(left,right):

             print(f'Philosopher at \

               {threading.currentThread()} is eating.')

With the main program remaining the same, this script will produce an output showing 
that this solution of ranking can effectively address the dining philosophers problem.

However, there is a problem with this approach when it is applied to some particular  
cases. Keeping the high-level idea of concurrency in mind, we know that one of our main 
goals when applying concurrency to our programs is to improve the speed. Let's go back 
to our two-lock example and examine the execution time of our program with resource 
ranking implemented. Take a look at the Chapter12/example5.py file; it is simply  
the two-lock program with ranked (or ordered) locking implemented, combined with a 
timer that has been added to keep track of how much time it takes for the two threads  
to finish executing.

After running the script, your output should look similar to the following:

> python3 example5.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread B is starting...

Thread A has acquired lock A, performing some calculation...

Thread B waiting to acquire lock A.

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...

Thread A releasing both locks.

Thread B has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.
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Thread B has acquired lock B, performing some calculation...

Thread B releasing both locks.

Took 14.01 seconds.

Finished.

Here, you can see that the combined execution of both threads took around 14 seconds. 
However, if we take a closer look at the specific instructions in the two threads, we will see 
that aside from interacting with the locks, thread A would take around 4 seconds to do its 
calculations (simulated by two time.sleep(2) commands), while thread B would take 
around 10 seconds (two time.sleep(5) commands).

Does this mean that our program is taking as long as it would if we were to execute the 
two threads sequentially? We will test this theory with our Chapter12/example6.py 
file, in which we specify that each thread should execute its instructions one at a time with 
the same thread_a() and thread_b() functions:

lock_a = threading.Lock()

lock_b = threading.Lock()

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

start = timer()

thread1.start()

thread1.join()

thread2.start()

thread2.join()

print('Took %.2f seconds.' % (timer() - start))

print('Finished.')

If you run this script, you will see that this sequential version of our two-lock program 
will take the same amount of time as its concurrent counterpart:

> python3 example6.py

Thread A is starting...

Thread A waiting to acquire lock A.

Thread A has acquired lock A, performing some calculation...
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Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...

Thread A releasing both locks.

Thread B is starting...

Thread B waiting to acquire lock A.

Thread B has acquired lock A, performing some calculation...

Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...

Thread B releasing both locks.

Took 14.01 seconds.

Finished.

This interesting phenomenon is a direct result of the heavy requirements that we have 
placed on the locks in the program. In other words, since each thread has to acquire both 
locks to complete its execution, each lock cannot be acquired by more than one thread 
at any given time. The locks must be acquired in a specific order, and the execution of 
individual threads cannot happen simultaneously. If we were to go back and examine 
the output produced by the Chapter12/example5.py file, it would be apparent that 
thread B could not start its calculations after thread A released both locks at the end of  
its execution.

It is quite intuitive, then, to conclude that if you placed enough locks on the resources 
of your concurrent program, it would become entirely sequential in its execution, and, 
combined with the overhead of concurrent programming functionalities, it would have 
an even worse speed than the purely sequential version of the program. However, we 
did not see this sequentiality that's created by locks in the dining philosophers problem 
(simulated in Python). This is because, in the two-thread problem, two locks were enough 
to sequentialize the program execution, while five were not enough to do the same for the 
dining philosophers problem.

We will explore another instance of this phenomenon in Chapter 13, Starvation.

Ignoring locks and sharing resources
Locks are undoubtedly an important tool in synchronization tasks, and in concurrent 
programming in general. However, if using locks leads to an undesirable situation, such 
as a deadlock, then it is natural for us to explore the option of simply not using locks in 
our concurrent programs. By ignoring locks, our program's resources effectively become 
shareable among different processes/threads in a concurrent program, thus eliminating 
the first of the four Coffman conditions: mutual exclusion.
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This approach to the problem of a deadlock is straightforward to implement; let's try this 
with the two preceding examples. In the two-lock example, we simply remove the code 
that specifies any interaction with the lock objects both inside the thread functions and  
in the main program. In other words, we are not utilizing a locking mechanism anymore. 
The Chapter12/example7.py file contains the implementation of this approach,  
as follows:

import threading

import time

from timeit import default_timer as timer

def thread_a():

    print('Thread A is starting...')

    print('Thread A is performing some calculation...')

    time.sleep(2)

    print('Thread A is performing some calculation...')

    time.sleep(2)

def thread_b():

    print('Thread B is starting...')

    print('Thread B is performing some calculation...')

    time.sleep(5)

    print('Thread B is performing some calculation...')

    time.sleep(5)

thread1 = threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

start = timer()

thread1.start()

thread2.start()
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thread1.join()

thread2.join()

print('Took %.2f seconds.' % (timer() - start))

print('Finished.')

If you run the script, your output should look similar to the following:

> python3 example7.py

Thread A is starting...

Thread A is performing some calculation...

Thread B is starting...

Thread B is performing some calculation...

Thread A is performing some calculation...

Thread B is performing some calculation...

Took 10.00 seconds.

Finished.

It is clear that since we are not using locks to restrict access to any calculation processes, 
the executions of the two threads have become entirely independent of one another, so the 
threads were run completely in parallel. For this reason, we also obtained a better speed: 
since the threads ran in parallel, the total time that the whole program took was the same as 
the time that the longer of the two threads took (in other words, thread B, with 10 seconds).

What about the dining philosophers problem? It seems that we can also conclude that 
without locks (the forks), the problem can be solved easily. Since the resources (food) 
are unique to each philosopher (in other words, no philosopher should eat another 
philosopher's food), it should be the case that each philosopher can proceed with their 
execution without worrying about the others. By ignoring the locks, each can be executed 
in parallel, similar to what we saw in our two-lock example.

Doing this, however, means that we are completely misunderstanding the problem. We 
know that locks are utilized so that processes and threads can access the shared resources 
in a program in a systematic, coordinated way, to avoid mishandling the data. Therefore, 
removing any locking mechanisms in a concurrent program means that the likelihood of 
the shared resources, which are now free from access limitations, being manipulated in an 
uncoordinated way (and therefore, becoming corrupted) increases significantly.
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So, by ignoring locks, it is relatively likely that we will need to completely redesign and 
restructure our concurrent program. If the shared resources still need to be accessed 
and manipulated in an organized way, other synchronization methods will need to be 
implemented. The logic of our processes and threads might need to be altered to interact 
with this new synchronization method appropriately, the execution time might be 
negatively affected by this change in the structure of the program, and other potential 
synchronization problems might also arise.

An additional note about locks
While the approach of dismissing locking mechanisms in our program to eliminate 
deadlocks might raise some questions and concerns, it does effectively reveal a new point 
for us about lock objects in Python: it is possible for an element of a concurrent program 
to completely bypass the locks when accessing a given resource. In other words, lock 
objects only prevent different processes/threads from accessing and manipulating a shared 
resource if those processes or threads acquire the lock objects.

Locks, then, do not lock anything. They are simply flags that help indicate whether a 
resource should be accessed at a given time; if a poorly instructed, or even malicious, 
process/thread attempts to access that resource without checking that the lock object 
exists, it will most likely be able to do that without difficulty. In other words, locks are not 
connected to the resources that they are supposed to lock, and they most certainly do not 
block processes/threads from accessing those resources.

So, simply using locks is inefficient for designing and implementing a secure, dynamic, 
concurrent data structure. To achieve that, we would need to either add more concrete 
links between the locks and their corresponding resources or utilize a different 
synchronization tool altogether (for example, atomic message queues).

Concluding note on deadlock solutions
In this chapter, you have seen two of the most common approaches to the deadlock 
problem. Each addresses one of the four Coffman conditions, and while both (somewhat) 
successfully prevent deadlocks from occurring in our examples, each raises different, 
additional problems and concerns. So, it is important to truly understand the nature of 
your concurrent programs to know which of the two is applicable, if either of them is.
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It is also possible that some programs, through deadlocks, are revealed to us as unsuitable 
to be made concurrent; some programs are better left sequential and will be made worse 
with forced concurrency. As we have discussed, while concurrency provides significant 
improvements in many areas of our applications, some are inherently inappropriate for 
concurrent programming. In deadlock situations, developers should be ready to consider 
different approaches to designing a concurrent program and should not be reluctant to 
implement another method when one concurrent approach does not work.

The concept of livelocks
The concept of a livelock is connected to a deadlock; some even consider it an alternate 
version of a deadlock. In a livelock situation, the processes (or threads) in the concurrent 
program can switch their states; in fact, they switch states constantly. Yet, they simply 
switch back and forth infinitely, and no progress is made. We will now consider an actual 
scenario of a livelock.

Suppose that a pair of spouses are eating dinner together at a table. They only have one 
fork to share, so only one of them can eat at any given point. Additionally, the spouses 
are polite to each other, so even if one spouse is hungry and wants to eat their food, they 
will leave the fork on the table if their partner is also hungry. This specification is at the 
heart of creating a livelock for this problem: when both spouses are hungry, each will wait 
for the other to eat first, creating an infinite loop in which each spouse switches between 
wanting to eat and waiting for the other spouse to eat.

Let's simulate this problem in Python. Navigate to Chapter12/example8.py and take 
a look at the Spouse class:

class Spouse(threading.Thread):

    def __init__(self, name, partner):

        threading.Thread.__init__(self)

        self.name = name

        self.partner = partner

        self.hungry = True

    def run(self):

        while self.hungry:

            print('%s is hungry and wants to eat.' % self.name)
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            if self.partner.hungry:

                print('%s is waiting for their partner to eat \

                  first...' % self.name)

            else:

                with fork:

                    print('%s has stared eating.' % self.name)

                    time.sleep(5)

                    print('%s is now full.' % self.name)

                    self.hungry = False

This class inherits from the threading.Thread class and implements the logic that 
we discussed previously. It takes in a name for the Spouse instance and another Spouse 
object as its partner; when initialized, a Spouse object is also always hungry (the hungry 
attribute is always set to True). The run() function in the class specifies the logic when 
the thread is started: so long as the Spouse object's hungry attribute is set to True, the 
object will attempt to use the fork, which is a lock object, to eat. However, it always checks 
whether its partner also has its hungry attribute set to True, in which case it will not 
proceed to acquire the lock, and will instead wait for its partner to do it.

In our main program, we create the fork as a lock object first; then, we create two Spouse 
thread objects, which are each other's partner attributes. Finally, we start both threads 
and run the program until both threads finish executing:

fork = threading.Lock()

partner1 = Spouse('Wife', None)

partner2 = Spouse('Husband', partner1)

partner1.partner = partner2

partner1.start()

partner2.start()

partner1.join()

partner2.join()

print('Finished.')
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If you run the script, you will see that, as we discussed, each thread will go into an infinite 
loop, switching between wanting to eat and waiting for its partner to eat; the program will 
run forever until Python is interrupted. The following code shows the first few lines of 
output that I obtained:

> python3 example8.py

Wife is hungry and wants to eat.

Wife is waiting for their partner to eat first...

Husband is hungry and wants to eat.

Wife is hungry and wants to eat.

Husband is waiting for their partner to eat first...

Wife is waiting for their partner to eat first...

Husband is hungry and wants to eat.

Wife is hungry and wants to eat.

Husband is waiting for their partner to eat first...

Wife is waiting for their partner to eat first...

Husband is hungry and wants to eat.

Wife is hungry and wants to eat.

Husband is waiting for their partner to eat first...

...

And with that, we can conclude our discussion on deadlocks and livelocks.

Summary
In this chapter, we covered the causes of deadlocks in concurrent applications and 
implemented approaches to prevent them from occurring. Our examples have shown that 
concurrency cannot always be achieved straightforwardly and that some situations may 
require special handling. These discussions have prepared us for deadlocks in the real 
world and pointed us toward potential solutions.

In the next chapter, we will discuss another common problem in concurrent 
programming: starvation.
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Questions
1. What can lead to a deadlock situation, and why is it undesirable?
2. How is the dining philosophers problem related to the problem of a deadlock?
3. What are the four Coffman conditions?
4. How can resource ranking solve the problem of a deadlock? What other problems 

can occur when this is implemented?
5. How can ignoring locks solve the problem of a deadlock? What other problems can 

occur when this is implemented?
6. How is a livelock related to a deadlock?

Further reading
• Parallel Programming with Python, by Jan. Palach, Packt Publishing Ltd, 2014

• Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing 
Ltd, 2015

• Python Thread Deadlock Avoidance (dabeaz.blogspot.com/2009/11/
python-thread-deadlock-avoidance_20)

dabeaz.blogspot.com/2009/11/python-thread-deadlock-avoidance_20
dabeaz.blogspot.com/2009/11/python-thread-deadlock-avoidance_20
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Starvation

In this chapter, we will discuss the concept of starvation and its potential causes in 
concurrent programming. We will cover a number of variations of the readers-writers 
problems, which are prime examples of starvation, and we will simulate them in example 
Python code. This chapter will also cover the relationship between deadlock and starvation, 
as well as some potential solutions for starvation.

The following topics will be covered in this chapter:

• Understanding starvation

• Approaching the readers-writers problem

• Solutions to starvation

By the end of the chapter, you will have a deep understanding of starvation, what causes it, 
and what practical solutions can be implemented to address the problem.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter13.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter13
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Understanding starvation
Starvation is a problem in concurrent systems, in which a process (or a thread) cannot 
gain access to the necessary resources in order to proceed with its execution and, 
therefore, cannot make any progress. In this section, we will look into the characteristics 
of a starvation situation, analyze its most common causes, and finally, consider a sample 
program that exemplifies starvation.

What is starvation?
It is quite common for a concurrent program to implement some sort of ordering between 
the different processes in its execution. For example, consider a program that has three 
separate processes, as follows:

• One is responsible for handling extremely pressing instructions that need to be run 
as soon as the necessary resources become available.

• Another process is responsible for other important executions, which are not as 
essential as the tasks in the first process.

• The last one handles miscellaneous, very infrequent tasks.

Furthermore, these three processes need to utilize the same resources in order to execute 
their respective instructions.

Intuitively, we have every reason to implement a specification that allows the first process 
to have the highest priority of execution and access to resources, then the second process, 
and then the last process, with the lowest priority. However, imagine situations in which 
the first two processes (with higher priorities) run so often that the third process cannot 
execute its instructions; anytime the third process needs to run, it checks to see whether 
the resources are available to be used and finds out that one of the other higher-priority 
processes is using them.

This is a situation of starvation – the third process is given no opportunity to execute and, 
therefore, no progress can be made with that process. In a typical concurrent program, 
it is quite common to have more than three processes at different priority levels, yet the 
situation is fundamentally similar – some processes are given more opportunities to run 
and, therefore, they are constantly executing. Others have lower priorities and cannot 
access the necessary resources to execute.
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Scheduling
In the next few subsections, we will be discussing the potential candidates that cause 
starvation situations. Most of the time, a poorly coordinated set of scheduling instructions 
is the main cause of starvation. For example, a considerably naive algorithm that deals 
with three separate tasks might implement constant communication and interaction 
between the first two tasks.

This setup leads to the fact that the execution flow of the algorithm switches solely 
between the first and second tasks, while the third finds itself idle and unable to make 
any progress with its execution – in this case, because it is starved of CPU execution flow. 
Intuitively, we can identify the root of the problem as the fact that the algorithm allows the 
first two tasks to always dominate the CPU and, hence, effectively prevents any other task 
from also utilizing the CPU. A characteristic of a good scheduling algorithm is the ability 
to distribute the execution flow and allocate the resources equally and appropriately.

As mentioned previously, many concurrent systems and programs implement a specific 
order of priority, in terms of process and thread execution. This implementation of 
ordered scheduling may very likely lead to the starvation of processes and threads of lower 
priorities and can result in a condition called priority inversion.

Suppose that, in your concurrent program, you have process A of the highest priority, 
process B of a medium priority, and finally, process C of the lowest priority; process C 
would most likely be put in the situation of starvation. Additionally, if the execution of 
process A, the prioritized process, is dependent on the completion of process C, which is 
already in starvation, then process A might never be able to complete its execution either, 
even though it is given the highest priority in the concurrent program.
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The following diagram further illustrates the concept of priority inversion – a  
high-priority task running from the time t2 to t3 needs to access some resources,  
which are being utilized by a low-priority task:

Figure 13.1 – A diagram of priority inversion

To reiterate, combining starvation and priority inversion can lead to a situation where 
even the high-priority tasks are unable to execute their instructions.

Causes of starvation
With the complexity of designing a scheduling algorithm in mind, let's discuss the specific 
causes of starvation. The situations that we described in the preceding section indicate 
some potential causes of a starvation situation. However, starvation can arise from a 
number of sources, as follows:

• Processes (or threads) with high priorities dominate the execution flow in the  
CPU and, hence, low-priority processes (or threads) are not given the opportunity 
to execute their own instructions.

• Processes (or threads) with high priorities dominate the usage of non-shareable 
resources and, hence, low-priority processes (or threads) are not given the 
opportunity to execute their own instructions. This situation is similar to the first 
one but addresses the priority of accessing resources, instead of the priority of the 
execution itself.
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• Processes (or threads) with low priorities are waiting for resources to execute 
their instructions, but as soon as the resources become available, other processes 
(or threads) with higher priorities are immediately given access to them, so the 
low-priority processes (or threads) wait indefinitely.

There are other causes of starvation as well, but the preceding are the most common  
root causes.

Starvation's relationship to deadlock
Interestingly, deadlock situations can also lead to starvation, as the definition of starvation 
states that if there is a process (or a thread) that is unable to make any progress because 
it cannot gain access to the necessary process, the process (or thread) is experiencing 
starvation.

Recall our example of deadlock, the Dining Philosophers problem, illustrated as follows:

Figure 13.2 – An illustration of the Dining Philosophers problem
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When deadlock occurs in this situation, no philosopher can obtain the necessary 
resources to execute their instructions (each philosopher is required to have two forks to 
start eating). Each philosopher that is in deadlock is therefore also in a state of starvation.

The readers-writers problem describes in detail the various types of starvation, which we 
will consider next.

Approaching the readers-writers problem
The readers-writers problem is one of the classic use cases in concurrent programming, 
illustrating problems that might occur in a concurrent program. Throughout the analysis 
of the different variations of the readers-writers problem, we will reveal more about 
starvation, as well as its common causes. We will also simulate the problem in Python  
so that a deeper understanding of the problem can be gained.

Problem statement
In a readers-writers problem, first and foremost, we have a shared resource, which, in 
most cases, is a text file. Different threads interact with that text file; each is either a reader 
or a writer. A reader is a thread that simply accesses the shared resource (the text file) and 
reads in the data included in that file, while a writer is a thread that accesses, and possibly 
mutates, the contents of the text file.

We know that writers and readers cannot access the shared resources simultaneously since 
if a thread is writing data to the file, no other thread should be accessing the file to read 
any data from it. The goal of the readers-writers problem is therefore to find a correct and 
efficient way to design and coordinate the scheduling of these reader and writer threads. 
Successful implementation of that goal is not only that the program as a whole executes 
in the most optimized way but also that all threads are given sufficient opportunity to 
execute their instructions and no starvation can occur. Additionally, the shared resource 
(the text file) needs to be handled appropriately so that no data will be corrupted.
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The following diagram further illustrates the setup of the readers-writers problem:

Figure 13.3 – A diagram of the readers-writers problem

In the following subsections, we will be exploring different variations of the problem  
with increasing levels of complexity. From there, we will also implement sample solutions 
to these problems, thus gaining hands-on experience in preventing starvation in 
concurrent applications.

The first readers-writers problem
As we mentioned, the problem asks us to come up with a scheduling algorithm so 
that readers and writers can access the text file appropriately and efficiently, without 
mishandling or corrupting the data that is included. A naive solution to this problem is to 
impose a lock on the text file so that it becomes a non-shareable resource; this means that 
only one thread (either a reader or a writer) can access (and potentially manipulate) the 
text file at any given time.

Yet, this approach simply equates to a sequential program – if the shared resource can be 
utilized by only one thread at a given time, none of the processing time between different 
threads can be overlapped and, effectively, the execution becomes sequential. Therefore, 
this is not an optimal solution, as it is taking advantage of concurrent programming.

One insight regarding the reader threads can lead to a more optimal solution to this 
problem – since readers simply read in the text file and do not alter the data in it, multiple 
readers can be allowed to access the text file simultaneously. Indeed, even if more than one 
reader is fetching data from the text file at the same time, the data is not being changed in 
any way, and the consistency and accuracy of the data are therefore maintained.
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Following this approach, we will implement a specification in which no reader will be kept 
waiting if the shared resource is being opened for reading by another reader. Specifically, 
in addition to a lock on the shared resource, we will also have a counter for the number of 
readers currently accessing the resource. If at any point in the program that counter goes 
from zero to one (in other words, at least one reader is starting to access the resource), we 
will lock the resource from the writers; similarly, whenever the counter decreases to zero 
(in other words, no reader is asking for access to the resource), we will release the lock on 
the resource so that writers can access it.

This specification is efficient for the readers in the sense that once the first reader has 
accessed the resource and placed a lock on it, no writers can access it, and the subsequent 
readers will not have to re-lock it until the last reader finishes reading the resource.

Let's try to implement this solution in Python. If you have already downloaded the code 
for this book from the GitHub page, go ahead and navigate to the Chapter13 folder. 
Let's take a look at the Chapter13/example1.py file – specifically, the writer() 
and reader() functions, as follows:

def writer():

    global text

    while True:

        with resource:

            print(f'Writing being done by \

                   {threading.current_thread().name}.')

            text += f'Writing was done by \

                    {threading.current_thread().name}. '

def reader():

    global rcount

    while True:

        with rcounter:

            rcount += 1

            if rcount == 1:

                resource.acquire()

        print(f'Reading being done by \

               {threading.current_thread().name}:')
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        print(text)

        with rcounter:

            rcount -= 1

            if rcount == 0:

                resource.release()

In the preceding script, the writer() function, which is to be called by a  
threading.Thread instance (in other words, a separate thread), specifies the logic of 
the writer threads that we discussed previously – accessing the shared resource (in this 
case, the global variable, text, which is simply a Python string) and writing some data 
to the resource. Note that we are putting all of its instructions inside a while loop to 
simulate the constant nature of the application (writers and readers constantly trying  
to access the shared resource).

We can also see the reader logic in the reader() function. Before asking for access to 
the shared resource, each reader will increment a counter for the number of readers that 
are currently active and trying to access the resource. Similarly, after reading data off 
the file, each reader needs to decrement the number of readers. During this process, if a 
reader is the first reader to access the file (in other words, when the counter is one), it will 
put a lock on the file so that no writers can access it; conversely, when a reader is the last 
reader to read the file, it has to release that lock.

One note about the handling of that counter of readers – you might have noticed that 
we are using a lock object named rcounter when incrementing/decrementing the 
counter variable (rcount). This is a method that is used to avoid a race condition, which 
is another common concurrency-related problem, for the counter variable; specifically, 
without the lock, multiple threads can be accessing and altering the counter variable at the 
same time, but the only way to ensure the integrity of the data is for this counter variable 
to be handled sequentially. We will discuss race conditions (and the practice that is used  
to avoid them) in more detail in the next chapter.

Going back to our current script – in the main program, we will set up the text variable, 
the counter for readers, and two lock objects (for the reader counter and the shared 
resource respectively). We are also initializing and starting three reader threads and  
two writer threads, as follows:

text = 'This is some text. '

rcount = 0

rcounter = threading.Lock()
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resource = threading.Lock()

threads = [threading.Thread(target=reader) for i in \

  range(3)] + [ \

    threading.Thread(target=writer) for i in \

      range(2)]

for thread in threads:

    thread.start()

It is important to note that, since the instructions of the reader and writer threads are both 
wrapped in while loops, the script, when started, will run infinitely. You should cancel 
the Python execution after around 3–4 seconds, when enough output has been produced 
so that the general behavior of the program can be observed.

The following code shows the first few lines of output that I obtained after running  
the script:

> python3 example1.py

Reading being done by Thread-1:

This is some text. 

Reading being done by Thread-2:

Reading being done by Thread-1:

This is some text. 

This is some text. 

Reading being done by Thread-2:

Reading being done by Thread-1:

This is some text. 

This is some text. 

Reading being done by Thread-3:

Reading being done by Thread-1:

This is some text. 

This is some text. 

...

As you can see, there is a specific pattern in the preceding output – all of the threads that 
were accessing the shared resource were readers. In fact, throughout my entire output, no 
writer was able to access the file and, therefore, the text variable only contains the initial 
string, This is some text., and was not altered in any way. The output that you 
obtain should also have the same pattern (the shared resource not being altered).
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In this case, the writers are experiencing starvation, as none of them are able to access and 
use the resource. This is a direct result of our scheduling algorithm; since multiple readers 
are allowed to access the text file simultaneously, if there are multiple readers accessing the 
text file frequently enough, it will create a continuous stream of readers going through the 
text file, leaving no room for a writer to attempt to access the file.

This scheduling algorithm inadvertently gives priority to the readers over the writers and 
is therefore called reader preference. So, this design is undesirable.

The second readers-writers problem
The problem with the first approach is that when a reader is accessing the text file and a 
writer is waiting for the file to be unlocked, if another reader starts its execution and wants 
to access the file, it will be given priority over the writer that has already been waiting. 
Additionally, if more and more readers keep requesting access to the file, the writer will be 
waiting indefinitely, and that was what we observed in our first code example.

To address this problem, we will implement the specification that once a writer makes a 
request to access the file, no reader should be able to jump in line and access the file before 
that writer. To do this, we will have an additional lock object in our program to specify 
whether a writer is waiting for the file and, consequently, whether a reader thread can 
attempt to read the file; we will call this lock read_try.

Similar to how the first of the readers accessing the text file always locks it from the 
writers, we will now have the first of the multiple writers that are waiting to access the 
read_try file lock, so that no reader can, again, jump in line before those writers that 
requested access before it. As we discussed in reference to the readers, since we are keeping 
track of the number of writers waiting for the text file, we will need to implement a 
counter for the number of writers, and its corresponding lock, in our program.

The Chapter13/example2.py file contains the code for this implementation,  
as follows (note that the reader() function is being omitted in the text):

import threading

def writer():

    global text

    global wcount

    while True:

        with wcounter:

            wcount += 1
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            if wcount == 1:

                read_try.acquire()

        with resource:

            print(f'Writing being done by \

                  {threading.current_thread().name}.')

            text += f'Writing was done by \

                  {threading.current_thread().name}. '

        with wcounter:

            wcount -= 1

            if wcount == 0:

                read_try.release()

def reader():

    ...

text = 'This is some text. '

wcount = 0

rcount = 0

wcounter = threading.Lock()

rcounter = threading.Lock()

resource = threading.Lock()

read_try = threading.Lock()

threads = [threading.Thread(target=reader) for i in \

  range(3)] + 

    [threading.Thread(target=writer) for i in \

      range(2)]

for thread in threads:

    thread.start()
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Compared to our first solution to the problem, the main program remains relatively the 
same (except for the initialization of the read_try lock, the wcount counter, and its 
lock, wcounter), but in our writer() function, we are locking read_try as soon 
as there is at least one writer waiting to access the file; when the last writer finishes its 
execution, it will release the lock so that any reader waiting for the file can now access it.

Again, to see the output produced by the program, we will have it run for 3–4 seconds and 
then cancel the execution, as the program would otherwise run forever. The following is 
the output that I obtained via this script:

> python3 example2.py

Reading being done by Thread-1:

This is some text. 

Reading being done by Thread-1:

This is some text. 

Writing being done by Thread-4.

Writing being done by Thread-5.

Writing being done by Thread-4.

Writing being done by Thread-4.

Writing being done by Thread-4.

Writing being done by Thread-5.

Writing being done by Thread-4.

...

It can be observed that while some readers were able to access the text file (indicated by the 
first four lines of my output), once a writer gained access to the shared resource, no reader 
was able to access it anymore. The rest of my output included messages about writing 
instructions – Writing being done by, and so on. As opposed to what we saw in the 
first solution of the readers-writers problem, this solution is giving priority to writers, and, 
as a consequence, the readers are starved. This is therefore called writer preference.

The priority that writers were given over readers resulted from the fact that while only 
the first and the last writers have to acquire and release the read_try lock respectively, 
each reader wanting to access the text file has to interact with that lock object individually. 
Once read_try is locked by a writer, no reader can even attempt to execute its 
instructions, let alone try to access the text file.
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There are cases in which some readers are able to gain access to the text file if the readers 
are initialized and executed before the writers (for example, in our program, the readers 
were the first three elements, and the writers were the last two, in our list of threads). 
However, once a writer is able to access the file and acquire the read_try lock during  
its execution, starvation will most likely occur for the readers.

This solution is also not desirable, as it gives higher priority to the writer threads in  
our program.

The third readers-writers problem
You have seen that both of the solutions that we tried to implement can result in 
starvation by not giving equal priorities to the separate threads; one can starve the writers, 
and the other can starve the readers. A balance between these two approaches might give 
us an implementation with equal priorities among the readers and writers, and, hence, 
solve the problem of starvation.

Recall that – in our second approach, we placed a lock on a reader's attempt to access the 
text file, requiring that no writer would be starved once it started waiting for the file. In 
this solution, we will implement a lock that also utilizes this logic but is then applied to 
both readers and writers. All of the threads will then be subjected to the constraints of the 
lock, and equal priority will hence be achieved among the separate threads.

Specifically, this is a lock that specifies whether a thread will be given access to the text file 
at a given moment; we will call this the service lock. Each writer or reader has to try to 
acquire this service lock before executing any of its instructions. A writer, having obtained 
this service lock, will also attempt to obtain the resource lock and release the service lock 
immediately thereafter. The writer will then execute its writing logic and finally release the 
resource lock at the end of its execution.

Let's take a look at the writer() function in the Chapter13/example3.py file for 
our implementation in Python, as follows:

def writer():

    global text

    while True:

        with service:

            resource.acquire()

        print(f'Writing being done by \

              {threading.current_thread().name}.')
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        text += f'Writing was done by \

              {threading.current_thread().name}. '

        resource.release()

On the other hand, a reader will also need to acquire the service lock first. Since we 
are still allowing multiple readers to access the resource at the same time, we are 
implementing the reader counter and its corresponding lock.

The reader will acquire the service lock and the counter lock, increment the reader counter 
(and, potentially, lock the resource), and then release the service lock and counter lock 
sequentially. Now, it will actually read data off the text file, and finally, it will decrement the 
reader counter and potentially release the resource lock if it is the last reader to access the 
file at that time.

The reader() function contains the following specification:

def reader():

    global rcount

    while True:

        with service:

            rcounter.acquire()

            rcount += 1

            if rcount == 1:

                resource.acquire()

        rcounter.release()

        print(f'Reading being done by \

              {threading.current_thread().name}:')

        #print(text)

        with rcounter:

            rcount -= 1

            if rcount == 0:

                resource.release()
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Finally, in our main program, we initialize the text string, the reader counter, all of the 
necessary locks, and the reader and writer threads, as follows:

text = 'This is some text. '

rcount = 0

rcounter = threading.Lock()

resource = threading.Lock()

service = threading.Lock()

threads = [threading.Thread(target=reader) for i in \

  range(3)] + [

    threading.Thread(target=writer) for i in range(2)]

for thread in threads:

    thread.start()

Note that we are commenting the code that prints out the current content of the text  
file in the reader() function for readability for our output later on. Run the program  
for 3–4 seconds and then cancel it. The following output is what I obtained on my 
personal computer:

> python3 example3.py

Reading being done by Thread-3:

Writing being done by Thread-4.

Reading being done by Thread-1:

Writing being done by Thread-5.

Reading being done by Thread-2:

Reading being done by Thread-3:

Writing being done by Thread-4.

...

The pattern that we have with this current output is that the readers and writers are able to 
access the shared resource cooperatively and efficiently; all of the readers and writers are 
executing their instructions, and no thread is being starved by this scheduling algorithm.
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Note that as you work with a readers-writers problem in your concurrent program, 
you do not have to reinvent the wheel regarding the approaches that we just discussed. 
PyPI actually has an external library called readerwriterlock that contains the 
implementation of the three approaches in Python, as well as support for timeouts. Go to 
https://pypi.org/project/readerwriterlock/ to find out more about the 
library and its documentation.

Solutions to starvation
Through an analysis of different approaches to the readers-writers problem, you have seen 
the key to solving starvation – since some threads will be starved if they are not given a 
high priority in accessing the shared resources, implementing fairness in the execution 
of all of the threads will prevent starvation from occurring. Fairness, in this case, does 
not require a program to forgo any order or priority that it has imposed on the different 
threads; but to implement fairness, a program needs to ensure that all threads are given 
sufficient opportunities to execute their instructions.

Keeping this idea in mind, we can potentially address the problem of starvation by 
implementing one (or a combination) of the following approaches:

• Increasing the priority of low-priority threads: As we did with the writer  
threads in the second approach and the reader threads in the third approach to the 
readers-writers problem, prioritizing the threads that would otherwise not have any 
opportunity to access the shared resource can successfully eliminate starvation.

• First-in-first-out thread queue: To ensure that a thread that started waiting for  
the shared resource before another thread will be able to acquire the resource  
before the other thread, we can keep track of the threads requesting access in  
a first-in-first-out queue.

• Other methods: Several methods can also be implemented to balance the selection 
frequency of different threads – for example, a priority queue that also gives 
gradually increasing priority to threads that have been waiting in the queue for  
a long time, or if a thread has been able to access the shared resource many times,  
it will be given less priority.

Solving starvation in your concurrent program can be a rather complex and involved 
process, and a deep understanding of its scheduling algorithm, combined with an 
understanding of how processes and threads interact with the shared resources, is 
necessary during the process. As you saw in the example of the readers-writers problem,  
it can also take several implementations and revisions of different approaches to arrive  
at a good solution to starvation.

https://pypi.org/project/readerwriterlock/
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Summary
In this chapter, we have covered starvation and the specific situations in which it could 
occur by analyzing different instances of the readers-writers problem. We have gained 
insight into how starvation can be solved with different scheduling algorithms – by 
making sure that the priority is distributed appropriately among different processes and 
threads, starvation can be eliminated. These discussions will serve as a guide to solutions 
to real-life instances of starvation.

In the next chapter, we will discuss the last of the three common problems of concurrent 
programming – race conditions. We will cover the basic foundation and causes of 
race conditions, relevant concepts, and the connection of race conditions to other 
concurrency-related problems.

Questions
1. What is starvation and why is it undesirable in a concurrent program?
2. What are the underlying causes of starvation? What are the common high-level 

causes of starvation that can manifest from the underlying causes?
3. What is the connection between deadlock and starvation?
4. What is the readers-writers problem?
5. What is the first approach to the readers-writers problem? Why does starvation arise 

in that situation?
6. What is the second approach to the readers-writers problem? Why does starvation 

arise in that situation?
7. What is the third approach to the readers-writers problem? Why does it successfully 

address starvation?
8. What are some common solutions to starvation?

Further reading
• Parallel Programming with Python, Jan Palach, Packt Publishing Ltd, 2014

• Python Parallel Programming Cookbook, Giancarlo Zaccone, Packt Publishing Ltd, 
2015

• Starvation and Fairness, Jakob Jenkov (tutorials.jenkov.com/java-
concurrency/starvation-and-fairness)

• Faster Fair Solution for the Reader-Writer Problem, V. Popov and O. Mazonka

http://tutorials.jenkov.com/java-concurrency/starvation-and-fairness
http://tutorials.jenkov.com/java-concurrency/starvation-and-fairness
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Race Conditions

In this chapter, we will discuss the concept of race conditions and their potential causes in 
the context of concurrency. The definition of a critical section, which is a concept highly 
relevant to race conditions and concurrent programming, will also be covered. We will 
use some example code in Python to simulate race conditions and the solutions that are 
commonly used to address them. Finally, real-life applications that commonly deal with 
race conditions will also be discussed.

In this chapter, we will cover the following topics:

• The concept of race conditions

• Simulating race conditions in Python

• Locks as a solution to race conditions

• Race conditions in real life

This chapter, similar to the previous two chapters, offers a closer look at what could go 
wrong in concurrent programming and exposes us to a wide range of approaches in terms 
of how to avoid and prevent that. In this chapter, our focus will be on race conditions.
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Technical requirements
The code for this chapter can be found in the following GitHub repository: https://
github.com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter14.

The concept of race conditions
Typically, a race condition is defined as a phenomenon during which the output of a 
system is both indeterminate and dependent on the scheduling algorithm and the order 
in which tasks are scheduled and executed. When data becomes mishandled or corrupted 
during this process, a race condition becomes a bug in the system. Given the nature of this 
problem, it is quite common for a race condition to occur in concurrent systems, which 
emphasizes the importance of scheduling and coordinating independent tasks.

A race condition can occur in both an electronic hardware system and a software 
application; in this chapter, we will only discuss race conditions in the context of software 
development – specifically, concurrent software applications. This section will cover the 
theoretical foundations of race conditions and their root causes along with the concept  
of critical sections.

Critical sections
Critical sections indicate shared resources that are accessed by multiple processes or 
threads in a concurrent application, These can lead to unexpected, and even erroneous, 
behavior. We have learned that there are multiple methods to protect the integrity of the 
data contained in these resources, and we call these protected sections critical sections.

As you can imagine, the data in these critical sections, when interacted with and altered 
concurrently or in parallel, can become mishandled or corrupted. This is especially true 
when the threads and processes interacting with it are poorly coordinated and scheduled. 
Therefore, the logical conclusion is to not allow multiple agents to go into a critical section 
at the same time. We call this concept mutual exclusion.

In the next subsection, we will discuss the relationship between critical sections and the 
causes of race conditions.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter14
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter14
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How race conditions occur
Let's consider a simple concurrent program in order to understand what can give rise  
to a race condition:

1. Suppose that the program has a shared resource and two separate threads (thread 1 
and thread 2) that will access and interact with that resource. Specifically, the shared 
resource is a number and, as per their respective execution instructions, each thread 
is to read in that number, increment it by 1, and finally, update the value of the 
shared resource with the incremented number.

2. Next, suppose that the shared number is originally 2, and then thread 1 accesses and 
interacts with the number; the shared resource will become 3.

3. After thread 1 successfully alters and exits the resource, thread 2 begins to execute its 
instructions, and the shared resource that is a number is updated to 4. Throughout  
this process, the number that was originally 2 was incremented twice (each time by  
a separate thread) and held a value of 4 at the end. In this case, the shared number  
was not mishandled or corrupted.

4. Then, imagine a scenario in which the shared number is still 2 at the beginning, yet 
both of the threads access the number at the same time. Now, each of the threads 
reads in the number 2 from the shared resource; they each increment the number 
2 to 3 individually, and then write the number 3 back to the shared resource. Even 
though the shared resource was accessed and interacted with twice by a thread, it 
only held a value of 3 at the end of the process.

This is an example of a race condition occurring in a concurrent program: since the 
second thread to access a shared resource does it before the first thread finishes its 
execution (in other words, before writing the new value to the shared resource), the 
second thread fails to take in the updated resource value. This leads to the fact that when 
the second thread writes to the resource, the value that is processed and updated by the 
first thread is overwritten. At the end of the execution of the two threads, the shared 
resource has, technically, only been updated by the second thread.



378     Race Conditions

The following diagram further illustrates the contrast between a correct data handling 
process and a situation involving a race condition:

Figure 14.1 – Mishandling shared data

Intuitively, we can see that a race condition results in the mishandling and corruption 
of data. In the preceding example, we can see that a race condition only occurs with two 
separate threads accessing a common resource, causing the shared resource to be updated 
incorrectly and hold an incorrect value at the end of the program. We understand that 
most real-life concurrent applications contain significantly more threads and processes 
along with additional shared resources, and the more threads/processes that interact with 
the shared resource, the more likely it is that a race condition will occur.

Before we discuss a solution that we can implement to solve the problem of race 
conditions, let's try to simulate the problem in Python.
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Simulating race conditions in Python
If you have already downloaded the code for this book from the GitHub page, go ahead 
and navigate to the Chapter14 folder.
To simulate a race condition, first, we need a common resource. In this case, it's a counter 
variable along with multiple threads that can access it simultaneously. Let's take a look at 
the Chapter14/example1.py file—specifically, the update() function, as follows:

import random

import time

def update():

    global counter

    current_counter = counter # reading in shared resource

    time.sleep(random.randint(0, 1)) # simulating heavy 

    calculations

    counter = current_counter + 1 # updating shared 

    resource

The goal of the preceding update() function is to increment a global variable called 
counter, and it is to be called by a separate thread in our script. Inside the function, we 
are interacting with a shared resource—in this case, counter. Then, we assign the value 
of counter to another local variable, called current_counter (this is to simulate the 
process of reading data from more complex data structures for the shared resources).
Next, we will pause the execution of the function by using the time.sleep() method. 
The length of the period during which the program will be paused is pseudo-randomly 
chosen between 0 and 1, generated by the function call, random.randint(0, 1). So, 
the program will either pause for one second or not at all. Finally, we assign the newly 
computed value of current_counter (which is its one-increment) to the originally 
shared resource (the counter variable).
Now, we can move on to our main program:

import threading

counter = 0

threads = [threading.Thread(target=update) for i in \

  range(20)]
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for thread in threads:

    thread.start()

for thread in threads:

    thread.join()

print(f'Final counter: {counter}.')

print('Finished.')

Here, we are initializing the counter global variable with a set of threading.Thread 
objects in order to execute the update() function concurrently; we are initializing  
20 thread objects to increment our shared counter 20 times. After starting and joining  
all of the threads that we have, we can finally print out the end value of our shared 
counter variable.

Theoretically, a well-designed concurrent program will successfully increment the shared 
counter 20 times in total, and since its original value is 0, the end value of the counter 
should be 20 at the end of the program. However, as you run this script, the counter 
variable that you obtain will most likely not hold an end value of 20. The following is  
my output, obtained from running the script:

> python3 example1.py

Final counter: 9.

Finished.

The preceding output indicates that the counter was only successfully incremented nine 
times. This is a direct result of the race condition that our concurrent program has. This 
race condition occurs when a specific thread spends time reading in and processing the 
data from the shared resource (specifically, for one second using the time.sleep() 
method), and another thread reads in the current value of the counter variable, which, at 
this point, has not been updated by the first thread since it has not completed its execution.

Interestingly, if a thread does not spend any time processing the data (in other words, 
when 0 is chosen by the pseudo-random random.randint() method), the value of 
the shared resource can potentially be updated just in time for the next thread to read and 
process it. This phenomenon is illustrated by the fact that the end value of the counter 
varies within different runs of the program. For example, the following is the output that I 
obtained after running the script three times. The output from the first run is as follows:

> python3 example1.py

Final counter: 9.

Finished.
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The output from the second run is as follows:

> python3 example1.py

Final counter: 12.

Finished.

The output from the third run is as follows:

> python3 example1.py

Final counter: 5.

Finished.

Again, the final value of the counter is dependent on the number of threads that spend 
one second pausing and the number of threads not pausing at all. Since these two numbers 
are, in turn, dependent on the random.randint() method, the final value of the 
counter changes between different runs of the program. We will still have a race condition 
in our program, except for when we can ensure that the final value of the counter is always 
20 (that is, the counter is being successfully incremented 20 times in total).

In the next section, we will discuss the most common solution to race conditions: locks.

Locks as a solution to race conditions
Intuitively, since the race conditions that we observed arose when multiple threads or 
processes accessed and wrote to a shared resource simultaneously, the key idea behind 
solving race conditions is isolating the executions of different threads/processes, especially 
when interacting with a shared resource. Specifically, we need to make sure that a thread/
process can only access the shared resource after any other threads/processes interacting 
with the resource have finished their interactions with that resource.

With locks, we can turn a shared resource inside a concurrent program into a critical section, 
whose integrity of data is guaranteed to be protected. We will see this in action next.

The effectiveness of locks
A critical section guarantees the mutual exclusion of a shared resource and cannot be 
accessed concurrently by multiple processes or threads; this will prevent any protected data 
from being updated or altered with conflicting information, resulting from race conditions.
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In the following diagram, Thread B is blocked from accessing the shared resource—the 
critical section named var—by a mutex (mutual exclusion) lock. This is because Thread 
A is already accessing the resource:

Figure 14.2 – Locks prevent simultaneous access to a critical section

Now, we will specify that, in order to gain access to a critical section in a concurrent 
program, a thread or process needs to acquire a lock object that is associated with the 
critical section; similarly, that thread or process also needs to release that lock upon 
leaving the critical section. This setup will effectively prevent multiple accesses to the 
critical section and will, therefore, prevent race conditions. The following diagram 
illustrates the execution flow of multiple threads interacting with multiple critical sections, 
with the implementation of locks in place:

Figure 14.3 – Locks and critical sections in multiple threads

As you can see in the preceding diagram, threads T1 and T2 both interact with three 
critical sections in their respective execution instructions: CS1, CS2, and CS3. Here, T1 
and T2 attempt to access CS1 at almost the same time. Additionally, since CS1 is protected 
with lock L1, only T1 can acquire lock L1 and, hence, access/interact with the critical 
section. In contrast, T2 has to spend time waiting for T1 to exit out of the critical section 
and release the lock before accessing the section itself. Similarly, for the critical sections, 
CS2 and CS3, although both threads require access to a critical section at the same time, 
only one can process it, while the other has to wait to acquire the lock associated with the 
critical section.

Now, let's implement this solution using Python.



Locks as a solution to race conditions     383

Implementation in Python
Navigate to the Chapter14/example2.py file and consider our corrected update() 
function, as follows:

import random

import time

def update():

    global counter

    with count_lock:

        current_counter = counter # reading in shared 

        resource

        time.sleep(random.randint(0, 1)) # simulating heavy 

        calculations

        counter = current_counter + 1

Here, you can see that all of the execution instructions of a thread specified in the 
update() function are under the context manager of a lock object named count_
lock. So, every time a thread is called to run the function, it will first have to acquire 
the lock object before any instructions can be executed. In our main program, we simply 
create the lock object in addition to what we already have, as follows:

import threading

counter = 0

count_lock = threading.Lock()

threads = [threading.Thread(target=update) for i in \

  range(20)]

for thread in threads:

    thread.start()

for thread in threads:

    thread.join()

print(f'Final counter: {counter}.')

print('Finished.')
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Run the program. Your output should look similar to the following:

> python3 example2.py

Final counter: 20.

Finished.

Here, you can see that the counter was successfully incremented 20 times and held the 
correct value at the end of the program. Furthermore, no matter how many times the 
script is executed, the final value of the counter will always be 20. This is the advantage  
of using locks to implement critical sections in your concurrent programs.

The downside of locks
In Chapter 12, Deadlocks, we covered an interesting phenomenon in which the use of 
locks can lead to undesirable results. Specifically, we discovered that with enough locks 
implemented in a concurrent program, the whole program can become sequential. Let's 
analyze this concept with our current program. Consider the Chapter14/example3.py 
file, as follows:

import threading

import random; random.seed(0)

import time

def update(pause_period):

    global counter

    with count_lock:

        current_counter = counter # reading in shared 

        resource

        time.sleep(pause_period) # simulating heavy 

        calculations

        counter = current_counter + 1 # updating shared 

        resource

pause_periods = [random.randint(0, 1) for i in range(20)]

###############################################################
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counter = 0

count_lock = threading.Lock()

start = time.perf_counter()

for i in range(20):

    update(pause_periods[i])

print('--Sequential version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

###############################################################

counter = 0

threads = [threading.Thread(target=update, \

  args=(pause_periods[i],)) for i in range(20)]

start = time.perf_counter()

for thread in threads:

    thread.start()

for thread in threads:

    thread.join()

print('--Concurrent version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

###############################################################

print('Finished.')



386     Race Conditions

The goal of this script is to compare the speed of our current concurrent program with 
its sequential version. Here, we are still using the same update() function, with locks, 
and we are running it 20 times, both sequentially and concurrently, as we did earlier. 
Additionally, we are creating a list of determined periods for pausing:

pause_periods = [random.randint(0, 1) for i in range(20)]

This is so that these periods are consistent between when we simulate the sequential version 
and when we simulate the concurrent version (for this reason, the update() function 
now takes in a parameter that specifies the period of pausing each time it is called). 

This is the setup we need to simulate the sequentiality of a program with many locks, 
which we will see firsthand in the next subsection.

Turning a concurrent program into a sequential program
Here, we simply call the update() function inside a for loop, with 20 iterations, keeping 
track of the time it takes for the loop to finish. Note that, even though this is to simulate 
the sequential version of the program, the update() function still needs the lock object 
to be created beforehand, so we are initializing it here:

counter = 0

count_lock = threading.Lock()

start = time.perf_counter()

for i in range(20):

    update(pause_periods[i])

print('--Sequential version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

The last step is to reset the counter and run the concurrent version of the program that 
we already implemented. Again, we need to pass in the corresponding pause period while 
initializing each of the threads that run the update() function. Additionally, we are 
keeping track of the time it takes for this concurrent version of the program to run:

counter = 0

threads = [threading.Thread(target=update, \

args=(pause_periods[i],)) for i in range(20)]



Locks as a solution to race conditions     387

start = time.perf_counter()

for thread in threads:

    thread.start()

for thread in threads:

    thread.join()

print('--Concurrent version--')

print(f'Final counter: {counter}.')

print(f'Took {time.perf_counter() - start : .2f} seconds.')

Now, after you have run the script, you will observe that both the sequential version and 
the concurrent version of our program took the same amount of time to run. Specifically, 
the following is the output that I obtained; in this case, they both took approximately  
12 seconds. The actual time that your program takes might be different, but the speed  
of the two versions should still be equal:

> python3 example3.py

--Sequential version--

Final counter: 20.

Took 12.03 seconds.

--Concurrent version--

Final counter: 20.

Took 12.03 seconds.

Finished.

So, our concurrent program is taking just as much time as its sequential version, which 
negates one of the biggest purposes of implementing concurrency in a program: improving 
speed. But why would concurrent and traditional sequential applications with the same 
sets of instructions and elements also have the same speed? Should the concurrent 
program always produce a faster speed than the sequential one?

Recall that, in our program, the critical section is being protected by a lock object, and 
no multiple threads can access it at the same time. Since the execution of the program 
(incrementing the counter 20 times) depends on a thread accessing the critical section,  
the placement of the lock object in the critical section means that only one thread  
can be executing at any given time. With this specification, the executions of any two 
threads cannot overlap with each other, and no additional speed can be gained from  
this implementation of concurrency.
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This is the phenomenon that we encountered when analyzing the problem of deadlock: 
if enough locks are placed in a concurrent program, that program will become entirely 
sequential. This is the reason why locks are sometimes undesirable solutions to problems 
in concurrent programming. However, this situation only happens if all of the executions 
of the concurrent program are dependent upon interacting with the critical section. Most 
of the time, reading and manipulating the data of a shared resource is only a portion of 
the entire program; therefore, concurrency still provides the intended additional speed  
for our program.

An additional aspect of locks is the fact that they do not actually lock anything. We will 
discuss this point in more detail next.

Locks do not lock anything
The only way that a lock object is utilized, with respect to a specific shared resource, is 
for the threads and processes interacting with that resource to also interact with the lock. 
In other words, if those threads and processes choose to not check with the lock before 
accessing and altering the shared resource, the lock object itself cannot stop them from 
doing so.

In our examples, you have discovered that to implement the acquiring/releasing process 
of a lock object, the instructions of a thread or process need to be wrapped around by a 
lock context manager; this specification is dependent on the implementation of the thread/
process execution logic and not the resource. That is because the lock objects that we have 
seen are not in any way connected to the resources that they are supposed to protect. So, 
if the thread/process execution logic does not require any interaction with the lock object 
associated with the shared resource, that thread or process can simply gain access to the 
resource without difficulty, potentially resulting in the mismanipulation and corruption  
of data.

This is not only true in the scope of having multiple threads and processes in a single 
concurrent program. Let's suppose that we have a concurrent system consisting of multiple 
components that all interact and manipulate the data of a resource shared across the system, 
and this resource is associated with a lock object; it follows that, if any of these components 
fail to interact with that lock, it can simply bypass the protection implemented by the lock 
and access the shared resource. More importantly, this characteristic of locks also has 
implications regarding the security of a concurrent program. If an outside, malicious agent 
is connected to the system (for instance, a malicious client interacting with a server) and 
intends to corrupt the data shared across the system, that agent can be instructed to simply 
ignore the lock object and access that data in an intrusive way.
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The view that locks don't lock anything was popularized by Raymond Hettinger, a Python 
core developer who worked on the implementation of various elements in Python 
concurrent programming. It is argued that using lock objects alone does not guarantee 
a secure implementation of concurrent data structures and systems. Locks need to be 
concretely linked to the resources that they are supposed to protect, and nothing should 
be able to access a resource without first acquiring the lock that is associated with it. 
Alternatively, other concurrent synchronization tools, such as atomic message queues  
can provide a solution to this problem.

You have now learned about the concept of race conditions, how they are caused in 
concurrent systems, and how to effectively prevent them. In the next section, we will 
provide an overarching view of how race conditions can occur in real-life examples, 
within the various subfields of computer science.

Race conditions in real life
In particular, we will discuss the topics of security, file management, and networking. Race 
conditions don't simply exist in simple, minimal code examples about global counters. They 
are present in many important tasks such as security, file management, and networking.  
In this section, we will briefly discuss what some of these examples might look like from  
a theoretical perspective.

Security
Concurrent programming can have significant implications in terms of the security of 
the system in question. Recall that a race condition arises between the process of reading 
and altering the data of a resource; a race condition in an authenticating system can cause 
the corruption of data between the time of check (when the credentials of an agent are 
checked) and the time of use (when the agent can utilize the resource). This problem 
is also known as a Time-Of-Check-To-Time-Of-Use (TOCTTOU) bug, which is 
undoubtedly detrimental to security systems.

The careless protection of shared resources when handling race conditions, as we briefly 
touched upon in the last section, can provide external agents with access to those 
supposedly protected resources. Those agents can then change the data of the resources 
to create privilege escalation (simply put, to give themselves illegal access to more shared 
resources), or they can simply corrupt the data, causing the whole system to malfunction.
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Interestingly, race conditions can also be used to implement computer security. As race 
conditions result from the uncoordinated access of multiple threads/processes to a shared 
resource, the specification in which a race condition occurs is significantly random. For 
example, in our Python example, you learned that, when simulating a race condition, 
the final value of the counter varies between different executions of the program; this is 
(partly) because of the unpredictable nature of the situation in which multiple threads are 
running and accessing the shared resources. (I say partly since the randomness also results 
from the random pausing periods that we generate in each execution of the program.) 
So, race conditions are sometimes intentionally provoked, and the information obtained 
when the race condition occurs can be used to generate digital fingerprints for security 
processes—again, this information is significantly random and is, therefore, valuable for 
security purposes.

Operating systems
Race conditions can occur in the context of file and memory management in an operating 
system, when two separate programs attempt to access the same resource, such as memory 
space. Imagine a situation where two processes from different programs have been 
running for a significant amount of time, and even though they were originally initialized 
apart from each other in terms of memory space, enough data has been accumulated and 
the stack of execution of one process now collides with that of the other process. This can 
lead to the two processes sharing the same portion of memory space and, ultimately, can 
result in unpredictable consequences.

Another aspect of the complexity of race conditions is illustrated by version 7 of Unix's 
operating system — specifically, in the mkdir command. Typically, the mkdir command 
is used to create a new directory in the Unix operating system; this is done by calling the 
mknod command to create the actual directory and the chown command to specify the 
owner of that directory. Because there are two separate commands to be run and a definite 
gap exists between when the first command is finished and the second is called, this can 
cause a race condition.

During the gap between the two commands, if someone deletes the new directory 
created by the mknod command and links the reference to another file, when the chown 
command is run, the ownership of that file will change. The following diagram further 
illustrates this exploitation:
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Figure 14.4 – The mkdir race condition

By exploiting this vulnerability, someone can, theoretically, change the ownership of any 
file in an operating system so that someone can create a new directory.

Networking
In networking, race conditions can take the form of giving multiple users unique 
privileges in a network. Specifically, let's say a given server should only have exactly one 
user with admin privileges. If two users, who are both eligible to become the server admin, 
request access to those privileges at the same time, then it is possible for both of them to 
gain that access. This is because, at the point when both of the user requests are received 
by the server, neither of the users have been granted admin privileges yet, and the server 
thinks that admin privileges can still be given out.

This form of a race condition is quite common when a network is highly optimized for 
parallel processing (for example, non-blocking sockets), without any careful consideration 
of the resources shared across the network. 

Overall, race conditions can manifest themselves in many important tasks in computer 
science and engineering, such as security, operating systems, and as we just saw, 
networking. This requires the concurrency engineer to be extra vigilant about the 
correctness of their programs.

Summary
A race condition occurs when two or more threads/processes access and alter a shared 
resource simultaneously, resulting in mishandled and corrupted data. Race conditions also 
have significant implications in real-life applications, such as security, operating systems, 
and networking.
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In this chapter, we learned how to isolate the execution of different threads/processes to 
tackle many forms of race conditions. We have examined how to use locks to turn a shared 
resource into a critical section to protect the integrity of its data. Additionally, we have 
discussed a number of practical disadvantages when it comes to using locks.

In the next chapter, we will consider one of the biggest problems in Python concurrent 
programming: the infamous Global Interpreter Lock (GIL). You will learn about the 
basic idea behind the GIL, its purposes, and how to effectively work with it in concurrent 
Python applications.

Questions
1. What is a critical section?
2. What is a race condition, and why is it undesirable in a concurrent program?
3. What is the underlying cause of a race condition?
4. How can locks solve the problem of race conditions?

5. Why are locks sometimes undesirable in a concurrent program?
6. What is the significance of race conditions in real-life systems and applications?

Further reading
For more information, please refer to the following resources:

• Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd, 2014.

• Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing 
Ltd, 2015.

• Race Conditions and Critical Sections (tutorials.jenkov.com/java-
concurrency/race-conditions-and-critical-sections),  
by Jakob Jenkov.

• Race conditions, files, and security flaws; or the tortoise and the hare redux, by Matt 
Bishop, Technical Report CSE-95-98 (1995).

• Computer and Information Security, Chapter 11, Software Flaws and Malware 1 
Illustration (slideplayer.com/slide/10319860/).
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The Global 

Interpreter Lock
One of the major players in Python concurrent programming is the Global Interpreter 
Lock (GIL). In this chapter, we will cover a definition and the purposes of the GIL and 
how it affects concurrent Python applications. The problems that the GIL poses for Python 
concurrent systems and the controversy around its implementation will also be discussed. 
Finally, we will mention some thoughts on how Python programmers and developers 
should think about, and interact with, the GIL.

The following topics will be covered in this chapter:

• Introducing the GIL

• The potential removal of the GIL from Python

• Working with the GIL

While our discussions in this chapter will mostly be theoretical, we will be able to gain  
a deep insight into the ecosystem of concurrent programming in Python.
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Technical requirements
The code for this chapter can be found in the following GitHub repository: 

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter15

Introducing the GIL
The GIL is quite popular in the Python concurrent programming community. Designed 
as a lock that will only allow one thread to access and control the Python interpreter 
at any given time, the GIL in Python is often known as the infamous GIL that prevents 
multithreaded programs from reaching their fully optimized speed. 

In this section, we will discuss the concept behind the GIL, as well as its purpose: why it 
was designed and implemented and how it affects multithreaded programming in Python.

Analyzing memory management in Python
Before we jump into the specifics of the GIL and its effects, let's consider the problems 
that Python core developers encountered during the early days of Python that gave 
rise to a need for the GIL. Specifically, there is a significant difference between Python 
programming and programming in other popular languages, in terms of managing  
objects in the memory space.

For example, in the programming language C++, a variable is actually a location in 
the memory space where a value will be written. This setup leads to the fact that, when 
a non-pointer variable is assigned with a specific value, the programming language 
will effectively copy that specific value to the memory location (that is, the variable). 
Additionally, when a variable is assigned with another variable (that is not a pointer), the 
memory location of the latter will be copied to that of the former; no further connection 
between these two variables will be maintained after the assignment.

On the other hand, Python considers a variable as simply a name, while the actual values 
of its variables are isolated in another region in the memory space. When a value is 
assigned to a variable, the variable is effectively given a reference to the location in the 
memory space of the value (even though the term referencing is not used in the same 
sense as C++ referencing). Memory management in Python is, therefore, fundamentally 
different from the model of putting a value into a memory space that we see in C++.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter15
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter15
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This means that when an assignment instruction is executed, Python simply interacts  
with references and switches them around—not the actual values themselves. Also, for this 
reason, multiple variables can be referenced by the same value, and the changes made by 
one variable will be reflected throughout all of the other associated variables.

Let's analyze this feature in Python. If you have already downloaded the code for this book 
from the GitHub page, go ahead and navigate to the Chapter15 folder. Let's take a look 
at the Chapter15/example1.py file here:

import sys

print(f'Reference count when direct-referencing:  \

  {sys.getrefcount([7])}.')

a = [7]

print(f'Reference count when referenced once:  \

  {sys.getrefcount(a)}.')

b = a

print(f'Reference count when referenced twice:  \

  {sys.getrefcount(a)}.')

###########################################################

a[0] = 8

print(f'Variable a after a is changed: {a}.')

print(f'Variable b after a is changed: {b}.')

print('Finished.')

In this example, we are looking at the management of the value [7] (a list of one  
element: the integer 7). We mentioned that values in Python are stored independently of 
variables, and value management in Python simply references variables to the appropriate 
values. The sys.getrefcount() method in Python takes in an object and returns  
the counter of all references that the value associated with that object has. Here, we are 
calling sys.getrefcount() three times: on the actual value, [7]; the variable a that  
is assigned the value; and finally, the variable b that is assigned with the variable a.
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Additionally, we are exploring the process of mutating the value by using a variable 
referenced with it and the resulting values of all of the variables associated with that value. 
Specifically, we are mutating the first element of the list via variable a, and printing out  
the values of both a and b. Run the script, and your output should be similar to this:

> python3 example1.py

Reference count when direct-referencing: 1.

Reference count when referenced once: 2.

Reference count when referenced twice: 3.

Variable a after a is changed: [8].

Variable b after a is changed: [8].

Finished.

As you can see, this output is consistent with what we discussed as the following ways:

1. For the first sys.getrefcount() function call, there is only one reference count 
for the value [7], which is created when we directly reference it.

2. When we assign the list to variable a, the value has two references, since a is now 
associated with the value.

3. Finally, when a is assigned to b, [7] is additionally referenced by b, and the 
reference count is now 3.

4. In the output of the second part of the program, we can see that when we changed 
the value of the variable that a references, [7] was mutated instead of variable a.  
As a result, variable b, which was referencing the same value as a, also had its  
value changed.

The following diagram illustrates this process: 

Figure 15.1 – Diagram of Python's referencing scheme
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Overall, in Python programs, variables simply make references to the actual values 
(objects), and an assignment statement between two variables makes the two variables 
reference the same object, as opposed to copying the actual value to another memory 
location, as in C++.

The problem that the GIL addresses
Keeping Python's implementation of memory and variable management in mind,  
we can see references to a given value in Python are constantly changing in a program, 
and keeping track of the reference count for a value is therefore highly important.

Now, applying what you learned in Chapter 14, Race Conditions, you should know that 
in a Python concurrent program, this reference count is a shared resource that needs 
protection from race conditions. In other words, this reference count is a critical section 
that, if handled carelessly, will result in an incorrect interpretation of how many variables 
are referencing a particular value. This will cause memory leaks that will make Python 
programs significantly inefficient and may even release a memory that is actually being 
referenced by some variables, losing that value forever.

As you learned in the previous chapter, a solution to making sure that race conditions will 
not occur with regard to a particular shared resource is to place a lock on that resource, 
effectively allowing one thread, at the most, to access the resource at any given time within 
a concurrent program. We also discussed that if enough locks are placed in a concurrent 
program, that program will become entirely sequential, and no additional speed will be 
gained by implementing concurrency.

The GIL is a solution to the combination of the two preceding problems, being one single 
lock on the entire execution of Python. The GIL must first be acquired by any Python 
instruction that wants to be executed (central processing unit (CPU)-bound tasks), 
preventing a race condition from occurring for any reference count.

In the early days of the development of the Python language, other solutions to the problem 
described here were also proposed, but the GIL was the most efficient and simple to 
implement, by far. Since the GIL is a lightweight, overarching lock for the entire execution 
of Python, no other lock needs to be implemented to guarantee the integrity of other 
critical sections, keeping the performance overhead of Python programs at a minimum.
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Problems raised by the GIL
Intuitively, with a lock guarding all CPU-bound tasks in Python, a concurrent program 
will not be able to become fully multithreading. The GIL effectively prevents CPU-bound 
tasks from being executed in parallel across multiple threads. To understand the effect of 
this feature of the GIL, let's consider an example in Python. Navigate to Chapter15/
example2.py, which has the following content:

import time

import threading

COUNT = 50000000

def countdown(n):

    while n > 0:

        n -= 1

###########################################################

start = time.time()

countdown(COUNT)

print('Sequential program finished.')

print(f'Took {time.time() - start : .2f} seconds.')

###########################################################

thread1 = threading.Thread(target=countdown, args=(  \

  COUNT // 2,))

thread2 = threading.Thread(target=countdown, args=(  \

  COUNT // 2,))

start = time.time()

thread1.start()

thread2.start()

thread1.join()
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thread2.join()

print('Concurrent program finished.')

print(f'Took {time.time() - start : .2f} seconds.')

In this example, we are comparing the speed of executing a particular program in Python 
sequentially and concurrently, via multithreading. Specifically, we have a function named 
countdown() that simulates a heavy CPU-bound task, which takes in a number, n, 
and decrements it until it becomes zero or negative. We then call countdown() on 
50,000,000 once, as a sequential program. Finally, we call the function twice, each in 
a separate thread, on 25,000,000, which is exactly half of 50,000,000; this is the 
multithreading version of the program. We are also keeping track of the time it takes for 
Python to run both the sequential program and the multithreading program.

Theoretically, the multithreading version of the program should take half as long as the 
sequential version, as the task is effectively being split in half and run in parallel, via the 
two threads that we created. However, the output produced by the program would suggest 
otherwise. The following output is what I obtained through running the script:

> python3 example2.py

Sequential program finished.

Took 2.80 seconds.

Concurrent program finished.

Took 2.74 seconds.

Contrary to what we predicted, the concurrent version of the countdown took almost 
as long as the sequential version; multithreading did not offer any considerable speedup 
for our program. This is a direct effect of having the GIL guarding CPU-bound tasks, 
as multiple threads are not allowed to run simultaneously. Sometimes, a multithreading 
program can take even longer to complete its execution than its sequential counterpart, 
since there is also the overhead of acquiring and releasing the GIL.

This is undoubtedly a significant problem for multithreading, and for concurrent 
programming in Python in general, because as long as a program contains CPU-bound 
instructions, those instructions will, in fact, be sequential in the execution of the program. 
However, instructions that are not CPU-bound happen outside the GIL, and thus they are 
not affected by the GIL (for example, input/output (I/O)-bound instructions).

With these problems identified, let's next see what the infamous GIL is.
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The potential removal of the GIL from Python
You have learned that the GIL sets a significant constraint on our multithreading 
programs in Python, especially those with CPU-bound tasks. For this reason, many 
Python developers have come to view the GIL in a negative light, and the term the 
infamous GIL has started to become popular. It is not surprising, then, that some have  
even advocated the complete removal of the GIL from the Python language.

In fact, multiple attempts to remove the GIL have been made by prominent Python users. 
However, the GIL is so deeply implanted in the implementation of the language, and 
the execution of most libraries and packages that are not thread-safe is so significantly 
dependent on the GIL, that the removal of the GIL will actually engender bugs as well 
as backward-incompatibility issues for your Python programs. A number of Python 
developers and researchers tried to completely omit the GIL from Python execution, 
and most existing C extensions, which depend heavily on the functionalities of the GIL, 
stopped working.

Now, there are other viable solutions to address the problems that we have discussed; in 
other words, the GIL is in every way replaceable. However, most of these solutions contain 
so many complex instructions that they actually decrease the performance of sequential and 
I/O-bound programs, which are not affected by the GIL. So, these solutions will slow down 
single-threaded or multithreaded I/O programs, which actually make up a large percentage 
of existing Python applications. Interestingly, the creator of Python, Guido van Rossum, also 
commented on this topic in his article It isn't Easy to Remove the GIL, as follows:

"I'd welcome a set of patches into Py3k only if the performance for a  
single-threaded program (and for a multi-threaded but I/O-bound 

program) does not decrease."
Unfortunately, this request has not been achieved by any of the proposed alternatives to 
the GIL. The GIL remains an integral part of the Python language.

With this covered, let's now see how to work with the GIL.

Working with the GIL
There are a few ways to deal with the GIL in your Python applications, and these will be 
addressed in the following sections.
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Implementing multiprocessing, rather than 
multithreading 
This is perhaps the most popular and easiest method to circumvent the GIL and achieve 
optimal speed in a concurrent program. As the GIL only prevents multiple threads from 
executing CPU-bound tasks simultaneously, processes executing over multiple cores of  
a system, each having its own memory space, are completely immune to the GIL.

Specifically, considering the preceding countdown example, let's compare the performance 
of that CPU-bound program when it is sequential, multithreading, and multiprocessing. 
Navigate to the Chapter15/example3.py file. The first part of the program is identical 
to what we saw earlier, but at the end, we add in an implementation of a multiprocessing 
solution for the problem of counting down from 50,000,000, using two separate processes, 
as follows:

COUNT = 50000000

def countdown(n):

    while n > 0:

        n -= 1

if __name__ == '__main__':

    #######################################################

    # Sequential

    start = time.time()

    countdown(COUNT)

    #######################################################

    # Multithreading

    thread1 = threading.Thread(target=countdown,  \

      args=(COUNT // 2,))

    thread2 = threading.Thread(target=countdown,  \

      args=(COUNT // 2,))
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    start = time.time()

    thread1.start()

    thread2.start()

    thread1.join()

    thread2.join()

    #######################################################

    # Multiprocessing

    pool = Pool(processes=2)

    start = time.time()

    pool.apply_async(countdown, args=(COUNT//2,))

    pool.apply_async(countdown, args=(COUNT//2,))

    pool.close()

    pool.join()

After running the program, this was my output:

> python3 example3.py

Sequential program finished.

Took 2.95 seconds.

Multithreading program finished.

Took 2.69 seconds.

Multiprocessing program finished.

Took 1.54 seconds.

There is still a minimal difference in speed between the sequential and multithreading 
versions of the program. However, the multiprocessing version was able to cut that 
speed by almost half in its execution. As discussed in earlier chapters, since processes 
are fairly heavyweight, multiprocessing instructions contain significant overhead, which 
is the reason why the speed of the multiprocessing program was not exactly half of the 
sequential program.
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Getting around the GIL with native extensions
There are Python-native extensions that are written in C/C++ and are therefore able 
to avoid the limitations that the GIL sets out; one example is the most popular Python 
scientific computing package, NumPy. Within these extensions, manual releases of the 
GIL can be made so that the execution can simply bypass the lock. However, these releases 
need to be implemented carefully and accompanied by the reassertion of the GIL before 
the execution goes back to the main Python execution.

Utilizing a different Python interpreter
The GIL only exists in CPython, which is the most common interpreter for the language 
by far and is built in C. However, there are other interpreters for Python, such as Jython 
(written in Java) and IronPython (written in C++), that can be used to avoid the GIL and 
its effects on multithreading programs. Keep in mind that these interpreters are not as 
widely used as CPython, and some packages and libraries might not be compatible with 
one or both of what? please clarify.

Summary
While the GIL in Python offers a simple and intuitive solution to one of the more difficult 
problems in the language, it also raises a number of problems of its own, concerning the 
ability to run multiple threads in a Python program to process CPU-bound tasks. Multiple 
attempts have been made to remove the GIL from the main implementation of Python, 
but none has been able to achieve it while maintaining the effectiveness of processing 
non-CPU-bound tasks, which are affected by the GIL.

Overall, we have discussed practical methods that make working with the GIL easier. 
We have also learned that while it possesses considerable notoriety among the Python 
community, the GIL only affects a certain portion of the ecosystem. This should better 
inform our opinion about the GIL.

In the last four chapters, we discussed some of the most well-known and common 
problems in concurrent programming in Python. For the remainder of the book, we will 
be looking at a different topic—advanced design patterns in Python. In the next chapter, 
we will start with the factory pattern.
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Questions
1. What are the differences in memory management between Python and C++?
2. Which problem does the GIL solve for Python?
3. Which problem does the GIL create for Python?
4. What are some of the approaches to circumventing the GIL in Python programs?

Further reading
For more information, you can refer to the following sources:

• What Is the Python Global Interpreter Lock (GIL)? (realpython.com/python-
gil/), Abhinav Ajitsaria

• The Python GIL Visualized (dabeaz.blogspot.com/2010/01/python-gil-
visualized), Dave Beazley

• Copy Operations in Python (pythontic.com/modules/copy/
introduction)

• It isn't Easy to Remove the GIL (www.artima.com/weblogs/viewpost.
jsp?thread=214235), Guido van Rossum

• Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd (2014)

• Learning Concurrency in Python: Build highly efficient, robust, and concurrent 
applications, Elliot Forbes (2017)

https://realpython.com/python-gil/
http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html
http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html
https://pythontic.com/modules/copy/introduction
https://pythontic.com/modules/copy/introduction
https://www.artima.com/weblogs/viewpost.jsp?thread=214235


Section 3:  
Design Patterns  

in Python

Design patterns offer specialized design solutions to various software engineering  
problems, making software resilient, scalable, and robust. The chapters in Section 3 iterate 
through a wide-ranging collection of design patterns, preparing you for most  
software engineering use cases in the real world.

This section contains the following chapters:

• Chapter 16, The Factory Pattern
• Chapter 17, The Builder Pattern
• Chapter 18, Other Creational Patterns
• Chapter 19, The Adapter Pattern
• Chapter 20, The Decorator Pattern
• Chapter 21, The Bridge Pattern
• Chapter 22, The Façade Pattern
• Chapter 23, Other Structural Patterns
• Chapter 24, The Chain of Responsibility Pattern
• Chapter 25, The Command Pattern
• Chapter 26, The Observer Pattern
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The Factory Pattern

Design patterns are reusable programming solutions that have been used in various  
real-world contexts and have proved to produce the expected results. In this chapter, we will 
learn about one of the most common design patterns: the factory design pattern. As we will 
see later, this pattern makes it easier to track which objects are created within a program, 
thus separating the code that creates an object from the code that uses it. We will study the 
factory design pattern's two forms: the factory method and the abstract method.

In this chapter, we will cover the following topics:

• Understanding design patterns

• Implementing the factory method

• Applying the abstract factory

By the end of this chapter, we will have gained a deep understanding of the factory design 
pattern and its benefits via a hands-on example.

Technical requirements
The code files for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter16.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter16
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter16
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Understanding design patterns
Design patterns are shared among programmers and continue to be improved over time. 
This topic is popular thanks to the book by Erich Gamma, Richard Helm, Ralph Johnson, 
and John Vlissides, titled Design Patterns: Elements of Reusable Object-Oriented Software.

Gang of Four
The book by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides 
is also called the Gang of Four book for short (or the GOF book for an even 
shorter name).

Generally, a design pattern helps the programmer create a commonly used 
implementation pattern, especially in object-oriented programming (OOP). The benefits 
of viewing applications from the design pattern's perspective are plenty. First, it narrows 
down the most effective ways of building a given application and the necessary steps to do 
it. Second, you could consult existing examples of the same design pattern to improve your 
application. Overall, design patterns are highly useful guidelines in software engineering.

There are several categories of design patterns that are used in OOP, depending on the 
type of problem they address and/or the types of solutions they help us build. In their 
book, the Gang of Four presents 23 design patterns, split into three categories: creational, 
structural, and behavioral.

Creational design patterns are the first category we will cover in this chapter; Chapter 
17, The Builder Pattern, and Chapter 18, Other Creational Patterns, will cover the latter. 
These patterns deal with different aspects of object creation. Their goal is to provide better 
alternatives for situations where direct object creation, which in Python happens within 
the __init__() function, is not convenient.

Important Note
See https://docs.python.org/3/tutorial/classes.html 
for a quick overview of object classes and the special __init__() method 
that Python uses to initialize a new class instance.

We will start with the first creational design pattern from the Gang of Four book: the 
factory design pattern. In the factory design pattern, a client (meaning client code) asks 
for an object without knowing where the object is coming from (that is, which class is 
used to generate it). The idea behind a factory is to simplify the object creation process. 
It is easier to track which objects are created if this is done through a central function, 
compared to letting a client create objects using a direct class instantiation. A factory 
reduces the complexity of maintaining an application by decoupling the code that creates 
an object from the code that uses it.

https://docs.python.org/3/tutorial/classes.html
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Factories typically come in two forms: the factory method, which is a method (or simply 
a function for a Python developer) that returns a different object per input parameter, and 
the abstract factory, which is a group of factory methods that are used to create a family 
of related objects.

That is all the theory we need to get started. In the next section, we will discuss the  
factory method.

Implementing the factory method
The factory method is based on a single function that's written to handle our object 
creation task. We execute it, passing a parameter that provides information about what  
we want. As a result, the object we wanted is created.

Interestingly, when we use the factory method, we don't need to know any details about 
how the resulting object is implemented and where it is coming from. First, we will discuss 
some real-life applications that use the factory method and then implement an example 
application that processes XML and JSON files.

Real-world examples 
An example of the factory method pattern that's used in real life is in the context of a 
plastic toy construction kit. The molding material that's used to construct plastic toys is 
the same, but different toys (different figures or shapes) can be produced using the right 
plastic molds. This is like having a factory method in which the input is the name of the 
toy that we want (for example, duck or car) and the output (after the molding) is the 
plastic toy that was requested.

In the software world, the Django web framework uses the factory method pattern to 
create the fields of a web form. The forms module, which is included in Django, supports 
the ability to create different kinds of fields (for example, CharField, EmailField, and 
so on). Parts of their behavior can be customized using attributes such as max_length or 
required (j.mp/djangofac).

Consider the following example:

from django import forms

class PersonForm(forms.Form):

    name = forms.CharField(max_length=100)

    birth_date = forms.DateField(required=False)

http://j.mp/djangofac
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The preceding code could be written by a developer for a form (the PersonForm form, 
which contains the name and birth_date fields) as part of a Django application's  
UI code.

Use cases
If you realize that you cannot track the objects that are created by your application because 
the code that creates them is in many different places instead of in a single function/
method, you should consider using the factory method pattern. The factory method 
centralizes object creation and tracking your objects becomes much easier. Note that it 
is absolutely fine to create more than one factory method, and this is how it is typically 
done in practice. Each factory method logically groups objects that have similarities. 
For example, one factory method might be responsible for connecting you to different 
databases (MySQL and SQLite), another factory method might be responsible for creating 
the geometrical object that you've requested (circle and triangle), and so on.

The factory method is also useful when you want to decouple object creation from object 
usage. We are not coupled/bound to a specific class when creating an object; we just 
provide partial information about what we want by calling a function. This means that 
introducing changes to the function is easy and does not require any changes to be made 
to the code that uses it.

Another use case worth mentioning is related to improving the performance and memory 
usage of an application. A factory method can improve performance and memory usage 
by creating new objects only if it is necessary. When we create objects using a direct class 
instantiation, extra memory is allocated every time a new object is created (unless the  
class uses caching internally, which is usually not the case). We can see that, in practice, 
in the following code (in the id.py file), it creates two instances of the same class, A, and 
uses the id() function to compare their memory addresses. These addresses are also 
printed in the output so that we can inspect them. The fact that the memory addresses  
are different means that two distinct objects are created, as follows:

class A:

    pass

if __name__ == '__main__':

    a = A()

    b = A()    

    print(id(a) == id(b))

    print(a, b)
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Executing the python id.py command on my computer results in the following output:

False

<__main__.A object at 0x7f5771de8f60> <__main__.A object at 

0x7f5771df2208>

Note that the addresses that you see if you execute the file are not the same as the ones 
I can see because they depend on the current memory layout and allocation. But the 
result must be the same: the two addresses should be different. There's one exception that 
happens if you write and execute the code in the Python Read-Eval-Print Loop (REPL) 
– or, simply put, the interactive prompt – but that's a REPL-specific optimization that does 
not happen normally.

Implementing the factory method
Data comes in many forms. There are two main file categories for storing/retrieving data: 
human-readable files and binary files. Examples of human-readable files include XML, 
RSS/Atom, YAML, and JSON. Examples of binary files include the .sq3 file format that's 
used by SQLite and the .mp3 audio file format, which is used to listen to music.

In this example, we will focus on two popular human-readable formats: XML and JSON. 
Although human-readable files are generally slower to parse than binary files, they make 
data exchange, inspection, and modification much easier. For this reason, it is advised 
that you work with human-readable files unless other restrictions do not allow it (mainly 
unacceptable performance and proprietary binary formats).

In this case, we have some input data stored in an XML file and a JSON file, and we want 
to parse them and retrieve some information. At the same time, we want to centralize 
the client's connection to those (and all future) external services. We will use the factory 
method to solve this problem. This example focuses only on XML and JSON but adding 
support for more services should be straightforward.

First, let's take a look at the data files.

The JSON file, movies.json, which can be found in the data subfolder of this chapter's 
code folder, is an example of a dataset containing information about American movies 
(title, year, director name, genre, and so on). This is a big file but here is a portion of its 
content to illustrate how its content is organized:

[

 {"title":"After Dark in Central Park",

  "year":1900, 

  "director":null, "cast":null, "genre":null},



412     The Factory Pattern

 {"title":"Boarding School Girls' Pajama Parade",

  "year":1900, 

  "director":null, "cast":null, "genre":null},

 {"title":"Buffalo Bill's Wild West Parad",

  "year":1900, 

  "director":null, "cast":null, "genre":null},

 {"title":"Caught",

  "year":1900, 

  "director":null, "cast":null, "genre":null},

 {"title":"Clowns Spinning Hats",

  "year":1900, 

  "director":null, "cast":null, "genre":null},

 ...

  ]

The XML file, person.xml, is based on a Wikipedia example (j.mp/wikijson) and 
contains information about individuals (firstName, lastName, gender, and so on),  
as follows:

1. We start with the enclosing tag of the persons XML container:

<persons> 

2. Then, an XML element representing a person's data code is presented, as follows:

<person> 

  <firstName>John</firstName> 

  <lastName>Smith</lastName> 

  <age>25</age> 

  <address> 

    <streetAddress>21 2nd Street</streetAddress> 

    <city>New York</city> 

    <state>NY</state> 

    <postalCode>10021</postalCode> 

  </address> 

  <phoneNumbers> 

    <phoneNumber type="home">

      212 555-1234</phoneNumber> 

    <phoneNumber type="fax">646 555-4567</phoneNumber> 

http://j.mp/wikijson
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  </phoneNumbers> 

  <gender> 

    <type>male</type> 

  </gender> 

</person> 

3. An XML element representing another person's data must then be provided:

<person> 

  <firstName>Jimy</firstName> 

  <lastName>Liar</lastName> 

  <age>19</age> 

  <address> 

    <streetAddress>18 2nd Street</streetAddress> 

    <city>New York</city> 

    <state>NY</state> 

    <postalCode>10021</postalCode> 

  </address> 

  <phoneNumbers> 

  <phoneNumber type="home">212 555-1234</phoneNumber> 

  </phoneNumbers> 

  <gender> 

    <type>male</type> 

  </gender> 

</person> 

4. An XML element representing a third person's data is then shown:

<person> 

  <firstName>Patty</firstName> 

  <lastName>Liar</lastName> 

  <age>20</age> 

  <address> 

    <streetAddress>18 2nd Street</streetAddress> 

    <city>New York</city> 

    <state>NY</state> 

    <postalCode>10021</postalCode> 

  </address> 
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  <phoneNumbers> 

    <phoneNumber type="home">

      212 555-1234</phoneNumber> 

    <phoneNumber type="mobile">

      001 452-8819</phoneNumber> 

  </phoneNumbers> 

  <gender> 

    <type>female</type> 

  </gender> 

</person> 

5. Finally, we must close the XML container:

</persons>

6. We will use two libraries that are part of the Python distribution for working with 
JSON and XML, json and xml.etree.ElementTree, as follows:

import json

import xml.etree.ElementTree as etree

7. The JSONDataExtractor class parses the JSON file and has a parsed_data() 
method that returns all the data as a dictionary (dict). The property decorator is 
used to make parsed_data() appear as a normal attribute instead of a method, 
as follows:

class JSONDataExtractor:

  def __init__(self, filepath):

    self.data = dict()

    with open(filepath, mode='r', encoding='utf-8') as 

    f:self.data = json.load(f)

    @property

    def parsed_data(self):

        return self.data

8. The XMLDataExtractor class parses the XML file and has a parsed_data() 
method that returns all the data as a list of xml.etree.Element, as follows:

class XMLDataExtractor:

  def __init__(self, filepath):

    self.tree =  etree.parse(filepath)
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  @property

  def parsed_data(self):

  return self.tree

9. The dataextraction_factory() function is a factory method. It returns an 
instance of JSONDataExtractor or XMLDataExtractor, depending on the 
extension of the input file path, as follows:

def dataextraction_factory(filepath):

    if filepath.endswith('json'):

        extractor = JSONDataExtractor

    elif filepath.endswith('xml'):

        extractor = XMLDataExtractor

    else:

        raise ValueError('Cannot extract data from 

          {}'.format(filepath))

    return extractor(filepath)

10. The extract_data_from() function is a wrapper of dataextraction_
factory(). It adds exception handling, as follows:

def extract_data_from(filepath):

    factory_obj = None

    try:

        factory_obj = dataextraction_factory(filepath)

    except ValueError as e:

        print(e)

    return factory_obj

11. The main() function demonstrates how the factory method design pattern can be 
used. The first part makes sure that exception handling is effective, as follows:

def main():

    sqlite_factory = 

      extract_data_from('data/person.sq3')

    print()
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12. The next part shows how to work with the JSON files using the factory method. 
Based on the parsing, the title, year, director name, and genre of the movie can be 
shown (when the value is not empty), as follows:

json_factory = extract_data_from('data/movies.json')

json_data = json_factory.parsed_data

print(f'Found: {len(json_data)} movies')

for movie in json_data:

  print(f"Title: {movie['title']}")

  year = movie['year']

  if year:

  print(f"Year: {year}")

  director = movie['director']

  if director:

  print(f"Director: {director}")

  genre = movie['genre']

  if genre:

  print(f"Genre: {genre}")

  print()

13. The final part shows you how to work with the XML files using the factory method. 
XPath is used to find all the person elements that have Liar as the last name (using 
liars = xml_data.findall(f".//person[lastName='Liar']")). 
For each matched person, their basic name and phone number information is 
shown, as follows:

xml_factory = extract_data_from('data/person.xml')

xml_data = xml_factory.parsed_data

liars = 

  xml_data.findall(f".//person[lastName='Liar']")

print(f'found: {len(liars)} persons')

for liar in liars:

    firstname = liar.find('firstName').text

    print(f'first name: {firstname}')

    lastname = liar.find('lastName').text

    print(f'last name: {lastname}')

    [print(f"phone number ({p.attrib['type']}):", 

      p.text) 
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    for p in liar.find('phoneNumbers')]

    print()

Here is the summary of the implementation (you can find the code in the factory_
method.py file):

1. We start by importing the modules we need (json and ElementTree).
2. We define the JSON data extractor class (JSONDataExtractor).
3. We define the XML data extractor class (XMLDataExtractor).
4. We add the factory function, dataextraction_factory(), to get the right 

data extractor class.
5. We also add our wrapper for handling exceptions – the extract_data_from() 

function.
6. Finally, we have the main() function, followed by Python's conventional trick for 

calling it when invoking this file from the command line. The following are the 
aspects of the main function:

 � We try to extract data from a SQL file (data/person.sq3) to show how the 
exception is handled.

 � We extract data from a JSON file and parse the result.

 � We extract data from an XML file and parse the result.

The following is the type of output (for the different cases) you will get by calling the 
python factory_method.py command.

First, there is an exception message that you'll see when you try to access a SQLite  
(.sq3) file:

Cannot extract data from data/person.sq3

Then, we get the following result from processing the movies file (JSON):

Found: 9 movies

Title: After Dark in Central Park

Year: 1900

Title: Boarding School Girls' Pajama Parade

Year: 1900
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Title: Buffalo Bill's Wild West Parad

Year: 1900

Title: Caught

Year: 1900

Title: Clowns Spinning Hats

Year: 1900

Title: Capture of Boer Battery by British

Year: 1900

Director: James H. White

Genre: Short documentary

Title: The Enchanted Drawing

Year: 1900

Director: J. Stuart Blackton

Title: Family Troubles

Year: 1900

Title: Feeding Sea Lions

Year: 1900

Finally, we get this result from processing the person XML file to find the people whose 
last name is Liar:

found: 2 persons

first name: Jimy

last name: Liar

phone number (home): 212 555-1234

first name: Patty

last name: Liar

phone number (home): 212 555-1234

phone number (mobile): 001 452-8819
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Notice that although JSONDataExtractor and XMLDataExtractor have the same 
interfaces, what is returned by parsed_data() is not handled uniformly. Different 
Python code must be used to work with each data extractor. Although it would be nice to 
be able to use the same code for all extractors, this is not realistic for the most part, unless 
we use some kind of common mapping for the data, which is often provided by external 
data providers. A useful exercise would be to assume that you can use the same code to 
handle the XML and JSON files and see what changes are required to support a third 
format, such as SQLite. Find a SQLite file or create your own and try it.

At this point, we have learned about the factory method, which, again, is the first form of 
the factory design pattern. In the next section, we will talk about the second: the abstract 
factory design pattern.

Applying the abstract factory
The abstract factory design pattern is a generalization of the factory method. An abstract 
factory is a (logical) group of factory methods, where each factory method is responsible 
for generating a different kind of object.

In this section, we are going to discuss some examples, use cases, and a possible 
implementation of this pattern.

Real-world examples
The abstract factory is used in car manufacturing. The same machinery is used for stamping 
the parts (doors, panels, hoods, fenders, and mirrors) of different car models. The model 
that is assembled by the machinery is configurable and easy to change at any time.

In the software category, the factory_boy (https://github.com/FactoryBoy/
factory_boy) package provides an abstract factory implementation for creating 
Django models in tests. It is used to create instances of models that support test-specific 
attributes. This is important because, this way, your tests become readable, and you avoid 
sharing unnecessary code.

Important Note
Django models are special classes that are used by the framework to help store 
and interact with data in the database (tables). See the Django documentation 
(https://docs.djangoproject.com) for more details.

https://github.com/FactoryBoy/factory_boy
https://github.com/FactoryBoy/factory_boy
https://docs.djangoproject.com
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Use cases
Since the abstract factory pattern is a generalization of the factory method pattern, it  
offers the same benefits, it makes tracking an object creation easier, it decouples object 
creation from object usage, and it gives us the potential to improve the memory usage  
and performance of our application.

But a question is raised: How do we know when to use the factory method versus using an 
abstract factory? The answer is that we usually start with the factory method, which is 
simpler. If we find out that our application requires many factory methods, which it  
makes sense to combine to create a family of objects, we end up with an abstract factory.

A benefit of the abstract factory that is usually not very visible from a user's point of 
view when they're using the factory method is that we can modify the behavior of our 
application dynamically (at runtime) by changing the active factory method. The classic 
example is the ability to change the look and feel of an application (for example, Apple-like, 
Windows-like, and so on) for the user while the application is in use, without the need to 
terminate it and start it again.

Implementing the abstract factory pattern
To demonstrate the abstract factory pattern, I will reuse one of my favorite examples, 
which is included in the book Python 3 Patterns, Recipes, and Idioms, by Bruce Eckel. 
Imagine that we are creating a game, or we want to include a mini-game as part of 
our application to entertain our users. We want to include at least two games – one for 
children and one for adults. We will decide which game to create and launch at runtime, 
based on user input. An abstract factory takes care of the game creation part.

Let's start with the kid's game. It is called FrogWorld. The main hero is a frog who enjoys 
eating bugs. Every hero needs a good name, and in our case, the name is given by the user 
at runtime. The interact_with() method is used to describe how the frog interacts 
with an obstacle (for example, a bug, a puzzle, and other frogs), as follows:

class Frog:

    def __init__(self, name):

        self.name = name

    def __str__(self):

        return self.name

    def interact_with(self, obstacle):

        act = obstacle.action()
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        msg = f'{self} the Frog encounters {obstacle} 

          and {act}!'

        print(msg)

There can be many different kinds of obstacles but for our example, an obstacle can only 
be a bug. When the frog encounters a bug, only one action is supported. It eats it:

class Bug:

    def __str__(self):

        return 'a bug'

    def action(self):

        return 'eats it'

The FrogWorld class is an abstract factory. Its main responsibilities are creating the 
main character and the obstacle(s) in the game. Keeping the creation methods separate 
and their names generic (for example, make_character() and make_obstacle()) 
allows us to change the active factory (and therefore the active game) dynamically without 
making any code changes. In a statically typed language, the abstract factory would be an 
abstract class/interface with empty methods, but in Python, this is not required because 
the types are checked at runtime (j.mp/ginstromdp). The code is as follows:

class FrogWorld:

    def __init__(self, name):

        print(self)

        self.player_name = name

    def __str__(self):

        return '\n\n\t------ Frog World -------'

    def make_character(self):

        return Frog(self.player_name)

    def make_obstacle(self):

        return Bug()

The WizardWorld game is similar. The only difference is that the wizard battles against 
monsters such as orcs instead of eating bugs!

http://j.mp/ginstromdp
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Here is the definition of the Wizard class, which is similar to the Frog one:

class Wizard:

    def __init__(self, name):

        self.name = name

    def __str__(self):

        return self.name

    def interact_with(self, obstacle):

        act = obstacle.action()

        msg = f'{self} the Wizard battles against 

          {obstacle} and {act}!'

        print(msg)

Then, the definition of the Ork class is as follows:

class Ork: 

    def __str__(self): 

        return 'an evil ork' 

 

    def action(self): 

        return 'kills it'

We also need to define the WizardWorld class, similar to the FrogWorld one that we 
have discussed; the obstacle, in this case, is an Ork instance:

class WizardWorld: 

    def __init__(self, name): 

        print(self) 

        self.player_name = name 

 

    def __str__(self): 

        return '\n\n\t------ Wizard World -------' 

 

    def make_character(self): 

        return Wizard(self.player_name) 
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    def make_obstacle(self): 

        return Ork()

The GameEnvironment class is the main entry point of our game. It accepts the factory 
as input and uses it to create the world of the game. The play() method initiates the 
interaction between the created hero and the obstacle, as follows:

class GameEnvironment:

    def __init__(self, factory):

        self.hero = factory.make_character()

        self.obstacle = factory.make_obstacle()

    def play(self):

        self.hero.interact_with(self.obstacle)

The validate_age() function prompts the user to give a valid age. If the age is not 
valid, it returns a tuple with the first element set to False. If the age is fine, the first 
element of the tuple is set to True. This is where we care about the second element  
of the tuple, which is the age given by the user, as follows:

def validate_age(name):

    try:

        age = input(f'Welcome {name}. How old are you? ')

        age = int(age)

    except ValueError as err:

        print(f"Age {age} is invalid, please try again...")

        return (False, age)

    return (True, age)

Last but not least comes the main() function. It asks for the user's name and age, and 
decides which game should be played, given the age of the user, as follows:

def main():

    name = input("Hello. What's your name? ")

    valid_input = False

    while not valid_input:

        valid_input, age = validate_age(name)

    game = FrogWorld if age < 18 else WizardWorld

    environment = GameEnvironment(game(name))

    environment.play()
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The following is a summary of the implementation we just discussed (see the complete 
code in the abstract_factory.py file):

1. First, we define the Frog and Bug classes for the FrogWorld game.
2. We add the FrogWorld class, where we use our Frog and Bug classes.
3. We define the Wizard and Ork classes for the WizardWorld game.
4. We add the WizardWorld class, where we use our Wizard and Ork classes.
5. We define the GameEnvironment class.
6. We add the validate_age() function.
7. Finally, we have the main() function, followed by the conventional trick for calling 

it. The following are the aspects of this function:

 � We get the user's input for their name and age.

 � We decide which game class to use based on the user's age.

 � We instantiate the right game class, and then the GameEnvironment class.

 � We call play() on the environment object to play the game.

Let's call this program using the python abstract_factory.py command and see 
some sample output.

The sample output for a teenager is as follows:

Hello. What's your name? Billy

Welcome Billy. How old are you? 12

     ------ Frog World -------

Billy the Frog encounters a bug and eats it!

The sample output for an adult is as follows:

Hello. What's your name? Charles

Welcome Charles. How old are you? 25

     ------ Wizard World -------

Charles the Wizard battles against an evil ork and kills 

it!
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Try extending the game to make it more complete. You can go as far as you want; create 
many obstacles, many enemies, and whatever else you like.

Summary
In this chapter, we learned how to use the factory method and the abstract factory design 
patterns. Both patterns are used when we want to track object creation, decouple object 
creation from object usage, or even improve the performance and resource usage of an 
application. Improving performance was not demonstrated in this chapter. You may 
consider trying it as a good exercise.

The factory method design pattern is implemented as a single function that doesn't belong 
to any class and is responsible for creating a single kind of object (a shape, a connection 
point, and so on). We saw how the factory method relates to toy construction, mentioned 
how it is used by Django to create different form fields, and discussed other possible use 
cases for it. As an example, we implemented a factory method that provided access to 
XML and JSON files.

The abstract factory design pattern is implemented as several factory methods that belong 
to a single class and are used to create a family of related objects (the parts of a car, the 
environment of a game, and so forth). We mentioned how the abstract factory is related 
to car manufacturing, how the django_factory package for Django makes use of it 
to create clean tests, and then we covered its common use cases. Our implementation 
example of the abstract factory was a mini-game that shows how we can use many related 
factories in a single class.

In the next chapter, we will discuss the builder pattern, which is another creational pattern 
that can be used for fine-tuning the creation of complex objects.

Questions
1. What are the high-level benefits of using the factory pattern?
2. What are the two forms of the factory pattern and their main differences?
3. How should we decide which form of the factory pattern we should use when 

building an application?
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In the previous chapter, we covered the first two creational patterns—the factory method 
and abstract factory, both of which offer approaches to improve the way we create 
objects in nontrivial cases. The builder design pattern, on the other hand, as we'll discuss 
in this chapter, is useful for managing objects that consist of multiple parts that need 
to be implemented sequentially. By decoupling the construction of an object and its 
representation, the builder pattern allows us to reuse a construction multiple times.

Just as with the previous chapter, we will discuss real-life applications that use this design 
pattern as well as implementing a hands-on example ourselves.

In this chapter, we will discuss the following topics:

• Understanding the builder pattern

• Real-world examples

• Use cases

• Implementing an ordering application

By the end of the chapter, we will understand how to use the builder pattern and its 
practical benefits.
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Technical requirements
The code files for this chapter can be accessed through this link: 

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter17

Understanding the builder pattern
Imagine that we want to create an object that is composed of multiple parts and the 
composition needs to be done step by step. The object is not complete unless all its parts 
are fully created. That's where the builder-design pattern can help us. The builder pattern 
separates the construction of a complex object from its representation. By keeping the 
construction separate from the representation, the same construction can be used to 
create several different representations (j.mp/builderpat).

A practical example can help us understand what the purpose of the builder pattern is. 
Suppose that we want to create a HyperText Markup Language (HTML) page generator. 
The basic structure (construction part) of an HTML page is always the same: it begins 
with <html> and finishes with </html>; inside the HTML section are the <head> and 
</head> elements; inside the head section are the <title> and </title> elements; 
and so forth. But the representation of the page can differ. Each page has its own title, its 
own headings, and different <body> contents. Moreover, the page is usually built in steps: 
one function adds the title, another adds the main heading, another the footer, and so on. 
Only after the whole structure of a page is complete can it be shown to the client using a 
final render function. We can take it even further and extend the HTML generator so that 
it can generate totally different HTML pages. One page might contain tables, another page 
might contain image galleries, yet another page contains the contact form, and so on.

The HTML page-generation problem can be solved using the builder pattern. In this 
pattern, there are two main participants, outlined as follows:

• The builder: The component responsible for creating the various parts of  
a complex object. In this example, these parts are the title, heading, body,  
and the footer of the page.

• The director: The component that controls the building process using a builder 
instance. It calls the builder's functions for setting the title, the heading, and so on, 
and using a different builder instance allows us to create a different HTML page 
without touching any of the code of the director.

First, let's discuss in the next section some real-life examples where this pattern applies.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter17
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter17
http://j.mp/builderpat
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Real-world examples
In our everyday life, the builder design pattern is used in fast-food restaurants. The same 
procedure is always used to prepare a burger and the packaging (box and paper bag), even 
if there are many different kinds of burgers (classic, cheeseburger, and more) and different 
packages (small-sized box, medium-sized box, and so forth). The difference between a 
classic burger and a cheeseburger is in the representation, and not in the construction 
procedure. In this case, the director is the cashier who gives the crew instructions about 
what needs to be prepared, and the builder is the person from the crew that takes care  
of a specific order.

We can also find software examples, as follows:

• The HTML example that was mentioned at the beginning of the chapter is actually 
used by django-widgy (https://wid.gy/), a third-party tree editor for 
Django that can be used as a content management system (CMS). The django-
widgy editor contains a page builder that can be used for creating HTML pages 
with different layouts.

• The django-query-builder library (https://github.com/
ambitioninc/django-query-builder) is another third-party Django 
library that relies on the builder pattern. This library can be used for building 
Structured Query Language (SQL) queries dynamically, allowing you to control 
all aspects of a query and create a different range of queries, from simple to very 
complex ones.

In the next section, we will see how this design pattern actually works.

Use cases
We use the builder pattern when we know that an object must be created in multiple steps, 
and different representations of the same construction are required. These requirements 
exist in many applications, such as page generators (for example, the HTML page 
generator mentioned in this chapter), document converters, and user interface (UI)  
form creators (j.mp/pipbuild).

https://wid.gy/
https://github.com/ambitioninc/django-query-builder
https://github.com/ambitioninc/django-query-builder
http://j.mp/pipbuild
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Some online resources mention that the builder pattern can also be used as a solution to 
the telescopic constructor problem. The telescopic constructor problem occurs when we 
are forced to create a new constructor for supporting different ways of creating an object. 
The problem is that we end up with many constructors and long parameter lists that are 
hard to manage. An example of the telescopic constructor is listed on the Stack Overflow 
website (j.mp/sobuilder). Fortunately, this problem does not exist in Python, because 
it can be solved in at least two ways, as outlined here:

• With named parameters that define different behaviors in the constructor of the 
class (j.mp/sobuipython)

• With argument list unpacking, which is similar in spirit to named parameters 
(j.mp/arglistpy)

These features that are specific to Python help us control the behavior of its code easily, 
thus avoiding the problem we described previously.

At this point, the distinction between the builder pattern and the factory pattern might 
not be very clear. The main difference is that the factory pattern creates an object in a 
single step, whereas the builder pattern creates an object in multiple steps, and almost 
always through the use of a director. Some targeted implementations of the builder 
pattern, such as Java's StringBuilder, bypass the use of a director, but that's the 
exception to the rule.

Another difference is that while the factory pattern returns a created object immediately, 
in the builder pattern the client code explicitly asks the director to return the final object 
when it needs it (j.mp/builderpat).

The new computer analogy might help you to distinguish between the builder pattern and 
the factory pattern. Assume that you want to buy a new computer. If you decide to buy 
a specific, preconfigured computer model—for example, the latest Apple 1.4 gigahertz 
(GHz) Mac mini—you use the factory pattern. All the hardware specifications are already 
predefined by the manufacturer, who knows what to do without consulting you. The 
manufacturer typically receives just a single instruction. Code-wise, this is how it would 
look (apple_factory.py):

MINI14 = '1.4GHz Mac mini'

class AppleFactory:

    class MacMini14:

        def __init__(self):

            self.memory = 4 # in gigabytes

            self.hdd = 500 # in gigabytes

http://j.mp/sobuilder
http://j.mp/sobuipython
http://j.mp/arglistpy
http://j.mp/builderpat
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            self.gpu = 'Intel HD Graphics 5000'

        def __str__(self):

            info = (f'Model: {MINI14}',

                    f'Memory: {self.memory}GB',

                    f'Hard Disk: {self.hdd}GB',

                    f'Graphics Card: {self.gpu}')

            return '\n'.join(info)

    def build_computer(self, model):

        if model == MINI14:

            return self.MacMini14()

        else:

            msg = f"I don't know how to build {model}"

            print(msg)

Now, we add the main part of the program—the snippet that uses the AppleFactory 
class. The code is illustrated here:

if __name__ == '__main__':

    afac = AppleFactory()

    mac_mini = afac.build_computer(MINI14)

    print(mac_mini)

Note
Notice the nested MacMini14 class. This is a neat way of forbidding the 
direct instantiation of a class.

Another option would be to buy a custom PC. In this case, you use the builder pattern. 
You are the director who gives orders to the manufacturer (builder) about your ideal 
computer specifications. Code-wise, this is how it looks (computer_builder.py):

1. We define a Computer class, as follows:

class Computer:

    def __init__(self, serial_number):

        self.serial = serial_number

        self.memory = None # in gigabytes
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        self.hdd = None # in gigabytes

        self.gpu = None

    def __str__(self):

        info = (f'Memory: {self.memory}GB',

                f'Hard Disk: {self.hdd}GB',

                f'Graphics Card: {self.gpu}')

        return '\n'.join(info)

2. We define a ComputerBuilder class, as follows:

class ComputerBuilder:

    def __init__(self):

        self.computer = Computer('AG23385193')

    def configure_memory(self, amount):

        self.computer.memory = amount

    def configure_hdd(self, amount):

        self.computer.hdd = amount

    def configure_gpu(self, gpu_model):

        self.computer.gpu = gpu_model

3. We define a HardwareEngineer class, as follows:

class HardwareEngineer:

    def __init__(self):

        self.builder = None

    def construct_computer(self, memory, hdd, gpu):

        self.builder = ComputerBuilder()

        steps = (self.builder.configure_memory(memory),

                 self.builder.configure_hdd(hdd),

                 self.builder.configure_gpu(gpu))

        [step for step in steps]
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    @property

    def computer(self):

        return self.builder.computer

4. We end our code with the main() function, followed by a trick to call it when the 
file is called from the command line, as illustrated in the following code snippet:

def main():

    engineer = HardwareEngineer()

    engineer.construct_computer(hdd=500, 

                                memory=8, 

                                gpu='GeForce GTX 650 Ti')

    computer = engineer.computer

    print(computer)

if __name__ == '__main__':

    main()

The basic changes are the introduction of a builder (ComputerBuilder), a director    
(HardwareEngineer), and the step-by-step construction of a computer, which now 
supports different configurations (notice that memory, hdd, and gpu are parameters and 
are not preconfigured). What do we need to do if we want to support the construction of 
tablets? Implement this as an exercise.

You might also want to change the computer's serial_number value into something 
different for each computer because as it is now, this means that all computers will have 
the same serial number (which is impractical).

Implementing an ordering application
Let's see how we can use the builder design pattern to make a pizza-ordering application. 
The pizza example is particularly interesting because a pizza is prepared in steps that 
should follow a specific order. To add the sauce, you first need to prepare the dough. To 
add the topping, you first need to add the sauce. And you can't start baking the pizza 
unless both the sauce and the topping are placed on the dough. Moreover, each pizza 
usually requires a different baking time, depending on the thickness of its dough and  
the topping used.
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We start by importing the required modules and declaring a few Enum parameters 
(j.mp/pytenum) plus a constant that is used many times in the application. The  
STEP_DELAY constant is used to add a time delay between the different steps of 
preparing a pizza (prepare the dough, add the sauce, and so on), as follows:

from enum import Enum

import time

PizzaProgress = Enum('PizzaProgress', 'queued preparation \

  baking ready')

PizzaDough = Enum('PizzaDough', 'thin thick')

PizzaSauce = Enum('PizzaSauce', 'tomato creme_fraiche')

PizzaTopping = Enum('PizzaTopping', 'mozzarella \

  double_mozzarella bacon ham mushrooms red_onion oregano')

STEP_DELAY = 3 # in seconds for the sake of the example

Our end product is a pizza, which is described by the Pizza class. When using the builder 
pattern, the end product does not have many responsibilities since it is not supposed to be 
instantiated directly. A builder creates an instance of the end product and makes sure that 
it is properly prepared. That's why the Pizza class is so minimal. It basically initializes all 
data to sane default values. An exception is the prepare_dough() method.

The prepare_dough() method is defined in the Pizza class instead of a builder for 
two reasons—first, to clarify the fact that the end product is typically minimal, which does 
not mean that you should never assign it any responsibilities; second, to promote code 
reuse through composition.

So, we define our Pizza class as follows:

class Pizza:

    def __init__(self, name):

        self.name = name

        self.dough = None

        self.sauce = None

        self.topping = []

    def __str__(self):

        return self.name

http://j.mp/pytenum
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    def prepare_dough(self, dough):

        self.dough = dough

        print(f'preparing the {self.dough.name} dough of your \

          {self}...')

        time.sleep(STEP_DELAY)

        print(f'done with the {self.dough.name} dough')

There are two builders: one for creating a margarita pizza (MargaritaBuilder) 
and another for creating a creamy bacon pizza (CreamyBaconBuilder). Each 
builder creates a Pizza instance and contains methods that follow the pizza-making 
procedure: prepare_dough(), add_sauce(), add_topping(), and bake(). To 
be precise, prepare_dough() is just a wrapper to the prepare_dough() method 
of the Pizza class.

Notice how each builder takes care of all the pizza-specific details. For example, the 
topping of the margarita pizza is double mozzarella and oregano, while the topping of  
the creamy bacon pizza is mozzarella, bacon, ham, mushrooms, red onion, and oregano.

This part of our code is laid out as follows:

1. We define a MargaritaBuilder class, as follows:

class MargaritaBuilder:

    def __init__(self):

        self.pizza = Pizza('margarita')

        self.progress = PizzaProgress.queued

        self.baking_time = 5 # in seconds for the sake of 

        the example

    def prepare_dough(self):

        self.progress = PizzaProgress.preparation

        self.pizza.prepare_dough(PizzaDough.thin)

    def add_sauce(self):

        print('adding the tomato sauce to your \

          margarita...')

        self.pizza.sauce = PizzaSauce.tomato

        time.sleep(STEP_DELAY)

        print('done with the tomato sauce')
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    def add_topping(self):

        topping_desc = 'double mozzarella, oregano'

        topping_items = (PizzaTopping.double_mozzarella,

        PizzaTopping.oregano)

        print(f'adding the topping ({topping_desc}) to \

          your margarita')

        self.pizza.topping.append([t for t in \

          topping_items])

        time.sleep(STEP_DELAY)

        print(f'done with the topping ({topping_desc})')

    def bake(self):

        self.progress = PizzaProgress.baking

        print(f'baking your margarita for \

          {self.baking_time} seconds')

        time.sleep(self.baking_time)

        self.progress = PizzaProgress.ready

        print('your margarita is ready')

2. We define a CreamyBaconBuilder class, as follows:

class CreamyBaconBuilder:

    def __init__(self):

        self.pizza = Pizza('creamy bacon')

        self.progress = PizzaProgress.queued

        self.baking_time = 7 # in seconds for the sake of 

        the example

    def prepare_dough(self):

        self.progress = PizzaProgress.preparation

        self.pizza.prepare_dough(PizzaDough.thick)

    def add_sauce(self):

        print('adding the crème fraîche sauce to your \

          creamy bacon')

        self.pizza.sauce = PizzaSauce.creme_fraiche

        time.sleep(STEP_DELAY)
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        print('done with the crème fraîche sauce')

    def add_topping(self):

        topping_desc = 'mozzarella, bacon, ham, \

          mushrooms, red onion, oregano'

        topping_items =  (PizzaTopping.mozzarella,

                          PizzaTopping.bacon,

                          PizzaTopping.ham,

                          PizzaTopping.mushrooms,

                          PizzaTopping.red_onion, 

                          PizzaTopping.oregano)

        print(f'adding the topping ({topping_desc}) to \

          your creamy bacon')

        self.pizza.topping.append([t for t in \

          topping_items])

        time.sleep(STEP_DELAY)

        print(f'done with the topping ({topping_desc})')

    def bake(self):

        self.progress = PizzaProgress.baking

        print(f'baking your creamy bacon for \

          {self.baking_time} seconds')

        time.sleep(self.baking_time)

        self.progress = PizzaProgress.ready

        print('your creamy bacon is ready')

The director in this example is the waiter. The core of the Waiter class is the 
construct_pizza() method, which accepts a builder as a parameter and executes 
all the pizza-preparation steps in the right order. Choosing the appropriate builder, which 
can even be done at runtime, gives us the ability to create different pizza styles without 
modifying any of the code of the director (Waiter). The Waiter class also contains the 
pizza() method, which returns the end product (prepared pizza) as a variable to the 
caller, as follows:

class Waiter:

    def __init__(self):

        self.builder = None
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    def construct_pizza(self, builder):

        self.builder = builder

        steps = (builder.prepare_dough, 

                 builder.add_sauce, 

                 builder.add_topping, 

                 builder.bake)

        [step() for step in steps]

    @property

    def pizza(self):

        return self.builder.pizza

The validate_style() function is similar to the validate_age() function, as 
described in Chapter 16, The Factory Pattern. It is used to make sure that the user gives valid 
input, which in this case is a character that is mapped to a pizza builder. The m character uses 
the MargaritaBuilder class, and the c character uses the CreamyBaconBuilder 
class. These mappings are in the builder parameter. A tuple is returned, with the first element 
set to True if the input is valid or False if it is invalid, as follows:

def validate_style(builders):

    try:

        input_msg = 'What pizza would you like, [m]argarita or \

        [c]reamy bacon? '

        pizza_style = input(input_msg)

        builder = builders[pizza_style]()

        valid_input = True

    except KeyError:

        error_msg = 'Sorry, only margarita (key m) and creamy \

        bacon (key c) are available'

        print(error_msg)

        return (False, None)

    return (True, builder)
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The last part is the main() function. The main() function contains code for instantiating 
a pizza builder. The pizza builder is then used by the Waiter director for preparing 
the pizza. The created pizza can be delivered to the client at any later point. The code is 
illustrated in the following snippet:

def main():

    builders = dict(m=MargaritaBuilder, c=CreamyBaconBuilder)

    valid_input = False

    while not valid_input:

        valid_input, builder = validate_style(builders)

    print()

    waiter = Waiter()

    waiter.construct_pizza(builder)

    pizza = waiter.pizza

    print()

    print(f'Enjoy your {pizza}!')

Here is a summary of the implementation (see the complete code in the builder.py file):

1. We start with a couple of imports we need, for the standard Enum class and the 
time module.

2. We declare variables for a few constants: PizzaProgress, PizzaDough, 
PizzaSauce, PizzaTopping, and STEP_DELAY.

3. We define our Pizza class.
4. We define classes for two builders, MargaritaBuilder and 

CreamyBaconBuilder.
5. We define our Waiter class.
6. We add the validate_style() function to improve things regarding  

exception handling.
7. Finally, we have the main() function, followed by the snippet for calling it when 

the program is run. In the main function, the following happens:

 � We make it possible to choose the pizza builder based on the user's input, after 
validation via the validate_style() function.

 � The pizza builder is used by the waiter for preparing the pizza.

 � The created pizza is then delivered.
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Here is the output produced by calling the python builder.py command to execute 
this example program:

What pizza would you like, [m]argarita or [c]reamy bacon? r

Sorry, only margarita (key m) and creamy bacon (key c) are 

available

What pizza would you like, [m]argarita or [c]reamy bacon? m

preparing the thin dough of your margarita...

done with the thin dough

adding the tomato sauce to your margarita...

done with the tomato sauce

adding the topping (double mozzarella, oregano) to your 

margarita

done with the topping (double mozzarella, oregano)

baking your margarita for 5 seconds

your margarita is ready

Enjoy your margarita!

But…supporting only two pizza types is a shame. Feel like getting a Hawaiian pizza builder? 
Consider using inheritance after thinking about the advantages and disadvantages. Check 
the ingredients of a typical Hawaiian pizza and decide which class you need to extend: 
MargaritaBuilder or CreamyBaconBuilder? Perhaps both (j.mp/pymulti)?

In his book, Effective Java (Second Edition), Joshua Bloch describes an interesting variation 
of the builder pattern where calls to builder methods are chained. This is accomplished by 
defining the builder itself as an inner class and returning itself from each of the setter-like 
methods on it. The build() method returns the final object. This pattern is called the 
fluent builder. Here's a Python implementation, which was kindly provided by a reviewer 
of the book:

class Pizza: 

    def __init__(self, builder): 

        self.garlic = builder.garlic 

        self.extra_cheese  = builder.extra_cheese 

 

http://j.mp/pymulti
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    def __str__(self): 

        garlic = 'yes' if self.garlic else 'no' 

        cheese = 'yes' if self.extra_cheese else 'no' 

        info = (f'Garlic: {garlic}', f'Extra cheese: {cheese}') 

        return '\n'.join(info) 

 

    class PizzaBuilder: 

        def __init__(self): 

            self.extra_cheese = False 

            self.garlic = False 

 

        def add_garlic(self): 

            self.garlic = True 

            return self 

 

        def add_extra_cheese(self): 

            self.extra_cheese = True 

            return self 

 

        def build(self): 

            return Pizza(self) 

 

if __name__ == '__main__': 

    pizza = Pizza.PizzaBuilder().add_garlic().add_extra_ \

      cheese().build() 

    print(pizza)

With this fluent builder pattern, we see that we could quickly build the final Pizza object 
by chaining the add_garlic(), add_extra_cheese(), and build() methods on 
one line of code, which could come in handy in many situations.
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Summary
In this chapter, we have seen how to use the builder design pattern. We use the builder 
pattern for creating an object in situations where using the factory pattern (either a 
factory method or an abstract factory) is not a good option. The builder pattern is usually 
a better candidate than the factory pattern when we want to create a complex object, when 
different representations of an object are required, or when we want to create an object at 
one point in time but access it at a later point. 

We saw how the builder pattern is used in fast-food restaurants for preparing meals, and 
how two third-party Django packages, django-widgy and django-query-builder, 
use it for generating HTML pages and dynamic SQL queries, respectively. We focused 
on the differences between the builder pattern and the factory pattern and provided 
a preconfigured (factory) and customer (builder) computer order analogy to clarify 
them. We also looked at how to create a pizza-ordering application with preparation 
dependencies. Throughout these examples, we have clearly seen the benefits and flexibility 
of the builder pattern, which will help you better approach future applications that require 
the design pattern.

In the next chapter, you will learn about other useful creational patterns.

Questions
1. What are the high-level applications of the builder pattern?
2. What are some common computer applications that require or benefit from the 

builder pattern?
3. How does the builder pattern create an object and how is that process different from 

what the factory pattern does?
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Patterns
In the previous chapter, we covered a third creational pattern, builder, which offers a nice 
way of creating the various parts of a complex object. Apart from the factory method, 
the abstract factory, and the builder patterns covered so far, other creational patterns are 
interesting to discuss, such as the prototype pattern and the singleton pattern.

In this chapter, we will discuss the following topics:

• Implementing the prototype pattern

• Implementing the singleton pattern

These topics will complete our discussions on creational patterns and help cover the use 
cases where the design patterns we have seen so far are not appropriate. By the end of the 
chapter, we will have an overall understanding of creational patterns and the use cases of 
each one.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter18.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter18
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter18
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter18
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Implementing the prototype pattern
The prototype pattern is useful when you need to create objects based on an existing 
object using the cloning technique. As you may have guessed, the idea is to use a copy 
of that object's complete structure to produce the new object. We will see that this is 
almost natural in Python because we have a copy feature that helps greatly in using this 
technique. In the general case of creating a copy of an object, what happens is that you 
make a new reference to the same object, a method called a shallow copy. But if you need 
to duplicate the object, which is the case with a prototype, you make a deep copy.

Sometimes, we need to create an exact copy of an object. For instance, assume that you 
want to create an application for storing, sharing, and editing presentation and marketing 
content for products promoted by a group of salespeople. Think of the popular distribution 
model called direct selling or network marketing, the home-based activity where 
individuals partner with a company to distribute products within their social network 
using promotional tools (brochures, PowerPoint presentations, videos, and so on).

Let's say a user, Bob, leads a team of distributors within a network marketing organization. 
They use a presentation video daily to introduce the product to their prospects. At some 
point, Bob gets his friend, Alice, to join him and she also uses the same video (one of the 
governing principles is to follow the system or, as they say, Duplicate what already works). 
But Alice soon finds prospects that could join her team and help her business grow, if 
only the video was in French, or at least subtitled. What should they do? The original 
presentation video cannot be used for the different custom needs that may arise.

To help everyone, the system could allow distributors with certain rank or trust levels, 
such as Bob, to create independent copies of the original presentation video, as long as the 
new version is validated by the compliance team of the backing company before public 
use. Each copy is called a clone; it is an exact copy of the original object at a specific point 
in time.

So, Bob, with the validation of the compliance team, makes a copy of the presentation 
video to address the new need and hands it over to Alice. She could then adapt that 
version by adding French subtitles.

With cloning, Bob and Alice can have their own copy of a video, and as such, changes 
by each one of them will not affect the other person's version of the material. In the 
alternative situation, which is what actually happens by default, each person would hold 
a reference to the same (reference) object; changes made by Bob would impact Alice, and 
vice versa.
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The prototype design pattern helps us with creating object clones. In its simplest version, 
this pattern is just a clone() function that accepts an object as an input parameter and 
returns a clone of it. In Python, this can be done using the deepcopy() function from 
the copy module.

The structure of our discussions will be the same as in previous chapters. First, we will 
briefly discuss real-life applications and use cases, and then implement a hands-on 
example in Python.

Real-world examples
A famous non-technical example is the sheep named Dolly, which was created by 
researchers in Scotland by cloning a cell from a mammary gland.

Many Python applications make use of the prototype pattern (j.mp/pythonprot),  
but it is seldom referred to as prototype since cloning objects is a built-in feature of  
the language.

Use cases
The prototype pattern is useful when we have an existing object that needs to stay 
untouched, and we want to create an exact copy of it, allowing changes in some parts  
of the copy.

There is also the frequent need for duplicating an object that is populated from a database 
and has references to other database-based objects. It is costly (multiple queries to a 
database) to clone such a complex object, so a prototype is a convenient way to solve  
the problem.

Implementation
Nowadays, some organizations, even of small size, deal with many websites and apps via 
their infrastructure/DevOps teams, hosting providers, or cloud service providers.

When you have to manage multiple websites, there is a point where it becomes difficult 
to manage everything. You need to access information quickly, such as IP addresses that 
are involved, domain names and their expiration dates, and maybe details about the DNS 
parameters. So, you need a kind of inventory tool.
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Let's imagine how these teams deal with this type of data for daily activities and touch on 
the implementation of a piece of software that helps consolidate and maintain the data 
(other than in Excel spreadsheets):

1. First, we need to import Python's standard copy module, as follows:

import copy

2. At the heart of this system, we will have a Website class for holding all the useful 
information such as the name, the domain name, the description, and the author of 
a website we are managing.

In the __init__() method of the class, only some parameters are fixed, name, 
domain, description, and author, which correspond to the information 
we listed previously. But we also want flexibility, and client code can pass more 
parameters in the form of keywords (name=value) using the kwargs variable-
length collection (a Python dictionary).

Note that there is a Python idiom to set an arbitrary attribute named attr 
with a value, val, on an object, obj, using the setattr() built-in function: 
setattr(obj, attr, val).

So, we are using this technique for the optional attributes of our class, at the end of 
the initialization method, as follows:

for key in kwargs:

    setattr(self, key, kwargs[key])

So, our Website class is defined as follows:
class Website: 

    def __init__(self, name, domain, description, \

      author, **kwargs): 

        '''Examples of optional attributes (kwargs): 

           category, creation_date, technologies, \

             keywords.

        ''' 

        self.name = name 

        self.domain = domain 

        self.description = description

        self.author = author
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        for key in kwargs:

            setattr(self, key, kwargs[key])

 

    def __str__(self): 

        summary = [f'Website "{self.name}"\n',] 

        

        infos = vars(self).items()

        ordered_infos = sorted(infos)

        for attr, val in ordered_infos:

            if attr == 'name':

                continue

            summary.append(f'{attr}: {val}\n')

            

        return ''.join(summary)

3. Next, the Prototype class implements the prototype design pattern.

At the heart of the Prototype class is the clone() method, which is in charge 
of cloning the object using the copy.deepcopy() function. Since cloning means 
we allow values to be set for optional attributes, notice how we use the setattr() 
technique here with the attrs dictionary.

Also, for more convenience, the Prototype class contains the register() and 
unregister() methods, which can be used to keep track of the cloned objects in 
a dictionary:

class Prototype: 

    def __init__(self): 

        self.objects = dict() 

 

    def register(self, identifier, obj): 

        self.objects[identifier] = obj 

 

    def unregister(self, identifier): 

        del self.objects[identifier] 

 

    def clone(self, identifier, **attrs): 

        found = self.objects.get(identifier) 

        if not found: 
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            raise ValueError(f'Incorrect object \

              identifier:{identifier}') 

        obj = copy.deepcopy(found) 

        for key in attrs:

            setattr(obj, key, attrs[key])

        return obj

4. In the main() function, as shown in the following code, we can clone a first 
Website instance, site1, to get a second object, site2. Basically, we instantiate 
the Prototype class and we use its .clone() method. That is what the following 
code shows:

def main(): 

    keywords = ('python', 'data', 'apis', \

      'automation')

    site1 = Website('ContentGardening', 

            domain='contentgardening.com', 

            description='Automation and data-driven \

              apps', 

            author='Kamon Ayeva',

            category='Blog',

            keywords=keywords)

 

    prototype = Prototype() 

    identifier = 'ka-cg-1' 

    prototype.register(identifier, site1)

    

    site2 = prototype.clone(identifier, 

            name='ContentGardeningPlayground',

            domain='play.contentgardening.com', 

            description='Experimentation for \

              techniques featured on the blog', 

            category='Membership site',

            creation_date='2018-08-01')    
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5. To end that function, we can use the id() function, which returns the memory 
address of an object, for comparing both objects' addresses, as follows. When we 
clone an object using a deep copy, the memory addresses of the clone must be 
different from the memory addresses of the original object:

    for site in (site1, site2): 

        print(site)

    print(f'ID site1 : {id(site1)} != ID site2 : \

      {id(site2)}')

You will find the program's full code in the prototype.py file. Here is a summary of 
what we do in the code:

1. We start by importing the copy module.
2. We define the Website class, with its initialization method, (__init__()), and 

its string representation method (__str__()), as shown earlier.
3. We define our Prototype class as shown earlier.
4. Then, we have the main() function, where we do the following:

 � We define the keywords list we need.

 � We create the instance of the Website class, called site1 (we use the 
keywords list here).

 � We create the Prototype object and we use its register() method to register 
site1 with its identifier (this helps us keep track of the cloned objects in a 
dictionary).

 � We clone the site1 object to get site2.

 � We display the result (both Website objects)

Following is the sample output when I execute the python prototype.py command 
on my machine:

Website "ContentGardening"

author: Kamon Ayeva

category: Blog

description: Automation and data-driven apps

domain: contentgardening.com

keywords: ('python', 'data', 'apis', 'automation')
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Website "ContentGardeningPlayground"

author: Kamon Ayeva

category: Membership site

creation_date: 2018-08-01

description: Experimentation for techniques featured on the 

blog

domain: play.contentgardening.com

keywords: ('python', 'data', 'apis', 'automation')

ID site1 : 140263689073376 != ID site2 : 140263689058816

Indeed, Prototype works as expected. We can see the information about the original 
Website object and its clone. Looking at the output of the id() function, we can see 
that the two addresses are different.

With this program, we mark the end of our discussion on the prototype pattern. In the 
next section, we will cover the singleton pattern.

Implementing the singleton pattern
The singleton pattern offers a way to implement a class from which you can only create 
one object, hence the name singleton. As you will understand with our exploration of this 
pattern, or while doing your own research, there have always been discussions about this 
pattern, and some even consider it an anti-pattern.

Besides that, what is interesting is that it is useful when we need to create one and only 
one object, for example, to store and maintain a global state for our program. In Python, 
this pattern can be implemented using some special built-in features.

The singleton pattern restricts the instantiation of a class to one object, which is useful 
when you need one object to coordinate actions for the system.

The basic idea is that only one instance of a particular class is created for the needs of the 
program. To ensure that this works, we need mechanisms that prevent the instantiation of 
the class more than once and also prevent cloning.

First, let's discuss some real-life examples of the singleton pattern.
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Real-world examples
We can think of a captain of a ship or a boat as a real-life example of the singleton pattern. 
On the ship, he is the one in charge. He is responsible for important decisions, and several 
requests are directed to him because of this responsibility.

In software, the Plone CMS has, at its core, an implementation of the singleton. There are 
actually several singleton objects available at the root of a Plone site, called tools, each in 
charge of providing a specific set of features for the site. For example, the Catalog tool 
deals with content indexation and search features (built-in search engines for small sites 
where you don't need to integrate products such as ElasticSearch), the Membership tool 
deals with things related to user profiles, and the Registry tool provides a configuration 
registry to store and maintain different kinds of configuration properties for the Plone 
site. Each tool is global to the site, created from a specific singleton class, and you can't 
create another instance of that singleton class in the context of the site. 

Use cases
As stated previously, one use case of the singleton pattern is to create a single object that 
maintains the global state of your program. Other possible use cases are as follows:

• Controlling concurrent access to a shared resource; for example, an object class that 
manages the connection to a database

• A service or resource that is transversal in the sense that it can be accessed from 
different parts of the application or by different users and does its work; for example, 
the class at the core of the logging system or utility

Implementation
Let's implement a program to fetch content from web pages, inspired by the tutorial from 
Michael Ford (https://docs.python.org/3/howto/urllib2.html). We have 
only taken the simple part since the focus is to illustrate our pattern more than it is to 
build a special web-scraping tool.

We will use the urllib module to connect to web pages using their URLs; the core of  
the program would be the URLFetcher class, which takes care of doing the work via  
a fetch() method.

https://docs.python.org/3/howto/urllib2.html
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We want to be able to track the list of web pages that were tracked, hence the use of the 
singleton pattern. We need a single object to maintain that global state:

1. First, our naive version, inspired by the tutorial but modified to help us track the list 
of URLs that were fetched, would be as follows:

import urllib.parse

import urllib.request

class URLFetcher:

    def __init__(self):

        self.urls = []

    

    def fetch(self, url):

        req = urllib.request.Request(url)

        with urllib.request.urlopen(req) as response:

            if response.code == 200:

                the_page = response.read()

                print(the_page)

        

                urls = self.urls

                urls.append(url)

                self.urls = urls

2. As an exercise, add the usual if __name__ == '__main__' block with a few 
lines of code to call the .fetch() method on an instance of URLFetcher.

But then, does our class implement a singleton? Here is a clue. To create a singleton, 
we need to make sure you can only create one instance of it. So, to see whether our 
class implements a singleton, we could use a trick that consists of comparing two 
instances using the is operator.

You may have guessed the second exercise. Put the following code in your if  
__name__ == '__main__' block instead of what you had previously:

f1 = URLFetcher()

f2 = URLFetcher()

print(f1 is f2)
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As an alternative, use this concise, but still elegant, form:
print(URLFetcher() is URLFetcher())

With this change, when executing the program, you should get False as the output.

3. Okay! This means that the first try does not yet give us a singleton. Remember, we 
want to manage a global state, using one, and only one, instance of the class for the 
program. The current version of the class does not yet implement a singleton.

After checking the literature and the forums on the web, you will find that there are 
several techniques, each with pros and cons, and some are probably outdated.

Since many people use Python 3 nowadays, the recommended technique we will 
choose is the metaclass technique. We first implement a metaclass for the singleton. 
This class implements the singleton pattern as follows:

class SingletonType(type):

    _instances = {}

    def __call__(cls, *args, **kwargs):

        if cls not in cls._instances:

            cls._instances[cls] = super \

              (SingletonType,cls).__call__(*args, \

                 **kwargs)

        return cls._instances[cls]

4. Now, we will rewrite our URLFetcher class to use that metaclass. We also add a 
dump_url_registry() method, which is useful for getting the current list of 
URLs tracked:

class URLFetcher(metaclass=SingletonType):

    def fetch(self, url):

        req = urllib.request.Request(url)

        with urllib.request.urlopen(req) as response:

            if response.code == 200:

                the_page = response.read()

                print(the_page)

        

                urls = self.urls

                urls.append(url)

                self.urls = urls
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    def dump_url_registry(self):

        return ', '.join(self.urls)

if __name__ == '__main__':

    print(URLFetcher() is URLFetcher())

This time, you get True by executing the program.

5. Let's complete the program to do what we wanted, using a main() function that we 
will call as follows:

def main():

    MY_URLS = ['http://google.com', 

               'http://python.org',

               'https://www.python.org/error',

               ]

    print(URLFetcher() is URLFetcher())

    fetcher = URLFetcher()

    for url in MY_URLS:

        try:

            fetcher.fetch(url)

        except Exception as e:

            print(e)

            

    print('-------')

    done_urls = fetcher.dump_url_registry()

    print(f'Done URLs: {done_urls}')

You will find the program's full code in the singleton.py file. Here is a summary  
of what we do:

1. We start with our required module imports (urllib.parse and  
urllib.request).

2. As shown earlier, we define the SingletonType class, with its special  
__call__() method.
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3. As shown earlier, we define URLFetcher, the class implementing the fetcher  
for the web pages, initializing it with the urls attribute. As discussed, we add  
its fetch() and dump_url_registry() methods.

4. Then, we add our main() function.
5. Lastly, we add Python's conventional snippet used to call the main function.

The following is the output when executing the python singleton.py command:

[output truncated]

</script>\n    <script>window.jQuery || 

document.write(\'<script src="/static/js/libs/jquery-

1.8.2.min.js"><\\/script>\')</script>\n    <script 

src="//ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery

-ui.min.js"></script>\n    <script>window.jQuery || 

document.write(\'<script src="/static/js/libs/jquery-ui-

1.12.1.min.js"><\\/script>\')</script>\n\n    <script 

src="/static/js/libs/masonry.pkgd.min.js"></script>\n    

<script src="/static/js/libs/html-

includes.js"></script>\n\n    <script 

type="text/javascript" src="/static/js/main-

min.dd72c1659644.js" charset="utf-8"></script>\n    \n\n    

<!--[if lte IE 7]>\n    <script type="text/javascript" 

src="/static/js/plugins/IE8-min.8af6e26c7a3b.js" 

charset="utf-8"></script>\n    \n    \n    <![endif]--

>\n\n    

<!--[if lte IE 8]>\n    <script type="text/javascript" 

src="/static/js/plugins/getComputedStyle-

min.d41d8cd98f00.js" charset="utf-8"></script>\n    \n    

\n    <![endif]-->\n\n    \n\n    \n    

\n\n</body>\n</html>\n'

HTTP Error 404: Not Found

-------

Done URLs: http://google.com, http://python.org

We can see that we get the expected result: both the content of the pages that the program 
was able to connect to and the list of URLs the operation was successful for.
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We see that the URL, https://www.python.org/error, does not come in the list 
returned by fetcher.dump_url_registry(); indeed, it is an erroneous URL and 
the urlllib request to it gets a 404 response code. 

Note
The link to the preceding URL is not supposed to work; that's exactly the point.

Summary
In this chapter, we have seen how to use two other creational design patterns: the 
prototype and the singleton.

A prototype is used to create exact copies of objects. As seen in the implementation 
example we discussed, using a prototype in Python is natural and based on built-in 
features, so it is not something even mentioned. The singleton pattern can be implemented 
by making the singleton class use a metaclass, its type, having previously defined said 
metaclass. As required, the metaclass's __call__() method holds the code that ensures 
that only one instance of the class can be created.

Overall, these two design patterns help us implement the use cases that other creational 
patterns do not support; in effect, we have grown our design pattern toolbox to cover  
more use cases.

The next chapter is about the adapter pattern, a structural design pattern that can be used 
to make two incompatible software interfaces compatible.

Questions
1. What are the high-level benefits of using the prototype pattern?
2. How is the prototype pattern useful in the specific case of database management?
3. What are the high-level benefits of using the singleton pattern?
4. In the context of concurrency, in which situation should the singleton pattern  

be used?

Further reading
Design Patterns by Gamma Enrich, Helm Richard, Johnson Ralph, and Vlissides 
John available at  https://www.amazon.com/Design-Patterns-Object-
Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
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In previous chapters, we covered creational patterns, which are Object-Oriented 
Programming (OOP) patterns that help us with object creation procedures. The next 
category of patterns we want to present is structural design patterns.

A structural design pattern proposes a way of composing objects to create new 
functionality. The first of these patterns we will cover is the adapter pattern.

In this chapter, we will discuss the following topics:

• Understanding the adapter pattern

• Real-world examples

• Use cases

• Implementation

By the end of the chapter, you will know how to use this design pattern to create interfaces 
that could help application layers that otherwise could not communicate.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter19.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter19
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter19
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter19
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Understanding the adapter pattern
The adapter pattern is a structural design pattern that helps us make two incompatible 
interfaces compatible. What does that really mean? If we have an old component and we 
want to use it in a new system, or a new component that we want to use in an old system, 
the two can rarely communicate without requiring code changes. But changing the code 
is not always possible, either because we don't have access to it or because it is impractical. 
In such cases, we can write an extra layer that makes all the required modifications for 
enabling communication between the two interfaces. This layer is called an adapter.

To further understand this design pattern, let's consider some real-life examples.

Real-world examples
When you are traveling from most European countries to the UK or US, or the other way 
around, you need to use a plug adapter for charging your laptop. Another kind of adapter 
is needed for connecting some devices to your computer: a USB adapter.

In the software category, the Zope application server (http://www.zope.org) 
is known for its Zope Component Architecture (ZCA), which contributed to the 
implementation of interfaces and adapters used by several big Python web projects. 
Pyramid, built by former Zope developers, is a Python web framework that took good 
ideas from Zope to provide a more modular approach for developing web apps. Pyramid 
uses adapters to make it possible for existing objects to conform to specific APIs without 
the need to modify them. Another project from the Zope ecosystem, Plone CMS, uses 
adapters under the hood.

Use cases
Usually, one of the two incompatible interfaces is either foreign or old/legacy. If the 
interface is foreign, it means that we have no access to the source code. If it is old, it is 
usually impractical to refactor it.

Using an adapter to make things work after they have been implemented is a good 
approach because it does not require access to the source code of the foreign interface.  
It is also often a pragmatic solution if we have to reuse some legacy code.

With that, let's start implementing a hands-on application in Python.

http://www.zope.org
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Implementation
Let's look at a relatively simple application to illustrate the concept of adaptation. Consider 
an example of a club's activities. It mainly needs to organize performances and events for 
the entertainment of its clients, by hiring talented artists.

At the core, we have a Club class that represents the club where hired artists perform 
some evenings. The organize_performance() method is the main action that the 
club can perform. The code is as follows:

class Club: 

    def __init__(self, name): 

        self.name = name 

 

    def __str__(self): 

        return f'the club {self.name}' 

 

    def organize_event(self): 

        return 'hires an artist to perform for the people' 

Most of the time, our club hires a DJ to perform, but our application addresses the need  
to organize a diverse range of performances by a musician or music band, a dancer,  
a one-man or one-woman show, and so on.

Through our research to try and reuse existing code, we find an open source contributed 
library that brings us two interesting classes: Musician and Dancer. In the Musician 
class, the main action is performed by the play() method. In the Dancer class, it is 
performed by the dance() method.

In our example, to indicate that these two classes are external, we place them in a separate 
module. The code for the Musician class is as follows:

class Musician:

 def __init__(self, name):

 self.name = name

 

 def __str__(self):

 return f'the musician {self.name}'

 

  def play(self):

 return 'plays music'
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Then, the Dancer class is defined as follows:

class Dancer:

     def __init__(self, name):

         self.name = name

  

     def __str__(self):

         return f'the dancer {self.name}'

  

     def dance(self):

         return 'does a dance performance'

The client code, using these classes, only knows how to call the organize_
performance() method (on the Club class); it has no idea about play() or 
dance() (on the respective classes from the external library).

How can we make the code work without changing the Musician and Dancer classes?

Adapters to the rescue! We create a generic Adapter class that allows us to adapt several 
objects with different interfaces into one unified interface. The obj argument of the 
__init__() method is the object that we want to adapt, and adapted_methods 
is a dictionary containing key/value pairs matching the method the client calls and the 
method that should be called.

The code for the Adapter class is as follows:

class Adapter:

     def __init__(self, obj, adapted_methods):

         self.obj = obj

         self.__dict__.update(adapted_methods)

  

     def __str__(self):

         return str(self.obj)

When dealing with different instances of the classes, we have two cases:

• The compatible object that belongs to the Club class needs no adaptation. We can 
treat it as it is.

• The incompatible objects need to be adapted first, using the Adapter class.
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The result is that the client code can continue using the known organize_
performance() method on all objects without the need to be aware of any interface 
differences between the used classes. Consider the following code:

def main():

    objects = [Club('Jazz Cafe'), Musician('Roy Ayers'), \

      Dancer('Shane Sparks')]

    

    for obj in objects:

        if hasattr(obj, 'play') or hasattr(obj, 'dance'):

            if hasattr(obj, 'play'):

                adapted_methods = \

                  dict(organize_event=obj.play)

            elif hasattr(obj, 'dance'):            

                adapted_methods = \

                  dict(organize_event=obj.dance)

                

            # referencing the adapted object here

            obj = Adapter(obj, adapted_methods)

           

        print(f'{obj} {obj.organize_event()}') 

Let's recapitulate the complete code of our adapter pattern implementation:

1. We define the Musician and Dancer classes (in external.py).
2. Then, we need to import those classes from the external module (in adapter.py):

from external import Musician, Dance

3. We then define the Adapter class (in adapter.py).
4. We add the main() function, as shown earlier, and the usual trick to call it (in 

adapter.py).

Here is the output when executing the python adapter.py command, as usual:

the club Jazz Cafe hires an artist to perform for the 

people

the musician Roy Ayers plays music

the dancer Shane Sparks does a dance performance
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As you can see, we managed to make the Musician and Dancer classes compatible with 
the interface expected by the client, without changing their source code.

Summary
This chapter covered the adapter design pattern. The adapter makes things work after they 
have been implemented. The Pyramid web framework, the Plone CMS, and other Zope-
based or related frameworks use the adapter pattern to achieve interface compatibility. 
In the Implementation section, we saw how to achieve interface conformance using the 
adapter pattern without modifying the source code of the incompatible model. This is 
achieved through a generic Adapter class that does the work for us.

Overall, we could use the adapter pattern to make two (or more) incompatible interfaces 
compatible, which has a lot of usage in software engineering.

In the next chapter, we will cover the decorator pattern.
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Pattern
As we saw in the previous chapter, using an adapter, the first structural design pattern, 
you can adapt an object implementing a given interface to implement another interface. 
This is called interface adaptation and includes the kinds of patterns that encourage 
composition over inheritance, and it could bring benefits when you have to maintain  
a large codebase.

A second interesting structural pattern to learn about is the decorator pattern, which 
allows us to add responsibilities to an object dynamically and transparently (without 
affecting other objects); this will be the topic of this chapter. Throughout our discussions, 
we will learn more about a specific usage of this design pattern: memoization.

We will discuss the following topics:

• Introducing the decorator pattern 

• Real-world examples

• Use cases

• Implementation
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Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter20.

Introducing the decorator pattern
As Python developers, we can write decorators in a Pythonic way (meaning using the 
language's features), thanks to the built-in decorator feature (https://docs.python.
org/3/reference/compound_stmts.html#function). What exactly is this 
feature? A Python decorator is a callable (function, method, or class) that gets a function 
object, func_in, as input and returns another function object, func_out. It is a 
commonly used technique for extending the behavior of a function, method, or class.

But this feature should not be completely new to you. We have already seen how to use the 
built-in property decorator, which makes a method appear as a variable in both Chapter 
16, The Factory Pattern, and Chapter 17, The Builder Pattern. There are also several other 
useful built-in decorators in Python. In the Implementation section of this chapter, we will 
learn how to implement and use our own decorators.

Note that there is no one-to-one relationship between the decorator pattern and Python's 
decorator feature. Python decorators can actually do much more than the decorator 
pattern. One of the things they can be used for is to implement the decorator pattern 
(j.mp/moinpydec).

Now, let's discuss some examples where the decorator pattern applies.

Real-world examples
The decorator pattern is generally used for extending the functionality of an object. In 
everyday life, examples of functionality extensions are adding a holder stand to a phone  
or using different camera lenses.

In the Django framework, which uses decorators a lot, we have the View decorators, 
which can be used for the following (j.mp/djangodec):

• Restricting access to views based on the HTTP request

• Controlling the caching behavior on specific views

• Controlling compression on a per-view basis

• Controlling caching based on specific HTTP request headers

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter20
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter20
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter20
https://docs.python.org/3/reference/compound_stmts.html#function
https://docs.python.org/3/reference/compound_stmts.html#function
http://j.mp/moinpydec
http://j.mp/djangodec
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Both the Pyramid framework and the Zope application server also use decorators to 
achieve various goals, such as the following:

• Registering a function as an event subscriber

• Protecting a method with a specific permission

• Implementing the adapter pattern

To be more concrete, we will iterate the specific use cases of the design pattern in the  
next section.

Use cases
The decorator pattern shines when used for implementing cross-cutting concerns  
(j.mp/wikicrosscut). Examples of cross-cutting concerns are as follows:

• Data validation

• Caching

• Logging

• Monitoring

• Debugging

• Business rules

• Encryption

In general, all parts of an application that are generic and can be applied to many different 
parts of it are considered to be cross-cutting concerns.

Another popular example of using the decorator pattern is graphical user interface 
(GUI) toolkits. In a GUI toolkit, we want to be able to add features such as borders, 
shadows, colors, and scrolling to individual components/widgets.

Now, let's move on to the implementation part of the chapter, in which we will see how the 
decorator pattern helps with memoization.

http://j.mp/wikicrosscut
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Implementation
Python decorators are generic and very powerful. You can find many examples of how they 
can be used in the decorator library of python.org (j.mp/pydeclib). In this section, 
we will see how we can implement a memoization decorator (j.mp/memoi). All recursive 
functions can benefit from memoization, so let's try a function, number_sum(), that 
returns the sum of the first n numbers. Note that this function is already available in the 
math module as fsum(), but let's pretend it is not.

First, let's look at the naive implementation (the number_sum_naive.py file):

def number_sum(n): 

    '''Returns the sum of the first n numbers''' 

    assert(n >= 0), 'n must be >= 0' 

    

    if n == 0:

        return 0

    else:

        return n + number_sum(n-1)  

 

if __name__ == '__main__': 

    from timeit import Timer 

    t = Timer('number_sum(30)', 'from __main__ import \

       number_sum')

    print('Time: ', t.timeit())

A sample execution of this example shows how slow this implementation is. It takes 
roughly 3 seconds to calculate the sum of the first 30 numbers on a MacBook, which  
can be seen when executing the python number_sum_naive.py command:

Time:  3.023907012

Let's see whether using memoization can help us improve the performance number. In the 
following code, we use dict for caching the already computed sums. We also change the 
parameter passed to the number_sum() function. We want to calculate the sum of the 
first 300 numbers instead of only the first 30.

http://j.mp/pydeclib
http://j.mp/memoi
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Here is the new version of the code, using memoization:

sum_cache = {0:0}

  

def number_sum(n): 

    '''Returns the sum of the first n numbers''' 

    assert(n >= 0), 'n must be >= 0'

    

    if n in sum_cache:

        return sum_cache[n]

    res = n + number_sum(n-1)

    # Add the value to the cache

    sum_cache[n] = res

    return res

         

if __name__ == '__main__': 

    from timeit import Timer 

    t = Timer('number_sum(300)', 'from __main__ import \

      number_sum')

    print('Time: ', t.timeit())

Executing the memoization-based code shows that performance improves dramatically 
and is acceptable even for computing large values.

A sample execution, using python number_sum.py, is as follows:

Time:  0.12304591899999999

But there are already a few problems with this approach. While the performance is not 
an issue any longer, the code is not as clean as it is when not using memoization. And 
what happens if we decide to extend the code with more math functions and turn it into 
a module? We can think of several functions that would be useful for our module, for 
problems such as Pascal's triangle or the Fibonacci numbers suite algorithm.
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So, if we wanted a function in the same module as number_sum(), for the Fibonacci 
numbers suite, using the same memoization technique, we would add code that looks  
as follows:

cache_fib = {0:0, 1:1} 

 

def fibonacci(n): 

    '''Returns the suite of Fibonacci numbers''' 

    assert(n >= 0), 'n must be >= 0' 

    

    if n in cache_fib: 

        return cache_fib[n] 

    res = fibonacci(n-1) + fibonacci(n-2) 

    cache_fib[n] = res 

    return res

Do you notice the problem already? We ended up with a new dict called cache_fib,  
which acts as our cache for the fibonacci() function, and a function that is more 
complex than it would be without using memoization. Our module is becoming 
unnecessarily complex. Is it possible to write these functions keeping them as simple  
as the naive versions, but achieving performance similar to the performance of the 
functions that use memoization?

Fortunately, it is, and the solution is to use the decorator pattern.

First, we create a memoize() decorator, as shown in the following example. Our 
decorator accepts the fn function, which needs to be memoized, as an input. It uses dict 
named cache as the cached data container. The functools.wraps() function is used 
for convenience when creating decorators. It is not mandatory but a good practice to use 
it since it makes sure that the documentation, and the signature of the function that is 
decorated, is preserved (j.mp/funcwraps). The *args argument list is required in  
this case because the functions that we want to decorate accept input arguments (such as 
the n argument for our two functions):

import functools 

 

def memoize(fn): 

    cache = dict() 

 

http://j.mp/funcwraps
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    @functools.wraps(fn) 

    def memoizer(*args): 

        if args not in cache: 

            cache[args] = fn(*args) 

        return cache[args] 

 

    return memoizer

Now, we can use our memoize() decorator with the naive version of our functions. This 
has the benefit of readable code without performance impact. We apply a decorator using 
what is known as decoration (or a decoration line). A decoration uses the @name syntax, 
where name is the name of the decorator that we want to use. It is nothing more than 
syntactic sugar for simplifying the usage of decorators. We can even bypass this syntax  
and execute our decorator manually, but that is left as an exercise for you.

So, the memoize() decorator can be used with our recursive functions as follows:

@memoize 

def number_sum(n): 

    '''Returns the sum of the first n numbers''' 

    assert(n >= 0), 'n must be >= 0' 

    if n == 0:

        return 0

    else:

        return n + number_sum(n-1)

 

@memoize 

def fibonacci(n): 

    '''Returns the suite of Fibonacci numbers''' 

    assert(n >= 0), 'n must be >= 0'

    if n in (0, 1):

        return n

    else:

        return fibonacci(n-1) + fibonacci(n-2)
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In the last part of the code, via the main() function, we show how to use the decorated 
functions and measure their performance. The to_execute variable is used to hold  
a list of tuples containing the reference to each function and the corresponding  
timeit.Timer() call (to execute it while measuring the time spent), thus avoiding 
code repetition. Note how the __name__ and __doc__ method attributes show the 
proper function names and documentation values, respectively. Try removing the  
@functools.wraps(fn) decoration from memoize(), and see whether this is  
still the case.

Here is the last part of the code:

def main():

    from timeit import Timer

    to_execute = [

        (number_sum, 

         Timer('number_sum(300)', 'from __main__ import \

           number_sum')),

        (fibonacci, 

         Timer('fibonacci(100)', 'from __main__ import \

           fibonacci'))    

    ]

    

    for item in to_execute:

        fn = item[0]

        print(f'Function "{fn.__name__}": {fn.__doc__}')

        t = item[1]

        print(f'Time: {t.timeit()}')

        print()

if __name__ == '__main__': 

    main()

Let's recapitulate how we write the complete code of our math module (the mymath.py 
file):

1. After the import of Python's functools module that we will be using, we define 
the memoize() decorator function.

2. Then, we define the number_sum() function, decorated using memoize().
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3. We also define the fibonacci() function, as decorated.
4. Finally, we add the main() function, as shown earlier, and use the usual trick to call it.

Here is a sample output when executing the python mymath.py command:

Function "number_sum": Returns the sum of the first n 

numbers

Time: 0.152614356

Function "fibonacci": Returns the suite of Fibonacci 

numbers

Time: 0.142395913

(The execution times might differ in your case.)

At this point, we end up with readable code and acceptable performance. Now, you might 
argue that this is not the decorator pattern, since we don't apply it at runtime. The truth 
is that a decorated function cannot be undecorated, but you can still decide at runtime 
whether the decorator will be executed or not. That's an interesting exercise left for you.

Note
Use a decorator that acts as a wrapper, which decides whether or not the real 
decorator is executed based on some condition.

Another interesting property of decorators not covered in this chapter is that you can 
decorate a function with more than one decorator. So, here's another exercise: create  
a decorator that helps you to debug recursive functions, apply it to number_sum()  
and fibonacci(), and finally, determine the order in which the multiple decorators  
are executed.

Summary
This chapter covered the decorator pattern and its relationship to the Python programming 
language. We used the decorator pattern conveniently to extend the behavior of an object 
without using inheritance. Python, with its built-in decorator feature, extends the decorator 
concept even more, by allowing us to extend the behavior of any callable (function, method, 
or class) without using inheritance or composition.

We have seen a few examples of real-world objects that are decorated, such as cameras. 
From a software point of view, both Django and Pyramid use decorators to achieve 
different goals, such as controlling HTTP compression and caching.
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The decorator pattern is a great solution for implementing cross-cutting concerns because 
they are generic and do not fit well into the OOP paradigm. We mentioned several 
categories of cross-cutting concerns in the Use cases section. In fact, in the Implementation 
section, a cross-cutting concern was demonstrated: memoization. We saw how decorators 
can help us to keep our functions clean, without sacrificing performance.

The next chapter covers the bridge pattern.

Questions
1. What is the main motivation for the decorator pattern?
2. Why is the decorator pattern particularly relevant in Python?
3. How does the decorator pattern help with memoization?
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In the previous two chapters, we covered our first structural pattern, adapter, which is 
used to make two incompatible interfaces compatible, and decorator, which allows us to 
add responsibilities to an object in a dynamic way. There are more similar patterns. Let's 
continue with the series!

A third structural pattern to look at is the bridge pattern. We can actually compare the 
bridge and the adapter patterns by looking at the way they work. While the adapter is 
used to make unrelated classes work together (as we saw in the implementation example 
discussed in Chapter 19, The Adapter Pattern), the bridge pattern is designed upfront to 
decouple an implementation from its abstraction, as we are going to see in this chapter. 

Specifically, we will discuss the following topics:

• Real-world examples

• Use cases

• Implementation

By the end of this chapter, we will know how to implement this design pattern and 
understand better the aforementioned difference with the adapter pattern.
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Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter21.

Real-world examples
In our modern, everyday lives, one example of the bridge pattern that I can think of is 
information products from the digital economy. Nowadays, the information product, or 
infoproduct is part of the resources you can find online for training, self-improvement,  
or your ideas and business development. The purpose of an information product found  
on certain marketplaces, or the website of the provider, is to deliver information on a  
given topic in such a way that it is easy to access and consume. The material provided can 
be a PDF document or ebook, an ebook series, a video, a video series, an online course,  
a subscription-based newsletter, or a combination of all those formats.

In the software realm, device drivers are often cited as an example of the bridge pattern, 
when the developer of an operating system (OS) defines the interface for device vendors 
to implement it.

Next, let's discuss when this design pattern should be employed.

Use cases
Using the bridge pattern is a good idea when you want to share an implementation among 
multiple objects. Basically, instead of implementing several specialized classes, defining all 
that is required within each class, you can define the following special components:

• An abstraction that applies to all the classes

• A separate interface for the different objects involved

Next, we will see an implementation example that illustrates this approach.

Implementation
Let's assume we are building an application where the user is going to manage and deliver 
content after fetching it from diverse sources, which could be the following:

• A web page (based on its URL)

• A resource accessed on an FTP server

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter21
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter21
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter21
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• A file on the local filesystem

• A database server

So, here is the idea: instead of implementing several content classes, each holding the 
methods responsible for getting the content pieces, assembling them, and showing them 
inside the application, we can define an abstraction for the Resource Content and a 
separate interface for the objects that are responsible for fetching the content. Let's try it!

We begin with the class for our Resource Content abstraction, called 
ResourceContent. Then, we will need to define the interface for implementation 
classes that help fetch content, that is, the ResourceContentFetcher class. This 
concept is called the Implementor.

The first trick we use here is to use the _imp attribute on the ResourceContent  
class to maintain a reference to the object, which represents the Implementor:

class ResourceContent:

    """

    Define the abstraction's interface.

    Maintain a reference to an object which represents \

      the Implementor.

    """

    def __init__(self, imp):

        self._imp = imp

    def show_content(self, path):

        self._imp.fetch(path)

As you may know by now, we define the equivalent of an interface in the Python language 
using two features: the metaclass feature (which helps define the type of a type), and 
abstract base classes (ABC), as shown here:

class ResourceContentFetcher(metaclass=abc.ABCMeta):

    """

    Define the interface for implementation classes that \ 

      fetch content.

    """
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    @abc.abstractmethod

    def fetch(path):

        pass

Now, we can add an implementation class called URLFetcher to fetch content from  
a web page or resource:

class URLFetcher(ResourceContentFetcher):

    """

    Implement the Implementor interface and define its \

      concrete

    implementation.

    """

    

    def fetch(self, path):

        # path is an URL

        req = urllib.request.Request(path)

        with urllib.request.urlopen(req) as response:

            if response.code == 200:

                the_page = response.read()

                print(the_page)

We can also add an implementation class called LocalFileFecher to fetch content 
from a file on the local filesystem:

class LocalFileFetcher(ResourceContentFetcher):

    """

    Implement the Implementor interface and define its \ 

      concrete

    implementation.

    """

    def fetch(self, path):

        # path is the filepath to a text file

        with open(path) as f:

            print(r.read())
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Based on that, our main function for showing content using both content fetchers could 
look like the following:

def main():

    url_fetcher = URLFetcher()

    iface = ResourceContent(url_fetcher)

    iface.show_content('http://python.org')

    print('===================')

    

    localfs_fetcher = LocalFileFetcher()

    iface = ResourceContent(localfs_fetcher)

    iface.show_content('file.txt')

Overall, our process could be summarized in the following UML diagram, 
where LocalFileFetcher and URLFetcher both inherit from 
ResrouceContentFetcher, and ResourceContent stores a Fetcher object  
in its _imp field:

Figure 21.1 — UML diagram of the content-fetching application

Let's see a summary for the complete code of our example (the bridge.py file):

1. We import the three modules we need for the program (abc, urllib.parse, and 
urllib.request).

2. We define the ResourceContent class for the interface of the abstraction.
3. We define the ResourceContentFetcher class for the implementator.
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4. We define two implementation classes:

 � URLFetcher for fetching content from a URL

 � LocalFileFetcher for fetching content from the local filesystem

5. Finally, we add the main() function, as shown previously, and the usual trick  
to call it.

Here is some sample output when executing the python bridge.py command:

[output truncated]

des.js"></script>\n\n    <script type="text/javascript" 

src="/static/js/main-min.dd72c1659644.js" charset="utf-

8"></script>\n    \n\n    <!--[if lte IE 7]>\n    <script 

type="text/javascript" src="/static/js/plugins/IE8-

min.8af6e26c7a3b.js" charset="utf-8"></script>\n    \n    

\n    <![endif]-->\n\n    <!--[if lte IE 8]>\n    <script 

type="text/javascript" 

src="/static/js/plugins/getComputedStyle-

min.d41d8cd98f00.js" charset="utf-8"></script>\n    \n    

\n    <![endif]-->\n\n    \n\n    \n    

\n\n</body>\n</html>\n'

===================

Lorem ipsum dolor sit amet, consectetur adipiscing elit. 

Proin in nibh in enim euismod mattis placerat in velit. 

Donec malesuada risus sed venenatis pharetra. Proin 

tincidunt porttitor euismod. Etiam non odio sodales, 

tincidunt elit ac, sodales nisi. Donec massa felis, 

pharetra ut libero nec, consectetur venenatis dui. 

Phasellus nec sem non erat ultricies finibus. Donec sed 

blandit arcu. Aliquam erat volutpat. Donec aliquam ipsum 

risus, et accumsan nibh faucibus non. Aenean faucibus 

feugiat diam vitae rutrum. Sed ullamcorper leo sed orci 

efficitur rhoncus.

Duis vitae dolor vestibulum nibh semper faucibus. Vivamus 

libero quam, ultrices quis sapien vel, blandit ultricies 

purus. Nunc nisl lorem, rutrum id aliquam nec, dictum non 
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ligula. Duis ullamcorper, nulla quis luctus commodo, massa 

lorem tristique orci, quis aliquam diam est semper nisi. 

Maecenas tempor odio auctor nulla efficitur, non convallis 

tellus iaculis. Fusce quis purus nibh. Nulla tempor est vel 

metus sodales, in dapibus risus molestie. Donec tristique 

tellus in pretium pulvinar. Pellentesque ut vehicula 

mauris. Vivamus pellentesque, tellus in dictum vehicula, 

justo ex volutpat sem, at cursus nisl elit non ex. Sed sed 

leo eget eros lobortis laoreet. Sed ornare vitae mi a 

vestibulum. Suspendisse potenti. Donec sed ligula ac enim 

mattis posuere.

This is a basic illustration of how, using the bridge pattern in your design, you can extract 
content from different sources and integrate the results in the same data manipulation 
system or user interface.

Summary
In this chapter, we discussed the bridge pattern. Sharing similarities with the adapter 
pattern, the bridge pattern differs in the sense that it is used upfront to define 
an abstraction and its implementation in a decoupled way so that both can vary 
independently.

The bridge pattern is useful when writing software for problem domains such as OSs, 
device drivers, GUIs, and website builders where we have multiple themes, and we need  
to change the theme of a website based on certain properties.

To help you understand this pattern, we discussed an example in the domain of content 
extraction and management, where we defined an interface for the abstraction, an 
interface for the Implementor, and two implementations.

In the next chapter, we are going to cover the façade pattern.

Questions
1. What is the main motivation for the bridge pattern?
2. How does the bridge pattern differ from the adapter pattern?
3. How is the bridge pattern implemented in the Python example of content extraction 

we considered?
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In the previous chapter, we covered a third structural pattern, the bridge pattern, which 
helps to define an abstraction and its implementation in a decoupled way, so that both 
can vary independently. Now, we will learn about another structural pattern, the façade 
pattern, which achieves an important goal in many software use cases: hiding the inner 
workings of an application and only giving access to what is necessary. 

In the chapter, we will discuss the following topics:

• Understanding the façade pattern

• Real-world examples

• Use cases

• Implementation

Throughout this chapter, we will see why façade is a good pattern to employ and what its 
benefits are, and as always, implement a hands-on example in Python.

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter22.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter22
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter22
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter22
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Understanding the façade pattern
As systems evolve, they can get very complex. It is not unusual to end up with a very large 
(and sometimes confusing) collection of classes and interactions. In many cases, we don't 
want to expose this complexity to the client. This is where façade comes to our rescue.

The façade design pattern helps us to hide the internal complexity of our systems and 
expose only what is necessary to the client through a simplified interface. In essence, a 
façade is an abstraction layer implemented over an existing complex system.

Let's take the example of a computer to illustrate things. A computer is a complex machine 
that depends on several parts to be fully functional. To keep things simple, the word 
computer, in this case, refers to an IBM derivative that uses a von Neumann architecture. 
Booting a computer is a particularly complex procedure. The CPU, main memory, and 
hard disk need to be up and running, the boot loader must be loaded from the hard disk 
to the main memory, the CPU must boot the operating system (OS) kernel, and so forth. 
Instead of exposing all this complexity to the client, we create a façade that encapsulates 
the whole procedure, making sure that all steps are executed in the right order.

In terms of object design and programming, we should have several classes, but only 
the Computer class needs to be exposed to the client code. The client will only have to 
execute the start() method of the Computer class, for example, and all the other 
complex parts are taken care of by the façade Computer class.

Let's discuss more real-life examples of the façade pattern in the next section.

Real-world examples
The façade pattern is quite common in life. When you call a bank or a company, you 
are usually first connected to the customer service department. The customer service 
employee acts as a façade between you and the actual department (billing, technical 
support, general assistance, and so on), and the employee that will help you with your 
specific problem.

Another example is the key used to turn on a car or motorcycle, which can also be 
considered a façade. It is a simple way of activating a system that is very complex 
internally. And, of course, the same is true for other complex electronic devices that  
we can activate with a single button, such as computers.

In software, the django-oscar-datacash module is a Django third-party module 
that integrates with the DataCash payment gateway. The module has a gateway class that 
provides fine-grained access to the various DataCash APIs. On top of that, it also offers a 
façade class that provides a less granular API (for those who don't want to mess with the 
details), and the ability to save transactions for auditing purposes.
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In the next section, we will see why the façade pattern is important in software.

Use cases
The most common reason to use the façade pattern is to provide a single, simple entry 
point to a complex system. By introducing a façade, the client code can use a system by 
simply calling a single method/function. At the same time, the internal system does not 
lose any functionality; it just encapsulates it.

Not exposing the internal functionality of a system to the client code gives us an extra 
benefit: we can introduce changes to the system, but the client code remains unaware of 
and unaffected by the changes. No modifications are required to the client code.

The façade is also useful if you have more than one layer in your system. You can introduce 
one façade entry point per layer, and let all layers communicate with each other through 
their façades. This, in turn, promotes loose coupling and keeps the layers as independent  
as possible.

With that, we are now ready to try our hand at an actual implementation example in the 
next section.

Implementation
Assume that we want to create an OS using a multiserver approach, similar to how it is 
done in MINIX 3 (j.mp/minix3) or GNU Hurd (j.mp/gnuhurd). A multiserver OS 
has a minimal kernel, called the microkernel, which runs in privileged mode. All the other 
services of the system are following a server architecture (driver server, process server, file 
server, and so forth). Each server belongs to a different memory address space and runs 
on top of the microkernel in user mode. The pros of this approach are that the OS can 
become more fault-tolerant, reliable, and secure. For example, since all drivers are running 
in user mode on a driver server, a bug in a driver cannot crash the whole system, nor can 
it affect the other servers. The cons of this approach are the performance overhead and the 
complexity of system programming. These are a result of the communication happening 
between a server and the microkernel, as well as between the independent servers, using 
message passing. Message passing is more complex than the shared memory model used 
in monolithic kernels, such as Linux (j.mp/helenosm).

http://j.mp/minix3
http://j.mp/gnuhurd
http://j.mp/helenosm
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We begin with a Server interface. An Enum parameter describes the different possible 
states of a server. We use the Abstract Base Class (ABC) module to forbid direct 
instantiation of the Server interface and make the fundamental boot() and kill() 
methods mandatory, assuming that different actions are needed to be taken for booting, 
killing, and restarting each server. If you have not used the ABC module before, note the 
following important things:

• We need to subclass ABCMeta using the metaclass keyword.

• We use the @abstractmethod decorator for stating which methods should be 
implemented (mandatory) by all subclasses of the server.

Try removing the boot() or kill() method of a subclass and see what happens. Do  
the same after removing the @abstractmethod decorator as well. Do things work as 
you expected?

Let's consider the following code:

 State = Enum('State', 'new running sleeping restart \

   zombie')

  

 class Server(metaclass=ABCMeta):

     @abstractmethod

     def __init__(self):

         pass

  

     def __str__(self):

         return self.name

  

     @abstractmethod

     def boot(self):

         pass

  

     @abstractmethod  

     def kill(self, restart=True):

         pass
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A modular OS can have a great number of interesting servers: a file server, a process 
server, an authentication server, a network server, a graphical/window server, and so forth. 
The following example includes two stub servers: FileServer and ProcessServer. 
Apart from the methods required to be implemented by the Server interface, each server 
can have its own specific methods. For instance, FileServer has a create_file() 
method for creating files, and ProcessServer has a create_process() method for 
creating processes.

The FileServer class is as follows:

class FileServer(Server): 

    def __init__(self): 

        '''actions required for initializing the file \

          server''' 

        self.name = 'FileServer' 

        self.state = State.new 

 

    def boot(self): 

        print(f'booting the {self}') 

        '''actions required for booting the file server''' 

        self.state = State.running 

 

    def kill(self, restart=True): 

        print(f'Killing {self}') 

        '''actions required for killing the file server''' 

        self.state = State.restart if restart else \

          State.zombie 

 

    def create_file(self, user, name, permissions): 

        '''check validity of permissions, user rights, \

          etc.''' 

        print(f"trying to create the file '{name}' for \

           user '{user}' with permissions {permissions}") 
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The ProcessServer class is as follows:

class ProcessServer(Server): 

    def __init__(self): 

        '''actions required for initializing the process \ 

          server''' 

        self.name = 'ProcessServer' 

        self.state = State.new 

 

    def boot(self): 

        print(f'booting the {self}') 

        '''actions required for booting the process \

          server''' 

        self.state = State.running 

 

    def kill(self, restart=True): 

        print(f'Killing {self}') 

        '''actions required for killing the process \

          server''' 

        self.state = State.restart if restart else \

          State.zombie 

 

    def create_process(self, user, name): 

        '''check user rights, generate PID, etc.'''  

        print(f"trying to create the process '{name}' for \

          user '{user}'")

The OperatingSystem class is a façade. In its __init__() method, all the necessary 
server instances are created. The start() method, used by the client code, is the entry 
point to the system. More wrapper methods can be added, if necessary, as access points 
to the services of the servers, such as the create_file(), and create_process() 
wrappers. From the client's point of view, all those services are provided by the 
OperatingSystem class. The client should not be confused by unnecessary details  
such as the existence of servers and the responsibility of each server.
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The code for the OperatingSystem class is as follows:

class OperatingSystem: 

    '''The Facade''' 

    def __init__(self): 

        self.fs = FileServer() 

        self.ps = ProcessServer() 

 

    def start(self): 

        [i.boot() for i in (self.fs, self.ps)] 

 

    def create_file(self, user, name, permissions): 

        return self.fs.create_file(user, name, permissions) 

 

    def create_process(self, user, name): 

        return self.ps.create_process(user, name)

As you are going to see in a minute, when we present a summary of the example, there are 
many dummy classes and servers. They are there to give you an idea about the required 
abstractions (User, Process, File, and so forth) and servers (WindowServer, 
NetworkServer, and so forth) for making the system functional. A recommended 
exercise is to implement at least one service of the system (for example, file creation). Feel 
free to change the interface and the signature of the methods to fit your needs. Make sure 
that after your changes, the client code does not need to know anything other than the 
façade OperatingSystem class.
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This application could be summarized in the following UML diagram, where 
OperatingSystem interacts with both FileServer and ProcessServer,  
hiding their methods away from the client code:

Figure 22.1 — UML diagram for the OS example

We are going to recapitulate the details of our implementation example; the full code is in 
the facade.py file:

1. We start with the imports we need:

from enum import Enum 

from abc import ABCMeta, abstractmethod 

2. We define the State constant using Enum, as shown earlier.
3. We then add the User, Process, and File classes, which do nothing in this 

minimal but functional example:

class User: 

    pass 

 

class Process: 



Implementation     489

    pass 

 

class File: 

    pass 

4. We define the base Server class, as shown earlier.
5. We then define the FileServer class and the ProcessServer class, which are 

both subclasses of Server.
6. We add two other dummy classes, WindowServer and NetworkServer:

class WindowServer: 

    pass 

 

class NetworkServer: 

    pass

7. Then, we define our façade class, OperatingSystem, as shown earlier.
8. Finally, here is the main part of the code, where we use the façade we have defined:

def main(): 

    os = OperatingSystem() 

    os.start()  

    os.create_file('foo', 'hello', '-rw-r-r') 

    os.create_process('bar', 'ls /tmp') 

 

if __name__ == '__main__': 

    main()

As you can see, executing the python facade.py command shows the starting 
message of our two stub servers:

booting the FileServer

booting the ProcessServer

trying to create the file 'hello' for user 'foo' with 

permissions -rw-r-r

trying to create the process 'ls /tmp' for user 'bar'
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The façade OperatingSystem class does a good job. The client code can create files and 
processes without needing to know internal details about the OS, such as the existence of 
multiple servers. To be precise, the client code can call the methods for creating files and 
processes, but they are currently dummies. As an interesting exercise, you can implement 
one of the two methods, or even both.

Summary
In this chapter, we have learned how to use the façade pattern. This pattern is ideal for 
providing a simple interface to client code that wants to use a complex system but does 
not need to be aware of the system's complexity. We discussed a Django third-party 
module that uses façade: django-oscar-datacash. It uses the façade pattern to 
provide a simple DataCash API and the ability to save transactions.

We also learned how to implement the interface used by a multiserver OS. Overall,  
we learned that a façade is an elegant way of hiding the complexity of a system because,  
in most cases, the client code should not be aware of such details.

In the next chapter, we will cover other structural design patterns.

Questions
1. What are the high-level benefits of using the façade pattern?
2. How does using the façade pattern help when it comes to making changes to  

an application?
3. How is the façade pattern implemented in the Python example of the OS  

we considered?

Further reading
Design Patterns by Gamma Enrich, Helm Richard, Johnson Ralph, and Vlissides 
John available at https://www.amazon.com/Design-Patterns-Object-
Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8

https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
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Other Structural 

Patterns
Besides the patterns we covered in the previous chapters, there are other structural 
patterns we can cover: flyweight, model-view-controller (MVC), and proxy. These 
patterns are different from those discussed in previous chapters. The flyweight pattern is 
an optimization design pattern that's suitable for memory usage minimization. The MVC 
pattern, on the other hand, is popular in object-orient programming and is designed 
to separate different parts of a larger application. Finally, the proxy pattern is used to 
maintain actions that are taken on important objects.

These three patterns will complete our discussion on structural patterns. 

In this chapter, we will cover the following topics:

• Implementing the flyweight pattern

• Implementing the model-view-controller pattern

• Applying the proxy pattern

By the end of this chapter, we will have gained an overall understanding of various 
structural patterns and the use cases of each.
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Technical requirements
The code files for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter23.

Implementing the flyweight pattern
What is the flyweight pattern? Object-oriented systems can face performance issues due  
to the overhead of object creation. Performance issues usually appear in embedded 
systems with limited resources, such as smartphones and tablets. They can also appear 
in large and complex systems where we need to create a very large number of objects 
(and possibly users) that need to coexist at the same time. The flyweight pattern teaches 
programmers how to minimize memory usage by sharing resources with similar objects  
as much as possible.

Whenever we create a new object, extra memory needs to be allocated. Although virtual 
memory provides us, theoretically, with unlimited memory, the reality is different. If 
all the physical memory of a system gets exhausted, it will start swapping pages with 
the secondary storage – usually a hard disk drive (HDD) – which, in most cases, is 
unacceptable due to the performance differences between the main memory and the 
HDD. Solid-state drives (SSDs) generally have better performance than HDDs, but not 
everybody is expected to use SSDs. So, SSDs are not going to completely replace HDDs 
anytime soon.

Apart from memory usage, performance is also a consideration. Graphics software, 
including computer games, should be able to render 3D information (for example, a 
forest with thousands of trees, a village full of soldiers, or an urban area with a lot of cars) 
extremely quickly. If each object in a 3D terrain is created individually and no data  
sharing is used, the performance will be prohibitive.

As software engineers, we should solve software problems by writing better software, instead 
of forcing the customer to buy extra or better hardware. The flyweight design pattern is a 
technique that's used to minimize memory usage and improve performance by introducing 
data sharing between similar objects (http://j.mp/wflyw). A flyweight is a shared 
object that contains state-independent, immutable (also known as intrinsic) data. The 
state-dependent, mutable (also known as extrinsic) data should not be part of the flyweight 
pattern because this information cannot be shared since it differs per object. If the flyweight 
pattern needs extrinsic data, it should be provided explicitly by the client code.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter23
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter23
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter23
http://j.mp/wflyw
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An example may help clarify how the flyweight pattern can be used practically. Let's 
assume that we are creating a performance-critical game, such as a first-person shooter 
(FPS). In FPS games, the players (soldiers) share some states, such as representation 
and behavior. In Counter-Strike, for instance, all the soldiers on the same team (counter-
terrorists versus terrorists) look the same (representation). In the same game, all the 
soldiers (on both teams) have some common actions, such as jump, duck, and so forth 
(behavior). This means that we can create a flyweight that will contain all of the common 
data. Of course, the soldiers also have a lot of data that is different per soldier and will not 
be a part of the flyweight, such as weapons, health, and location.

What are other real-world examples of the flyweight pattern? We will discuss them in the 
next section.

Real-world examples
Flyweight is an optimization design pattern. Therefore, it is not easy to find a good 
non-computing example of it. We can think of flyweight as caching in real life. For 
example, many bookstores have dedicated shelves containing the newest and most popular 
publications. This is a cache: first, you can look at the dedicated shelves for the book you 
are looking for, and if you cannot find it, you can ask the bookseller to assist you.

The Exaile music player uses flyweight to reuse objects (in this case, music tracks) that are 
identified by the same URL. There's no point in creating a new object if it has the same 
URL as an existing object, so the same object is reused to save resources.

Peppy, an XEmacs-like editor that's implemented in Python, uses the flyweight pattern to 
store the state of a major mode status bar. That's because, unless they're modified by the 
user, all the status bars share the same properties.

Use cases
Flyweight is all about improving performance and memory usage. All embedded systems 
(phones, tablets, games consoles, microcontrollers, and so forth) and performance-critical 
applications (games, 3D graphics processing, real-time systems, and so forth) can benefit 
from it.
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The Gang of Four (GoF) book lists the following requirements that need to be satisfied to 
effectively use the flyweight pattern:

• The application needs to use many objects.

• There are so many objects that it's too expensive to store/render them. Once the 
mutable state is removed (because if it is required, it should be passed explicitly to 
the flyweight pattern by the client code), many groups of distinct objects can be 
replaced by relatively few shared objects.

• Object identity is not important for the application. We cannot rely on object 
identity because object sharing causes identity comparisons to fail (objects that 
appear different to the client code end up having the same identity).

Now, let's look at our hands-on implementation of the flyweight pattern.

Implementation
Let's see how we can implement the example that we briefly mentioned in the introduction 
to this section for cars in an area. We will create a small car park to illustrate the idea, 
making sure that the whole output can be read on a single Terminal page. However, no 
matter how large you make the car park, the memory allocation stays the same.

Before diving into the code, let's spend a moment noting the differences between 
memoization and the flyweight pattern. Memoization is an optimization technique that uses 
a cache to avoid recomputing results that were already computed in an earlier execution step. 
Memoization does not focus on a specific programming paradigm such as object-oriented 
programming (OOP). In Python, memoization can be applied to both methods and simple 
functions. Flyweight is an OOP-specific optimization design pattern that focuses on sharing 
object data.

First, we need an Enum parameter that describes the three different types of cars that are 
in the car park:

CarType = Enum('CarType', 'subcompact compact suv')

Then, we will define the class at the core of our implementation: Car. The pool variable is 
the object pool (in other words, our cache). Notice that pool is a class attribute (a variable 
that's shared by all instances).
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Using the __new__() special method, which is called before __init__(), we are 
converting the Car class into a metaclass that supports self-references. This means that 
cls references the Car class. When the client code creates an instance of Car, it passes 
the type of the car as car_type. The car's type is used to check if a car of the same 
type has already been created. If that's the case, the previously created object is returned; 
otherwise, the new car type is added to the pool and returned:

class Car: 

    pool = dict() 

 

    def __new__(cls, car_type): 

        obj = cls.pool.get(car_type, None) 

        if not obj: 

            obj = object.__new__(cls) 

            cls.pool[car_type] = obj 

            obj.car_type = car_type 

        return obj

The render() method is what will be used to render a car on the screen. Notice how all 
the mutable information not known by flyweight needs to be explicitly passed by the client 
code. In this case, a random color and the coordinates of a location (of the x, y form) are 
used for each car.

Also, note that to make render() more useful, it is necessary to ensure that no cars are 
rendered on top of each other. Consider this as an exercise: if you want to make rendering 
more fun, you can use a graphics toolkit such as Tkinter, Pygame, or Kivy.

The render() method is defined as follows:

    def render(self, color, x, y):

        type = self.car_type

        msg = f'render a car of type {type} and color \

          {color} at ({x}, {y})'

        print(msg)

The main() function shows how we can use the flyweight pattern. The color of a car is a 
random value from a predefined list of colors. The coordinates use random values between 
1 and 100. As we will see shortly, although 18 cars are rendered, memory is only allocated 
for 3. The last line of the output, which we will see later, proves that when using flyweight, 
we cannot rely on object identity.
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The id() function returns the memory address of an object. This is not the default 
behavior in Python because, by default, id() returns a unique ID (the memory address 
of an object as an integer) for each object. In our case, even if two objects appear to be 
different, they have the same identity if they belong to the same flyweight family (in this 
case, the family is defined by car_type). Of course, different identity comparisons can 
still be used for objects of different families, but that is only possible if the client knows  
the implementation details.

Our example main() function's code is as follows:

def main():

    rnd = random.Random() 

    colors = 'white black silver gray red blue brown \

      beige yellow green'.split()

    min_point, max_point = 0, 100 

    car_counter = 0 

 

    for _ in range(10): 

        c1 = Car(CarType.subcompact) 

        c1.render(random.choice(colors), 

                  rnd.randint(min_point, max_point), 

                  rnd.randint(min_point, max_point)) 

        car_counter += 1 

 

    ...

 

    print(f'cars rendered: {car_counter}') 

    print(f'cars actually created: {len(Car.pool)}') 

 

    c4 = Car(CarType.subcompact) 

    c5 = Car(CarType.subcompact) 

    c6 = Car(CarType.suv) 

    print(f'{id(c4)} == {id(c5)}? {id(c4) == id(c5)}') 

    print(f'{id(c5)} == {id(c6)}? {id(c5) == id(c6)}')
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Here is the full code listing (the flyweight.py file) to show you how the flyweight 
pattern is implemented and used:

1. First, we need a couple of imports:

import random 

from enum import Enum

2. The Enum for the types of cars is shown here:

CarType = Enum('CarType', 'subcompact compact suv')

3. Then, we have the Car class, with its pool attribute and the __new__() and 
render() methods:

class Car: 

    pool = dict() 

 

    def __new__(cls, car_type): 

        obj = cls.pool.get(car_type, None) 

        if not obj: 

            obj = object.__new__(cls) 

            cls.pool[car_type] = obj 

            obj.car_type = car_type 

        return obj 

 

    def render(self, color, x, y):

        type = self.car_type

        msg = f'render a car of type {type} and  \

          color {color} at ({x}, {y})'

        print(msg)

4. In the first part of the main function, we define some variables and render a set of 
cars of the subcompact type:

def main(): 

    rnd = random.Random() 

    colors = 'white black silver gray red blue \

      brown beige yellow green'.split()

    min_point, max_point = 0, 100 
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    car_counter = 0 

 

    for _ in range(10): 

        c1 = Car(CarType.subcompact) 

        c1.render(random.choice(colors), 

                  rnd.randint(min_point, max_point), 

                  rnd.randint(min_point, max_point)) 

        car_counter += 1  

5. The second part of the main function is as follows, which renders another set of 
cars of the compact type:

for _ in range(3): 

    c2 = Car(CarType.compact) 

    c2.render(random.choice(colors), 

              rnd.randint(min_point, max_point), 

              rnd.randint(min_point, max_point)) 

    car_counter += 1 

6. The third part of the main function is as follows, this time with suv cars:

for _ in range(5):   c3 = Car(CarType.suv) 

        c3.render(random.choice(colors), 

                  rnd.randint(min_point, max_point), 

                  rnd.randint(min_point, max_point)) 

        car_counter += 1 

 

    print(f'cars rendered: {car_counter}') 

    print(f'cars actually created: {len(Car.pool)}')

7. Finally, here is the fourth part of the main function, where we create three 
additional cars of the three types:

c4 = Car(CarType.subcompact)

c5 = Car(CarType.subcompact)

c6 = Car(CarType.suv)

print(f'{id(c4)} == {id(c5)}? {id(c4) == id(c5)}')

print(f'{id(c5)} == {id(c6)}? {id(c5) == id(c6)}')  
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8. We do not forget our usual __name__ == '__main__' trick and good practice, 
as follows:

if __name__ == '__main__':

     main()

The execution of the Python flyweight.py command shows the type, random color, 
and coordinates of the rendered objects, as well as the identity comparison results between 
flyweight objects of the same/different families:

render a car of type CarType.subcompact and color yellow at 

(57, 51)

render a car of type CarType.subcompact and color blue at 

(10, 61)

render a car of type CarType.subcompact and color gray at 

(65, 74)

render a car of type CarType.subcompact and color red at 

(10, 19)

render a car of type CarType.subcompact and color green at 

(89, 5)

render a car of type CarType.subcompact and color green at 

(88, 76)

render a car of type CarType.subcompact and color black at 

(0, 18)

render a car of type CarType.subcompact and color silver at 

(43, 12)

render a car of type CarType.subcompact and color red at 

(25, 71)

render a car of type CarType.subcompact and color blue at 

(68, 38)

render a car of type CarType.compact and color white at 

(79, 48)

render a car of type CarType.compact and color green at 

(18, 93)

render a car of type CarType.compact and color brown at 

(71, 43)

render a car of type CarType.suv and color silver at 

(2, 71)
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render a car of type CarType.suv and color blue at (70, 42)

render a car of type CarType.suv and color silver at 

(100, 98)

render a car of type CarType.suv and color gray at (83, 49)

render a car of type CarType.suv and color brown at (77, 2)

cars rendered: 18

cars actually created: 3

140569248959360 == 140569248959360? True

140569248959360 == 140569298067216? False

Do not expect to see the same output since the colors and coordinates are random, and the 
object identities depend on the memory map.

This program marks the end of our discussion of the flyweight pattern. In the next section, 
we will learn about the MVC pattern.

Implementing the model-view-controller 
pattern
The MVC pattern is useful mainly in application development and helps developers 
improve the maintainability of their applications by avoiding mixing the business logic 
with the user interface.

One of the design principles related to software engineering is the separation of concerns 
(SoC) principle. The idea behind the SoC principle is to split an application into distinct 
sections, where each section addresses a separate concern. Examples of such concerns 
are the layers that are used in a layered design (data access layer, business logic layer, 
presentation layer, and so forth). Using the SoC principle simplifies the development  
and maintenance of software applications.

The MVC pattern is nothing more than the SoC principle applied to OOP. The name 
of the pattern comes from the three main components that are used to split a software 
application: the model, the view, and the controller. MVC is considered an architectural 
pattern rather than a design pattern. The difference between an architectural and a design 
pattern is that the former has a broader scope than the latter. Nevertheless, MVC is too 
important to skip just for this reason. Even if we will never have to implement it from 
scratch, we need to be familiar with it because all common frameworks use MVC or  
a slightly different version of it (more on this shortly).
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The model is the core component. It represents knowledge. It contains and manages the 
(business) logic, data, state, and rules of an application. The view is a visual representation 
of the model. Examples of views include a computer GUI, the text output of a computer 
terminal, a smartphone's application GUI, a PDF document, a pie chart, a bar chart, and 
so forth. The view only displays the data; it doesn't handle it. The controller is the link/
glue between the model and view. All communication between the model and the view 
happens through a controller.

A typical use case for an application that uses MVC, after the initial screen is rendered for 
the user, is as follows:

1. The user triggers a view by clicking (typing, touching, and so on) a button.
2. The view informs the controller of the user's action.
3. The controller processes user input and interacts with the model.
4. The model performs all the necessary validation and state changes and informs the 

controller about what should be done.
5. The controller instructs the view to update and display the output appropriately, 

following the instructions that are given by the model.

This is summarized in the following diagram:

Figure 23.1 — An MVC diagram for a typical computer program
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You might be wondering, why is the controller part necessary? Can't we just skip it? We 
could, but then we would lose a big benefit that MVC provides: the ability to use more 
than one view (even at the same time, if that's what we want) without modifying the 
model. To achieve decoupling between the model and its representation, every view 
typically needs a controller. If the model communicated directly with a specific view,  
we wouldn't be able to use multiple views (or at least, not in a clean and modular way).

Now, let's see where the MVC pattern is used in the real world.

Real-world examples
As we mentioned previously, MVC is the SoC principle applied to OOP. The SoC principle 
is used a lot in real life. For example, if you build a new house, you usually assign different 
professionals to do the following:

• Install the plumbing and electricity

• Paint the house

Another example is a restaurant. In a restaurant, the waiters receive orders and serve 
dishes to the customers, but the meals are cooked by the chefs.

In web development, several frameworks use the MVC idea:

• The Web2py framework (http://j.mp/webtopy) is a lightweight Python 
framework that embraces the MVC pattern. If you have never tried Web2py, I 
encourage you to do so since it is extremely simple to install. Many examples 
demonstrate how MVC can be used in Web2py on the project's web page.

• Django is also an MVC framework, although it uses different naming conventions. 
The controller is called view, and the view is called template. Django uses the name 
Model-Template-View (MTV). According to the designers of Django, the view 
describes what data is seen by the user, so it uses the name view as the Python 
callback function for a particular URL. The term template in Django is used to 
separate content from its representation. It describes how the data is seen by the 
user, not which data is seen.

In the next section, we will detail the specific use cases of the MVC pattern.

http://j.mp/webtopy
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Use cases
MVC is a very generic and useful design pattern. All popular web frameworks (Django, 
Rails, and Symfony or Yii) and application frameworks (iPhone SDK, Android, and 
QT) make use of MVC or a variation of it – model-view-adapter (MVA), model-view-
presenter (MVP), and so forth. However, even if we don't use any of these frameworks, 
it makes sense to implement the pattern on our own because of the benefits it provides, 
which are as follows:

• The separation between the view and model allows graphic designers to focus on 
the UI part and programmers to focus on development, without them interfering 
with each other.

• Because of the loose coupling between the view and the model, each part can be 
modified/extended without them affecting the other. For example, adding a new 
view is trivial – just implement a new controller for it.

• Maintaining each part is easier because the responsibilities are clear.

When you implement MVC from scratch, ensure that you create smart models, thin 
controllers, and dumb views.

A model is considered smart because it does the following:

• Contains all the validation/business rules/logic

• Handles the state of the application

• Has access to application data (database, cloud, and so on)

• Does not depend on the UI

A controller is considered thin because it does the following:

• Updates the model when the user interacts with the view

• Updates the view when the model changes

• Processes the data before delivering it to the model/view, if necessary

• Does not display the data

• Does not access the application data directly

• Does not contain validation/business rules/logic
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A view is considered dumb because it does the following:

• Displays the data

• Allows the user to interact with it

• Does only minimal processing, usually provided by a template language (for example, 
using simple variables and loop controls)

• Does not store any data

• Does not access the application data directly

• Does not contain validation/business rules/logic

If you are implementing MVC from scratch and want to find out if you did it right, you 
can try answering some key questions:

• If your application has a GUI, is it skinnable? How easily can you change the skin/look 
and feel of it? Can you give the user the ability to change the skin of your application 
during runtime? If these tasks cannot be done easily, it means that something is 
going wrong with your MVC implementation.

• If your application has no GUI (for instance, if it's a terminal application), how hard 
is it to add GUI support? Or, if adding a GUI is irrelevant, is it easy to add views to 
display the results in a chart (pie chart, bar chart, and so on) or a document (PDF, 
spreadsheet, and so on)? If these changes are not trivial (a matter of creating a new 
controller with a view attached to it, without modifying the model), MVC has not 
been implemented properly.

If you make sure that these conditions are satisfied, your application will be more flexible 
and maintainable compared to an application that does not use MVC. We'll look at an 
example of this in the next section, where we will implement an application to maintain  
a collection of quotes.

Implementation
I could use any of the common frameworks to demonstrate how to use MVC, but I feel 
that the picture would be incomplete. So, I have decided to show you how to implement 
MVC from scratch using a very simple example: a quote printer. The idea is extremely 
simple. The user enters a number and sees the quote related to that number. The quotes  
are stored in a quotes tuple. This is the data that normally exists in a database, a file,  
and so on, and only the model has direct access to it.
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Let's consider the following code example:

quotes = 

(

  'A man is not complete until he is married. Then he is \

    finished.',

  'As I said before, I never repeat myself.',

  'Behind a successful man is an exhausted woman.',

  'Black holes really suck...',

  'Facts are stubborn things.'

)

The model is minimalistic; it only has a get_quote() method that returns the quote 
(string) of the quotes tuple based on its index, n. Note that n can be less than or equal  
to 0, due to the way indexing works in Python:

class QuoteModel:

     def get_quote(self, n):

         try:

             value = quotes[n]

         except IndexError as err:

             value = 'Not found!'

         return value

The view has three methods:

• Show(), which is used to print a quote (or the message; that is, Not found!) on 
the screen.

• error(), which is used to print an error message on the screen.

• select_quote(), which reads the user's selection.

This can be seen in the following code:

class QuoteTerminalView:

     def show(self, quote):

         print(f'And the quote is: "{quote}"')

  

     def error(self, msg):

         print(f'Error: {msg}')
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     def select_quote(self):

         return input('Which quote number would you like  \

           to see? ')

The controller does the coordination. The __init__() method initializes the model and 
view. The run() method validates the quoted index that's been given by the user, gets 
the quote from the model, and passes it back to the view to be displayed, as shown in the 
following code:

class QuoteTerminalController:

     def __init__(self):

         self.model = QuoteModel()

         self.view = QuoteTerminalView()

  

     def run(self):

         valid_input = False

         while not valid_input:

             try:

                 n = self.view.select_quote()

                 n = int(n)

                 valid_input = True

             except ValueError as err:

                 self.view.error(f"Incorrect index '{n}'")

         quote = self.model.get_quote(n)

         self.view.show(quote)

Last but not least, the main() function initializes and fires the controller, as shown in the 
following code:

def main():

     controller = QuoteTerminalController()

     while True:

         controller.run()

The following is the complete workflow for this example (the mvc.py file):

1. We start by defining a variable for the list of quotes.
2. We implement the model class, QuoteModel.
3. Then, we implement the view class, QuoteTerminalView. 
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4. Finally, we implement the controller class, QuoteTerminalController. 
5. At the end of our example code with the main() function, we initialize and run  

the controller.

The following sample execution of the Python mvc.py command shows how the 
program prints out quotes for the user:

Which quote number would you like to see? 2

And the quote is: "Behind a successful man is an exhausted 

woman."

Which quote number would you like to see? 4

And the quote is: "Facts are stubborn things."

Which quote number would you like to see? 1

And the quote is: "As I said before, I never repeat 

myself."

Which quote number would you like to see? 6

And the quote is: "Not found!"

Which quote number would you like to see? 3

And the quote is: "Black holes really suck..."

Which quote number would you like to see? 0

And the quote is: "A man is not complete until he is 

married. Then he is finished."

Which quote number would you like to see?   

Here, we can see that everything is working as intended!

And with that, we will move on to the last topic of this chapter: the proxy pattern.

Applying the proxy pattern
In some applications, we want to execute one or more important actions before accessing 
an object. This is where the proxy pattern comes in. An example is accessing sensitive 
information. Before we allow any user to access sensitive information, we want to make 
sure that the user has sufficient privileges. The important action is not necessarily related 
to security issues. Lazy initialization (http://j.mp/wikilazy) is another case; we 
want to delay the creation of a computationally expensive object until the first time the 
user needs to use it. The idea of the proxy pattern is to help with performing such an 
action before accessing the actual object.

http://j.mp/wikilazy
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The proxy design pattern gets its name from the proxy (also known as surrogate) object, 
which is used to perform an important action before the actual object is accessed.  
There are four different well-known proxy types (http://j.mp/proxypat). They  
are as follows:

• A remote proxy, which acts as the local representation of an object that exists in  
a different address space (for example, a network server).

• A virtual proxy, which uses lazy initialization to defer the creation of a 
computationally expensive object until the moment it is needed.

• A protection/protective proxy, which controls access to a sensitive object.

• A smart (reference) proxy, which performs extra actions when an object is accessed. 
Examples of such actions include reference counting and thread-safety checks.

I find virtual proxies very useful, so let's look at an example of how we can implement 
them in Python right now. In the Implementation subsection of this section, you will  
learn how to create protective proxies.

There are many ways to create a virtual proxy in Python, but I always like focusing on the 
idiomatic/Pythonic implementations. The code shown here is based on the great answer 
by Cyclone, a user of the following site: http://stackoverflow.com/ (http://j.
mp/solazyinit). To avoid confusion, I should clarify that in this section, the terms 
property, variable, and attribute are used interchangeably.

First, we must create a LazyProperty class that can be used as a decorator. When it 
decorates a property, LazyProperty loads the property lazily (on the first use), instead 
of instantly. The __init__() method creates two variables that are used as aliases 
to the method that initializes a property. The method variable is an alias to the actual 
method, while the method_name variable is an alias to the method's name. To get a 
better understanding of how the two aliases are used, print their values to the output 
(uncomment the two commented lines in the following code):

class LazyProperty:

    def __init__(self, method):

        self.method = method

        self.method_name = method.__name__

        # print(f"function overriden: {self.fget}")

        # print(f"function's name: {self.func_name}")

http://j.mp/proxypat
http://stackoverflow.com/
http://j.mp/solazyinit
http://j.mp/solazyinit
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The LazyProperty class is a descriptor (http://j.mp/pydesc). Descriptors are 
the recommended mechanisms to use in Python to override the default behavior of 
its attribute access methods: __get__(), __set__(), and __delete__(). The 
LazyProperty class only overrides __set__() because that is the only access method 
it needs to override. In other words, we don't have to override all the access methods. The 
__get__() method accesses the value of the property the underlying method wants to 
assign and uses setattr() to do the assignment manually.

What __get()__does is very neat: it replaces the method with the value! This means 
that not only is the property lazily loaded, but it can also only be set once. We will see what 
this means in a moment. Again, uncomment the commented line in the following code to 
get some extra information:

def __get__(self, obj, cls):

    if not obj:

        return None

    value = self.method(obj)

    # print(f'value {value}')

    setattr(obj, self.method_name, value)

    return value

The Test class shows how we can use the LazyProperty class. There are three 
attributes: x, y, and _resource. We want the _resource variable to be loaded lazily; 
thus, we must initialize it to None, as shown in the following code:

class Test:

    def __init__(self):

        self.x = 'foo'

        self.y = 'bar'

        self._resource = None

The resource() method is decorated with the LazyProperty class. For 
demonstration purposes, the LazyProperty class initializes the _resource attribute 
as a tuple, as shown in the following code. Normally, this would be a slow/expensive 
initialization process (database, graphics, and so on):

@LazyProperty

def resource(self):

    print(f'initializing self._resource which is: \

      {self._resource}')        

    self._resource = tuple(range(5)) # expensive

    return self._resource

http://j.mp/pydesc
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The main() function, as follows, shows how lazy initialization behaves:

def main():     

     t = Test()

     print(t.x)

     print(t.y)

     # do more work...

     print(t.resource)

     print(t.resource)

Notice how overriding the __get()__ access method makes it possible to treat the 
resource() method as a simple attribute (we can use t.resource instead of 
t.resource()).

In the execution output of this example (the lazy.py file), we can see the following:

• The _resource variable is initialized not by the time the t instance is created,  
but the first time that we use t.resource.

• The second time t.resource is used, the variable is not initialized again.  
That's why the initialization string that's initializing self._resource is shown 
only once.

Here is the output we get when we execute the Python lazy.py command:

foo

bar

initializing self._resource which is: None

(0, 1, 2, 3, 4)

(0, 1, 2, 3, 4)  

There are two basic, different kinds of lazy initialization in OOP. They are as follows:

• At the instance level: This means that an object's property is initialized lazily, but 
the property has an object scope. Each instance (object) of the same class has its 
own (different) copy of the property.

• At the class or module level: In this case, we do not want a different copy per 
instance, but all the instances share the same property, which is lazily initialized. This 
case is not covered in this chapter. If you find it interesting, consider it as an exercise.

Now, let's see what real-world examples follow the proxy pattern.
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Real-world examples
Chip (also known as Chip and PIN) cards (http://j.mp/wichpin) offer a good 
example of how a protective proxy is used in real life. A debit/credit card contains a chip 
that needs to be read by the ATM or card reader. Once the chip has been verified,  
a password (PIN) is required to complete the transaction. This means that you cannot 
make any transactions without physically presenting the card and knowing the PIN.

A bank check, which is used instead of cash to make purchases and deals, is an example  
of a remote proxy. The check gives access to a bank account.

In software, the weakref module of Python contains a proxy() method, which accepts 
an input object and returns a smart proxy to it. Weak references are the recommended way 
to add reference-counting support to an object.

Use cases
Since there are at least four common proxy types, the proxy design pattern has many use 
cases, as follows:

• It is used to create a distributed system using either a private network or the cloud. 
In a distributed system, some objects exist in the local memory, while other objects 
exist in the memory of remote computers. If we don't want the client code to be 
aware of such differences, we can create a remote proxy that hides/encapsulates 
them, making the distributed nature of the application transparent.

• It is used when our application is suffering from performance issues due to the early 
creation of expensive objects. Introducing lazy initialization using a virtual proxy 
to create the objects only at the moment they are required can give us significant 
performance improvements.

• It is used to check if a user has sufficient privileges to access a piece of information. 
If our application handles sensitive information (for example, medical data),  
we want to make sure that the user who's trying to access/modify it is allowed  
to do so. A protection/protective proxy can handle all security-related actions.

• It is used when our application (or library, toolkit, framework, and so forth)  
uses multiple threads and we want to move the burden of thread safety from the 
client code to the application. In this case, we can create a smart proxy to hide the 
thread-safety complexities from the client.

http://j.mp/wichpin
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• An object-relational mapping (ORM) API is also an example of how to use a 
remote proxy. Many popular web frameworks, including Django, use an ORM 
to provide OOP-like access to a relational database. An ORM acts as a proxy to a 
relational database that can be located anywhere, either at a local or remote server.

Now, let's apply the proxy pattern to build a simple interface that provides example  
users' information.

Implementation
To demonstrate the proxy pattern, we will implement a simple protection proxy to view 
and add users. The service provides two options:

• Viewing the list of users: This operation does not require special privileges.

• Adding a new user: This operation requires the client to provide a special  
secret message.

The SensitiveInfo class contains the information that we want to protect. The users 
variable contains the list of existing users. The read() method prints the list of users.  
The add() method adds a new user to the list.

Let's consider the following code:

class SensitiveInfo:

     def __init__(self):

         self.users = ['nick', 'tom', 'ben', 'mike']

  

     def read(self):

         nb = len(self.users)

         print(f"There are {nb} users: {' ' \

           .join(self.users)}")

  

     def add(self, user):

         self.users.append(user)

         print(f'Added user {user}')
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The Info class is a protection proxy of SensitiveInfo. The secret variable is the 
message that's required to be known/provided by the client code to add a new user. Note 
that this is just an example. In reality, you should never do the following:

• Store passwords in the source code

• Store passwords in a cleartext form

• Use a weak (for example, MD5) or custom form of encryption

In the Info class, as shown in the following code, the read() method is a wrapper  
to SensitiveInfo.read(), and the add() method ensures that a new user can  
only be added if the client code knows the secret message:

class Info:  

     '''protection proxy to SensitiveInfo'''

  

     def __init__(self):

         self.protected = SensitiveInfo()

         self.secret = '0xdeadbeef'

  

     def read(self):

         self.protected.read()

  

     def add(self, user):

         sec = input('what is the secret? ')

         self.protected.add(user) if sec == self.secret \

           else print("That's wrong!")

The main() function shows how the proxy pattern can be used by the client code. The 
client code creates an instance of the Info class and uses the displayed menu to read the 
list, add a new user, or exit the application. Let's consider the following code:

def main():

     info = Info()

  

     while True:

         print('1. read list |==| 2. add user |==| 3. \

           quit')

         key = input('choose option: ')
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         if key == '1':

             info.read()

         elif key == '2':

             name = input('choose username: ')

             info.add(name)

         elif key == '3':

             exit()

         else:

             print(f'unknown option: {key}')

The following is the sample output of the program when executing the Python proxy.py 
command:

1. read list |==| 2. add user |==| 3. quit

choose option: 1

There are 4 users: nick tom ben mike

1. read list |==| 2. add user |==| 3. quit

choose option: 2

choose username: bill

what is the secret? 12345

That's wrong!

1. read list |==| 2. add user |==| 3. quit

choose option: 2

choose username: bill

what is the secret? 0xdeadbeef

Added user bill

1. read list |==| 2. add user |==| 3. quit

choose option: 1

There are 5 users: nick tom ben mike bill

1. read list |==| 2. add user |==| 3. quit

Have you already spotted flaws or missing features that could improve our proxy example?  
I have a few suggestions. They are as follows:

• This example has a very big security flaw. Nothing prevents the client code 
from bypassing the security of the application by creating an instance of 
SensitiveInfo directly. Improve this example to prevent this situation. 
One way to do this is to use the abc module to forbid direct instantiation of 
SensitiveInfo. What other code changes are required in this case?
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• A basic security rule is that we should never store cleartext passwords. Storing 
a password safely is not very hard, so long as we know which libraries to use 
(http://j.mp/hashsec). If you are interested in security, try to implement a 
secure way to store the secret message externally (for example, in a file or database).

• The application only supports adding new users, but what about removing an existing 
user? Add a remove() method.

Summary
In this chapter, we covered three other structural design patterns: flyweight, MVC, and 
proxy. Throughout this chapter, we learned about the differences between these and the 
other structural patterns we have discussed. Then, we implemented each of these patterns 
in hands-on examples. As we saw, the flyweight pattern is designed for memory usage 
minimization, the MVC pattern maintains a logical organization of different parts of an 
application, and the proxy pattern is typically used when sensitive information is accessed.

In the next chapter, we will start exploring behavioral design patterns. Behavioral patterns 
cope with object interconnection and algorithms. The first behavioral pattern we will 
cover is the chain of responsibility.

Questions
1. What is the main motivation for the flyweight pattern?
2. What is the main motivation for the MVC pattern?
3. What is the main motivation for the proxy pattern?

http://j.mp/hashsec
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Responsibility 
Pattern

We now cover the Chain of Responsibility design pattern, which should be used, as we 
will see, when we do not know the number and type of requests/events we would need  
to support. While this may seem vague, this pattern is useful among a wide range of use 
cases, such as event-based systems, purchase systems, and shipping systems.

In this chapter, we will learn what the Chain of Responsibility pattern is, its benefits,  
and—as always—how to implement it in a practical Python example. We will discuss  
the following topics:

• Understanding the Chain of Responsibility pattern

• Real-world examples

• Use cases

• Implementation
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Technical requirements
The code files for this chapter can be accessed through this link: 

https://github.com/PacktPublishing/Advanced-Python-
Programming-Second-Edition/tree/main/Chapter24

Understanding the Chain of Responsibility 
pattern
When developing an application, most of the time, we know which method should satisfy 
a particular request in advance. However, this is not always the case. For example, think 
of any broadcast computer network, such as the original Ethernet implementation. In 
broadcast computer networks, all requests are sent to all nodes (broadcast domains are 
excluded for simplicity), but only the nodes that are interested in a sent request process it.

All computers that participate in a broadcast network are connected to each other using  
a common medium such as the cable that connects all nodes. If a node is not interested  
or does not know how to handle a request, it can perform the following actions:

• Ignore the request and do nothing

• Forward the request to the next node

The way in which the node reacts to a request is an implementation detail. However, we 
can use the analogy of a broadcast computer network to understand what the Chain of 
Responsibility pattern is all about. The Chain of Responsibility pattern is used when we 
want to give multiple objects the chance to satisfy a single request or when we don't know 
in advance which object (from a chain of objects) should process a specific request.

To illustrate the principle, imagine a chain (linked list, tree, or any other convenient data 
structure) of objects and the following flow:

1. We start by sending a request to the first object in the chain.
2. The object decides whether it should satisfy the request or not.
3. The object forwards the request to the next object.
4. This procedure is repeated until we reach the end of the chain.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter24
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter24
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At the application level, instead of talking about cables and network nodes, we can focus 
on objects and the flow of a request. The following diagram shows how the client code 
sends a request to all processing elements of an application:

Figure 24.1 – Client code sending a request

Note that the client code only knows about the first processing element, instead of having 
references to all of them, and each processing element only knows about its immediate next 
neighbor (called the successor), not about every other processing element. This is usually a 
one-way relationship, which in programming terms means a singly linked list in contrast 
to a doubly linked list. A singly linked list does not allow navigation in both ways, while a 
doubly linked list allows that. This chain organization is used for a good reason. It achieves 
decoupling between the sender (client) and the receivers (processing elements).

We will see some real-world examples of this pattern in the next section.

Real-world examples
Automated teller machines (ATMs) and, in general, any kind of machine that accepts/
returns banknotes or coins (for example, a snack-vending machine) use the Chain of 
Responsibility pattern.
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There is always a single slot for all banknotes, as shown in the following diagram, courtesy 
of SourceMaking (www.sourcemaking.com):

Figure 24.2 – An ATM has a single slot for all banknotes

When a banknote is dropped, it is routed to the appropriate receptacle. When it is 
returned, it is taken from the appropriate receptacle. We can think of the single slot as a 
shared communication medium and the different receptacles as processing elements. The 
result contains cash from one or more receptacles. For example, in the preceding diagram, 
we see what happens when we request United States dollars (USD) $175 from the ATM.

In software, the servlet filters of Java are pieces of code that are executed before a 
HyperText Transfer Protocol (HTTP) request arrives at a target. When using servlet 
filters, there is a chain of filters. Each filter performs a different action (user authentication, 
logging, data compression, and so forth) and either forwards the request to the next  
filter until the chain is exhausted or breaks the flow if there is an error—for example,  
the authentication failed three consecutive times (j.mp/soservl).

As another software example, Apple's Cocoa and Cocoa Touch frameworks use the Chain 
of Responsibility to handle events. When a view receives an event that it doesn't know how 
to handle, it forwards the event to its superview. This goes on until a view is capable of 
handling the event or the chain of views is exhausted (j.mp/chaincocoa).

When is this design pattern useful? Let's discuss that in the next section.

http://www.sourcemaking.com
http://j.mp/soservl
http://j.mp/chaincocoa
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Use cases
By using the Chain of Responsibility pattern, we provide a chance to a number of different 
objects to satisfy a specific request. This is useful when we don't know which object should 
satisfy a request in advance. An example is a purchase system. In purchase systems, there 
are many approval authorities. One approval authority might be able to approve orders up 
to a certain value—let's say $100. If the order is for more than $100, the order is sent to the 
next approval authority in the chain that can approve orders up to $200, and so forth.

Another case where the Chain of Responsibility is useful is when we know that more than 
one object might need to process a single request. This is what happens in event-based 
programming. A single event, such as a left-mouse click, can be caught by more than  
one listener.

It is important to note that the Chain of Responsibility pattern is not very useful if all the 
requests can be taken care of by a single processing element unless we really don't know 
which element that is. The value of this pattern is the decoupling that it offers. Instead of 
having a many-to-many relationship between a client and all processing elements (and 
the same is true regarding the relationship between a processing element and all other 
processing elements), a client only needs to know how to communicate with the start 
(head) of the chain.

The following diagram illustrates the difference between tight and loose coupling:

Figure 24.3 – Loose versus tight coupling
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The idea behind loosely coupled systems is to simplify maintenance and make it easier for 
us to understand how they function (j.mp/loosecoup).

We will see that this is the case in the next section, where we implement an event-based 
system.

Implementation
There are many ways to implement a Chain of Responsibility in Python, but my favorite 
implementation is the one by Vespe Savikko (https://legacy.python.org/
workshops/1997-10/proceedings/savikko.html). Vespe's implementation uses 
dynamic dispatching in a Pythonic style to handle requests (http://j.mp/ddispatch).

Let's implement a simple event-based system using Vespe's implementation as a guide. 
Here is a Unified Modeling Language (UML) class diagram of an event-based system:

Figure 24.4 – UML class diagram of an event-based system

The Event class describes an event. We'll keep it simple, so in our case, an event has only 
name, as illustrated in the following code snippet:

class Event:

     def __init__(self, name):

         self.name = name

 

     def __str__(self):

         return self.name

http://j.mp/loosecoup
https://legacy.python.org/workshops/1997-10/proceedings/savikko.html
https://legacy.python.org/workshops/1997-10/proceedings/savikko.html
http://j.mp/ddispatch
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The Widget class is the core class of the application. The parent aggregation shown in the 
UML diagram indicates that each widget can have a reference to a parent object, which, 
by convention, we assume is a Widget instance. Note, however, that according to the rules 
of inheritance, an instance of any of the subclasses of Widget (for example, an instance 
of MsgText) is also an instance of Widget. The default value of parent is None, as 
illustrated in the following code snippet:

class Widget:

     def __init__(self, parent=None):

         self.parent = parent

The handle() method uses dynamic dispatching through hasattr() and 
getattr() to decide who is the handler of a specific request (event). If the widget that 
is asked to handle an event does not support it, there are two fallback mechanisms. If the 
widget has a parent, then the handle() method of the parent is executed. If the widget 
has no parent but a handle_default() method, handle_default() is executed,  
as illustrated in the following code snippet:

def handle(self, event):

    handler = f'handle_{event}'

    if hasattr(self, handler):

    method = getattr(self, handler)

    method(event)

    elif self.parent is not None:

    self.parent.handle(event)

    elif hasattr(self, 'handle_default'):

    self.handle_default(event)

At this point, you might have realized why the Widget and Event classes are only 
associated (no aggregation or composition relationships) in the UML class diagram. The 
association is used to show that the Widget class knows about the Event class but does 
not have any strict references to it, since an event needs to be passed only as a parameter 
to handle().

MainWindow, MsgText, and SendDialog are all widgets with different behaviors. Not 
all these three widgets are expected to be able to handle the same events, and even if they 
can handle the same event, they might behave differently. MainWindow can only handle 
close and default events, as illustrated in the following code snippet:

class MainWindow(Widget):

     def handle_close(self, event):
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         print(f'MainWindow: {event}')

 

     def handle_default(self, event):

         print(f'MainWindow Default: {event}')

SendDialog can only handle paint events, as illustrated in the following code snippet:

class SendDialog(Widget):

     def handle_paint(self, event):

         print(f'SendDialog: {event}')

Finally, MsgText can only handle down events, as illustrated in the following code snippet:

class MsgText(Widget):

     def handle_down(self, event):

         print(f'MsgText: {event}')

The main() function shows how we can create a few widgets and events and how 
the widgets react to those events. All events are sent to all the widgets. Note the parent 
relationship of each widget. The sd object (an instance of SendDialog) has as its parent 
the mw object (an instance of MainWindow). However, not all objects need to have a 
parent that is an instance of MainWindow. For example, the msg object (an instance  
of MsgText) has the sd object as a parent, as illustrated in the following code snippet:

def main():

     mw = MainWindow()

     sd = SendDialog(mw)

     msg = MsgText(sd)

 

     for e in ('down', 'paint', 'unhandled', 'close'):

         evt = Event(e)

         print(f'Sending event -{evt}- to MainWindow')

         mw.handle(evt)

         print(f'Sending event -{evt}- to SendDialog')

         sd.handle(evt)

         print(f'Sending event -{evt}- to MsgText')

         msg.handle(evt)
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Executing the python chain.py command gives us the following output:

Sending event -down- to MainWindow

MainWindow Default: down

Sending event -down- to SendDialog

MainWindow Default: down

Sending event -down- to MsgText

MsgText: down

Sending event -paint- to MainWindow

MainWindow Default: paint

Sending event -paint- to SendDialog

SendDialog: paint

Sending event -paint- to MsgText

SendDialog: paint

Sending event -unhandled- to MainWindow

MainWindow Default: unhandled

Sending event -unhandled- to SendDialog

MainWindow Default: unhandled

Sending event -unhandled- to MsgText

MainWindow Default: unhandled

Sending event -close- to MainWindow

MainWindow: close

Sending event -close- to SendDialog

MainWindow: close

Sending event -close- to MsgText

MainWindow: close

There are some interesting things that we can see in the output. For instance, sending 
a down event to MainWindow ends up being handled by the default MainWindow 
handler. Another nice case is that although a close event cannot be handled directly 
by SendDialog and MsgText, all close events end up being handled properly by 
MainWindow. That's the beauty of using the parent relationship as a fallback mechanism.

If you want to spend some more creative time on the event example, you can replace  
the dumb print statements and add some actual behavior to the listed events. Of course, 
you are not limited to the listed events. Just add your favorite event and make it do 
something useful!

Another exercise is to add a MsgText instance during runtime that has MainWindow as 
the parent and do the same for an event (add a new event to an existing widget). 
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Summary
In this chapter, we covered the Chain of Responsibility design pattern. This pattern is 
useful to model requests and/or handle events when the number and type of handlers 
aren't known in advance. 

Overall, we have learned how to use this design pattern to facilitate loose coupling 
between the sender and the receiver(s). Some examples that we have seen where this  
is particularly beneficial include Java's servlet and Apple's Cocoa frameworks.

That's it for the Chain of Responsibility pattern. In the next chapter, we will cover the 
Command pattern.

Questions
The answers for the following questions can be found in the Assessments section at the end 
of the book.

1. What are the high-level benefits of the Chain of Responsibility pattern?
2. How is the Chain of Responsibility pattern implemented in the Python example of 

the event-based system we considered?
3. What is an example of a situation in which the Chain of Responsibility pattern is 

not useful?
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Pattern
In this chapter, we will cover the command pattern. Using this design pattern, we can 
encapsulate an operation, such as copy and paste, as an object. The command pattern 
is also great for grouping multiple commands. It's useful for implementing macros, 
multilevel undoing, and transactions. Throughout our discussions, we will learn about 
the idea of treating an operation as an object and use this command mindset to handle 
application transactions.

We will discuss the following:

• Understanding the command pattern

• Real-world examples

• Use cases

• Implementation

Technical requirements
The code files for this chapter can be accessed through this link: https://github.
com/PacktPublishing/Advanced-Python-Programming-Second-
Edition/tree/main/Chapter25.

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter25
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter25
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter25
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Understanding the command pattern
Most applications nowadays have an undo operation. It is hard to imagine, but undo did 
not exist in any software for many years. Undo was introduced in 1974 (j.mp/wiundo), 
but Fortran and Lisp, two programming languages that are still widely used, were created 
in 1957 and 1958, respectively (j.mp/proghist)! The user had no easy way to fix a 
mistake. I wouldn't like to have been an application user during those years.

Enough with the history! We want to know how we can implement the undo functionality 
in our applications, and since you have read the title of this chapter, you already know 
which design pattern is recommended to implement undo: the command pattern.

The command design pattern helps us encapsulate an operation (undo, redo, copy, paste, 
and so forth) as an object. What this simply means is that we create a class that contains all 
the logic and the methods required to implement the operation. The advantages of doing 
this are as follows (j.mp/cmdpattern):

• We don't have to execute a command directly. It can be executed at will.

• The object that invokes the command is decoupled from the object that knows how 
to perform it. The invoker does not need to know any implementation details about 
the command.

• If it makes sense, multiple commands can be grouped to allow the invoker to 
execute them in order. This is useful, for instance, when implementing a multilevel 
undo command.

As you can imagine, this pattern has a wide range of use cases in the real world, which  
we will see in the next section.

Real-world examples
When we go to a restaurant for dinner, we give the order to the waiter. The order pad 
(usually paper) that they use to write the order is an example of a command. After writing 
the order, the waiter places it in the queue that is executed by the cook. Each check is 
independent and can be used to execute many different commands, for example, one 
command for each item that will be cooked.

As you would expect, we also have several examples in software. Here are two I can  
think of:

• PyQt is the Python binding of the QT toolkit. PyQt contains a QAction class that 
models an action as a command. Extra optional information is supported for every 
action, such as description, tooltip, or shortcut (j.mp/qaction).

http://j.mp/wiundo
http://j.mp/proghist
http://j.mp/cmdpattern
http://j.mp/qaction
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• Git Cola (j.mp/git-cola), a Git GUI written in Python, uses the Command 
pattern to modify the model, amend a commit, apply a different election, check out, 
and so forth (j.mp/git-cola-code).

Let's now be more general and discuss when the command pattern will prove useful in the 
next section.

Use cases
Many developers use the undo example as the only use case of the command pattern.  
The truth is that undo is the killer feature of the command pattern. However, the 
command pattern can actually do much more (j.mp/commddp):

• GUI buttons and menu items: The PyQt example that was already mentioned uses 
the command pattern to implement actions on buttons and menu items.

• Other operations: Apart from undo, commands can be used to implement any 
operation. A few examples are cut, copy, paste, redo, and capitalize text.

• Transactional behavior and logging: Transactional behavior and logging  
are important to keep a persistent log of changes. They are used by operating 
systems to recover from system crashes, relational databases to implement 
transactions, filesystems to implement snapshots, and installers (wizards) to  
revert canceled installations.

• Macros: By macros, in this case, we mean a sequence of actions that can be recorded 
and executed on demand at any point in time. Popular editors such as Emacs and 
Vim support macros.

To demonstrate what we have discussed so far, we will implement a file utility 
management application next.

Implementation
In this section, we will use the command pattern to implement the most basic file utilities:

• Creating a file and optionally writing text (a string) to it

• Reading the contents of a file

• Renaming a file

• Deleting a file

http://j.mp/git-cola
http://j.mp/git-cola-code
http://j.mp/commddp
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We will not implement these utilities from scratch, since Python already offers good 
implementations of them in the os module. What we want is to add an extra abstraction 
level on top of them so that they can be treated as commands. By doing this, we get all  
the advantages offered by commands.

From the operations shown, renaming a file and creating a file support undo. Deleting a file 
and reading the contents of a file do not support undo. Undo can actually be implemented 
on delete file operations. One technique is to use a special trash/wastebasket directory that 
stores all the deleted files so that they can be restored when the user requests them. This  
is the default behavior used on all modern desktop environments and is left as an exercise 
to you.

Each command has two parts:

• The initialization part: This is taken care of by the __init__() method and 
contains all the information required by the command to be able to do something 
useful (the path of a file, the contents that will be written to the file, and so forth).

• The execution part: This is taken care of by the execute() method. We call 
the execute() method when we want to actually run a command. This is not 
necessarily right after initializing it.

Let's start with the rename utility, which is implemented using the RenameFile class. 
The __init__() method accepts the source (src) and destination (dest) file paths as 
parameters (strings). If no path separators are used, the current directory is used to create 
the file. An example of using a path separator is passing the /tmp/file1 string as src 
and the /home/user/file2 string as dest. Another example, where we would not  
use a path, is passing file1 as src and file2 as dest:

class RenameFile:

     def __init__(self, src, dest):  

         self.src = src

         self.dest = dest

We add the execute() method to the class. This method does the actual renaming 
using os.rename(). The verbose variable corresponds to a global flag, which, when 
activated (by default, it is activated), gives feedback to the user about the operation that 
is performed. You can deactivate it if you prefer silent commands. Note that although 
print() is good enough for an example, normally something more mature and powerful 
can be used, for example, the logging module (j.mp/py3log):

    def execute(self):  

        if verbose:  

http://j.mp/py3log
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            print(f"[renaming '{self.src}' to \

              '{self.dest}']")  

        os.rename(self.src, self.dest)

Our rename utility (RenameFile) supports the undo operation through its undo() 
method. In this case, we use os.rename() again to revert the name of the file to its 
original value:

    def undo(self):  

        if verbose:  

            print(f"[renaming '{self.dest}' back to \

              '{self.src}']")  

        os.rename(self.dest, self.src)

In this example, deleting a file is implemented in a function, instead of a class. That is to 
show it is not mandatory to create a new class for every command that you want to add 
(more on that will be covered later). The delete_file() function accepts a file path  
as a string and uses os.remove() to delete it:

def delete_file(path):

    if verbose:

        print(f"deleting file {path}")

    os.remove(path)

Back to using classes again. The CreateFile class is used to create a file. The __init__
() method for that class accepts the familiar path parameter and a txt parameter for 
the content (a string) that will be written to the file. If nothing is passed as txt, the default 
hello world text is written to the file. Normally, the same default behavior is to create 
an empty file, but for the needs of this example, I decided to write a default string in it.

The definition of the CreateFile class starts as follows:

class CreateFile:

 

    def __init__(self, path, txt='hello world\n'):  

        self.path = path 

        self.txt = txt
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Then we add an execute() method, in which we use the with statement and Python's 
open() built-in function to open the file (mode='w' means write mode), and the 
write() function to write the txt string to it, as follows:

    def execute(self):  

        if verbose:  

            print(f"[creating file '{self.path}']")  

        with open(self.path, mode='w', encoding='utf-8') \

           as out_file:  

            out_file.write(self.txt)

The undo action for the operation of creating a file is to delete that file. So, the undo() 
method, which we add to the class, simply uses the delete_file() function to achieve 
that, as follows:

    def undo(self):  

        delete_file(self.path)

The last utility gives us the ability to read the contents of a file. The execute() method 
of the ReadFile class uses open() again, this time in read mode, and just prints the 
content of the file using print().

The ReadFile class is defined as follows:

class ReadFile:

 

     def __init__(self, path):  

         self.path = path

 

     def execute(self):  

         if verbose:  

             print(f"[reading file '{self.path}']")  

         with open(self.path, mode='r', encoding='utf-8') \

           as in_file:  

             print(in_file.read(), end='')
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The main() function makes use of the utilities we have defined. The orig_name and 
new_name parameters are the original and new names of the file that is created and 
renamed. A commands list is used to add (and configure) all the commands that we want 
to execute at a later point. Note that the commands are not executed unless we explicitly 
call execute() for each command:

def main():

     orig_name, new_name = 'file1', 'file2'

     commands = (

         CreateFile(orig_name),

         ReadFile(orig_name),  

         RenameFile(orig_name, new_name)

     )

  

     [c.execute() for c in commands]

The next step is to ask the users whether they want to undo the executed commands or 
not. The user selects whether the commands will be undone or not. If they choose to 
undo them, undo() is executed for all commands in the commands list. However, since 
not all commands support undo, exception handling is used to catch (and ignore) the 
AttributeError exception generated when the undo() method is missing. The code 
would look like the following:

answer = input('reverse the executed commands? [y/n] ')  

  

if answer not in 'yY':

   print(f"the result is {new_name}")  

   exit()  

  

for c in reversed(commands):  

   try:  

   c.undo()  

except AttributeError as e:  

    print("Error", str(e))

Using exception handling for such cases is an acceptable practice, but if you don't like it, 
you can check explicitly whether a command supports the undo operation by adding a 
Boolean method, for example, supports_undo() or can_be_undone(). Again, that 
is not mandatory.
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Let's see two sample executions using the python command.py command line.

In the first one, there is no undo of commands:

[creating file 'file1']

[reading file 'file1']

hello world

[renaming 'file1' to 'file2']

reverse the executed commands? [y/n] y

[renaming 'file2' back to 'file1']

Error 'ReadFile' object has no attribute 'undo'

deleting file file1

In the second one, we have the undo of commands:

[creating file 'file1']

[reading file 'file1']

hello world

[renaming 'file1' to 'file2']

reverse the executed commands? [y/n] n

the result is file2

But wait! Let's see what can be improved in our command implementation example. 
Among the things to consider are the following:

• What happens if we try to rename a file that doesn't exist?

• What about files that exist but cannot be renamed because we don't have the proper 
filesystem permissions?

We can try improving the utilities by doing some kind of error handling. Checking the 
return status of the functions in the os module can be useful. We could check whether  
the file exists before trying the delete action, using the os.path.exists() function.

Also, the file creation utility creates a file using the default file permissions as decided by 
the filesystem. For example, in POSIX systems, the permissions are -rw-rw-r--. You 
might want to give the ability to the user to provide their own permissions by passing the 
appropriate parameter to CreateFile. How can you do that? Hint: one way is by using 
os.fdopen().
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And now, here's something for you to think about. I mentioned earlier that a command 
does not necessarily need to be a class. That's how the delete utility was implemented; there 
is just a delete_file() function. What are the advantages and disadvantages of this 
approach? Here's a hint: is it possible to put a delete command in the commands list as 
was done for the rest of the commands? We know that functions are first-class citizens in 
Python, so we can do something such as the following (see the first-class.py file):

import os  

verbose = True  

class CreateFile:

    def undo(self):  

        try:

            delete_file(self.path)

        except:

            print('delete action not successful...')

            print('... file was probably already deleted.')

     

def main():

    orig_name = 'file1'  

    df=delete_file  

    commands = [CreateFile(orig_name),] 

    commands.append(df)  

  

    for c in commands:  

        try:  

            c.execute()  

        except AttributeError as e:  

            df(orig_name)  

  

    for c in reversed(commands):  

        try:  

            c.undo()  
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        except AttributeError as e:  

            pass

            

if __name__ == "__main__":  

    main()

Running first-class.py gives us the following output:

[creating file 'file1']

deleting file file1...

deleting file file1...

delete action not successful...

... file was probably already deleted.

We see that this variant of the implementation example works as intended, as the second 
delete throws an error saying that the action was not successful.

With that said, there are some potential improvements to this program that you could 
think about. First, the code we have is not uniform; we rely too much on exception 
handling, which is not the normal flow of a program. While all the other commands we 
implemented have an execute() method, in this case, there is no execute().

Furthermore, the delete file utility currently has no undo support. What happens if we 
eventually decide to add undo support for it? Normally, we add an undo() method to the 
class that represents the command. However, in this case, there is no class. We could create 
another function to handle undo, but creating a class is a better approach.

Summary
In this chapter, we covered the command pattern. Using this design pattern, we can 
encapsulate an operation, such as copy and paste, as an object. Using this pattern, we can 
execute a command whenever we want, and not necessarily at creation time, while the 
client code that executes a command does not need to know any details about how it is 
implemented. Moreover, we can group commands and execute them in a specific order.

To demonstrate command, we implemented some basic file utilities on top of Python's os 
module. Our utilities supported undo and had a uniform interface, which makes grouping 
commands easy.

The next chapter covers the Observer pattern.
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Questions
The answers to these questions can be found in the Assessments section at the end of  
the book:

1. What are the high-level benefits of the command pattern?
2. From the perspective of the client of an application, how is the command pattern 

specifically useful?
3. How is the command pattern implemented in the Python example of file 

management?





26
The Observer 

Pattern
We use the observer pattern when we want to be able to inform/notify all stakeholders  
(an object or a group of objects) when the state of an object changes. An important feature 
of the observer pattern is that the number of subscribers/observers, as well as who the 
subscribers are, may vary and can be changed at runtime. 

In this chapter, we will learn about this design pattern while comparing it to a similar  
one we have seen in the past, known as the MVC pattern, and use it to implement  
a data formatter.

Specifically, we will cover the following topics:

• Understanding the observer pattern

• Real-world examples

• Use cases

• Implementation
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Technical requirements
The code files for this chapter can be found at https://github.com/
PacktPublishing/Advanced-Python-Programming-Second-Edition/
tree/main/Chapter26.

Understanding the observer pattern
When we need to update a group of objects when the state of another object changes, a 
popular solution is offered by the Model-View-Controller (MVC) pattern. Let's assume 
that we are using the data of the same model in two views; for instance, in a pie chart and 
a spreadsheet. Whenever the model is modified, both views need to be updated. That's the 
role of the observer pattern.

The observer pattern describes a publish-subscribe relationship between a single object – 
the publisher, which is also known as the subject or observable – and one or more objects 
– the subscribers, also known as observers.

In the case of MVC, the publisher is the model, while the subscribers are the views. There 
are other examples that we will discuss throughout this chapter.

The ideas behind the observer pattern are the same as those behind the separation of 
concerns principle; that is, to increase decoupling between the publisher and subscribers, 
and to make it easy to add/remove subscribers at runtime. Let's look at a couple of 
examples of this.

Real-world examples
In reality, an auction resembles the observer pattern. Every auction bidder has a numbered 
paddle that is raised whenever they want to place a bid. Whenever the paddle is raised by a 
bidder, the auctioneer acts as the subject by updating the price of the bid and broadcasting 
the new price to all bidders (subscribers).

In software, we can cite at least two examples:

• Kivy, the Python framework for developing user interfaces, has a module called 
Properties, which implements the observer pattern. Using this technique, you can 
specify what should happen when a property's value changes.

• The RabbitMQ library can be used to add asynchronous messaging support to  
an application. Several messaging protocols are supported, such as HTTP and 
AMQP. RabbitMQ can be used in a Python application to implement a publish-
subscribe pattern, which is nothing more than the observer design pattern  
(j.mp/rabbitmqobs).

https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter26
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter26
https://github.com/PacktPublishing/Advanced-Python-Programming-Second-Edition/tree/main/Chapter26
http://j.mp/rabbitmqobs
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In the next section, we will discuss when this design pattern could and should be used.

Use cases
We generally use the observer pattern when we want to inform/update one or more 
objects (observers/subscribers) about a change that happened on a given object (subject/
publisher/observable). The number of observers, as well as who those observers are, may 
vary and can be changed dynamically.

We can think of many cases where the observer pattern can be useful. One such use case  
is newsfeeds. With RSS, Atom, or other related formats, you follow a feed, and every time 
it is updated, you receive a notification about the update.

The same concept exists in social networking. If you are connected to another person 
using a social networking service, and your connection updates something, you are 
notified about it. It doesn't matter if the connection is a Twitter user that you follow,  
a real friend on Facebook, or a business colleague on LinkedIn.

Event-driven systems is another example where the observer pattern is usually used. In 
such systems, you have listeners that listen for specific events. The listeners are triggered 
when an event they are listening to is created. This can be typing a specific key (on the 
keyboard), moving the mouse, and more. The event plays the role of the publisher, and the 
listeners play the role of the observers. The key point, in this case, is that multiple listeners 
(observers) can be attached to a single event (publisher).

Finally, in the next section, we will implement a data formatter.

Implementation
The ideas described here are based on the ActiveState Python Observer code recipe 
(https://code.activestate.com/). There is a default formatter that shows a value 
in decimal format. However, we can add/register more formatters. In this example, we will 
add a hex formatter and a binary formatter. Every time the value of the default formatter is 
updated, the registered formatters will be notified and take action. In this case, the action 
is to show the new value in the relevant format.

The observer pattern is one of the patterns where inheritance makes sense. We can have a 
base Publisher class that contains the common functionality of adding, removing, and 
notifying observers. Our DefaultFormatter class derives from Publisher and adds 
the formatter-specific functionality. We can also dynamically add and remove observers 
on demand.

https://code.activestate.com/
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We will begin with the Publisher class. The observers are kept in the observer's list. 
The add() method registers a new observer or throws an error if it already exists. The 
remove() method unregisters an existing observer or throws an exception if it does not 
exist. Finally, the notify() method informs all observers about a change. This is shown 
in the following code block:

class Publisher:  

    def __init__(self):  

        self.observers = []  

 

    def add(self, observer):  

        if observer not in self.observers:  

            self.observers.append(observer)  

        else:  

            print(f'Failed to add: {observer}')  

 

    def remove(self, observer):  

        try:  

            self.observers.remove(observer)  

        except ValueError:  

            print(f'Failed to remove: {observer}')  

 

    def notify(self):  

        [o.notify(self) for o in self.observers]  

Let's continue with the DefaultFormatter class. The first thing that __init__() 
does is call the __init__() method of the base class since this is not done automatically 
in Python.

A DefaultFormatter instance has a name to make it easier for us to track its status. 
We use name mangling in the _data variable to state that it should not be accessed 
directly. Note that this is always possible in Python but fellow developers have no excuse 
for doing so since the code already states that they shouldn't. DefaultFormatter treats 
the _data variable as an integer, and the default value is 0:

class DefaultFormatter(Publisher):  

     def __init__(self, name):  

         Publisher.__init__(self)  
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         self.name = name  

         self._data = 0

The __str__() method returns information about the name of the publisher and the 
value of the _data attribute. type(self).__name__ is a handy trick to get the name 
of a class without hardcoding it. It is one of those tricks that makes your code easier  
to maintain:

def __str__(self):

     return f"{type(self).__name__}: '{self.name}' \

       has data = 

     {self._data}"

There are two data() methods. The first one uses the @property decorator to give  
read access to the _data variable. Using this, we can just execute object.data instead 
of object.data():

@property  

def data(self):  

    return self._data

The second data() method is more interesting. It uses the @setter decorator, which is 
called every time the assignment (=) operator is used to assign a new value to the _data 
variable. This method also tries to cast a new value to an integer, and does exception 
handling in case this operation fails:

@data.setter  

def data(self, new_value):  

    try:  

       self._data = int(new_value)  

    except ValueError as e:  

       print(f'Error: {e}')  

    else:

       self.notify()



544     The Observer Pattern

The next step is to add the observers. The functionality of HexFormatter and 
BinaryFormatter is very similar. The only difference between them is how they format 
the value of the data that's received by the publisher – that is, in hexadecimal and binary, 
respectively:

class HexFormatterObs:  

    def notify(self, publisher):  

        value = hex(publisher.data)

        print(f"{type(self).__name__}: '{publisher.name}' \

           has now hex data = {value}")  

 

class BinaryFormatterObs:  

    def notify(self, publisher):  

        value = bin(publisher.data)

        print(f"{type(self).__name__}: '{publisher.name}' \

          has now bin data = {value}")

To help us use those classes, the main() function initially creates a DefaultFormatter 
instance named test1 and, afterward, attaches (and detaches) the two available observers. 
We also have some exception handling to ensure that the application doesn't crash when 
erroneous data is passed by the user.

The code is as follows:

def main():  

    df = DefaultFormatter('test1')  

    print(df)  

 

    print()  

    hf = HexFormatterObs()  

    df.add(hf)  

    df.data = 3  

    print(df)  

 

    print()  

    bf = BinaryFormatterObs()  

    df.add(bf)  

    df.data = 21  

    print(df)
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Moreover, tasks such as trying to add the same observer twice or removing an observer 
that does not exist should cause no crashes:

print()  

df.remove(hf)  

df.data = 40  

print(df)  

 

print()  

df.remove(hf)  

df.add(bf)  

 

df.data = 'hello'  

print(df)  

 

print()  

df.data = 15.8  

print(df)

Before we run this code and observe the output, let's have a recap on the full code  
(the observer.py file):

1.  First, we define the Publisher class. 
2. Then, we define the DefaultFormatter class, along with its  

special __init__ and __str__ methods. 
3. We add the data property getter and setter methods to the DefaultFormatter 

class. 
4. We define our two observer classes. 
5. Finally, we take care of the main part of the program.

Executing the python observer.py command gives us the following output:

DefaultFormatter: 'test1' has data = 0

HexFormatterObs: 'test1' has now hex data = 0x3

DefaultFormatter: 'test1' has data = 3

HexFormatterObs: 'test1' has now hex data = 0x15
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BinaryFormatterObs: 'test1' has now bin data = 0b10101

DefaultFormatter: 'test1' has data = 21

BinaryFormatterObs: 'test1' has now bin data = 0b101000

DefaultFormatter: 'test1' has data = 40

Failed to remove: <__main__.HexFormatterObs object at 

0x7fe6e4c9d670>

Failed to add: <__main__.BinaryFormatterObs object at 

0x7fe6e4c9d5b0>

Error: invalid literal for int() with base 10: 'hello'

DefaultFormatter: 'test1' has data = 40

BinaryFormatterObs: 'test1' has now bin data = 0b1111

DefaultFormatter: 'test1' has data = 15

Here, we can see that as the extra observers are added, the more (and more relevant) 
output is shown, and when an observer is removed, it is not notified any longer. That's 
exactly what we want: runtime notifications that we can enable/disable on demand.

The defensive programming part of the application also seems to work fine. Trying to 
do funny things, such as removing an observer that does not exist or adding the same 
observer twice, is not allowed. The messages that are shown are not very user-friendly, but 
I leave it up to you to make them friendlier as an exercise. Runtime failures such as trying 
to pass a string when the API expects a number are also handled properly without causing 
the application to crash/terminate.

This example would be much more interesting if it were interactive. Even a simple menu 
that allows the user to attach/detach observers at runtime and modify the value of 
DefaultFormatter would be nice because the runtime aspect becomes much  
more visible. Feel free to do this.

Another nice exercise is to add more observers. For example, you can add an octal 
formatter, a Roman numeral formatter, or any other observer that uses your favorite 
representation. Be creative! With this, we have completed our discussion on the  
observer pattern.
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Summary
In this chapter, we covered the observer design pattern, including many examples,  
such as Kivy, the framework for developing innovative user interfaces, along with its 
Properties concept and module, and the Python bindings of RabbitMQ (we referred to 
a specific example of RabbitMQ that's used to implement the publish-subscribe, or the 
observer, pattern).

We also learned how to use the observer pattern to create data formatters that can be 
attached and detached at runtime to enrich the behavior of an object. Hopefully, you  
will find the recommended exercises interesting.

This also marks the end of this book. Congratulations on making it to the end, and I hope 
that the material that's been covered has been helpful for you in taking your Python skills 
to the next level!

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is the main motivation for the observer pattern?
2. How is the observer pattern different from the MVC pattern when it comes to 

updating other components of an application when a target component changes?
3. How is the observer pattern implemented in the Python example of value formatters?
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Chapter 1
1. In the order of importance: functionality, correctness, and efficiency.
2. An assert statement raises an error when the condition it checks for is not 

satisfied. As such, these statements are used in tests, where we determine whether  
a program computes and outputs values as it is supposed to.

3. A benchmark is a small but representative use case that can be used to estimate the 
speed of a program. Benchmarks can be used to compare different versions of a 
program to see if a new implementation leads to an improvement in efficiency.

4. In IPython or Jupyter notebooks, the timeit magic command, when placed in 
front of a code snippet, will run that code several times and record the running 
time of each run. The output of the command will show summary statistics of the 
recorded times so that we can estimate the average running time of the code we  
are interested in.

5. cProfile includes the following in its output:

A. ncalls: The number of times the function was called.
B. tottime: The total time spent in the function without considering the calls  

to other functions.
C. cumtime: The time in the function, including other function calls.
D. percall: The time spent for a single call of the function, which can be 

obtained by dividing the total or cumulative time by the number of calls.
E. filename:lineno: The filename and corresponding line numbers. This 

information is not available when calling C extensions modules.

6. The dis module analyzes the low-level bytecode and shows how Python code 
is converted. This is helpful when we are interested in the number of low-level 
instructions that correspond to a specific statement.
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7. Using IPython, we may profile the function as follows:

In [1]: %load_ext line_profiler

In [2]: from exercise import close, benchmark

In [3]: %lprun -f close benchmark()

Function: close at line 5

Line #      Hits         Time  Per Hit   % Time  Line 

Contents

=========================================================

=====

     5                                           def 

close(particles, eps=1e-5):

     6         1          6.0      6.0     66.7      p0, 

p1 = particles

     7

     8         1          2.0      2.0     22.2      x_

dist = abs(p0.x - p1.x)

     9         1          1.0      1.0     11.1      y_

dist = abs(p0.y - p1.y)

    10

    11         1          0.0      0.0      0.0      

return x_dist < eps and y_dist < eps

Perhaps surprisingly, the unpacking and p0 and p1 takes two thirds of the 
execution time of the close() function.

Chapter 2
1. The most appropriate data structure for each of the following use cases is as follows:

A. Mapping items to another set of items (with set being used in the most general 
sense): dictionaries.

B. Accessing, modifying, and appending elements: lists.
C. Maintaining a collection of unique elements: sets.
D. Keeping track of the minimum/maximum of a set (in the most general sense): 

heaps.
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E. Appending and removing elements at the endpoints of a sequence (in the most 
general sense): deques.

F. Fast searching according to some similarity criterion (used by, for example, 
autocompletion engines): tries.

2. Caching is a design where we store expensive results in a temporary location, which 
can be in memory, on-disk, or a remote location. Memoization is specifically about 
storing and reusing the results of previous function calls in an application. As such, 
memoization is a form of caching.

3. Comprehensions and generators are optimized under the hood, so they are 
generally more efficient than explicit for loops. They are also more compact in code 
and are more readable.

4. A dictionary would be a more appropriate data structure. If the numbers represented 
the counts, a Counter data structure would be the best data structure to use.

Chapter 3
1. NumPy offers efficient operations on multidimensional arrays, such as array 

creation, accessing elements (indexing) and slicing along specific axes, and 
optimized mathematical operations.

2. Using pandas, you can apply "mapping" operations to data, group, aggregate, and 
summarize data.

3. NumPy cannot handle labeled data, while pandas cannot process multidimensional 
data. xarray combines the best features of the two libraries to offer APIs the ability 
to handle multi-dimensional, labeled data.

Chapter 4
1. Static types allow the compiler to generate type-specific optimization, making the 

compiled code more efficient.
2. A memory view belongs to Cython's interface, which helps it work with different 

data types such as byte, bytearray, or array.array easier. Specifically, it 
offers a universal interface that simplifies the process of accessing the values that  
are stored in these different data types.

3. To profile Cython, we can use the annotated view to identify hard-to-find 
interpreter-related calls, as well as the familiar cProfile tool.
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Chapter 5
1. JIT compilers perform compilation at runtime rather than before running the code. 

This allows a piece of code that is expected to run many times to become more 
efficient, as recompilation is no longer necessary.

2. We use the signature of an nb.jit function to specify the data types that the 
function works with, which allows for further optimization for specific numerical 
data types. When Numba encounters other, unsupported types, it simply registers 
them as the generic pyobject type.

3. Tracing JIT compilation refers to the process of identifying the most intensive loops 
in a program, tracing the operations involved, and compiling the corresponding 
optimized, interpreter-free code. This allows us to actively optimize the most 
inefficient part of our code.

Chapter 6
1. The main components of a typical machine learning pipeline are the predictive 

model (model assumptions, parameters), the loss function, and the optimization  
of the model parameters to minimize the loss function.

2. The loss function may be minimized using gradient descent, in which we compute 
the gradient of the loss with the current values of the model parameters and 
adjust those values in the opposite direction of the gradient. JAX can compose this 
gradient loss function using grad.

3. In our example, we utilized kernels to create nonlinear features from the features  
we were given. Naïve implementations of kernels are hard to vectorize, which may 
lead to inefficient for loops. JAX can automatically vectorize these kernels to address 
this problem.

Chapter 7
1. At a high level, asynchronous programming aims to avoid idle waiting for unavailable 

resources. This typically involves interacting with slow and unpredictable resources.
2. A callback is a function that will be called at a given, later time. A future, on  

the other hand, is a more convenient abstraction that helps us keep track of 
requested resources and whether they are available. Futures are generally easier  
to use than callbacks.

3. A reactive application should be responsive, elastic, resilient, and message-driven.
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Chapter 8
1. Multithreading cannot possibly speed up Python code due to the global interpreter 

lock (GIL). In this chapter, we examined different approaches to multiprocessing; 
that is, running code using multiple processes.

2. Using the Process interface, we can have more low-level control by subclassing it. 
The Pool interface, on the other hand, offers a convenient way to distribute tasks 
across processes using the apply and map methods.

3. Theano and TensorFlow automatically translate our code into a parallelized version 
by taking advantage of special operations such as matrix multiplication.

Chapter 9
1. HTML stands for Hypertext Markup Language, which is the standard and most 

common language for developing web pages and applications.
2. Most of the communication that's done via the internet (more specifically, the 

World Wide Web (WWW)) uses HTTP. In HTTP, request methods are used to 
convey information on what data is being requested and should be sent back  
from a server.

3. HTTP response status codes are three-digit numbers that signify the state of 
communication between a server and its client. They are split into five categories, 
each indicating a specific state.

4. The requests module manages the communication between a Python program 
and a web server through HTTP requests.

5. A ping test is a tool that's typically used by web administrators to make sure that 
their sites are still available to clients. A ping test does this by making requests to  
the websites and analyzing the returned response status code.

6. Both the process of making different requests to a web server and parsing the 
processing downloaded HTML source code are independent across separate requests.

7. The following considerations should be made when you're developing applications 
that make concurrent web requests:

A. The terms of service and data-collecting policies
B. Error handling
C. Updating your program regularly
D. Avoiding over-scraping
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Chapter 10
1. Image processing is the task of analyzing and manipulating digital image files to 

create new versions of the images, or to extract important data from them.
2. The smallest unit of a digital image is a pixel, which typically contains an RGB value: 

a tuple of integers between 0 and 255.
3. Grayscaling is the processing of converting an image into gray colors by considering 

only the intensity of each pixel, represented by the amount of light available. It 
reduces the dimensionality of the image pixel matrix by mapping traditional  
three-dimensional color data to one-dimensional gray data.

4. Thresholding replaces each pixel in an image with a white pixel if the pixel's 
intensity is greater than a previously specified threshold, and with a black pixel if 
the pixel's intensity is less than that threshold. After performing thresholding on 
an image, each pixel of that image can only hold two possible values, significantly 
reducing the complexity of image data.

5. Heavy computational number-crunching processes are typically involved when it 
comes to image processing, as each image is a matrix of integer tuples. However, 
these processes can be executed independently, which suggests that the whole task 
should be made concurrent.

6. Some good practices for concurrent image processing are as follows:

A. Choose the correct method (out of many)
B. Spawn an appropriate number of processes
C. Process the input/output concurrently

Chapter 11
1. Communication channels are used to denote both the physical wiring connection 

between different systems and the logical communication of data that facilitates 
computer networks. The latter is related to computing and is more relevant to the 
idea of asynchronous programming. Asynchronous programming can provide 
functionalities that complement the process of facilitating communication  
channels efficiently.

2. The media layers contain fairly low-level operations that interact with the 
underlying process of the communication channel, while the host layers deal  
with high-level data communication and manipulation.
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3. The transport layer is often viewed as the conceptual transition between the media 
layers and the host layers. It is responsible for sending data along end-to-end 
connections between different systems.

4. Server-wise, the asyncio module combines the abstraction of transport with the 
implementation of an asynchronous program. Specifically, via its BaseTransport 
and BaseProtocol classes, asyncio provides different ways to customize the 
underlying architecture of a communication channel.

5. Together with the aiohttp module and, specifically, aiohttp.ClientSession, 
asyncio also offers efficiency and flexibility regarding client-side communication 
processes, via asynchronously making requests and reading the returned responses.

6. The aiofiles module, which can work in conjunction with asyncio and 
aiohttp, helps facilitate asynchronous file reading/writing.

Chapter 12
1. A lack of (or mishandled) coordination between different lock objects can cause 

a deadlock, in which no progress can be made, and the program is locked in its 
current state.

2. In the dining philosophers problem, since each philosopher is holding only one 
fork with their left hand, they cannot proceed to eat or put down the fork they are 
holding. The only way a philosopher gets to eat their food is for their neighbor 
philosopher to put their fork down, which is only possible if they can eat their  
food; this creates a never-ending circle of conditions that can never be satisfied.  
This situation is, in essence, the nature of a deadlock, in which all the elements  
of a system are stuck in place and no progress can be made.

3. A deadlock is also defined by the necessary conditions that a concurrent program 
needs to have at the same time for a deadlock to occur. These conditions were first 
proposed by the computer scientist Edward G. Coffman Jr, and are therefore known 
as the Coffman conditions. These conditions are as follows:

A. At least one resource has to be in a non-shareable state. This means that the 
resource is being held by an individual process (or thread) and cannot be accessed 
by others; the resource can only be accessed and held by a single process (or 
thread) at any given time. This condition is also known as mutual exclusion.

B. One process (or thread) exists that is simultaneously accessing a resource and 
waiting for another that's held by other processes (or threads). In other words, 
this process (or thread) needs access to two resources to execute its instructions, 
one of which it is already holding, and the other of which it is waiting for from 
other processes (or threads). This condition is called hold and wait.
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C. Resources can only be released by a process (or a thread) holding them if there 
are specific instructions for the process (or thread) to do so. This is to say that 
unless the process (or thread) voluntarily and actively releases the resource, the 
resource remains in a non-shareable state. This is the no preemption condition.

D. The final condition is called circular wait. As its name suggests, this condition 
specifies that a set of processes (or threads) exists where the first process (or 
thread) in the set is waiting for a resource to be released by the second process 
(or thread), which, in turn, needs to be waiting for the third process (or thread); 
finally, the last process (or thread) in the set is waiting for the first one.

4. Instead of accessing the resources arbitrarily, if the processes (or threads) are to 
access them in a predetermined, static order, the circular nature of the way that they 
acquire and wait for the resources will be eliminated. However, if you place enough 
locks on the resources of your concurrent program, it will become entirely sequential 
in its execution, and, combined with the overhead of concurrent programming 
functionalities, it will have an even worse speed than the purely sequential version  
of the program.

5. By ignoring locks, our program resources effectively become shareable among 
different processes/threads in a concurrent program, thus eliminating the first of 
the four Coffman conditions: mutual exclusion. Doing this, however, can be seen as 
misunderstanding the problem completely. We know that locks are utilized so that 
processes and threads can access the shared resources in a program in a systematic, 
coordinated way, to avoid mishandling the data. Removing any locking mechanisms 
in a concurrent program means that the likelihood of the shared resources, which 
are now free from accessing limitations, being manipulated in an uncoordinated 
way (and therefore becoming corrupted) increases significantly.

6. In a livelock situation, the processes (or threads) in the concurrent program can 
switch their states, yet they simply switch back and forth infinitely, and no progress 
can be made.

Chapter 13
1. Starvation is a problem in concurrent systems in which a process (or thread) cannot 

gain access to the necessary resources to proceed with its execution, which means it 
cannot make any progress.

2. Most of the time, a poorly coordinated set of scheduling instructions is the main 
cause of starvation. Some high-level causes for starvation may include the following:

A. Processes (or threads) with high priorities dominate the execution flow in  
the CPU, so low-priority processes (or threads) are not allowed to execute  
their instructions.
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B. Processes (or threads) with high priorities dominate the usage of non-shareable 
resources, so low-priority processes (or threads) are not allowed to execute their 
instructions. This situation is similar to the first one but addresses the priority of 
accessing resources, instead of the priority of execution itself.

C. Processes (or threads) with low priorities are waiting for resources to execute 
their instructions, but as soon as the resources become available, other processes 
(or threads) with higher priorities are immediately given access to them, so the 
low-priority processes (or threads) wait infinitely.

3. Deadlock situations can also lead to starvation, as the definition of starvation states 
that if a process (or thread) exists that is unable to make any progress because it 
cannot gain access to the necessary process, the process (or thread) is experiencing 
starvation. This is also illustrated in the dining philosophers' problem.

4. The readers-writers problem asks for a scheduling algorithm so that readers and 
writers can access the text file appropriately and efficiently, without mishandling/
corrupting the data that's included.

5. The first approach allows for multiple readers to access the text file simultaneously 
since readers simply read in the text file and do not alter the data in it. The problem 
with the first approach is that when a reader is accessing the text file and a writer is 
waiting for the file to be unlocked, if another reader starts its execution and wants to 
access the file, it will be given priority over the writer, who has already been waiting. 
Additionally, if more and more readers keep requesting access to the file, the writer 
will be waiting infinitely.

6. This approach implements the specification that once a writer requests to access the 
file, no reader should be able to jump in line and access the file before that writer. 
As opposed to what we see in the first solution to the readers-writers problem, this 
solution is giving priority to writers and, as a consequence, the readers are starved.

7. This approach implements a lock on both readers and writers. All threads will then 
be subject to the constants of the lock, so equal priority will be achieved among 
separate threads.

8. Some common solutions to starvation include the following:

A. Increasing the priority of low-priority threads.
B. Implementing a first-in-first-out thread queue.
C. Implementing a priority queue that also gives gradually increasing priority  

to threads that have been waiting in the queue for a long time.
D. If a thread has been able to access the shared resource many times, it should be 

given less priority.
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Chapter 14
1. Critical sections indicate shared resources that are accessed by multiple processes 

or threads in a concurrent application, which can lead to unexpected, and even 
erroneous, behaviors.

2. A race condition occurs when two or more threads/processes access and alter  
a shared resource simultaneously, resulting in mishandled and corrupted data.

3. The root cause of a race condition is multiple threads/processes reading in and 
altering a shared resource simultaneously. When all of the threads/processes  
finish their execution, only the result of the last thread/process is registered.

4. Since race conditions arise when multiple threads or processes access and write to 
a shared resource simultaneously, the solution is to isolate the execution of different 
threads/processes, especially when interacting with the shared resource. With locks, 
we can turn a shared resource in a concurrent program into a critical section, whose 
data integrity is guaranteed to be protected.

5. There are several disadvantages to using locks: with enough locks implemented in 
a concurrent program, the whole program may become entirely sequential; locks 
don't lock anything.

6. The problems that race conditions raise in real-life systems and applications are  
as follows:

A. Security: A race condition can be both exploited as a security vulnerability 
(to give external agents illegal access to a system) and used as random key 
generation, for security processes.

B. Operating systems: A race condition occurring when two agents (users and 
applications) interact with the same memory space can lead to unpredictable 
behaviors.

C. Networking: In networking, a race condition can lead to giving multiple users 
powerful privileges in a network.

Chapter 15
1. C++ associates a variable with its value by simply writing the value to the memory 

location of the variable; Python has its variables reference point to the memory 
location of the values that they hold. For this reason, Python needs to maintain  
a reference count for every value in its memory space.

2. To avoid race conditions and, consequently, value reference counts from being 
corrupted, the GIL is implemented so that only one thread can access and mutate 
the counts at any given time.
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3. The GIL effectively prevents multiple threads from taking advantage of the CPU and 
executing CPU-bound instructions at the same time. This means that if multiple 
threads that are meant to be executed concurrently are CPU-bound, they will be 
executed sequentially.

4. There are a few ways to deal with the GIL in your Python applications; namely, 
implementing multiprocessing instead of multithreading and utilizing other, 
alternative Python interpreters.

Chapter 16
1. The factory pattern makes it easy to keep track of the objects that are created within 

a program. Another benefit lies in the separation of code, which creates an object 
and the code that the object uses.

2. There are two forms of the factory pattern: the factory method and the abstract 
method. The former is used to handle the creation of a single object, while the latter 
is a group of factory methods.

3. You should start with the factory method first since it is the simpler of the two. If 
you find yourself needing many factory methods, then you should start thinking 
about grouping them into different abstract methods.

Chapter 17
1. The builder pattern helps manage objects that contain many individual components 

that need to be created sequentially. The pattern allows you to reuse a construction 
multiple times as well since it decouples an object's construction and the object itself.

2. Many applications, such as HTML page generators, document converters, and UI 
form creators, are implemented with the builder pattern.

3. The builder pattern uses a director to create an object via multiple steps sequentially, 
while the factory pattern creates an object in a single step.

Chapter 18
1. The prototype pattern helps us create objects that are based on an existing  

object (or prototype) via cloning. This can easily be done in Python using the  
copy function.

2. Objects in a database need to be duplicated many times, depending on the 
application and its users. This may be an expensive operation without prototypes.
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3. The singleton pattern is helpful when we want to implement a class that should only 
have one instance. This is useful, for example, when we'd like to maintain the global 
state of a Python program.

4. The singleton pattern may be used to control concurrent access to a shared resource, 
preventing many concurrency-based bugs and errors.

Chapter 20
1. The decorator pattern specifies the usage and responsibilities of an object 

dynamically in a transparent and readable way.
2. Python has a built-in decorator feature, allowing programmers to extend the 

functionalities of a function, method, or class.
3. With the decorator pattern, we can implement memoization with minimal code, 

which, as we have seen in the main text, helps keep the computation of Fibonacci 
numbers fast and its code readable.

Chapter 21
1. The bridge pattern is useful when there is a need to share an implementation among 

different objects without having to implement individual specialized classes. This is 
typically done with either an abstract class that generalizes the different use cases or 
the individual specialized classes themselves.

2. The adapter is generally used to make two incompatible interfaces compatible, while 
the bridge abstracts out the generalization of different classes.

3. We define an abstract content fetcher class, from which two specialized classes 
inherit: a local file fetcher and a URL fetcher.

Chapter 22
1. The façade pattern helps hide the inner implementation of an application and 

only exposing the necessary interface. This is particularly important when we are 
working with a large code base but our user only needs to interact with a small 
portion of our code.

2. When we need to make a change to an application, the abstraction that the façade 
pattern provides helps keep the client code separate and safe, which is useful in 
making the client side unaffected by pending software changes.

3. The operating system class works as a façade, hiding access to the different server 
classes from client code.
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Chapter 23
1. The flyweight pattern is designed to keep memory usage at a minimum by sharing 

resources among similar objects.
2. The MVC pattern generalizes a common structure among different applications 

with a model, a view, and a controller. This helps prevent mixing the backend logic 
with user interfaces.

3. The proxy pattern is useful in requiring the necessary code to be run before an 
important object is accessed.

Chapter 24
1. The chain of responsibility pattern gracefully handles an unknown number of 

requests or events that our program needs to process. This is useful in event-based 
logic such as purchase applications and shipping systems.

2. In our system, if an object does not know how to handle a given request, it passes 
the request along the chain. As we have seen, a close event cannot be handled 
directly by SendDialog and MsgText and is passed to MainWindow.

3. The chain of responsibility pattern may not be useful if there are multiple requests, 
but they may be processed by a single object. This renders all the bookkeeping that's 
done by the pattern useless.

Chapter 25
1. The command pattern helps encapsulate operational logic (copy, paste, undo, redo, 

and so on) in an object. This leads to better abstraction and management of the 
logical steps to be taken for each operation, such as grouping multiple operations 
and implementing macros.

2. The command pattern abstracts out the implementation of the operations that are 
used, so any client code that executes it does not need to know about the details of 
their implementation.

3. In our example, we implemented an abstraction on top of various functionalities 
provided by the os module. A particular feature is its undoing function. Moreover, 
as commands have a consistent interface, grouping them can be done with ease.
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Chapter 26
1. The observer pattern maintains a list of objects that are interested in the state of a 

target object and notifies the former when the latter changes.
2. While the MVC pattern may implement the same function logic of updating views 

when the model changes, the observer pattern is more effective at maintaining and 
managing the list of subscribers for a given publisher, making it easy to, for example, 
add or remove subscribers.

3. We implement data formatters that display an object in different ways. Here, we have 
multiple subscribing formatters that are interested in a publishing default formatter. 
When the default formatter is updated, the subscribers are notified and proceed 
with their respective logic.
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