

Secrets of PowerShell Remoting

The DevOps Collective, Inc.

This book is for sale at http://leanpub.com/secretsofpowershellremoting

This version was published on 2018-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc.

http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/
http://leanpub.com/manifesto

Also By The DevOps Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Contents

Secrets of PowerShell Remoting . 1

Remoting Basics . 3
What is Remoting? . 3
Examining Remoting Architecture . 3
Enabling Remoting . 5
Test Environment . 6
Enabling Remoting . 8
Core Remoting Tasks . 10
Remoting Returns Deserialized Data . 13
Enter-PSSession vs. Invoke-Command . 13

Accessing Remote Computers . 15
Setting up an HTTPS Listener . 16
Certificate Authentication . 35
Modifying the TrustedHosts List . 43
Connecting Across Domains . 46
Administrators from Other Domains . 49
The Second Hop . 50

Working with Endpoints (aka Session Configurations) . 54
Connecting to a Different Endpoint . 54
Creating a Custom Endpoint . 55
Security Precautions with Custom Endpoints . 63

Diagnostics and Troubleshooting . 65
Diagnostics Examples . 65
Standard Troubleshooting Methodology . 87
Summary . 88

Session Management . 89
Ad-Hoc vs. Persistent Sessions . 89
Disconnecting and Reconnecting Sessions . 89
Session Options . 91

CONTENTS

PowerShell, Remoting, and Security . 95
Neither PowerShell nor Remoting are a “Back Door” for Malware 95
PowerShell Remoting is Not Optional . 96
Remoting Does Not Transmit or Store Credentials . 96
Remoting Uses Encryption . 96
Remoting is Security-Transparent . 96
Remoting is Lower Overhead . 97
Remoting Uses Mutual Authentication . 97
Summary . 97

Configuring Remoting via GPO . 98
GPO Caveats . 98
Allowing Automatic Configuration of WinRM Listeners . 98
Setting the WinRM Service to Start Automatically . 99
Creating a Windows Firewall Exception . 101
Give it a Try! . 102
What You Cant Do with a GPO . 104

Secrets of PowerShell Remoting
Principle author: Don Jones Contributing author: Dr. Tobias Weltner With contributions by Dave
Wyatt and Aleksandar Nikolik

Introduced in Windows PowerShell 2.0, Remoting is one of PowerShell’s most useful, and most
important, core technologies. It enables you to run almost any command that exists on a remote
computer, opening up a universe of possibilities for bulk and remote administration. Remoting
underpins other technologies, including Workflow, Desired State Configuration, certain types of
background jobs, and much more. This guide isn’t intended to be a complete document of what
Remoting is and does, although it does provide a good introduction. Instead, this guide is designed
to document all the little configuration details that don’t appear to be documented elsewhere.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported License. The
authors encourage you to redistribute this file as widely as possible, but ask that you do not modify
the document.

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the US; check
your laws if you live elsewhere) donation of any amount to The DevOps Collective¹ to support their
ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We make them
available in three ways:

• Ourmain, authoritativeGitHub organization², with a repo for each book. Visit https://github.com/devops-
collective-inc/

• Our GitBook page³, where you can browse books online, or download as PDF, EPUB, or MOBI.
Using the online reader, you can link to specific chapters. Visit https://www.gitbook.com/@devopscollective

• On LeanPub⁴, where you can download as PDF, EPUB, or MOBI (login required), and
“purchase” the books to make a donation to DevOps Collective. You can also choose to be
notified of updates. Visit https://leanpub.com/u/devopscollective

¹https://devopscollective.org/donate/
²https://github.com/devops-collective-inc
³https://www.gitbook.com/@devopscollective
⁴https://leanpub.com/u/devopscollective

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Secrets of PowerShell Remoting 2

GitBook and LeanPub have slightly different PDF formatting output, so you can choose the one you
prefer. LeanPub can also notify you when we push updates. Our main GitHub repo is authoritative;
repositories on other sites are usually just mirrors used for the publishing process. GitBook will
usually contain our latest version, including not-yet-finished bits; LeanPub always contains the most
recent “public release” of any book.

Remoting Basics
Windows PowerShell 2.0 introduced a powerful new technology, Remoting, which was refined and
expanded upon for PowerShell 3.0. Based primarily upon standardized protocols and techniques,
Remoting is possibly one of the most important aspects of PowerShell: future Microsoft products
will rely upon it almost entirely for administrative communications across a network.

Unfortunately, Remoting is also a complex set of components, and while Microsoft has attempted to
provide solid guidance for using it in a variety of scenarios, many administrators still struggle with
it. This “mini e-book” is designed to help you better understand what Remoting is, how it works,
and-most importantly-how to use it in a variety of different situations.

Note This guide isn’t meant to replace the myriad of existing books that cover Remoting basics,
such as Don’s own Learn Windows PowerShell in a Month of Lunches (http://MoreLunches.com⁵)
or PowerShell in Depth. Instead, this guide supplements those by providing step-by-step instructions
for many of the “edge” cases in Remoting, and by explaining some of the more unusual Remoting
behaviors and requirements.

What is Remoting?

In essence, Remoting enables you to access remote machines across a network and retrieve data
from or execute code on one or many remote computers. This is not a new idea, and in the past a
number of different remoting technologies have evolved. Some cmdlets have traditionally provided
their own limited remoting capabilities while the majority of cmdlets do not support remoting on
their own.

With PowerShell remoting there is finally a generic remoting environment that allows remote
execution for literally any command that can run in a local PowerShell. So instead of adding
remoting capabilities to every single cmdlet and application, you simply leave it to PowerShell to
transfer your PowerShell code to the target computer(s), execute it there, and then marshal back the
results to you.

Throughout this eBook, we will focus on PowerShell remoting and not cover non-standard private
remoting capabilities built into selected cmdlets.

Examining Remoting Architecture

As shown in figure 1.1, PowerShell’s generic Remoting architecture consists of numerous different,
interrelated components and elements.

⁵http://MoreLunches.com

http://morelunches.com/
http://morelunches.com/

Remoting Basics 4

image003.png

Figure 1.1: The elements and components of PowerShell Remoting

Here is the complete list:

■ At the bottom of the figure is your computer, or more properly your client. This is where you
physically sit, and it’s where you’ll initiate most of your Remoting activities.

■ Your computer will communicate via the WS-MAN, or Web Services for Management, protocol.
This is anHTTP(S)-based protocol that can encapsulate a variety of different communications.We’ve

Remoting Basics 5

illustrated this as using HTTP, which is Remoting’s default configuration, but it could just as easily
be HTTPS.

■ On the remote computer, in the proper terminology the server (which does not refer to the
operating system), the Windows Remote Management (WinRM) service runs. This service is
configured to have one or more listeners. Each listener waits for incoming WS-MAN traffic on
a specific port, each bound to a specific protocol (HTTP or HTTPS), and on specific IP addresses (or
all local addresses).

■When a listener receives traffic, theWinRM service looks to see which endpoint the traffic is meant
for. For our purposes, an endpoint will usually be launching an instance of Windows PowerShell.
In PowerShell terms, an endpoint is also called a session configuration. This is because, in addition
to launching PowerShell, it can auto-load scripts and modules, place restrictions upon what can be
done by the connecting user, and apply additional session specific settings not mentioned here.

Note Although we show PowerShell.exe in our diagram, that’s for illustration purposes. Power-
Shell.exe is the PowerShell console application, and it would not make sense to have this running as
a background process on a remote computer. The actual process is calledWsmprovhost.exe, which
hosts PowerShell in the background for Remoting connections.

As you can see, a single remote computer can easily have dozens or even hundreds of endpoints,
each with a different configuration. PowerShell 3.0 sets up three such endpoints by default: One
for 32-bit PowerShell (on 64-bit systems), the default PowerShell endpoint (which is 64-bit on x64
systems), and one for PowerShell Workflow. Beginning with Windows Server 2008 R2, there is a
fourth default endpoint for Server Manager Workflow tasks.

Enabling Remoting

Most client versions of Windows, beginning withWindows Vista, do not enable incoming Remoting
connections by default. Newer Windows Server versions do, but older versions may not. So your
first step with Remoting will usually be to enable it on those computers which you want to receive
incoming connections. There are three ways to enable Remoting, and table 1.1 compares what is
achievable with each of them.

Table 1.1 Comparing the ways of enabling remoting

Enable-
PSRemoting

Group Policy Manually
Step-by-Step

Set WinRM to
auto-start and
start the service

Yes Yes Yes - use
Set-Service and
Start-Service.

Configure HTTP
listener

Yes You can configure
auto-registration
of listeners, not
create custom
listeners

Yes - use WSMAN
command-line
utility and
WSMAN: drive in
PowerShell

Remoting Basics 6

Enable-
PSRemoting

Group Policy Manually
Step-by-Step

Configure HTTPS
listener

No No Yes - use WSMAN
command-line
utility and
WSMAN: drive in
PowerShell

Configure
endpoints / session
configurations

Yes No Yes - use PSSes-
sionConfiguration
cmdlets

Configure
Windows Firewall
exception

Yes* Yes* Yes* - use Firewall
cmdlets or
Windows Firewall
GUI

Note Existing client versions of Windows, such as Windows Vista, do not permit firewall exceptions
on any network identified as “Public”. Networks must either be “Home” or “Work/Domain”
in order to permit exceptions. In PowerShell 3.0, you can run Enable-PSRemoting with the -
SkipNetworkProfileCheck switch to avoid this problem.

We’ll be enabling Remoting in our test environment by running Enable-PSRemoting. It’s quick,
easy, and comprehensive; you’ll also see most of the manual tasks performed in the upcoming
sections.

Test Environment

We’ll be using a consistent test environment throughout the following sections; this was created on
six virtual machines at CloudShare.com, and is configured as shown in figure 1.2.

Remoting Basics 7

image004.png

Figure 1.2: Test environment configuration

Some important notes:

■ .NET Framework v4 and PowerShell 3.0 is installed on all computers. Most of what we’ll cover
also applies to PowerShell 2.0.

■ As shown, most computers have a numeric computer name (C2108222963, and so on); the domain
controller for each domain (which is also a DNS server) has CNAME records with easier-to-
remember names.

■ Each domain controller has a conditional forwarder set up for the other domain, so that machines
in either domain can resolve computer names in the other domain.

■ We performed all tasks as a member of the Domain Admins group, unless noted otherwise.

Remoting Basics 8

■We created a sixth, completely standalone server that isn’t in any domain at all. This will be useful
for covering some of the non-domain situations you can find yourself in with Remoting.

Caution When opening PowerShell on a computer that has User Account Control (UAC) enabled,
make sure you right-click the PowerShell icon and select Run as Administrator. If the resulting
PowerShell window’s title bar doesn’t begin withAdministrator: then you do not have administra-
tive privileges. You can check permissions programmatically with this (whoami /all | select-string
S-1-16-12288) -ne $null from the PowerShell console. In an elevated shell True is returned, otherwise
False is.

Enabling Remoting

We began by running Enable-PSRemoting on all six computers. We took care to ensure that the
command ran without error; any errors at this point are a signal that you must stop and resolve the
error before attempting to proceed. Figure 1.3 shows the expected output.

image005.png

Figure 1.3: Expected output from Enable-PSRemoting

Note: You’ll notice profligate use of screen shots throughout this guide. It helps ensure that I don’t
make any typos or copy/paste errors - you’re seeing exactly what we typed and ran.

Remoting Basics 9

Running Get-PSSessionConfiguration should reveal the three or four endpoints created by Enable-
PSRemoting. Figure 1.4 shows the expected output on a server.

image006.png

Figure 1.4: Expected output from Get-PSSessionConfiguration

Note: Figure 1.4 illustrates that you can expect different endpoints to be configured on different
machines. This example was from a Windows Server 2008 R2 computer, which has fewer endpoints
than a Windows 2012 machine.

It’s worth taking a moment to quickly test the Remoting configuration. For computers that are all
part of the same domain, when you’re logged on as a Domain Admin from that domain, Remoting
should “just work.” Quickly check it by attempting to remote from one computer to another using
Enter-PSSession.

Note: In other environments, a Domain Admin account may not be the only account that can use
Remoting. If your home or work environment has additional accounts in the local Administrators
group as standard across your domain, you will also be able to use these accounts for Remoting.

Figure 1.5 shows the expected output, in which we also ran a quick Dir command and then exited
the remote session.

Remoting Basics 10

image007.png

Figure 1.5: Checking remoting connectivity from COMPANY.loc’s CLIENTA to the DCA domain
controller.

Caution: If you’re following along in your own test environment, don’t proceed until you’ve
confirmed Remoting connectivity between two computers in the same domain. No other scenario
needs to work right now; we’ll get to them in the upcoming sections.

Core Remoting Tasks

PowerShell provides for two principal Remoting use cases. The first, 1-to-1 Remoting, is similar in
nature to the SSH secure shell offered on UNIX and Linux systems. With it, you get a command-
line prompt on a single remote computer. The second, 1-to-Many Remoting, enables you to send a
command (or a list of commands) in parallel to a set of remote computers. There are also a couple
of useful secondary techniques we’ll look at.

Remoting Basics 11

1-to-1 Remoting

The Enter-PSSession command connects to a remote computer and gives you a command-line
prompt on that computer. You can run whatever commands are on that computer, provided you
have permission to perform that task. Note that you are not creating an interactive logon session;
your connection will be audited as a network logon, just as if you were connecting to the computer’s
C$ administrative share. PowerShell will not load or process profile scripts on the remote computer.
Any scripts that you choose to run (and this includes importing script modules) will only work if
the remote machine’s Execution Policy permits it.

1 Enter-PSSession -computerName DC01

Note:While connected to a remote machine via Enter-PSSession, your prompt changes and displays
the name of the remote system in square brackets. If you have customized your prompt, all
customizations will be lost because the prompt is now created on the remote system and transferred
back to you. All of your interactive keyboard input is sent to the remote machine, and all results are
marshaled back to you. This is important to note because you cannot use Enter-PSSession in a script.
If you did, the script would still run on your local machine since no code was entered interactively.

1-to-Many Remoting

With this technique, you specify one or more computer names and a command (or a semicolon-
separated list of commands); PowerShell sends the commands, via Remoting, to the specified
computers. Those computers execute the commands, serialize the results into XML, and transmit
the results back to you. Your computer deserializes the XML back into objects, and places them in
the pipeline of your PowerShell session. This is accomplished via the Invoke-Command cmdlet.

1 Invoke-Command -computername DC01,CLIENT1 -scriptBlock { Get-Service }

If you have a script of commands to run, you can have Invoke-Command read it, transmit the
contents to the remote computers, and have them execute those commands.

1 Invoke-Command -computername DC01,CLIENT1 -filePath c:\Scripts\Task.ps1

Note that Invoke-Command will, by default, communicate with only 32 computers at once. If you
specify more, the extras will queue up, and Invoke-Command will begin processing them as it
finishes the first 32. The -ThrottleLimit parameter can raise this limit; the only cost is to your
computer, which must have sufficient resources to maintain a unique PowerShell session for each
computer you’re contacting simultaneously. If you expect to receive large amounts of data from the
remote computers, available network bandwidth can be another limiting factor.

Remoting Basics 12

Sessions

When you run Enter-PSSession or Invoke-Command and use their -ComputerName parameter,
Remoting creates a connection (or session), does whatever you’ve asked it to, and then closes the
connection (in the case of an interactive session created with Enter-PSSession, PowerShell knows
you’re done when you run Exit-PSSession). There’s some overhead involved in that set-up and
tear-down, and so PowerShell also offers the option of creating a persistent connection - called a
PSSession. You run New-PSSession to create a new, persistent session. Then, rather than using -
ComputerName with Enter-PSSession or Invoke-Command, you use their -Session parameter and
pass an existing, open PSSession object. That lets the commands re-use the persistent connection
you’d previously created.

When you use the -ComputerName parameter and work with ad-hoc sessions, each time you send a
command to a remote machine, there is a significant delay caused by the overhead it takes to create
a new session. Since each call to Enter-PSSession or Invoke-Command sets up a new session, you
also cannot preserve state. In the example below, the variable $test is lost in the second call:

1 PS> Invoke-Command -computername CLIENT1 -scriptBlock { $test = 1 }

2 PS> Invoke-Command -computername CLIENT1 -scriptBlock { $test }

3 PS>

When you use persistent sessions, on the other hand, re-connections are much faster, and since
you are keeping and reusing sessions, they will preserve state. So here, the second call to Invoke-
Command will still be able to access the variable $test that was set up in the first call

1 PS> $Session = New-PSSession -ComputerName CLIENT1

2 PS> Invoke-Command -Session $Session -scriptBlock { $test = 1 }

3 PS> Invoke-Command -Session $Session -scriptBlock { $test }

4 1

5 PS> Remove-PSSession -Session $Session

Various other commands exist to check the session’s status and retrieve sessions (Get-PSSession),
close them (Remove-PSSession), disconnect and reconnect them (Disconnect-PSSession and Reconnect-
PSSession, which are new in PowerShell v3), and so on. In PowerShell v3, you can also pass an open
session to Get-Module and Import-Module, enabling you to see the modules listed on a remote
computer (via the opened PSSession), or to import a module from a remote computer into your
computer for implicit Remoting. Review the help on those commands to learn more.

Note: Once you use New-PSSession and create your own persistent sessions, it is your responsibility
to do housekeeping and close and dispose the session when you are done with them. Until you do
that, persistent sessions remain active, consume resources and may prevent others from connecting.
By default, only 10 simultaneous connections to a remote machine are permitted. If you keep too
many active sessions, you will easily run into resource limits. This line demonstrates what happens
if you try and set up too many simultaneous sessions:

Remoting Basics 13

1 PS> 1..10 | Foreach-Object { New-PSSession -ComputerName CLIENT1 }

Remoting Returns Deserialized Data

The results you receive from a remote computer have been serialized into XML, and then deserialized
on your computer. In essence, the objects placed into your shell’s pipeline are static, detached
snapshots of what was on the remote computer at the time your command completed. These
deserialized objects lack the methods of the originals objects, and instead only offer static properties.

If you need to access methods or change properties, or in other words if you must work with the
live objects, simply make sure you do so on the remote side, before the objects get serialized and
travel back to the caller. This example uses object methods on the remote side to determine process
owners which works just fine:

1 PS> Invoke-Command -ComputerName CLIENT1 -scriptBlock `

2 { Get-WmiObject -Class Win32_Process | Select-Object Name, { $_.GetOwner().User } }

Once the results travel back to you, you can no longer invoke object methods because now you work
with “rehydrated” objects that are detached from the live objects and do not contain any methods
anymore:

1 PS> Invoke-Command -ComputerName CLIENT1 -scriptBlock `

2 { Get-WmiObject -Class Win32_Process } | Select-Object Name, { $_.GetOwner().User }

Serializing and deserializing is relatively expensive. You can optimize speed and resources bymaking
sure that your remote code emits only the data you really need. You could for example use Select-
Object and carefully pick the properties you want back rather than serializing and deserializing
everything.

Enter-PSSession vs. Invoke-Command

A lot of newcomers will get a bit confused about remoting, in part because of how PowerShell
executes scripts. Consider the following, and assume that SERVER2 contains a script named
C:RemoteTest.ps1:

1 Enter-PSSession -ComputerName SERVER2

2 C:\RemoteTest.ps1

Remoting Basics 14

If you were to sit and type these commands interactively in the console window on your client
computer, this would work (assuming remoting was set up, you had permissions, and all that).
However, if you pasted these into a script and ran that script, it wouldn’t work. The script would
try to run C:RemoteTest.ps1 _on your local computer. _

The practical upshot of this is that Enter-PSSession is really meant for _interactive use by a human
being, _ not for batch use by a script. If you wanted to send a command to a remote computer, from
within a script, Invoke-Command is the right way to do it. You can either set up a session in advance
(useful if you plan to send more than one command), or you can use a computer name if you only
want to send a single command. For example:

1 $session = New-PSSession -ComputerName SERVER2

2 Invoke-Command -session $session -ScriptBlock { C:\RemoteTest.ps1 }

Obviously, you’ll need to use some caution. If those were the only two lines in the script, then when
the script finished running, $session would cease to exist. That might disconnect you (in a sense)
from the session running on SERVER2. What you do, and even whether you need to worry about
it, depends a lot on what you’re doing and how you’re doing it. In this example, everything would
probably be okay, because Invoke-Command would “keep” the local script running until the remote
script finished and returned its output (if any).

Accessing Remote Computers
There are really two scenarios for accessing a remote computer. The difference between those
scenarios primarily lies in the answer to one question: Can WinRM identify and authenticate the
remote machine?

Obviously, the remote machine needs to know who you are, because it will be executing commands
on your behalf. But you need to know who it is, as well. This mutual authentication - e.g., you
authenticate each other - is an important security step. It means that when you type SERVER2,
you’re really connecting to the real SERVER2, and not some machine pretending to be SERVER2.
Lots of folks have posted blog articles on how to disable the various authentication checks. Doing so
makes Remoting “just work” and gets rid of pesky error messages - but also shuts off security checks
and makes it possible for someone to “hijack” or “spoof” your connection and potentially capture
sensitive information - like your credentials.

Caution: Keep in mind that Remoting involves delegating a credential to the remote computer.
You’re doing more than just sending a username and password (which doesn’t actually happen all
of the time): you’re giving the remote machine the ability to execute tasks as if you were standing
there executing them yourself. An imposter could do a lot of damage with that power. That is why
Remoting focuses on mutual authentication - so that imposters can’t happen.

In the easiest Remoting scenarios, you’re connecting to a machine that’s in the same AD domain as
yourself, and you’re connecting by using its real computer name, as registered with AD. AD handles
the mutual authentication and everything works. Things get harder if you need to:

• Connect to a machine in another domain
• Connect to machine that isn’t in a domain at all
• Connect via a DNS alias, or via an IP address, rather than via the machine’s actual computer
name as registered with AD

In these cases, AD can’t do mutual authentication, so you have to do it yourself. You have two
choices:

• Set up the remote machine to accept HTTPS (rather than HTTP) connections, and equip it
with an SSL certificate. The SSL certificate must be issued by a Certification Authority (CA)
that your machine trusts; this enables the SSL certificate to provide the mutual authentication
WinRM is after.

• Add the remote machine’s name (whatever you’re specifying, be it a real computer name,
an IP address, or a CNAME alias) to your local computer’s WinRM TrustedHosts list. Note
that this basically disables mutual authentication: You’re allowing WinRM to connect to that
one identifier (name, IP address, or whatever) without mutual authentication. This opens the
possibility for a machine to pretend to be the one you want, so use due caution.

Accessing Remote Computers 16

In both cases, you also have to specify a -Credential parameter to your Remoting command, even
if you’re just specifying the same credential that you’re using to run PowerShell. We’ll cover both
cases in the next two sections.

Note: Throughout this guide, we’ll use “Remoting command” to generically refer to any command
that involves setting up a Remoting connection. Those include (but are not limited to) New-
PSSession, Enter-PSSession, Invoke-Command, and so on.

Setting up an HTTPS Listener

This is one of the more complex things you can do with Remoting, and will involve running a lot of
external utilities. Sorry - that’s just the way it’s done! Right now there doesn’t seem to be an easy
way to do this entirely from within PowerShell, at least not that we’ve found. Some things, as you’ll
see, could be done through PowerShell, but are more easily done elsewhere - so that’s what I’ve
done.

Your first step is to identify the host name that people will use to access your server. This is very, very
important, and it isn’t necessarily the same as the server’s actual computer name. For example, folks
accessing “www.ad2008r2.loc” might in fact be hitting a server named “DC01,” but the SSL certificate
you’ll create must be issued to host name “www.ad2008r2.loc” because that’s what people will be
typing. So, the certificate name needs to match whatever name people will be typing to get to the
machine - even if that’s different from its true computer name. Got that?

Note: As the above implies, part of setting up an HTTPS listener is obtaining an SSL certificate. I’ll
be using a public Certification Authority (CA) named DigiCert.com. You could also use an internal
PKI, if your organization has one. I don’t recommend using MakeCert.exe, since such a certificate
can’t be implicitly trusted by the machines attempting to connect. I realize that every blog in the
universe tells you to use MakeCert.exe to make a local self-signed certificate. Yes, it’s easy - but it’s
wrong. Using it requires you to shut off most of WinRM’s security - so why bother with SSL if you
plan to shut off most of its security features?

You need to make sure you know the full name used to connect to a computer, too. If people will
have to type “dc01.ad2008r2.loc,” then that’s what goes into the certificate. If they’ll simply need to
provide “dca,” and know that DNS can resolve that to an IP address, then “dca” is what goes into the
certificate. We’re creating a certificate that just says “dca” and we’ll make sure our computers can
resolve that to an IP address.

Creating a Certificate Request

Unlike IIS, PowerShell doesn’t offer a friendly, graphical way of creating a Certificate Request (or, in
fact, any way at all to do so.) So, go to http://DigiCert.com/util⁶ and download their free certificate
utility. Figure 2.1 shows the utility. Note the warning message.

⁶http://DigiCert.com/util

http://digicert.com/util
http://digicert.com/util

Accessing Remote Computers 17

image008.png

Figure 2.1: Launching DigiCertUtil.exe

You only need to worry about this warning if you plan to acquire your certificate from the DigiCert
CA; click the Repair button to install their intermediate certificates on your computer, enabling their
certificate to be trusted and used. Figure 2.2 shows the result of doing so. Again, if you plan to take
the eventual Certificate Request (CSR) to a different CA, don’t worry about the Repair button or the
warning message.

Accessing Remote Computers 18

Note You can also open a blank MMC console and add Windows’ “Certificate” snap-in. Focus it on the computer account for the local computer (you’ll be prompted). Then, right-click on the “Personal” folder and select All Tasks to find the option to create a new certificate request.

image009.png

Figure 2.2: After adding the DigiCert intermediate certificates

Click “Create CSR.” As shown in figure 2.3, fill in the information about your organization. This
needs to be exact: The “Common Name” is exactly what people will type to access the computer on
which this SSL certificate will be installed. That might be “dca,” in our case, or “dc01.ad20082.loc”
if a fully qualified name is needed, and so on. Your company name also needs to be accurate: Most
CAs will verify this information.

Accessing Remote Computers 19

image010.png

Figure 2.3: Filling in the CSR

We usually save the CSR in a text file, as shown in figure 2.4. You can also just copy it to the Clipboard
in many cases. When you head to your CA, make sure you’re requesting an SSL (“Web Server,” in
some cases) certificate. An e-mail certificate or other type won’t work.

Accessing Remote Computers 20

image011.png

Figure 2.4: Saving the CSR into a text file

Next, take that CSR to your CA and order your certificate. This will look something like figure 2.5
if you’re using DigiCert; it’ll obviously be different with another CA, with an internal PKI, and so
forth. Note that with most commercial CAs you’ll have to select the type ofWeb server you’re using;
choose “Other,” if that’s an option, or “IIS” if not.

Note: Using the MakeCert.exe utility from the Windows SDK will generate a local certificate that
only your machine will trust. This isn’t useful. Folks tell you to do this in various blog posts because
it’s quick and easy; they also tell you to disable various security checks so that the inherently-useless
certificate will work. It’s a waste of time. You’re getting encryption, but you’ve no assurance that
the remote machine is the one you intended to connect to in the first place. If someone’s hijacking
your information, who cares if it was encrypted before you sent it to them?

Accessing Remote Computers 21

image012.png

Figure 2.5: Uploading the CSR to a CA

Caution: Note the warning message in figure 2.5 that my CSR needs to be generated with a 2048-
bit key. DigiCert’s utility offered me that, or 1024-bit. Many CAs will have a high-bit requirement;
make sure your CSR complies with what they need. Also notice that this is a Web server certificate
we’re applying for; as we wrote earlier, it’s the only kind of certificate that will work.

Eventually, the CA will issue your certificate. Figure 2.6 shows where we went to download it. We
chose to download all certificates; we wanted to ensure we had a copy of the CA’s root certificate,
in case we needed to configure another machine to trust that root.

Tip: The trick with digital certificates is that the machine using them, and any machines they will be
presented to, need to trust the CA that issued the certificate. That’s why you download the CA root
certificate: so you can install it on the machines that need to trust the CA. In a large environment,
this can be done via Group Policy, if desired.

Accessing Remote Computers 22

image013.png

Figure 2.6: Downloading the issued certificate

Make sure you back up the certificate files! Even though most CAs will re-issue them as needed, it’s
far easier to have a handy backup, even on a USB flash drive.

Installing the Certificate

Don’t try to double-click the certificate file to install it. Doing so will install it into your user
account’s certificate store; you need it in your computer’s certificate store instead. To install the
certificate, open a new Microsoft Management Console (mmc.exe), select Add/Remove Snap-ins,
and add the Certificates snap-in, as shown in figure 2.7.

Accessing Remote Computers 23

image014.png

Figure 2.7: Adding the Certificates snap-in to the MMC

As shown in figure 2.8, focus the snap-in on the Computer account.

Accessing Remote Computers 24

image015.png

Figure 2.8: Focusing the Certificates snap-in on the Computer account

Next, as shown in figure 2.9, focus on the local computer. Of course, if you’re installing a certificate
onto a remote computer, focus on that computer instead. This is a good way to get a certificate
installed onto a GUI-less Server Core installation of Windows, for example.

Note:We wish we could show you a way to do all of this from within PowerShell. But we couldn’t
find one that didn’t involve a jillion more, and more complex, steps. Since this hopefully isn’t
something you’ll have to do often, or automate a lot, the GUI is easier and should suffice.

Accessing Remote Computers 25

image016.png

Figure 2.9: Focusing the Certificates snap-in on the local computer

With the snap-in loaded, as shown in figure 2.10, right-click the “Personal” store and select “Import.”

Accessing Remote Computers 26

image017.png

Figure 2.10: Beginning the import process into the Personal store

As shown in figure 2.11, browse to the certificate file that you downloaded from your CA. Then,
click Next.

Caution: If you downloaded multiple certificates - perhaps the CA’s root certificates along with the
one issued to you - make sure you’re importing the SSL certificate that was issued to you. If there’s
any confusion, STOP. Go back to your CA and download just YOUR certificate, so that you’ll know
which one to import. Don’t experiment, here - you need to get this right the first time.

Accessing Remote Computers 27

image018.png

Figure 2.11: Selecting the newly-issued SSL certificate file

As shown in figure 2.12, ensure that the certificate will be placed into the Personal store.

Accessing Remote Computers 28

image019.png

Figure 2.12: Be sure to place the certificate into the Personal store, which should be pre-selected.

As shown in figure 2.13, double-click the certificate to open it. Or, right-click and select Open. Do
not select Properties - that won’t get you the information you need.

Accessing Remote Computers 29

image020.png

Figure 2.13: Double-click the certificate, or right-click and select Open

Finally, as shown in figure 2.14, select the certificate’s thumbprint. You’ll need to either write this
down, or copy it to your Clipboard. This is howWinRMwill identify the certificate you want to use.

Note: It’s possible to list your certificate in PowerShell’s CERT: drive, which will make the
thumbprint a bit easier to copy to the Clipboard. In PowerShell, run Dir CERT:LocalMachineMy and
read carefully to make sure you select the right certificate. If the entire thumbprint isn’t displayed,
run Dir CERT:My | FL * instead.

Accessing Remote Computers 30

image021.png

Figure 2.14: Obtaining the certificate’s thumbprint

Setting up the HTTPS Listener

These next steps will be accomplished in the Cmd.exe shell, not in PowerShell. The command-line
utility’s syntax requires significant tweaking and escaping in PowerShell, and it’s a lot easier to type
and understand in the older Cmd.exe shell (which is where the utility has to run anyway; running
it in PowerShell would just launch Cmd.exe behind the scenes).

As shown in figure 2.15, run the following command:

Accessing Remote Computers 31

image022.png

Figure 2.15: Setting up the HTTPS WinRM listener

1 Winrm create winrm/config/Listener?Address=*+Transport=HTTPS @{Hostname="xxx";Certif\

2 icateThumbprint="yyy"}

There are two or three pieces of information you’ll need to place into this command:

• In place of *, you can put an individual IP address. Using * will have the listener listen to all
local IP addresses.

• In place of xxx, put the exact computer name that the certificate was issued to. If that includes a
domain name (such as dc01.ad2008r2.loc), put that. Whatever’s in the certificate must go here,
or you’ll get a CN mismatch error. Our certificate was issued to “dca,” so I put “dca.”

• In place of yyy, put the exact certificate thumbprint that you copied earlier. It’s okay if this
contains spaces.

That’s all you should need to do in order to get the listener working.

Note:We had theWindows Firewall disabled on this server, so we didn’t need to create an exception.
The exception isn’t created automatically, so if you have any firewall enabled on your computer,
you’ll need to manually create the exception for port 5986.

You can also run an equivalent PowerShell command to accomplish this task:

Accessing Remote Computers 32

1 New-WSManInstance winrm/config/Listener -SelectorSet @{Address='*';

2 Transport='HTTPS'} -ValueSet @{HostName='xxx';CertificateThumbprint='yyy'}

In that example, “xxx” and “yyy” get replaced just as they did in the previous example.

Testing the HTTPS Listener

I tested this from the standalone C3925954503 computer, attempting to reach the DCA domain
controller in COMPANY.loc. I configured C3925954503 with a HOSTS file, so that it could resolve
the hostname DCA to the correct IP address without needing DNS. I was sure to run:

1 Ipconfig /flushdns

This ensured that the HOSTS file was read into the DNS name cache. The results are in figure 2.16.
Note that I can’t access DCA by using its IP address directly, because the SSL certificate doesn’t
contain an IP address. The SSL certificate was issued to “dca,” so we need to be able to access the
computer by typing “dca” as the computer name. Using the HOSTS file will let Windows resolve
that to an IP address.

Note: Remember, there are two things going on here: Windows needs to be able to resolve the
name to an IP address, which is what the HOSTS file accomplishes, in order to make a physical
connection. But WinRM needs mutual authentication, which means whatever we typed into the
-ComputerName parameter needs to match what’s in the SSL certificate. That’s why we couldn’t
just provide an IP address to the command - it would have worked for the connection, but not the
authentication.

Accessing Remote Computers 33

image023.png

Figure 2.16: Testing the HTTPS listener

We started with this:

1 Enter-PSSession -computerName DCA

It didn’t work - which I expected. Then we tried this:

1 Enter-PSSession -computerName DCA -credential COMPANY\Administrator

We provided a valid password for the Administrator account, but as expected the command didn’t
work. Finally:

1 Enter-PSSession -computerName DCA -credential COMPANY\Administrator -UseSSL

Again providing a valid password, we were rewarded with the remote prompt we expected.
It worked! This fulfills the two conditions we specified earlier: We’re using an HTTPS-secured

Accessing Remote Computers 34

connection and providing a credential. Both conditions are required because the computer isn’t
in my domain (since in this case the source computer isn’t even in a domain). As a refresher, figure
2.17 shows, in green, the connection we created and used.

image024.png

Figure 2.17: The connection used for the HTTPS listener test

Modifications

There are twomodifications you can make to a connection, whether using Invoke-Command, Enter-
PSSession, or some other Remoting command, which relate to HTTPS listeners. These are created
as part of a session option object.

Accessing Remote Computers 35

• -SkipCACheck causes WinRM to not worry about whether the SSL certificate was issued by a
trusted CA or not. However, untrusted CAs may in fact be untrustworthy! A poor CA might
issue a certificate to a bogus computer, leading you to believe you’re connecting to the right
machine when in fact you’re connecting to an imposter. This is risky, so use it with caution.

• -SkipCNCheck causes WinRM to not worry about whether the SSL certificate on the remote
machine was actually issued for that machine or not. Again, this is a great way to find yourself
connected to an imposter. Half the point of SSL is mutual authentication, and this parameter
disables that half.

Using either or both of these options will still enable SSL encryption on the connection - but you’ll
have defeated the other essential purpose of SSL, which is mutual authentication by means of a
trusted intermediate authority.

To create and use a session object that includes both of these parameters:

1 $option = New-PSSessionOption -SkipCACheck -SkipCNCheck

2 Enter-PSSession -computerName DCA -sessionOption $option

3 -credential COMPANY\Administrator -useSSL

Caution: Yes, this is an easy way to make annoying error messages go away. But those errors are
trying to warn you of a potential problem and protect you from potential security risks that are very
real, and which are very much in use by modern attackers.

Certificate Authentication

Once you have an HTTPS listener set up, you have the option of authenticating with Certificates.
This allows you to connect to remote computers, even those in an untrusted domain or workgroup,
without requiring either user input or a saved password. This may come in handy when scheduling
a task to run a PowerShell script, for example.

In Certificate Authentication, the client holds a certificate with a private key, and the remote
computermaps that certificate’s public key to a localWindows account.WinRM requires a certificate
which has “Client Authentication (1.3.6.1.5.5.7.3.2)” listed in the Enhanced Key Usage attribute,
and which has a User Principal Name listed in the Subject Alternative Name attribute. If you’re
using a Microsoft Enterprise Certification Authority, the “User” certificate template meets these
requirements.

Obtaining a certificate for client authentication

These instructions assume that you have a Microsoft Enterprise CA. If you are using a different
method of certificate enrollment, follow the instructions provided by your vendor or CA adminis-
trator.

On your client computer, perform the following steps:

Accessing Remote Computers 36

• Run certmgr.msc to open the “Certificates - Current User” console.
• Right click on the “Personal” node, and select All Tasks -> Request New Certificate&
• In the Certificate Enrollment dialog, click Next. Highlight “Active Directory Enrollment
Policy”, and click Next again. Select the User template, and click Enroll.

image025.png

Figure 2.18: Requesting a User certificate.

After the Enrollment process is complete and you’re back at the Certificates console, you should
now see the new certificate in the PersonalCertificates folder:

image026.png

Figure 2.19: The user’s installed Client Authentication certificate.

Accessing Remote Computers 37

Before closing the Certificates console, right-click on the new certificate, and choose All Tasks ->
Export. In the screens that follow, choose “do not export the private key”, and save the certificate to
a file on disk. Copy the exported certificate to the remote computer, for use in the next steps.

Configuring the remote computer to allow Certificate Authentication

On the remote computer, run the PowerShell console as Administrator, and enter the following
command to enable Certificate authentication:

1 Set-Item -Path WSMan:\localhost\Service\Auth\Certificate -Value $true

Importing the client’s certificate on the remote computer

The client’s certificate must be added to the machine “Trusted People” certificate store. To do this,
perform the following steps to open the “Certificates (Local Computer)” console:

• Run “mmc”.
• From the File menu, choose “Add/Remove Snap-in.”
• Highlight “Certificates”, and click the Add button.
• Select the “Computer Account” option, and click Next.
• Select “Local Computer”, and click Finish, then click OK.

Note: This is the same process you followed in the “Installing the Certificate” section under Setting
up and HTTPS Listener. Refer to figures 2.7, 2.8 and 2.9 if needed.

In the Certificates (Local Computer) console, right-click the “Trusted People” store, and select All
Tasks -> Import.

Accessing Remote Computers 38

image027.png

Figure 2.20: Starting the Certificate Import process.

Click Next, and Browse to the location where you copied the user’s certificate file.

Accessing Remote Computers 39

image028.png

Figure 2.21: Selecting the user’s certificate.

Ensure that the certificate is placed into the Trusted People store:

Accessing Remote Computers 40

image029.png

Figure 2.22: Placing the certificate into the Trusted People store.

Creating a Client Certificate mapping on the remote computer

Open a PowerShell console as Administrator on the remote computer. For this next step, you will
require the Certificate Thumbprint of the CA that issued the client’s certificate. You should be
able to find this by issuing one of the following two commands (depending on whether the CA’s
certificate is located in the “Trusted Root Certification Authorities” or the “Intermediate Certification
Authorities” store):

Accessing Remote Computers 41

1 Get-ChildItem -Path cert:\LocalMachine\Root

2 Get-ChildItem -Path cert:\LocalMachine\CA

image030.png

Figure 2.23: Obtaining the CA certificate thumbprint.

Once you have the thumbprint, issue the following command to create the certificate mapping:

1 New-Item -Path WSMan:\localhost\ClientCertificate -Credential (Get-Credential) -Subj\

2 ect <userPrincipalName> -URI * -Issuer <CA Thumbprint> -Force

When prompted for credentials, enter the username and password of a local account with Admin-
istrator rights.

Note: It is not possible to specify the credentials of a domain account for certificate mapping, even if
the remote computer is a member of a domain. You must use a local account, and the account must
be a member of the Administrators group.

image031.png

Figure 2.24: Setting up the client certificate mapping.

Connecting to the remote computer using Certificate Authentication

Now, you should be all set to authenticate to the remote computer using your certificate. For this
step, you will need the thumbprint of the client authentication certificate. To obtain this, you can
run the following command on the client computer:

Accessing Remote Computers 42

1 Get-ChildItem -Path Cert:\CurrentUser\My

Once you have this thumbprint, you can authenticate to the remote computer by using either the
Invoke-Command or New-PSSession cmdlets with the -CertificateThumbprint parameter, as shown
in figure 2.25.

Note: The Enter-PSSession cmdlet does not appear to work with the -CertificateThumbprint
parameter. If you want to enter an interactive remoting session with certificate authentication, use
New-PSSession first, and then Enter-PSSession.

Note: The -UseSSL switch is implied when you use -CertificateThumbprint in either of these
commands. Even if you don’t type -UseSSL, you’re still connecting to the remote computer over
HTTPS (port 5986, by default, on Windows 7 / 2008 R2 or later). Figure 2.26 demonstrates this.

image032.png

Figure 2.25: Using a certificate to authenticate with PowerShell Remoting.

image033.png

Figure 2.26: Demonstrating that the connection is over SSL port 5986, even without the -UseSSL
switch.

Accessing Remote Computers 43

Modifying the TrustedHosts List

As I mentioned earlier, using SSL is only one option for connecting to a computer for which mutual
authentication isn’t possible. The other option is to selectively disable the need for mutual authen-
tication by providing your computer with a list of “trusted hosts.” In other words, you’re telling
your computer, “If I try to access SERVER1 [for example], don’t bother mutually authenticating.
I know that SERVER1 can’t possibly be spoofed or impersonated, so I’m taking that burden off of
your shoulders.”

Figure 2.27 illustrates the connection we’ll be attempting.

image034.png

Figure 2.27: The TrustedHosts connection test

Accessing Remote Computers 44

Beginning on CLIENTA, with a completely default Remoting configuration, we’ll attempt to connect
to C3925954503, which also has a completely default Remoting configuration. Figure 2.28 shows the
result. Note that I’m connecting via IP address, rather than hostname; our client has no way of
resolving the computer’s name to an IP address, and for this test we’d rather not modify my local
HOSTS file.

image035.png

Figure 2.28: Attempting to connect to the remote computer

This is what we expected: The error message is clear that we can’t use an IP address (or a host
name for a non-domain computer, although the error doesn’t say so) unless we either use HTTPS
and a credential, or add the computer to my TrustedHosts list and use a credential. We’ll choose the
latter this time; figure 2.29 shows the command we need to run. If we’d wanted to connect via the
computer’s name (C3925954503) instead of its IP address, we’d have added that computer name to
the TrustedHosts list (It’d be our responsibility to ensure my computer could somehow resolve that
computer name to an IP address to make the physical connection).

Accessing Remote Computers 45

image036.png

Figure 2.29: Adding the remote machine to our TrustedHosts list

This is another case where many blogs will advise just putting “*” in the TrustedHosts list. Really?
There’s no chance any computer, ever, anywhere, could be impersonated or spoofed? We prefer
adding a limited, controlled set of host names or IP addresses. Use a comma-separated list; it’s okay
to use wildcards along with some other characters (like a domain name, such as *.COMPANY.loc),
to allow a wide, but not unlimited, range of hosts. Figure 2.30 shows the successful connection.

Tip: Use the -Concatenate parameter of Set-Item to add your new value to any existing ones, rather
than overwriting them.

Accessing Remote Computers 46

image037.png

Figure 2.30: Connecting to the remote computer

Managing the TrustedHosts list is probably the easiest way to connect to a computer that can’t
offer mutual authentication, provided you’re absolutely certain that spoofing or impersonation
isn’t a possibility. On an intranet, for example, where you already exercise good security practices,
impersonation may be a remote chance, and you can add an IP address range or host name range
using wildcards.

Connecting Across Domains

Figure 2.31 illustrates the next connection we’ll try to make, which is between two computers in
different, trusted and trusting, forests.

Accessing Remote Computers 47

image038.png

Figure 2.31: Connection for the cross-domain test

Our first test is in figure 2.32. Notice that we’re creating a reusable credential in the variable $cred,
so that we don’t keep having to re-type the password as we try this. However, the results of the
Remoting test still aren’t successful.

Accessing Remote Computers 48

image039.png

Figure 2.32: Attempting to connect to the remote computer

The problem? We’re using a CNAME alias (MEMBER1), not the computer’s real host name
(C2108222963). While WinRM can use a CNAME to resolve a name to an IP address for the physical
connection, it can’t use the CNAME alias to look the computer up in AD, because AD doesn’t use
the CNAME record (even in an AD-integrated DNS zone). As shown in figure 2.33, the solution is
to use the computer’s real host name.

Accessing Remote Computers 49

image040.png

Figure 2.33: Successfully connecting across domains

What if you need to use an IP address or CNAME alias to connect? Then you’ll have to fall back
to the TrustedHosts list or an HTTPS listener, exactly as if you were connecting to a non-domain
computer. Essentially, if you can’t use the computer’s real host name, as listed in AD, then you can’t
rely on the domain to shortcut the whole authentication process.

Administrators from Other Domains

There’s a quirk in Windows that tends to strip the Administrator account token for administrator
accounts coming in from other domains, meaning they end up running under standard user
privileges - which often isn’t sufficient. In the target domain, you need to change that behavior.

To do so, run this on the target computer (type this all in one line and then hit Enter):

1 New-ItemProperty -Name LocalAccountTokenFilterPolicy

2 -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\

3 Policies\System -PropertyType Dword -Value 1

That should fix the problem. Note that this does disable User Account Control (UAC) on the machine
where you ran it, so make sure that’s okay with you before doing so.

Accessing Remote Computers 50

The Second Hop

One default limitation with Remoting is often referred to as the second hop. Figure 2.25 illustrates the
basic problem: You can make a Remoting connection from one host to another (the green line), but
going from that second host to a third (the red line) is simply disallowed. This “second hop” doesn’t
work because, by default, Remoting can’t delegate your credential a second time. This is even a
problem if you make the first hop and subsequently try to access any network resource that requires
authentication. For example, if you remote into another computer, and then ask that computer to
access something on an authenticated file share, the operation fails.

The CredSSP Solution

The following configuration changes are needed to enable the second hop:

Note: This only works on Windows Vista, Windows Server 2008, and later versions of Windows. It
won’t work on Windows XP or Windows Server 2003 or earlier versions.

• CredSSP must be enabled on your originating computer and the intermediate server you
connect to. In PowerShell, on your originating computer, run:

1 Set-Item WSMAN:\localhost\client\auth\credssp -value $true

• On your intermediate server(s), you make a similar change to the above, but in a different
section of the configuration:

1 Set-Item WSMAN:\localhost\service\auth\credssp -value $true

• Your domain policymust permit delegation of fresh credentials. In a Group Policy object (GPO),
this is found in Computer Configuration > Policies > Administrative Templates > System >
Credential Delegation > Allow Delegation of Fresh Credentials. You must provide the names of
the machines to which credentials may be delegated, or specify a wildcard like “*.ad2008r2.loc”
to allow an entire domain. Be sure to allow time for the updated GPO to apply, or run Gpupdate
on the originating computer (or reboot it).

Note: Once again, the name you provide here is important. Whatever you’ll actually be typing
for the -computerName parameter is what must appear here. This makes it really tough to delegate
credentials to, say, IP addresses, without just adding “*” as an allowed delegate. Adding “*,” of course,
means you can delegate to ANY computer, which is potentially dangerous, as it makes it easier for
an attacker to impersonate a machine and get hold of your super-privileged Domain Admin account!

Accessing Remote Computers 51

• When running a Remoting command, you must specify the “-Authentication CredSSP”
parameter. Youmust also use the -Credential parameter and supply a valid DOMAINUsername
(you’ll be prompted for the password) - even if it’s the same username that you used to open
PowerShell in the first place.

After setting the above, we were able to use Enter-PSSession to go from our domain controller to
my member server, and then use Invoke-Command to run a command on a client computer - the
connection illustrated in figure 2.34.

image041.png

Figure 2.34: The connections for the second-hop test

Seem tedious and time-consuming to make all of those changes? There’s a faster way. On the
originating computer, run this:

Accessing Remote Computers 52

1 Enable-WSManCredSSP -Role Client -Delegate name

Where “name” is the name of the computers that you plan to remote to next. This can be a wildcard,
like *, or a partial wildcard, like *.AD2008R2.loc. Then, on the intermediate computer (the one to
which you will delegate your credentials), run this:

1 Enable-WSManCredSSP -Role Server

Between them, these two commands will accomplish almost all of the configuration points we listed
earlier. The only exception is that they will modify your local policy to permit fresh credential
delegation, rather than modifying domain policy via a GPO. You can choose to modify the domain
policy yourself, using the GPMC, to make that particular setting more universal.

The Kerberos Solution

CredSSP isn’t considered the safest protocol in the world (see https://msdn.microsoft.com/en-
us/library/cc226796.aspx). Credentials are transmitted, for example, and in clear text too, which
is a problem. Fortunately, within a domain, _there’s another way to enable multi-hop Remoting,
using the native Kerberos protocol, which does _not transmit credentials. Specifically, it’s called
Resource-Based Kerberos constraint delegation, and Microsoft PFE Ashley McGlone (@goateePFE)
wrote about it⁷.

This basic technique works since Windows Server 2003, so it should cover any situations you need.
The idea here is that onemachine can be allowed to delegate credentials _specific services on another
machine. _Windows Server 2012 simplified the design of this previously undocumented, complex
technique, and so we’ll focus on that. So, every machine involved needs to have Windows Server
2012 or later, including at least one Win2012 domain controller in the domain. You’ll also need a
late-model Windows computer with the RSAT installed (I used Windows 10). You’ll know you’ve
got the run version if you can run:

1 Import-Module ActiveDirectory

2 Get-Command -ParameterName PrincipalsAllowedToDelegateToAccount

And get some results back. If you get nothing, you’ve got an older version of the RSAT - you need a
newer one, which will likely require a newer version of Windows on your client. So, let’s say we’re
on ClientA, we want to connect to ServerB, and have it delegate a credential across a second hop to
ServerC.

⁷https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/

https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/
https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/

Accessing Remote Computers 53

1 $ClientA = $env:COMPUTERNAME

2 $ServerB = Get-ADComputer -Identity ServerB

3 $ServerC = Get-ADComputer -Identity ServerC

4

5 Set-ADComputer -Identity $ServerC -PrincipalsAllowedToDelegateToAccount $ServerB

This allows ServerC to accept a delegated credential from ServerB. That ability it an attribute
of ServerC, if you’re paying attention, meaning the computer at the end of the second hop is
what you modify, so that it can receive a credential from the middleman. Additionally, if you’ve
already attempted a second-hop before setting this up, you need to wit about 15 minutes for Active
Directory’s “bad computer cache” to expire and allow all this to actually work. You could also just
reboot ServerB, if you’re in a lab or something and that’s an option.

The -PrincipalsAllowedToDelegateToAccount can also be an array, as in@($ServerB,$ServerZ,$ServerX),
etc, allowing multiple origins to delegate a credential to the machine account you’re updating. And
you can make this work across trust boundaries, too - see Ashley’s original article for the technique.

Working with Endpoints (aka Session
Configurations)
As you learned at the beginning of this guide, Remoting is designed to work with multiple different
endpoints on a computer. In PowerShell terminology, each endpoint is a session configuration, or
just a configuration. Each can be configured to offer specific services and capabilities, as well as
having specific restrictions and limitations.

Connecting to a Different Endpoint

When you use a command like Invoke-Command or Enter-PSSession, you normally connect to a
remote computer’s default endpoint. That’s what we’ve done up to now. But you can see the other
enabled endpoints by running Get-PSSessionConfiguration, as shown in figure 3.1.

image042.png

Working with Endpoints (aka Session Configurations) 55

Figure 3.1: Listing the installed endpoints

Note:Aswe pointed out in an earlier chapter, every computer will show different defaults endpoints.
Our output was from a Windows Server 2008 R2 computer, which has fewer default endpoints than,
say, a Windows 2012 computer.

Each endpoint has a name, such as “Microsoft.PowerShell” or “Microsoft.PowerShell32.” To connect
to a specific endpoint, add the -ConfigurationName parameter to your Remoting command, as
shown in Figure 3.2.

image043.png

Figure 3.2: Connecting to a specific configuration (endpoint) by name

Creating a Custom Endpoint

There are a number of reasons to create a custom endpoint (or configuration):

• You can have scripts and modules auto-load whenever someone connects.
• You can specify a security descriptor (SDDL) that determines who is allowed to connect.
• You can specify an alternate account that will be used to run all commands within the endpoint
- as opposed to using the credentials of the connected users.

Working with Endpoints (aka Session Configurations) 56

• You can limit the commands that are available to connected users, thus restricting their
capabilities.

There are two steps in setting up an endpoint: Creating a session configuration file which will define
the endpoints capabilities, and then registering that file, which enables the endpoint and defines its
configurations. Figure 3.3 shows the help for the New-PSSessionConfigurationFile command, which
accomplishes the first of these two steps.

image044.png

Figure 3.3: The New-PSSessionConfigurationFile command

Here’s some of what the command allows you to specify (review the help file yourself for the other
parameters):

• -Path: The only mandatory parameter, this is the path and filename for the configuration file
you’ll create. Name it whatever you like, and use a .PSSC filename extension.

• -AliasDefinitions: This is a hash table of aliases and their definitions. For example,@{Name=’d’;Definition=’Get-
ChildItem’;Options=’ReadOnly’} would define the alias d. Use a comma-separated list of these
hash tables to define multiple aliases.

• -EnvironmentVariables: A single hash table of environment variables to load into the endpoint:
@{‘MyVar’=’\SERVERShare’;’MyOtherVar’=’SomethingElse’}

Working with Endpoints (aka Session Configurations) 57

• -ExecutionPolicy: Defaults to Restricted if you don’t specify something else; use Unrestricted,
AllSigned, or RemoteSigned. This sets the script execution policy for the endpoint.

• -FormatsToProcess and -TypesToProcess: Each of these is a comma-separated list of path and
filenames to load. The first specifies .format.ps1xml files that contain view definitions, while
the second specifies a .ps1xml file for PowerShell’s Extensible Type System (ETS).

• -FunctionDefinitions: A comma-separated list of hash tables, each of which defines a function
to appear within the endpoint. For example, @{Name=’MoreDir’;Options=’ReadOnly’;Value={
Dir | more }}

• -LanguageMode: The mode for PowerShell’s script language. “FullLanguage” and “NoLan-
guage” are options; the latter permits only functions and cmdlets to run. There’s also “Re-
strictedLanguage” which allows a very small subset of the scripting language to work - see the
help for details.

• -ModulesToImport: A comma-separated list of module names to load into the endpoint. You
can also use hash tables to specify specific module versions; read the command’s full help for
details.

• -PowerShellVersion: ‘2.0’ or ‘3.0,’ specifying the version of PowerShell you want the endpoint
to use. 2.0 can only be specified if PowerShell v2 is independently installed on the computer
hosting the endpoint (installing v3 “on top of” v2 allows v2 to continue to exist).

• -ScriptsToProcess: A comma-separated list of path and file names of scripts to run when a
user connects to the endpoint. You can use this to customize the endpoint’s runspace, define
functions, load modules, or do anything else a script can do. However, in order to run, the script
execution policy must permit the script.

• -SessionType: “Empty” loads nothing by default, leaving it up to you to load whatever you
like via script or the parameters of this command. “Default” loads the normal PowerShell core
extensions, plus whatever else you’ve specified via parameter. “RestrictedRemoteServer” adds
a fixed list of seven commands, plus whatever you’ve specified; see the help for details on
what’s loaded.

Caution: Some commands are important - like Exit-PSSession, which enables someone to cleanly
exit an interactive Remoting session. RestrictedRemoteServer loads these, but Empty does not.

• -VisibleAliases, -VisibleCmdlets, -VisibleFunctions, and -VisibleProviders: These comma-sep-
arated lists define which of the aliases, cmdlets, functions, and PSProviders you’ve loaded will
actually be visible to the endpoint user. These enable you to load an entire module, but then
only expose one or two commands, if desired.

Note: You can’t use a custom endpoint alone to control which parameters a user will have access to.
If you need that level of control, one option is to dive into .NET Framework programming, which
does allow you to create a more fine-grained remote configuration. That’s beyond the scope of this
guide. You could also create a custom endpoint that only included proxy functions, another way
of “wrapping” built-in commands and adding or removing parameters - but that’s also beyond the
scope of this guide.

Working with Endpoints (aka Session Configurations) 58

Once you’ve created the configuration file, you’re ready to register it. This is done with the Register-
PSSessionConfiguration command, as shown in figure 3.4.

image045.png

Figure 3.4: The Register-PSSessionConfiguration command

As you can see, there’s a lot going on with this command. Some of the more interesting parameters
include:

• -RunAsCredential: This lets you specify a credential that will be used to run all commands
within the endpoint. Providing this credential enables users to connect and run commands
that they normally wouldn’t have permission to run; by limiting the available commands (via
the session configuration file), you can restrict what users can do with this elevated privilege.

• -SecurityDescriptorSddl: This lets you specify who can connect to the endpoint. The specifier
language is complex; consider using -ShowSecurityDescriptorUI instead, which shows a
graphical dialog box to set the endpoint permissions.

• -StartupScript: This specifies a script to run each time the endpoint starts.

You can explore the other options on your own in the help file. Let’s take a look at actually creating
and using one of these custom endpoints. As shown in figure 3.5, we’ve created a new AD user
account for SallyS of the Sales department. Sally, for some reason, needs to be able to list the users

Working with Endpoints (aka Session Configurations) 59

in our AD domain - but that’s all she must be able to do. As-is, her account doesn’t actually have
permission to do so.

image046.png

Figure 3.5: Creating a new AD user account to test

Figure 3.6 shows the creation of the new session configuration file, and the registration of the session.
Notice that the session will auto-import the ActiveDirectory module, but only make the Get-ADUser
cmdlet visible to Sally. We’ve specified a restricted remote session type, which will provide a few
other key commands to Sally. We also disabled PowerShell’s scripting language. When registering
the configuration, we specified a “Run As” credential (we were prompted for the password), which
is the account all commands will actually execute as.

Working with Endpoints (aka Session Configurations) 60

image047.png

Figure 3.6: Creating and registering the new endpoint

Because we used the -ShowSecurityDescriptorUI, we got a dialog box like the one shown in figure
3.7. This is an easier way of setting the permissions for who can use this new endpoint. Keep in
mind that the endpoint will be running commands under a Domain Admin account, so we want
to be very careful who we actually let in! Sally needs, at minimum, Execute and Read permission,
which we’ve given her.

Working with Endpoints (aka Session Configurations) 61

image048.png

Figure 3.7: Setting the permissions on the endpoint

We then set a password for Sally and enabled her user account. Everything up to this point has been
done on the DC01.AD2008R2.loc computer; figure 3.8 moves to that domain’s Windows 7 client
computer, where we logged in using Sally’s account. As you can see, she was unable to enter the
default session on the domain controller. But when she attempted to enter the special new session
we set up just for her, she was successful. She was able to run Get-ADUser as well.

Working with Endpoints (aka Session Configurations) 62

image049.png

Figure 3.8: Testing the new endpoint by logging in as Sally

Figure 3.9 confirms that Sally has a very limited number of commands to play with. Some of these
commands - like Get-Help and Exit-PSSession - are pretty crucial for using the endpoint. Others, like
Select-Object, give Sally aminimal amount of non-destructive convenience for getting her command
output to look like she needs. This command list (aside from Get-ADUser) is automatically set when
you specify the “restricted remote” session type in the session configuration file.

Working with Endpoints (aka Session Configurations) 63

image050.png

Figure 3.9: Only eight commands, including the Get-ADUser one we added, are available within the
endpoint.

In reality, it’s unlikely that a Sales user like Sally would be running commands in the PowerShell
console. More likely, she’d use some GUI-based application that ran the commands “behind the
scenes.” Either way, we’ve ensured that she has exactly the functionality she needs to do her job,
and nothing more.

Security Precautions with Custom Endpoints

When you create a custom session configuration file, as you’ve seen, you can set its language mode.
The language mode determines what elements of the PowerShell scripting language are available in
the endpoint - and the language mode can be a bit of a loophole. With the “Full” language mode,
you get the entire scripting language, including script blocks. A script block is any executable hunk
of PowerShell code contained within {curly brackets}. They’re the loophole. Anytime you allow the
use of script blocks, they can run any legal command - even if your endpoint used -VisibleCmdlets
or -VisibleFunctions or another parameter to limit the commands in the endpoint.

In other words, if you register an endpoint that uses -VisibleCmdlets to only expose Get-ChildItem,

Working with Endpoints (aka Session Configurations) 64

but you create the endpoint’s session configuration file to have the full language mode, then any
script blocks inside the endpoint can use any command. Someone could run:

PS C:\> & { Import-Module ActiveDirectory; Get-ADUser -filter * | Remove-ADObject }

Eek! This can be especially dangerous if you configured the endpoint to use a RunAs credential to
run commands under elevated privileges. It’s also somewhat easy to let this happen by mistake,
because you set the language mode when you create the new session configuration file (New-
PSSessionConfigurationFile), not when you register the session (Register-PSSessionConfiguration).
So if you’re using a session configuration file created by someone else, pop it open and confirm its
language mode before you use it!

You can avoid this problem by setting the language mode to NoLanguage, which shuts off script
blocks and the rest of the scripting language. Or, go for RestrictedLanguage, which blocks script
blocks while still allowing some basic operators if you want users of the endpoint to be able to do
basic filtering and comparisons.

Understand that this isn’t a bug - the behavior we’re describing here is by design. It can just be a
problem if you don’t know about it and understand what it’s doing.

Note: Much thanks to fellow MVP Aleksandar Nikolic for helping me understand the logic of this
loophole!

Diagnostics and Troubleshooting
Troubleshooting and diagnosing Remoting can be one of the most difficult tasks an administrator
has to deal with. When Remoting works, it works; when it doesn’t, it’s often hard to tell why.
Fortunately, PowerShell v3 and its accompanying implementation of Remoting have much clearer
and more prescriptive error messages than prior versions did. However, even v2 included an
undocumented and little-appreciated module named PSDiagnostics, which is designed specifically
to facilitate Remoting troubleshooting. Essentially, the module lets you turn on detailed trace log
information before you attempt to initiate a Remoting connection. You can then utilize that detailed
log information to get a better idea of where Remoting is failing.

Diagnostics Examples

For the following scenarios, we started by importing the PSDiagnostics module (note that this is im-
plemented as a script module, and requires an execution policy that permits it to run, such as Remote-
Signed or Unrestricted). Figure 4.1 also shows that we ran the Enable-PSWSManCombinedTrace
command, which starts the extended diagnostics logging.

Diagnostics and Troubleshooting 66

image051.png

Figure 4.1: Loading the diagnostics module and starting a trace

For each scenario, we then ran one or more commands that involved Remoting, as demonstrated in
figure 4.2. We then disabled the trace by running Disable-PSWSManCombinedTrace, so that the log
would only contain the details from that particular attempt (we cleared the log between attempts,
so that each scenario provided a fresh diagnostics log).

Diagnostics and Troubleshooting 67

image052.png

Figure 4.2: Entering a session and running a command

Finally, as shown in figure 4.3, we retrieved the messages from the log. In the scenarios that follow,
we’ll provide an annotated version of these. Note that we’ll typically truncate much of this output
so that we can focus on the most meaningful pieces. Also note that there’s a bit of a difference in
reading the information from the event log architecture, as we’re doing in figure 4.3, and reading
the .EVT trace file directly, as we’ll do in some of our scenarios. The latter will provide combined
information from different logs, which can sometimes be more useful.

Diagnostics and Troubleshooting 68

image053.png

Figure 4.3: Examining the logged diagnostic information

We’re also going to be making use of the Microsoft-Windows-WinRM/analytic log, which does not
normally contain human-readable information. In order to utilize the log’s contents, we’ll use an
internal Microsoft utility (which we’ve been given permission to distribute; you’ll find it on the
Downloads page at http://ConcentratedTech.com) to translate the log’s contents into something we
can read.

Trace information is stored in PowerShell’s installation folder (run cd $pshome to get there, then
change to the Traces folder). The filename extension is .ETL, and you can use Get-WinEvent -path
filename.etl to read a particular file. The Construct-PSRemoteDataObject command, included in the
ZIP file we referenced, can translate portions of the Analytic log’s Message property into human-
readable text. A demo script included in the ZIP file shows how to use it. As shown in figure 4.4,
we dot-sourced the Construct-PSRemoteDataObject.ps1 file into our shell in order to gain access to
the commands it contains.

Diagnostics and Troubleshooting 69

image054.png

Figure 4.4 Dot-sourcing the Construct-PSRemoteDataObject.ps1 script

We also deleted the contents of C:WindowsSystem32WindowsPowerShell\v1.0Traces prior to start-
ing each of the following examples.

A Perfect Remoting Connection

For this connection, we went from the Windows 7 client computer in the AD2008R2 domain to the
DC01 domain controller. On the DC, we changed to the C:\ folder, ran a directory, and then ended
the session. Figure 4.5 shows the entire scenario.

Diagnostics and Troubleshooting 70

image055.png

Figure 4.5: The example for this scenario

We then read the log in chronological order. You need to be a bit careful; running Enable-
PSWSManCombinedTrace and Disable-PSWSManCombined trace actually create log events them-
selves. We’ll often run the Enable command, and then wait a few minutes to actually do anything
with Remoting. That way, we can tell by the timestamp in the log when the “real” traffic began.
We’ll wait a few more minutes before running the Disable command, again so that we can easily
tell when the “real” log traffic ended. Also note that we’ll be getting information from two logs,
WinRM and PowerShell, although reading the .ETL file with Get-WinEvent will grab everything in
sequence.

Note: We’ve experienced problems using Get-WinEvent in PowerShell v3 on non-US English
machines. If you run into problems, consider running the command from PowerShell v2, or use
the GUI Event Viewer application to view the event log.

The connection begins with (in this example) Enter-PSSession and name resolution, as shown in
figure 4.6.

Diagnostics and Troubleshooting 71

image056.png

Figure 4.6: Starting the Remoting connection

WinRM has to spin up a runspace (essentially, a PowerShell process) on the remote computer. That
includes setting several options for locale, timing, and so on, as shown in figure 4.7.

Diagnostics and Troubleshooting 72

image057.png

Figure 4.7: Starting the remote runspace

This will go on for a while. Eventually, you’ll see WinRM beginning to send “chunks,” which are
packetized communications. These are sent via the Simple Object Access Protocol, so expect to see
“SOAP” referenced a lot (WS-MAN is a Web service, remember, and SOAP is the communications
language of Web services). Figure 4.8 shows a couple of these 1500-byte chunks. Notice that the
actual payload is pretty much gibberish.

Diagnostics and Troubleshooting 73

image058.png

Figure 4.8: Data begins to transfer over the connection

This gibberish is what the Construct-PSRemoteDataObject command can translate. For example,
those “sending” messages have an event ID of 32868; by looking for just those events we can see
what’s being sent, as shown in figure 4.9.

Diagnostics and Troubleshooting 74

image059.png

Figure 4.9: Translating the data that was sent

In this case, the client was asking the server (which is listed as the destination) about its capabilities,
and for some metadata on the Exit-PSSession command (that’s the second message). This is how the
client figures out what kind of server it’s talking to, and other important, preliminary information.
Now, the client knows what version of the serialization protocol will be used to send data back and
forth, what time zone the server is in, and other details.

Note: Event ID 32868 is client-to-server traffic; ID 32867 represents server-to-client traffic. Using
those two IDs along with Construct-PSRemoteDataObject can reveal the majority of the session
transcript once the connection is established.

Moving on. As shown in figure 4.10, you’ll then see some authentication back-and-forth, during
which some errors can be expected. The system will eventually get over it and, as shown, start
receiving chunks of data from the server.

Diagnostics and Troubleshooting 75

image060.png

Figure 4.10: Getting authentication taken care of

A rather surprising amount of back-and-forth can ensue as the two computers exchange pleasantries,
share information about each other and how they work, and so on. We’re going to switch our
event log output, now, to include event ID numbers, because those can be pretty useful when
trying to grab specific pieces of data. At this point, the log will mainly consist of the client sending
commands and the server sending back the results. This is more readable when you use Construct-
PSRemoteDataObject, so here’s the complete back-and-forth from that perspective: First up is the
client’s statement of its session capabilities:

destination : Server messageType : SessionCapability pipelineId : 00000000-0000-0000-0000-000000000000

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><Version

N="protocolversion">2.2</Version><Version N="PSVersion">2.0</Version><Version N="SerializationVersion">1.1.0.1</Version><BA

N="TimeZon e">AAEAAAD/////AQAAAAAAAAAEAQAAABxTeXN0ZW0uQ3VycmVudFN5c 3RlbVRpbWVab25lBAAAABdtX0NhY2hlZERheWxpZ2h0Q2hhbmdlcw1tX

3RpY2tzT2Zmc2V0Dm1fc3RhbmRhcmROYW1lDm1fZGF5bGlnaHROYW1lA wABARxTeXN0ZW0uQ29sbGVjdGlvbnMuSGFzaHRhYmxlCQkCAAAAAPgpF

9b///8KCgQCAAAAHFN5c3RlbS5Db2xsZWN0aW9ucy5IYXNodGFibGUHA AAACkxvYWRGYWN0b3IHVmVyc2lvbghDb21wYXJlchBIYXNoQ29kZVByb

3ZpZGVyCEhhc2hTaXplBEtleXMGVmFsdWVzAAADAwAFBQsIHFN5c3Rlb S5Db2xsZWN0aW9ucy5JQ29tcGFyZXIkU3lzdGVtLkNvbGxlY3Rpb25zL

klIYXNoQ29kZVByb3ZpZGVyCOxROD8AAAAACgoDAAAACQMAAAAJBAAAA BADAAAAAAAAABAEAAAAAAAAAAs=</BA></MS></Obj>

Then the server’s:

destination : Client messageType : SessionCapability pipelineId : 00000000-0000-0000-0000-000000000000

runspaceId : 00000000-0000-0000-0000-000000000000 data : <Obj RefId="0"><MS><Version

N="protocolversion">2.2</Version><Version N="PSVersion">2.0</Version><Version N="SerializationVersion">1.1.0.1</Version></MS></Obj>

Next is the server’s $PSVersionTable object, which lists various versioning information:

Diagnostics and Troubleshooting 76

destination : Client messageType : ApplicationPrivateData pipelineId : 00000000-0000-0000-0000-000000000000

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><Obj

N="ApplicationPrivateData" RefId="1"><TN RefId="0"><T>System.Management.Automation. PSPrimitiveDictionary</T><T>System.Collections.Hashtable

</T><T>System.Object</T></TN><DCT><En><S N="Key">PSVersionTable</S><Obj N="Value" RefId="2"><TNRef

RefId="0" /><DCT><En><S N="Key">PSVersion</S><Version N="Value">2.0</Version></En><En><S

N="Key">PSCompatibleVersions</S><Obj N="Value" RefId="3"><TN RefId="1"><T>System.Version[]</T><T>System

.Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve rsion><Version>2.0</Version><Version>3.0</Version></LST>

</Obj></En><En><S N="Key">BuildVersion</S><Version N="Value">6.2.8314.0</Version></En><En><S

N="Key">PSRemotingProtocolVersion</S><Version N="Value">2.2</Version></En><En><S N="Key">WSManStackVersion</S><Version

N="Value">3.0</Version></En><En><S N="Key">CLRVersion</S><Version N="Value">4.0.30319.261</Version></En><En><S

N="Key">SerializationVersion</S><Version N="Value">1.1.0 .1</Version></En></DCT></Obj></En></DCT></Obj></MS></Obj

>

Next the server sends information about the runspace that will be used:

destination : Client messageType : RunspacePoolStateInfo pipelineId : 00000000-0000-0000-0000-000000000000

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I32

N="RunspaceState">2</I32></MS></Obj>

The client sends information about its Exit-PSSession command:

destination : Server messageType : GetCommandMetadata pipelineId : 03460806-3011-42a6-9843-c54f39ee6fb8

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><Obj

N="Name" RefId="1"><TN RefId="0" ><T>System.String[]</T><T>System.Array</T><T>System.Obje

ct</T></TN><LST><S>Out-Default</S><S>Exit-PSSession</S>< /LST></Obj><Obj N="CommandType"

RefId="2"><TN RefId="1"> <T>System.Management.Automation.CommandTypes</T><T>Syste m.Enum</T><T>System.ValueType</T><T>System.Object</T></T

N><ToString>Alias, Function, Filter, Cmdlet</ToString><I32>15</I32></Obj><Nil N="Namespace"

/><Nil N="ArgumentList" /></MS></Obj>

Abit later we’ll see the result of the CDC:\ command, which is the new PowerShell prompt reflecting
the new folder location:

destination : Client messageType : PowerShellOutput pipelineId : c913b8ae-2802-4454-9d9b-926ca6032018

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <S>PS C:\> </S> Next we’ll
look at the output of the Dir command. This first bit is writing the column headers for Mode,
LastWriteTime, Length, Name, and so forth. This is all being sent to our client - we’ll just include
the first few lines, each of which comes across in its own block:

destination : Client messageType : RemoteHostCallUsingPowerShellHost pipelineId :

c259c891-516a-46a7-b287-27c96ff86d5b runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<

/T><T>System.Object</T></TN><LST><S>Mode LastWriteTime Length Name </S></LST></Obj></MS></Obj>

destination : Client messageType : RemoteHostCallUsingPowerShellHost pipelineId :

c259c891-516a-46a7-b287-27c96ff86d5b runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Diagnostics and Troubleshooting 77

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<

/T><T>System.Object</T></TN><LST><S>---- ------------- ------ ---- </S></LST></Obj></MS></Obj>

destination : Client messageType : RemoteHostCallUsingPowerShellHost pipelineId :

c259c891-516a-46a7-b287-27c96ff86d5b runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<

/T><T>System.Object</T></TN><LST><S>d---- 8/25/2010 8:11 AM IT Structures </S></LST></Obj></MS></Obj>

destination : Client messageType : RemoteHostCallUsingPowerShellHost pipelineId :

c259c891-516a-46a7-b287-27c96ff86d5b runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab

data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi" RefId="1"><TN RefId="0"><T>System.Management.Automation.

Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst em.ValueType</T><T>System.Object</T></TN><ToString>Write

Line2</ToString><I32>16</I32></Obj><Obj N="mp" RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<

/T><T>System.Object</T></TN><LST><S>d---- 7/13/2009 11:20 PM PerfLogs </S></LST></Obj></MS></Obj>

Eventually the command finishes and we get the prompt again:

destination : Client messageType : PowerShellOutput pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <S>PS C:\> </S> You’ll also
see periodic exchanges about the state of the pipeline - this indicates that the command is done:

destination : Client messageType : PowerShellStateInfo pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9

runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab data : <Obj RefId="0"><MS><I32

N="PipelineState">4</I32></MS></Obj>

There’s definitely a lot of data passing back and forth - but it’s possible to make sense of it using
these tools. Frankly, most Remoting problems take place during the connection phase, meaning once
that’s completed successfully you have no further problems. So in the next scenarios, we’ll focus on
specific connection errors.

Note: To clear the log and prepare for a new trace, we usually delete the .ETL files and go into Event
Viewer to clear the Applications and Services Logs > Microsoft > Windows > Windows Remote
Management log. If you’re getting errors when running Enable-PSWSManCombinedTrace, one of
those two tasks probably hasn’t been completed.

Connection Problem: Blocked Port

Figure 4.11 shows what happens when you try to connect to a computer and the necessary port -
5985 by default - isn’t open all the way through. We’re going to look at how this appears in the log.
Note that we’re assuming you’ve already checked the computer name, made sure it resolves to the
proper IP address, and so forth; what you’re looking at is definitely a blocked port (because we set
it up that way) in this example.

Diagnostics and Troubleshooting 78

image061.png

Figure 4.11: Connection failure due to a firewall or other port-blocking problem.

Figure 4.12 shows that we successfully resolved the computer name. We find that testing with Enter-
PSSession is easiest, because it’s really easy to spot that command in the log and see when the “real”
log data begins.

Diagnostics and Troubleshooting 79

image062.png

Figure 4.12: Starting the connection attempt

Note that a lot of the initial log traffic is still WinRM talking to itself, getting set up for the actual
connection attempt. Just keep scrolling through that until you start to see problem indications. Figure
4.13 shows a timeout - never a good sign - and the error message generated by WinRM. As you can
see, this is exactly what we got on-screen, so PowerShell isn’t hiding anything from us.

Diagnostics and Troubleshooting 80

image063.png

Figure 4.13: The timeout error in the diagnostics log

This is actually one of the trickiest bits of Remoting: It can’t tell why the server didn’t respond. It
doesn’t realize that the port isn’t open. For all WinRM knows, we could have specified a computer
name that doesn’t exist. All it knows is that it sent a message out to the network, and nobody
replied. In the end, nearly all of the possible “low level” problems - bad IP address, bad computer
name, blocked port, and so forth all look the same fromWinRM’s point of view. You’re on your own
to troubleshoot these problems.

We’ve found that one useful technique can be to use the old command-line Telnet client. Keep in
mind that WS-MAN is just HTTP, and HTTP - like many Internet protocols - is just sending text
back and forth, more or less exactly like Telnet. HTTP has specific text it sends and looks for, but
the actual transmission is old-school Telnet. So we’ll run something like telnet dc01 5985 just to see
if we can connect. A blank screen is normal: Hit Ctrl+C to break out, and you’ll see an HTTP “Bad
Request” error. That’s fine - it means you got through. That confirms the computer name, the IP
address, the port, and everything else “low-level.”

Diagnostics and Troubleshooting 81

Connection Problem: No Permissions

This can be a bit of a tricky problem, because you need to be an Administrator to enable a diagnostics
trace. On the other hand,WinRM is usually quite clear when you can’t connect because your account
doesn’t have permission to the endpoint: “Access Denied” is the error message, and that’s pretty
straightforward.

But you can also log on as an Administrator (or open a shell under Administrator credentials), enable
a trace, and then have the other user (or your other user account) try whatever it is they’re trying.
Go back in as Administrator and disable the trace, then examine the log. Figure 4.14 shows what
you’re looking for.

Diagnostics and Troubleshooting 82

image064.png

Figure 4.14: “Access Denied” in the diagnostics log

The log data just after that will show you the user account that was used to try and create
the connection (AD2008R2SallyS, in our example, which is why the command failed - she’s not
an Administrator). A quick check with Get-PSSessionConfiguration on the remote machine will
confirm the permissions on whatever Remoting endpoint you’re attempting to connect to. Also, as
shown in figure 4.15, we’ve found that running Set-PSSessionConfiguration can be useful. Provide
the -Name of the endpoint you’re checking, and add -ShowSecurityDescriptorUI. That will let you
confirm the endpoint’s permissions in a friendlier GUI form - and you can modify it right there if
need be.

Diagnostics and Troubleshooting 83

image065.png

Figure 4.15: Checking an endpoint’s permissions using Set-PSSessionConfiguration

Connection Problem: Untrusted Host

Figure 4-16 shows the connection we’re trying to make: From the client in the AD2008R2 domain to
a standalone computer that isn’t part of a domain.

Diagnostics and Troubleshooting 84

image066.png

Figure 4.16: Attempted connection for this scenario

As shown in figure 4.17, the error comes quickly, even though we’ve provided a valid credential.
The problem is that we’re in a situation where WinRM can’t get the mutual authentication it wants;
part 2 of this guide covers solutions for fixing the problem. But what does the problem look like in
the diagnostics log?

Diagnostics and Troubleshooting 85

image067.png

Figure 4.17: The error message gives good clues as to how to solve this problem

Figure 4.18 shows that WinRM still sends its initial salvo of traffic to the server. It’s when the reply
comes back that the client realizes it can’t authenticate this server, and the error is generated. What
you see in the log is pretty much what shows up in the shell, verbatim.

Diagnostics and Troubleshooting 86

image068.png

Figure 4.18: The diagnostic log content when attempting to connect to an untrusted host

Figure 4.19 shows a good second step to take: Run Test-WSMan. Provide the same computer name
or IP address, but leave off the -Credential parameter. The cmdlet can at least tell you that WS-MAN

Diagnostics and Troubleshooting 87

and WinRM are up and running on the remote computer, and what version they’re running. That
at least narrows the problem down to one of authentication: Either your permissions (which would
have resulted in an “Access Denied”) or the mutual authentication component of Remoting.

image069.png

Figure 4.19: Test-WSMan is kind of like a “ping” for Remoting

Note: You’ll see substantially the same behavior when you attempt to connect using HTTPS (the -
UseSSL switch on the various Remoting commands), and the remote machine’s SSL certificate name
doesn’t match the name you used in your command. The error message is unambiguous both on-
screen and in the log, and we discuss solutions in part 2 of the guide.

Standard Troubleshooting Methodology

Troubleshooting can be difficult, especially with Remoting since there are so many layers in which
something can go wrong. Following a straightforward, standardized approach can help pinpoint
problems.

1. Test Remoting with its default configuration. If you’ve tinkered with that, undo your changes
and start from scratch.

Diagnostics and Troubleshooting 88

2. Start by attempting to connect from the initiating machine to the target machine by using
something other than Remoting, but which is still security-sensitive. For example, useWindows
Explorer to open the remote machine’s C$ shared folder. If that doesn’t work, you have broader
security issues. Make a note of whether or not you need to provide alternate credentials - if
you do, Remoting will need them as well.

3. Install a Telnet client on the initiating machine (a simple command-line client, like the
Windows native one, will do). Attempt to connect to the HTTP WinRM listener by running
telnet machine_name:5985. You should get a blank screen, and Ctrl+C will end the session. If
this doesn’t work, there’s a basic connectivity problem (such as a blocked port) you need to
resolve.

4. Use Test-WSMan as described earlier, using an alternate credential if necessary. Make sure
you’re either using the machine’s real name as it appears in Active Directory, or that you’ve
taken one of the other approaches (TrustedHosts plus a credential, or SSL plus a credential)
that we outlined in Section 2 of this guide. If that doesn’t work, you have a problem in the
WS-MAN configuration.

Simply walking through these four steps, in this order, can help you pinpoint at least the general
cause of most problems.

Summary

So why did we bother going through the logs when, in most of our examples, the logs simply
echoed what was on the screen? Simple: As PowerShell becomes embedded in more and more GUI
applications, you might not always have a console, with its nice error messages, to rely upon. What
you can do, however, is use the console to start a trace, run whatever GUI app is failing, and then
dig into the log to see if you find some of the signs we’ve shown you here.

Session Management
When you create a Remoting connection between two machines, you’re creating - in PowerShell
terminology - a session. There are an incredible number of options that can be applied to these
sessions, and in this portion of the guide we’ll walk you through them.

Ad-Hoc vs. Persistent Sessions

When you use a Remoting command - primarily Invoke-Command or Enter-PSSession - and specify
a computer name by using their -ComputerName parameter, you’re creating an ad-hoc session.
Basically, PowerShell just brings up a session, utilizes it, and then tears it down, all automatically.

Alternately, you can use New-PSSession to explicitly create a new session, which can then be
utilized by passing the session to the -Session parameter of Invoke-Command, Enter-PSSession, and
numerous other Remoting-aware commands. When you manually create a session, it’s up to you to
get rid of it when you’re done with it. However, if you have a session open and close your copy of
PowerShell, that session is automatically removed for you - so you’re not leaving anything hanging
around that needs to be cleaned up.

Disconnecting and Reconnecting Sessions

In PowerShell v3, you can disconnect and reconnect sessions by using Disconnect-PSSession and
Connect-PSSession. These commands each accept a session object, which you’d usually create with
New-PSSession.

A disconnected session leaves a copy of PowerShell up and running on the remote computer. This is
a good way to get it to run some long-running task, disconnect, and then reconnect later to check up
on it. You can even disconnect a session on one computer, move to another computer, and reconnect
to that session (although you can’t connect to someone else’s disconnect session; you’re limited to
reconnecting to your own).

For example, figure 5.1 shows a session being created from a client to a server. The session is then
given a task to perform as a background job, and then the session is disconnected. It’s important to
note that the command, and the background job, are on the server (DC01), not the client.

Session Management 90

image070.png

Figure 5.1: Creating, using, and disconnecting a session

In figure 5.2, we’ve moved to a different machine. We’re logged on, and running PowerShell, as
the same user that we were on the previous client computer. We retrieve the session from the
remote computer, and then reconnect it. We then enter the newly reconnected session, display that
background job, and receive some results from it. Finally, we exit the remote session and shut it
down via Remove-PSSession.

Session Management 91

image071.png

Figure 5.2: Reconnecting to, utilizing, and removing a session

Obviously, disconnected sessions can present something of a management concern, because you’re
leaving a copy of PowerShell up and running on a remote machine - and you’re doing so in a way
that makes it difficult for someone else to even see you’ve done it! That’s where session options
come into play.

Session Options

Whenever you run a Remoting command that creates a session - whether persistent or ad-hoc - you
have the option of specifying a -SessionOption parameter, which accepts a PSSessionOption object.
The default option object is used if you don’t specify one, and that object can be found in the built-in
$PSSessionOption variable. It’s shown in figure 5.3.

Session Management 92

image072.png

Figure 5.3: The default PSSessionOption object stored in $PSSessionOption

As you can see, this specifies a number of defaults, including the operation timeout, idle timeout, and
other options. You can change these by simply creating a new session option object and assigning
it to $PSSessionOption; note that you need to do this in a profile script if you want your changes
to become the new default every time you open a new copy of PowerShell. Figure 5.4 shows an
example.

Session Management 93

image073.png

Figure 5.4: Creating a new default PSSessionOption object

Of course, a 2-second idle timeout probably isn’t very practical (and in fact won’t work - you must
specify at least a 60-second timeout in order to use the session object at all), but you’ll note that
you only need to specify the option parameters that you want to change - everything else will go to
the built-in defaults. You can also specify a unique session option for any given session you create.
Figure 5.5 shows one way to do so.

Session Management 94

image074.png

Figure 5.5: Creating a new PSSessionOption object to use with a 1-to-1 connection

By specifying intelligent values for these various options, you can help ensure that disconnected
sessions don’t hang around and run forever and ever. A reasonable idle timeout, for example,
ensures that the session will eventually close itself, even if an administrator disconnects from it and
subsequently forgets about it. Note that, when a session closes itself, any data within that session
- including background job results - will be lost. It’s probably a good idea to get in the practice of
having data saved into a file (by using Export-CliXML, for example), so that an idle session doesn’t
close itself and lose all of your work.

PowerShell, Remoting, and Security
Although PowerShell Remoting has been around since roughly 2010, many administrators and
organizations are unable to take advantage of it, due in large part to outdated or uninformed security
and risk avoidance policies. This chapter is designed to help address some of those by providing
some honest technical detail about how these technologies work. In fact, they present significantly
less risk than many of the management and communications protocols already in widespread use -
those older protocols benefit primarily from being “grandfathered” into policies and never closely
examined.

Neither PowerShell nor Remoting are a “Back Door”
for Malware

This is a major misconception. Keep in mind that, by default, PowerShell does not execute scripts.
When it does so, it can only execute commands that the executing user has permission to run - it does
not execute anything under a super-privileged account, and it bypasses neither existing permissions
nor security. In fact, because PowerShell is based upon .NET, it’s unlikely any malware author
would even bother to utilize PowerShell. Such an attacker could simply call on .NET Framework
functionality directly, and much more easily.

By default, PowerShell Remoting enables only Administrators to even connect, and once connected
they can only run commands they have permission to run - with no ability to bypass permissions
or underlying security. Unlike past tools which ran under a highly-privileged account (such as
LocalSystem), PowerShell Remoting executes commands by impersonating the user who submitted
the commands.

Bottom line: Because of the way it works, PowerShell Remoting does not allow any user, authorized
or not, to do anything that they could not do through a dozen other means - including logging
onto the console. Whatever protections you have in place to prevent those kinds of attacks (such
as appropriate authorization and authentication mechanisms) will also protect PowerShell and
Remoting. If you allow Administrators to log on to server consoles - either physically or via Remote
Desktop - you have far greater security exposure than you do through PowerShell Remoting.

Further, PowerShell offers a better opportunity to restrict even Administrators. A Remoting endpoint
(or session configuration) can be modified to allow only specified users to connect to it. Once
connected, the endpoint can further restrict the commands that those users can execute. This
provides amuch better opportunity for delegated administration. Rather than having Administrators
log onto consoles and do whatever they please, you can have them connect to restricted, secured
endpoints and only complete those specific tasks that the endpoint permits.

PowerShell, Remoting, and Security 96

PowerShell Remoting is Not Optional

As of Windows Server 2012, PowerShell Remoting is enabled by default and is mandatory for
server management. Even when running a graphical management console locally on a server, the
console still “goes out” and “back in” via Remoting to accomplish its tasks. Without Remoting, server
administration is impossible. Organizations are therefore well-advised to start immediately finding
a way to include Remoting in their permitted protocols. Otherwise, critical services will not be able
to be managed, even through Remote Desktop or directly on the server console.

This approach actually helps better secure the data center. Because local administration is exactly
the same as remote administration (via Remoting), there’s no longer any reason to physically or
remotely access server consoles. The consoles can thus remain more locked down and secured, and
Administrators can stay out of the data center entirely.

Remoting Does Not Transmit or Store Credentials

By default, Remoting uses Kerberos, an authentication protocol that does not transmit passwords
across the network. Instead, Kerberos relies on passwords as an encryption key, ensuring that
passwords remain safe. Remoting can be configured to use less-secure authentication protocols (such
as Basic), but can also be configured to require certificate-based encryption for the connection.

Further, Remoting never stores credentials in any persistent storage by default. A Remote machine
never has access to a user’s credentials; it has access only to a delegated security token (a Kerberos
“ticket”). That is stored in volatile memory which cannot, by OS design, be written to disk - even to
the OS page file. The server presents that token to the OS when executing commands, causing the
command to be executed with the original invoking user’s authority - and nothing more.

Remoting Uses Encryption

Most Remoting-enabled applications apply their own encryption to their application-level traffic
sent over Remoting. However, Remoting can also be configured to use HTTPS (certificate-encrypted
connections), and can be configured to make HTTPS mandatory. This encrypts the entire channel
using high-level encryption, while also ensuring mutual authentication of both client and server.

Remoting is Security-Transparent

As stated, Remoting neither adds anything to, nor takes anything away from, your existing security
configuration. Remote commands are executed using the delegated credentials of whatever user
invoked the commands, meaning they can only do what they have permission to do - and what
they could presumably do through a half-dozen other tools anyway. Whatever auditing you have in

PowerShell, Remoting, and Security 97

place in your environment cannot be bypassed by Remoting. Unlike many past “remote execution”
solutions, Remoting does not operate under a single “super-privileged” account unless you expressly
configure it that way (which requires several steps and cannot possibly by accomplished accidentally,
as it requires the creation of custom endpoints).

Remember: Anything someone can do via Remoting, they can already do in a half-dozen other ways.
Remoting simply provides a more consistent, controllable, and scalable means of doing so.

Remoting is Lower Overhead

Unlike Remote Desktop Connection (RDC, which many Administrators currently use to manage
remote servers), Remoting is very low-overhead. It does not require the server to spin up an
entire graphical operating environment, impacting server performance and memory management.
Remoting is also more scalable, enabling authorized users (mainly Administrators in most cases) to
execute commands against multiple servers at once - which improves consistency and reduces error,
while also speeding up response times and lowering administrative overhead.

Remoting isMicrosoft’s way forward. To not use Remoting is to deliberately attempt to useWindows
in a way that it was explicitly designed not to do. You will reduce, not improve your security,
while also increasing operational overhead, enabling greater instance of human error, and reducing
server performance. Microsoft Administrators have for decades been toiling under an operational
paradigm that was wrong-headed and short-sighted; Remoting is finally delivering to Windows the
administrative model that every other network operating system has used for years, if not decades.

Remoting Uses Mutual Authentication

Unlike nearly every other remote management technique out there - including tools like PSExec and
even, under some circumstances, Remote Desktop, PowerShell Remoting by default requires mutual
authentication. The user attempting to connect to a server is authenticated and known; the system
also ensures that the server connected to is the intended server and not an imposter. This provides
far better security than past techniques, while also helping to reduce error - you can’t “accidentally
log on to the wrong console” as you could if you just walked into the data center.

Summary

At this point, denying PowerShell Remoting is like denying Ethernet: It’s ridiculous to think you’ll
successfully operate your environment without it. For the first time, Microsoft has provided a
supported, official, baked-in technology for remote server administration that does not use elevated
credentials, does not store credentials in any way, that supports mutual authentication, and that is
complete security-transparent. This is the administration technology we should have had all along;
moving to it will only make your environment more manageable and more secure, not less.

Configuring Remoting via GPO
PowerShell’s about_remote_troubleshooting provides a good set of steps for configuring basic
Remoting functionality via Group Policy objects (GPOs). Running Enable-PSRemoting also reveals
some useful details, such as the four main configuration. In this section, we’ll cover these main
configuration steps.

Note: None of this is necessary on Windows Server 2012 and later versions of the server OS.
Remoting is enabled by default on those, and shouldn’t be turned off, as many of the native
management tools (including GUI consoles like Server Manager) depend upon Remoting.

GPO Caveats

One thing to keep in mind is that GPOs can only create configuration changes; they can’t necessarily
change the active state of the computer. In other words, while a GPO can configure a service’s start
mode to “Automatic,” it can’t start the service. That’ll happen automatically when the computer is
restarted. It isn’t so much that a restart is needed, just that the computer only starts services after
booting. So in many cases, the changes you make with a GPO (with regard to Remoting) won’t
actually take effect until the next time the affected computers are restarted, because in most cases
the computer only looks at the configuration at boot time. Just be aware of that.

Also, everything in this section assumes that PowerShell is already installed on the target computers
- something that can also be accomplished with a GPO or other software deployment mechanism,
but not something we’re going to cover here. Note that most of this section should apply to either
PowerShell v2 or v3; we’re going to run through the examples using v2 on a Windows 7 client
computer belonging to a Windows Server 2008 R2 domain.

Note: Some of the GPO settings we’ll be reviewing became available inWindows 2008 andWindows
2008 R2, but you should be able to install the necessary administrative templates into any domain
controller. The Windows 7 (and later versions) Remote Server Administration Toolkit (RSAT)
contains the necessary templates.

We don’t know for sure that the GPO configuration steps need to be accomplished in the order we
present them; in most cases, we expect you’ll do them all at once in a single GPO, so it won’t matter.
We’re taking them step-by-step in this order so that we can check the individual results along the
way.

Allowing Automatic Configuration of WinRM Listeners

As explained earlier in this guide, the WinRM service sets up one or more listeners to accept
incoming traffic. Running Enable-PSRemoting, for example, sets up an HTTP listener, and we’ve

Configuring Remoting via GPO 99

covered how to set up an HTTPS listener in addition to, or instead of, that default one.

You’ll find this setting under: Computer ConfigurationAdministrative TemplatesWindows Compo-
nentsWindows Remote Management (WinRM)WinRM Service. Enable the policy, and specify the
IPv4 and IPv6 filters, which determine which IP addresses listeners will be configured on. You can
use the * wildcard to designate all IP addresses, which is what we’ve done in Figure 7.1.

image075.png

Figure 7.1: Enabling automatic configuration of WinRM listeners

Setting the WinRM Service to Start Automatically

This service is set to start automatically on newer server operating systems (Windows Server 2003
and later), but not on clients. So this step will only be required for client computers. Again, this
won’t start the service, but the next time the computer restarts, the service will start automatically.

Microsoft suggests accomplishing this task by running a PowerShell command - which does not
require that Remoting be enabled in order to work:

Set-Service WinRM -computername $servers -startup Automatic

Configuring Remoting via GPO 100

You can populate $servers any way you like, so long as it contains strings that are computer names,
and so long as you have Administrator credentials on those computers. For example, to grab every
computer in your domain, you’d run the following (this assumes PowerShell v2 or v3, on aWindows
7 computerwith the RSAT installed): Import-Module ActiveDirectory $servers = Get-ADComputer

-filter * | Select -expand name Practically speaking, you’ll probably want to limit the number
of computers you do at once by either specifying a -Filter other than “*” or by specifying -SearchBase
and limiting the search to a specific OU. Read the help for Get-ADComputer to learn more about
those parameters.

Note that Set-Service will return an error for any computers it couldn’t contact, or for which the
change didn’t work, and then continue on with the next computer.

Alternately, you could configure this with a GPO. Under Computer ConfigurationWindows Set-
tingsSecurity SettingsSystem Services, look for “Windows Remote Management.” Right-click it and
set a startup mode of Automatic. That’s what we did in figure 7.2.

image076.png

Figure 7.2: Setting the WinRM service start mode

Configuring Remoting via GPO 101

Creating a Windows Firewall Exception

This step will be necessary on all computers where theWindows Firewall is enabled.We’re assuming
that you only want Remoting enabled in your Domain firewall profile, so that’s all we’re doing in
our example. Obviously, you can manage whatever other exceptions you want in whatever profiles
are appropriate for your environment.

You’ll find one setting under Computer ConfigurationAdministrative TemplatesNetworkNetwork
ConnectionsWindows FirewallDomain Profile. Note that the “Windows Firewall: Allow Local Port
Exceptions” policy simply allows local Administrators to configure Firewall exceptions using the
Control Panel; it doesn’t actually create any exceptions. That may be exactly what you want in
some cases.

Instead, we went to the “Define inbound port exceptions” policy, and Enabled it, as shown in figure
7.3.

image077.png

Figure 7.3: Enabling Firewall exceptions

We then clicked “Show,” and added “5985:TCP:*:enabled:WinRM” as a new exception, as shown in
figure 7.4.

Configuring Remoting via GPO 102

image078.png

Figure 7.4: Creating the Firewall exception

Give it a Try!

After applying the above GPO changes, we restarted our client computer. When the WinRM service
starts, it checks to see if it has any configured listeners. When it finds that it doesn’t, it should try and
automatically configure one - which we’ve now allowed it to do via GPO. The Firewall exception
should allow the incoming traffic to reach the listener.

As shown in figure 7.5, it seems to work. We’ve found the newly created listener!

Configuring Remoting via GPO 103

image079.png

Figure 7.5: Checking the newly created WinRM listener

Of course, the proof - as they say - is in the pudding. So we ran to another computer and, as shown
in figure 7.6, were able to initiate an interactive Remoting session to our original client computer.
We didn’t configure anything except via GPO, and it’s all working.

Configuring Remoting via GPO 104

image080.png

Figure 7-6: Initiating a 1-to-1 Remoting session with the GPO-configured client computer

What You Cant Do with a GPO

You can’t use a GPO to start the WinRM service, as we’ve already stated. You also can’t create
custom listeners via GPO, nor can you create custom PowerShell endpoints (session configurations).
However, once basic Remoting is enabled via GPO, you can use PowerShell’s Invoke-Command
cmdlet to remotely perform those other tasks. You could even use Invoke-Command to remotely
disable the default HTTP listener, if that’s what you wanted.

Also keep in mind that PowerShell’s WSMAN PSProvider can map remote computers’ WinRM
configuration into your local WSMAN: drive. That’s why, by default, the top-level “folder” in that
drive is “localhost;” so that there’s a spot to add other computers, if desired. That offers another way
to configure listeners and other Remoting-related settings.

The real key is to use GPO to get Remoting up and running in this basic form, which is what we’ve
shown you how to do. From there, you can use Remoting itself to tweak, reconfigure, and modify
the configuration.

	Table of Contents
	Secrets of PowerShell Remoting
	Remoting Basics
	What is Remoting?
	Examining Remoting Architecture
	Enabling Remoting
	Test Environment
	Enabling Remoting
	Core Remoting Tasks
	Remoting Returns Deserialized Data
	Enter-PSSession vs. Invoke-Command

	Accessing Remote Computers
	Setting up an HTTPS Listener
	Certificate Authentication
	Modifying the TrustedHosts List
	Connecting Across Domains
	Administrators from Other Domains
	The Second Hop

	Working with Endpoints (aka Session Configurations)
	Connecting to a Different Endpoint
	Creating a Custom Endpoint
	Security Precautions with Custom Endpoints

	Diagnostics and Troubleshooting
	Diagnostics Examples
	Standard Troubleshooting Methodology
	Summary

	Session Management
	Ad-Hoc vs. Persistent Sessions
	Disconnecting and Reconnecting Sessions
	Session Options

	PowerShell, Remoting, and Security
	Neither PowerShell nor Remoting are a ``Back Door'' for Malware
	PowerShell Remoting is Not Optional
	Remoting Does Not Transmit or Store Credentials
	Remoting Uses Encryption
	Remoting is Security-Transparent
	Remoting is Lower Overhead
	Remoting Uses Mutual Authentication
	Summary

	Configuring Remoting via GPO
	GPO Caveats
	Allowing Automatic Configuration of WinRM Listeners
	Setting the WinRM Service to Start Automatically
	Creating a Windows Firewall Exception
	Give it a Try!
	What You Cant Do with a GPO

