

PowerShell 101
The No-Nonsense Guide to Windows PowerShell

Mike F. Robbins

This book is for sale at http://leanpub.com/powershell101

This version was published on 2024-03-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2024 Mike F. Robbins

http://leanpub.com/powershell101
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Also By Mike F. Robbins
The PowerShell Conference Book

https://leanpub.com/u/mikefrobbins
https://leanpub.com/powershell-conference-book

Contents

Preface . i

About this book . iii
Who is this book for? . iii
The mission of this book . iii
About the author . iv
About the technical editor . iv
Lab environment . iv

Disclaimer . vi

Chapter 1 - Getting started with PowerShell 1
What is PowerShell? . 1
What you need to get started with PowerShell 1
Where to find PowerShell . 1
How to launch PowerShell . 3
Determine your version of PowerShell . 9
Execution policy . 10
Summary . 15
Review . 15
References . 15
Next steps . 15

Chapter 2 - The help system . 17
Discoverability . 17
The three core cmdlets in PowerShell . 18
Get-Help . 18
Updating help . 34

CONTENTS

Get-Command . 35
Contributing to the documentation . 39
Summary . 39
Review . 39
References . 40
Next steps . 40

Chapter 3 - Discovering Objects, Properties, and Methods 41
Prerequisites . 41
Get-Member . 42
Get-Command . 52
Active Directory . 53
Summary . 59
Review . 59
References . 59
Next steps . 60

Chapter 4 - One-Liners and the pipeline . 61
One-Liners . 61
Filter Left . 67
The Pipeline . 69
PowerShellGet . 76
Finding pipeline input the easy way . 78
Summary . 79
Review . 79
References . 79
Next steps . 80

Chapter 5 - Formatting, aliases, providers, comparison 81
Prerequisites . 81
Format Right . 81
Aliases . 85
Providers . 86
Comparison Operators . 89
Summary . 95
Review . 95
References . 95

CONTENTS

Next steps . 96

Chapter 6 - Flow control . 97
Scripting . 97
Looping . 97
Break, Continue, and Return . 103
Summary . 104
Review . 104
References . 105

Chapter 7 - Working with WMI . 106
WMI and CIM . 106
Query Remote Computers with the CIM cmdlets 109
Summary . 114
Review . 115
References . 115

Chapter 8 - PowerShell Remoting . 116
One-To-One Remoting . 118
One-To-Many Remoting . 121
PowerShell Sessions . 124
Summary . 125
Review . 125
References . 125

Chapter 9 - Functions . 126
Naming . 126
A simple function . 129
Parameters . 132
Advanced Functions . 134
SupportsShouldProcess . 136
Parameter Validation . 137
Verbose Output . 140
Pipeline Input . 142
Error Handling . 143
Comment-Based Help . 146
Summary . 147

Review . 148
References . 148

Chapter 10 - Script modules . 149
Dot-Sourcing Functions . 149
Script Modules . 151
Module Manifests . 155
Defining Public and Private Functions . 156
Summary . 157
Review . 158
References . 158

Preface
This is the story of my journey of how I went from being a dangerous script copy and
paster to a Microsoft MVP and now the lead technical writer for Azure PowerShell
at Microsoft.

In 2007, I was a senior-level engineer providing technical support to three companies
that were among the early adopters of Exchange Server 2007. While working on
their Exchange Servers, I often needed to make configuration changes and perform
administrative tasks that I couldn’t accomplish using the Graphical User Interface
(GUI). So, I inadvertently became a dangerous script copy and paster.

Intending to learn PowerShell, I purchased a copy of the PowerShell 1.0 Step-by-Step
book by Ed Wilson, The Scripting Guy (retired). Looking back, I realize it’s the book
I should have read, but I thought I never had the time.

Good intentions are worthless without action.

At the rate I was going, I would have never learned PowerShell because I could only
spend a little time trying to understand it at work.

Most people with a family, including me, value work-life balance and try never
to miss out on family activities. However, I meet some people who are too busy
because of family responsibilities and always seem to knowwhat happened in recent
television shows.

When someone says they don’t have time for something, they really mean that it’s
not important enough for them to make time for it. This thought process reminds
me of the funny pictures I’ve seen where Neanderthals are too busy pushing a cart
around with square wheels to make time to learn about round wheels. Being too
busy pointing and clicking in the GUI instead of making time to learn PowerShell
is inefficient, like the Neanderthal analogy. Instead of being funny, though, it’s just
sad.

Preface ii

I thought I was too busy to learn PowerShell. Are you too busy? If so, I challenge
you to make time to learn PowerShell. I’ve never met anyone who regretted learning
PowerShell.

My employer’s training budget was limited. I understood the importance of keeping
my skills up to date and that my career was my responsibility, not my employer’s. In
addition to the few company-sponsored conferences I attended, I used free and low-
cost resources like books, videos, podcasts, and blog articles to learn PowerShell. I
also attended free technology events, including user group meetings, which allowed
me to learn from and network with others in the industry. Many of these events are
streamed online and recorded. To maximize my time, I often multitask by reading
books or watching training videos while walking on the treadmill at the gym and
listening to podcasts during my commute.

We’re all in control of our own careers. A job and a career are two different things.
A job is what we do to pay the bills. A career is what we do to advance our skills
and knowledge.

When Microsoft released PowerShell 2.0 with remoting, it empowered automation
in on-premises data centers. That was the pivotal moment when I decided to make
time to learn PowerShell.

I dedicated an enormous amount of my personal time to learning PowerShell, often
staying up until the wee hours of the morning while still having to be at work early.
I not only learned PowerShell, but I also became proficient with it.

Anything worth learning is worth learning well.

I competed in the beginner category of the Scripting Games in 2012, the last time Ed
Wilson hosted them. I led the competition during most events and finished in third
place. I competed in the advanced category in the 2013 Scripting Games, the first
year that PowerShell.org1 hosted them, and I won.

Once I figure something out, I help empower others by sharing my knowledge. In
2014, Microsoft awarded me their MVP award for my activities in the PowerShell
community. I was re-awarded every year until 2020, after I became the lead technical
writer for Azure PowerShell at Microsoft.

- Mike F. Robbins
1https://powershell.org/

https://powershell.org/
https://powershell.org/

About this book
Before PowerShell, I began my career as an IT Pro, pointing and clicking in the GUI.
I wrote this book to save IT Pros from themselves by reducing the learning curve and
helping them avoid being reluctant to learn PowerShell.

Instead of a book that covers topics with fictitious scenarios, this book is a condensed
version targeting the specific topics I’ve found an IT Pro needs to know to succeed
with PowerShell in a real-world production environment. It’s a collection of what I
wish someone would have told me when I started learning PowerShell, along with
the tips, tricks, and best practices that I’ve learned while using PowerShell since 2007.

In every chapter, you’ll find a curated collection of links to specific help topics
if you want to know more about the information covered in that chapter. These
resources help you dive deeper into the topics discussed in the book and broaden
your understanding of PowerShell.

Who is this book for?

This book is for anyone wanting to learn PowerShell. Whether you’re a beginner or
an experienced user, this book will help you improve your PowerShell skills.

This book focuses on Windows PowerShell version 5.1 running on Windows 11
and Windows Server 2022 in a Microsoft Active Directory domain environment.
However, the basic concepts apply to all versions of PowerShell running on any
supported platform.

The mission of this book

The mission of this book is to help bootstrap others into the industry by donating
all (100%) of the royalties from the sales of this book on Leanpub to the OnRamp

About this book iv

scholarship program (beginning June 3rd, 2020, and later). For more information
about OnRamp scholarships, see powershellsummit.org/onramp/1.

About the author

Mike F. Robbins, a former Microsoft MVP, is the lead technical writer for Azure
PowerShell2 at Microsoft. With extensive experience in PowerShell, he is a scripting,
automation, and efficiency expert. As a lifelong learner, Mike continuously strives
to improve his skills and empower others by sharing his knowledge and experience.
He is also a published author, having written several books, including:

• Author of PowerShell 101: The No-Nonsense Guide to Windows PowerShell3

• Creator of The PowerShell Conference Book4

• Co-author of Windows PowerShell TFM 4th Edition5

• Contributing author in the PowerShell Deep Dives6 book

When Mike’s not writing documentation for Microsoft, he can be found sharing
his thoughts and insights on his blog at mikefrobbins.com7 and interacting with his
followers on Twitter @mikefrobbins8.

About the technical editor

Tommy Maynard is a Senior Systems Administrator with a passion for PowerShell.
He has over 15 years of experience in Information Technology and finally feels
he’s found his calling. Luckily for him, PowerShell works right alongside the
technologies he has long supported. He aims to help educate and inspire people
in his industry to embrace PowerShell, scripting, and automation. Tommy blogs at
tommymaynard.com9 and can be found on Twitter @thetommymaynard10.

1https://www.powershellsummit.org/onramp/
2https://aka.ms/azps
3https://leanpub.com/powershell101
4https://leanpub.com/powershell-conference-book
5https://www.sapien.com/books_training/Windows-PowerShell-4
6https://www.manning.com/books/powershell-deep-dives
7https://mikefrobbins.com/
8https://twitter.com/mikefrobbins
9https://tommymaynard.com/
10https://twitter.com/thetommymaynard

https://www.powershellsummit.org/onramp/
https://aka.ms/azps
https://aka.ms/azps
https://leanpub.com/powershell101
https://leanpub.com/powershell-conference-book
https://www.sapien.com/books_training/Windows-PowerShell-4
https://www.manning.com/books/powershell-deep-dives
https://mikefrobbins.com/
https://twitter.com/mikefrobbins
https://tommymaynard.com/
https://twitter.com/thetommymaynard
https://www.powershellsummit.org/onramp/
https://aka.ms/azps
https://leanpub.com/powershell101
https://leanpub.com/powershell-conference-book
https://www.sapien.com/books_training/Windows-PowerShell-4
https://www.manning.com/books/powershell-deep-dives
https://mikefrobbins.com/
https://twitter.com/mikefrobbins
https://tommymaynard.com/
https://twitter.com/thetommymaynard

About this book v

Lab environment

The examples in this book were specifically created and tested on Windows 11 and
Windows Server 2022 operating systems, utilizing Windows PowerShell version 5.1.
If you’re running a different operating system or version of PowerShell, your results
may vary from the ones presented in this book.

Disclaimer
I designed this book to provide accurate information. While I’ve made every effort
to ensure the accuracy and completeness of the information contained in this book, I
assume no responsibility for errors, inaccuracies, omissions, or any inconsistencies.

The code examples provided in this book are for learning and experimentation
purposes only.

You should use a lab environment to work through the code examples found in this
book. I do not guarantee that the code examples will work in all circumstances and
under all conditions. Before using the code examples in a production environment,
you should thoroughly test them.

Furthermore, the technology, software, and coding practices discussed in this book
constantly evolve, and there is no guarantee that the code and software practices
used will remain relevant or appropriate.

This book does not grant you any warranty, either express or implied. You are
responsible for any damage or adverse consequences that may result from using the
code examples found in this book.

Chapter 1 - Getting started with
PowerShell
This chapter focuses on finding and launching PowerShell and solving the initial pain
points that new users experience with PowerShell. Follow along and walk through
the examples in this chapter on your lab environment computer.

What is PowerShell?

Windows PowerShell is an easy-to-use command-line shell and scripting environ-
ment for automating administrative tasks of Windows-based systems.

What you need to get started with PowerShell

All modern versions of Windows operating systems ship with Windows PowerShell
preinstalled.

Where to find PowerShell

The easiest way to find PowerShell on Windows 11 is to type PowerShell into the
search bar, as shown in Figure 1-1. Notice that there are four different shortcuts for
Windows PowerShell.

Chapter 1 - Getting started with PowerShell 2

Figure 1-1 - Search for PowerShell

Windows PowerShell shortcuts on a 64-bit version of Windows:

• Windows PowerShell
• Windows PowerShell ISE
• Windows PowerShell (x86)
• Windows PowerShell ISE (x86)

Chapter 1 - Getting started with PowerShell 3

On a 64-bit version of Windows, you have a 64-bit version of the Windows
PowerShell console and the Windows PowerShell Integrated Scripting Environment
(ISE) and a 32-bit version of each one, as indicated by the (x86) suffix on the shortcuts.

Windows 11 only ships as a 64-bit operating system. There is no 32-bit
version of Windows 11.

You only have two shortcuts if you’re running an older 32-bit version of Windows.
Those shortcuts don’t have the (x86) suffix but are 32-bit versions.

I recommend using the 64-bit version ofWindows PowerShell if you’re running a 64-
bit operating system unless you have a specific reason for using the 32-bit version.

Depending on what version of Windows 11 you’re running, Windows PowerShell
may open in Windows Terminal1.

The PowerShell ISE is no longer in active feature development. I recommend using
Visual Studio Code2 (VS Code) with the PowerShell extension3 to replace the ISE.
You must install VS Code and the PowerShell extension because they don’t ship
preinstalled with Windows. You only need to install them on the computer where
you create PowerShell scripts. You don’t need to install them on all the computers
where you run PowerShell.

For information about finding PowerShell on other versions ofWindows, see Starting
Windows PowerShell4.

How to launch PowerShell

I use three different Active Directory user accounts in the production environments
I support. I’ve mirrored those accounts in the lab environment used in this book.
I log into my Windows 11 computer as a domain user without domain or local
administrator rights.

1https://learn.microsoft.com/windows/terminal/
2https://code.visualstudio.com/
3https://code.visualstudio.com/docs/languages/powershell
4https://learn.microsoft.com/powershell/scripting/windows-powershell/starting-windows-powershell

https://learn.microsoft.com/windows/terminal/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/powershell
https://learn.microsoft.com/powershell/scripting/windows-powershell/starting-windows-powershell
https://learn.microsoft.com/powershell/scripting/windows-powershell/starting-windows-powershell
https://learn.microsoft.com/windows/terminal/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/powershell
https://learn.microsoft.com/powershell/scripting/windows-powershell/starting-windows-powershell

Chapter 1 - Getting started with PowerShell 4

Launch the PowerShell console by clicking the Windows PowerShell shortcut, as
shown in Figure 1-1. Notice that the title bar of the Windows PowerShell console
saysWindows PowerShell, as shown in Figure 1-2.

Figure 1-2 - Title bar of PowerShell window

Some commands run fine when you run PowerShell as an ordinary user. However,
PowerShell doesn’t participate in User Access Control (UAC). That means it’s unable
to prompt for elevation for tasks that require the approval of an administrator.

UAC is aWindows security feature that helps prevent malicious code from
running with elevated privileges.

When running as an ordinary user, PowerShell returns an error when you run a
command that requires elevation, such as stopping a Windows service.

Stop-Service -Name W32Time

Stop-Service : Service 'Windows Time (W32Time)' cannot be stopped due to

the following error: Cannot open W32Time service on computer '.'.

At line:1 char:1

+ Stop-Service -Name W32Time

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~

+ CategoryInfo : CloseError: (System.ServiceProcess.ServiceCon

troller:ServiceController) [Stop-Service], ServiceCommandException

+ FullyQualifiedErrorId : CouldNotStopService,Microsoft.PowerShell.Comm

ands.StopServiceCommand

The solution is to run PowerShell elevated as a user who is a local administrator.
That’s how I configured my second domain user account. Following the principle of
least privilege, this account shouldn’t be a domain administrator or have any elevated
privileges in the domain.

Chapter 1 - Getting started with PowerShell 5

Close the PowerShell console. When you relaunch it, right-click the Windows
PowerShell shortcut and select Run as administrator, as shown in Figure 1-3.

Figure 1-3 - Context menu - Run as administrator

You’re prompted for credentials because you logged into Windows as an ordinary
user. Enter the credentials of your domain user who is a local administrator, as
shown in Figure 1-4.

Chapter 1 - Getting started with PowerShell 6

Figure 1-4 - User account control - Enter credentials

After you’ve relaunched the PowerShell console elevated as an administrator, the
title bar says Administrator: Windows PowerShell, as shown in Figure 1-5.

Chapter 1 - Getting started with PowerShell 7

Figure 1-5 - Title bar of elevated PowerShell window

Now that you’re running PowerShell elevated as an administrator, UAC is no longer
a problem when you run a command that requires elevation.

You should only run PowerShell elevated as an administrator when
absolutely necessary.

When targeting remote computers, there is no need to run PowerShell elevated.
Running PowerShell elevated as an administrator only affects commands that run
against your local computer, not those that target remote computers.

You can simplify finding and launching PowerShell. Pin the PowerShell console or
Windows Terminal shortcut to your taskbar, but don’t set it to launch automatically
as an administrator.

The original version of this book, published in 2017, recommended pinning
a shortcut to the taskbar to launch an elevated instance automatically
every time you start PowerShell. However, this guidance is no longer
recommended due to potential security implications. When you launch
an application from an elevated instance of PowerShell, it also runs
elevated and bypasses UAC. For example, if you launch a web browser
from an elevated instance of PowerShell, any website you visit containing
malicious code also runs elevated.

Search for PowerShell again, except this time right-click on it and select Pin to
taskbar as shown in Figure 1-6.

Chapter 1 - Getting started with PowerShell 8

Figure 1-6 - Context menu - Pin to taskbar

When you need to run PowerShell with elevated permissions, right-click the Pow-
erShell shortcut pinned to your taskbar while pressing Shift and select Run as
administrator, as shown in Figure 1-7.

Chapter 1 - Getting started with PowerShell 9

Figure 1-7 - Context menu - Run as administrator

You’ll never have to worry about finding PowerShell or whether it’s running elevated
as an administrator again.

Determine your version of PowerShell

There are automatic variables in PowerShell that store state information. One of
these variables is $PSVersionTable, which contains a hashtable that you can use to
display the PowerShell version.

Chapter 1 - Getting started with PowerShell 10

$PSVersionTable

Name Value

---- -----

PSVersion 5.1.22621.2428

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

BuildVersion 10.0.22621.2428

CLRVersion 4.0.30319.42000

WSManStackVersion 3.0

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

If you’re running a version of Windows PowerShell older than 5.1, you should
update to Windows PowerShell 5.1. Microsoft distributes new versions of Windows
PowerShell as part of the Windows Management Framework (WMF). Depending on
the WMF version, a specific version of the .NET Framework is required. To upgrade
Windows PowerShell, see Upgrading existing Windows PowerShell5.

PowerShell version 7 isn’t an upgrade to Windows PowerShell 5.1; it installs side-by-
side with Windows PowerShell. Windows PowerShell version 5.1 and PowerShell
version 7 are two different products. For more information about the differences
between Windows PowerShell version 5.1 and PowerShell version 7, see Migrating
from Windows PowerShell 5.1 to PowerShell 76.

PowerShell version 6, formerly known as PowerShell Core, is no longer
supported.

Execution policy

PowerShell execution policy controls the conditions under which you can run
PowerShell scripts. The execution policy in PowerShell is a safety feature designed

5https://learn.microsoft.com/powershell/scripting/windows-powershell/install/installing-windows-powershell#
upgrading-existing-windows-powershell

6https://learn.microsoft.com/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-
powershell-7

https://learn.microsoft.com/powershell/scripting/windows-powershell/install/installing-windows-powershell#upgrading-existing-windows-powershell
https://learn.microsoft.com/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7
https://learn.microsoft.com/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7
https://learn.microsoft.com/powershell/scripting/windows-powershell/install/installing-windows-powershell#upgrading-existing-windows-powershell
https://learn.microsoft.com/powershell/scripting/windows-powershell/install/installing-windows-powershell#upgrading-existing-windows-powershell
https://learn.microsoft.com/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7
https://learn.microsoft.com/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7

Chapter 1 - Getting started with PowerShell 11

to help prevent the unintentional execution of malicious scripts. However, it’s not a
security boundary because it can’t stop determined users from deliberately running
scripts. A determined user can bypass the execution policy in PowerShell.

You can set an execution policy for the local computer, current user, or a PowerShell
session. You can also set execution policies for users and computers with Group
Policy.

The following table shows the default execution policy for current Windows operat-
ing systems.

Windows Server 2022 Remote Signed
Windows Server 2019 Remote Signed
Windows Server 2016 Remote Signed
Windows 11 Restricted
Windows 10 Restricted

Windows Operating System Version Default Execution Policy

Regardless of the execution policy setting, you can run any PowerShell command
interactively. The execution policy only affects commands running in a script. Use
the Get-ExecutionPolicy cmdlet to determine the current execution policy setting.

Check the execution policy setting on your computer.

Get-ExecutionPolicy

Restricted

List the execution policy settings for all scopes.

Get-ExecutionPolicy -List

Chapter 1 - Getting started with PowerShell 12

Scope ExecutionPolicy

----- ---------------

MachinePolicy Undefined

UserPolicy Undefined

Process Undefined

CurrentUser Undefined

LocalMachine Undefined

All Windows client operating systems have the default execution policy setting of
Restricted. You can’t run PowerShell scripts using the Restricted execution policy
setting. To test the execution policy, save the following code as a .ps1 file named
Get-TimeService.ps1.

A PowerShell script is a plaintext file with a .ps1 extension that contains
the commands you want to run. To create a PowerShell script, use a
code editor like Visual Studio Code (VS Code) or any text editor such as
Notepad.

Get-Service -Name W32Time

When you run the previous command interactively, it completes without error.
PowerShell returns an error when you run the same command from a script.

.\Get-TimeService.ps1

Notice the error message tells you why the command failed: “Running scripts is
disabled on this system”.

Chapter 1 - Getting started with PowerShell 13

.\Get-TimeService.ps1 : File C:\tmp\Get-TimeService.ps1 cannot be loaded

because running scripts is disabled on this system. For more information,

see about_Execution_Policies at

https:/go.microsoft.com/fwlink/?LinkID=135170.

At line:1 char:1

+ .\Get-TimeService.ps1

+ ~~~~~~~~~~~~~~~~~~~~~

+ CategoryInfo : SecurityError: (:) [], PSSecurityException

+ FullyQualifiedErrorId : UnauthorizedAccess

When you run a command in PowerShell that generates an error, read the error
message before retrying the command. The error message often tells you why the
command failed.

You change the execution policy with the Set-ExecutionPolicy cmdlet. LocalMachine
is the default scope when you don’t specify the Scope parameter. You must run
PowerShell elevated as an administrator to change the execution policy for the local
machine. Unless you’re signing your scripts, I recommend using the RemoteSigned

execution policy. RemoteSigned requires downloaded scripts to be signed by a trusted
publisher.

Before you change the execution policy, read the about_Execution_Policies7 help
topic to understand the security implications.

Change the execution policy setting on your computer to RemoteSigned.

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Read the warning that’s displayed when you change the execution policy.

7https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_execution_policies

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_execution_policies

Chapter 1 - Getting started with PowerShell 14

Execution Policy Change

The execution policy helps protect you from scripts that you do not trust.

Changing the execution policy might expose you to the security risks

described in the about_Execution_Policies help topic at

https:/go.microsoft.com/fwlink/?LinkID=135170. Do you want to change the

execution policy?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "N"):y

If you’re not running PowerShell elevated as an administrator, you’ll receive the
following error message when you attempt to change the execution policy for the
local machine.

Set-ExecutionPolicy : Access to the registry key 'HKEY_LOCAL_MACHINE\SOFTWAR

E\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell' is denied. To

change the execution policy for the default (LocalMachine) scope, start

Windows PowerShell with the "Run as administrator" option. To change the

execution policy for the current user, run "Set-ExecutionPolicy -Scope

CurrentUser".

At line:1 char:1

+ Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

+ ~~~

+ CategoryInfo : PermissionDenied: (:) [Set-ExecutionPolicy],

UnauthorizedAccessException

+ FullyQualifiedErrorId : System.UnauthorizedAccessException,Microsoft.

PowerShell.Commands.SetExecutionPolicyCommand

It’s also possible to change the execution policy for the current user without requiring
you to run PowerShell elevated as an administrator.

Set the execution policy for the current user to RemoteSigned. This step is unnecessary
if you successfully set the execution policy for the local machine to RemoteSigned.

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

Now that you’ve changed the execution policy to RemoteSigned, the Get-TimeService.ps1
script runs successfully.

Chapter 1 - Getting started with PowerShell 15

.\Get-TimeService.ps1

Status Name DisplayName

------ ---- -----------

Running W32Time Windows Time

Summary

In this chapter, you’ve learned where to find and how to launch PowerShell. You’ve
also learned how to determine the version of PowerShell and the purpose of execution
policies.

Review

1. How do you determine what PowerShell version a computer is running?
2. When should you launch PowerShell elevated as an administrator?
3. What’s the default execution policy on Windows client computers, and what

does it prevent you from doing?
4. How do you determine the current PowerShell execution policy setting?
5. How do you change the PowerShell execution policy?

References

If you’re interested in learning more about the topics covered in this chapter, you
should read the following PowerShell help topics.

• about_Automatic_Variables8

• about_Execution_Policies9

• about_Hash_Tables10

8https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_automatic_variables
9https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_execution_policies
10https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_hash_tables

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_hash_tables
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_hash_tables

Chapter 1 - Getting started with PowerShell 16

Next steps

In the next chapter, you’ll learn about the discoverability of commands in PowerShell.
You’ll also learn how to download PowerShell’s help topics to view offline.

Chapter 2 - The help system
In an experiment designed to assess proficiency in PowerShell, two distinct groups
of IT professionals —beginners and experts— were first given a written examination
without access to a computer. Surprisingly, the test scores indicated comparable
skills across both groups. A subsequent test was then administered, mirroring the
first but with one key difference: participants had access to an offline computer
equipped with PowerShell. The results revealed a significant skills gap between the
two groups this time.

What factors contributed to the outcomes observed between the two assessments?

Experts don’t always know the answers, but they know how to figure out
the answers.

The outcomes observed in the results of the two tests were because experts don’t
memorize thousands of PowerShell commands. Instead, they excel at using the
help system within PowerShell, enabling them to discover and learn how to use
commands when necessary.

Mastering the help system is the key to being successful with PowerShell.

I’ve heard Jeffrey Snover, the creator of PowerShell, share a similar story on multiple
occasions.

Discoverability

Compiled commands in PowerShell are known as cmdlets, pronounced as “command-
let”, not “CMD-let”. The naming convention for cmdlets follows a singular Verb-
Noun format to make them easily discoverable. For instance, Get-Process is the
cmdlet to determine what processes are running, and Get-Service is the cmdlet to

Chapter 2 - The help system 18

retrieve a list of services. Other types of commands in PowerShell, such as aliases
and functions, are discussed later in this book. The term “PowerShell command”
describes any command in PowerShell, regardless of whether it’s a cmdlet, function,
or alias.

The three core cmdlets in PowerShell

• Get-Help

• Get-Command

• Get-Member (covered in chapter 3)

I’m often asked: “How do you figure out what the commands are in PowerShell?”.
Both Get-Help and Get-Command are invaluable resources for discovering and under-
standing commands in PowerShell.

Get-Help

The first thing you need to know about the help system in PowerShell is how to use
the Get-Help cmdlet.

Get-Help is a multipurpose command that helps you learn how to use commands once
you find them. You can also use Get-Help to locate commands, but in a different and
more indirect way when compared to Get-Command.

When using Get-Help to locate commands, it initially performs a wildcard search for
command names based on your input. If that doesn’t find any matches, it conducts
a comprehensive full-text search across all PowerShell help topics on your system.
If that also fails to find any results, it returns an error.

Here’s how to use Get-Help to view the help content for the Get-Help cmdlet.

Get-Help -Name Get-Help

Beginning with PowerShell version 3.0, the help content doesn’t ship pre-installed
with the operating system. When you run Get-Help for the first time, a message asks
if you want to download the PowerShell help files to your computer.

Chapter 2 - The help system 19

Answering Yes by pressing Y executes the Update-Help cmdlet, downloading the help
content.

Do you want to run Update-Help?

The Update-Help cmdlet downloads the most current Help files for Windows

PowerShell modules, and installs them on your computer. For more information

about the Update-Help cmdlet, see

https:/go.microsoft.com/fwlink/?LinkId=210614.

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

You only receive this message if you run PowerShell elevated as an administrator.
You also don’t receive it if you’re using the help function or man alias. If you don’t
receive this message, run Update-Help from an elevated PowerShell session running
as an administrator.

Once the update is complete, the help topic is displayed.

Take a moment to run the example on your computer, review the output, and observe
how the help system organizes the information.

• NAME
• SYNOPSIS
• SYNTAX
• DESCRIPTION
• RELATED LINKS
• REMARKS

As you review the output, keep in mind that help topics often contain a vast amount
of information, and what you see by default isn’t the entire help topic.

Parameters

When you run a command in PowerShell, you may need to provide additional
information or input to the command. Parameters allow you to specify options and
arguments that change a command’s behavior. The SYNTAX section of each help
topic outlines a command’s available parameters.

Get-Help has many parameters that you can specify to return the entire help topic or
a subset for a command. To view all the available parameters for Get-Help, see the
SYNTAX section of its help topic, as shown in the following example.

Chapter 2 - The help system 20

...

SYNTAX

Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider

| General | FAQ | Glossary | HelpFile | ScriptCommand | Function |

Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |

Class | Configuration}] [-Component <System.String[]>] [-Full]

[-Functionality <System.String[]>] [-Path <System.String>] [-Role

<System.String[]>] [<CommonParameters>]

Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider

| General | FAQ | Glossary | HelpFile | ScriptCommand | Function |

Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |

Class | Configuration}] [-Component <System.String[]>] -Detailed

[-Functionality <System.String[]>] [-Path <System.String>] [-Role

<System.String[]>] [<CommonParameters>]

Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider

| General | FAQ | Glossary | HelpFile | ScriptCommand | Function |

Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |

Class | Configuration}] [-Component <System.String[]>] -Examples

[-Functionality <System.String[]>] [-Path <System.String>] [-Role

<System.String[]>] [<CommonParameters>]

Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider

| General | FAQ | Glossary | HelpFile | ScriptCommand | Function |

Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |

Class | Configuration}] [-Component <System.String[]>] [-Functionality

<System.String[]>] -Online [-Path <System.String>] [-Role

<System.String[]>] [<CommonParameters>]

Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider

| General | FAQ | Glossary | HelpFile | ScriptCommand | Function |

Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |

Class | Configuration}] [-Component <System.String[]>] [-Functionality

<System.String[]>] -Parameter <System.String> [-Path <System.String>]

[-Role <System.String[]>] [<CommonParameters>]

Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider

| General | FAQ | Glossary | HelpFile | ScriptCommand | Function |

Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |

Chapter 2 - The help system 21

Class | Configuration}] [-Component <System.String[]>] [-Functionality

<System.String[]>] [-Path <System.String>] [-Role <System.String[]>]

-ShowWindow [<CommonParameters>]

...

Parameter sets

When you review the SYNTAX section, you’ll notice that information appears to be
repeated six times. Each of those blocks is an individual parameter set, indicating the
Get-Help cmdlet features six distinct sets of parameters. A closer look reveals each
parameter set contains at least one unique parameter, making it different from the
others.

Parameter sets are mutually exclusive. Once you specify a unique parameter that
only exists in one parameter set, you’re limited to using the parameters contained
within that parameter set. For instance, you can’t use the Full and Detailed
parameters of Get-Help together because they belong to different parameter sets.

Each of the following parameters belongs to a different parameter set for the Get-Help
cmdlet.

• Full
• Detailed
• Examples
• Online
• Parameter
• ShowWindow

The help syntax

If you’re new to PowerShell, comprehending the cryptic help syntax —characterized
by square and angle brackets— in the SYNTAX section of the help topics may seem
overwhelming. However, learning these syntax elements is essential to becoming
proficient with PowerShell. The more frequently you use the PowerShell help
system, the easier it becomes to remember all the nuances.

View the syntax section of the help topic for the Get-EventLog cmdlet.

Chapter 2 - The help system 22

help Get-EventLog

The following output shows the relevant portion of the help topic.

...

SYNTAX

Get-EventLog [-LogName] <System.String> [[-InstanceId]

<System.Int64[]>] [-After <System.DateTime>] [-AsBaseObject] [-Before

<System.DateTime>] [-ComputerName <System.String[]>] [-EntryType {Error

| Information | FailureAudit | SuccessAudit | Warning}] [-Index

<System.Int32[]>] [-Message <System.String>] [-Newest <System.Int32>]

[-Source <System.String[]>] [-UserName <System.String[]>]

[<CommonParameters>]

Get-EventLog [-AsString] [-ComputerName <System.String[]>] [-List]

[<CommonParameters>]

...

The help syntax in the SYNTAX section of PowerShell help topics includes pairs of
square brackets ([]). These square brackets serve two different purposes depending
on their usage.

• Elements enclosed within square brackets are optional.
• When an empty set of square brackets follows a datatype, such as <string[]>,
it indicates the parameter can accept multiple values as an array or a comma-
separated list.

Positional parameters

When creating a PowerShell cmdlet or function, developers can optionally designate
one or more parameters as positional. Positional parameters allow you to provide a
value without specifying the parameter’s name. When using a parameter position-
ally, you must specify its value in the correct position. You can find the positional
information for a parameter in thePARAMETERS section of a command’s help topic.
When you explicitly specify parameter names, their order is irrelevant.

Chapter 2 - The help system 23

For the Get-EventLog cmdlet, the first parameter in the first parameter set isLogName.
LogName is enclosed in square brackets, indicating it’s a positional parameter.

Since LogName is a positional parameter, you can specify it by either name or
position. According to the angle brackets following the parameter name, the value
for LogNamemust be a single string. The absence of square brackets enclosing both
the parameter name and datatype indicates that LogName is a required parameter
within this particular parameter set.

Get-EventLog [-LogName] <System.String>

The second parameter in that parameter set is InstanceId. Both the parameter name
and datatype are entirely enclosed in square brackets, signifying that InstanceId is
an optional parameter. Furthermore, InstanceId has its own pair of square brackets,
indicating that it’s a positional parameter similar to the LogName parameter.
Following the datatype, an empty set of square brackets implies that InstanceId can
accept multiple values.

[[-InstanceId] <System.Int64[]>]

Switch parameters

A parameter that doesn’t require a value is called a switch parameter. You can easily
identify switch parameters because a datatype doesn’t follow their parameter names.
When you specify a switch parameter, its value is true; when you don’t specify a
switch parameter, its value is false.

The second parameter set includes a List parameter, which is a switch parameter.
When you specify the List parameter, it returns a list of event logs on the local
computer.

[-List]

A simplified approach to syntax

There’s a more user-friendly method to obtain the same information as the cryptic
help syntax for some commands, except in plain English. PowerShell returns the
complete help topic when using Get-Help with the Full parameter, making it easier
to understand a command’s usage.

Chapter 2 - The help system 24

Get-Help -Name Get-Help -Full

Take a moment to run the example on your computer, review the output, and observe
how the help system organizes the information.

• NAME
• SYNOPSIS
• SYNTAX
• DESCRIPTION
• PARAMETERS
• INPUTS
• OUTPUTS
• NOTES
• EXAMPLES
• RELATED LINKS

By specifying the Full parameter with the Get-Help cmdlet, you’ll notice the output
includes several additional sections. Among these, the PARAMETERS section often
provides a detailed explanation for each parameter. However, the extent of this
information varies depending on the specific command you’re investigating.

...

-Detailed <System.Management.Automation.SwitchParameter>

Adds parameter descriptions and examples to the basic help display.

This parameter is effective only when the help files are installed

on the computer. It has no effect on displays of conceptual (About_

) help.

Required? true

Position? named

Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Examples <System.Management.Automation.SwitchParameter>

Displays only the name, synopsis, and examples. This parameter is

effective only when the help files are installed on the computer. It

Chapter 2 - The help system 25

has no effect on displays of conceptual (About_) help.

Required? true

Position? named

Default value False

Accept pipeline input? False

Accept wildcard characters? false

-Full <System.Management.Automation.SwitchParameter>

Displays the entire help article for a cmdlet. Full includes

parameter descriptions and attributes, examples, input and output

object types, and additional notes.

This parameter is effective only when the help files are installed

on the computer. It has no effect on displays of conceptual (About_

) help.

Required? false

Position? named

Default value False

Accept pipeline input? False

Accept wildcard characters? false

...

When you ran the previous command to display the help topic for Get-Help, you
probably noticed the output scrolled by too quickly to read it.

If you’re using the PowerShell console, Windows Terminal, or VS Code and need
to view a help topic, the help function can be useful. It pipes Get-Help to more.com,
displaying one page of help content at a time. As for the ISE, running helpworks the
same way as Get-Help. I recommend using the help function instead of the Get-Help

cmdlet because it provides a better user experience and it’s less to type.

While typing less may seem beneficial, it’s not always the best practice or intuitive
when saving commands in a script or sharing code with others. Using full cmdlet
and parameter names offers the benefit of self-documenting, making the code more
easily interpreted and understandable for anyone who reviews it.

Run each of the following commands in PowerShell on your computer.

Chapter 2 - The help system 26

Get-Help -Name Get-Help -Full

help -Name Get-Help -Full

help Get-Help -Full

Did you observe any variations in the output when you ran the previous commands?

The only difference is the last two commands display their output one page at a
time. When using the help function, press the Spacebar to navigate to the next page
of content or Q to quit. If you need to terminate any command running interactively
in PowerShell, press Ctrl+C.

In the previous example, the first line uses the Get-Help cmdlet, the second uses the
help function, and the third line omits the Name parameter while using the help

function. Since Name is a positional parameter, the third example takes advantage
of its placement instead of explicitly stating the parameter’s name.

To quickly find information about a specific parameter, use the help function with
the Parameter parameter. This approach is more concise, containing only the
parameter-specific help content instead of manually scanning the entire help topic
for details about a parameter.

In the following example, use the help function with the Parameter parameter to
return information from the help topic for the Name parameter of Get-Help.

help Get-Help -Parameter Name

Based on the following results, the Name parameter is positional and must be
specified in position zero when used positionally.

-Name <System.String>

Gets help about the specified command or concept. Enter the name of a

cmdlet, function, provider, script, or workflow, such as `Get-Member`,

a conceptual article name, such as `about_Objects`, or an alias, such

as `ls`. Wildcard characters are permitted in cmdlet and provider

names, but you can't use wildcard characters to find the names of

function help and script help articles.

To get help for a script that isn't located in a path that's listed in

the `$env:Path` environment variable, type the script's path and file

Chapter 2 - The help system 27

name.

If you enter the exact name of a help article, `Get-Help` displays the

article contents.

If you enter a word or word pattern that appears in several help

article titles, `Get-Help` displays a list of the matching titles.

If you enter any text that doesn't match any help article titles,

`Get-Help` displays a list of articles that include that text in their

contents.

The names of conceptual articles, such as `about_Objects`, must be

entered in English, even in non-English versions of PowerShell.

Required? false

Position? 0

Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? true

The Name parameter expects the datatype for its value to be a single string as
identified by <String> next to the parameter name.

There are several other parameters besides Parameter that you can specify with
Get-Help to return a subset of a help topic. Run the following commands on your
computer to see how they work.

Get-Help -Name Get-Command -Full

Get-Help -Name Get-Command -Detailed

Get-Help -Name Get-Command -Examples

Get-Help -Name Get-Command -Online

Get-Help -Name Get-Command -Parameter Noun

Get-Help -Name Get-Command -ShowWindow

I typically use help <command name> with the Full or Online parameter. If you’re only
interested in the examples, use the Examples parameter; if you’re only interested in
a specific parameter, use the Parameter parameter.

Chapter 2 - The help system 28

When using the ShowWindow parameter, it opens the help topic in a separate
searchable window that can be placed on a different monitor if you have multiple
monitors. However, the ShowWindow parameter has a known bug that may
prevent it from displaying the entire help topic. The ShowWindow parameter also
requires an operating system with a Graphical User Interface (GUI). It returns an
error if you attempt to use it on Windows Server installed with the server core
installation option.

If you want the help topic in a separate window and have internet access, use the
Online parameter instead. The Online parameter opens the help topic with the
most up-to-date content in your default web browser, allowing you to search it and
navigate to other help topics.

help Get-Command -Online

Finding commands with Get-Help

To find commands with Get-Help, specify a search term surrounded by asterisk (*)
wildcard characters for the value of the Name parameter. The following example
uses the Name parameter positionally.

help *process*

Name Category Module Synops

---- -------- ------ ------

Enter-PSHostProcess Cmdlet Microsoft.PowerShell.Core Con...

Exit-PSHostProcess Cmdlet Microsoft.PowerShell.Core Clo...

Get-PSHostProcessInfo Cmdlet Microsoft.PowerShell.Core Get...

Debug-Process Cmdlet Microsoft.PowerShell.M... Deb...

Get-Process Cmdlet Microsoft.PowerShell.M... Get...

Start-Process Cmdlet Microsoft.PowerShell.M... Sta...

Stop-Process Cmdlet Microsoft.PowerShell.M... Sto...

Wait-Process Cmdlet Microsoft.PowerShell.M... Wai...

Invoke-LapsPolicyProcessing Cmdlet LAPS Inv...

ConvertTo-ProcessMitigationPolicy Cmdlet ProcessMitigations Con...

Get-ProcessMitigation Cmdlet ProcessMitigations Get...

Set-ProcessMitigation Cmdlet ProcessMitigations Set...

Chapter 2 - The help system 29

In this scenario, you aren’t required to add the *wildcard characters. When you omit
the wildcard characters, Get-Help automatically adds them behind the scenes. The
following example produces the same results as specifying the * wildcard character
on each end of process.

help process

However, you should always add them since that option works consistently. Oth-
erwise, you’re required to add them in certain scenarios and not in others. When
you specify a wildcard character within the value, they’re no longer automatically
appended behind the scenes.

The following command doesn’t return any results unless you add a * wildcard
character to the beginning, end, or both the beginning and end of pr*cess.

help pr*cess

PowerShell generates an error if you specify a value that begins with a dash without
enclosing it in quotes because it interprets it as a parameter name. No such parameter
name exists for the Get-Help cmdlet.

help -process

If you’re attempting to search for commands that end with -process, you must add
an * to the beginning of the value.

help *-process

When you search for PowerShell commands with Get-Help, it’s better to be vague
rather than too specific.

When you searched for process earlier, the results only returned commands that
included process in their name. But if you use help to search for processes, it won’t
find any matches for command names. As previously stated, when help doesn’t
find any matches, it performs a comprehensive full-text search of every help topic
on your system and returns those results. This type of search often produces more
results than expected, probably without the information you’re trying to locate.

Chapter 2 - The help system 30

help processes

Name Category Module Synops

---- -------- ------ ------

Disconnect-PSSession Cmdlet Microsoft.PowerShell.Core Dis...

Enter-PSHostProcess Cmdlet Microsoft.PowerShell.Core Con...

ForEach-Object Cmdlet Microsoft.PowerShell.Core Per...

Get-PSHostProcessInfo Cmdlet Microsoft.PowerShell.Core Get...

Get-PSSessionConfiguration Cmdlet Microsoft.PowerShell.Core Get...

New-PSSessionOption Cmdlet Microsoft.PowerShell.Core Cre...

New-PSTransportOption Cmdlet Microsoft.PowerShell.Core Cre...

Out-Host Cmdlet Microsoft.PowerShell.Core Sen...

Start-Job Cmdlet Microsoft.PowerShell.Core Sta...

Where-Object Cmdlet Microsoft.PowerShell.Core Sel...

Debug-Process Cmdlet Microsoft.PowerShell.M... Deb...

Get-Process Cmdlet Microsoft.PowerShell.M... Get...

Get-WmiObject Cmdlet Microsoft.PowerShell.M... Get...

Start-Process Cmdlet Microsoft.PowerShell.M... Sta...

Stop-Process Cmdlet Microsoft.PowerShell.M... Sto...

Wait-Process Cmdlet Microsoft.PowerShell.M... Wai...

Clear-Variable Cmdlet Microsoft.PowerShell.U... Del...

Convert-String Cmdlet Microsoft.PowerShell.U... For...

ConvertFrom-Csv Cmdlet Microsoft.PowerShell.U... Con...

ConvertFrom-Json Cmdlet Microsoft.PowerShell.U... Con...

ConvertTo-Html Cmdlet Microsoft.PowerShell.U... Con...

ConvertTo-Xml Cmdlet Microsoft.PowerShell.U... Cre...

Debug-Runspace Cmdlet Microsoft.PowerShell.U... Sta...

Export-Csv Cmdlet Microsoft.PowerShell.U... Con...

Export-FormatData Cmdlet Microsoft.PowerShell.U... Sav...

Format-List Cmdlet Microsoft.PowerShell.U... For...

Format-Table Cmdlet Microsoft.PowerShell.U... For...

Get-Unique Cmdlet Microsoft.PowerShell.U... Ret...

Group-Object Cmdlet Microsoft.PowerShell.U... Gro...

Import-Clixml Cmdlet Microsoft.PowerShell.U... Imp...

Import-Csv Cmdlet Microsoft.PowerShell.U... Cre...

Measure-Object Cmdlet Microsoft.PowerShell.U... Cal...

Out-File Cmdlet Microsoft.PowerShell.U... Sen...

Out-GridView Cmdlet Microsoft.PowerShell.U... Sen...

Select-Object Cmdlet Microsoft.PowerShell.U... Sel...

Chapter 2 - The help system 31

Set-Variable Cmdlet Microsoft.PowerShell.U... Set...

Sort-Object Cmdlet Microsoft.PowerShell.U... Sor...

Tee-Object Cmdlet Microsoft.PowerShell.U... Sav...

Trace-Command Cmdlet Microsoft.PowerShell.U... Con...

Write-Information Cmdlet Microsoft.PowerShell.U... Spe...

Export-BinaryMiLog Cmdlet CimCmdlets Cre...

Get-CimAssociatedInstance Cmdlet CimCmdlets Ret...

Get-CimInstance Cmdlet CimCmdlets Get...

Import-BinaryMiLog Cmdlet CimCmdlets Use...

Invoke-CimMethod Cmdlet CimCmdlets Inv...

New-CimInstance Cmdlet CimCmdlets Cre...

Remove-CimInstance Cmdlet CimCmdlets Rem...

Set-CimInstance Cmdlet CimCmdlets Mod...

Compress-Archive Function Microsoft.PowerShell.A... Cre...

Get-Counter Cmdlet Microsoft.PowerShell.D... Get...

Invoke-WSManAction Cmdlet Microsoft.WSMan.Manage... Inv...

Remove-WSManInstance Cmdlet Microsoft.WSMan.Manage... Del...

Get-WSManInstance Cmdlet Microsoft.WSMan.Manage... Dis...

New-WSManInstance Cmdlet Microsoft.WSMan.Manage... Cre...

Set-WSManInstance Cmdlet Microsoft.WSMan.Manage... Mod...

about_Arithmetic_Operators HelpFile

about_Arrays HelpFile

about_Environment_Variables HelpFile

about_Execution_Policies HelpFile

about_Functions HelpFile

about_Jobs HelpFile

about_Logging HelpFile

about_Methods HelpFile

about_Objects HelpFile

about_Pipelines HelpFile

about_Preference_Variables HelpFile

about_Remote HelpFile

about_Remote_Jobs HelpFile

about_Session_Configuration_Files HelpFile

about_Simplified_Syntax HelpFile

about_Switch HelpFile

about_Variables HelpFile

about_Variable_Provider HelpFile

about_Windows_Powershell_5.1 HelpFile

about_WQL HelpFile

Chapter 2 - The help system 32

about_WS-Management_Cmdlets HelpFile

about_Foreach-Parallel HelpFile

about_Parallel HelpFile

about_Sequence HelpFile

When using the help function to search for process, it returned 12 results. However,
when searching for processes, it produced 78 results. If your search only finds one
match, the help topic is displayed instead of listing the results.

help *hotfix*

NAME

Get-HotFix

SYNOPSIS

Gets the hotfixes that are installed on local or remote computers.

SYNTAX

Get-HotFix [-ComputerName <System.String[]>] [-Credential

<System.Management.Automation.PSCredential>] [-Description

<System.String[]>] [<CommonParameters>]

Get-HotFix [[-Id] <System.String[]>] [-ComputerName <System.String[]>]

[-Credential <System.Management.Automation.PSCredential>]

[<CommonParameters>]

DESCRIPTION

> This cmdlet is only available on the Windows platform. The

`Get-Hotfix` cmdlet uses the Win32_QuickFixEngineering WMI class to

list hotfixes that are installed on the local computer or specified

remote computers.

RELATED LINKS

Online Version: https://learn.microsoft.com/powershell/module/microsoft.

powershell.management/get-hotfix?view=powershell-5.1&WT.mc_id=ps-gethelp

Chapter 2 - The help system 33

about_Arrays

Add-Content

Get-ComputerRestorePoint

Get-Credential

Win32_QuickFixEngineering class

REMARKS

To see the examples, type: "get-help Get-HotFix -examples".

For more information, type: "get-help Get-HotFix -detailed".

For technical information, type: "get-help Get-HotFix -full".

For online help, type: "get-help Get-HotFix -online"

It’s not commonly known that Get-Help can also find commands that lack help topics.
The more function is one of the commands that doesn’t have a help topic. To confirm
you can find commands with Get-Help that don’t include help topics, use the help

function to find more.

help *more*

The search only found one match, so it returned the basic syntax information you’ll
see when a command doesn’t have a help topic.

NAME

more

SYNTAX

more [[-paths] <string[]>]

ALIASES

None

REMARKS

None

The PowerShell help system also contains conceptual About help topics. You must
update the help content on your system for the About help topics to exist. If the
initial update of the help system fails, the About help topics won’t be available until

Chapter 2 - The help system 34

you run Update-Help and it completes successfully. For more information, see the
Updating help section of this chapter.

Use the following command to return a list of all About help topics on your system.

help About_*

When you limit the results to one About help topic, the content of the help topic is
displayed instead of returning a list of help topics.

help about_Updatable_Help

Updating help

Earlier in this chapter, you updated the PowerShell help topics on your computer the
first time you ran the Get-Help cmdlet. You should periodically run the Update-Help

cmdlet on your computer to obtain any updates to the help content. Update-Help

requires internet access by default.

When you run Update-Help inWindows PowerShell 5.1, it requires running
PowerShell elevated as an administrator.

In the following example, use the Update-Help cmdlet to update the PowerShell help
content on your computer.

Update-Help

As shown in the following results, a module returned an error. Errors aren’t
uncommon and usually occur when the module’s author doesn’t configure updatable
help correctly.

Chapter 2 - The help system 35

Update-Help : Failed to update Help for the module(s) 'BitsTransfer' with UI

culture(s) {en-US} : Unable to retrieve the HelpInfo XML file for UI culture

en-US. Make sure the HelpInfoUri property in the module manifest is valid or

check your network connection and then try the command again.

At line:1 char:1

+ Update-Help

+ ~~~~~~~~~~~

+ CategoryInfo : ResourceUnavailable: (:) [Update-Help], Except

ion

+ FullyQualifiedErrorId : UnableToRetrieveHelpInfoXml,Microsoft.PowerShe

ll.Commands.UpdateHelpCommand

If your computer doesn’t have internet access, use the Save-Help cmdlet on a computer
with internet access to download and save the updated help content. Then, use the
SourcePath parameter of Update-Help to specify the location of the saved updated
help content.

Get-Command

Get-Command is another multipurpose command that helps you locate commands. You
can also use Get-Command to learn how to use commands, but in a different and more
indirect way when compared to Get-Help.

How do you determine the syntax for Get-Command? You could use Get-Help to display
the help topic for Get-Command, as shown in the Get-Help section of this chapter.
You can also use Get-Command with the Syntax parameter to view the syntax for
any command. This shortcut helps you quickly determine how to use a command
without navigating through its help content.

Get-Command -Name Get-Command -Syntax

Using Get-Command with its Syntax parameter offers a more programmatic view by
showing the type of the parameter, without listing the specific allowable values.

Chapter 2 - The help system 36

Get-Command [[-ArgumentList] <Object[]>] [-Verb <string[]>]

[-Noun <string[]>] [-Module <string[]>]

[-FullyQualifiedModule <ModuleSpecification[]>] [-TotalCount <int>]

[-Syntax] [-ShowCommandInfo] [-All] [-ListImported]

[-ParameterName <string[]>] [-ParameterType <PSTypeName[]>]

[<CommonParameters>]

Get-Command [[-Name] <string[]>] [[-ArgumentList] <Object[]>]

[-Module <string[]>] [-FullyQualifiedModule <ModuleSpecification[]>]

[-CommandType <CommandTypes>] [-TotalCount <int>] [-Syntax]

[-ShowCommandInfo] [-All] [-ListImported] [-ParameterName <string[]>]

[-ParameterType <PSTypeName[]>] [<CommonParameters>]

If you need more detailed information about how to use a command, revert to using
Get-Help.

help Get-Command -Full

The SYNTAX section of Get-Help provides amore user-friendly display by expanding
enumerated values for parameters. It shows you the actual values you can use,
making it easier to understand the available options.

...

Get-Command [[-Name] <System.String[]>] [[-ArgumentList]

<System.Object[]>] [-All] [-CommandType {Alias | Function | Filter |

Cmdlet | ExternalScript | Application | Script | Workflow |

Configuration | All}] [-FullyQualifiedModule

<Microsoft.PowerShell.Commands.ModuleSpecification[]>] [-ListImported]

[-Module <System.String[]>] [-ParameterName <System.String[]>]

[-ParameterType <System.Management.Automation.PSTypeName[]>]

[-ShowCommandInfo] [-Syntax] [-TotalCount <System.Int32>]

[<CommonParameters>]

Get-Command [[-ArgumentList] <System.Object[]>] [-All]

[-FullyQualifiedModule

<Microsoft.PowerShell.Commands.ModuleSpecification[]>] [-ListImported]

[-Module <System.String[]>] [-Noun <System.String[]>] [-ParameterName

<System.String[]>] [-ParameterType

Chapter 2 - The help system 37

<System.Management.Automation.PSTypeName[]>] [-ShowCommandInfo]

[-Syntax] [-TotalCount <System.Int32>] [-Verb <System.String[]>]

[<CommonParameters>]

...

The PARAMETERS section of the help topic for Get-Command reveals theName,Noun,
and Verb parameters accept wildcard characters.

...

-Name <System.String[]>

Specifies an array of names. This cmdlet gets only commands that

have the specified name. Enter a name or name pattern. Wildcard

characters are permitted.

To get commands that have the same name, use the All parameter. When

two commands have the same name, by default, `Get-Command` gets the

command that runs when you type the command name.

Required? false

Position? 0

Default value None

Accept pipeline input? True (ByPropertyName, ByValue)

Accept wildcard characters? true

-Noun <System.String[]>

Specifies an array of command nouns. This cmdlet gets commands,

which include cmdlets, functions, and aliases, that have names that

include the specified noun. Enter one or more nouns or noun

patterns. Wildcard characters are permitted.

Required? false

Position? named

Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? true

-Verb <System.String[]>

Specifies an array of command verbs. This cmdlet gets commands,

which include cmdlets, functions, and aliases, that have names that

include the specified verb. Enter one or more verbs or verb

Chapter 2 - The help system 38

patterns. Wildcard characters are permitted.

Required? false

Position? named

Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? true

...

In the following example, use * wildcard characters with the Name parameter of
Get-Command.

Get-Command -Name *service*

When using wildcard characters with the Name parameter of Get-Command, it returns
PowerShell commands and native commands, as shown in the following results.

CommandType Name Version

----------- ---- -------

Function Get-NetFirewallServiceFilter 2.0.0.0

Function Set-NetFirewallServiceFilter 2.0.0.0

Cmdlet Get-Service 3.1.0.0

Cmdlet New-Service 3.1.0.0

Cmdlet New-WebServiceProxy 3.1.0.0

Cmdlet Restart-Service 3.1.0.0

Cmdlet Resume-Service 3.1.0.0

Cmdlet Set-Service 3.1.0.0

Cmdlet Start-Service 3.1.0.0

Cmdlet Stop-Service 3.1.0.0

Cmdlet Suspend-Service 3.1.0.0

Application SecurityHealthService.exe 10.0.2...

Application SensorDataService.exe 10.0.2...

Application services.exe 10.0.2...

Application services.msc 0.0.0.0

Application TieringEngineService.exe 10.0.2...

Application Windows.WARP.JITService.exe 10.0.2...

If you use wildcard characters with the Name parameter of Get-Command, consider
limiting the results to PowerShell cmdlets, functions, and aliases with the Com-
mandType parameter.

Chapter 2 - The help system 39

Get-Command -Name *service* -CommandType Cmdlet, Function, Alias

A better option might be to use either the Verb or Noun parameter or both since
only PowerShell commands have verbs and nouns.

In the following example, use Get-Command to determinewhat commands exist on your
computer for working with processes. Use the Noun parameter and specify Process

as its value.

Get-Command -Noun Process

CommandType Name Version

----------- ---- -------

Cmdlet Debug-Process 3.1.0.0

Cmdlet Get-Process 3.1.0.0

Cmdlet Start-Process 3.1.0.0

Cmdlet Stop-Process 3.1.0.0

Cmdlet Wait-Process 3.1.0.0

When you run Get-Command without any parameters, it returns a list of all the
commands on your system.

Contributing to the documentation

The help content for PowerShell is open source and available in the PowerShell-
Docs1 repository on GitHub. For more information, see Contributing to PowerShell
documentation2.

Summary

In this chapter, you’ve learned how to find commands with Get-Help and Get-Command.
You’ve also learned how to use the help system to figure out how to use commands
once you find them. In addition, you’ve learned how to update the help system on
your computer when new help content is available.

1https://github.com/MicrosoftDocs/PowerShell-Docs
2https://learn.microsoft.com/powershell/scripting/community/contributing/overview

https://github.com/MicrosoftDocs/PowerShell-Docs
https://github.com/MicrosoftDocs/PowerShell-Docs
https://learn.microsoft.com/powershell/scripting/community/contributing/overview
https://learn.microsoft.com/powershell/scripting/community/contributing/overview
https://github.com/MicrosoftDocs/PowerShell-Docs
https://learn.microsoft.com/powershell/scripting/community/contributing/overview

Chapter 2 - The help system 40

Review

1. Is the DisplayName parameter of Get-Service positional?
2. How many parameter sets does the Get-Process cmdlet have?
3. What PowerShell commands exist for working with event logs?
4. What’s the PowerShell command for returning a list of PowerShell processes

running on your computer?
5. How do you update the PowerShell help content stored on your computer?

References

To learn more about the information covered in this chapter, read the following
PowerShell help topics.

• Get-Help3

• Get-Command4

• Update-Help5

• Save-Help6

• about_Updatable_Help7

• about_Command_Syntax8

Next steps

In the next chapter, you’ll learn about objects, properties, methods, and the Get-Member
cmdlet.

3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-help
4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-command
5https://learn.microsoft.com/powershell/module/microsoft.powershell.core/update-help
6https://learn.microsoft.com/powershell/module/microsoft.powershell.core/save-help
7https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_updatable_help
8https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_command_syntax

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-command
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/update-help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/save-help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_updatable_help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_command_syntax
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/get-command
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/update-help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/save-help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_updatable_help
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_command_syntax

Chapter 3 - Discovering Objects,
Properties, and Methods
PowerShell is an object-oriented scripting language. It represents data and system
states using structured objects derived from .NET classes defined in the .NET
Framework. By leveraging the .NET Framework, PowerShell offers access to various
system capabilities, including file system, registry, and Windows Management
Instrumentation (WMI) classes. PowerShell also has access to the .NET Framework
class library, which contains a vast collection of classes that you can use to develop
robust PowerShell scripts.

In PowerShell, each item or state is an instance of an object that can be explored
and manipulated. The Get-Member cmdlet is one of the primary tools provided by
PowerShell for object discovery, which reveals an object’s characteristics. This
chapter explores how PowerShell leverages objects and how you can discover and
manipulate these objects to streamline your scripts and manage your systems more
efficiently.

Prerequisites

To follow the specific examples in this chapter, ensure that your lab environment
computer is part of your lab environment Active Directory domain. You must also
install the Active Directory PowerShell module bundled with the Windows Remote
Server Administration Tools (RSAT). If you’re using Windows 10 build 1809 or later,
including Windows 11, you can install RSAT as a Windows feature.

Active Directory is unsupported for Windows Home editions.

• For information about installing RSAT, see Windows Management modules1.
1https://learn.microsoft.com/powershell/scripting/whats-new/module-compatibility#windows-management-

modules

https://learn.microsoft.com/powershell/scripting/whats-new/module-compatibility#windows-management-modules
https://learn.microsoft.com/powershell/scripting/whats-new/module-compatibility#windows-management-modules
https://learn.microsoft.com/powershell/scripting/whats-new/module-compatibility#windows-management-modules

Chapter 3 - Discovering Objects, Properties, and Methods 42

• For older versions of Windows, see RSAT for Windows2.

Get-Member

Get-Member provides insight into the objects, properties, and methods associated with
PowerShell commands. You can pipe any PowerShell command that produces object-
based output to Get-Member. When you pipe the output of a command to Get-Member, it
reveals the structure of the object returned by the command, detailing its properties
and methods.

• Properties: The attributes of an object.
• Methods: The actions you can perform on an object.

Consider a driver’s license as an analogy to illustrate this concept. Like any object, a
driver’s license has properties, such as eye color, which typically includes blue and
brown values. In contrast, methods represent actions you can perform on the object.
For instance, Revoke is a method that the Department of Motor Vehicles can perform
on a driver’s license.

Properties

To retrieve details about theWindows Time service on your system using PowerShell,
use the Get-Service cmdlet.

Get-Service -Name w32time

The results include the Status, Name, and DisplayName properties. The Status
property indicates that the service is Running. The value for the Name property is
w32time, and the value for the DisplayName property is Windows Time.

2https://learn.microsoft.com/troubleshoot/windows-server/system-management-components/remote-server-
administration-tools

https://learn.microsoft.com/troubleshoot/windows-server/system-management-components/remote-server-administration-tools
https://learn.microsoft.com/troubleshoot/windows-server/system-management-components/remote-server-administration-tools
https://learn.microsoft.com/troubleshoot/windows-server/system-management-components/remote-server-administration-tools

Chapter 3 - Discovering Objects, Properties, and Methods 43

Status Name DisplayName

------ ---- -----------

Running w32time Windows Time

To list all available properties and methods for Get-Service, pipe it to Get-Member.

Get-Service -Name w32time | Get-Member

The results show the first line contains one piece of significant information. Type-
Name identifies the type of object that’s returned, which in this example is a
System.ServiceProcess.ServiceController object. This is often abbreviated to the
last part of the TypeName, such as ServiceController, in this example.

TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

RequiredServices AliasProperty RequiredServices = ServicesDepend...

Disposed Event System.EventHandler Disposed(Syst...

Close Method void Close()

Continue Method void Continue()

CreateObjRef Method System.Runtime.Remoting.ObjRef Cr...

Dispose Method void Dispose(), void IDisposable....

Equals Method bool Equals(System.Object obj)

ExecuteCommand Method void ExecuteCommand(int command)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method type GetType()

InitializeLifetimeService Method System.Object InitializeLifetimeS...

Pause Method void Pause()

Refresh Method void Refresh()

Start Method void Start(), void Start(string[]...

Stop Method void Stop()

WaitForStatus Method void WaitForStatus(System.Service...

CanPauseAndContinue Property bool CanPauseAndContinue {get;}

CanShutdown Property bool CanShutdown {get;}

CanStop Property bool CanStop {get;}

Chapter 3 - Discovering Objects, Properties, and Methods 44

Container Property System.ComponentModel.IContainer ...

DependentServices Property System.ServiceProcess.ServiceCont...

DisplayName Property string DisplayName {get;set;}

MachineName Property string MachineName {get;set;}

ServiceHandle Property System.Runtime.InteropServices.Sa...

ServiceName Property string ServiceName {get;set;}

ServicesDependedOn Property System.ServiceProcess.ServiceCont...

ServiceType Property System.ServiceProcess.ServiceType...

Site Property System.ComponentModel.ISite Site ...

StartType Property System.ServiceProcess.ServiceStar...

Status Property System.ServiceProcess.ServiceCont...

ToString ScriptMethod System.Object ToString();

Notice when you piped Get-Service to Get-Memnber, there are more properties than are
displayed by default. Although these additional properties aren’t shown by default,
you can select them by piping to Select-Object and using the Property parameter.
The following example selects all properties by piping the results of Get-Service to
Select-Object and specifying the * wildcard character as the value for the Property
parameter.

Get-Service -Name w32time | Select-Object -Property *

By default, PowerShell returns four properties as a table and five or more as a list.
However, some commands apply custom formatting to override the default number
of properties displayed in a table. You can use Format-Table and Format-List to
override these defaults manually.

Name : w32time

RequiredServices : {}

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

DisplayName : Windows Time

DependentServices : {}

MachineName : .

ServiceName : w32time

ServicesDependedOn : {}

ServiceHandle :

Chapter 3 - Discovering Objects, Properties, and Methods 45

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

Specific properties can also be selected using a comma-separated list as the value of
the Property parameter.

Get-Service -Name w32time |

Select-Object -Property Status, Name, DisplayName, ServiceType

Status Name DisplayName ServiceType

------ ---- ----------- -----------

Running w32time Windows Time Win32OwnProcess, Win32ShareProcess

You can use wildcard characters when specifying property names with Select-Object.

In the following example, use Can* as one of the values for the Property parameter to
return all the properties that start with Can. These include CanPauseAndContinue,
CanShutdown, and CanStop.

Get-Service -Name w32time |

Select-Object -Property Status, DisplayName, Can*

Notice there are more properties listed than are displayed by default.

Status : Running

DisplayName : Windows Time

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

Methods

Methods are actions you can perform on an object. Use theMemberType parameter
to narrow down the results of Get-Member to display only the methods for Get-Service.

Chapter 3 - Discovering Objects, Properties, and Methods 46

Get-Service -Name w32time | Get-Member -MemberType Method

As you can see, there are many methods.

TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Close Method void Close()

Continue Method void Continue()

CreateObjRef Method System.Runtime.Remoting.ObjRef Creat...

Dispose Method void Dispose(), void IDisposable.Dis...

Equals Method bool Equals(System.Object obj)

ExecuteCommand Method void ExecuteCommand(int command)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method type GetType()

InitializeLifetimeService Method System.Object InitializeLifetimeServ...

Pause Method void Pause()

Refresh Method void Refresh()

Start Method void Start(), void Start(string[] args)

Stop Method void Stop()

WaitForStatus Method void WaitForStatus(System.ServicePro...

You can use the Stopmethod to stop aWindows service. Youmust run this command
from an elevated PowerShell session.

(Get-Service -Name w32time).Stop()

Query the status of the Windows Time service to confirm it’s stopped.

Get-Service -Name w32time

Chapter 3 - Discovering Objects, Properties, and Methods 47

Status Name DisplayName

------ ---- -----------

Stopped w32time Windows Time

You might use methods sparingly, but you should be aware of them. Sometimes,
you’ll find a Get-* command without a corresponding Set-* command. Often, you
can find a method to perform a Set-* action in this scenario. The Get-SqlAgentJob

cmdlet in the SqlServer PowerShell module is an excellent example. No correspond-
ing Set-* cmdlet exists, but you can use amethod to complete the same task. Formore
information about the SqlServer PowerShell module and installation instructions, see
the SQL Server PowerShell overview3.

Another reason to be aware of methods is many PowerShell users assume you can’t
make destructive changes with Get-* commands, but they can actually cause severe
problems if misused.

A better option is to use a dedicated cmdlet if one exists to perform an action. For
example, use the Start-Service cmdlet to start the Windows Time service.

By default, Start-Service, like the Start method of Get-Service, doesn’t return any
results. But one of the benefits of using a cmdlet is that it often provides additional
capabilities that aren’t available with a method.

In the following example, use the PassThru parameter, which causes a cmdlet that
doesn’t typically produce output to generate output. You must run this command
from an elevated PowerShell session.

Get-Service -Name w32time | Start-Service -PassThru

Status Name DisplayName

------ ---- -----------

Running w32time Windows Time

When working with PowerShell cmdlets, it’s important to avoid making
assumptions about their output.

To retrieve information about the PowerShell process running on your lab environ-
ment computer, use the Get-Process cmdlet.

3https://learn.microsoft.com/sql/powershell/download-sql-server-ps-module

https://learn.microsoft.com/sql/powershell/download-sql-server-ps-module
https://learn.microsoft.com/sql/powershell/download-sql-server-ps-module

Chapter 3 - Discovering Objects, Properties, and Methods 48

Get-Process -Name PowerShell

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

710 31 55692 70580 0.72 9436 2 powershell

To determine the available properties, pipe Get-Process to Get-Member.

Get-Process -Name PowerShell | Get-Member

When using the Get-Process command, you may notice that some properties dis-
played by default are missing when you view the results of Get-Member. This is
because many of the values shown by default, such as NPM(K), PM(K), WS(K), and CPU(s),
are calculated properties. You must pipe commands to Get-Member to determine their
actual property names.

TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

Handles AliasProperty Handles = Handlecount

Name AliasProperty Name = ProcessName

NPM AliasProperty NPM = NonpagedSystemMemorySize64

PM AliasProperty PM = PagedMemorySize64

SI AliasProperty SI = SessionId

VM AliasProperty VM = VirtualMemorySize64

WS AliasProperty WS = WorkingSet64

Disposed Event System.EventHandler Disposed(Sy...

ErrorDataReceived Event System.Diagnostics.DataReceived...

Exited Event System.EventHandler Exited(Syst...

OutputDataReceived Event System.Diagnostics.DataReceived...

BeginErrorReadLine Method void BeginErrorReadLine()

BeginOutputReadLine Method void BeginOutputReadLine()

CancelErrorRead Method void CancelErrorRead()

CancelOutputRead Method void CancelOutputRead()

Close Method void Close()

CloseMainWindow Method bool CloseMainWindow()

Chapter 3 - Discovering Objects, Properties, and Methods 49

CreateObjRef Method System.Runtime.Remoting.ObjRef ...

Dispose Method void Dispose(), void IDisposabl...

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method type GetType()

InitializeLifetimeService Method System.Object InitializeLifetim...

Kill Method void Kill()

Refresh Method void Refresh()

Start Method bool Start()

ToString Method string ToString()

WaitForExit Method bool WaitForExit(int millisecon...

WaitForInputIdle Method bool WaitForInputIdle(int milli...

__NounName NoteProperty string __NounName=Process

BasePriority Property int BasePriority {get;}

Container Property System.ComponentModel.IContaine...

EnableRaisingEvents Property bool EnableRaisingEvents {get;s...

ExitCode Property int ExitCode {get;}

ExitTime Property datetime ExitTime {get;}

Handle Property System.IntPtr Handle {get;}

HandleCount Property int HandleCount {get;}

HasExited Property bool HasExited {get;}

Id Property int Id {get;}

MachineName Property string MachineName {get;}

MainModule Property System.Diagnostics.ProcessModul...

MainWindowHandle Property System.IntPtr MainWindowHandle ...

MainWindowTitle Property string MainWindowTitle {get;}

MaxWorkingSet Property System.IntPtr MaxWorkingSet {ge...

MinWorkingSet Property System.IntPtr MinWorkingSet {ge...

Modules Property System.Diagnostics.ProcessModul...

NonpagedSystemMemorySize Property int NonpagedSystemMemorySize {g...

NonpagedSystemMemorySize64 Property long NonpagedSystemMemorySize64...

PagedMemorySize Property int PagedMemorySize {get;}

PagedMemorySize64 Property long PagedMemorySize64 {get;}

PagedSystemMemorySize Property int PagedSystemMemorySize {get;}

PagedSystemMemorySize64 Property long PagedSystemMemorySize64 {g...

PeakPagedMemorySize Property int PeakPagedMemorySize {get;}

PeakPagedMemorySize64 Property long PeakPagedMemorySize64 {get;}

PeakVirtualMemorySize Property int PeakVirtualMemorySize {get;}

PeakVirtualMemorySize64 Property long PeakVirtualMemorySize64 {g...

Chapter 3 - Discovering Objects, Properties, and Methods 50

PeakWorkingSet Property int PeakWorkingSet {get;}

PeakWorkingSet64 Property long PeakWorkingSet64 {get;}

PriorityBoostEnabled Property bool PriorityBoostEnabled {get;...

PriorityClass Property System.Diagnostics.ProcessPrior...

PrivateMemorySize Property int PrivateMemorySize {get;}

PrivateMemorySize64 Property long PrivateMemorySize64 {get;}

PrivilegedProcessorTime Property timespan PrivilegedProcessorTim...

ProcessName Property string ProcessName {get;}

ProcessorAffinity Property System.IntPtr ProcessorAffinity...

Responding Property bool Responding {get;}

SafeHandle Property Microsoft.Win32.SafeHandles.Saf...

SessionId Property int SessionId {get;}

Site Property System.ComponentModel.ISite Sit...

StandardError Property System.IO.StreamReader Standard...

StandardInput Property System.IO.StreamWriter Standard...

StandardOutput Property System.IO.StreamReader Standard...

StartInfo Property System.Diagnostics.ProcessStart...

StartTime Property datetime StartTime {get;}

SynchronizingObject Property System.ComponentModel.ISynchron...

Threads Property System.Diagnostics.ProcessThrea...

TotalProcessorTime Property timespan TotalProcessorTime {get;}

UserProcessorTime Property timespan UserProcessorTime {get;}

VirtualMemorySize Property int VirtualMemorySize {get;}

VirtualMemorySize64 Property long VirtualMemorySize64 {get;}

WorkingSet Property int WorkingSet {get;}

WorkingSet64 Property long WorkingSet64 {get;}

PSConfiguration PropertySet PSConfiguration {Name, Id, Prio...

PSResources PropertySet PSResources {Name, Id, Handleco...

Company ScriptProperty System.Object Company {get=$thi...

CPU ScriptProperty System.Object CPU {get=$this.To...

Description ScriptProperty System.Object Description {get=...

FileVersion ScriptProperty System.Object FileVersion {get=...

Path ScriptProperty System.Object Path {get=$this.M...

Product ScriptProperty System.Object Product {get=$thi...

ProductVersion ScriptProperty System.Object ProductVersion {g...

You can’t pipe a command to Get-Member that doesn’t generate output. Because
Start-Service doesn’t produce output by default, attempting to pipe it to Get-Member

results in an error. You must run this command from an elevated PowerShell session.

Chapter 3 - Discovering Objects, Properties, and Methods 51

Start-Service -Name w32time | Get-Member

To be piped to Get-Member, a command must produce object-based output.

Get-Member : You must specify an object for the Get-Member cmdlet.

At line:1 char:31

+ Start-Service -Name w32time | Get-Member

+ ~~~~~~~~~~

+ CategoryInfo : CloseError: (:) [Get-Member], InvalidOperation

Exception

+ FullyQualifiedErrorId : NoObjectInGetMember,Microsoft.PowerShell.Comma

nds.GetMemberCommand

To avoid this error, specify the PassThru parameter with Start-Service. Adding the
PassThru parameter causes a cmdlet that doesn’t usually produce output to generate
output. You must run this command from an elevated PowerShell session.

Start-Service -Name w32time -PassThru | Get-Member

TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

RequiredServices AliasProperty RequiredServices = ServicesDepend...

Disposed Event System.EventHandler Disposed(Syst...

Close Method void Close()

Continue Method void Continue()

CreateObjRef Method System.Runtime.Remoting.ObjRef Cr...

Dispose Method void Dispose(), void IDisposable....

Equals Method bool Equals(System.Object obj)

ExecuteCommand Method void ExecuteCommand(int command)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method type GetType()

InitializeLifetimeService Method System.Object InitializeLifetimeS...

Chapter 3 - Discovering Objects, Properties, and Methods 52

Pause Method void Pause()

Refresh Method void Refresh()

Start Method void Start(), void Start(string[]...

Stop Method void Stop()

WaitForStatus Method void WaitForStatus(System.Service...

CanPauseAndContinue Property bool CanPauseAndContinue {get;}

CanShutdown Property bool CanShutdown {get;}

CanStop Property bool CanStop {get;}

Container Property System.ComponentModel.IContainer ...

DependentServices Property System.ServiceProcess.ServiceCont...

DisplayName Property string DisplayName {get;set;}

MachineName Property string MachineName {get;set;}

ServiceHandle Property System.Runtime.InteropServices.Sa...

ServiceName Property string ServiceName {get;set;}

ServicesDependedOn Property System.ServiceProcess.ServiceCont...

ServiceType Property System.ServiceProcess.ServiceType...

Site Property System.ComponentModel.ISite Site ...

StartType Property System.ServiceProcess.ServiceStar...

Status Property System.ServiceProcess.ServiceCont...

ToString ScriptMethod System.Object ToString();

Out-Host is designed to show output directly in the PowerShell host and doesn’t
produce object-based output. As a result, you can’t pipe its output to Get-Member,
which requires object-based input.

Get-Service -Name w32time | Out-Host | Get-Member

Status Name DisplayName

------ ---- -----------

Running w32time Windows Time

Get-Member : You must specify an object for the Get-Member cmdlet.

At line:1 char:40

+ Get-Service -Name w32time | Out-Host | Get-Member

+ ~~~~~~~~~~

+ CategoryInfo : CloseError: (:) [Get-Member], InvalidOperation

Exception

+ FullyQualifiedErrorId : NoObjectInGetMember,Microsoft.PowerShell.Comma

nds.GetMemberCommand

Chapter 3 - Discovering Objects, Properties, and Methods 53

Get-Command

Knowing the type of object a command produces allows you to search for commands
that accept that type of object as input.

Get-Command -ParameterType ServiceController

The following commands accept a ServiceController object via pipeline or param-
eter input.

CommandType Name Version

----------- ---- -------

Cmdlet Get-Service 3.1.0.0

Cmdlet Restart-Service 3.1.0.0

Cmdlet Resume-Service 3.1.0.0

Cmdlet Set-Service 3.1.0.0

Cmdlet Start-Service 3.1.0.0

Cmdlet Stop-Service 3.1.0.0

Cmdlet Suspend-Service 3.1.0.0

Active Directory

Asmentioned in the chapter prerequisites, ensure you have RSAT installed
for this section. Additionally, your lab environment computer must be a
member of your lab environment Active Directory domain.

To identify the commands added to the ActiveDirectory PowerShell module after you
install RSAT, use Get-Command combined with the Module parameter. The following
example lists all the commands available in the ActiveDirectory module.

Get-Command -Module ActiveDirectory

The ActiveDirectory PowerShell module added a total of 147 commands.

Have you observed the naming convention of these commands? The nouns in the
command names are prefixed with AD to avoid potential naming conflicts with
commands in other modules. This prefixing is a common practice among PowerShell
modules.

Chapter 3 - Discovering Objects, Properties, and Methods 54

CommandType Name Version

----------- ---- -------

Cmdlet Add-ADCentralAccessPolicyMember 1.0.1.0

Cmdlet Add-ADComputerServiceAccount 1.0.1.0

Cmdlet Add-ADDomainControllerPasswordReplicationPolicy 1.0.1.0

Cmdlet Add-ADFineGrainedPasswordPolicySubject 1.0.1.0

Cmdlet Add-ADGroupMember 1.0.1.0

Cmdlet Add-ADPrincipalGroupMembership 1.0.1.0

Cmdlet Add-ADResourcePropertyListMember 1.0.1.0

Cmdlet Clear-ADAccountExpiration 1.0.1.0

Cmdlet Clear-ADClaimTransformLink 1.0.1.0

Cmdlet Disable-ADAccount 1.0.1.0

...

By default, the Get-ADUser cmdlet retrieves a limited set of properties for user objects
and limits its output to the first 1000 users. This constraint is a performance
optimization designed to avoid overwhelming Active Directory with excessive data
retrieval.

Get-ADUser -Identity mike | Get-Member -MemberType Properties

Even if you only have a basic understanding of Active Directory, you may recognize
that a user account has more properties than those shown in the example.

TypeName: Microsoft.ActiveDirectory.Management.ADUser

Name MemberType Definition

---- ---------- ----------

DistinguishedName Property System.String DistinguishedName {get;set;}

Enabled Property System.Boolean Enabled {get;set;}

GivenName Property System.String GivenName {get;set;}

Name Property System.String Name {get;}

ObjectClass Property System.String ObjectClass {get;set;}

ObjectGUID Property System.Nullable`1[[System.Guid, mscorlib, Ve...

SamAccountName Property System.String SamAccountName {get;set;}

SID Property System.Security.Principal.SecurityIdentifier...

Surname Property System.String Surname {get;set;}

UserPrincipalName Property System.String UserPrincipalName {get;set;}

Chapter 3 - Discovering Objects, Properties, and Methods 55

The Get-ADUser cmdlet includes a Properties parameter to specify additional prop-
erties beyond the defaults you want to retrieve. Use the * wildcard character as the
parameter value to return all properties.

Get-ADUser -Identity mike -Properties * | Get-Member -MemberType Properties

TypeName: Microsoft.ActiveDirectory.Management.ADUser

Name MemberType Definition

---- ---------- ----------

AccountExpirationDate Property System.DateTime AccountEx...

accountExpires Property System.Int64 accountExpir...

AccountLockoutTime Property System.DateTime AccountLo...

AccountNotDelegated Property System.Boolean AccountNot...

AllowReversiblePasswordEncryption Property System.Boolean AllowRever...

AuthenticationPolicy Property Microsoft.ActiveDirectory...

AuthenticationPolicySilo Property Microsoft.ActiveDirectory...

BadLogonCount Property System.Int32 BadLogonCoun...

badPasswordTime Property System.Int64 badPasswordT...

badPwdCount Property System.Int32 badPwdCount ...

CannotChangePassword Property System.Boolean CannotChan...

CanonicalName Property System.String CanonicalNa...

Certificates Property Microsoft.ActiveDirectory...

City Property System.String City {get;s...

CN Property System.String CN {get;}

codePage Property System.Int32 codePage {ge...

Company Property System.String Company {ge...

CompoundIdentitySupported Property Microsoft.ActiveDirectory...

Country Property System.String Country {ge...

countryCode Property System.Int32 countryCode ...

Created Property System.DateTime Created {...

createTimeStamp Property System.DateTime createTim...

Deleted Property System.Boolean Deleted {g...

Department Property System.String Department ...

Description Property System.String Description...

DisplayName Property System.String DisplayName...

DistinguishedName Property System.String Distinguish...

Division Property System.String Division {g...

Chapter 3 - Discovering Objects, Properties, and Methods 56

DoesNotRequirePreAuth Property System.Boolean DoesNotReq...

dSCorePropagationData Property Microsoft.ActiveDirectory...

EmailAddress Property System.String EmailAddres...

EmployeeID Property System.String EmployeeID ...

EmployeeNumber Property System.String EmployeeNum...

Enabled Property System.Boolean Enabled {g...

Fax Property System.String Fax {get;set;}

GivenName Property System.String GivenName {...

HomeDirectory Property System.String HomeDirecto...

HomedirRequired Property System.Boolean HomedirReq...

HomeDrive Property System.String HomeDrive {...

HomePage Property System.String HomePage {g...

HomePhone Property System.String HomePhone {...

Initials Property System.String Initials {g...

instanceType Property System.Int32 instanceType...

isDeleted Property System.Boolean isDeleted ...

KerberosEncryptionType Property Microsoft.ActiveDirectory...

LastBadPasswordAttempt Property System.DateTime LastBadPa...

LastKnownParent Property System.String LastKnownPa...

lastLogoff Property System.Int64 lastLogoff {...

lastLogon Property System.Int64 lastLogon {g...

LastLogonDate Property System.DateTime LastLogon...

lastLogonTimestamp Property System.Int64 lastLogonTim...

LockedOut Property System.Boolean LockedOut ...

logonCount Property System.Int32 logonCount {...

LogonWorkstations Property System.String LogonWorkst...

Manager Property System.String Manager {ge...

MemberOf Property Microsoft.ActiveDirectory...

MNSLogonAccount Property System.Boolean MNSLogonAc...

MobilePhone Property System.String MobilePhone...

Modified Property System.DateTime Modified ...

modifyTimeStamp Property System.DateTime modifyTim...

msDS-User-Account-Control-Computed Property System.Int32 msDS-User-Ac...

Name Property System.String Name {get;}

nTSecurityDescriptor Property System.DirectoryServices....

ObjectCategory Property System.String ObjectCateg...

ObjectClass Property System.String ObjectClass...

ObjectGUID Property System.Nullable`1[[System...

objectSid Property System.Security.Principal...

Office Property System.String Office {get...

Chapter 3 - Discovering Objects, Properties, and Methods 57

OfficePhone Property System.String OfficePhone...

Organization Property System.String Organizatio...

OtherName Property System.String OtherName {...

PasswordExpired Property System.Boolean PasswordEx...

PasswordLastSet Property System.DateTime PasswordL...

PasswordNeverExpires Property System.Boolean PasswordNe...

PasswordNotRequired Property System.Boolean PasswordNo...

POBox Property System.String POBox {get;...

PostalCode Property System.String PostalCode ...

PrimaryGroup Property System.String PrimaryGrou...

primaryGroupID Property System.Int32 primaryGroup...

PrincipalsAllowedToDelegateToAccount Property Microsoft.ActiveDirectory...

ProfilePath Property System.String ProfilePath...

ProtectedFromAccidentalDeletion Property System.Boolean ProtectedF...

pwdLastSet Property System.Int64 pwdLastSet {...

SamAccountName Property System.String SamAccountN...

sAMAccountType Property System.Int32 sAMAccountTy...

ScriptPath Property System.String ScriptPath ...

sDRightsEffective Property System.Int32 sDRightsEffe...

ServicePrincipalNames Property Microsoft.ActiveDirectory...

SID Property System.Security.Principal...

SIDHistory Property Microsoft.ActiveDirectory...

SmartcardLogonRequired Property System.Boolean SmartcardL...

sn Property System.String sn {get;set;}

State Property System.String State {get;...

StreetAddress Property System.String StreetAddre...

Surname Property System.String Surname {ge...

Title Property System.String Title {get;...

TrustedForDelegation Property System.Boolean TrustedFor...

TrustedToAuthForDelegation Property System.Boolean TrustedToA...

UseDESKeyOnly Property System.Boolean UseDESKeyO...

userAccountControl Property System.Int32 userAccountC...

userCertificate Property Microsoft.ActiveDirectory...

UserPrincipalName Property System.String UserPrincip...

uSNChanged Property System.Int64 uSNChanged {...

uSNCreated Property System.Int64 uSNCreated {...

whenChanged Property System.DateTime whenChang...

whenCreated Property System.DateTime whenCreat...

The default configuration for retrieving Active Directory user account properties is

Chapter 3 - Discovering Objects, Properties, and Methods 58

intentionally limited to avoid performance issues. Trying to return every property
for every user account in your production Active Directory environment could
severely degrade the performance of your domain controllers and network. In most
cases, you’ll only need specific properties for certain users. However, returning all
properties for a single user is reasonable when identifying the available properties.

It’s not uncommon to run a command multiple times when prototyping it. If
you anticipate running a resource-intensive query when prototyping a command,
consider executing it once and storing the results in a variable. Then, you can work
with the variable’s contents more efficiently than repeatedly executing a resource-
intensive query.

For example, the following command retrieves all properties for a user account and
stores the results in a variable named $Users. Work with the contents of the $Users

variable instead of running the Get-ADUser command multiple times. Remember, the
variable’s contents don’t update automatically when a user’s information changes in
Active Directory.

$Users = Get-ADUser -Identity mike -Properties *

You can explore the available properties by piping the $Users variable to Get-Member.

$Users | Get-Member -MemberType Properties

To view specific properties such as Name, LastLogonDate, and LastBadPasswor-
dAttempt, pipe the $Users variable to Select-Object. This method displays the
desired properties and their values based on the contents of the $Users variable,
eliminating the need for multiple queries to Active Directory. It’s a more resource-
efficient approach than repeatedly executing the Get-ADUser command.

$Users | Select-Object -Property Name, LastLogonDate, LastBadPasswordAttempt

When querying Active Directory, filter the data at the source using the Properties
parameter to return only the necessary properties.

Chapter 3 - Discovering Objects, Properties, and Methods 59

Get-ADUser -Identity mike -Properties LastLogonDate, LastBadPasswordAttempt

DistinguishedName : CN=Mike F. Robbins,CN=Users,DC=mikefrobbins,DC=com

Enabled : True

GivenName : Mike

LastBadPasswordAttempt :

LastLogonDate : 11/14/2023 5:10:16 AM

Name : Mike F. Robbins

ObjectClass : user

ObjectGUID : 11c7b61f-46c3-4399-9ed0-ff4e453bc2a2

SamAccountName : mike

SID : S-1-5-21-611971124-518002951-3581791498-1105

Surname : Robbins

UserPrincipalName : µ@mikefrobbins.com

Summary

In this chapter, you’ve learned how to determine what type of object a command
produces, what properties and methods are available for a command, and how to
work with commands that limit the properties returned by default.

Review

1. What type of object does the Get-Process cmdlet produce?
2. How do you determine what the available properties are for a command?
3. If a command exists for getting something but not for setting the same thing,

what should you check for?
4. How can certain commands that don’t return output by default be made to

generate output?
5. What should you consider doing when prototyping a command producing a

large amount of output?

Chapter 3 - Discovering Objects, Properties, and Methods 60

References

• Get-Member4

• Viewing Object Structure (Get-Member)5

• about_Objects6

• about_Properties7

• about_Methods8

• No PowerShell Cmdlet to Start or Stop Something? Don’t Forget to Check for
Methods on the Get Cmdlets9

Next steps

In the next chapter, you’ll learn about one-liners and the pipeline.

4https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/get-member
5https://learn.microsoft.com/powershell/scripting/samples/viewing-object-structure--get-member-
6https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_objects
7https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_properties
8https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_methods
9https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-

for-methods-on-the-get-cmdlets/

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/get-member
https://learn.microsoft.com/powershell/scripting/samples/viewing-object-structure--get-member-
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_objects
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_properties
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_methods
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/
https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/get-member
https://learn.microsoft.com/powershell/scripting/samples/viewing-object-structure--get-member-
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_objects
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_properties
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_methods
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/

Chapter 4 - One-Liners and the
pipeline
When I started learning PowerShell, I initially relied on the Graphical User Interface
(GUI) for tasks that seemed too complex for simple PowerShell commands. However,
as I continued to learn, I improved my skills and moved from basic one-liners to
creating scripts, functions, and modules. It’s important to remember that feeling
overwhelmed by advanced examples online is normal. No one starts as an expert in
PowerShell; we all start as beginners.

For those who primarily use the GUI for administrative tasks, install themanagement
tools on your administrative workstation to remotely manage your servers. Whether
your server uses a GUI or the Server Core OS installation, this approach is beneficial.
It’s a practical way to familiarize yourself with remote server management in
preparation for performing administrative tasks with PowerShell.

As with the previous chapters, try these concepts in your lab environment.

One-Liners

A PowerShell one-liner is one continuous pipeline. It’s a common misconception
that a command on one physical line is a PowerShell one-liner, but this is’nt always
true.

For instance, consider the following example: the command extends over multiple
physical lines, yet it’s a PowerShell one-liner because it forms a continuous pipeline.
Line-breaking a lengthy one-liner at the pipe symbol, a natural breaking point in
PowerShell, is recommended to enhance readability and clarity. This strategic use of
line breaks improves readability without disrupting the flow of the pipeline.

Chapter 4 - One-Liners and the pipeline 62

Get-Service |

Where-Object CanPauseAndContinue -eq $true |

Select-Object -Property *

Name : LanmanWorkstation

RequiredServices : {NSI, MRxSmb20, Bowser}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Workstation

DependentServices : {SessionEnv, Netlogon}

MachineName : .

ServiceName : LanmanWorkstation

ServicesDependedOn : {NSI, MRxSmb20, Bowser}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Automatic

Site :

Container :

Name : Netlogon

RequiredServices : {LanmanWorkstation}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Netlogon

DependentServices : {}

MachineName : .

ServiceName : Netlogon

ServicesDependedOn : {LanmanWorkstation}

ServiceHandle :

Status : Running

ServiceType : Win32ShareProcess

StartType : Automatic

Site :

Container :

Name : vmicheartbeat

Chapter 4 - One-Liners and the pipeline 63

RequiredServices : {}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Hyper-V Heartbeat Service

DependentServices : {}

MachineName : .

ServiceName : vmicheartbeat

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

Name : vmickvpexchange

RequiredServices : {}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Hyper-V Data Exchange Service

DependentServices : {}

MachineName : .

ServiceName : vmickvpexchange

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

Name : vmicrdv

RequiredServices : {}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Hyper-V Remote Desktop Virtualization Service

DependentServices : {}

Chapter 4 - One-Liners and the pipeline 64

MachineName : .

ServiceName : vmicrdv

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

Name : vmicshutdown

RequiredServices : {}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Hyper-V Guest Shutdown Service

DependentServices : {}

MachineName : .

ServiceName : vmicshutdown

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

Name : vmicvss

RequiredServices : {}

CanPauseAndContinue : True

CanShutdown : False

CanStop : True

DisplayName : Hyper-V Volume Shadow Copy Requestor

DependentServices : {}

MachineName : .

ServiceName : vmicvss

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

Chapter 4 - One-Liners and the pipeline 65

StartType : Manual

Site :

Container :

Name : webthreatdefsvc

RequiredServices : {RpcSs, wtd}

CanPauseAndContinue : True

CanShutdown : True

CanStop : True

DisplayName : Web Threat Defense Service

DependentServices : {}

MachineName : .

ServiceName : webthreatdefsvc

ServicesDependedOn : {RpcSs, wtd}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

Name : webthreatdefusersvc_644de

RequiredServices : {}

CanPauseAndContinue : True

CanShutdown : True

CanStop : True

DisplayName : Web Threat Defense User Service_644de

DependentServices : {}

MachineName : .

ServiceName : webthreatdefusersvc_644de

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : 240

StartType : Automatic

Site :

Container :

Name : Winmgmt

RequiredServices : {RPCSS}

Chapter 4 - One-Liners and the pipeline 66

CanPauseAndContinue : True

CanShutdown : True

CanStop : True

DisplayName : Windows Management Instrumentation

DependentServices : {}

MachineName : .

ServiceName : Winmgmt

ServicesDependedOn : {RPCSS}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Automatic

Site :

Container :

Natural line breaks can occur at commonly used characters, including comma (,) and
opening brackets ([), braces ({), and parenthesis ((). Others that aren’t so common
include the semicolon (;), equals sign (=), and both opening single and double quotes
(',").

Using the backtick (`) or grave accent character as a line continuation is controversial.
It’s best to avoid it if possible. Using a backtick following a natural line break
character is a common mistake. This redundancy is unnecessary and can clutter
the code.

The commands in the following example execute correctly from the PowerShell
console. However, attempting to run them in the console pane of the PowerShell
Integrated Scripting Environment (ISE) results in an error. This difference occurs
because, unlike the PowerShell console, the console pane of the ISE doesn’t auto-
matically anticipate the continuation of a command onto the next line. To prevent
this issue, press Shift+Enter in the console pane of the ISE instead of Enterwhen you
need to extend a command across multiple lines. This key combination signals to the
ISE that the command is continuing on the following line, preventing the execution
that leads to errors.

Get-Service -Name w32time |

Select-Object -Property *

Chapter 4 - One-Liners and the pipeline 67

Name : w32time

RequiredServices : {}

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

DisplayName : Windows Time

DependentServices : {}

MachineName : .

ServiceName : w32time

ServicesDependedOn : {}

ServiceHandle :

Status : Running

ServiceType : Win32OwnProcess, Win32ShareProcess

StartType : Manual

Site :

Container :

This next example doesn’t qualify as a PowerShell one-liner because it’s not one
continuous pipeline. Instead, it’s two separate commands placed on a single line,
separated by a semicolon. This semicolon indicates the end of one command and the
beginning of another.

$Service = 'w32time'; Get-Service -Name $Service

Status Name DisplayName

------ ---- -----------

Running w32time Windows Time

Many programming and scripting languages require a semicolon at the end of each
line. However, in PowerShell, semicolons at the end of lines are unnecessary and not
recommended. You should avoid them for cleaner and more readable code.

Filter Left

This chapter demonstrates how to filter the results of various commands. For
instance, the Get-Service command is used with theName parameter to display only
the Windows Time service.

Chapter 4 - One-Liners and the pipeline 68

It’s a best practice in PowerShell to filter the results as early as possible in the pipeline.
Achieving this involves applying filters using parameters on the initial command,
usually at the beginning of the pipeline. This is commonly referred to as filtering
left.

To illustrate this concept, consider the following example: Use the Name parameter
of Get-Service to filter the results at the beginning of the pipeline, returning only
the details for the Windows Time service. This method demonstrates efficient data
retrieval, ensuring you only return the necessary and relevant information.

Get-Service -Name w32time

Status Name DisplayName

------ ---- -----------

Running w32time Windows Time

It’s common to see online examples of a PowerShell command being piped to the
Where-Object cmdlet to filter its results. This technique is inefficient if an earlier
command in the pipeline has a parameter to perform the filtering.

Get-Service | Where-Object Name -eq w32time

Status Name DisplayName

------ ---- -----------

Running W32Time Windows Time

The first example demonstrates filtering directly at the source, returning results
specifically for the Windows Time service. In contrast, the second example retrieves
all services and then uses another command to filter the results. This might seem
insignificant in small-scale scenarios, but consider a situation involving a large
dataset, like Active Directory. It’s inefficient to retrieve details for thousands of
user accounts only to narrow them down to a small subset. Practice filtering left —
applying filters as early as possible in the command sequence — even in seemingly
trivial cases. This habit ensures efficiency in more complex scenarios where it
becomes crucial.

Chapter 4 - One-Liners and the pipeline 69

Command sequencing for effective filtering

There’s a misconception that the order of commands in PowerShell is inconsequen-
tial, but this is a misunderstanding. The sequence in which you arrange commands,
particularly when filtering, is vital. For example, suppose you’re using Select-Object

to choose specific properties and Where-Object to filter. In that case, it’s essential to
apply the filtering first. Failing to do so means the necessary properties might not be
available in the pipeline for filtering, leading to ineffective or erroneous results.

The following example fails to produce results because the CanStopAndContinue
property is absent when Select-Object is piped to Where-Object. This is because
the CanStopAndContinue property was not included in the selection made by
Select-Object. Effectively, it has been excluded or filtered out.

Get-Service |

Select-Object -Property DisplayName, Running, Status |

Where-Object CanPauseAndContinue

Reversing the order of Select-Object and Where-Object produces the desired results.

Get-Service |

Where-Object CanPauseAndContinue |

Select-Object -Property DisplayName, Status

DisplayName Status

----------- ------

Workstation Running

Netlogon Running

Hyper-V Heartbeat Service Running

Hyper-V Data Exchange Service Running

Hyper-V Remote Desktop Virtualization Service Running

Hyper-V Guest Shutdown Service Running

Hyper-V Volume Shadow Copy Requestor Running

Web Threat Defense Service Running

Web Threat Defense User Service_644de Running

Windows Management Instrumentation Running

Chapter 4 - One-Liners and the pipeline 70

The Pipeline

As you’ve seen in many examples throughout this book, you can often use the output
of one command as input for another command. In Chapter 3, Get-Member was used
to determine what type of object a command produces.

Chapter 3 also showed using the ParameterType parameter of Get-Command to
determine what commands accepted that type of input. Depending on how thorough
help for a command is, it may include an INPUTS and OUTPUTS section.

The INPUTS section indicates that you can pipe a ServiceController or a String
object to the Stop-Service cmdlet.

help Stop-Service -Full

The following output has been abbreviated to show the relevant portion of the help.

...

INPUTS

System.ServiceProcess.ServiceController

You can pipe a service object to this cmdlet.

System.String

You can pipe a string that contains the name of a service to this

cmdlet.

OUTPUTS

None

By default, this cmdlet returns no output.

System.ServiceProcess.ServiceController

When you use the PassThru parameter, this cmdlet returns a

ServiceController object representing the service.

...

However, it doesn’t specify which parameters accept that type of input. You can
determine that information by checking the different parameters in the full version
of the help for the Stop-Service cmdlet.

Chapter 4 - One-Liners and the pipeline 71

help Stop-Service -Full

Once again, only the relevant help is shown in the following results. Notice that the
DisplayName parameter doesn’t accept pipeline input. The InputObject parameter
accepts pipeline input by value for ServiceController objects. The Name parameter
accepts pipeline input by value for String objects and pipeline input by property
name.

...

-DisplayName <System.String[]>

Specifies the display names of the services to stop. Wildcard

characters are permitted.

Required? true

Position? named

Default value None

Accept pipeline input? False

Accept wildcard characters? true

-InputObject <System.ServiceProcess.ServiceController[]>

Specifies ServiceController objects that represent the services to

stop. Enter a variable that contains the objects, or type a command

or expression that gets the objects.

Required? true

Position? 0

Default value None

Accept pipeline input? True (ByValue)

Accept wildcard characters? false

-Name <System.String[]>

Specifies the service names of the services to stop. Wildcard

characters are permitted.

Required? true

Position? 0

Default value None

Accept pipeline input? True (ByPropertyName, ByValue)

Chapter 4 - One-Liners and the pipeline 72

Accept wildcard characters? true

...

When handling pipeline input, a parameter that accepts pipeline input both by
property name and by value prioritizes by value binding first. If this method fails,
it attempts to process pipeline input by property name. However, the term by value
can be misleading. A more accurate description is by type.

For instance, if you pipe the output of a command that generates a ServiceController
object to Stop-Service, this output is bound to the InputObject parameter. If
the piped command produces a String object, it associates the output with the
Name parameter. If you pipe output from a command that doesn’t produce a
ServiceController or String object, but does include a property named Name,
Stop-Service binds the value of the Name property to its Name parameter.

Determine what type of output the Get-Service command produces.

Get-Service -Name w32time | Get-Member

TypeName: System.ServiceProcess.ServiceController

Get-Service produces a ServiceController object type.

As shown in the help for Stop-Service cmdlet, the InputObject parameter accepts
ServiceController objects through the pipeline by value. This implies that when
you pipe the output of the Get-Service cmdlet to Stop-Service, the ServiceController
objects produced by Get-Service bind to the InputObject parameter of Stop-Service.

Get-Service -Name w32time | Stop-Service

Now try string input. Pipe w32time to Get-Member to confirm that it’s a string.

'w32time' | Get-Member

Chapter 4 - One-Liners and the pipeline 73

TypeName: System.String

The PowerShell help documentation illustrates that when you pipe a string to
Stop-Service, it binds to the Name parameter by value. Conduct a practical test to
see this in action: pipe the string w32time to Stop-Service. This example demonstrates
how Stop-Service processes the string w32time as the name of the service to stop.
Execute the following command to observe this binding and command execution in
action.

Notice that w32time is enclosed in single quotes. In PowerShell, it’s a best practice
to use single quotes for static strings, reserving double quotes for situations where
the string contains variables that require expansion. Single quotes tell PowerShell
to treat the content literally without parsing for variables. This approach not
only ensures accuracy in how your script interprets the string but also enhances
performance, as PowerShell expends less processing effort on strings within single
quotes.

'w32time' | Stop-Service

Create a custom object to test pipeline input by property name for the Name
parameter of Stop-Service.

$customObject = [pscustomobject]@{

Name = 'w32time'

}

The contents of the CustomObject variable is a PSCustomObject object type and it
contains a property named Name.

$customObject | Get-Member

Chapter 4 - One-Liners and the pipeline 74

TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Name NoteProperty string Name=w32time

When working with variables in PowerShell, such as $customObject in this example,
it’s important to use double quotes if you need to enclose the variable in quotes.
Double quotes allow for variable expansion — PowerShell evaluates the variable and
uses its value. For example, if you enclose $customObject in double quotes and pipe
it to Get-Member, PowerShell processes the value of $customObject. In contrast, using
single quotes would result in piping the literal string $customObject to Get-Member, not
the value of the variable. This distinction is crucial for scenarios where you need to
evaluate the value of variables.

When piping the contents of the $customObject variable to the Stop-Service cmdlet,
the binding to the Name parameter occurs by property name rather than by value.
This is because $customObject is an object that contains a property named Name. In
this scenario, PowerShell identifies theName property within $customObject and uses
its value for the Name parameter of Stop-Service.

Create another custom object using a different property name, such as Service.

$customObject = [pscustomobject]@{

Service = 'w32time'

}

An error occurs while trying to stop the w32time service by piping $customObject to
Stop-Service. The pipeline binding fails because $customObject doesn’t produce a
ServiceController or String object and doesn’t contain a Name property.

$customObject | Stop-Service

Chapter 4 - One-Liners and the pipeline 75

Stop-Service : Cannot find any service with service name

'@{Service=w32time}'.

At line:1 char:17

+ $customObject | Stop-Service

+ ~~~~~~~~~~~~

+ CategoryInfo : ObjectNotFound: (@{Service=w32time}:String) [

Stop-Service], ServiceCommandException

+ FullyQualifiedErrorId : NoServiceFoundForGivenName,Microsoft.PowerShe

ll.Commands.StopServiceCommand

When the output property names of one command don’t match the pipeline input
requirements of another command, you can use Select-Object to rename the property
names so they line up correctly.

In the following example, use Select-Object to rename the Service property to a
property named Name.

At first glance, the syntax of this example might appear complex. However, it’s
essential to understand that more than copying and pasting code is required to learn
the syntax. Instead, take the time to type out the code manually. This hands-on
practice helps you remember the syntax, and it becomes more intuitive with repeated
effort. Utilizing multiple monitors or split screen can also aid in the learning process.
Display the example code on one screen while actively typing and experimenting
with it on another. This setup makes it easier to follow along and enhances your
understanding and retention of the syntax.

$customObject |

Select-Object -Property @{name='Name';expression={$_.Service}} |

Stop-Service

There are instances where you might need to use a parameter that doesn’t accept
pipeline input. In such cases, you can still use the output of one command as the input
for another. First, capture and save the display names of a few specific Windows
services into a text file. This step allows you to use the saved data as input for
another command.

Chapter 4 - One-Liners and the pipeline 76

'Background Intelligent Transfer Service', 'Windows Time' |

Out-File -FilePath $env:TEMP\services.txt

You can use parentheses to pass the output of one command as input for a parameter
to another command.

Stop-Service -DisplayName (Get-Content -Path $env:TEMP\services.txt)

This concept is like the order of operations in Algebra. Just as mathematical opera-
tions within parentheses are computed first, the command enclosed in parentheses
is executed before the outer command.

PowerShellGet

PowerShellGet, a module included with PowerShell version 5.0 and above, provides
commands to discover, install, publish, and update PowerShell modules and other
items in a NuGet repository. For those using PowerShell version 3.0 and above,
PowerShellGet is also available as a separate download.

The PowerShell Gallery1 is an online repository hosted by Microsoft, designed as
a central hub for sharing PowerShell modules, scripts, and other resources. While
Microsoft hosts the PowerShell Gallery, the PowerShell community contributes most
of the available modules and scripts. Given the source of these modules and scripts,
exercise caution before integrating any code from the PowerShell Gallery into your
environment. Review and test downloads from the PowerShell Gallery in an isolated
test environment. This process ensures the code is secure and reliable, functions as
expected, and safeguards your environment from potential issues or vulnerabilities
arising from unvetted code.

Many organizations opt to establish their own internal, private NuGet repository.
This repository serves a dual purpose. First, it acts as a secure location for storing
modules developed in-house, intended solely for internal use. Secondly, it provides
a vetted collection of modules sourced externally, including those from public
repositories. Companies typically undertake a thorough validation process before
adding these external modules to the internal repository. This process is crucial to

1https://www.powershellgallery.com/

https://www.powershellgallery.com/
https://www.powershellgallery.com/

Chapter 4 - One-Liners and the pipeline 77

ensure the modules are free from malicious content and align with the security and
operational standards of the company.

Use the Find-Module cmdlet that’s part of the PowerShellGet module to find a module
in the PowerShell Gallery that I wrote named MrToolkit.

Find-Module -Name MrToolkit

NuGet provider is required to continue

PowerShellGet requires NuGet provider version '2.8.5.201' or newer to

interact with NuGet-based repositories. The NuGet provider must be available

in 'C:\Program Files\PackageManagement\ProviderAssemblies' or

'C:\Users\mikefrobbins\AppData\Local\PackageManagement\ProviderAssemblies'.

You can also install the NuGet provider by running 'Install-PackageProvider

-Name NuGet -MinimumVersion 2.8.5.201 -Force'. Do you want PowerShellGet to

install and import the NuGet provider now?

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Version Name Repository Description

------- ---- ---------- -----------

1.3 MrToolkit PSGallery Misc PowerShell Tools

The first time you use one of the commands from the PowerShellGet module, you’ll
be prompted to install the NuGet provider.

To install the MrToolkit module, pipe the previous command to Install-Module.

Find-Module -Name MrToolkit | Install-Module -Scope CurrentUser

Chapter 4 - One-Liners and the pipeline 78

Untrusted repository

You are installing the modules from an untrusted repository. If you trust

this repository, change its InstallationPolicy value by running the

Set-PSRepository cmdlet. Are you sure you want to install the modules from

'https://www.powershellgallery.com/api/v2'?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "N"):y

Since the PowerShell Gallery is an untrusted repository, it prompts you to approve
the installation of the module.

Finding pipeline input the easy way

The MrToolkit module includes a function named Get-MrPipelineInput. This cmdlet
is designed to provide users with a convenient method for identifying the parameters
of a command capable of accepting pipeline input. Specifically, it reveals three key
aspects:

• Which parameters of a command can receive pipeline input
• The type of object each parameter accepts
• Whether they accept pipeline input by value or by property name

This capability dramatically simplifies the process of understanding and utilizing the
pipeline capabilities of PowerShell commands.

The information previously obtained by analyzing the help documentation can be
determined using this function.

Get-MrPipelineInput -Name Stop-Service | Format-List

Chapter 4 - One-Liners and the pipeline 79

ParameterName : InputObject

ParameterType : System.ServiceProcess.ServiceController[]

ValueFromPipeline : True

ValueFromPipelineByPropertyName : False

ParameterName : Name

ParameterType : System.String[]

ValueFromPipeline : True

ValueFromPipelineByPropertyName : True

Summary

In this chapter, you’ve learned about the intricacies of PowerShell one-liners.
You’ve also learned that the physical line count of a command is irrelevant to
its classification as a PowerShell one-liner. Additionally, you learned about key
concepts such as filtering left, the pipeline, and PowerShellGet.

Review

1. What is a PowerShell one-liner?
2. What are some of the characters where natural line breaks can occur in

PowerShell?
3. Why should you filter left?
4. What are the two ways that a PowerShell command can accept pipeline input?
5. Why shouldn’t you trust commands found in the PowerShell Gallery?

References

• about_Pipelines2

• about_Command_Syntax3

2https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_pipelines
3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_command_syntax

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_pipelines
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_command_syntax
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_pipelines
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_command_syntax

Chapter 4 - One-Liners and the pipeline 80

• about_Parameters4

• PowerShellGet: The BIG EASY way to discover, install, and update PowerShell
modules5

Next steps

In the next chapter, you’ll learn about formatting, aliases, providers, and comparison
operators.

4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_parameters
5https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-

powershell-modules/

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_parameters
https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/
https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_parameters
https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/
https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/

Chapter 5 - Formatting, aliases,
providers, comparison
Prerequisites

The SQL Server PowerShell module is required by some of the examples shown in
this chapter. For more information about the SqlServer PowerShell module and
installation instructions, see the SQL Server PowerShell overview1. It’s also used
in subsequent chapters. Download and install it on your Windows lab environment
computer.

Format Right

In Chapter 4, you learned to filter as far to the left as possible. The rule for manually
formatting a command’s output is similar to that rule except it needs to occur as far
to the right as possible.

The most common format commands are Format-Table and Format-List. Format-Wide
and Format-Custom can also be used, but are less common.

As mentioned in Chapter 3, a command that returns more than four properties
defaults to a list unless custom formatting is used.

Get-Service -Name w32time |

Select-Object -Property Status, DisplayName, Can*

1https://learn.microsoft.com/sql/powershell/download-sql-server-ps-module

https://learn.microsoft.com/sql/powershell/download-sql-server-ps-module
https://learn.microsoft.com/sql/powershell/download-sql-server-ps-module

Chapter 5 - Formatting, aliases, providers, comparison 82

Status : Running

DisplayName : Windows Time

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

Use the Format-Table cmdlet tomanually override the formatting and show the output
in a table instead of a list.

Get-Service -Name w32time |

Select-Object -Property Status, DisplayName, Can* |

Format-Table

Status DisplayName CanPauseAndContinue CanShutdown CanStop

------ ----------- ------------------- ----------- -------

Running Windows Time False True True

The default output for Get-Service is three properties in a table.

Get-Service -Name w32time

Status Name DisplayName

------ ---- -----------

Running w32time Windows Time

Use the Format-List cmdlet to override the default formatting and return the results
in a list.

Get-Service -Name w32time | Format-List

Notice that simply piping Get-Service to Format-List made it return additional prop-
erties. This doesn’t occur with every command because of the way the formatting
for that particular command is set up behind the scenes.

Chapter 5 - Formatting, aliases, providers, comparison 83

Name : w32time

DisplayName : Windows Time

Status : Running

DependentServices : {}

ServicesDependedOn : {}

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

ServiceType : Win32OwnProcess, Win32ShareProcess

The number one thing to be aware of with the format cmdlets is they produce format
objects that are different than normal objects in PowerShell.

Get-Service -Name w32time | Format-List | Get-Member

TypeName: Microsoft.PowerShell.Commands.Internal.Format.FormatStartData

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Obj...

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

autosizeInfo Property Microsoft.PowerShell.C...

ClassId2e4f51ef21dd47e99d3c952918aff9cd Property string ClassId2e4f51ef...

groupingEntry Property Microsoft.PowerShell.C...

pageFooterEntry Property Microsoft.PowerShell.C...

pageHeaderEntry Property Microsoft.PowerShell.C...

shapeInfo Property Microsoft.PowerShell.C...

TypeName: Microsoft.PowerShell.Commands.Internal.Format.GroupStartData

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Obj...

GetHashCode Method int GetHashCode()

GetType Method type GetType()

Chapter 5 - Formatting, aliases, providers, comparison 84

ToString Method string ToString()

ClassId2e4f51ef21dd47e99d3c952918aff9cd Property string ClassId2e4f51ef...

groupingEntry Property Microsoft.PowerShell.C...

shapeInfo Property Microsoft.PowerShell.C...

TypeName: Microsoft.PowerShell.Commands.Internal.Format.FormatEntryData

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Obj...

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

ClassId2e4f51ef21dd47e99d3c952918aff9cd Property string ClassId2e4f51ef...

formatEntryInfo Property Microsoft.PowerShell.C...

outOfBand Property bool outOfBand {get;set;}

writeStream Property Microsoft.PowerShell.C...

TypeName: Microsoft.PowerShell.Commands.Internal.Format.GroupEndData

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Obj...

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

ClassId2e4f51ef21dd47e99d3c952918aff9cd Property string ClassId2e4f51ef...

groupingEntry Property Microsoft.PowerShell.C...

TypeName: Microsoft.PowerShell.Commands.Internal.Format.FormatEndData

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Obj...

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Chapter 5 - Formatting, aliases, providers, comparison 85

ClassId2e4f51ef21dd47e99d3c952918aff9cd Property string ClassId2e4f51ef...

groupingEntry Property Microsoft.PowerShell.C...

What this means is format commands can’t be piped to most other commands. They
can be piped to some of the Out-* commands, but that’s about it. This is why you
want to perform any formatting at the very end of the line (format right).

Aliases

An alias in PowerShell is a shorter name for a command. PowerShell includes a set
of built-in aliases and you can also define your own aliases.

The Get-Alias cmdlet is used to find aliases. If you already know the alias for a
command, the Name parameter is used to determine what command the alias is
associated with.

Get-Alias -Name gcm

CommandType Name Version

----------- ---- -------

Alias gcm -> Get-Command

Multiple aliases can be specified for the value of the Name parameter.

Get-Alias -Name gcm, gm

CommandType Name Version

----------- ---- -------

Alias gcm -> Get-Command

Alias gm -> Get-Member

You’ll often see the Name parameter omitted since it’s a positional parameter.

Chapter 5 - Formatting, aliases, providers, comparison 86

Get-Alias gm

CommandType Name Version

----------- ---- -------

Alias gm -> Get-Member

If you want to find aliases for a command, you’ll need to use the Definition
parameter.

Get-Alias -Definition Get-Command, Get-Member

CommandType Name Version

----------- ---- -------

Alias gcm -> Get-Command

Alias gm -> Get-Member

The Definition parameter can’t be used positionally so it must be specified.

Aliases can save you a few keystrokes and they’re finewhen you’re typing commands
into the console. They shouldn’t be used in scripts or any code that you’re saving
or sharing with others. As mentioned earlier in this book, using full cmdlet and
parameter names is self-documenting and easier to understand.

Use cautionwhen creating your own aliases because they’ll only exist in your current
PowerShell session on your computer.

Providers

A provider in PowerShell is an interface that allows file system like access to a
datastore. There are a number of built-in providers in PowerShell.

Get-PSProvider

As you can see in the following results, there are built-in providers for the registry,
aliases, environment variables, the file system, functions, variables, certificates, and
WSMan.

Chapter 5 - Formatting, aliases, providers, comparison 87

Name Capabilities Drives

---- ------------ ------

Registry ShouldProcess, Transactions {HKLM, HKCU}

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess, Cr... {C, D}

Function ShouldProcess {Function}

Variable ShouldProcess {Variable}

The actual drives that these providers use to expose their datastore can be determined
with the Get-PSDrive cmdlet. The Get-PSDrive cmdlet not only displays drives exposed
by providers, but it also displays Windows logical drives including drives mapped to
network shares.

Get-PSDrive

Name Used (GB) Free (GB) Provider Root

---- --------- --------- -------- ----

Alias Alias

C 18.56 107.62 FileSystem C:\

Cert Certificate \

D FileSystem D:\

Env Environment

Function Function

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

Variable Variable

WSMan WSMan

Third-party modules such as the Active Directory PowerShell module and the
SQLServer PowerShell module both add their own PowerShell provider and PSDrive.

Import the Active Directory and SQL Server PowerShell modules.

Import-Module -Name ActiveDirectory, SQLServer

Check to see if any additional PowerShell providers were added.

Chapter 5 - Formatting, aliases, providers, comparison 88

Get-PSProvider

Notice that in the following set of results, two new PowerShell providers now exist,
one for Active Directory and another one for SQL Server.

Name Capabilities Drives

---- ------------ ------

Registry ShouldProcess, Transactions {HKLM, HKCU}

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess, Credentials {C, A, D}

Function ShouldProcess {Function}

Variable ShouldProcess {Variable}

ActiveDirectory Include, Exclude, Filter, Shoul... {AD}

SqlServer Credentials {SQLSERVER}

A PSDrive for each of those modules was also added.

Get-PSDrive

Name Used (GB) Free (GB) Provider Root

---- --------- --------- -------- ----

A FileSystem A:\

AD ActiveDire... //RootDSE/

Alias Alias

C 19.38 107.13 FileSystem C:\

Cert Certificate \

D FileSystem D:\

Env Environment

Function Function

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

SQLSERVER SqlServer SQLSERVER:\

Variable Variable

WSMan WSMan

PSDrives can be accessed just like a traditional file system.

Chapter 5 - Formatting, aliases, providers, comparison 89

Get-ChildItem -Path Cert:\LocalMachine\CA

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\CA

Thumbprint Subject

---------- -------

FEE449EE0E3965A5246F000E87FDE2A065FD89D4 CN=Root Agency

D559A586669B08F46A30A133F8A9ED3D038E2EA8 OU=www.verisign.com/CPS Incorp....

109F1CAED645BB78B3EA2B94C0697C740733031C CN=Microsoft Windows Hardware C...

Comparison Operators

PowerShell contains a number of comparison operators that are used to compare
values or find values that match certain patterns. The following table contains a list
of comparison operators in PowerShell.

All of the operators listed below are case-insensitive. Place a c in front of the operator
to make it case-sensitive. For example, -ceq is the case-sensitive version of the -eq

comparison operator.

-eq Equal to
-ne Not equal to
-gt Greater than
-ge Greater than or equal to
-lt Less than
-le Less than or equal to
-Like Match using the * wildcard character
-NotLike Does not match using the * wildcard character
-Match Matches the specified regular expression
-NotMatch Does not match the specified regular expression
-Contains Determines if a collection contains a specified value

Operator Definition

Chapter 5 - Formatting, aliases, providers, comparison 90

-NotContains Determines if a collection does not contain a specific
value

-In Determines if a specified value is in a collection
-NotIn Determines if a specified value is not in a collection
-Replace Replaces the specified value

Operator Definition

Proper case “PowerShell” is equal to lower case “powershell” using the equals
comparison operator.

'PowerShell' -eq 'powershell'

True

It’s not equal using the case-sensitive version of the equals comparison operator.

'PowerShell' -ceq 'powershell'

False

The not equal comparison operator reverses the condition.

'PowerShell' -ne 'powershell'

False

Greater than, greater than or equal to, less than, and less than or equal all work with
string or numeric values.

5 -gt 5

Chapter 5 - Formatting, aliases, providers, comparison 91

False

Using greater than or equal to instead of greater than with the previous example
returns the Boolean true since five is equal to five.

5 -ge 5

True

Based on the results from the previous two examples, you can probably guess how
both less than and less than or equal to work.

5 -lt 10

True

The -Like and -Match operators can be confusing, even for experienced PowerShell
users. -Like is used with wildcard the characters * and ? to perform “like” matches.

'PowerShell' -like '*shell'

True

-Match uses a regular expression to perform the matching.

'PowerShell' -match '^*.shell$'

True

Use the range operator to store the numbers 1 through 10 in a variable.

Chapter 5 - Formatting, aliases, providers, comparison 92

$Numbers = 1..10

Determine if the $Numbers variable includes 15.

$Numbers -contains 15

False

Determine if it includes the number 10.

$Numbers -contains 10

True

-NotContains reverses the logic to see if the $Numbers variable doesn’t contain a value.

$Numbers -notcontains 15

True

The previous example returns the Boolean true because it’s true that the $Numbers

variable doesn’t contain 15. It does however contain the number 10 so it’s false
when it’s tested.

$Numbers -notcontains 10

False

The -in comparison operator was first introduced in PowerShell version 3.0. It’s
used to determine if a value is in an array. The $Numbers variable is an array since it
contains multiple values.

Chapter 5 - Formatting, aliases, providers, comparison 93

15 -in $Numbers

False

In otherwords, -in performs the same test as the contains comparison operator except
from the opposite direction.

10 -in $Numbers

True

15 isn’t in the $Numbers array so false is returned in the following example.

15 -in $Numbers

False

Just like the -contains operator, not reverses the logic for the -in operator.

10 -notin $Numbers

False

The previous example returns false because the $Numbers array does include 10 and
the condition was testing to determine if it didn’t contain 10.

15 is “not in” the $Numbers array so it returns the Boolean true.

15 -notin $Numbers

Chapter 5 - Formatting, aliases, providers, comparison 94

True

The -replace operator does just want youwould think. It’s used to replace something.
Specifying one value replaces that value with nothing. In the following example, I
replace “Shell” with nothing.

'PowerShell' -replace 'Shell'

Power

If you want to replace a value with a different value, specify the new value after the
pattern you want to replace. SQL Saturday in Baton Rouge is an event that I try to
speak at every year. In the following example, I replace the word “Saturday” with
the abbreviation “Sat”.

'SQL Saturday - Baton Rouge' -Replace 'saturday','Sat'

SQL Sat - Baton Rouge

There are also methods likeReplace() that can be used to replace things similar to the
way the replace operator works. However, the -Replace operator is case-insensitive
by default, and the Replace() method is case-sensitive.

'SQL Saturday - Baton Rouge'.Replace('saturday','Sat')

SQL Saturday - Baton Rouge

Notice that the word “Saturday” wasn’t replaced in the previous example. This
is because it was specified in a different case than the original. When the word
“Saturday” is specified in the same case as the original, the Replace() method does
replace it as expected.

Chapter 5 - Formatting, aliases, providers, comparison 95

'SQL Saturday - Baton Rouge'.Replace('Saturday','Sat')

SQL Sat - Baton Rouge

Be careful when using methods to transform data because you can run into un-
foreseen problems, such as failing the Turkey Test. For an example, see the blog
article titled Using Pester to Test PowerShell Code with Other Cultures2. My
recommendation is to use an operator instead of a method whenever possible to
avoid these types of problems.

While the comparison operators can be used as shown in the previous examples, I
normally find myself using them with the Where-Object cmdlet to perform some type
of filtering.

Summary

In this chapter, you’ve learned a number of different topics to include Formatting
Right, Aliases, Providers, and Comparison Operators.

Review

1. Why is it necessary to perform Formatting as far to the right as possible?
2. How do you determine what the actual cmdlet is for the % alias?
3. Why shouldn’t you use aliases in scripts you save or code you sharewith others?
4. Perform a directory listing on the drives that are associated with one of the

registry providers.
5. What’s one of the main benefits of using the replace operator instead of the

replace method?

2https://mikefrobbins.com/2015/10/22/using-pester-to-test-powershell-code-with-other-cultures/

https://mikefrobbins.com/2015/10/22/using-pester-to-test-powershell-code-with-other-cultures/
https://mikefrobbins.com/2015/10/22/using-pester-to-test-powershell-code-with-other-cultures/

Chapter 5 - Formatting, aliases, providers, comparison 96

References

• format-table3

• format-list4

• format-wide5

• about_Aliases6

• about_Providers7

• about_Comparison_Operators8

• about_Arrays9

Next steps

In the next chapter, you’ll learn about flow control, scripting, loops, and conditional
logic.

3https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-table
4https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-list
5https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-wide
6https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_aliases
7https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_providers
8https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_comparison_operators
9https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_arrays

https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-table
https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-list
https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-wide
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_providers
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_arrays
https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-table
https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-list
https://learn.microsoft.com//powershell/module/microsoft.powershell.utility/format-wide
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_providers
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com//powershell/module/microsoft.powershell.core/about/about_arrays

Chapter 6 - Flow control
Scripting

When youmove fromwriting PowerShell one-liners to writing scripts, it sounds a lot
more complicated than it really is. A script is nothing more than the same or similar
commands that youwould run interactively in the PowerShell console, except they’re
saved as a .PS1 file. There are some scripting constructs that you may use such as a
foreach loop instead of the ForEach-Object cmdlet. To beginners, the differences can
be confusing especially when you consider that foreach is both a scripting construct
and an alias for the ForEach-Object cmdlet.

Looping

One of the great things about PowerShell is, once you figure out how to do something
for one item, it’s almost as easy to do the same task for hundreds of items. Simply
loop through the items using one of the many different types of loops in PowerShell.

ForEach-Object

ForEach-Object is a cmdlet for iterating through items in a pipeline such as with
PowerShell one-liners. ForEach-Object streams the objects through the pipeline.

Although the Module parameter of Get-Command accepts multiple values that are
strings, it only accepts them via pipeline input by property name or via parameter
input. In the following scenario, if I want to pipe two strings by value to Get-Command

for use with theModule parameter, I would need to use the ForEach-Object cmdlet.

Chapter 6 - Flow control 98

'ActiveDirectory', 'SQLServer' |

ForEach-Object {Get-Command -Module $_} |

Group-Object -Property ModuleName -NoElement |

Sort-Object -Property Count -Descending

Count Name

----- ----

147 ActiveDirectory

82 SqlServer

In the previous example, $_ is the current object. Beginning with PowerShell version
3.0, $PSItem can be used instead of $_. But I find that most experienced PowerShell
users still prefer using $_ since it’s backward compatible and less to type.

When using the foreach keyword, you must store all of the items in memory before
iterating through them, which could be difficult if you don’t know how many items
you’re working with.

$ComputerName = 'DC01', 'WEB01'

foreach ($Computer in $ComputerName) {

Get-ADComputer -Identity $Computer

}

DistinguishedName : CN=DC01,OU=Domain Controllers,DC=mikefrobbins,DC=com

DNSHostName : dc01.mikefrobbins.com

Enabled : True

Name : DC01

ObjectClass : computer

ObjectGUID : c38da20c-a484-469d-ba4c-bab3fb71ae8e

SamAccountName : DC01$

SID : S-1-5-21-2989741381-570885089-3319121794-1001

UserPrincipalName :

DistinguishedName : CN=WEB01,CN=Computers,DC=mikefrobbins,DC=com

DNSHostName : web01.mikefrobbins.com

Enabled : True

Name : WEB01

Chapter 6 - Flow control 99

ObjectClass : computer

ObjectGUID : 33aa530e-1e31-40d8-8c78-76a18b673c33

SamAccountName : WEB01$

SID : S-1-5-21-2989741381-570885089-3319121794-1107

UserPrincipalName :

Many times a loop such as foreach or ForEach-Object is necessary. Otherwise you’ll
receive an error message.

Get-ADComputer -Identity 'DC01', 'WEB01'

Get-ADComputer : Cannot convert 'System.Object[]' to the type

'Microsoft.ActiveDirectory.Management.ADComputer' required by parameter

'Identity'. Specified method is not supported.

At line:1 char:26

+ Get-ADComputer -Identity 'DC01', 'WEB01'

+ ~~~~~~~~~~~~~~~

+ CategoryInfo : InvalidArgument: (:) [Get-ADComputer], Parame

terBindingException

+ FullyQualifiedErrorId : CannotConvertArgument,Microsoft.ActiveDirecto

ry.Management.Commands.GetADComputer

Other times, you can get the same results while eliminating the loop altogether.
Consult the cmdlet help to understand your options.

'DC01', 'WEB01' | Get-ADComputer

Chapter 6 - Flow control 100

DistinguishedName : CN=DC01,OU=Domain Controllers,DC=mikefrobbins,DC=com

DNSHostName : dc01.mikefrobbins.com

Enabled : True

Name : DC01

ObjectClass : computer

ObjectGUID : c38da20c-a484-469d-ba4c-bab3fb71ae8e

SamAccountName : DC01$

SID : S-1-5-21-2989741381-570885089-3319121794-1001

UserPrincipalName :

DistinguishedName : CN=WEB01,CN=Computers,DC=mikefrobbins,DC=com

DNSHostName : web01.mikefrobbins.com

Enabled : True

Name : WEB01

ObjectClass : computer

ObjectGUID : 33aa530e-1e31-40d8-8c78-76a18b673c33

SamAccountName : WEB01$

SID : S-1-5-21-2989741381-570885089-3319121794-1107

UserPrincipalName :

As you can see in the previous examples, the Identity parameter for Get-ADComputer
only accepts a single value when provided via parameter input, but it allows for
multiple items when the input is provided via pipeline input.

For

A for loop iterates while a specified condition is true. The for loop is not something
that I use often, but it does have its uses.

for ($i = 1; $i -lt 5; $i++) {

Write-Output "Sleeping for $i seconds"

Start-Sleep -Seconds $i

}

Chapter 6 - Flow control 101

Sleeping for 1 seconds

Sleeping for 2 seconds

Sleeping for 3 seconds

Sleeping for 4 seconds

In the previous example, the loop will iterate four times by starting off with the
number one and continue as long as the counter variable $i is less than 5. It will
sleep for a total of 10 seconds.

Do

There are two different do loops in PowerShell. Do Until runs while the specified
condition is false.

$number = Get-Random -Minimum 1 -Maximum 10

do {

$guess = Read-Host -Prompt "What's your guess?"

if ($guess -lt $number) {

Write-Output 'Too low!'

} elseif ($guess -gt $number) {

Write-Output 'Too high!'

}

}

until ($guess -eq $number)

What's your guess?: 1

Too low!

What's your guess?: 2

Too low!

What's your guess?: 3

The previous example is a numbers game that continues until the value you guess
equals the same number that the Get-Random cmdlet generated.

Do While is just the opposite. It runs as long as the specified condition evaluates to
true.

Chapter 6 - Flow control 102

$number = Get-Random -Minimum 1 -Maximum 10

do {

$guess = Read-Host -Prompt "What's your guess?"

if ($guess -lt $number) {

Write-Output 'Too low!'

} elseif ($guess -gt $number) {

Write-Output 'Too high!'

}

}

while ($guess -ne $number)

What's your guess?: 1

Too low!

What's your guess?: 2

Too low!

What's your guess?: 3

Too low!

What's your guess?: 4

The same results are achieved with a Do While loop by reversing the test condition to
not equals.

Do loops always run at least once because the condition is evaluated at the end of the
loop.

While

Similar to the Do While loop, a While loop runs as long as the specified condition is
true. The difference however, is that a While loop evaluates the condition at the top
of the loop before any code is run. So it doesn’t run if the condition evaluates to
false.

Chapter 6 - Flow control 103

$date = Get-Date -Date 'November 22'

while ($date.DayOfWeek -ne 'Thursday') {

$date = $date.AddDays(1)

}

Write-Output $date

Thursday, November 23, 2017 12:00:00 AM

The previous example calculates what day Thanksgiving Day is on in the United
States. It’s always on the fourth Thursday of November. So the loop starts with
the 22nd day of November and adds a day while the day of the week isn’t equal to
Thursday. If the 22nd is a Thursday, the loop doesn’t run at all.

Break, Continue, and Return

Break is designed to break out of a loop. It’s also commonly used with the switch

statement.

for ($i = 1; $i -lt 5; $i++) {

Write-Output "Sleeping for $i seconds"

Start-Sleep -Seconds $i

break

}

Sleeping for 1 seconds

The break statement shown in the previous example causes the loop to exit on the
first iteration.

Continue is designed to skip to the next iteration of a loop.

Chapter 6 - Flow control 104

while ($i -lt 5) {

$i += 1

if ($i -eq 3) {

continue

}

Write-Output $i

}

1

2

4

5

The previous example will output the numbers 1, 2, 4, and 5. It skips number 3 and
continues with the next iteration of the loop. Similar to break, continue breaks out
of the loop except only for the current iteration. Execution continues with the next
iteration instead of breaking out of the loop and stopping.

Return is designed to exit out of the existing scope.

$number = 1..10

foreach ($n in $number) {

if ($n -ge 4) {

Return $n

}

}

4

Notice that in the previous example, return outputs the first result and then exits out
of the loop. A more thorough explanation of the result statement can be found in
one of my blog articles: “The PowerShell return keyword”1.

Summary

In this chapter, you’ve learned about the different types of loops that exist in
PowerShell.

1https://mikefrobbins.com/2015/07/23/the-powershell-return-keyword/

https://mikefrobbins.com/2015/07/23/the-powershell-return-keyword/
https://mikefrobbins.com/2015/07/23/the-powershell-return-keyword/

Chapter 6 - Flow control 105

Review

1. What is the difference in the ForEach-Object cmdlet and the foreach scripting
construct?

2. What is the primary advantage of using a While loop instead of a Do While or
Do Until loop.

3. How do the break and continue statements differ?

References

• ForEach-Object2

• about_ForEach3

• about_For4

• about_Do5

• about_While6

• about_Break7

• about_Continue8

• about_Return9

2https://learn.microsoft.com/powershell/module/microsoft.powershell.core/foreach-object
3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_foreach
4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_for
5https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_do
6https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_while
7https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_break
8https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_continue
9https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_return

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/foreach-object
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_foreach
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_for
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_do
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_while
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_break
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_continue
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_return
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/foreach-object
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_foreach
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_for
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_do
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_while
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_break
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_continue
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_return

Chapter 7 - Working with WMI
WMI and CIM

Windows PowerShell ships by default with cmdlets for working with other tech-
nologies such as Windows Management Instrumentation (WMI). The WMI cmdlets
are deprecated and are not available in PowerShell 6+, but are covered here as you
may encounter them in older scripts running on Windows PowerShell. For new
development, use the CIM cmdlets instead.

There are several native WMI cmdlets that exist in PowerShell without having to
install any additional software or modules. Get-Command can be used to determine
what WMI cmdlets exist in Windows PowerShell. The following results are from
my Windows 11 lab environment computer that is running PowerShell version 5.1.
Your results may differ depending on what PowerShell version you’re running.

Get-Command -Noun WMI*

CommandType Name Version

----------- ---- -------

Cmdlet Get-WmiObject 3.1.0.0

Cmdlet Invoke-WmiMethod 3.1.0.0

Cmdlet Register-WmiEvent 3.1.0.0

Cmdlet Remove-WmiObject 3.1.0.0

Cmdlet Set-WmiInstance 3.1.0.0

Common Information Model (CIM) cmdlets were introduced in PowerShell version
3.0. The CIM cmdlets are designed so they can be used on both Windows and non-
Windows machines.

The CIM cmdlets are all contained within a module. To obtain a list of the CIM
cmdlets, use Get-Command with the Module parameter as shown in the following
example.

Chapter 7 - Working with WMI 107

Get-Command -Module CimCmdlets

CommandType Name Version

----------- ---- -------

Cmdlet Export-BinaryMiLog 1.0.0.0

Cmdlet Get-CimAssociatedInstance 1.0.0.0

Cmdlet Get-CimClass 1.0.0.0

Cmdlet Get-CimInstance 1.0.0.0

Cmdlet Get-CimSession 1.0.0.0

Cmdlet Import-BinaryMiLog 1.0.0.0

Cmdlet Invoke-CimMethod 1.0.0.0

Cmdlet New-CimInstance 1.0.0.0

Cmdlet New-CimSession 1.0.0.0

Cmdlet New-CimSessionOption 1.0.0.0

Cmdlet Register-CimIndicationEvent 1.0.0.0

Cmdlet Remove-CimInstance 1.0.0.0

Cmdlet Remove-CimSession 1.0.0.0

Cmdlet Set-CimInstance 1.0.0.0

The CIM cmdlets still allow you to work with WMI so don’t be confused when
someone makes the statement “When I query WMI with the PowerShell CIM
cmdlets…”

As I previously mentioned, WMI is a separate technology from PowerShell and
you’re just using the CIM cmdlets for accessing WMI. You may find an old VBScript
that uses WMI Query Language (WQL) to query WMI such as in the following
example.

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

& "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colBIOS = objWMIService.ExecQuery _

("Select * from Win32_BIOS")

For each objBIOS in colBIOS

Wscript.Echo "Manufacturer: " & objBIOS.Manufacturer

Wscript.Echo "Name: " & objBIOS.Name

Chapter 7 - Working with WMI 108

Wscript.Echo "Serial Number: " & objBIOS.SerialNumber

Wscript.Echo "SMBIOS Version: " & objBIOS.SMBIOSBIOSVersion

Wscript.Echo "Version: " & objBIOS.Version

Next

You can take the WQL query from that VBScript and use it with the Get-CimInstance

cmdlet without any modifications.

Get-CimInstance -Query 'Select * from Win32_BIOS'

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

SerialNumber : 3810-1995-1654-4615-2295-2755-89

Version : VRTUAL - 4001628

That’s not how I typically query WMI with PowerShell. But it does work and allows
you to easily migrate existing VBScripts to PowerShell. When I start out writing a
one-liner to query WMI, I use the following syntax.

Get-CimInstance -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

SerialNumber : 3810-1995-1654-4615-2295-2755-89

Version : VRTUAL - 4001628

If I only want the serial number, I can pipe the output to Select-Object and specify
only the SerialNumber property.

Get-CimInstance -ClassName Win32_BIOS |

Select-Object -Property SerialNumber

Chapter 7 - Working with WMI 109

SerialNumber

3810-1995-1654-4615-2295-2755-89

By default, there are several properties that are retrieved behind the scenes that are
never used. It may not matter much when queryingWMI on the local computer. But
once you start querying remote computers, it’s not only additional processing time
to return that information, but also additional unnecessary information to have to
pull across the network. Get-CimInstance has a Property parameter that limits the
information that’s retrieved. This makes the query to WMI more efficient.

Get-CimInstance -ClassName Win32_BIOS -Property SerialNumber |

Select-Object -Property SerialNumber

SerialNumber

3810-1995-1654-4615-2295-2755-89

The previous results returned an object. To return a simple string, use the Expand-
Property parameter.

Get-CimInstance -ClassName Win32_BIOS -Property SerialNumber |

Select-Object -ExpandProperty SerialNumber

3810-1995-1654-4615-2295-2755-89

You could also use the dotted style of syntax to return a simple string. This eliminates
the need to pipe to Select-Object.

(Get-CimInstance -ClassName Win32_BIOS -Property SerialNumber).SerialNumber

3810-1995-1654-4615-2295-2755-89

Chapter 7 - Working with WMI 110

Query Remote Computers with the CIM
cmdlets

I’m still running PowerShell as a local admin who is a domain user. When I try
to query information from a remote computer using the Get-CimInstance cmdlet, I
receive an access denied error message.

Get-CimInstance -ComputerName dc01 -ClassName Win32_BIOS

Get-CimInstance : Access is denied.

At line:1 char:1

+ Get-CimInstance -ComputerName dc01 -ClassName Win32_BIOS

+ ~~

+ CategoryInfo : PermissionDenied: (root\cimv2:Win32_BIOS:Stri

ng) [Get-CimInstance], CimException

+ FullyQualifiedErrorId : HRESULT 0x80070005,Microsoft.Management.Infra

structure.CimCmdlets.GetCimInstanceCommand

+ PSComputerName : dc01

Many people have security concerns when it comes to PowerShell, but the truth
is you have exactly the same permissions in PowerShell as you do in the GUI. No
more and no less. The problem in the previous example is that the user running
PowerShell doesn’t have rights to query WMI information from the DC01 server. I
could relaunch PowerShell as a domain administrator since Get-CimInstance doesn’t
have a Credential parameter. But, trust me, that isn’t a good idea because then
anything that I run from PowerShell would be running as a domain admin. That
could be dangerous from a security standpoint depending on the situation.

Using the principle of least privilege, I elevate to my domain admin account on
a per command basis using the Credential parameter, if a command has one.
Get-CimInstance doesn’t have a Credential parameter so the solution in this scenario
is to create a CimSession first. Then I use the CimSession instead of a computer
name to query WMI on the remote computer.

Chapter 7 - Working with WMI 111

$CimSession = New-CimSession -ComputerName dc01 -Credential (Get-Credential)

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:

Credential

The CIM session was stored in a variable named $CimSession. Notice that I also
specified the Get-Credential cmdlet in parentheses so that it executes first, prompting
me for alternate credentials, before creating the new session. I’ll show you another
more efficient way to specify alternate credentials later in this chapter, but it’s
important to understand this basic concept before making it more complicated.

The CIM session created in the previous example can now be used with the
Get-CimInstance cmdlet to query the BIOS information from WMI on the remote
computer.

Get-CimInstance -CimSession $CimSession -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

SerialNumber : 0986-6980-3916-0512-6608-8243-13

Version : VRTUAL - 4001628

PSComputerName : dc01

There are several additional benefits to using CIM sessions instead of just specifying
a computer name. When runningmultiple queries to the same computer, using a CIM
session is more efficient than using the computer name for each query. Creating a
CIM session only sets up the connection once. Then, multiple queries use that same
session to retrieve information. Using the computer name requires the cmdlets to set
up and tear down the connection with each individual query.

The Get-CimInstance cmdlet uses the WSMan protocol by default, which means the
remote computer needs PowerShell version 3.0 or higher to connect. It’s actually not
the PowerShell version that matters, it’s the stack version. The stack version can be
determined using the Test-WSMan cmdlet. It needs to be version 3.0. That’s the version
you’ll find with PowerShell version 3.0 and higher.

Chapter 7 - Working with WMI 112

Test-WSMan -ComputerName dc01

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentit

y.xsd

ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

ProductVendor : Microsoft Corporation

ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

The older WMI cmdlets use the DCOM protocol, which is compatible with older
versions of Windows. But DCOM is typically blocked by the firewall on newer
versions ofWindows. The New-CimSessionOption cmdlet allows you to create a DCOM
protocol connection for use with New-CimSession. This allows the Get-CimInstance

cmdlet to be used to communicate with versions of Windows as old as Windows
Server 2000. This also means that PowerShell is not required on the remote computer
when using the Get-CimInstance cmdlet with a CimSession that’s configured to use
the DCOM protocol.

Create the DCOM protocol option using the New-CimSessionOption cmdlet and store
it in a variable.

$DCOM = New-CimSessionOption -Protocol Dcom

For efficiency, you can store your domain administrator or elevated credentials in a
variable so you don’t have to constantly enter them for each command.

$Cred = Get-Credential

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:

Credential

I have a server named SQL03 that runs Windows Server 2008 (non-R2). It’s the
newest Windows Server operating system that doesn’t have PowerShell installed by
default.

Create a CimSession to SQL03 using the DCOM protocol.

Chapter 7 - Working with WMI 113

$CimSession = New-CimSession -ComputerName sql03 -SessionOption $DCOM -Credenti\

al $Cred

Notice in the previous command, this time I specified the variable named $Cred as
the value for the Credential parameter instead of having to enter them manually
again.

The output of the query is the same regardless of the underlying protocol being used.

Get-CimInstance -CimSession $CimSession -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

SerialNumber : 7237-7483-8873-8926-7271-5004-86

Version : VRTUAL - 4001628

PSComputerName : sql03

The Get-CimSession cmdlet is used to see what CimSessions are currently connected
and what protocols they’re using.

Get-CimSession

Id : 1

Name : CimSession1

InstanceId : 80742787-e38e-41b1-a7d7-fa1369cf1402

ComputerName : dc01

Protocol : WSMAN

Id : 2

Name : CimSession2

InstanceId : 8fcabd81-43cf-4682-bd53-ccce1e24aecb

ComputerName : sql03

Protocol : DCOM

Retrieve and store both of the previously created CimSessions in a variable named
$CimSession.

Chapter 7 - Working with WMI 114

$CimSession = Get-CimSession

Query both of the computers with one command, one using the WSMan protocol
and the other one with DCOM.

Get-CimInstance -CimSession $CimSession -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

SerialNumber : 0986-6980-3916-0512-6608-8243-13

Version : VRTUAL - 4001628

PSComputerName : dc01

SMBIOSBIOSVersion : 090006

Manufacturer : American Megatrends Inc.

Name : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz

SerialNumber : 7237-7483-8873-8926-7271-5004-86

Version : VRTUAL - 4001628

PSComputerName : sql03

I’vewritten numerous blog articles about theWMI andCIM cmdlets. One of themost
useful ones is about a function that I created to automatically determine if WSMan
or DCOM should be used and set up the CIM session automatically without having
to figure out which one manually. That blog article is titled PowerShell Function to
Create CimSessions to Remote Computers with Fallback to Dcom1.

When you’re finished with the CIM sessions, you should remove them with the
Remove-CimSession cmdlet. To remove all CIM sessions, simply pipe Get-CimSession

to Remove-CimSession.

Get-CimSession | Remove-CimSession

1https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-
fallback-to-dcom/

https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/
https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/
https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/
https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/

Chapter 7 - Working with WMI 115

Summary

In this chapter, you’ve learned about using PowerShell to work with WMI on both
local and remote computers. You’ve also learned how to use the CIM cmdlets to
work with remote computers with both the WSMan or DCOM protocol.

Review

1. What is the difference in the WMI and CIM cmdlets?
2. By default, what protocol does the Get-CimInstance cmdlet use?
3. What are some of the benefits of using a CIM session instead of specifying a

computer name with Get-CimInstance?
4. How do you specify an alternate protocol other than the default one for use

with Get-CimInstance?
5. How do you close or remove CIM sessions?

References

• about_WMI2

• about_WMI_Cmdlets3

• about_WQL4

• CimCmdlets Module5

• Video: Using CIM Cmdlets and CIM Sessions6

2https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wmi
3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wmi_cmdlets
4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wql
5https://learn.microsoft.com/powershell/module/cimcmdlets/
6https://mikefrobbins.com/2013/09/12/phillyposh-user-group-meeting-presentation-follow-up-powershell-

second-hop-problem-with-cimsessions/

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wmi
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wmi_cmdlets
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wql
https://learn.microsoft.com/powershell/module/cimcmdlets/
https://mikefrobbins.com/2013/09/12/phillyposh-user-group-meeting-presentation-follow-up-powershell-second-hop-problem-with-cimsessions/
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wmi
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wmi_cmdlets
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_wql
https://learn.microsoft.com/powershell/module/cimcmdlets/
https://mikefrobbins.com/2013/09/12/phillyposh-user-group-meeting-presentation-follow-up-powershell-second-hop-problem-with-cimsessions/
https://mikefrobbins.com/2013/09/12/phillyposh-user-group-meeting-presentation-follow-up-powershell-second-hop-problem-with-cimsessions/

Chapter 8 - PowerShell
Remoting
PowerShell has many different ways to run commands against remote computers.
In the last chapter, you saw how to remotely query WMI using the CIM cmdlets.
PowerShell also includes several cmdlets that have a built-in ComputerName
parameter.

As shown in the following example, Get-Command can be used with the Parameter-
Name parameter to determine what commands have a ComputerName parameter.

Get-Command -ParameterName ComputerName

CommandType Name Version

----------- ---- -------

Cmdlet Add-Computer 3.1.0.0

Cmdlet Clear-EventLog 3.1.0.0

Cmdlet Connect-PSSession 3.0.0.0

Cmdlet Enter-PSSession 3.0.0.0

Cmdlet Get-CimAssociatedInstance 1.0.0.0

Cmdlet Get-CimClass 1.0.0.0

Cmdlet Get-CimInstance 1.0.0.0

Cmdlet Get-CimSession 1.0.0.0

Cmdlet Get-EventLog 3.1.0.0

Cmdlet Get-HotFix 3.1.0.0

Cmdlet Get-Process 3.1.0.0

Cmdlet Get-PSSession 3.0.0.0

Cmdlet Get-Service 3.1.0.0

Cmdlet Get-WmiObject 3.1.0.0

Cmdlet Invoke-CimMethod 1.0.0.0

Cmdlet Invoke-Command 3.0.0.0

Cmdlet Invoke-WmiMethod 3.1.0.0

Cmdlet Limit-EventLog 3.1.0.0

Chapter 8 - PowerShell Remoting 117

Cmdlet New-CimInstance 1.0.0.0

Cmdlet New-CimSession 1.0.0.0

Cmdlet New-EventLog 3.1.0.0

Cmdlet New-PSSession 3.0.0.0

Cmdlet Receive-Job 3.0.0.0

Cmdlet Receive-PSSession 3.0.0.0

Cmdlet Register-CimIndicationEvent 1.0.0.0

Cmdlet Register-WmiEvent 3.1.0.0

Cmdlet Remove-CimInstance 1.0.0.0

Cmdlet Remove-CimSession 1.0.0.0

Cmdlet Remove-Computer 3.1.0.0

Cmdlet Remove-EventLog 3.1.0.0

Cmdlet Remove-PSSession 3.0.0.0

Cmdlet Remove-WmiObject 3.1.0.0

Cmdlet Rename-Computer 3.1.0.0

Cmdlet Restart-Computer 3.1.0.0

Cmdlet Send-MailMessage 3.1.0.0

Cmdlet Set-CimInstance 1.0.0.0

Cmdlet Set-Service 3.1.0.0

Cmdlet Set-WmiInstance 3.1.0.0

Cmdlet Show-EventLog 3.1.0.0

Cmdlet Stop-Computer 3.1.0.0

Cmdlet Test-Connection 3.1.0.0

Cmdlet Write-EventLog 3.1.0.0

Commands such as Get-Process and Get-Hotfix have a ComputerName parameter.
This isn’t the long-term direction that Microsoft is heading for running commands
against remote computers. Even if you find a command that has a ComputerName
parameter, chances are that you’ll need to specify alternate credentials and it won’t
have aCredential parameter. And if you decided to run PowerShell from an elevated
account, a firewall between you and the remote computer can block the request.

To use the PowerShell remoting commands that are demonstrated in this chap-
ter, PowerShell remoting must be enabled on the remote computer. Use the
Enable-PSRemoting cmdlet to enable PowerShell remoting.

Enable-PSRemoting

Chapter 8 - PowerShell Remoting 118

WinRM has been updated to receive requests.

WinRM service type changed successfully.

WinRM service started.

WinRM has been updated for remote management.

WinRM firewall exception enabled.

One-To-One Remoting

If you want your remote session to be interactive, then one-to-one remoting is what
you want. This type of remoting is provided via the Enter-PSSession cmdlet.

In the last chapter, I stored my domain admin credentials in a variable named $Cred.
If you haven’t already done so, go ahead and store your domain admin credentials
in the $Cred variable.

This allows you to enter the credentials once and use them on a per command basis
as long as your current PowerShell session is active.

$Cred = Get-Credential

Create a one-to-one PowerShell remoting session to the domain controller named
dc01.

Enter-PSSession -ComputerName dc01 -Credential $Cred

[dc01]: PS C:\Users\Administrator\Documents>

Notice that in the previous example that the PowerShell prompt is preceded by [dc01].
This means you’re in an interactive PowerShell session to the remote computer
named dc01. Any commands you execute run on dc01, not on your local computer.
Also, keep in mind that you only have access to the PowerShell commands that exist
on the remote computer and not the ones on your local computer. In other words, if
you’ve installed additional modules on your computer, they aren’t accessible on the
remote computer.

Chapter 8 - PowerShell Remoting 119

When you’re connected to a remote computer via a one-to-one interactive Power-
Shell remoting session, you’re effectively sitting at the remote computer. The objects
are normal objects just like the ones you’ve been working with throughout this entire
book.

[dc01]: Get-Process | Get-Member

TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

Handles AliasProperty Handles = Handlecount

Name AliasProperty Name = ProcessName

NPM AliasProperty NPM = NonpagedSystemMemorySize64

PM AliasProperty PM = PagedMemorySize64

SI AliasProperty SI = SessionId

VM AliasProperty VM = VirtualMemorySize64

WS AliasProperty WS = WorkingSet64

Disposed Event System.EventHandler Disposed(Sy...

ErrorDataReceived Event System.Diagnostics.DataReceived...

Exited Event System.EventHandler Exited(Syst...

OutputDataReceived Event System.Diagnostics.DataReceived...

BeginErrorReadLine Method void BeginErrorReadLine()

BeginOutputReadLine Method void BeginOutputReadLine()

CancelErrorRead Method void CancelErrorRead()

CancelOutputRead Method void CancelOutputRead()

Close Method void Close()

CloseMainWindow Method bool CloseMainWindow()

CreateObjRef Method System.Runtime.Remoting.ObjRef ...

Dispose Method void Dispose(), void IDisposabl...

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetType Method type GetType()

InitializeLifetimeService Method System.Object InitializeLifetim...

Kill Method void Kill()

Refresh Method void Refresh()

Start Method bool Start()

Chapter 8 - PowerShell Remoting 120

ToString Method string ToString()

WaitForExit Method bool WaitForExit(int millisecon...

WaitForInputIdle Method bool WaitForInputIdle(int milli...

__NounName NoteProperty string __NounName=Process

BasePriority Property int BasePriority {get;}

Container Property System.ComponentModel.IContaine...

EnableRaisingEvents Property bool EnableRaisingEvents {get;s...

ExitCode Property int ExitCode {get;}

ExitTime Property datetime ExitTime {get;}

Handle Property System.IntPtr Handle {get;}

HandleCount Property int HandleCount {get;}

HasExited Property bool HasExited {get;}

Id Property int Id {get;}

MachineName Property string MachineName {get;}

MainModule Property System.Diagnostics.ProcessModul...

MainWindowHandle Property System.IntPtr MainWindowHandle ...

MainWindowTitle Property string MainWindowTitle {get;}

MaxWorkingSet Property System.IntPtr MaxWorkingSet {ge...

MinWorkingSet Property System.IntPtr MinWorkingSet {ge...

Modules Property System.Diagnostics.ProcessModul...

NonpagedSystemMemorySize Property int NonpagedSystemMemorySize {g...

NonpagedSystemMemorySize64 Property long NonpagedSystemMemorySize64...

PagedMemorySize Property int PagedMemorySize {get;}

PagedMemorySize64 Property long PagedMemorySize64 {get;}

PagedSystemMemorySize Property int PagedSystemMemorySize {get;}

PagedSystemMemorySize64 Property long PagedSystemMemorySize64 {g...

PeakPagedMemorySize Property int PeakPagedMemorySize {get;}

PeakPagedMemorySize64 Property long PeakPagedMemorySize64 {get;}

PeakVirtualMemorySize Property int PeakVirtualMemorySize {get;}

PeakVirtualMemorySize64 Property long PeakVirtualMemorySize64 {g...

PeakWorkingSet Property int PeakWorkingSet {get;}

PeakWorkingSet64 Property long PeakWorkingSet64 {get;}

PriorityBoostEnabled Property bool PriorityBoostEnabled {get;...

PriorityClass Property System.Diagnostics.ProcessPrior...

PrivateMemorySize Property int PrivateMemorySize {get;}

PrivateMemorySize64 Property long PrivateMemorySize64 {get;}

PrivilegedProcessorTime Property timespan PrivilegedProcessorTim...

ProcessName Property string ProcessName {get;}

ProcessorAffinity Property System.IntPtr ProcessorAffinity...

Responding Property bool Responding {get;}

Chapter 8 - PowerShell Remoting 121

SafeHandle Property Microsoft.Win32.SafeHandles.Saf...

SessionId Property int SessionId {get;}

Site Property System.ComponentModel.ISite Sit...

StandardError Property System.IO.StreamReader Standard...

StandardInput Property System.IO.StreamWriter Standard...

StandardOutput Property System.IO.StreamReader Standard...

StartInfo Property System.Diagnostics.ProcessStart...

StartTime Property datetime StartTime {get;}

SynchronizingObject Property System.ComponentModel.ISynchron...

Threads Property System.Diagnostics.ProcessThrea...

TotalProcessorTime Property timespan TotalProcessorTime {get;}

UserProcessorTime Property timespan UserProcessorTime {get;}

VirtualMemorySize Property int VirtualMemorySize {get;}

VirtualMemorySize64 Property long VirtualMemorySize64 {get;}

WorkingSet Property int WorkingSet {get;}

WorkingSet64 Property long WorkingSet64 {get;}

PSConfiguration PropertySet PSConfiguration {Name, Id, Prio...

PSResources PropertySet PSResources {Name, Id, Handleco...

Company ScriptProperty System.Object Company {get=$thi...

CPU ScriptProperty System.Object CPU {get=$this.To...

Description ScriptProperty System.Object Description {get=...

FileVersion ScriptProperty System.Object FileVersion {get=...

Path ScriptProperty System.Object Path {get=$this.M...

Product ScriptProperty System.Object Product {get=$thi...

ProductVersion ScriptProperty System.Object ProductVersion {g...

When you’re done working with the remote computer, exit the one-to-one remoting
session by using the Exit-PSSession cmdlet.

[dc01]: Exit-PSSession

One-To-Many Remoting

Sometimes you may need to perform a task interactively on a remote computer.
But remoting is much more powerful when performing a task on multiple remote
computers at the same time. Use the Invoke-Command cmdlet to run a command against
one or more remote computers at the same time.

Chapter 8 - PowerShell Remoting 122

Invoke-Command -ComputerName dc01, sql02, web01 {

Get-Service -Name W32time

} -Credential $Cred

Status Name DisplayName PSComputerName

------ ---- ----------- --------------

Running W32time Windows Time web01

Start... W32time Windows Time dc01

Running W32time Windows Time sql02

In the previous example, three servers were queried for the status of the Win-
dows Time service. The Get-Service cmdlet was placed inside the script block of
Invoke-Command. Get-Service actually runs on the remote computer and the results are
returned to your local computer as deserialized objects.

Piping the previous command to Get-Member shows that the results are indeed
deserialized objects.

Invoke-Command -ComputerName dc01, sql02, web01 {

Get-Service -Name W32time

} -Credential $Cred | Get-Member

TypeName: Deserialized.System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

GetType Method type GetType()

ToString Method string ToString(), string ToString(strin...

Name NoteProperty string Name=W32time

PSComputerName NoteProperty string PSComputerName=dc01

PSShowComputerName NoteProperty bool PSShowComputerName=True

RequiredServices NoteProperty Deserialized.System.ServiceProcess.Servi...

RunspaceId NoteProperty guid RunspaceId=5ed06925-8037-43ef-9072-...

CanPauseAndContinue Property System.Boolean {get;set;}

CanShutdown Property System.Boolean {get;set;}

CanStop Property System.Boolean {get;set;}

Container Property {get;set;}

Chapter 8 - PowerShell Remoting 123

DependentServices Property Deserialized.System.ServiceProcess.Servi...

DisplayName Property System.String {get;set;}

MachineName Property System.String {get;set;}

ServiceHandle Property System.String {get;set;}

ServiceName Property System.String {get;set;}

ServicesDependedOn Property Deserialized.System.ServiceProcess.Servi...

ServiceType Property System.String {get;set;}

Site Property {get;set;}

StartType Property System.String {get;set;}

Status Property System.String {get;set;}

Notice that the majority of the methods are missing on deserialized objects. This
means they’re not live objects; they’re inert. You can’t start or stop a service using a
deserialized object because it’s a snapshot of the state of that object the point when
the command ran on the remote computer.

That doesn’tmean you can’t start or stop a service using amethodwith Invoke-Command

though. It just means that the method has to be called in the remote session.

I’ll stop the Windows Time service on all three of those remote servers using the
Stop() method to prove this point.

Invoke-Command -ComputerName dc01, sql02, web01 {

(Get-Service -Name W32time).Stop()

} -Credential $Cred

Invoke-Command -ComputerName dc01, sql02, web01 {

Get-Service -Name W32time

} -Credential $Cred

Status Name DisplayName PSComputerName

------ ---- ----------- --------------

Stopped W32time Windows Time web01

Stopped W32time Windows Time dc01

Stopped W32time Windows Time sql02

As mentioned in a previous chapter, if a cmdlet exists for accomplishing a task,
I recommend using it instead of using a method. In the previous scenario, I

Chapter 8 - PowerShell Remoting 124

recommend using the Stop-Service cmdlet instead of the stop method. I chose to use
the Stop() method to prove a point since many people are under the misconception
that methods can’t be called when using PowerShell remoting. They can’t be called
on the object that’s returned because it’s deserialized, but they can be called in the
remote session itself.

PowerShell Sessions

In the last example in the previous section, I ran two commands using the Invoke-Command
cmdlet. That means two separate sessions had to be set up and torn down to run those
two commands.

Similar to the CIM sessions discussed in Chapter 7, a PowerShell session to a remote
computer can be used to run multiple commands against the remote computer
without the overhead of a new session for each individual command.

Create a PowerShell session to each of the three computers we’ve been working with
in this chapter, DC01, SQL02, and WEB01.

$Session = New-PSSession -ComputerName dc01, sql02, web01 -Credential $Cred

Now use the variable named $Session to start the Windows Time service using a
method and check the status of the service.

Invoke-Command -Session $Session {(Get-Service -Name W32time).Start()}

Invoke-Command -Session $Session {Get-Service -Name W32time}

Status Name DisplayName PSComputerName

------ ---- ----------- --------------

Running W32time Windows Time web01

Start... W32time Windows Time dc01

Running W32time Windows Time sql02

Once the session is created using alternate credentials, it’s no longer necessary to
specify the credentials each time a command is run.

When you’re finished using the sessions, be sure to remove them.

Chapter 8 - PowerShell Remoting 125

Get-PSSession | Remove-PSSession

Summary

In this chapter you’ve learned about PowerShell remoting, how to run commands in
an interactive session with one remote computer, and how to run commands against
multiple computers using one-to-many remoting. You’ve also learned the benefits
of using a PowerShell session when running multiple commands against the same
remote computer.

Review

1. How do you enable PowerShell remoting?
2. What is the PowerShell command for starting an interactive session with a

remote computer?
3. What is a benefit of using a PowerShell remoting session versus just specifying

the computer name with each command?
4. Can a PowerShell remoting session be usedwith a one-to-one remoting session?
5. What is the difference in the type of objects that are returned by cmdlets versus

those returned when running those same cmdlets against remote computers
with Invoke-Command?

References

• about_Remote1

• about_Remote_Output2

• about_Remote_Requirements3

• about_Remote_Troubleshooting4

• about_Remote_Variables5

• PowerShell Remoting FAQ6

1https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote
2https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_output
3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_requirements
4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_troubleshooting
5https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_variables
6https://learn.microsoft.com/powershell/scripting/learn/remoting/powershell-remoting-faq

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_output
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_troubleshooting
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_variables
https://learn.microsoft.com/powershell/scripting/learn/remoting/powershell-remoting-faq
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_output
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_troubleshooting
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_remote_variables
https://learn.microsoft.com/powershell/scripting/learn/remoting/powershell-remoting-faq

Chapter 9 - Functions
If you’re writing PowerShell one-liners or scripts and find yourself often having to
modify them for different scenarios, there’s a good chance that it’s a good candidate
to be turned into a function that can be reused.

Whenever possible, I prefer to write functions because they are more tool oriented.
I can put the functions in a script module, put that module in the $env:PSModulePath,
and call the functions without needing to physically locate where they’re saved.
Using the PowerShellGet module, it’s easy to share those modules in a NuGet
repository. PowerShellGet ships with PowerShell version 5.0 and higher. It is
available as a separate download for PowerShell version 3.0 and higher.

Don’t over complicate things. Keep it simple and use the most straight forward way
to accomplish a task. Avoid aliases and positional parameters in any code that you
reuse. Format your code for readability. Don’t hardcode values; use parameters
and variables. Don’t write unnecessary code even if it doesn’t hurt anything. It
adds unnecessary complexity. Attention to detail goes a long way when writing any
PowerShell code.

Naming

When naming your functions in PowerShell, use a Pascal case1 name with an
approved verb and a singular noun. I also recommend prefixing the noun. For
example: <ApprovedVerb>-<Prefix><SingularNoun>.

In PowerShell, there’s a specific list of approved verbs that can be obtained by
running Get-Verb.

Get-Verb | Sort-Object -Property Verb

1https://learn.microsoft.com/dotnet/standard/design-guidelines/capitalization-conventions

https://learn.microsoft.com/dotnet/standard/design-guidelines/capitalization-conventions
https://learn.microsoft.com/dotnet/standard/design-guidelines/capitalization-conventions

Chapter 9 - Functions 127

Verb Group

---- -----

Add Common

Approve Lifecycle

Assert Lifecycle

Backup Data

Block Security

Checkpoint Data

Clear Common

Close Common

Compare Data

Complete Lifecycle

Compress Data

Confirm Lifecycle

Connect Communications

Convert Data

ConvertFrom Data

ConvertTo Data

Copy Common

Debug Diagnostic

Deny Lifecycle

Disable Lifecycle

Disconnect Communications

Dismount Data

Edit Data

Enable Lifecycle

Enter Common

Exit Common

Expand Data

Export Data

Find Common

Format Common

Get Common

Grant Security

Group Data

Hide Common

Import Data

Initialize Data

Install Lifecycle

Invoke Lifecycle

Chapter 9 - Functions 128

Join Common

Limit Data

Lock Common

Measure Diagnostic

Merge Data

Mount Data

Move Common

New Common

Open Common

Optimize Common

Out Data

Ping Diagnostic

Pop Common

Protect Security

Publish Data

Push Common

Read Communications

Receive Communications

Redo Common

Register Lifecycle

Remove Common

Rename Common

Repair Diagnostic

Request Lifecycle

Reset Common

Resize Common

Resolve Diagnostic

Restart Lifecycle

Restore Data

Resume Lifecycle

Revoke Security

Save Data

Search Common

Select Common

Send Communications

Set Common

Show Common

Skip Common

Split Common

Start Lifecycle

Chapter 9 - Functions 129

Step Common

Stop Lifecycle

Submit Lifecycle

Suspend Lifecycle

Switch Common

Sync Data

Test Diagnostic

Trace Diagnostic

Unblock Security

Undo Common

Uninstall Lifecycle

Unlock Common

Unprotect Security

Unpublish Data

Unregister Lifecycle

Update Data

Use Other

Wait Lifecycle

Watch Common

Write Communications

In the previous example, I’ve sorted the results by the Verb column. The Group
column gives you an idea of how these verbs are used. It’s important to choose an
approved verb in PowerShell when functions are added to a module. The module
generates a warning message at load time if you choose an unapproved verb. That
warning message makes your functions look unprofessional. Unapproved verbs also
limit the discoverability of your functions.

A simple function

A function in PowerShell is declared with the function keyword followed by the
function name and then an open and closing curly brace. The code that the function
will execute is contained within those curly braces.

Chapter 9 - Functions 130

function Get-Version {

$PSVersionTable.PSVersion

}

The function shown is a simple example that returns the version of PowerShell.

Get-Version

Major Minor Build Revision

----- ----- ----- --------

5 1 14393 693

There’s a good chance of name conflict with functions named something like
Get-Version and default commands in PowerShell or commands that others may
write. This is why I recommend prefixing the noun portion of your functions to
help prevent naming conflicts. In the following example, I’ll use the prefix “PS”.

function Get-PSVersion {

$PSVersionTable.PSVersion

}

Other than the name, this function is identical to the previous one.

Get-PSVersion

Major Minor Build Revision

----- ----- ----- --------

5 1 14393 693

Even when prefixing the noun with something like PS, there’s still a good chance
of having a name conflict. I typically prefix my function nouns with my initials.
Develop a standard and stick to it.

Chapter 9 - Functions 131

function Get-MrPSVersion {

$PSVersionTable.PSVersion

}

This function is no different than the previous two other than using a more sensible
name to try to prevent naming conflicts with other PowerShell commands.

Get-MrPSVersion

Major Minor Build Revision

----- ----- ----- --------

5 1 14393 693

Once loaded into memory, you can see functions on the Function PSDrive.

Get-ChildItem -Path Function:\Get-*Version

CommandType Name Version

----------- ---- -------

Function Get-Version

Function Get-PSVersion

Function Get-MrPSVersion

If you want to remove these functions from your current session, you’ll have to
remove them from the Function PSDrive or close and reopen PowerShell.

Get-ChildItem -Path Function:\Get-*Version | Remove-Item

Verify that the functions were indeed removed.

Get-ChildItem -Path Function:\Get-*Version

If the functions were loaded as part of a module, the module can be unloaded to
remove them.

Chapter 9 - Functions 132

Remove-Module -Name <ModuleName>

The Remove-Module cmdlet removesmodules frommemory in your current PowerShell
session, it doesn’t remove them from your system or from disk.

Parameters

Don’t statically assign values! Use parameters and variables. When it comes
to naming your parameters, use the same name as the default cmdlets for your
parameter names whenever possible.

function Test-MrParameter {

param (

$ComputerName

)

Write-Output $ComputerName

}

Why did I use ComputerName and not Computer, ServerName, or Host for my
parameter name? It’s because I wanted my function standardized like the default
cmdlets.

I’ll create a function to query all of the commands on a system and return the number
of them that have specific parameter names.

Chapter 9 - Functions 133

function Get-MrParameterCount {

param (

[string[]]$ParameterName

)

foreach ($Parameter in $ParameterName) {

$Results = Get-Command -ParameterName $Parameter -ErrorAction SilentlyC\

ontinue

[pscustomobject]@{

ParameterName = $Parameter

NumberOfCmdlets = $Results.Count

}

}

}

As you can see in the results shown below, 39 commands that have a Computer-
Name parameter. There aren’t any cmdlets that have parameters such asComputer,
ServerName, Host, orMachine.

Get-MrParameterCount -ParameterName ComputerName, Computer, ServerName,

Host, Machine

ParameterName NumberOfCmdlets

------------- ---------------

ComputerName 39

Computer 0

ServerName 0

Host 0

Machine 0

I also recommend using the same case for your parameter names as the default
cmdlets. Use ComputerName, not computername. This makes your functions look and
feel like the default cmdlets. People who are already familiar with PowerShell will
feel right at home.

Chapter 9 - Functions 134

The param statement allows you to define one or more parameters. The parameter
definitions are separated by a comma (,). For more information, see about_Func-
tions_Advanced_Parameters2.

Advanced Functions

Turning a function in PowerShell into an advanced function is really simple. One
of the differences between a function and an advanced function is that advanced
functions have a number of common parameters that are added to the function
automatically. These common parameters include parameters such as Verbose and
Debug.

I’ll start out with the Test-MrParameter function that was used in the previous section.

function Test-MrParameter {

param (

$ComputerName

)

Write-Output $ComputerName

}

What I want you to notice is that the Test-MrParameter function doesn’t have any
common parameters. There are a couple of different ways to see the common
parameters. One is by viewing the syntax using Get-Command.

Get-Command -Name Test-MrParameter -Syntax

Test-MrParameter [[-ComputerName] <Object>]

Another is to drill down into the parameters with Get-Command.
2https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_

parameters

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters

Chapter 9 - Functions 135

(Get-Command -Name Test-MrParameter).Parameters.Keys

ComputerName

Add CmdletBinding to turn the function into an advanced function.

function Test-MrCmdletBinding {

[CmdletBinding()] # Turns a regular function into an advanced function

param (

$ComputerName

)

Write-Output $ComputerName

}

Adding CmdletBinding adds the common parameters automatically. CmdletBinding

requires a param block, but the param block can be empty.

Get-Command -Name Test-MrCmdletBinding -Syntax

Test-MrCmdletBinding [[-ComputerName] <Object>] [<CommonParameters>]

Drilling down into the parameters with Get-Command shows the actual parameter
names including the common ones.

(Get-Command -Name Test-MrCmdletBinding).Parameters.Keys

Chapter 9 - Functions 136

ComputerName

Verbose

Debug

ErrorAction

WarningAction

InformationAction

ErrorVariable

WarningVariable

InformationVariable

OutVariable

OutBuffer

PipelineVariable

SupportsShouldProcess

SupportsShouldProcess addsWhatIf andConfirm parameters. These are only needed
for commands that make changes.

function Test-MrSupportsShouldProcess {

[CmdletBinding(SupportsShouldProcess)]

param (

$ComputerName

)

Write-Output $ComputerName

}

Notice that there are nowWhatIf and Confirm parameters.

Get-Command -Name Test-MrSupportsShouldProcess -Syntax

Chapter 9 - Functions 137

Test-MrSupportsShouldProcess [[-ComputerName] <Object>] [-WhatIf] [-Confirm]

[<CommonParameters>]

Once again, you can also use Get-Command to return a list of the actual parameter
names including the common ones along with WhatIf and Confirm.

(Get-Command -Name Test-MrSupportsShouldProcess).Parameters.Keys

ComputerName

Verbose

Debug

ErrorAction

WarningAction

InformationAction

ErrorVariable

WarningVariable

InformationVariable

OutVariable

OutBuffer

PipelineVariable

WhatIf

Confirm

Parameter Validation

Validate input early on. Why allow your code to continue on a path when it’s not
possible to run without valid input?

Always type the variables that are being used for your parameters (specify a
datatype).

Chapter 9 - Functions 138

function Test-MrParameterValidation {

[CmdletBinding()]

param (

[string]$ComputerName

)

Write-Output $ComputerName

}

In the previous example, I’ve specified String as the datatype for theComputerName
parameter. This causes it to allow only a single computer name to be specified. If
more than one computer name is specified via a comma-separated list, an error is
generated.

Test-MrParameterValidation -ComputerName Server01, Server02

Test-MrParameterValidation : Cannot process argument transformation on

parameter 'ComputerName'. Cannot convert value to type System.String.

At line:1 char:42

+ Test-MrParameterValidation -ComputerName Server01, Server02

+ ~~~~~~~~~~~~~~~~~~

+ CategoryInfo : InvalidData: (:) [Test-MrParameterValidation]

, ParameterBindingArgumentTransformationException

+ FullyQualifiedErrorId : ParameterArgumentTransformationError,Test-MrP

arameterValidation

The problem with the current definition is that it’s valid to omit the value of the
ComputerName parameter, but a value is required for the function to complete
successfully. This is where the Mandatory parameter attribute comes in handy.

Chapter 9 - Functions 139

function Test-MrParameterValidation {

[CmdletBinding()]

param (

[Parameter(Mandatory)]

[string]$ComputerName

)

Write-Output $ComputerName

}

The syntax used in the previous example is PowerShell version 3.0 and higher com-
patible. [Parameter(Mandatory=$true)] could be specified instead to make the function
compatible with PowerShell version 2.0 and higher. Now that the ComputerName
is required, if one isn’t specified, the function will prompt for one.

Test-MrParameterValidation

cmdlet Test-MrParameterValidation at command pipeline position 1

Supply values for the following parameters:

ComputerName:

If you want to allow for more than one value for the ComputerName parameter,
use the String datatype but add open and closed square brackets to the datatype to
allow for an array of strings.

function Test-MrParameterValidation {

[CmdletBinding()]

param (

[Parameter(Mandatory)]

[string[]]$ComputerName

)

Write-Output $ComputerName

}

Chapter 9 - Functions 140

Maybe you want to specify a default value for the ComputerName parameter if one
isn’t specified. The problem is that default values can’t be used with mandatory pa-
rameters. Instead, you’ll need to use the ValidateNotNullOrEmpty parameter validation
attribute with a default value.

function Test-MrParameterValidation {

[CmdletBinding()]

param (

[ValidateNotNullOrEmpty()]

[string[]]$ComputerName = $env:COMPUTERNAME

)

Write-Output $ComputerName

}

Even when setting a default value, try not to use static values. In the previous
example, $env:COMPUTERNAME is used as the default value, which is automatically
translated into the local computer name if a value is not provided.

Verbose Output

While inline comments are useful, especially if you’re writing some complex code,
they never get seen by users unless they look into the code itself.

The function shown in the following example has an inline comment in the foreach

loop. While this particular comment may not be that difficult to locate, imagine if
the function included hundreds of lines of code.

Chapter 9 - Functions 141

function Test-MrVerboseOutput {

[CmdletBinding()]

param (

[ValidateNotNullOrEmpty()]

[string[]]$ComputerName = $env:COMPUTERNAME

)

foreach ($Computer in $ComputerName) {

#Attempting to perform an action on $Computer <<-- Don't use

#inline comments like this, use write verbose instead.

Write-Output $Computer

}

}

A better option is to use Write-Verbose instead of inline comments.

function Test-MrVerboseOutput {

[CmdletBinding()]

param (

[ValidateNotNullOrEmpty()]

[string[]]$ComputerName = $env:COMPUTERNAME

)

foreach ($Computer in $ComputerName) {

Write-Verbose -Message "Attempting to perform an action on $Computer"

Write-Output $Computer

}

}

When the function is calledwithout theVerbose parameter, the verbose output won’t
be displayed.

Test-MrVerboseOutput -ComputerName Server01, Server02

When it’s called with the Verbose parameter, the verbose output will be displayed.

Chapter 9 - Functions 142

Test-MrVerboseOutput -ComputerName Server01, Server02 -Verbose

Pipeline Input

When you want your function to accept pipeline input, some additional coding is
necessary. As mentioned earlier in this book, commands can accept pipeline input
by value (by type) or by property name. You can write your functions just like the
native commands so that they accept either one or both of these types of input.

To accept pipeline input by value, specified the ValueFromPipeline parameter at-
tribute for that particular parameter. Keep in mind that you can only accept pipeline
input by value from one of each datatype. For example, if you have two parameters
that accept string input, only one of those can accept pipeline input by value because
if you specified it for both of the string parameters, the pipeline input wouldn’t know
which one to bind to. This is another reason I call this type of pipeline input by type
instead of by value.

Pipeline input comes in one item at a time similar to the way items are handled in a
foreach loop. At aminimum, a process block is required to process each of these items
if you’re accepting an array as input. If you’re only accepting a single value as input,
a process block isn’t necessary, but I still recommend specifying it for consistency.

function Test-MrPipelineInput {

[CmdletBinding()]

param (

[Parameter(Mandatory,

ValueFromPipeline)]

[string[]]$ComputerName

)

PROCESS {

Write-Output $ComputerName

}

}

Chapter 9 - Functions 143

Accepting pipeline input by property name is similar except it’s specified with the
ValueFromPipelineByPropertyName parameter attribute and it can be specified for any
number of parameters regardless of datatype. The key is that the output of the
command that’s being piped in has to have a property name that matches the name
of the parameter or a parameter alias of your function.

function Test-MrPipelineInput {

[CmdletBinding()]

param (

[Parameter(Mandatory,

ValueFromPipelineByPropertyName)]

[string[]]$ComputerName

)

PROCESS {

Write-Output $ComputerName

}

}

BEGIN and END blocks are optional. BEGIN would be specified before the PROCESS block
and is used to perform any initial work prior to the items being received from the
pipeline. This is important to understand. Values that are piped in are not accessible
in the BEGIN block. The END block would be specified after the PROCESS block and is
used for cleanup once all of the items that are piped in have been processed.

Error Handling

The function shown in the following example generates an unhandled exception
when a computer can’t be contacted.

Chapter 9 - Functions 144

function Test-MrErrorHandling {

[CmdletBinding()]

param (

[Parameter(Mandatory,

ValueFromPipeline,

ValueFromPipelineByPropertyName)]

[string[]]$ComputerName

)

PROCESS {

foreach ($Computer in $ComputerName) {

Test-WSMan -ComputerName $Computer

}

}

}

There are a couple of different ways to handle errors in PowerShell. Try/Catch is the
more modern way to handle errors.

function Test-MrErrorHandling {

[CmdletBinding()]

param (

[Parameter(Mandatory,

ValueFromPipeline,

ValueFromPipelineByPropertyName)]

[string[]]$ComputerName

)

PROCESS {

foreach ($Computer in $ComputerName) {

try {

Test-WSMan -ComputerName $Computer

}

catch {

Write-Warning -Message "Unable to connect to Computer: $Compute\

r"

Chapter 9 - Functions 145

}

}

}

}

Although the function shown in the previous example uses error handling, it
also generates an unhandled exception because the command doesn’t generate a
terminating error. This is also important to understand. Only terminating errors
are caught. Specify the ErrorAction parameter with Stop as the value to turn a
non-terminating error into a terminating one.

function Test-MrErrorHandling {

[CmdletBinding()]

param (

[Parameter(Mandatory,

ValueFromPipeline,

ValueFromPipelineByPropertyName)]

[string[]]$ComputerName

)

PROCESS {

foreach ($Computer in $ComputerName) {

try {

Test-WSMan -ComputerName $Computer -ErrorAction Stop

}

catch {

Write-Warning -Message "Unable to connect to Computer: $Compute\

r"

}

}

}

}

Don’t modify the global $ErrorActionPreference variable unless absolutely necessary.
If you’re using something like .NET directly from within your PowerShell function,

Chapter 9 - Functions 146

you can’t specify the ErrorAction on the command itself. In that scenario, youmight
need to change the global $ErrorActionPreference variable, but if you do change it,
change it back immediately after trying the command.

Comment-Based Help

It’s considered to be a best practice to add comment based help to your functions so
the people you’re sharing them with will know how to use them.

function Get-MrAutoStoppedService {

<#

.SYNOPSIS

Returns a list of services that are set to start automatically, are not

currently running, excluding the services that are set to delayed start.

.DESCRIPTION

Get-MrAutoStoppedService is a function that returns a list of services

from the specified remote computer(s) that are set to start

automatically, are not currently running, and it excludes the services

that are set to start automatically with a delayed startup.

.PARAMETER ComputerName

The remote computer(s) to check the status of the services on.

.PARAMETER Credential

Specifies a user account that has permission to perform this action. The

default is the current user.

.EXAMPLE

Get-MrAutoStoppedService -ComputerName 'Server1', 'Server2'

.EXAMPLE

'Server1', 'Server2' | Get-MrAutoStoppedService

.EXAMPLE

Get-MrAutoStoppedService -ComputerName 'Server1' -Credential (Get-Credenti\

al)

Chapter 9 - Functions 147

.INPUTS

String

.OUTPUTS

PSCustomObject

.NOTES

Author: Mike F. Robbins

Website: https://mikefrobbins.com

Twitter: @mikefrobbins

#>

[CmdletBinding()]

param (

)

#Function Body

}

When you add comment based help to your functions, help can be retrieved for them
just like the default built-in commands.

All of the syntax for writing a function in PowerShell can seem overwhelming
especially for someone who is just getting started. Often times if I can’t remember
the syntax for something, I’ll open a second copy of the ISE on a separate monitor
and view the “Cmdlet (advanced function) - Complete” snippet while typing in the
code for my function. Snippets can be accessed in the PowerShell ISE using the Ctrl
+ J key combination.

Summary

In this chapter you’ve learned the basics of writing functions in PowerShell to
include how to turn a function into an advanced function and some of the more
important elements that you should consider when writing PowerShell functions

Chapter 9 - Functions 148

such as parameter validation, verbose output, pipeline input, error handling, and
comment based help.

Review

1. How do you obtain a list of approved verbs in PowerShell?
2. How do you turn a PowerShell function into an advanced function?
3. When should WhatIf and Confirm parameters be added to your PowerShell

functions?
4. How do you turn a non-terminating error into a terminating one?
5. Why should you add comment based help to your functions?

References

• about_Functions3

• about_Functions_Advanced_Parameters4

• about_CommonParameters5

• about_Functions_CmdletBindingAttribute6

• about_Functions_Advanced7

• about_Try_Catch_Finally8

• about_Comment_Based_Help9

• Video: PowerShell Toolmaking with Advanced Functions and Script Modules10

3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions
4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_

parameters
5https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_commonparameters
6https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_

cmdletbindingattribute
7https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced
8https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_try_catch_finally
9https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_comment_based_help
10https://mikefrobbins.com/2016/05/26/video-powershell-toolmaking-with-advanced-functions-and-script-

modules/

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_try_catch_finally
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://mikefrobbins.com/2016/05/26/video-powershell-toolmaking-with-advanced-functions-and-script-modules/
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_try_catch_finally
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://mikefrobbins.com/2016/05/26/video-powershell-toolmaking-with-advanced-functions-and-script-modules/
https://mikefrobbins.com/2016/05/26/video-powershell-toolmaking-with-advanced-functions-and-script-modules/

Chapter 10 - Script modules
Turning your one-liners and scripts in PowerShell into reusable tools becomes even
more important if it’s something that you’re going to use frequently. Packaging your
functions in a script module makes them look and feel more professional and makes
them easier to share.

Dot-Sourcing Functions

Something that we didn’t talk about in the previous chapter is dot-sourcing functions.
When a function in a script isn’t part of amodule, the onlyway to load it intomemory
is to dot-source the .PS1 file that it’s saved in.

The following function has been saved as Get-MrPSVersion.ps1.

function Get-MrPSVersion {

$PSVersionTable

}

When you run the script, nothing happens.

.\Get-MrPSVersion.ps1

If you try to call the function, it generates an error message.

Get-MrPSVersion

Chapter 10 - Script modules 150

Get-MrPSVersion : The term 'Get-MrPSVersion' is not recognized as the name

of a cmdlet, function, script file, or operable program. Check the spelling

of the name, or if a path was included, verify that the path is correct and

try again.

At line:1 char:1

+ Get-MrPSVersion

+ ~~~~~~~~~~~~~~~

+ CategoryInfo : ObjectNotFound: (Get-MrPSVersion:String) [],

CommandNotFoundException

+ FullyQualifiedErrorId : CommandNotFoundException

You can determine if functions are loaded into memory by checking to see if they
exist on the Function PSDrive.

Get-ChildItem -Path Function:\Get-MrPSVersion

Get-ChildItem : Cannot find path 'Get-MrPSVersion' because it does not

exist.

At line:1 char:1

+ Get-ChildItem -Path Function:\Get-MrPSVersion

+ ~~~

+ CategoryInfo : ObjectNotFound: (Get-MrPSVersion:String) [Get

-ChildItem], ItemNotFoundException

+ FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.Ge

tChildItemCommand

The problem with calling the script that contains the function is that the functions
are loaded in the Script scope. When the script completes, that scope is removed and
the function is removed with it.

The function needs to be loaded into theGlobal scope. That can be accomplished by
dot-sourcing the script that contains the function. The relative path can be used.

. .\Get-MrPSVersion.ps1

The fully qualified path can also be used.

Chapter 10 - Script modules 151

. C:\Demo\Get-MrPSVersion.ps1

If a portion of the path is stored in a variable, it can be combined with the remainder
of the path. There’s no reason to use string concatenation to combine the variable
together with the remainder of the path.

$Path = 'C:\'

. $Path\Get-MrPSVersion.ps1

Now when I check the Function PSDrive, the Get-MrPSVersion function exists.

Get-ChildItem -Path Function:\Get-MrPSVersion

CommandType Name Version

----------- ---- -------

Function Get-MrPSVersion

Script Modules

A script module in PowerShell is simply a file containing one or more functions that’s
saved as a .PSM1 file instead of a .PS1 file.

How do you create a script module? You’re probably guessing with a command
named something like New-Module. Your assumption would be wrong. While there
is a command in PowerShell named New-Module, that command creates a dynamic
module, not a script module. Always be sure to read the help for a command even
when you think you’ve found the command you need.

help New-Module

Chapter 10 - Script modules 152

NAME

New-Module

SYNOPSIS

Creates a new dynamic module that exists only in memory.

SYNTAX

New-Module [-Name] <System.String> [-ScriptBlock]

<System.Management.Automation.ScriptBlock> [-ArgumentList

<System.Object[]>] [-AsCustomObject] [-Cmdlet <System.String[]>]

[-Function <System.String[]>] [-ReturnResult] [<CommonParameters>]

DESCRIPTION

The `New-Module` cmdlet creates a dynamic module from a script block.

The members of the dynamic module, such as functions and variables, are

immediately available in the session and remain available until you

close the session.

Like static modules, by default, the cmdlets and functions in a dynamic

module are exported and the variables and aliases are not. However, you

can use the Export-ModuleMember cmdlet and the parameters of

`New-Module` to override the defaults.

You can also use the AsCustomObject parameter of `New-Module` to return

the dynamic module as a custom object. The members of the modules, such

as functions, are implemented as script methods of the custom object

instead of being imported into the session.

Dynamic modules exist only in memory, not on disk. Like all modules,

the members of dynamic modules run in a private module scope that is a

child of the global scope. Get-Module cannot get a dynamic module, but

Get-Command can get the exported members.

To make a dynamic module available to `Get-Module`, pipe a `New-Module`

command to Import-Module, or pipe the module object that `New-Module`

returns to `Import-Module`. This action adds the dynamic module to the

`Get-Module` list, but it does not save the module to disk or make it

persistent.

Chapter 10 - Script modules 153

RELATED LINKS

Online Version: https://learn.microsoft.com/powershell/module/microsoft.

powershell.core/new-module?view=powershell-5.1&WT.mc_id=ps-gethelp

Export-ModuleMember

Get-Module

Import-Module

Remove-Module

about_Modules

REMARKS

To see the examples, type: "get-help New-Module -examples".

For more information, type: "get-help New-Module -detailed".

For technical information, type: "get-help New-Module -full".

For online help, type: "get-help New-Module -online"

In the previous chapter, I mentioned that functions should use approved verbs
otherwise they’ll generate a warning message when the module is imported. The
following code uses the New-Module cmdlet to create a dynamic module in memory.
This module demonstrates the unapproved verb warning.

New-Module -Name MyModule -ScriptBlock {

function Return-MrOsVersion {

Get-CimInstance -ClassName Win32_OperatingSystem |

Select-Object -Property @{label='OperatingSystem';expression={$_.Captio\

n}}

}

Export-ModuleMember -Function Return-MrOsVersion

} | Import-Module

Chapter 10 - Script modules 154

WARNING: The names of some imported commands from the module 'MyModule' include

unapproved verbs that might make them less discoverable. To find the commands w\

ith

unapproved verbs, run the Import-Module command again with the Verbose paramete\

r. For a

list of approved verbs, type Get-Verb.

Just to reiterate, although the New-Module cmdlet was used in the previous example,
that’s not the command for creating script modules in PowerShell.

Save the following two functions in a file named MyScriptModule.psm1.

function Get-MrPSVersion {

$PSVersionTable

}

function Get-MrComputerName {

$env:COMPUTERNAME

}

Try to call one of the functions.

Get-MrComputerName

Get-MrComputerName : The term 'Get-MrComputerName' is not recognized as the

name of a cmdlet, function, script file, or operable program. Check the

spelling of the name, or if a path was included, verify that the path is

correct and try again.

At line:1 char:1

+ Get-MrComputerName

+ ~~~~~~~~~~~~~~~~~~

+ CategoryInfo : ObjectNotFound: (Get-MrComputerName:String) [

], CommandNotFoundException

+ FullyQualifiedErrorId : CommandNotFoundException

An error message is generated saying the function can’t be found. You could also
check the Function PSDrive just like before and you’ll find that it doesn’t exist there
either.

You could manually import the file with the Import-Module cmdlet.

Chapter 10 - Script modules 155

Import-Module C:\MyScriptModule.psm1

The module autoloading feature was introduced in PowerShell version 3. To take
advantage of module autoloading, a script module needs to be saved in a folder with
the same base name as the .PSM1 file and in a location specified in $env:PSModulePath.

$env:PSModulePath

C:\Users\mike-ladm\Documents\WindowsPowerShell\Modules;C:\Program Files\Wind

owsPowerShell\Modules;C:\Windows\system32\WindowsPowerShell\v1.0\Modules;C:\

Program Files (x86)\Microsoft SQL Server\130\Tools\PowerShell\Modules\

The results are difficult to read. Since the paths are separated by a semicolon, you
can split the results to return each path on a separate line. This makes them easier
to read.

$env:PSModulePath -split ';'

C:\Users\mike-ladm\Documents\WindowsPowerShell\Modules

C:\Program Files\WindowsPowerShell\Modules

C:\Windows\system32\WindowsPowerShell\v1.0\Modules

C:\Program Files (x86)\Microsoft SQL Server\130\Tools\PowerShell\Modules\

The first three paths in the list are the default. When SQL Server Management
Studio was installed, it added the last path. For module autoloading to work, the
MyScriptModule.psm1 file needs to be located in a folder named MyScriptModule directly
inside one of those paths.

Not so fast. For me, my current user path isn’t the first one in the list. I almost never
use that path since I log into Windows with a different user than the one I use to run
PowerShell. That means it’s not located in my normal Documents folder.

The second path is the AllUsers path. This is the location where I store all of my
modules.

The third path is underneath C:\Windows\System32. Only Microsoft should be storing
modules in that location since it resides within the operating systems folder.

Once the .PSM1 file is located in the correct path, the module will load automatically
when one of its commands is called.

Chapter 10 - Script modules 156

Module Manifests

All modules should have a module manifest. A module manifest contains metadata
about your module. The file extension for a module manifest file is .PSD1. Not all files
with a .PSD1 extension are module manifests. They can also be used for things such as
storing the environmental portion of a DSC configuration. New-ModuleManifest is used
to create a module manifest. Path is the only value that’s required. However, the
module won’t work if RootModule isn’t specified. It’s a good idea to specifyAuthor
and Description in case you decide to upload your module to a NuGet repository
with PowerShellGet since those values are required in that scenario.

The version of a module without a manifest is 0.0. This is a dead giveaway that the
module doesn’t have a manifest.

Get-Module -Name MyScriptModule

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 0.0 MyScriptModule {Get-MrComputer...

The module manifest can be created with all of the recommended information.

$moduleManifestParams = @{

Path = "$env:ProgramFiles\WindowsPowerShell\Modules\MyScriptModule\MyScript\

Module.psd1"

RootModule = 'MyScriptModule'

Author = 'Mike F. Robbins'

Description = 'MyScriptModule'

CompanyName = 'mikefrobbins.com'

}

New-ModuleManifest @moduleManifestParams

If any of this information is missed during the initial creation of the module manifest,
it can be added or updated later using Update-ModuleManifest. Don’t recreate the
manifest using New-ModuleManifest once it’s already created because the GUID will
change.

Chapter 10 - Script modules 157

Defining Public and Private Functions

You may have helper functions that you may want to be private and only accessible
by other functions within the module. They are not intended to be accessible to users
of your module. There are a couple of different ways to accomplish this.

If you’re not following the best practices and only have a .PSM1 file, then your only
option is to use the Export-ModuleMember cmdlet.

function Get-MrPSVersion {

$PSVersionTable

}

function Get-MrComputerName {

$env:COMPUTERNAME

}

Export-ModuleMember -Function Get-MrPSVersion

In the previous example, only the Get-MrPSVersion function is available to the users
of your module, but the Get-MrComputerName function is available to other functions
within the module itself.

Get-Command -Module MyScriptModule

CommandType Name Version

----------- ---- -------

Function Get-MrPSVersion 1.0

If you’ve added a module manifest to your module (and you should), then I
recommend specifying the individual functions you want to export in the Func-
tionsToExport section of the module manifest.

FunctionsToExport = 'Get-MrPSVersion'

It’s not necessary to use both Export-ModuleMember in the .PSM1 file and the Function-
sToExport section of the module manifest. One or the other is sufficient.

Chapter 10 - Script modules 158

Summary

In this chapter you’ve learned how to turn your functions into a script module in
PowerShell. You’ve also learned some of the best practices for creating scriptmodules
such as creating a module manifest for your script module.

Review

1. How do you create a script module in PowerShell?
2. Why is it important for your functions to use an approved verb?
3. How do you create a module manifest in PowerShell?
4. What are the two options for exporting only certain functions from your

module?
5. What is required for your modules to load automatically when a command is

called?

References

• How to Create PowerShell Script Modules and Module Manifests1

• about_Modules2

• New-ModuleManifest3

• Export-ModuleMember4

1https://mikefrobbins.com/2013/07/04/how-to-create-powershell-script-modules-and-module-manifests/
2https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_modules
3https://learn.microsoft.com/powershell/module/microsoft.powershell.core/new-modulemanifest
4https://learn.microsoft.com/powershell/module/microsoft.powershell.core/export-modulemember

https://mikefrobbins.com/2013/07/04/how-to-create-powershell-script-modules-and-module-manifests/
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_modules
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/new-modulemanifest
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/export-modulemember
https://mikefrobbins.com/2013/07/04/how-to-create-powershell-script-modules-and-module-manifests/
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_modules
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/new-modulemanifest
https://learn.microsoft.com/powershell/module/microsoft.powershell.core/export-modulemember

	Table of Contents
	Preface
	About this book
	Who is this book for?
	The mission of this book
	About the author
	About the technical editor
	Lab environment

	Disclaimer
	Chapter 1 - Getting started with PowerShell
	What is PowerShell?
	What you need to get started with PowerShell
	Where to find PowerShell
	How to launch PowerShell
	Determine your version of PowerShell
	Execution policy
	Summary
	Review
	References
	Next steps

	Chapter 2 - The help system
	Discoverability
	The three core cmdlets in PowerShell
	Get-Help
	Updating help
	Get-Command
	Contributing to the documentation
	Summary
	Review
	References
	Next steps

	Chapter 3 - Discovering Objects, Properties, and Methods
	Prerequisites
	Get-Member
	Get-Command
	Active Directory
	Summary
	Review
	References
	Next steps

	Chapter 4 - One-Liners and the pipeline
	One-Liners
	Filter Left
	The Pipeline
	PowerShellGet
	Finding pipeline input the easy way
	Summary
	Review
	References
	Next steps

	Chapter 5 - Formatting, aliases, providers, comparison
	Prerequisites
	Format Right
	Aliases
	Providers
	Comparison Operators
	Summary
	Review
	References
	Next steps

	Chapter 6 - Flow control
	Scripting
	Looping
	Break, Continue, and Return
	Summary
	Review
	References

	Chapter 7 - Working with WMI
	WMI and CIM
	Query Remote Computers with the CIM cmdlets
	Summary
	Review
	References

	Chapter 8 - PowerShell Remoting
	One-To-One Remoting
	One-To-Many Remoting
	PowerShell Sessions
	Summary
	Review
	References

	Chapter 9 - Functions
	Naming
	A simple function
	Parameters
	Advanced Functions
	SupportsShouldProcess
	Parameter Validation
	Verbose Output
	Pipeline Input
	Error Handling
	Comment-Based Help
	Summary
	Review
	References

	Chapter 10 - Script modules
	Dot-Sourcing Functions
	Script Modules
	Module Manifests
	Defining Public and Private Functions
	Summary
	Review
	References

