

Modern IT Automation with PowerShell
Modern Automation with PowerShell

The DevOps Collective, Inc. and Michael Zanatta

This book is for sale at http://leanpub.com/modernautomationwithpowershell

This version was published on 2022-09-20

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2022 The DevOps Collective, Inc. All Rights Reserved

http://leanpub.com/modernautomationwithpowershell
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!
Please help The DevOps Collective, Inc. and Michael Zanatta by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

I’m supporting the future of our field and just bought a copy of The #pwshconftextbook First
Edition!

The suggested hashtag for this book is #pwshconftextbook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#pwshconftextbook

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20supporting%20the%20future%20of%20our%20field%20and%20just%20bought%20a%20copy%20of%20The%20%23pwshconftextbook%20First%20Edition!
https://twitter.com/intent/tweet?text=I'm%20supporting%20the%20future%20of%20our%20field%20and%20just%20bought%20a%20copy%20of%20The%20%23pwshconftextbook%20First%20Edition!
https://twitter.com/search?q=%23pwshconftextbook
https://twitter.com/search?q=%23pwshconftextbook

Contents

Foreword . i

Contributors . ii
Alain Tanguy . ii
Allen Chin . ii
Amy Zanatta . ii
Bill Kindle . iii
C.J. Zuk . iii
Chad Miars . iii
Christian Coventry . iii
Felipe Binotto . iv
Greg Onstot . iv
James Petty . iv
Joe Houghes . v
John Hermes . v
Jordan Borean . v
Kevin Laux . vi
Kieran Jacobsen . vi
Kirill Nikolaev . vi
Martha Clancy . vii
Matt Corr . vii
Michael B. Smith . vii
Michael Lotter . viii
Michael Zanatta . viii
Nicholas Bissell . viii
Rob Derickson . ix
Steven Judd . ix
Wes Stahler . ix

Acknowledgements . x

Disclaimer . xi

Introduction . xii
About OnRamp . xii
Prerequisites . xiii
A Note on Code Listings . xiii
Feedback . xiv

CONTENTS

I Collaboration . 1

1. Introduction to Git . 2
1.1 Understanding Terminology . 2
1.2 Creating a Local Repository . 3
1.3 Cloning an Existing Repository . 5
1.4 Understanding the Flow of Working in Git . 6
1.5 Your First Commit . 8
1.6 Creating a Branch . 12
1.7 Merging Branches . 18

1.7.1 Merge Commits . 19
1.7.2 Merge Conflicts . 21

1.8 Stashing Changes . 25
1.9 Rolling Back When Things Go Wrong . 25

1.9.1 Hard Reset in Action . 27
1.10 Connecting to a Remote Repository . 29
1.11 Starting Over When Things Really Go Wrong 34

1.11.1 Starting From Scratch . 36
1.12 Conclusion . 36
1.13 Modern IT Automation With PowerShell Extras 36
1.14 Further Reading . 36

2. Code Reviews . 38
2.1 Purpose of Code Reviews . 38
2.2 How to Start with Code Reviews . 38

2.2.1 Define Code Conventions for Your Team or Project 39
2.2.2 Define the Code Review Process for Your Team or Project 40

2.3 Things to Consider When Performing a Code Review 41
2.4 Code Review Best Practices . 42

2.4.1 Keep Your Changes Small . 42
2.4.2 Provide Constructive Feedback . 43
2.4.3 Balance Nit-Picks with Major Comments 44
2.4.4 Create Pull Request Templates . 45
2.4.5 When to Approve . 46
2.4.6 Talk to Each Other . 46
2.4.7 Use Automation . 47

2.5 Tools to Help with Code Reviews . 47
2.5.1 PSScriptAnalyzer . 47
2.5.2 PowerShell Extension for Visual Studio Code 51

2.6 Further Reading . 54

II PowerShell Testing . 55

3. The AAA Approach . 56
3.1 Arrange, Act, and Assert . 56

3.1.1 Arrange . 56

CONTENTS

3.1.2 Act . 56
3.1.3 Assert . 56
3.1.4 Benefits of the AAA Approach . 56

3.2 Pester 5.0 . 56
3.2.1 Pester Installation . 57

3.3 The Star Wars API Example . 57
3.3.1 So How Does It Work? . 58
3.3.2 Example Code . 58
3.3.3 Example Code Output . 61

3.4 Pester Tests . 62
3.4.1 Simple Tests . 63
3.4.2 Pester Verbosity . 64
3.4.3 Simple Test Output . 64
3.4.4 Mocked Tests . 65
3.4.5 Mocked Test Output . 67
3.4.6 Complex Tests . 68
3.4.7 Complex Test Output . 69

3.5 Conclusion . 70
3.6 Further Reading . 70

4. Mocking . 71
4.1 Mocking and Mock Testing . 71

4.1.1 Stubs, Fakes, and Mocks . 72
4.2 Mocking in Pester with Mock . 73
4.3 Mock Testing and Verifiable Mocks . 75

4.3.1 Should -Invoke . 75
4.3.2 Should -InvokeVerifiable . 78
4.3.3 Running the Mock Assertion Tests . 78

4.4 Mock Scoping . 79
4.5 Mocking in the Module Scope with -ModuleName 83

4.5.1 Mock Testing in the Module Scope . 86
4.5.2 Running the Module Scope Tests . 86

4.6 Dynamic Mock Behavior with -ParameterFilter 87
4.6.1 Filtered Mock Assertions . 91
4.6.2 Running the Filtered Mock Tests . 92
4.6.3 Restricting Mock Calls Further with -ExclusiveFilter 93

4.7 Calling Real Dependencies While They’re Mocked 94
4.8 Removing Parameter Typecasting and Validation 96
4.9 Mocking Native Applications . 99
4.10 Mocking .NET Objects with New-MockObject 101
4.11 Next Steps . 103
4.12 Further Reading . 103

5. Unit Testing . 105
5.1 Why Unit Testing? . 105
5.2 What Is Unit Testing? . 105
5.3 Testing Frameworks . 106

CONTENTS

5.3.1 Black Box vs. White Box Testing . 106
5.3.2 The AAA Approach . 106

5.4 Pester . 107
5.4.1 Getting Started . 107
5.4.2 Defining Pester Test Files . 108
5.4.3 Pester Demo Code . 108
5.4.4 Pester Test Structure . 109
5.4.5 Mocking . 111
5.4.6 Running Pester Tests . 111
5.4.7 Pester Configuration . 113
5.4.8 Pester Automation . 114

5.5 Conclusion . 125
5.6 Further Reading . 125

6. Parameterized Testing . 126
6.1 Pester Versions and Parameterized Tests . 126
6.2 Your First Test . 127

6.2.1 -ForEach . 129
6.2.2 Templates ‘<>’ . 131
6.2.3 BeforeDiscovery . 133
6.2.4 Param . 135
6.2.5 Pester Container . 136
6.2.6 PesterConfiguration . 137

6.3 Pester v4 . 138
6.4 Outputs . 140
6.5 One Last Example . 141
6.6 Conclusions . 143
6.7 Further Reading . 143

III PowerShell in Depth . 145

7. Refactoring PowerShell . 146
7.1 Expanding on the Pipeline . 146
7.2 Expanded Splatting . 148
7.3 Interpolation . 152

7.3.1 Variable Substitution . 152
7.3.2 Using the Format (-f) Operator . 153

7.4 Refactoring Functions . 161
7.4.1 Simplify Functions to Perform a Singular Task 162
7.4.2 Use Typecasting on Parameters . 164
7.4.3 Use Advanced Function Parameters 165
7.4.4 Use Approved Verbs . 173
7.4.5 Use a Singular Output Object Type . 174

7.5 Writing Better Code . 174
7.5.1 Simplify Nested Statements . 175
7.5.2 Grouping Similar Code . 181

CONTENTS

7.5.3 Refactoring Comments and Documentation 183
7.5.4 Using Code Regions . 186
7.5.5 Refactoring Logic Flow to be Implicitly $True or $False 188

7.6 Data Management . 191
7.6.1 JSON . 191
7.6.2 YAML . 193
7.6.3 XML . 194
7.6.4 CSV . 197
7.6.5 CLIXML . 198
7.6.6 Best Practices for Data Management 201

7.7 Further Reading . 201

8. Advanced Conditions . 202
8.1 Case Sensitive Operators . 202
8.2 Using the Switch Statement . 204

8.2.1 Using -Regex . 205
8.2.2 Using -Wildcard . 205
8.2.3 Using -Exact . 206
8.2.4 Using -CaseSensitive . 206
8.2.5 Using PowerShell Expressions for Matching 207
8.2.6 Default . 208
8.2.7 Parsing Lists and Arrays . 209

8.3 Type Comparison and Conversion Operators: -is, -isnot and -as 213
8.3.1 Using -is and -isnot . 213

8.4 Using -as to Typecast Safely . 215
8.5 Bitwise Operators (-band, -bor, -bxor, -bnot, -shl and -shr) 216

8.5.1 What is an Enum? . 216
8.5.2 Base-2 vs. Base-10 (Binary vs. Decimal) 219
8.5.3 The AND Logic Gate . 220
8.5.4 The OR Logic Gate . 221
8.5.5 The NOT Logic Gate . 222
8.5.6 The XOR Logic Gate . 223
8.5.7 -band Bitwise AND . 223
8.5.8 -bor Bitwise OR . 224
8.5.9 -bxor Bitwise XOR . 225
8.5.10 -bnot Bitwise NOT . 226
8.5.11 -shl Shift Bits Left . 228
8.5.12 -shr Shift Bits Right . 228
8.5.13 Practical Applications . 229

8.6 -like and -notlike . 230
8.7 -match and -notmatch . 234
8.8 -in, -contains, -notin and -notcontains . 234
8.9 -replace . 238
8.10 Ternary Operator (condition) ? <true> : <false> 239
8.11 Null-Coalescing Operator ?? . 240
8.12 Null-Coalescing Assignment Operator ??= . 242

CONTENTS

8.13 Null-Conditional Operator ?. and ?[] . 243
8.13.1 Examples of ?. 244
8.13.2 Examples of ?[] . 246

8.14 :parent Loop Labels . 247
8.15 PowerShell Operator Precedence . 250

8.15.1 Example - Operator Precedence (,, []) 252
8.15.2 Example - Parentheses () . 252
8.15.3 Example - Negation Operator -not 253
8.15.4 Example - Equal Precedence . 254
8.15.5 Example - A Complex Expression . 254

8.16 Further Reading . 257

9. Logging . 258
9.1 Why Log? . 259
9.2 What Makes for Good Logging . 259
9.3 What Should Never Be Logged . 260
9.4 Logging Basics . 261
9.5 Enable System-Level Logging . 261

9.5.1 Windows . 261
9.5.2 Event Log Locations . 262

9.6 Linux, macOS, WSL . 263
9.7 Logging for Troubleshooting . 264

9.7.1 Writing Console Output . 264
9.8 Persistent Logging Options . 265

9.8.1 PowerShell Transcription . 265
9.8.2 Logging to Files . 266
9.8.3 Using Tee-Object . 267

9.9 History . 268
9.9.1 Built-in History . 268
9.9.2 PSReadline History . 269
9.9.3 Writing to Windows Event Logs . 270
9.9.4 Cloud Shell . 271
9.9.5 Using Third Party modules for logging 273

9.10 Summary . 274
9.11 Further Reading . 274

10. Infrastructure as Code (IaC) . 275
10.1 Overview . 275
10.2 IaC Key Concepts . 275
10.3 IaC Benefits . 276
10.4 IaC Principles . 276

10.4.1 Source Control as the Single Source of Truth 277
10.4.2 Modular . 277
10.4.3 Versioning . 277
10.4.4 Repeatable . 277
10.4.5 Disposable . 277
10.4.6 Self-Documented . 278

CONTENTS

10.4.7 Testing and Monitoring . 278
10.5 IaC in Action . 278

10.5.1 Azure-SQL-Server.psm1 . 279
10.5.2 Azure-Storage-Account.psm1 . 281
10.5.3 Azure-Load-Balancer.psm1 . 281
10.5.4 Azure-Virtual-Machine.psm1 . 283

10.6 Configuration as Code (CaC) . 285
10.6.1 PowerShell Desired State Configuration (DSC) 285
10.6.2 CaC in Action . 289

10.7 IaC and CaC: Better Together . 291
10.8 Conclusion . 292
10.9 Further Reading . 292

IV Using Regexes . 294

11. Regex 101 . 295
11.1 First Principles and Limitations . 295

11.1.1 Wildcard Patterns vs. Regexes . 296
11.1.2 Differences Between PowerShell Regexes and Others 296

11.2 Getting Started . 297
11.3 Character Classes . 298
11.4 Custom Character Classes . 300
11.5 Quantifiers . 301
11.6 Character Escape Sequences . 303
11.7 Anchors (Zero-Width Assertions) . 304
11.8 Captures . 305
11.9 Visualizing Captures . 306

12. Accessing Regexes . 308
12.1 Using PowerShell Syntax . 308

12.1.1 -match Operator with Strings . 308
12.1.2 -match Operator with String Arrays 308
12.1.3 -cmatch and -imatch Operators and Inverses 309
12.1.4 -replace Operator with Strings . 309
12.1.5 -replace Operator with String Arrays 310
12.1.6 -creplace and -ireplace Operators . 311
12.1.7 -split Operator with Strings . 311
12.1.8 -split Operator with String Arrays . 314
12.1.9 Splitting Strings with -split and a Script Block 315
12.1.10 -csplit and -isplit Operators . 315
12.1.11 Select-String Cmdlet . 315
12.1.12 Where-Object Cmdlet with the -Match Parameter 318
12.1.13 switch -Regex Statement . 319
12.1.14 ValidatePattern() Parameter Attribute 319
12.1.15 Pester Should -Match and -MatchExactly Assertions 320

12.2 Using the .NET Methods . 321

CONTENTS

12.2.1 Constructors . 322
12.2.2 IsMatch() . 322
12.2.3 Match() . 323
12.2.4 Match.NextMatch() Instance Method 324
12.2.5 Matches() . 324
12.2.6 Replace() . 325
12.2.7 Split() . 327
12.2.8 Escape() and Unescape() . 327
12.2.9 GetGroupNumbers() and GetGroupNames() 329
12.2.10 GroupNameFromNumber() and GroupNumberFromName() 330

12.3 Regex Options . 330
12.3.1 RegexOptions.None (0) . 330
12.3.2 RegexOptions.IgnoreCase (1) . 330
12.3.3 RegexOptions.Multiline (2) . 331
12.3.4 RegexOptions.ExplicitCapture (4) . 331
12.3.5 RegexOptions.Compiled (8) . 332
12.3.6 RegexOptions.Singleline (16) . 333
12.3.7 RegexOptions.IgnorePatternWhitespace (32) 334
12.3.8 RegexOptions.RightToLeft (64) . 335
12.3.9 RegexOptions.ECMAScript (256) . 336
12.3.10 RegexOptions.CultureInvariant (512) 337
12.3.11 Combining Regex Options . 338
12.3.12 Inline Options . 339

13. Regex Deep Dive . 340
13.1 Debugging Your Regex Patterns . 340

13.1.1 Regex Through the Eyes of an NFA Engine 341
13.1.2 Backtracking and Branching . 342
13.1.3 Catastrophic Backtracking . 342
13.1.4 Atomic Groups . 345

13.2 Functionality to Consider . 345
13.2.1 No Subroutines . 345
13.2.2 No Recursion . 346
13.2.3 Possessive Quantifiers vs. Atomic Groups 346
13.2.4 Variable-Length Lookbehinds . 346

13.3 Deconstructing a Pattern . 346
13.4 Advanced Syntax . 348

13.4.1 Unicode Categories and Blocks . 348
13.4.2 Character Class Subtraction . 351
13.4.3 Using Inline Options . 352
13.4.4 Using Option Spans . 353
13.4.5 Comments in Regex . 354

13.5 Advanced Replacement Patterns . 355
13.5.1 Named and Numeric Captures . 355
13.5.2 Entire Match . 357
13.5.3 Match Span Prefixes and Postfixes . 357

CONTENTS

13.5.4 Entire Input . 358
13.5.5 Last Capture . 358

13.6 Advanced Subexpressions and Backreferences 358
13.6.1 Backreferences in Depth . 358
13.6.2 Lookarounds in Depth . 360
13.6.3 Conditional Logic . 362
13.6.4 Balancing Groups . 365

14. Regex Best Practices . 369
14.1 Constrained and Unconstrained Input . 369
14.2 Backtracking and Exponential Operations . 369
14.3 Preventing ReDoS with Regex Time-Outs . 369
14.4 Capturing Just Enough . 370
14.5 Static vs. Instance Methods and Caching . 371
14.6 No More CompileToAssembly() . 371
14.7 Getting the Scope Right . 372
14.8 Iterative Development . 372
14.9 Edge Cases and Near Matches . 378
14.10 Thread Safety . 379
14.11 Next Steps . 381
14.12 Further Reading . 382

14.12.1 Official Reference Materials . 382
14.12.2 Other Materials . 383

V PowerShell Security . 385

15. Script Signing . 386
15.1 What Is Script Signing and How It Protects You 386

15.1.1 How Digital Signing Works . 387
15.1.2 How Code Signing Works in Modern Windows Systems 387

15.2 The Anatomy of a Signed Script . 389
15.3 How to Sign a Script . 390

15.3.1 Acquiring a Code Signing Certificate 391
15.3.2 How to Install Code Signing Certificates Properly 393
15.3.3 Signing Process . 395
15.3.4 How to Prevent Your Signatures from Expiring 395
15.3.5 What Else Can You Sign . 396

15.4 How to Verify a Signature . 397
15.4.1 Get-AuthenticodeSignature . 397
15.4.2 Sigcheck . 398
15.4.3 Signtool . 399
15.4.4 Execution Errors . 399

15.5 Scaling Out . 400
15.5.1 Use Your Own PKI . 400
15.5.2 Deploy Code Signing Certificates in a Corporate Environment . . . 431

15.6 Summary . 434

CONTENTS

15.7 Further Reading . 434

16. Script Execution Policies . 435
16.1 Types of Execution Policies . 435

16.1.1 AllSigned . 435
16.1.2 RemoteSigned . 436
16.1.3 Restricted . 437
16.1.4 Unrestricted . 438
16.1.5 Bypass . 438
16.1.6 Default . 438
16.1.7 Undefined . 438

16.2 Execution Policy Scope . 439
16.2.1 Scope Precedence . 439

16.3 Security Considerations . 441
16.4 Setting the Execution Policy . 441

16.4.1 Set-ExecutionPolicy . 442
16.4.2 Group Policy . 442
16.4.3 AppLocker . 444
16.4.4 Windows Defender Application Control 444

16.5 Further Reading . 445

17. Constrained Language Mode . 447
17.1 In Depth . 447

17.1.1 Language Modes . 447
17.1.2 Constrained Language Mode Features 448

17.2 Limitations of Constrained Language Mode . 455
17.2.1 PowerShell Protect . 456

17.3 Deep Diving into Windows Lockdown Policy . 456
17.3.1 GetLockdownPolicy() . 456
17.3.2 GetWldpPolicy() . 457
17.3.3 GetAppLockerPolicy() . 457
17.3.4 GetDebugLockdownPolicy() . 457

17.4 Implementing Policies Using AppLocker Script Rules 458
17.4.1 Introduction . 458
17.4.2 Getting Started . 460

17.5 Implementing Policies Using WDAC . 468
17.5.1 What Is WDAC? . 468

17.6 Deploying WDAC Using Microsoft Intune . 469
17.6.1 Prerequisites . 469
17.6.2 Creating a Device Policy . 470

17.7 Best Practices . 472
17.8 Further Reading . 472

18. Just Enough Administration . 474
18.1 Introduction . 474

18.1.1 Requirements . 474
18.2 Background of JEA . 474

CONTENTS

18.2.1 PowerShell Remoting 101 . 475
18.2.2 An Overview of PowerShell Session Configuration 475
18.2.3 PowerShell Remoting Authentication and Transport Encryption . . 477

18.3 PowerShell Role Capabilities . 479
18.3.1 Implementing Windows PowerShell Role Capabilities in the Console 480
18.3.2 Implementing PowerShell (Core) Role Capabilities in the Console . 481
18.3.3 Implementing PowerShell Role Capabilities Within DSC 482

18.4 Getting Started With PowerShell Session Configuration 483
18.4.1 Step 1: Enabling PowerShell Remoting 484
18.4.2 Step 2: Creating/Registering the PowerShell Session Configuration 486
18.4.3 Connecting to a PowerShell Session Configuration 491
18.4.4 Role Definition Design Considerations 492
18.4.5 Managing PowerShell Session Configurations 493

18.5 An Overview of the Security Descriptor Definition Language (SDDL) 496
18.5.1 Terms . 496
18.5.2 SDDL Overview . 497
18.5.3 SDDL Syntax . 498
18.5.4 Reading SDDLs . 500
18.5.5 Creating SDDLs from a Security Descriptor 501

18.6 Auditing PowerShell Remoting Sessions . 504
18.6.1 Review Effective Rights . 505
18.6.2 PowerShell Event Logs . 506
18.6.3 Session Transcription Logs . 507
18.6.4 Removing Existing PowerShell Sessions 507

18.7 Further Reading . 508

Afterword . 510

Index . 512
A, SYMBOLS . 512
B, C . 513
D, E . 515
F, G . 516
H, I . 519
J, K, L, M . 520
N . 521
O . 522
P . 524
R . 526
S . 528
T . 530
U, V, W . 532
Y . 533

Foreword
By Orin Thomas

Organizations adopt information technology to solve a set of problems. The problems could be
as simple as “how do we keep track of customer orders?” or more complicated ones involving
the analysis of data to determine patterns that might provide some new insight that leads to
a business advantage. Organizations will choose a technology not just because they think it is
fun and cool, but because they can use it to solve a problem that they really need to be solved to
accomplish an organizational objective. The creators of information technologies often have a set
of problems in mind when building those technologies. It might be “how do I simplify the process
of creating and presenting slides at conferences” or “how can we better automate administrative
tasks on Microsoft platforms”. Every system, application, or programming language has a
particular set of tasks it was designed to do very well because the people that created it needed
to scratch an itch that the currently available tools did not adequately address.

Over time creators and developers add and refine features to their products or tools because those
features to allow users of the technology to solve additional or more complex problems that are
considered important. But the key is understanding that to the creator and developer there is
a set of problems that are “in scope” that they envisage their project solving and a lot that are
beyond that scope that it was never intended to address. William Gibson, author of one of the
earliest and most important cyberpunk novels said “The street finds its own uses for things”. One
of the interpretations of this is that users often find uses for products that go way beyond what
the original developers of that product envisaged it being used for. Good products are useful for
things that the original creators never imagined. No product can do everything, but with a bit of
creativity, many products can do things that are a complete surprise to other users and even the
original creators of that project.

Technical communities are groups of people that are enthusiastic about specific systems, appli-
cations, technologies, and languages. These communities spend a great amount of time not only
sharing how to bemore proficient in doing something that the technology that they are interested
in was designed to do, but also sharing all of the amazing things that the technology does that no
one could have imagined. Jeffrey Snover often remarks how surprised he is at all the ingenious
things people find that they can do with PowerShell that he never conceived of it being used for.

And that’s what this book is about—sharing with the reader a collection of fascinating things
that you can do with PowerShell. Not only things that you already do that you might be able
to do in a much more efficient or elegant way, but a collection of tasks that you can do with
PowerShell that exceed what you and perhaps even Jeffrey Snover conceived the language was
possible of accomplishing.

i

Contributors
This section includes the names and biographies of the authors and editors of this project in
alphabetical order.

Alain Tanguy

Role: Author

Alain has been an avid PowerShell user throughout his IT career, automating and solving many
problems. Now working as an IT Engineer, he is using his knowledge to answer IT Infrastructure
Challenges. He enjoys pizza, pixel art, funky music, and naps. Alain is reachable on Twitter at
@Alain__Tanguy¹ and LinkedIn².

Allen Chin

Role: Linguistic Editor

Allen first learned and made use of PowerShell in 2018 while working as technical support to
maintain and improve existing scripts. A few years later, he is now an application development
analyst and the main contact for applications, reports, and automation.

Amy Zanatta

Role: Cover Artist

Amy is a Video Editor, Motion Graphics Designer and Personal Stylist, working at the Nine
Network Australia. Amy posts regularly on her YouTube Channel StyleWithinGrace³, with
Australian fashion ideas and inspirations. You can follow her on Instagram⁴ and Twitter @Style-
GraceAmy⁵.

¹https://twitter.com/Alain__Tanguy
²https://www.linkedin.com/in/alaintanguy
³https://www.youtube.com/channel/UCCF1px3YSkNKB6F0HtySI9g
⁴https://www.instagram.com/stylewithingrace/
⁵https://www.twitter.com/StyleGraceAmy/

ii

https://twitter.com/Alain__Tanguy
https://www.linkedin.com/in/alaintanguy
https://www.youtube.com/channel/UCCF1px3YSkNKB6F0HtySI9g
https://www.instagram.com/stylewithingrace/
https://www.twitter.com/StyleGraceAmy/
https://www.twitter.com/StyleGraceAmy/
https://twitter.com/Alain__Tanguy
https://www.linkedin.com/in/alaintanguy
https://www.youtube.com/channel/UCCF1px3YSkNKB6F0HtySI9g
https://www.instagram.com/stylewithingrace/
https://www.twitter.com/StyleGraceAmy/

Contributors iii

Bill Kindle

Role: Senior Editor

Husband to a wonderful woman that he doesn’t deserve, and the father of two adorable children.
Bill is a former career Systems Administrator turned Cyber Security Engineer currently working
for Corsica Technologies⁶. Bill was an author for The PowerShell Conference Book Volume
2 and an editor for Volume 3. His role focuses on automation engineering and supporting a
Security Operations Center. Bill has a passion for helping others in IT and occasionally does
presentations for@FortWayneVMUG⁷. You can find some of Bill’s work at AdamTheAutomator⁸
and TechSnips LLC⁹.

C.J. Zuk

Role: Linguistic Editor

C.J. Zuk is a current college student and works as a federal government contractor in the
Washington, D.C.Metropolitan Area. She began to use PowerShell in high school as her preferred
scripting language because of its cross-platform compatibility. C.J. likes to spend her time with
her fiancee, cats, and volunteering at her synagogue. You can reach her at cj.zuk@outlook.com
and on LinkedIn¹⁰.

Chad Miars

Role: Linguistic Editor

Chad’s formal training is in mechanical engineering, but his current role is Director of Business
Ops at Ascent Inc.¹¹. He enjoys using PowerShell to connect and automate all parts of the business.
You can find Chad on LinkedIn¹².

Christian Coventry

Role: Linguistic Editor

Christian is a recent graduate, and it was his tertiary studies that introduced him to PowerShell.
He currently works as a Technical Officer with the Queensland Department of Education¹³.
Christian was an editor for The PowerShell Conference Book Volume 3. You can find him on
LinkedIn¹⁴.

⁶https://corsicatech.com
⁷https://twitter.com/FortWayneVMUG
⁸https://adamtheautomator.com
⁹https://techsnips.io
¹⁰https://www.linkedin.com/in/cj-zuk/
¹¹https://ascenthvac.com
¹²https://www.linkedin.com/in/chad-miars-6489a2122/
¹³https://education.qld.gov.au/
¹⁴https://au.linkedin.com/in/christian-coventry-9a0031157

https://corsicatech.com/
https://twitter.com/FortWayneVMUG
https://adamtheautomator.com/
https://techsnips.io/
https://www.linkedin.com/in/cj-zuk/
https://ascenthvac.com/
https://www.linkedin.com/in/chad-miars-6489a2122/
https://education.qld.gov.au/
https://au.linkedin.com/in/christian-coventry-9a0031157
https://corsicatech.com/
https://twitter.com/FortWayneVMUG
https://adamtheautomator.com/
https://techsnips.io/
https://www.linkedin.com/in/cj-zuk/
https://ascenthvac.com/
https://www.linkedin.com/in/chad-miars-6489a2122/
https://education.qld.gov.au/
https://au.linkedin.com/in/christian-coventry-9a0031157

Contributors iv

Felipe Binotto

Role: Author

Felipe is a specialist in Microsoft technologies and has worked in various roles in the IT industry
for the last 13 years. Currently, he works as a Senior Customer Engineer for the Customer
Success Unit at Microsoft Australia. In this role, his focus is on Azure infrastructure, security,
and automation. Felipe has contributed to various PowerShell forums and Microsoft Docs, and
he currently blogs at Azure Gear¹⁵. You can follow him on Twitter at @felipebinotto¹⁶ or on
LinkedIn¹⁷.

Greg Onstot

Role: Author

Husband, Father, Contributor to the PowerShell Conference Book Vol. 2. Greg has been working
in IT Infrastructure and Cybersecurity Engineering for over 20 years. PowerShell is an integral
part of automating that work.

James Petty

Role: DevOps Collective Liaison

James currently serves as the CEO of the DevOps Collective Inc., a nonprofit working in the
technology education space. He helps manage a $1M+ annual budget that includes multiple con-
ferences and PowerShell Saturdays events across the US. The nonprofit focuses on PowerShell,
automation, and DevOps and runs numerous free online resources, including PowerShell.org. He
is also a co-organizer and co-founder of the Chattanooga PowerShell UserGroup (established in
September 2016). James is also a recipient of the Microsoft MVP award in Cloud and Datacenter
Management. He currently lives in the beautiful Chattanooga, Tennessee area with his amazing
wife. James’ passion lies with automation using PowerShell and all things related to Windows
Server. He has almost a decade of experience as an infrastructure admin for a large enterprise,
helpingmanage thousands of users andmachines. He knows a broad range of products, including
patch management, Active Directory, Group Policy, and the Windows Server operating system.

¹⁵https://azuregear.com
¹⁶https://twitter.com/felipebinotto
¹⁷https://www.linkedin.com/in/felipebinotto/

https://azuregear.com/
https://twitter.com/felipebinotto
https://www.linkedin.com/in/felipebinotto/
https://azuregear.com/
https://twitter.com/felipebinotto
https://www.linkedin.com/in/felipebinotto/

Contributors v

Joe Houghes

Role: Technical Editor

Husband, Father, Community Geek. Joe Houghes is a co-leader of @ATXPowerShell¹⁸ and
@AustinVMUG¹⁹ user groups in Texas and amember of the@vBrownBag²⁰ crew. He is currently
a Solutions Architect for Veeam, focused on automation & integration. Joe spends most of
his time working within VMware environments when he is not active in planning or hosting
community events. You can find Joe on Twitter, @jhoughes²¹, or his blog²².

John Hermes

Role: Linguistic Editor

John is an agile software developer and systems engineer with a career focus on security
and resilience. He frequently develops PowerShell modules supporting datacenter management,
legacy systems, and cloud service integration. He is also an unabashed Unix greybeard who still
enjoys learning new things and rarely updates his social media. John resides with his extremely
patient and loving wife near Dayton, Ohio.

Jordan Borean

Role: Technical Editor

Jordan is a Software Engineer at Red Hat²³, working on the Windows integrations for Ansible.
He originally worked on Java-based programs for a large company but felt the draw to open
source software and has been an avid contributor since. Jordan mostly focuses on Python and
PowerShell-based languages, and he is committed to trying to bridge the Windows and Linux
worlds and make it easier for them to work with each other. Some projects that he works on
are pypsrp²⁴, smbprotocol²⁵, pypsexec²⁶, and more recently pyspnego²⁷. When finding some free
time, Jordan blogs on Blogging for Logging²⁸ that cover technologies like PowerShell, Ansible,
Windows protocols, and anything else that takes his fancy. You can usually get in contact
with him on the PowerShell Discord server²⁹, or various IRC Freenode channels like #ansible,
#Powershell, #packer-tool, and others.

¹⁸https://twitter.com/ATXPowerShell
¹⁹https://twitter.com/AustinVMUG
²⁰https://twitter.com/vbrownbag
²¹https://twitter.com/jhoughes
²²https://www.fullstackgeek.net/
²³https://www.redhat.com/en
²⁴https://github.com/jborean93/pypsrp
²⁵https://github.com/jborean93/smbprotocol
²⁶https://github.com/jborean93/pypsexec
²⁷https://github.com/jborean93/pyspnego
²⁸https://www.bloggingforlogging.com/
²⁹https://aka.ms/psdiscord

https://twitter.com/ATXPowerShell
https://twitter.com/AustinVMUG
https://twitter.com/vbrownbag
https://twitter.com/jhoughes
https://www.fullstackgeek.net/
https://www.redhat.com/en
https://github.com/jborean93/pypsrp
https://github.com/jborean93/smbprotocol
https://github.com/jborean93/pypsexec
https://github.com/jborean93/pyspnego
https://www.bloggingforlogging.com/
https://aka.ms/psdiscord
https://twitter.com/ATXPowerShell
https://twitter.com/AustinVMUG
https://twitter.com/vbrownbag
https://twitter.com/jhoughes
https://www.fullstackgeek.net/
https://www.redhat.com/en
https://github.com/jborean93/pypsrp
https://github.com/jborean93/smbprotocol
https://github.com/jborean93/pypsexec
https://github.com/jborean93/pyspnego
https://www.bloggingforlogging.com/
https://aka.ms/psdiscord

Contributors vi

Kevin Laux

Role: Author and Quality Assurance Editor

Kevin is a manager for an orchestration platform team. He is passionate about PowerShell and
has been leading training classes for his colleagues since the release of PowerShell v3. Kevin also
serves as co-leader of the Research Triangle PowerShell User Group³⁰. In addition to PowerShell,
he is always tinkering with new technology in his home lab and trying to learn everything he
can. You can follow him on Twitter, @rsrychro³¹, and GitHub³².

Kieran Jacobsen

Role: Author and Technical Editor

Kieran Jacobsen (he/him) combines his passion for business process automation, systems inte-
gration, and cybersecurity to help organizations rapidly grow and evolve. Kieran’s involvement
in the technology community has seen him present at Microsoft’s Ignite the Tour, NDC Sydney,
andCrikeyCon. Kieran is well known for his security-focused presentations that blend real-world
examples with storytelling. Microsoft has recognized Kieran’s contributions to the community
by awarding him with the Most Valuable Professional since 2017. Kieran is also a member of
the GitKraken Ambassador Program. Kieran lives in Melbourne, Australia, with his husband
and Burmese cat. In his spare time, Kieran enjoys computer games, Dungeons & Dragons, board
games, and Melbourne’s amazing food culture.

Kirill Nikolaev

Role: Author and Technical Editor

Kirill has more than 15 years of experience in IT, with specialization in Windows Server
infrastructure, virtualization, information security, and automation. He began using PowerShell
almost immediately after its release in 2006 and has been ever since. He is currently Head of the
Windows Administration Team at Fozzy.com³³, an honest hosting provider, where he continues
to give back to the community by sharing automation solutions through their GitHub account³⁴.
You can follow him on Twitter, @exchange12rocks³⁵, or subscribe to his technical blog³⁶.

³⁰https://rtpsug.com
³¹https://twitter.com/rsrychro
³²https://github.com/KevinLaux
³³https://fozzy.com
³⁴https://github.com/FozzyHosting
³⁵https://twitter.com/exchange12rocks
³⁶https://exchange12rocks.org

https://rtpsug.com/
https://twitter.com/rsrychro
https://github.com/KevinLaux
https://fozzy.com/
https://github.com/FozzyHosting
https://twitter.com/exchange12rocks
https://exchange12rocks.org/
https://rtpsug.com/
https://twitter.com/rsrychro
https://github.com/KevinLaux
https://fozzy.com/
https://github.com/FozzyHosting
https://twitter.com/exchange12rocks
https://exchange12rocks.org/

Contributors vii

Martha Clancy

Role: Linguistic Editor

Martha came to PowerShell and DevOps by way of database administration and is passionate
about using code and automation to help everyone do their jobs more easily. You can findMartha
on Twitter, @marclancy³⁷, or her blog³⁸.

Matt Corr

Role: Author

Husband, father, passionate about automation and process improvement. Matt has over 20
years of IT industry experience and is currently working as a DevOps Solution Specialist for
MOQdigital³⁹. He is very passionate about PowerShell and is the go-to person in his teams for
anything script or automation-related. He has experience with many build and deployment tools,
such as Azure DevOps, Octopus Deploy, TeamCity, Terraform, and PowerShell. You can find
Matt on Twitter (@mattcorr⁴⁰), LinkedIn⁴¹ or his blog⁴².

Michael B. Smith

Role: Quality Assurance Editor

Michael is an IT professional with over 35 years of experience in IT. Michael began using
PowerShell during the Exchange 2007 Server beta and has been deeply into scripting with
PowerShell ever since. He is a 13-time recipient of the Microsoft MVP award in Exchange Server.
He has written many articles about Exchange, Active Directory, PowerShell, Windows Server,
and Azure topics; and is passionate about presenting/training as well. You can find Michael on
Twitter@EssentialExch⁴³, at his blog The Essential Exchange⁴⁴, and in the Facebook group Azure
Support⁴⁵.

³⁷https://twitter.com/marclancy
³⁸https://marthaclancy.com
³⁹https://www.moqdigital.com.au
⁴⁰https://www.twitter.com/mattcorr
⁴¹https://www.linkedin.com/in/mattcorr/
⁴²https://www.intrepidintegration.com
⁴³https://twitter.com/essentialexch
⁴⁴https://www.essential.exchange
⁴⁵https://www.facebook.com/groups/AzureSupport

https://twitter.com/marclancy
https://marthaclancy.com/
https://www.moqdigital.com.au/
https://www.twitter.com/mattcorr
https://www.linkedin.com/in/mattcorr/
https://www.intrepidintegration.com/
https://twitter.com/essentialexch
https://www.essential.exchange/
https://www.facebook.com/groups/AzureSupport
https://www.facebook.com/groups/AzureSupport
https://twitter.com/marclancy
https://marthaclancy.com/
https://www.moqdigital.com.au/
https://www.twitter.com/mattcorr
https://www.linkedin.com/in/mattcorr/
https://www.intrepidintegration.com/
https://twitter.com/essentialexch
https://www.essential.exchange/
https://www.facebook.com/groups/AzureSupport

Contributors viii

Michael Lotter

Role: Author

Michael has nearly a decade of system and network administration experience between South
Africa and the US, from small shops to large enterprises, with a focus on automation and
cybersecurity. He currently works in the finance sector as a systems engineer, where he uses
PowerShell to automate complex processes. In addition to automation through PowerShell,
he enjoys leveraging Azure and Intune to reduce organizations’ on-premises footprint while
maintaining high availability.

Michael Zanatta

Role: Author and Editor-in-Chief

Michael is a Microsoft MVP (Cloud and Datacenter Management), PowerShell SME, Speaker,
Advocate, and Streamer, contracting as a PowerShell Developer for the Australian Federal
Government. Michael has contributed to the PowerShell Conference Book Volume 2 and Volume
3, first as an author and stand-in editor on Volume 2 and then as the Senior Editor on Volume 3.
You can follow him on Twitter, @PowerShellMich1⁴⁶, or LinkedIn⁴⁷. Michael is a co-founder
of the Brisbane Infrastructure DevOps User Group⁴⁸ YouTube channel⁴⁹ and author of his
Livestream on Twitch⁵⁰.

Nicholas Bissell

Role: Author and Senior Editor

Though Nicholas’s formal background is in research chemistry, he has over ten years of
programming experience. In his spare time, he is a freelance software developer and mentor.
Nicholas has previously worked as a sound engineer and a game developer. He is passionate
about automation, open-source software, and the PowerShell community. You can find him on
GitHub⁵¹, StackOverflow⁵², or Reddit⁵³.

⁴⁶https://twitter.com/PowerShellMich1
⁴⁷https://www.linkedin.com/in/michael-zanatta-61670258/
⁴⁸https://www.meetup.com/Brisbane-PowerShell-User-Group
⁴⁹https://www.youtube.com/channel/UCQfLvFYohCCm_gTPEUfaAbw
⁵⁰https://www.twitch.tv/PowerShellMichael
⁵¹https://github.com/TheFreeman193
⁵²https://stackoverflow.com/users/12959131/thefreeman193
⁵³https://www.reddit.com/user/thefreeman193

https://twitter.com/PowerShellMich1
https://www.linkedin.com/in/michael-zanatta-61670258/
https://www.meetup.com/Brisbane-PowerShell-User-Group
https://www.youtube.com/channel/UCQfLvFYohCCm_gTPEUfaAbw
https://www.twitch.tv/PowerShellMichael
https://github.com/TheFreeman193
https://stackoverflow.com/users/12959131/thefreeman193
https://www.reddit.com/user/thefreeman193
https://twitter.com/PowerShellMich1
https://www.linkedin.com/in/michael-zanatta-61670258/
https://www.meetup.com/Brisbane-PowerShell-User-Group
https://www.youtube.com/channel/UCQfLvFYohCCm_gTPEUfaAbw
https://www.twitch.tv/PowerShellMichael
https://github.com/TheFreeman193
https://stackoverflow.com/users/12959131/thefreeman193
https://www.reddit.com/user/thefreeman193

Contributors ix

Rob Derickson

Role: Quality Assurance Editor

Rob is an IT professional with 19 years in the field. Since 2008, PowerShell and the PowerShell
community have been instrumental in his career success. You can find him on the PowerShell
Discord server⁵⁴ and tweeting nothing on Twitter @RobDerickson⁵⁵.

Steven Judd

Role: Senior Editor

Steven Judd is a 25+ year IT Pro and currently a Windows Systems Engineer at Meta Platforms
Inc.⁵⁶ with an emphasis on Enterprise Messaging and Digital Loss Prevention. He has been
using PowerShell since 2010. He was an author and editor on The PowerShell Conference Book
Volume 3⁵⁷, has co-developed a custom training program for PowerShell, and is an occasional
presenter at PowerShell user groups. He loves to help people learn and recognize the value of
automation. He spends his free time learning more about PowerShell, digital security, and cloud
technologies, along with creating and telling Dad jokes⁵⁸. You can find him hanging out on
the PowerShell Discord Server⁵⁹ bridge channel, taking care of his family, running marathons,
playing the cello, plus a handful of other hobbies he can’t seem to quit. Please follow him on
Twitter, @stevenjudd⁶⁰, read his blog⁶¹, and review, use, and improve his code on GitHub⁶².

Wes Stahler

Role: Technical Editor

Wes Stahler has over 25 years of Information Technology experience as a Developer, Systems
Administrator, and Manager of an Identity and Access Management team. He enjoys evangeliz-
ing PowerShell’s merits and has presented numerous times nationally at the Microsoft Health
Users Group and locally for the Central Ohio PowerShell Users Group. He strives to automate
within Exchange and Active Directory and advocates on the “Power of the Shell.” Available on
Twitter at @stahler⁶³.

⁵⁴https://aka.ms/psdiscord
⁵⁵https://twitter.com/RobDerickson
⁵⁶https://www.linkedin.com/in/stevenjudd/
⁵⁷https://leanpub.com/psconfbook3
⁵⁸https://www.youtube.com/watch?v=BZZM6i8AE1Y
⁵⁹https://aka.ms/psdiscord
⁶⁰https://twitter.com/stevenjudd/
⁶¹https://blog.stevenjudd.com/
⁶²https://github.com/stevenjudd
⁶³https://twitter.com/stahler

https://aka.ms/psdiscord
https://aka.ms/psdiscord
https://twitter.com/RobDerickson
https://www.linkedin.com/in/stevenjudd/
https://www.linkedin.com/in/stevenjudd/
https://leanpub.com/psconfbook3
https://leanpub.com/psconfbook3
https://www.youtube.com/watch?v=BZZM6i8AE1Y
https://aka.ms/psdiscord
https://twitter.com/stevenjudd/
https://blog.stevenjudd.com/
https://github.com/stevenjudd
https://twitter.com/stahler
https://aka.ms/psdiscord
https://twitter.com/RobDerickson
https://www.linkedin.com/in/stevenjudd/
https://leanpub.com/psconfbook3
https://www.youtube.com/watch?v=BZZM6i8AE1Y
https://aka.ms/psdiscord
https://twitter.com/stevenjudd/
https://blog.stevenjudd.com/
https://github.com/stevenjudd
https://twitter.com/stahler

Acknowledgements
This book was made possible by a multitude of people, not just the initial team of editors and
the writers, but their family, friends, mentors, peers, and—most of all—you, the readers.

By reading this book, you’re helping to make sure that our field expands and grows, creating
opportunities for folks who otherwise might never see them. That’s incredible and needs no
qualifiers.

This project owes itself to the PowerShell community and everyone who gave it their time,
energy, and money.

x

Disclaimer
All code examples shown in this book have been tested by each chapter author and every effort
has been made to ensure that they’re error-free. However, since every environment is different,
the examples should be run in a non-production environment and should be thoroughly tested
before being used in a production environment. It’s recommended that you use a non-production
or lab environment to thoroughly test code examples used throughout this book.

All data and information provided in this book is for educational purposes only. The editors
make no representations as to the accuracy, completeness, currentness, suitability, or validity
of any information in this book and won’t be liable for any errors, omissions, or delays in this
information or any losses, injuries, or damages arising from its display or use. All information
is provided on an as-is basis.

This disclaimer is provided simply because someone, somewhere will ignore this disclaimer and
if they do experience problems or a “resume generating event,” they have no one to blame but
themselves. Don’t be that person!

xi

Introduction
By Michael Zanatta

Hello Reader!

Modern Automation with PowerShell was an initiative between Steven Judd and myself to create
a textbook as a love-letter for the community by the community. We wanted to provide an
intermediary resource, different in style from the previous PowerShell Conference Books. We
wanted to focus on a deeper understanding of the inner workings of PowerShell, share best
practices and tips, and have this book serve as a study resource and lesson guide. All royalties
for this book will go to the “OnRamp” program (see below).

To our amazing Authors and Editors, and also their Partners and Families, thank you for your
time and sacrifice. This book could not exist without you.

To you, the Reader, I hope you enjoy reading this book as much as we enjoyed writing it.

This is a Leanpub “Agile-published” book. All the work for this book has been completed.
However, as issues are reported, supplementary updates may be released. Leanpub will
send out an email when the book is updated. These revisions will be available at no extra
charge. To provide feedback, use the “Email the Authors” link on the book’s Leanpub
web page⁶⁴. Whether it’s a code error, a typo, or a request for clarification, our editors
will review your feedback, make changes, and re-publish the book. Unlike the traditional
paper publishing process, your feedback can have an immediate effect.

About OnRamp

OnRamp is an entry-level education program focused on PowerShell and Development Opera-
tions. It is a series of presentations that are held at the PowerShell + DevOps Global Summit⁶⁵
and is designed for entry-level technology professionals who have completed foundational
certifications such as CompTIA A+ and Cisco IT Essentials. No prior PowerShell experience is
required. Basic knowledge of server administration is beneficial. OnRamp ticket holders will be
able to network with other Summit attendees who are attending the scheduled Summit sessions
during keynotes, meals, and evening events.

Through fundraising and corporate sponsorships, The DevOps Collective, Inc.⁶⁶ will be offering
several full-ride scholarships to the OnRamp track at the PowerShell + DevOps Global Summit.

All (100%) of the royalties from this book are donated to the OnRamp scholarship
program.

⁶⁴https://leanpub.com/modernautomationwithpowershell
⁶⁵https://powershell.org/summit/
⁶⁶https://devopscollective.org/

xii

https://leanpub.com/modernautomationwithpowershell
https://leanpub.com/modernautomationwithpowershell
https://powershell.org/summit/
https://devopscollective.org/
https://leanpub.com/modernautomationwithpowershell
https://powershell.org/summit/
https://devopscollective.org/

Introduction xiii

More information about the OnRamp track⁶⁷ at the PowerShell + DevOps Global Summit and
their scholarship program⁶⁸ can be found on the PowerShell.org⁶⁹ website.

See the DevOps Collective Scholarships cause⁷⁰ on Leanpub.com⁷¹ for more books that support
the OnRamp scholarship program.

Prerequisites

Prior experience with PowerShell is recommended. This book is written for intermediate
audiences with intermediate experience with PowerShell.

A Note on Code Listings

Paperback Readers can access digital copies of examples from the book at:
https://github.com/devops-collective-inc/Modern-IT-Automation-with-
PowerShellExtras/tree/main/Edition-01/Examples⁷²

If you’ve read other PowerShell books from LeanPub, you probably have seen some variation on
this code sample disclaimer. The code formatting in this book only allows for about 75 characters
per line before the text will start automatically wrapping. All attempts have been made to keep
the code samples within that limit, although sometimes you may see some awkward formatting
as a result.

For example:

Get-CimInstance -ComputerName $computer -ClassName Win32_LogicalDisk -Filter 'DriveTyp\
e=3' -Property DeviceID, Size, FreeSpace

Here, you can see the default action for a line that is too long—it gets word-wrapped, and a
backslash is inserted at the wrap point to let you know it has wrapped. Attempts have been
made to avoid those situations, but they may sometimes be unavoidable. Instead of having a
long command that wraps, splatting⁷³ is used instead.

⁶⁷https://powershell.org/summit/summit-onramp/
⁶⁸https://powershell.org/summit/summit-onramp/onramp-scholarship/
⁶⁹https://powershell.org/
⁷⁰https://leanpub.com/causes/devopscollective
⁷¹https://leanpub.com/
⁷²https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Examples
⁷³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting?view=powershell-7

https://powershell.org/summit/summit-onramp/
https://powershell.org/summit/summit-onramp/onramp-scholarship/
https://powershell.org/
https://leanpub.com/causes/devopscollective
https://leanpub.com/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Examples
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Examples
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting?view=powershell-7
https://powershell.org/summit/summit-onramp/
https://powershell.org/summit/summit-onramp/onramp-scholarship/
https://powershell.org/
https://leanpub.com/causes/devopscollective
https://leanpub.com/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Examples
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting?view=powershell-7

Introduction xiv

$params = @{
ComputerName = $computer
ClassName = 'Win32_LogicalDisk'
Filter = 'DriveType=3'
Property = 'DeviceID', 'Size', 'FreeSpace'

}

Get-CimInstance @params

If you read this book on a Kindle, tablet, or another e-reader, use the PDF manuscript,
not EPUB. EPUB has known formatting issues with Block Types (For Example, Warning,
Tips, Errors), Code Samples, and Annotations.

When writing PowerShell expressions, you shouldn’t be limited by these constraints. All down-
loadable code samples will be in their original form.

Feedback

Have a question, comment, or feedback about this book? Please share it via the Leanpub forum
dedicated to this book. Once you’ve purchased this book, log in to Leanpub, and click on the
“Join the Forum” link in the Feedback section of this book’s webpage⁷⁴.

⁷⁴https://leanpub.com/modernautomationwithpowershell

https://leanpub.com/modernautomationwithpowershell
https://leanpub.com/modernautomationwithpowershell

I Collaboration

“Coming together is a beginning, staying together is progress, and working together is success.”
— Henry Ford

Collaborationwithin Software Development andDevOps teams is crucial for your team’s success.
In this section, you’ll cover the fundamentals of writing, checking in code using Git, and
performing code reviews for peers. Within Git, an emphasis will be placed on covering critical
aspects of the technology, focusing on terminology, branching structure, creating and merging
branches, and inevitably starting again when things really go wrong. Code reviews will focus
on how to start, things to consider, and most importantly, best practices.

Onwards!

1. Introduction to Git
Git is source code management software that allows many individuals to contribute to a project
at the same time. Every contributor of a Git project has their own local files to which they make
and commit changes. This makes Git a distributed version control system, as opposed to the
server-client model. After edits are finished, they can submit a pull request to have their changes
pulled into the larger project. This chapter introduces you to Git, giving you the tools needed to
contribute to a larger project or even track changes on your own project in a Git repository.

1.1 Understanding Terminology

There are many terms in Git. Below are a few terms you should understand before starting.

Branch: Separates the changes of a project. Creating branches allows features and fixes to be
added in a way that allows the main branch to be unaffected by changes until the feature or fix
is completed and tested. A branch should be incorporated back into the main branch when it’s
complete. The main branch of a project can be renamed, but is commonly initialized as either
main or master and can also be referred to as the default branch.

Commit:A snapshot or ‘checkpoint’ of the changes to a branch. This can be thought of as hitting
the save button on a project. All the commits in a branchmake up its history and define its current
state.

Fork: A new repository created (‘copied’) from an existing repository. Forks are typically used
when a new project is created using another project’s code as its base. The changes of a fork can
be incorporated back into the original project, but this isn’t always the case.

Repository (repo): A directory and its contents where Git has been initialized. Initializing Git
creates a hidden .git folder that contains project metadata and tracks changes in the directory.
You can start a Git repository on your local system or you can clone a remote repository stored
on a host like GitHub.

This chapter uses the terms folder and directory interchangeably.

2

Introduction to Git 3

Git Sample

1.2 Creating a Local Repository

To follow along, you need Git installed on your system. There are several ways to install Git
using package managers and other software installation tools. The official Git page can be found
at git-scm.com¹ and should be referenced for installation steps.

Once Git is installed, configure your username and email address:

Example 1: Setting the Git global username

git config --global user.name "[firstname lastname]"

Set a name that’s identifiable and can be used for credit in version history:

¹https://git-scm.com/

https://git-scm.com/
https://git-scm.com/

Introduction to Git 4

Example 2: Setting the Git global email
git config --global user.email "[valid-email]"

If using GitHub or another service, use the email associated with your account. This allows the
service to identify you and associate your account with each history marker.

Once configured, open PowerShell and create your project directory. These examples use
C:\Repo as the base path. Depending on your system permissions, operating system, or pref-
erence, you may want to use a different directory:

Example 3: Creating a directory for the Git repository
New-Item -Type Directory -Path C:\Repo\Project

Directory: C:\Repo

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 2/26/2022 10:29 AM Project

Once created, navigate to the folder:

Example 4: Setting the working directory to where the Git repository will be
Set-Location -Path C:\Repo\Project\

The PowerShell prompt should display your current folder:

PS C:\Repo\Project>

Initialize the folder as a Git repository:

Example 5: Initializing a new repository with git init

git init -b main

Initialized empty Git repository in C:/Repo/Project/.git/

Currently, the default branch name of a new repository in Git is master, but this will
soon change to main.² You can use the -b <name> parameter of git init to set the
default branch. You can also control the default name for default branches with the
init.defaultbranch config setting.

You’ll notice that this directory now contains the .git subdirectory.

²Git developers. (2022, Jul. 04). git-init Documentation. Git Documentation. [Online]. Available: https://git-scm.com/docs/git-init.
[Accessed: Jul. 15, 2022].

https://git-scm.com/docs/git-init

Introduction to Git 5

Example 6: Displaying the hidden .git directory

Get-ChildItem -Hidden

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--h-- 2/26/2022 10:31 AM .git

The .git directory includes files and folders that contain the metadata for your Git repository.
Many of the files in the .git folder are human readable using a text editor, but you should avoid
changing them unless you know what you’re doing.

1.3 Cloning an Existing Repository

If you’re contributing to an existing project, you’ll want to clone the contents of the existing
repository to a local directory on your system. Start by navigating to the path where you want
to clone the project.

Example 7: Setting the working directory to the parent that’ll contain the cloned Git repository

Set-Location -Path C:\Repo\

PS C:\Repo>

In the below example, you’ll build the URL string in the variable $Extras, since the repository
URL is long. Use the command git clone followed by the URL path of the repository you
would like to clone. In this example, the path is from the variable $Extras, which points to
the Extras³ repository for this book. By default, the local directory name matches the remote
repository name. To make the local directory name more friendly, add the string ‘MITA-Extras’
as an additional parameter.

Example 8: Cloning a remote Git repository to create a local one

1 $Extras = 'https://github.com/devops-collective-inc/'
2 $Extras += 'Modern-IT-Automation-with-PowerShellExtras'
3 git clone $Extras 'MITA-Extras'

³https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras

Introduction to Git 6

Cloning into 'MITA-Extras'...
remote: Enumerating objects: 47, done.
remote: Counting objects: 100% (25/25), done.
remote: Compressing objects: 100% (17/17), done.
remote: Total 47 (delta 6), reused 18 (delta 5), pack-reused 22
Receiving objects: 100% (47/47), 13.47 KiB | 1.22 MiB/s, done.
Resolving deltas: 100% (10/10), done.

This can take some time depending on the project. When done, you’ll end up with a directory
containing all the project files, and the .git subdirectory. As you’ll see below, Git names the
directory MITA-Extras, using the second parameter you pass to git clone.

Example 9: Displaying the newly cloned Git repository

Get-ChildItem

Directory: C:\Repo

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 6/15/2022 7:10 PM MITA-Extras
d----- 3/25/2022 3:47 PM Project

1.4 Understanding the Flow of Working in Git

In the most simple projects, the workflow for Git is easy to understand. There’s a primary
working branch typically called main and a secondary branch for safely making changes
(without breaking the working branch), typically called develop.

The case-sensitivity of Git branch names can vary between platforms. To avoid confu-
sion, always use unique branch names regardless of capitalization.

An example of a simple workflow model would look like this:

Basic Workflow

Introduction to Git 7

• main Branch:Working production code
• develop Branch:Where features are added and changes occur

In the above example, themain branch keeps the working copy of code meant to be deployed in
production. Changes to the code should be made in the develop branch. When the code is tested
and known to be working, the develop branch can be merged into main using a pull request.

As projects get more complex and more contributors are making changes, the workflow can
become a bit more confusing. These projects can have many branches, each corresponding to
a feature, release, or hotfix. They can also have automated actions that trigger when code is
submitted. They may do things like lint, build, or run tests on the code. It’s this versatility that
makes Git a great tool for projects of all sizes.

One model for managing these branches is called Gitflow. With the Gitflow model, feature
branches are only committed when they’re feature-complete. Gitflow can lead to large commits,
but is a well-known branching model.

An example of Gitflow might look like the following:

Gitflow Workflow

• main Branch:Working Code.
• hotfix Branch: For severe bugs that need to go into production quickly.
• release Branch: Branch to prepare for new production release. Allows for minor bug fixes
and metadata changes.

• develop Branch: Features are merged into develop and used to create release branches.
• feature Branch: Created to work on a new feature and merged into develop when ready.

Introduction to Git 8

In the above example, the main and develop branches are the only ones that extend the length
of the project. The other branches exist for the duration of their purpose. Once merged, release,
hotfix, and feature branches are removed. Besides the branches mentioned above, there may be
sub-branches that individual contributors use to work on their piece of a feature or other branch.

Another model known as trunk-based development has become more common with the rise
of DevOps and continuous integration/continuous delivery (CI/CD) practices. The trunk-based
model comprises smaller, more frequent updates, making it the preferred model for DevOps/CI
projects.

An example of trunk-based development might look like the following:

Trunk Workflow

• main Branch:Working Code.
• release Branch: A branch to prepare for a new production release. Allows for minor bug
fixes and metadata changes. Created from the main branch.

• feature Branch: Created to work on a new feature and merged into main when ready.

In the above example, themain branch or ‘trunk’ exists for the life of the project. Release branches
are created to prepare for production release. Features are checked into the main branch. This
workflow is common in environments where continuous integration is being used.

1.5 Your First Commit

After following the steps from above, you’ll have a local Git repository created. A helpful
command to use is git status. It provides information about the repository that you’re
currently using; if it exists, if there are any changes to commit, what branch you’re on, and
more. If you run git status now, it looks like the following:

Introduction to Git 9

Example 10: Using git status to view the current status

1 Set-Location -Path C:\Repo\Project
2 git status

On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Git’s messages can be extremely helpful. They’ll often help you solve problems when you
encounter them. Follow the suggestion of git status and create files to track:

Example 11: Creating and showing the presence of a text file in your repository

1 Set-Content ./test.txt "This is a test file"
2 Get-ChildItem

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/12/2022 3:29 PM 21 test.txt

Using git status helps you discover what to do next:

Example 12: git status tells you when there are files that the repository doesn’t track yet

1 git status

On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

test.txt

nothing added to commit but untracked files present (use "git add" to track)

Add the file to the repository’s index using git add.

Introduction to Git 10

Example 13: git add adds new or changed file to the index
1 git add ./test.txt

Check the status and you’ll see the tracked file under ‘changes to be committed’.

Example 14: git status also shows staged files or changes
1 git status

On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: test.txt

Files and changes in the index are staged for the next commit. You’ll also find the term cached,
which means the same thing. Use git rm --cached <file> to remove files from the index.
git restore --staged <file> removes changes to files in the index, which might include
removing the whole file.

There are often multiple ways to do a similar task in Git.

The next step is to use git commit and provide a message using -m parameter followed by your
message in quotation marks. If you don’t provide a message when running git commit, you’ll
be prompted to enter one via the configured text editor. By default, this is a command-line text
editor.

Change Git’s text editor with git config --global core.editor <path>.

Example 15: Creating your first commit with git commit
git commit -m "added my first file"

[main (root-commit) 3bab6a6] added my first file
Committer: John Doe <jdoe@doe.com>
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 test.txt

The term root-commit means the first commit of a Git repository, and all new commits and
branches build on this. 3bab6a6 is the first seven characters of the hash of the data in the commit.
The first seven or eight characters of a commit’s hash are commonly used to identify the commit
without displaying the whole hash.

Run git status to see if there are any other steps that need to be completed:

Introduction to Git 11

Example 16: git status no longer shows the changes because they’re in the latest commit

git status

On branch main
nothing to commit, working tree clean

Theworking treemeans the actual files and directories in the repository apart from .git.

Since there are no uncommitted changes, there’s nothing to do.

By running the command git log you can show the status of commits and display useful
information that’ll be used in the event a commit needs to be rolled back.

Example 17: git log shows the commit history backward from the current point

git log

commit 3bab6a6a6886f8b5e5f6a56dd4c01d5812cd2006 (HEAD -> main)
Author: John Doe <jdoe@doe.com>
Date: Sat Mar 12 15:35:33 2022 -0500

added my first file

As shown above, the commit hash, author, date, and message can be seen from the previous
commit. Notice the full commit hash includes the seven characters 3bab6a6 you saw in Example
15.

HEAD refers to what Git is looking at in the current repository. Think of it like a pointer to the
latest snapshot of the current branch. HEAD currently points to main, the name of the current
branch. main currently points to the commit you’ve just made.

If you made another commit, main would now point to that new commit. The new commit
would, in turn, point to the last one, forming a chain of history and changes.

A Git Commit Chain

The single arrow is a pointer to another object, and the double arrow points to the parent of the
commit. In these diagrams, the rightmost commits are the ‘oldest’ or, more correctly, the furthest
ancestors. Using this logic, the current state of your Git repository should be:

Introduction to Git 12

The Current State

HEAD and main are references, or refs. 3bab6a6 is a shortened commit hash and represents a
commit object. HEAD is a special ref that usually points to the head (tip) of a branch, such as
main.

1.6 Creating a Branch

As mentioned previously, a branch is a way to separate changes in code. Each branch has a
timeline of tracked changes that begin from the point the branch is created from its parent branch.
In a simple workflow, the development branch is where all changes are made. When a change
is finished and tested in the development branch, it can then be merged into the main branch
using a pull request.

On a website like GitHub, you can create branches using the web interface under the repository
page, but it can also be done from the command line. Creating and switching to an existing
branch are similar commands leveraging the git checkout command. This command can do
lots of other things, but creating and switching between branches is the most important to know
for now.

From your project’s directory, check the status to display the current branch:

Example 18: Making sure there are no uncommitted changes with git status

git status

On branch main
nothing to commit, working tree clean

Display all branches in the repository to check if your branch already exists:

Example 19: git branch -a lists all branches in the repository

git branch -a

* main

Introduction to Git 13

The asterisk * next to main tells you what branch you’re currently on. If a branch exists on
a remote repository (for example on GitHub) but doesn’t show up locally, try git fetch to
pull those branches from the remote repository. git fetch gets all the history from a remote
repository. If you’ve cloned another repository, your local one already has a remote pointer called
origin, which is the URL of the remote you cloned. If you’ve initialized a new Git repository, it
won’t have any remotes, yet.

In this example, the Git repository is only local and no remote branches exist. The command git
checkout -b creates a new branch and switches to it.

Example 20: Creating and switching to a new branch with git checkout -b

git checkout -b develop

Switched to a new branch 'develop'

View the state of your repository now, with git status.

Example 21: The status shows you’re now on a new branch called develop

git status

On branch develop
nothing to commit, working tree clean

Check if anything has changed in your working tree with Get-ChildItem.

Example 22: Changing to a different branch doesn’t affect the working tree

Get-ChildItem

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/13/2022 11:25 AM 21 test.txt

In the above commands, a new branch was created called develop. git status shows that the
active branch is develop, and the file system is unchanged.

Take a look at the diagram again. The repository now looks like this:

Introduction to Git 14

Current Repository State

Switching to another branch only changes what HEAD points to. Currently, both branches have
the same history (they point to the same commit) since you created develop from main.

For this example, changes can be made to differentiate this branch from main, as if it was a
feature added to the develop branch.

Example 23: Changing the working tree while on the develop branch

Add-Content ./test.txt "This is a test v2.0"
New-Item -Type File -Path ./newassets.lib

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/24/2022 1:40 PM 0 newassets.lib

Inspect the working tree and observe the new file and the change to the size of test.txt.

Example 24: Showing the working tree after the changes

Get-ChildItem

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/24/2022 1:40 PM 0 newassets.lib
-a---- 3/24/2022 1:39 PM 42 test.txt

Inspect the contents of test.txt, and notice the new line.

Introduction to Git 15

Example 25: Showing the changes to test.txt with Get-Content

Get-Content ./test.txt

This is a test file
This is a test v2.0

In the example, a new line is added to the test file and a new file called newassets.lib is created.

In order for the changes to be tracked in the branch, the changes need to be added and committed.
Running git status helps you if you don’t know what to do.

Example 26: git status also provides tips about what to do next

git status

On branch develop
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: test.txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

newassets.lib

no changes added to commit (use "git add" and/or "git commit -a")

Unlike before, there are both files not yet tracked, and changes not yet staged. All files in the
directory can be added to the index with git add ., or individually added with a unique file
name. In this example, all new files and changes are included:

Example 27: Staging all changes in the working tree into the index

git add .
git status

On branch develop
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: newassets.lib
modified: test.txt

As the output suggests, the next step is to commit those changes to the current branch:

Introduction to Git 16

Example 28: Committing changes on the new branch develop

git commit -m "First commit to develop"

[develop 2bc6d24] First commit to develop
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 newassets.lib

Notice the new short hash 2bc6d24 is different because the data has changed. Check the status
once again with git status.

Example 29: The status after the commit shows the changes are now incorporated in the branch

git status

On branch develop
nothing to commit, working tree clean

The repository history now looks like this:

Current Repository History

The double arrow shows that 3bab6a6 is the parent of 2bc6d24.

Now that the changes were committed to develop, switching branches shows the differences
between main and develop. Since the main branch already exists, use git checkout without
the -b parameter to switch branches without creating a new one:

Example 30: Switching back to themain branch

git checkout main

Introduction to Git 17

Switched to branch 'main'

Two things have happened this time. First, HEAD now points to main again.

HEAD Pointing to main

This time, though, the branches have different histories. Git changes all files in the working tree
(the actual files in the repository) to match the state saved in the latest commit of main. In this
case, it’s the state at commit 3bab6a6. Prove this by looking at the contents of the working tree.

Example 31: Inspecting the working tree after switching branches

Example 31a: Inspect the working tree
Get-ChildItem

Example 31b: Inspect the contents test.txt
Get-Content ./test.txt

Example 31a:

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/24/2022 1:59 PM 21 test.txt

Example 31b:
This is a test file

In the example, newassets.lib no longer exists and test.txt has been reverted to its previous state
where the ‘v2.0’ line wasn’t included. The changes you made on the develop branch are gone,
but not lost. These are safely saved in the commit (2bc6d24) you made on develop.

Example 32: Showing the two branches with different histories

git branch -a

Introduction to Git 18

develop
* main

Once again, the asterisk * signifies the main branch is selected.

1.7 Merging Branches

The git merge command can be used when working in a local repository to combine the
changes from develop into main.

When using a remote repository like GitHub, you can typically submit a Pull Request or PR from
the repository’s webpage. The PR notifies others on the project of changes and allows them to
approve and merge those changes.

Another way you can use a pull request is to merge changes between your repository and another.
As an example, if youwanted to contribute to an open-source project, youwould start by creating
a fork of the repository. The fork creates a copy of the repository under your account. You
can change your forked copy and then submit a PR between the two repositories (the original
and your forked version). If the owner of the original repository approves your changes, they’ll
become part of that repository.

The example below merges the changes from develop into the main branch.

Example 33: Merging the contents of develop into main

Example 33a: Switch to the 'main' branch
git checkout main

Example 33b: Merge the changes from 'develop' into the current branch
git merge develop

Example 33a:
Switched to branch 'main'

Example 33b:
Updating 3bab6a6..2bc6d24
Fast-forward
newassets.lib | 0
test.txt | 1 +
2 files changed, 1 insertion(+), 0 deletions(-)
create mode 100644 newassets.lib

Fast-forward in the output is the merge mode that Git used. Since there are no changes onmain
and it’s an ancestor of develop, Git only needs to add the additional commit from develop to the
history of main. The branch now looks like this:

Introduction to Git 19

The Current Repository State

main and develop now have the same histories. Inspect the working tree to prove this.

Example 34: Inspecting the working tree ofmain after merging

Example 34a: Inspect the working tree
Get-ChildItem

Example 34b: Inspect the contents of test.txt
Get-Content ./test.txt

Example 34a:

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/25/2022 2:06 PM 0 newassets.lib
-a---- 3/25/2022 2:06 PM 42 test.txt

Example 34b:
This is a test file
This is a test v2.0

All the changes from develop have been merged into themain branch. In the above example, you
can see that newassets.lib was created and that test.txt contains the ‘v2.0’ update.

1.7.1 Merge Commits

When fast-forwarding isn’t possible, Git creates a new commit that contains the changes from
both of the branches you’re merging. This commit has two parents—the latest commit from each
branch—and is called a merge commit.

Start by resetting the main branch back to the state it was in before the fast-forward merge.
You’ll find out more about resets later in the chapter.

Introduction to Git 20

Example 35: Resetting the main branch to before the merge

git reset --hard 3bab6a6

HEAD is now at 3bab6a6 added my first file

Add a new file and commit it to main:

Example 36: Resetting the main branch to before the merge

Set-Content anotherfile.txt "This is another file"
git add ./anotherfile.txt
git commit -m "Added another file"

[main 89cc2e5] Added another file
1 file changed, 1 insertion(+)
create mode 100644 anotherfile.txt

Your repository now looks like this:

Current Repository History

Try merging in the develop branch again:

Example 37: Creating a merge commit to merge two sets of changes

git merge develop

Introduction to Git 21

Merge made by the 'recursive' strategy.
newassets.lib | 0
test.txt | 1 +
2 files changed, 1 insertion(+)
create mode 100644 newassets.lib

Git can’t fast-forward main, because the 89cc2e5 commit would be lost, or orphaned. If the
two branches have changed different files, or different lines of the same file, they’re still merge-
compatible. Git creates a new commit with changes from both branches. This commit has a new
hash since the data differs from that of either parent commit. Check this commit by looking at
the last log entry.

Example 38: Viewing the merge commit in the Git log

git log --max-count 1

commit 39d4b2c31e93b56f419555e1146568ef28711050 (HEAD -> main)
Merge: 89cc2e5 2bc6d24
Author: John Doe <jdoe@doe.com>
Date: Sat Mar 12 15:45:26 2022 -0500

Merge branch 'develop'

Current Repository History

The merge commit 39d4b2c has two parents, 2bc6d24 from develop and 89cc2e5 from main.
You’ve now reconciled the two histories that had diverged. If develop was a feature branch, it
would now be safe to delete it. All the history from develop is reachable frommain, so no commits
would be orphaned by deleting the branch.

1.7.2 Merge Conflicts

If two branches that you want to merge change the same data in the same file, it creates amerge
conflict. In these instances, Git can’t automatically decide which data it should keep, or whether
it should take bits from both branches.

Introduction to Git 22

When you run git merge under these conditions, Git pauses the merge, allowing you to resolve
the conflicts manually. Git inserts both sets of changes into the conflicting file, with separators
to help you identify where they’re from.

To try this, reset main to the state it was in before the merge, again.

Example 39: Resetting the main branch to before the merge

git reset --hard 3bab6a6

HEAD is now at 3bab6a6 added my first file

Add a different second line to test.txt than the one in develop.

Example 40: Adding a conflicting line to test.txt on main

Example 39a: Commit changes to line 2 of test.txt
Add-Content ./test.txt 'This is a different line'
git add ./test.txt
git commit -m 'Added a different second line'

Example 39b: View the changed file
Get-Content ./test.txt

Example 39a:
[main 6d442df] Added a different second line
1 file changed, 1 insertion(+)

Example 39b:
This is a test file
This is a different line

Your repository now looks like this:

Current Repository State

This time, though, the two commits 2bc6d24 from develop and 6d442df frommain conflict with
each other. Run git merge again and observe that a merge conflict results.

Introduction to Git 23

Example 41: Attempting to merge develop into main with conflicts in test.txt

Example 40a: Try to merge
git merge develop

Example 40b: View the status
git status

Example 40c: View the conflicted file
Get-Content ./test.txt

Example 40a:
Auto-merging test.txt
CONFLICT (content): Merge conflict in test.txt
Automatic merge failed; fix conflicts and then commit the result.

Example 40b:
On branch main
You have unmerged paths.

(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Changes to be committed:
new file: newassets.lib

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: test.txt

Example 40c:
This is a test file
< <<<<<< HEAD
This is a different line
=======
This is a test v2.0
>>>>>>> develop

Don’t panic! There are a couple of approaches to resolving merge conflicts. The first is to choose
the data you want to keep manually and change the file. Pick the line to keep, and remove the
rest, including the three separators. Alternatively, you can keep all the changes in a file from one
branch by checking it out.

Example 42: Resolving the conflict by keeping the test.txt changes from develop

Example 41a:
git checkout --theirs ./test.txt
git add ./test.txt

Example 41b:
git status

Introduction to Git 24

Example 41a:
Updated 1 path from the index

Example 41b:
On branch main
All conflicts fixed but you are still merging.

(use "git commit" to conclude merge)

Changes to be committed:
new file: newassets.lib
modified: test.txt

Some important terminology to know is ours and theirs. ours refers to the changes from the
current branch, which ismain in this case. theirs refers to the changes from the incoming branch,
which is develop in this case. If you wanted to keep the changes from main, you would run git
checkoutwith --ours, instead. git add adds the resolved changes to the index so that Git can
complete the merge.

As you can see from the output of git status, there’s only one more step. To complete the
merge and create the merge commit, run git commit.

Example 43: Completing the conflicted merge with git commit

git commit

hint: Waiting for your editor to close the file...
[main 86490e9] Merge branch 'develop'

Git prepares a merge commit message, so you don’t need to use -m 'message' unless you want
to override it. The message opens in your chosen text editor so you can interactively add any
notes about the conflict resolution. Once you close this, Git creates themerge commit, reconciling
all the changes you picked.

Your repository now looks like this:

Current Repository History

The merge commit 86490e9 has two parents as usual, but deletes the lines you didn’t keep.

Introduction to Git 25

Another option for resolving merge conflicts is to use a merge tool such as vimdiff,⁴
but this chapter doesn’t cover these.

1.8 Stashing Changes

An important task before merging is ensuring your working tree is clean, with no uncommitted
changes. While it may sometimes be safe to perform a merge without affecting those changes,
there are many instances where incoming changes from another branch interfere with your
uncommitted changes.

git stash push creates a temporary commit with the uncommitted changes in your working
tree, and stores a pointer to that commit in a special list. This means your changes are safely out
of the way, allowing you to switch branches, merge, and make commits without affecting—or
being affected by—those changes.

By default, git stash push only stashes changes that the repository is tracking, such
as files in the index. To stash untracked files too, include the -u switch. The -m
'<message>' parameter sets a custom message for the stash entry.

When you want the changes back, you can run git stash pop to restore them and remove that
temporary commit from the stash list. Alternatively, git stash apply restores the changes but
leaves the stash entry in the list.

The stash list acts like a stack, so each time you run git stash push, Git adds it to the top of
the list. You can, however, address individual stash items using the syntax stash@{n} where n
is the number in the list, starting at zero.

For example, git stash apply 'stash@{1}' restores the contents of the second-to-last stash
entry, but leaves it in the list. To view all your stash entries, use git stash list.

1.9 Rolling Back When Things Go Wrong

Recall that every commit has a unique ID (hash) that you can use to revert changes to a previous
state. In the event something goes wrong, using git reset --hard [hash] allows you to roll
back the current branch to a previous commit. The hard parameter has the effect of removing all
changes and forcing the reset to the provided commit. Other parameters for reset are soft and
mixed. To understand the differences between these, there are several terms you must know.

• Working Tree: The actual files and subdirectories in the repository except .git.
• Index: A list of files with uncommitted changes that have been staged using git add.
• Head: A pointer that points to the latest commit or tip of a branch, for example main or
develop.

⁴Git developers. (2022, Jul. 04). vimdiff Documentation. Git Documentation. [Online]. Available: https://git-scm.com/docs/vimdiff.
[Accessed: Jul. 16, 2022].

https://git-scm.com/docs/vimdiff

Introduction to Git 26

• HEAD: The special ref that points to a branch head.

git reset changes where a branch pointer is pointing; the below example should help explain.

Imagine a branch called main has a commit history of three commits A, B, and C. The changes
in those commits are represented as (A), (B), and (C).

Imaginary Commit History

After running git reset --soft B,main points to B. Running git status shows the changes
(C) as staged, and running git commit creates a new commit with the same changes (C). The
changes (C) show as staged because the index wasn’t reset, and still contains them. A soft reset
simply changes where a branch head is pointing. This can be useful if you want to remove a file
that was erroneously committed or change the commit message.

A Soft Reset

C is now an orphaned commit, meaning no refs or commits point to it. You can still access it
using its hash, but Git will eventually delete it as part of its garbage collection (GC).

Returning to the three commits example, A, B, and C, running git reset --mixed B does two
things. The branch head points to B, and the index matches B. If you run git commit, nothing
would happen as there are no differences between the branch head and the index.

The files in the working tree are unaffected, so the changes (C) still exist in your working
directory, but are not staged. Assuming you add the same files with git add and then commit
with git commit, there’ll now be a new commit with the changes (C). A mixed reset changes
the branch head and index, which is useful for fixing issues in a commit or removing a file that
was erroneously committed.

Introduction to Git 27

A Mixed Reset

Finally, start over again with the three commits example, A, B, and C. Running git reset --
hard B does three things. The branch head points to B, the index matches (B), and all changes
to files in the working directory are reverted to (B). All later changes to files in the working
directory are lost. Run git status to ensure there aren’t changes that you may want to keep
before doing a hard reset. A hard reset changes the branch head, index, and working tree. This
is useful for getting back to a commit with a known good state.

A Hard Reset

Only tracked files in the working tree are reset during a hard reset. Use git add --all
to ensure all files are reset. Alternatively, use git clean -f to delete all untracked files
in the working tree.

1.9.1 Hard Reset in Action

The following examples show you how to perform a hard reset.

Introduction to Git 28

Example 44: Inspecting the Git log before a hard reset

git log

commit 86490e9d4ec78c3fb9794ef3a4845d9c50f3e775 (HEAD -> main)
Merge: 6d442df 2bc6d24
Author: John Doe <jdoe@doe.com>
Date: Thu Mar 24 14:45:11 2022 -0400

Merge branch 'develop'

commit 6d442df13e3d5639572e3e66924355d467adbea4
Author: John Doe <jdoe@doe.com>
Date: Thu Mar 24 14:10:29 2022 -0400

Added a different second line

commit 2bc6d244bcd8eede120733d2bb1e455f2b959521 (develop)
Author: John Doe <jdoe@doe.com>
Date: Thu Mar 24 13:56:20 2022 -0400

First commit to develop

commit 3bab6a6a6886f8b5e5f6a56dd4c01d5812cd2006
Author: John Doe <jdoe@doe.com>
Date: Sat Mar 12 15:35:33 2022 -0500

added my first file

Using git log, you can see all previous commits in the current branch.

Current Repository History

This is where good commit messages come in handy. The commit to roll back to is the ‘added
my first file’ commit with hash starting 3bab6a6.

Only the first few unique characters in the hash are needed; enough that Git can be sure
which commit hash you mean.

Introduction to Git 29

Example 45: Performing a hard reset to commit 3bab6a6 on main

git reset --hard 3bab6a6

HEAD is now at 3bab6a6 added my first file

Inspect the working tree to confirm that the files in it were also reverted.

Example 46: Inspecting the working tree after the hard reset

Example 46a: List the files in the working tree
Get-ChildItem

Example 46b: Show the contents of test.txt
Get-Content ./test.txt

Example 46a:

Directory: C:\Repo\Project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 3/25/2022 3:05 PM 21 test.txt

Example 46b:
This is a test file

Everything is back as it was before merging develop into main.

The Reverted State

1.10 Connecting to a Remote Repository

Earlier in the chapter, git clone is used to clone a remote repository on GitHub to a local
directory. Everything else in this chapter has only made changes to the local Git repository. In

Introduction to Git 30

this example, the local Git repository is pushed to a remote repository on GitHub. Once pushed to
GitHub, the repository acts as a backup to your local files and a place where others can contribute.

To start, you’ll need a GitHub account. Most services provided by GitHub are free for public
repositories and many are also free for private ones.⁵ You can create an account⁶ on the GitHub
website to get started. Once logged in, you’ll need to create a new repository. On the homepage⁷,
click the plus + icon in the top-right corner, and then ‘New repository’:

New repository button

Choose a name for the repository. This should usually be the same or similar to the name of the
directory that contains your local one. The following examples assume you called the repository
test.

Repository name box

Set your project to Private if you don’t want others to see it. Some advanced features are disabled
for private repositories with a free account.

Repository visibility setting

There are normally options such as ‘Add a README file’ or ‘Add .gitignore.’ Ignore these, as they
initialize the repo with files and a default branch. You don’t want this since your local repository
is already initialized.

⁵GitHub. (2022). Pricing: Plans for every developer. GitHub. [Online]. Available: https://github.com/pricing#compare-features.
[Accessed: Jul. 16, 2022].

⁶https://github.com/signup
⁷https://github.com/

https://github.com/signup
https://github.com/
https://github.com/pricing#compare-features
https://github.com/signup
https://github.com/

Introduction to Git 31

Repository initial files setting

Click ‘Create repository’ to continue. On the next page, there are steps for initializing and pushing
a local repository. Find the steps that say ‘…or push an existing repository from the command
line.’ Using these steps, push your local repository to the remote GitHub one.

In the examples ahead, replace UserName with your GitHub username. If you’ve used a
different repository name than test, replace this too.

Example 47: Adding your new GitHub repository as a remote to your local one and pushingmain
git remote add origin https://github.com/UserName/test.git
git branch -M main
git push -u origin main

Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Writing objects: 100% (3/3), 247 bytes | 247.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/UserName/test.git
* [new branch] main -> main

Branch 'main' set up to track remote branch 'main' from 'origin'.

The example first adds a remote repository and calls it origin. The second command renames
the current branch to main, to ensure a branch with that name exists. This shouldn’t have any
effect if you’re using the same branch names as in the examples.

The final step is to push the main branch to the remote repository origin. The additional switch
-u to git push sets your local branch up to track the status of the same branch in the remote
repo. The term for this is setting the upstream branch.

GitHub now contains the main branch, and your local main branch tracks the remote copy, but
the develop branch is missing. To push the develop branch, run git pushwith develop or specify
all branches with git push --all origin. Use -u again to make sure the local develop branch
tracks the one on GitHub.

Introduction to Git 32

Example 48: Pushing the develop branch to GitHub
git push -u origin develop

Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 16 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 336 bytes | 336.00 KiB/s, done.
Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
remote:
remote: Create a pull request for 'develop' on GitHub by visiting:
remote: https://github.com/UserName/test/pull/new/develop
remote:
To https://github.com/UserName/test.git
* [new branch] develop -> develop

Branch 'develop' set up to track remote branch 'develop' from 'origin'.

Information in the output points out that there are changes in develop that aren’t in main; this
is expected.

When it’s time to merge changes from develop into main, the link provided allows you to create
a pull request on GitHub. The pull request is like your local merge, but happens on the remote
repository, using the web interface on GitHub. If you were to create, then merge a pull request
from develop intomain, the remotemain branch and localmain branch wouldn’t be at the same
commit anymore.

Changes made locally need to be pushed to the remote repository, and changes made remotely
need to be pulled to your local repository. The following example shows you how to pull changes
from the remote repository into your local one.

Example 49: Pulling changes to the remotemain branch into the local one
git checkout main
git pull

Updating 3bab6a6..4ea0790
Fast-forward
newassets.lib | 0
test.txt | Bin 21 -> 42 bytes
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 newassets.lib

Notice that you didn’t need to pass the remote name origin to git pull. This is because the
branch is set up to track the remote main branch of origin. If it wasn’t, you could use git
pull origin.

Under the hood, git pull runs two commands. The first, git fetch, downloads all the changes
from the remote repository and stores them separately from your local changes. The second is
usually git merge, in order to merge the changes from the remote with your local ones.

Likewise, when changes are made locally, those need to be pushed to the remote repository. In
the following examples, you’ll add changes to the develop branch, stage and commit them, and
push them to the remote repository.

Introduction to Git 33

Example 50: Switching to the develop branch before making changes

git checkout develop

Switched to branch 'develop'
Your branch is up to date with 'origin/develop'.

Example 51: Adding a new line to test.txt and committing the change

Add-Content ./test.txt "This is version 3.0"
git commit -a -m "v3.0 release"

[develop b9f1bae] v3.0 release
1 file changed, 0 insertions(+), 0 deletions(-)

Note the -a switch passed to git commit. This automatically stages all changes to tracked files
before the commit. Now your local branch is one commit ahead of the remote one. Push the
changes to the remote branch.

Example 52: Pushing local changes on develop to the remote on GitHub

git push

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 16 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 337 bytes | 337.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/UserName/test.git

2bc6d24..c27046b develop -> develop

Once again, you don’t need to specify the remote and branch names since develop is already set
up to track develop on origin. Inspect the test.txt file one more time to observe the three lines.

Example 53: Inspecting the three lines in test.txt after making changes and pushing them

Get-Content ./test.txt

Introduction to Git 34

This is a test file
This is a test v2.0
This is version 3.0

You can view the remote configuration of your repository by searching the local config.

Example 54: Inspecting the remote config of the local repo

git config --local --get-regexp '^remote'

remote.origin.url https://github.com/UserName/test.git
remote.origin.fetch +refs/heads/*:refs/remotes/origin/*
branch.main.remote origin
branch.develop.remote origin

1.11 Starting Over When Things Really Go Wrong

An advantage to using a remote repository is that there are multiple locations where the project
is saved. At a minimum, there is a local and a remote (origin for example) copy of the repository.
If other people are contributing to the project, they should have local copies as well.

If the local copy of the repository has issues, it can be reset based on the remote repository. As an
example, change the history of themain branch by soft-resetting to the first commit and creating
a new commit with all the changes.

Example 55: Squashing all the changes since the first commit into a single commit

git checkout main
git reset --soft 3bab6a6
git commit -m 'All changes in one commit'

[main a71bba5] All changes in one commit
3 files changed, 3 insertions(+)
create mode 100644 newassets.lib
create mode 100644 test2.txt

Check the status of your branch after changing the history:

Example 56: Inspecting the main branch after changing its history

git status

Introduction to Git 35

On branch main
Your branch and 'origin/main' have diverged,
and have 1 and 4 different commits each, respectively.

(use "git pull" to merge the remote branch into yours)

nothing to commit, working tree clean

The output shows that the histories are now different. The steps below reset the local branch
back to the last commit on the remote one. First, update your local copy of the remote repo.

Example 57: Fetching the latest changes from the remote

git fetch --all -v

Fetching origin
POST git-upload-pack (165 bytes)
From https://github.com/JohnDoe/test
= [up to date] main -> origin/main
= [up to date] develop -> origin/develop

The -v switch means verbose and shows you the fetch result. Now, you can hard-reset the branch
using the ref that points to the remote copy of main.

Example 58: Resetting main to the remote copy of main

git reset --hard origin/main

HEAD is now at 4ea0790 Merge pull request #1 from JohnDoe/develop

You’ve now rewritten your local history to match that of the remote branch.

Example 59: Checking the status after the remote hard reset

git status

On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

This is very useful if something goes wrong in your local repository. It also shows that you can
use git reset with refs as well as commit hashes.

Introduction to Git 36

1.11.1 Starting From Scratch

If things ever get messy in your local repository and you don’t know what to do, there are a few
brute force methods for fixing it.

If you don’t care about any of the local changes:

• Delete the local repository.
• Use git clone to pull down a fresh copy of your repository.

If you made changes and you need them:

• Copy the changed files to a new location.
• Delete the local repository.
• Clone the remote repository.
• Copy your changed files back into the local repository.
• git add . to stage the files.
• git commit -m "fixing a mess up".
• git push to push the changes to the remote repository.

1.12 Conclusion

Git is a powerful source control tool. You can use it in simple pipelines with ease or do complex
merges of larger projects. Git is an essential tool for developing with others and is a great way
to keep track of your code with time.

It’s also a tool that allows you to participate in open source projects. It can save you from
headaches when you’re working on complex scripts, programs, documents and more. SCM tools
like Git are essential in the modern day IT environment. Ensure you continue to learn about Git
and leverage the many online resources available all over the internet.

1.13 Modern IT Automation With PowerShell Extras

Some chapters in this book include or rely on additional content. All of this is available in a Git
repository on GitHub. Clone the Modern IT Automation With PowerShell Extras⁸ repository as
shown in the Cloning an Existing Repository section to access these.

1.14 Further Reading

• Official Git Documentation—git-scm.com⁹
• Git Commands Reference—git-scm.com¹⁰

⁸https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
⁹https://git-scm.com/doc
¹⁰https://git-scm.com/docs

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
https://git-scm.com/doc
https://git-scm.com/docs
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
https://git-scm.com/doc
https://git-scm.com/docs

Introduction to Git 37

• Complete List of Git Commands—git-scm.com¹¹
• GitHub Cheat Sheet—GitHub¹²
• GitHub Signup Page—GitHub¹³
• Git for Windows Installation—git-scm.com¹⁴
• Git *nix Installation—git-scm.com¹⁵
• Git macOS Installation—git-scm.com¹⁶
• Pro Git, 2nd edition (free)—git-scm.com¹⁷
• MITA Extras repository¹⁸

¹¹https://git-scm.com/docs/git#_git_commands
¹²https://training.github.com/
¹³https://github.com/signup
¹⁴https://git-scm.com/download/win
¹⁵https://git-scm.com/download/linux
¹⁶https://git-scm.com/download/mac
¹⁷https://git-scm.com/book/en/v2
¹⁸https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras

https://git-scm.com/docs/git#_git_commands
https://training.github.com/
https://github.com/signup
https://git-scm.com/download/win
https://git-scm.com/download/linux
https://git-scm.com/download/mac
https://git-scm.com/book/en/v2
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
https://git-scm.com/docs/git#_git_commands
https://training.github.com/
https://github.com/signup
https://git-scm.com/download/win
https://git-scm.com/download/linux
https://git-scm.com/download/mac
https://git-scm.com/book/en/v2
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras

2. Code Reviews
Engineers often see code reviews as part of running a formal software development team or
project, or as part of a Software Development Lifecycle (SDLC)—not a process that also applies
to teams or projects focused on IT automation. The sections ahead aim to dispel that thinking
and explore how code reviews can improve the quality of your automation.

The thought of reviewing another’s code and giving feedback can be overwhelming; something
that’s easier said than done. This chapter explores performing a code review, setting up code
reviews within your project or team, best practices used within the community, and tools you
can use to help you review code.

2.1 Purpose of Code Reviews

Code reviews aren’t only part of formal software development projects, or just for those using
Agile or Scrum methodologies and writing in programming languages like C#. Many operations
teams now see how code reviews extend to their activities. Scripting and automation are often
seen as a business-as-usual (BAU) activity, not project-led. While the approach to writing code
might differ, the outcome is the same—code is executed in production.

So how can code reviews help?

Code reviews help teams to:

1. Find and reduce bugs and issues within code, preventing issues from occurring in produc-
tion environments.

2. Improve the sharing of knowledge between team members.
3. Fulfill change management and change review processes under ITIL¹, ISO 20000², and other

standards.
4. Increase the sense of mutual responsibility for systems between team members.
5. Find better solutions to problems.
6. Improve the overall quality of the codebase.

2.2 How to Start with Code Reviews

Starting the process of running code reviews is like starting a new habit; it’s difficult to know
where to begin. There isn’t a right way or a wrong way; however, there are generally two critical
steps to ensure you get the best value from your code reviews. You should:

1. Define code conventions for your team or project.
2. Define the code review process for your team or project.
¹https://www.itil.org.uk/what-is-itil
²https://www.iso.org/standard/70636.html

38

https://www.itil.org.uk/what-is-itil
https://www.iso.org/standard/70636.html
https://www.itil.org.uk/what-is-itil
https://www.iso.org/standard/70636.html

Code Reviews 39

2.2.1 Define Code Conventions for Your Team or Project

Code conventions are a set of rules defining programming style and practices. By following the
same set of conventions, your code will be more readable and understandable by members of
your project or team.

With PowerShell, you’re likely aware of the noun-verb naming convention for cmdlets, but there
are other topics that your code conventions could cover, including:

• File organization.
• Naming of variables, functions, and methods.
• Indentation.
• Comments.
• Declarations.
• Statements.
• Using blank space.
• Capitalization.
• Code structure, and much more.

Whenworking within a team, it’s critical that you reach a consensus on how code is written. This
consensus ensures that all code, no matter who writes it, follows a standard pattern or progres-
sion. This improves the readability and understandability of the code, making contributions and
maintenance easier. Anyone in the team should be able to pick up another’s code, understand it,
review it, and change it.

It’s important that you record the rules and practices you’re following within your project, team,
or organization. They should be discoverable, allowing anyone to read and understand what
conventions they’re to use when writing code.

By developing conventions, you’re making the task of understanding code significantly faster,
and dramatically reducing the time required for those who review code to understand it and
then provide comments and feedback.

When it comes to PowerShell, developers are lucky that they can stand on the shoulders of giants.
The PowerShell Best Practices and Style Guide³ was developed by Don Jones, Matt Penny, Carlos
Perez, Joel Bennett, and other members of the PowerShell Community. These best practices have
been developed over the last decade and have become a quasi-standard within the PowerShell
community.

It’s recommended to fork the repository, then adapt and change the guidelines to meet the
requirements of your project, team, or organization.

Once you’ve defined your code conventions, link to them from your README files or contribu-
tion guides for your projects.

³https://github.com/PoshCode/PowerShellPracticeAndStyle

https://github.com/PoshCode/PowerShellPracticeAndStyle
https://github.com/PoshCode/PowerShellPracticeAndStyle

Code Reviews 40

2.2.2 Define the Code Review Process for Your Team or Project

When defining code review processes, always try to think of the what, who, and when.

• What code should be reviewed?
• Who should be involved in code reviews?
• When should code reviews be performed?

2.2.2.1 What Code Should Be Reviewed?

All code should be reviewed before it’s merged into main (your main or trunk branch) and
deployed into production. Code shouldn’t be excluded from review based upon the author’s
experience, role in the team or organization, or their seniority.

Branch policies must be configured to prevent changes being directly pushed into sensitive
branches, such as main. Code repositories utilize branch policies to protect essential branches
(e.g main or master) from accidental/intentional changes.⁴ ⁵

2.2.2.2 Who Should Be Involved in Code Reviews?

Everyone in your team or project must be involved in code reviews. Being involved in code
reviews is a great way to get experience and form a deeper understanding of a codebase. By
involving junior team members, they’re presented with the opportunity to learn from others,
even if more senior members might re-review the code.

A great piece of advice is to ensure that you don’t have a single person performing all the code
reviews for your team. This can lead to a huge bottleneck and be a source of delays and pain for
your team. It also increases the chances of mistakes making it into production. Remember, even
the most senior team members make mistakes.

2.2.2.3 When Should Code Reviews Be Performed?

The common conception is that code reviews should be performed before code is pushed into
production. This thinking is driven by the desire to protect production code and comes from
change management processes like ITIL.

There is, however, an alternative perspective of when reviews should be performed. Many
developers believe in moving processes—like reviews and security checks—as far to the left as
possible, with code reviews performed when merging into a production-like environment.

⁴Microsoft. (2022, Apr. 30). Branch policies and settings. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/azure/
devops/repos/git/branch-policies?view=azure-devops&tabs=browser. [Accessed: Sep. 15, 2022].

⁵GitHub. (2022, Aug. 18). About protected branches. GitHub Docs. [Online]. Available: https://docs.github.com/en/repositories/
configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches. [Accessed:
Sep. 15, 2022].

https://learn.microsoft.com/en-us/azure/devops/repos/git/branch-policies?view=azure-devops&tabs=browser
https://learn.microsoft.com/en-us/azure/devops/repos/git/branch-policies?view=azure-devops&tabs=browser
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches

Code Reviews 41

Code Review and Approval Flow

Consider a situation where you have development, testing, and production environments, with
the testing environment being identical to production. In this situation, you could perform code
reviews when code is pushed into the testing environment. Some might argue that code should
be re-reviewed before being pushed into production. However, if the code hasn’t changed, and
all tests and validations passed in the first review, there’s little value in an additional one. The
exception here is when screening for hidden mistakes (that may only generate errors later) and
edge-cases.

If the purpose of review before production is one of change control, apply rules on who can push
changes to production, or who can approve these changes. You should then put controls within
your deployment/release process (such as control gates).

To reduce the human effort spent on code reviews, it’s recommended that code reviews aren’t
performed until after all build and testing tasks are completed. As the chapter discusses later,
these tasks may include automated checks around code suitability and, as such, should pass
before a human reviews the code.

2.3 Things to Consider When Performing a Code
Review

Code reviews are like traditional change reviews that many operationally focused teams are
familiar with. As a reviewer, the process is less about reviewing the actual lines of code, and
more about those details between the lines.

When performing a code review, these are some useful questions to ask yourself. This isn’t a
comprehensive list, but these are common issues or questions that people encounter. Over time,

Code Reviews 42

you’ll develop your own approach and criteria.

Questions to consider:

1. Why is this change being made? Does the change resolve an issue?
2. What’s the context of the change within the bigger picture?
3. Does this change behave how the author intended? Are there potential situations that may

cause the code to behave unexpectedly? Are there any unexpected outcomes to running the
code?

4. Is the code overly complex? Could the issue be solved in a simpler way?
5. Has the change been tested appropriately? Do any tests need to be updated? Have all tests

passed?
6. Are there appropriate comments? Are they clear and useful?
7. Has any comment-based help or related documentation been updated?
8. Does the code follow the team/project conventions?
9. Are there any potential security issues introduced with this change?
10. Are errors handled or thrown appropriately?

A what-if? approach is helpful here. Make educated guesses about any knock-on (downstream)
effects that a change could cause. The more familiar you are with a codebase, the more accurately
you can predict how a change will interact with existing code.

2.4 Code Review Best Practices

There are some practices that’ll help you get the most value out of code reviews. These practices
relate less to programmatic or code issues, which you should be on the lookout for, and more to
ensuring that your overall code review process is streamlined and constructive.

2.4.1 Keep Your Changes Small

One of the most effective practices when making any change, bug fix, or a new feature is to
keep the scope of changes as small as possible. Smaller pull requests can be faster to test, review,
approve, and push into production, allowing teams to reduce the time for changes to move from
development to production.

Two rules are often quoted for the size of code changes and reviews:

1. Each change or pull request should be for a single bug, issue, or feature.
2. Limit code changes to under 400 lines—under 200 is better still.

So, what’s the driver of these rules? The processing ability of the human brain.

Ensuring a pull request solves a single bug, issue, or feature means a reviewer needs to keep track
of only a single purpose for the code—think “I need to eat an apple” compared to “I need to eat
an apple, tie my shoelaces, and sing at the same time.”

Code Reviews 43

There’s also evidence that human performance in detecting issues and defects decreasesmarkedly
with larger code changes.⁶

Introducing new features to an existing code base, a new function in a PowerShell module, for
instance, can often make it hard to follow these rules. One approach is to break up new features
where you can. For instance, if a new feature requires two new functions, you might break those
up into different pull requests. If one function depends upon the other, then you can work to
get the dependency’s review completed first. You could create a third pull request for changes to
other functions that should interact with these new ones if needed.

Code reviews require significant attention to be spent, and it can be difficult for individuals
to maintain their concentration for longer than 60 minutes. With interruptions and meetings,
spending more than this may not be possible. There’s some evidence that most defects can be
found within 60 to 90 minutes.⁷ If after an hour you’ve found several major defects that need
to be addressed, consider that any other issues still in the code could be found in the next code
review. They may also be resolved as part of resolutions for defects found already.

2.4.2 Provide Constructive Feedback

Providing and accepting feedback can be a difficult process. The process can be improved through
these three rules:

1. Feedback provided should be constructive. The reason an issue has been raised should be
clear.

2. Where possible, ask open-ended questions as they encourage deeper thought and under-
standing of issues raised. Don’t tell them how to fix an issue, guide them to the correct
solution.

3. Don’t use strong or opinionated statements.

Consider the following code and review comments:

Example 1: Don’t use strong or opinionated statements

1 # Review-Comment: Fix the name.
2 Function GetHelloWorld {
3 # Review-Comment: Don't compare with $null this way.
4 If ($MyVariable -eq $null) {
5
6 $MyVariable = 'Hello World'
7 }
8
9 # Review-Comment: Don't display output using Write-Host.

10 Write-Host $MyVariable
11 }

What problems do you see with this feedback? The comments:

⁶T. Baum, K. Schneider, A. Bacchelli. (2019). Associating working memory capacity and code change ordering with code review
performance. Empir Software Eng, vol. 24, no. 4, pp. 1762–1798. DOI: 10.1007/s10664-018-9676-8.

⁷O. Baysal, O. Kononenko, R. Holmes, et al. (2016). Investigating technical and non-technical factors influencing modern code review.
Empir Software Eng, vol. 21, no. 3, pp. 932-959. DOI: 10.1007/s10664-015-9366-8.

https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1007/s10664-015-9366-8

Code Reviews 44

• Don’t describe what the issues identified are.
• Don’t provide any direction as to how to fix the identified issues.

Now consider:

Example 2: A better approach to review comments

1 # Review-Comment: Should the function's name follow the verb-noun syntax?
2 Function GetHelloWorld {
3
4 # Review-Comment: Comparing like this can cause $null to be cast.
5 # You should instead use $null -eq $MyVariable to ensure $null is
6 # not cast.
7 If ($MyVariable -eq $null) {
8 $MyVariable = 'Hello World'
9 }

10
11 # Review-Comment: Is there a better way for output to be displayed?
12 Write-Host $MyVariable
13 }

How’s this feedback more constructive? The comments:

• Identify what each issue is.
• Provide a direction as to how to solve each issue.
• Avoid strong opinions and orders

Don’t underestimate the impact that code reviews can have on people’s confidence. Remember
to applaud and praise good solutions to problems. Not all comments need to be for issues, you
can also leave praise.

Several years ago, a junior developer inmy team had spent several days working through
a difficult bug fix. Several iterations of the code were needed before the issue could be
solved. I remember how ecstatic they were when the only comment in the review was
“Everything looks good, there are no issues. Great job!!”

Always remember that everyone has a different experience. While some may have in-depth
automation knowledge, others may only be starting on their journey.

2.4.3 Balance Nit-Picks with Major Comments

Nit-picks are somewhat unimportant comments about code—they don’t prevent merging of the
code or point out major errors. Having said this, nit-picks are still important feedback that the
author of the code needs to fix. In practice, nit-picks are often related to code style.

For example, during a code review, you might see the following code:

Code Reviews 45

Example 3: Misaligned hashtable

1 $MyHashtable = @{
2 Name=''
3 Description=''
4 Usage=''
5 }

However, your team’s style guide notes that values within a hash table should be aligned as:

Example 4: Aligned hashtable

1 $MyHashtable = @{
2 Name = ''
3 Description = ''
4 Usage = ''
5 }

This issue doesn’t affect the execution of the code; however, the code doesn’t meet the code style
expectations of the team.

As a reviewer, you need to keep a balance with nit-picking comments. No one wants to see 100
comments for 200 lines of code. Some recommendations are:

1. If you see a particular nit-pick repeated throughout the code, leave a single comment. Don’t
add a comment to every instance.

2. There can be value to marking and finding nit-picks. Consider prefixing comments with
[nit-pick] so that requesters and other reviewers can quickly differentiate critical
comments from non-critical nit-picks.

You can reduce nit-picks by using automated validation tools such as PSScriptAnalyzer⁸ and
testing suites like Pester⁹. You can learn more about Pester and testing in the Testing part of the
book. The PowerShell extension within Visual Studio Code¹⁰ also includes many settings that
can aid with sticking to a particular coding style.

If you’re struggling with the number of nit-picks within your team or project, it could be a sign
that the tooling and standards maintained within the team need to be reviewed and discussed.

2.4.4 Create Pull Request Templates

Writing a good pull request description is a great way to help reviewers know what to expect
when reviewing your code. They can aid in tracking tasks that need to be performed for every
change, such as testing, updating tests, or updating documentation. Templates can help requesters
create clear pull request descriptions and meet your organization, team, or project’s standards.

⁸https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
⁹https://pester.dev/
¹⁰https://code.visualstudio.com/

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://pester.dev/
https://code.visualstudio.com/
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://pester.dev/
https://code.visualstudio.com/

Code Reviews 46

Pull request templates are typically created at a repository level and written in Markdown.While
templates can be placed in different locations within a repository, a good option is the docs folder,
as this folder is supported by both GitHub and Azure DevOps.¹¹ ¹²

Other common locations include the repository root, or a service-specific folder such as .github
or .azuredevops. Many services also support additional templates by placing files in a folder,
such as .github/PULL_REQUEST_TEMPLATE/ or .azuredevops/pull_request_template/.

Here’s an example of a basic pull request template for PowerShell code:

Example 5: Example pull request template with checklist

1 # PR Summary
2
3 <!-- Summarize your PR between here and the checklist. -->
4
5 ## PR Checklist
6
7 + [] PSScriptAnalyzer has been run against all new/changed code.
8 + [] Pester test cases have all passed.
9 + [] Pester tests have been updated as required.

10 + [] Comment-based help has been updated as required.

Completing the checklist provides an opportunity for the requester to stop and think about their
code. Have they performed the necessary tests and checks? Are the tests all passing? Have they
followed the defined style guide?

Pull request templates aren’t only for the requester—they can be used by the reviewers as well.
Reviewers may have several steps to be completed as part of the review; these could be included
in the template and then updated or marked as completed by the reviewer.

2.4.5 When to Approve

When performing a code review, a common decision is whether a change should be approved,
rejected, or left waiting for a response from whomever requested the change.

The general principle is that reviews shouldn’t be marked as approved while there are any
outstanding open-ended questions. You should be firm but flexible on this practice.

As a team or project formalizing your code review process, ensure that everyone agrees about
when to approve, reject, or request changes or feedback. There shouldn’t be confusion about why
some changes are approved and others aren’t.

2.4.6 Talk to Each Other

Communication is critical to successful code reviews. A review should be a two-way conversa-
tion between the requester and one or more reviewers.

¹¹GitHub. (2022). Creating a pull request template for your repository. GitHub Docs. [Online]. Available: https://docs.github.com/en/
communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository.
[Accessed: Aug. 08, 2022].

¹²Microsoft. (2022, Feb. 11). Improve pull request descriptions using templates. Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates. [Accessed: Aug. 12, 2022].

https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://learn.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates
https://learn.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates

Code Reviews 47

If you’re the change requester, don’t be afraid to ask questions about the feedback that’s been
provided to you. Don’t think of reviews as a blocker to production; they’re an opportunity for
you to learn and improve your craft.

Don’t rely only on text communication on your favorite source code platform. There’s value
in having face-to-face discussions, be they in-person or virtual. When a requester is new to a
team or project, or there are a substantial number of questions and issues, try to provide—as
a reviewer—the opportunity for dedicated time with the requester. This provides them with an
opportunity to ask questions and more opportunities to share knowledge.

If you lead or manage a team, be vigilant that code reviews don’t become a back-and-forth
slugging match. This isn’t productive and doesn’t help anyone.

2.4.7 Use Automation

Automation is also key to code review productivity. There are plenty of ways automation can
help with code reviews. Automation is exceptionally useful for detecting common errors and
issues within code—the low-hanging fruit.

Any automated checks should occur before anyone performs a code review. If your automated
tests and checks discover issues, address these before review.

Your continuous integration and continuous delivery (CI/CD) pipelines should include Pester¹³
and PSScriptAnalyzer¹⁴. Pull request checks running these should succeed before a change is
reviewed.

2.5 Tools to Help with Code Reviews

As with other programming languages, there are tools available to help you in ensuring the
quality of code within PowerShell projects. These tools can be used as standalone tools or as part
of automated CI/CD deployment processes.

2.5.1 PSScriptAnalyzer

PSScriptAnalyzer is a powerful module that can help you write better PowerShell code. It’s a
static code checker for PowerShell modules and scripts, which checks the quality of the code
specified against a set of rules. These rules are based on best practices identified by the PowerShell
Team and the community. Rules include checks for uninitialized variables, usage of sensitive
types, the use of Invoke-Expression, and many more. PSScriptAnalyzer can also check for
compatibility issues between PowerShell versions, and it also has some linting support.¹⁵ If you
aren’t using PSScriptAnalyzer, you have really been missing out.

2.5.1.1 Using PSScriptAnalyzer

When you execute PSScriptAnalyzer using Invoke-ScriptAnalyzer, it’ll check your specified
PowerShell code using a default collection of built-in rules.

¹³https://pester.dev/
¹⁴https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
¹⁵Microsoft. (2022, Mar. 23). PSScriptAnalyzer module. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/

powershell/utility-modules/psscriptanalyzer/overview. [Accessed: Aug. 12, 2022].

https://pester.dev/
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://pester.dev/
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview

Code Reviews 48

Example 6: Using Invoke-ScriptAnalyzer

Invoke-ScriptAnalyzer -Path /path/to/script.ps1

PSScriptAnalyzer includes some pre-defined rule sets, which you can specify using the -
Settings parameter.

Example 7: Invoke-ScriptAnalyzer with PSGallery rule set

Invoke-ScriptAnalyzer -Path /path/to/module/ -Settings PSGallery -Recurse

At the time of writing, the current pre-defined rule sets are:¹⁶

Settings Value Description

CmdletDesign Cmdlet-specific checks.

CodeFormatting Code style checks. At the time of writing, this
rule set uses Stroustrup style.¹⁷ ¹⁸

CodeFormattingAllman Style checks based upon the Allman style.

CodeFormattingOTBS Style checks for the OTBS (One True Brace
Style) style.

CodeFormattingStroustrup Style checks for the Stroustrup style. Currently
equivalent to CodeFormatting.

DSC Checks related to DSC (Desired State
Configuration).

PSGallery Includes the checks that are performed by the
PowerShell Gallery when a module is submitted
for inclusion into the gallery.¹⁹

ScriptFunctions Checks for common issues in PowerShell script
functions.

ScriptSecurity Checks related to potential security issues
within scripts.

ScriptingStyle This focuses solely on style issues for scripts,
including the usage of comment-based help and
avoiding the use of Write-Host.

2.5.1.2 Customizing PSScriptAnalyzer Settings

There are often situations where you’ll want to change the behavior of PSScriptAnalyzer
and Invoke-ScriptAnalyzer. While you can specify and control the execution of Invoke-

¹⁶Microsoft. (2021). PSScriptAnalyzer - Engine/Settings files. PowerShell/PSScriptAnalyzer on GitHub. [Online]. Available:
https://github.com/PowerShell/PSScriptAnalyzer/tree/5797a04a61228eb3a64287d56413a035d25191d5/Engine/Settings/. [Accessed: Aug.
12, 2022].

¹⁷Microsoft. (2021, Jan. 06). PSScriptAnalyzer - CodeFormatting.psd1. PowerShell/PSScriptAnalyzer on GitHub. [Online]. Available:
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/Engine/Settings/CodeFormatting.psd1. [Accessed: Aug. 12, 2022].

¹⁸Microsoft. (2021, Jan. 06). PSScriptAnalyzer - CodeFormattingStroustrup.psd1. PowerShell/PSScriptAnalyzer on GitHub. [On-
line]. Available: https://github.com/PowerShell/PSScriptAnalyzer/blob/master/Engine/Settings/CodeFormattingStroustrup.psd1. [Ac-
cessed: Aug. 12, 2022].

¹⁹Microsoft. (2022, Mar. 23). Using PSScriptAnalyzer. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/
powershell/utility-modules/psscriptanalyzer/using-scriptanalyzer. [Accessed: Aug. 12, 2022].

https://github.com/PowerShell/PSScriptAnalyzer/tree/5797a04a61228eb3a64287d56413a035d25191d5/Engine/Settings/
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/Engine/Settings/CodeFormatting.psd1
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/Engine/Settings/CodeFormattingStroustrup.psd1
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/using-scriptanalyzer
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/using-scriptanalyzer

Code Reviews 49

ScriptAnalyzer with parameters, you can also define these within a .psd1 settings file. This
is better for long-term maintainability in your code review process. You then call Invoke-
ScriptAnalyzer, specifying the path to the file using the -Settings parameter.

Example 8: Invoke-ScriptAnalyzer with custom settings

Invoke-ScriptAnalyzer -Path MyScript.ps1 -Settings PSScriptAnalyzerSettings.psd1

2.5.1.2.1 Including and Excluding Rules

You can specify which rules to include using the IncludeRules element.

Example 9: Including rules in a custom settings file

1 # PSScriptAnalyzerSettings.psd1
2 @{
3 IncludeRules = @(
4 'PSAvoidUsingPlainTextForPassword'
5 'PSAvoidUsingConvertToSecureStringWithPlainText'
6)
7 }

You can also exclude rules using the ExcludeRules element.

Example 10: Excluding rules in a custom settings file

1 # PSScriptAnalyzerSettings.psd1
2 @{
3 ExcludeRules = @(
4 'PSAvoidUsingCmdletAliases'
5 'PSAvoidUsingWriteHost'
6)
7 }

IncludeRules and ExcludeRules both support the use of wildcards. In the example below, only
rules starting with PSDSC (the included DSC rules) are included.

Example 11: Including rules using a wildcard

1 # PSScriptAnalyzerSettings.psd1
2 @{
3 IncludeRules = @('PSDSC*')
4 }

Every PSScriptAnalyzer rule has an associated severity, and you can specify which rules are
included based on their severity.²⁰ The example below includes only rules whose alert has a
severity of error or warning.

²⁰Microsoft. (2022, Mar. 23). PSScriptAnalyzer rules and recommendations. Microsoft Docs. [Online]. Available: https://
learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules-recommendations. [Accessed: Aug. 12, 2022].

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules-recommendations
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules-recommendations

Code Reviews 50

Example 12: Including rules based on severity level

1 # PSScriptAnalyzerSettings.psd1
2 @{
3 Severity = @('Error', 'Warning')
4 }

2.5.1.2.2 Including CustomWritten Rules

You can also write your own rules for PSScriptAnalyzer as PowerShell modules, and include
these in your PSScriptAnalyzer settings.²¹ The CustomRulePath element provides a mechanism
to specify the location of PowerShell modules containing your custom rules.

Example 13: Including custom written rules

1 # PSScriptAnalyzerSettings.psd1
2 @{
3 # Import 2 custom rules modules
4 CustomRulePath = @(
5 '.\output\RequiredModules\DscResource.AnalyzerRules'
6 '.\tests\QA\AnalyzerRules\SqlServerDsc.AnalyzerRules.psm1'
7)
8
9 # Include the custom rules

10 IncludeRules = @('Measure-*')
11 }

If you want to include the default rules together with your custom rules, you can set the
IncludeDefaultRules element to $true.

Example 14: Including default rules and custom rules

1 # PSScriptAnalyzerSettings.psd1
2 @{
3 CustomRulePath = @(
4 '.\output\RequiredModules\DscResource.AnalyzerRules'
5 '.\tests\QA\AnalyzerRules\SqlServerDsc.AnalyzerRules.psm1'
6)
7
8 IncludeRules = @('Measure-*')
9

10 IncludeDefaultRules = $true
11 }

2.5.1.2.3 Defining Optional Rule Settings

Some rules have definable behavior, allowing you to change what they’ll look for based on your
own requirements. PSUseConsistentIndentation is an example of one such rule. This rule
allows you to specify what kind of indentation is used (space or tab), the indentation size in
the number of space characters, and how indentation applies to pipelines.

You can define these rules through settings using the Rules element:

²¹Microsoft. (2022, Mar. 23). Creating custom rules. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/
utility-modules/psscriptanalyzer/create-custom-rule. [Accessed: Aug. 12, 2022].

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/create-custom-rule
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/create-custom-rule

Code Reviews 51

Example 15: Specifying optional rule settings

1 #PSScriptAnalyzerSettings.psd1
2 @{
3 IncludeRules = @(
4 'PSUseConsistentIndentation'
5)
6
7 Rules = @{
8 PSUseConsistentIndentation = @{
9 Enable = $true

10 Kind = 'space'
11 PipelineIndentation = 'IncreaseIndentationForFirstPipeline'
12 IndentationSize = 4
13 }
14 }
15 }

2.5.2 PowerShell Extension for Visual Studio Code

The PowerShell Extension²² for Visual Studio Code provides a rich PowerShell authoring
experience within Visual Studio Code. The extension includes support for syntax highlighting,
code snippets, PSScriptAnalyzer, and much more.

Through the configuration of the PowerShell extension and Visual Studio Code, you can ensure
that common code formatting issues are identified earlier in the development process, before
code review. This improves code quality and reduces the effort needed for code reviews.

Visual Studio Code and extension settings are defined in the settings.json file, at either a user
or workspace level. User-level settings apply globally to every Visual Studio Code window you
open as that user. Workspace-level settings are stored and applied only when that workspace is
opened. Workspace settings override those found in user settings.²³

The advantage of workspace settings is that they apply to a specific project and are shared across
all developers on a project. A workspace is the root folder of your project, with a settings.json
file found in the .vscode subfolder.

If you wish to enforce that a particular setting has its default value, even when the setting is
configured differently at the user level, add it to the workspace settings.json file.

Let’s look at an example of a workspace settings.json file:

²²https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
²³Microsoft. (2022, Aug. 04). User and Workspace Settings. Visual Studio Code Docs. [Online]. Available: https://code.visualstudio

.com/docs/getstarted/settings. [Accessed: Aug. 12, 2022].

https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

Code Reviews 52

Example 16: An example VSCode settings.json file

1 {
2 // Recommends that PowerShell extension is installed if missing.
3 "recommendations": [
4 "ms-vscode.powershell"
5],
6
7 // Number of spaces for tab stops.
8 // Default: 4
9 "editor.tabSize": 4,

10
11 // Uses spaces instead of horizontal tabs.
12 // Default: true
13 "editor.insertSpaces": true,
14
15 // Trims trailing spaces when you save a file.
16 // Default: false
17 "files.trimTrailingWhitespace": true,
18
19 // Adds a space before and after the pipeline operator ('|') if missing.
20 // Default: True
21 "powershell.codeFormatting.addWhitespaceAroundPipe": true,
22
23 // Aligns assignment statements in a hash table or a DSC Configuration.
24 // Default: True
25 "powershell.codeFormatting.alignPropertyValuePairs": true,
26
27 // Replaces aliases with their aliased name.
28 // Default: False
29 "powershell.codeFormatting.autoCorrectAliases": true,
30
31 // Doesn't reformat one-line code blocks, such as:
32 // "if (...) {...} else {...}".
33 // Default: True
34 "powershell.codeFormatting.ignoreOneLineBlock": false,
35
36 // Adds a newline (line break) after a closing brace.
37 // Default: True
38 "powershell.codeFormatting.newLineAfterCloseBrace": true,
39
40 // Adds a newline (line break) after an open brace.
41 // Default: True
42 "powershell.codeFormatting.newLineAfterOpenBrace": true,
43
44 // Places open brace on the same line as its associated statement.
45 // Default: True
46 "powershell.codeFormatting.openBraceOnSameLine": true,
47
48 // Multi-line pipeline style settings.
49 // Default: NoIndentation
50 "powershell.codeFormatting.pipelineIndentationStyle": "NoIndentation",
51
52 // Sets the code formatting options to follow the given indent style
53 // in a way that's compatible with PowerShell Syntax.
54 // Default: Custom
55 "powershell.codeFormatting.preset": "OTBS",
56
57 // Trims extraneous spaces (more than 1 space character) before and
58 // after the pipeline operator ('|').
59 // Default: False
60 "powershell.codeFormatting.trimWhitespaceAroundPipe": true,
61
62 // Use single quotes if a string is not interpolated
63 // and its value does not contain a single quote.

Code Reviews 53

64 // Default: False
65 "powershell.codeFormatting.useConstantStrings": true,
66
67 // Use correct casing for cmdlets.
68 // Default: False
69 "powershell.codeFormatting.useCorrectCasing": true,
70
71 // Adds a space after a separator (',' and ';').
72 // Default: True
73 "powershell.codeFormatting.whitespaceAfterSeparator": true,
74
75 // Adds spaces before and after an operator ('=', '+', '-', etc.).
76 // Default: True
77 "powershell.codeFormatting.whitespaceAroundOperator": true,
78
79 // Adds a space between a keyword and its associated opening brace.
80 // Default: True
81 "powershell.codeFormatting.whitespaceBeforeOpenBrace": true,
82
83 // Adds a space between a keyword (if, elseif, while, switch, etc.)
84 // and its associated conditional expression.
85 // Default: True
86 "powershell.codeFormatting.whitespaceBeforeOpenParen": true,
87
88 // Removes redundant spaces between parameters.
89 // Default: False
90 "powershell.codeFormatting.whitespaceBetweenParameters": true,
91
92 // Adds a space after an opening brace ('{')
93 // and before a closing brace ('}').
94 // Default: True
95 "powershell.codeFormatting.whitespaceInsideBrace": true,
96
97 // Enables real-time script analysis from PowerShell Script Analyzer.
98 // Default: True
99 "powershell.scriptAnalysis.enable": true

100 }

Settings elements that begin with powershell. are for the PowerShell extension
specifically.

In the example, you can see that the PowerShell extension is recommended and a specific brace
and indentation style has been specified, as have other code format options.

You can change many of these settings, including extensions settings, in the Visual Studio Code
interface. In the toolbar, navigate to File → Preferences → Settings or use the keyboard
shortcut Ctrl + , (comma).

The user-level settings.json file can be found in the following locations, depending on your
platform:

• Windows: %APPDATA%\Code\User\settings.json.
• Linux: $HOME/.config/Code/User/settings.json.
• macOS: $HOME/Library/Application Support/Code/User/settings.json.

%APPDATA% is generally C:\Users\<username>\AppData\Roaming, and $HOME is generally
/home/<username>.

Code Reviews 54

2.6 Further Reading

• The PowerShell Best Practices and Style Guide—GitHub²⁴
• PSScriptAnalyzer Overview—Microsoft Docs²⁵
• PSScriptAnalyzer—PowerShell Gallery²⁶
• Creating a GitHub Pull Request Template—GitHub Docs²⁷
• Creating an Azure DevOps Pull Request Template—Microsoft Docs²⁸
• Pester Testing Suite²⁹
• Visual Studio Code³⁰
• Using Visual Studio Code for PowerShell Development—Microsoft Docs³¹
• PowerShell Extension for VS Code—Visual Studio Marketplace³²
• IT Infrastructure Library Overview—ITIL³³
• ISO 20000 Standard—ISO³⁴

²⁴https://github.com/PoshCode/PowerShellPracticeAndStyle
²⁵https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
²⁶https://www.powershellgallery.com/packages/PSScriptAnalyzer/
²⁷https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-

template-for-your-repository
²⁸https://learn.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates
²⁹https://pester.dev/
³⁰https://code.visualstudio.com/
³¹https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode
³²https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
³³https://www.itil.org.uk/what-is-itil
³⁴https://www.iso.org/standard/70636.html

https://github.com/PoshCode/PowerShellPracticeAndStyle
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://www.powershellgallery.com/packages/PSScriptAnalyzer/
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://learn.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates
https://pester.dev/
https://code.visualstudio.com/
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://www.itil.org.uk/what-is-itil
https://www.iso.org/standard/70636.html
https://github.com/PoshCode/PowerShellPracticeAndStyle
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://www.powershellgallery.com/packages/PSScriptAnalyzer/
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://learn.microsoft.com/en-us/azure/devops/repos/git/pull-request-templates
https://pester.dev/
https://code.visualstudio.com/
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://www.itil.org.uk/what-is-itil
https://www.iso.org/standard/70636.html

II PowerShell Testing

“Testing leads to failure and failure leads to understanding.” — Burt Rutan

First, let’s make something clear:

“If you write code, you’re a developer.”

Yes, this includes PowerShell. Anybody can write code; however, for it to be good code, it must
be maintainable and testable. This section will explore the Arrange, Act, and Assert framework,
Mocking, Unit Testing, and Parameterized Testing. Chapters will include nuances such as test
framework version, mocking applications, .NET objects, and project structure layout.

3. The AAA Approach
This chapter aims to explain using demos how to apply the Arrange, Act, and Assert (AAA)
principles when using the Pester testing framework. So what’s AAA, and what’s Pester?

3.1 Arrange, Act, and Assert

AAA stands for Arrange, Act, and Assert. This is a testing pattern where your tests are broken
into three sections. Each section is only responsible for itself.

3.1.1 Arrange

Arrange is where the test conditions are configured and set up. Any test variables or required
mocked systems can be created here if needed.

3.1.2 Act

Act is the process of invoking the actual test itself. This would call the PowerShell function being
tested directly and store the result (if there is one) in a variable.

3.1.3 Assert

Assert is where we check the test results or another condition to determine if it’s a pass or a fail.
If a fail is detected, then an error should be logged with as much information as possible.

3.1.4 Benefits of the AAA Approach

This pattern is clear and straightforward, which are two characteristics sometimes lacking in code
these days. Especially for test code, when project time and costs overrun, the first components
that are scaled back or even dropped are automated testing and documentation.

3.2 Pester 5.0

Pester¹ is considered the de facto testing framework for PowerShell. The maintainer is Jakub
Jareš², and it has been around for a few years now. There have been several major version releases,
which come with both breaking changes and continual improvements.

¹https://github.com/pester/Pester
²https://github.com/sponsors/nohwnd

56

https://github.com/pester/Pester
https://github.com/sponsors/nohwnd
https://github.com/sponsors/nohwnd
https://github.com/pester/Pester
https://github.com/sponsors/nohwnd

The AAA Approach 57

If you are new to Pester, version 5.0 is an ideal version to start with, as the project has had ample
time to mature and the process and documentation are of a high standard.

If you have previously used earlier versions of Pester, it’s recommended to review the 5.0
documentation for the list of changes to see what’s required³ to bring your test projects up to
date. For this chapter, we’re using Pester version 5.3.0, which is current at the time of writing.

3.2.1 Pester Installation

To install Pester on your system, use the following commands:

This command is optional but generally recommended. Trusting the official PowerShell
Gallery⁴ for your module installations will save hassle and time later on when installing
other modules.

Set-PSRepository -Name PsGallery -InstallationPolicy Trusted

Install the Pester module.

Install-Module -Name Pester

Import the Pester module.

Import-Module -Name Pester

Get a list of the commands in the module to confirm everything is all working as expected.

Get-Command -Module Pester

3.3 The Star Wars API Example

The example code will be a wrapper around a publicly available Star Wars Data API, which will
be hopefully more interesting than the typical calculator example.

³https://pester.dev/docs/usage/importing-tested-functions#migrating-from-pester-v4
⁴https://www.powershellgallery.com/

https://pester.dev/docs/usage/importing-tested-functions#migrating-from-pester-v4
https://www.powershellgallery.com/
https://www.powershellgallery.com/
https://pester.dev/docs/usage/importing-tested-functions#migrating-from-pester-v4
https://www.powershellgallery.com/

The AAA Approach 58

3.3.1 So How Does It Work?

A public website is available here: https://mc-starwars-data.azurewebsites.net⁵.
This website can query a range of Star Wars data, such as films, people, and planets. While
this API doesn’t currently contain a comprehensive list of data, it’s suitable for demonstration
purposes.

The example script wraps this API and provides helper functions to search and obtain detailed
data quickly. The example contains simple, complex, and mocked Pester tests.

PowerShell modules can be tested with Pester, but this example focused on testing a script file
for simplicity.

This example code is available via a GitHub repo⁶.
Users are welcome to clone and experiment with the repo to assist with their Pester learning.

The example script is in a file called StarWarsData.ps1. Because we’re utilizing features
introduced in PowerShell version 7, the start of the file contains the following line.

#Requires -Version 7.0

The #Requires statement ensures that users who run the code have the correct version of
PowerShell installed.⁷

3.3.2 Example Code

There is a function for calling the API directly. You should isolate the calling of external APIs
to their own function, so if there are changes (like a new URL to a slightly different API), all
changes will be isolated to the function level.

Example 1: A function to interface with the Star Wars API

1 $swApiUrl = 'https://mc-starwars-data.azurewebsites.net'
2 function Invoke-StarWarsApi
3 {
4 param (
5 [Parameter(Mandatory)]
6 [ValidateSet('Planets', 'Films', 'People')]
7 [string] $ObjectType,
8
9 [int] $id = -1

10)
11 try {
12 $suffix = $id -ne -1 ? "?id=$id" : ""
13 $path = "$($objectType.ToLower())$suffix"
14
15 $output = Invoke-RestMethod -Uri "$swApiUrl/api/$path" -Method GET
16 Write-Output $output
17 }
18 catch {

⁵https://mc-starwars-data.azurewebsites.net
⁶https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Starwars-Demo/
⁷Microsoft. (2022, Mar. 18). About Requires (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft

.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires. [Accessed: Apr. 27, 2022].

https://mc-starwars-data.azurewebsites.net/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Starwars-Demo/
https://mc-starwars-data.azurewebsites.net/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Starwars-Demo/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires

The AAA Approach 59

19 $msg = "Error calling $swApiUrl/api/$path. $($_.Exception.Message)"
20 Write-Host $msg -f Red
21 Write-Output $null
22 }
23 }

There are some sample search functions available that call Invoke-StarWarsApi. Only a subset
of the API functionality is covered.

You can find the code from Examples 2 and 3 in the StarWarsData.ps1⁸ file of the Extras
repository for this book on GitHub.

Example 2: Three search functions that call the API interface function

1 function Search-SWPerson {
2 param (
3 [Parameter(Mandatory)]
4 [string] $Name
5)
6 # load all the people
7 $response = Invoke-StarWarsApi -objectType People
8 # filter on the name
9 $results = $response | Where-Object name -like "*$Name*"

10
11 if ($null -eq $results) {
12 Write-Output @{ Error = "No person results found for '$Name'."}
13 }
14 else {
15 # return all matches with some properties
16 $personDetails = $results | ForEach-Object {
17 Invoke-StarWarsApi -objectType People -id $_.id
18 }
19
20 Write-Output $personDetails | Select-Object @{
21 Name = "id";
22 Expression = { $_.id}
23 }, name, gender, height,
24 @{
25 Name = "weight"
26 Expression = {$_.mass}
27 }
28 }
29 }

⁸https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-
Demo/src/StarWarsData.ps1

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.ps1

The AAA Approach 60

1 function Search-SWPlanet {
2 param (
3 [Parameter(Mandatory)]
4 [string] $Name
5)
6 # load all the planets
7 $response = Invoke-StarWarsApi -objectType Planets
8 # filter on the name
9 $results = $response | Where-Object name -like "*$Name*"

10
11 if ($null -eq $results) {
12 Write-Output @{ Error = "No planet results found for '$Name'."}
13 }
14 else {
15 $planetDetails = $results | ForEach-Object {
16 Invoke-StarWarsApi -objectType Planets -id $_.id
17 }
18 # return all matches with some attributes
19 Write-Output $planetDetails | Select-Object @{
20 Name = "id";
21 Expression = {$_.id}
22 },
23 name,
24 population,
25 diameter,
26 terrain
27 }
28 }

1 function Search-SWFilm {
2 param (
3 [Parameter(Mandatory)]
4 [string] $Name
5)
6 # load all the films (currently does not include the new trilogy)
7 $response = Invoke-StarWarsApi -objectType Films
8 # filter on the name
9 $results = $response | Where-Object title -like "*$Name*"

10
11 if ($null -eq $results) {
12 Write-Output @{ Error = "No film results found for '$Name'."}
13 }
14 else {
15 # return all matches with some attributes
16 $filmDetails = $results | ForEach-Object {
17 Invoke-StarWarsApi -objectType Films -id $_.id
18 }
19 Write-Output $filmDetails | Select-Object @{
20 Name="id";
21 Expression = { $_.id}
22 },
23 title,
24 director,
25 release_date,
26 characters,
27 planets
28 }
29 }

There is a single function that wraps multiple calls and returns a composite object.

The AAA Approach 61

Example 3: A more complex function that builds composite objects using multiple API calls

1 function Get-SWPerson {
2 param (
3 [Parameter(Mandatory)]
4 [int] $Id
5)
6 # get the person
7 $person = Invoke-StarWarsApi -objectType People -id $Id
8
9 if ($null -eq $person)

10 {
11 Write-Output @{
12 Error = "Unable to find a person record given Id: $Id"
13 }
14 }
15 else {
16 # get the homeworld planet and the films
17 $planet = Invoke-StarWarsApi -objectType Planets -id $person.homeworld
18 $films = Invoke-StarWarsApi -objectType Films
19
20 # get detailed info of all films
21 $filmDetails = $films | ForEach-Object {
22 Invoke-StarWarsApi -objectType Films -id $_.id
23 }
24
25 # build the result object as a mix of all the data returned
26 $result = [PSCustomObject]@{
27 Name = $person.Name
28 BodyType = $person |
29 Select-Object height, mass, gender, skin_color, eye_color
30 HomeWorld = $planet |
31 Select-Object name, population, gravity, terrain
32 Films = $filmDetails |
33 Where-Object people -contains $person.id |
34 Select-Object title, director, release_date
35 }
36 Write-Output $result
37 }
38 }

3.3.3 Example Code Output

When executing Search-SWPerson, observe the output:

Example 4: Calling the Search-SWPerson function

1 Search-SWPerson -name walker

The AAA Approach 62

id : 1
name : Luke Skywalker
gender : male
height : 172
weight : 77

id : 9
name : Anakin Skywalker
gender : male
height : 188
weight : 84

id : 27
name : Shmi Skywalker
gender : female
height : 163
weight : unknown

When executing Get-SWPerson using the ID fromAnakin Skywalker above, it returns an object
with multiple properties:

The output is formatted slightly to fit in this book correctly.

Example 5: Calling the Get-SWPerson function with the ID for Anakin Skywalker

Get-SWPerson -Id 9 | Format-List

Name : Anakin Skywalker
BodyType : @{height=188; mass=84; gender=male; skin_color=fair; eye_color=blue}
HomeWorld : @{name=Tatooine; population=200000;

gravity=1 standard; terrain=desert}
Films : {@{title=The Phantom Menace; director=George Lucas;

release_date=1999-05-19},
@{title=Attack of the Clones; director=George Lucas;
release_date=2002-05-16},

@{title=Revenge of the Sith; director=George Lucas;
release_date=2005-05-19}}

3.4 Pester Tests

The default standard for Pester tests is to be defined in a file in the same folder as the script or
module itself. The file extension should end with .Tests.ps1.⁹ The below sample would be in
a file called StarWarsData.Simple.Tests.ps1.

⁹Pester Team. (2021, Oct. 12). File placement and naming. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/file-
placement-and-naming. [Accessed: Apr. 27, 2022].

https://pester.dev/docs/usage/file-placement-and-naming
https://pester.dev/docs/usage/file-placement-and-naming

The AAA Approach 63

3.4.1 Simple Tests

Below is the contents for the simple tests.

You can find the code from Example 6 in the StarWarsData.Simple.Tests.ps1¹⁰ file of the
Extras repository for this book on GitHub.

Example 6: Simple tests for the Search-SWPerson function

1 # Arrange
2 BeforeAll {
3 . $PSCommandPath.Replace('.Simple.Tests.ps1','.ps1')
4 }
5
6 Describe 'Search-SWPerson' -Tag 'Unit' {
7 It 'Returns a single match' {
8 # Arrange
9 $testName = 'Vader'

10
11 # Act
12 $result = Search-SWPerson -Name $testName
13
14 # Assert
15 $result.Count | Should -Be 1
16 $result.name | Should -BeLike "*$testName*"
17 }
18 It 'Returns no matches' {
19 # Arrange
20 $testName = 'Invalid'
21
22 # Act
23 $result = Search-SWPerson -Name $testName
24
25 # Assert
26 $result.Error | Should -Be "No person results found for '$testName'."
27 }
28 It 'Returns multiple matches' {
29 # Arrange
30 $testName = 'walker'
31
32 # Act
33 $result = Search-SWPerson -Name $testName
34
35 # Assert
36 $result.Count | Should -BeGreaterThan 1
37 $result.Name -like "*$testName*" | Should -HaveCount $result.Count
38 }
39 }

The comments above detail which parts of the script correspond to the Arrange, Act, and Assert.

The Arrange sections do the following:

• Load the script file into memory so Pester can call it

¹⁰https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-
Demo/src/StarWarsData.Simple.Tests.ps1

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Simple.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Simple.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Simple.Tests.ps1

The AAA Approach 64

• Define any test data needed for each test

The Act sections call the function Search-SWPerson, which is the one being tested.

TheAssert sections utilize various Pester commands to confirm that the result of the Act section
is as expected. The Should command has many parameters like -Be, -BeLike, or -HaveCount
that make the assertion code read like English.
See this help page¹¹ for more details.

Simple tests like these are ideal, as they’re straightforward to follow, which reduces the time
taken for developers to understand the test process.

3.4.2 Pester Verbosity

The default output verbosity for running Pester tests isNormal.¹² This default value will display
the Pester files that are executed and will only include test details if they fail. If you prefer to
have more verbose logging that shows all test results regardless of whether they passed or failed,
then include the parameter -Output Detailed with the Invoke-Pester command.

Alternatively, if Visual Studio Code triggers the tests, the Pester plugin settings define the default
Output verbosity value. This value can be updated to the preferred verbosity.¹³

3.4.3 Simple Test Output

The output of the tests is:

Example 7: Output from the simple tests in example 6

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 6 tests in 4ms.
Running tests.

Running tests from 'StarWarsData.Simple.Tests.ps1'
Describing Search-SWPerson

[+] Returns a single match 730ms (729ms|1ms)
[+] Returns no matches 133ms (132ms|1ms)
[+] Returns multiple matches 594ms (592ms|2ms)

Describing Search-SWPlanet
[+] Returns a single match 676ms (671ms|5ms)
[+] Returns no matches 132ms (130ms|1ms)
[+] Returns multiple matches 429ms (427ms|1ms)

Tests completed in 2.75s
Tests Passed: 6, Failed: 0, Skipped: 0 NotRun: 0

¹¹https://pester.dev/docs/commands/Should
¹²Pester Team. (2021, Apr. 17). Invoke-Pester - Output. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/Invoke-

Pester#-output. [Accessed: Apr. 27, 2022].
¹³Pester Team. (2021, May. 15). VSCode. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/vscode. [Accessed: Apr. 27,

2022].

https://pester.dev/docs/commands/Should
https://pester.dev/docs/commands/Should
https://pester.dev/docs/commands/Invoke-Pester#-output
https://pester.dev/docs/commands/Invoke-Pester#-output
https://pester.dev/docs/usage/vscode

The AAA Approach 65

3.4.4 Mocked Tests

Pester tests that call external APIs are great when the external APIs are operational. This means
you are testing against a real server endpoint, ensuring that your scripts are working correctly.
But what about when they’re not?

Mocking in Pester gives us the ability to run tests when external APIs aren’t available.

In the script below, the Invoke-StarWarsApi function is mocked out. It’s defined four times
and returns different data objects based on the input parameters objectType and id. Defining
several ParameterFilter¹⁴ options allows for detailed customization in the mocked responses.

You can find the code from Example 8 in the StarWarsData.Mocked.Tests.ps1¹⁵ file of the
Extras repository for this book on GitHub.

Example 8: Tests for the Search-SWPerson function that use mocking to simulate the API

1 # Arrange
2 BeforeAll {
3 . $PSCommandPath.Replace('.Mocked.Tests.ps1','.ps1')
4
5 Mock Invoke-StarWarsApi {
6 $output1 = [PSCustomObject]@{
7 id = 4
8 name = 'Darth Vader'
9 gender = 'male'

10 height = '202'
11 weight = '136'
12 }
13 $output2 = [PSCustomObject]@{
14 id = 1
15 name = 'Luke Skywalker'
16 gender = 'male'
17 height = '172'
18 weight = '77'
19 }
20 $output3 = [PSCustomObject]@{
21 id = 9
22 name = 'Anakin Skywalker'
23 gender = 'male'
24 height = '188'
25 weight = '84'
26 }
27 Write-Output @($output1, $output2, $output3)
28 } -Verifiable -ParameterFilter { $objectType -eq 'People'}

¹⁴https://pester.dev/docs/commands/Mock#-parameterfilter
¹⁵https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-

Demo/src/StarWarsData.Mocked.Tests.ps1

https://pester.dev/docs/commands/Mock#-parameterfilter
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Mocked.Tests.ps1
https://pester.dev/docs/commands/Mock#-parameterfilter
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Mocked.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Mocked.Tests.ps1

The AAA Approach 66

1 Mock Invoke-StarWarsApi {
2 $output = [PSCustomObject]@{
3 height = '172'
4 mass = '77'
5 hair_color = 'blonde'
6 skin_color = 'fair'
7 eye_color = 'blue'
8 birth_year = '199BBY'
9 gender = 'male'

10 name = 'Luke Skywalker'
11 homeworld = 1
12 id = 1
13 }
14 Write-Output @($output)
15 } -Verifiable -ParameterFilter { $objectType -eq 'People' -and $id -eq 1}
16
17 Mock Invoke-StarWarsApi {
18 $output = [PSCustomObject]@{
19 height = '202'
20 mass = '136'
21 hair_color = 'none'
22 skin_color = 'white'
23 eye_color = 'yellow'
24 birth_year = '41.9BBY'
25 gender = 'male'
26 name = 'Darth Vader'
27 homeworld = 1
28 id = 4
29 }
30 Write-Output @($output)
31 } -Verifiable -ParameterFilter { $objectType -eq 'People' -and $id -eq 4}
32
33 Mock Invoke-StarWarsApi {
34 $output = [PSCustomObject]@{
35 height = '188'
36 mass = '84'
37 hair_color = 'blonde'
38 skin_color = 'fair'
39 eye_color = 'blue'
40 birth_year = '41.9BBY'
41 gender = 'male'
42 name = 'Anakin Skywalker'
43 homeworld = 1
44 id = 9
45 }
46 Write-Output @($output)
47 } -Verifiable -ParameterFilter { $objectType -eq 'People' -and $id -eq 9}

1 Describe 'Search-SWPerson' -Tag 'Unit', 'Mocked' {
2 It 'Returns a single match' {
3 # Arrange
4 $testName = 'Vader'
5
6 # Act
7 $result = Search-SWPerson -Name $testName
8
9 # Assert

10 $result.Count | Should -Be 1
11 $result.name | Should -BeLike "*$testName*"
12 }
13 It 'Returns no matches' {
14 # Arrange

The AAA Approach 67

15 $testName = 'Invalid'
16
17 # Act
18 $result = Search-SWPerson -Name $testName
19
20 # Assert
21 $result.Error | Should -Be "No person results found for '$testName'."
22 }
23 It "Returns multiple matches" {
24 # Arrange
25 $testName = 'walker'
26
27 # Act
28 $result = Search-SWPerson -Name $testName
29
30 # Assert
31 $result.Count | Should -BeGreaterThan 1
32 $result.Name -like "*$testName*"| Should -HaveCount $result.Count
33 }
34 }

The Invoke-Pester command is used to run Pester Tests. For More information, refer
to: 5.4.6.2 Command Line in Unit Testing.

The tests above are tagged with bothUnit andMocked, so they can be filtered if required. When
you run Invoke-Pester, you can provide a -Tag <name> parameter to filter which tests are
run based on the tag.¹⁶

For the script above, if you wanted to run just mocked tests, the command line would be
something like:

Invoke-Pester -Path ./StarWarsData.*.Tests.ps1 -Tag Mocked -Output Detailed

Any configuration of Mocked functions in Pester would be in theArrange section of AAA. Care
needs to be taken when mocking functions, as they will need to be maintained if the source
system they’re mocking gets updated over time.

3.4.5 Mocked Test Output

Mocked tests have an additional advantage of speed, as shown below in the “Tests Completed
in” line when running the same tests against the actual API and a mocked API.

Real API:

Tests completed in 6.69s
Tests Passed: 6, Failed: 0, Skipped: 0 NotRun: 0

Mocked API:

¹⁶Pester Team. (2022, Jun. 19). Tags. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/tags. [Accessed: Sep. 04, 2022].

https://pester.dev/docs/usage/tags

The AAA Approach 68

Tests completed in 172ms
Tests Passed: 6, Failed: 0, Skipped: 0 NotRun: 0

3.4.6 Complex Tests

There are times when more complex Pester tests are warranted. This includes when there is a
repeatable set of tests data to pass through the same test. This can rapidly test different parts of
the function with minimal coding.

Below is a sample script that uses defined objects containing properties for the test’s arrange
and assertion stages. As with previous sample scripts, the comments indicate which areas of the
script are Arrange, Act, or Assert sections.

You can find the code from Example 9 in the StarWarsData.Complex.Tests.ps1¹⁷ file of
the Extras repository for this book on GitHub.

Example 9: More complex tests covering more functions, using test cases to generate multiple tests
1 # Arrange
2 BeforeAll {
3 . $PSCommandPath.Replace('.Complex.Tests.ps1','.ps1')
4 }
5
6 Describe 'Search-SWFilm' -Tag 'Unit' {
7 $itName = "Returns film with release date '<year>' & director " +
8 "'<director>' given title fragment '<name>'"
9

10 It $itName -TestCases @(
11 # Arrange
12 @{
13 name = 'Phantom'
14 year = '1999-05-19'
15 director = 'George Lucas'
16 }
17 @{
18 name = 'Empire'
19 year = '1980-05-17'
20 director = 'Irvin Kershner'
21 }
22 @{
23 name = 'Return'
24 year = '1983-05-25'
25 director = 'Richard Marquand'
26 }
27) {
28 # Act
29 $result = Search-SWFilm -name $name
30
31 # Assert
32 $result.Count | Should -Be 1
33 $result.title | Should -BeLike "*$name*"
34 $result.release_date | Should -Be $year
35 $result.director | Should -Be $director
36 }
37 }

¹⁷https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-
Demo/src/StarWarsData.Complex.Tests.ps1

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Complex.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Complex.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Starwars-Demo/src/StarWarsData.Complex.Tests.ps1

The AAA Approach 69

1 Describe 'Get-SWPerson' -Tag 'Unit' {
2 $itName = "Returns person metadata for '<fullname>' with gender " +
3 "'<gender>', eye colour '<eyeColour>' & film count of <filmCount>"
4
5 It $itName -TestCases @(
6 # Arrange
7 @{
8 name = 'maul'
9 fullName = 'Darth Maul'

10 gender = 'male'
11 eyeColour = 'yellow'
12 homeWorld = 'Dathomir'
13 filmCount = 1
14 }
15 @{
16 name = 'luke'
17 fullName = 'Luke Skywalker'
18 gender = 'male'
19 eyeColour = 'blue'
20 homeWorld = 'Tatooine'
21 filmCount = 6
22 }
23 @{
24 name = 'mothma'
25 fullName = 'Mon Mothma'
26 gender = 'female'
27 eyeColour = 'blue'
28 homeWorld = 'Chandrila'
29 filmCount = 1
30 }
31) {
32 # Act
33 $result = Search-SWPerson -name $name
34 $result.Count | Should -Be 1
35 $details = Get-SWPerson -Id $result.Id
36
37 # Assert
38 $details | Should -Not -BeNullOrEmpty
39 $details.Name | Should -Be $fullName
40 $details.BodyType.gender | Should -Be $gender
41 $details.BodyType.eye_color | Should -Be $eyeColour
42 $details.HomeWorld.name | Should -Be $homeWorld
43 $details.Films | Should -HaveCount $filmCount
44 }
45 }

One advantage of using Pester tests with predefined TestCases¹⁸ is you can inject properties into
the test name. This gives us a more dynamic description rather than the static names provided
in more simplistic tests. These are called templates¹⁹.

3.4.7 Complex Test Output

Running the tests above generates the following output.

¹⁸https://pester.dev/docs/commands/It#-testcases
¹⁹https://pester.dev/docs/usage/data-driven-tests#using--templates

https://pester.dev/docs/commands/It#-testcases
https://pester.dev/docs/usage/data-driven-tests#using--templates
https://pester.dev/docs/commands/It#-testcases
https://pester.dev/docs/usage/data-driven-tests#using--templates

The AAA Approach 70

The output is formatted slightly to fit in this book correctly.

Example 10: Output from the complex tests in example 9

Describing Search-SWFilm
[+] Returns film with release date '1999-05-19' & director 'George Lucas'

given title fragment 'Phantom' 1.14s (1.14s|2ms)
[+] Returns film with release date '1980-05-17' & director 'Irvin Kershner'

given title fragment 'Empire' 1.18s (1.18s|3ms)
[+] Returns film with release date '1983-05-25' & director 'Richard Marquand'

given title fragment 'Return' 1.16s (1.16s|5ms)

Describing Get-SWPerson
[+] Returns person metadata for 'Darth Maul' with gender 'male',

eye colour 'yellow' & film count of 1 3.96s (3.96s|5ms)
[+] Returns person metadata for 'Luke Skywalker' with gender 'male',

eye colour 'blue' & film count of 6 4.37s (4.37s|2ms)
[+] Returns person metadata for 'Mon Mothma' with gender 'female',

eye colour 'blue' & film count of 1 4.19s (4.19s|3ms)
Tests completed in 16.11s
Tests Passed: 6, Failed: 0, Skipped: 0 NotRun: 0

3.5 Conclusion

As seen from the code samples above, implementing the AAA approach using Pester is straight-
forward. Pester’s use of commands with parameters that give English-like syntax goes a long
way to make it easy to read and understand code, helping developers understand and write tests
quickly.

3.6 Further Reading

• Extras for this chapter²⁰.
• Pester on GitHub²¹.
• Pester documentation²².
• AAA overview²³.
• PowerShell Gallery²⁴.

²⁰https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Starwars-Demo/
²¹https://github.com/pester/Pester
²²https://pester.dev/docs/quick-start
²³https://developers.mews.com/aaa-pattern-a-functional-approach/
²⁴https://www.powershellgallery.com/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Starwars-Demo/
https://github.com/pester/Pester
https://pester.dev/docs/quick-start
https://developers.mews.com/aaa-pattern-a-functional-approach/
https://www.powershellgallery.com/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Starwars-Demo/
https://github.com/pester/Pester
https://pester.dev/docs/quick-start
https://developers.mews.com/aaa-pattern-a-functional-approach/
https://www.powershellgallery.com/

4. Mocking
Mocking is an approach to testing that involves the replacement of dependencies with simulated
equivalents. Most useful at the unit testing stage, mocking ensures consistent behavior of
functions or data that the code unit you’re testing depends on.

4.1 Mocking and Mock Testing

There are several important advantages to mocking:

• Performance. Often, external APIs have a latency or take substantial processing time. This
is also true for complex local functions that perform many operations. By simulating the
behavior of these locally, tests will run much quicker and use fewer processor cycles. This
saves both time and, in the case of third-party hosted test runners, money.

• Consistency. The reliability of dependencies outside of the code unit you’re testing is
assumed during unit tests. Using real dependencies can result in unexpected behavior and
cause false test passes or failures. By simulating these, you only need to worry about the
code in the test, since you know for sure what your mocked dependencies are doing.

• Analysis. Without modification, there may be no way to monitor when or how often a
dependency is called. You can monitor mocked dependencies and create assertions to check
that the code you’re testing has called them.

• Isolation. A unit test should never have downstream effects on production environments.
Mocking prevents this by eliminating real calls to external functions or APIs.

Mock testing is a complement to unit testing, focussing on behavior-based verification, as
opposed to traditional unit testing, which is state-based.¹

This difference is highlighted with some code that refreshes a local data store. Later, you will
learn how to replace this with mocks.

Example 1: A function that updates a local data store from a remote one

1 function Update-DataStore {
2 [CmdletBinding()]
3 param (
4 [Parameter(Mandatory)][string]$Name,
5 [Parameter(Mandatory)][string]$Source
6)
7 process {
8 # Get list of updates from API
9 $RequestUri = '{0}/{1}' -f $Source.TrimEnd('/'), 'updates'

10 $Updates = (Invoke-RestMethod -Uri $RequestUri).updates.date
11
12 # Determine latest update and parse unix timestamp

¹M. Fowler. (2007, Jan. 02). Mocks Aren’t Stubs. martinFowler.com. [Online]. Available: https://martinfowler.com/articles/
mocksArentStubs.html. [Accessed: Jun. 13, 2022].

71

https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html

Mocking 72

13 [int64]$Latest = 0
14 $Updates.ForEach{ if ($_ -gt $Latest) { $Latest = $_ } }
15 $UnixEpoch = [datetime]::new(1970, 1, 1, 0, 0, 0, 0, 1)
16 $Update = $UnixEpoch.AddMilliseconds($Latest)
17
18 # Get local data store
19 $Store = Get-DataStore -Name $Name
20
21 # Compare updates, and stop if local store is up-to-date
22 if ($Update -le $Store.Update) { return }
23
24 # Get data of latest update from API
25 $RequestUri = '{0}/{1}/{2}' -f $Source.TrimEnd('/'), 'data', $Latest
26 [psobject]$NewData = Invoke-RestMethod $RequestUri
27
28 # Save new data to local store
29 Set-DataStore -Name $Name -Data $NewData.data -Update $Update
30 }
31 }

The real functionality of Get-DataStore, Set-DataStore, and the API doesn’t matter
for this example, but you can view a functional demonstration² in the Extras³ repository
for this book on GitHub.

Unit tests on this function should focus on the state of the data store after execution, verifying
that the function updates the correct one based on the -Name parameter and that updates only
occur if the local store is outdated. You can, of course, use mocking for these tests to eliminate
API calls with Invoke-RestMethod and ensure that the test operates on a dummy data store.

Mock tests, on the other hand, should focus on the calls to Get-DataStore, Set-DataStore,
and Invoke-RestMethod to verify that the function calls them the correct number of times and
with the correct parameters.

4.1.1 Stubs, Fakes, and Mocks

There are many terms to describe the simulation of dependencies for the purposes of testing.
How these terms define specific approaches and implementations of them also varies wildly.
Three words that consistently appear in testing literature, however, are stubs, fakes, and mocks.
This section briefly explains these and a few other terms, using the definitions given in The Art
of Unit Testing:⁴

• Fake: Any object, function, or API that replaces a real dependency in tests. Under some
definitions, a fake refers to a fully comprehensive simulation of a dependency, operationally
compatible with the real behavior.

• Stub: A simple fake of a dependency that provides predetermined responses or values and
can’t fail a test. A validation stub might always return $true, for example.

²https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/
DataStoreDemo/

³https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
⁴R. Osherove. (2013, Nov.). The Art of Unit Testing. 2nd ed. Germany: Manning. ISBN: 9781617290893.

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/DataStoreDemo/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/DataStoreDemo/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/DataStoreDemo/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://www.manning.com/books/the-art-of-unit-testing-second-edition

Mocking 73

• Mock: A more complex fake of a dependency that provides dynamic responses and can fail
a test. A mocked database API might fail a test if it receives an invalid query, for example.

• Seam: A place in the code you’re testingwhere a dependency or functionality is interchange-
able. An example of this from Example 1 is the call to Get-DataStore. You could redirect
this to a stub that always returns a valid store object regardless of the -Name parameter.

The Pester documentation uses the term mock universally,⁵ so the rest of the chapter assumes
that mock can refer to any kind of fake.

4.2 Mocking in Pester with Mock

The fundamental method for mocking dependencies in Pester is Mock <Command> {...}. This
creates an alias in the current scope that bypasses the underlying command.⁶ The standard syntax
for mocking is:

Mock [-CommandName] <Command> [-MockWith] <Mock Script>

The command must exist in the scope of the current block where you’re defining the mock. For
example, the Get-DataStore function from Example 1 might look like this:

Example 2: A function that retrieves a local data store object

1 function Get-DataStore {
2 [CmdletBinding()]
3 param (
4 [Parameter(
5 Mandatory,
6 ValueFromPipeline,
7 ValueFromPipelineByPropertyName
8)]
9 [string]$Name

10)
11 process {
12 # Determine valid store filename and check it exists
13 $StoreFile = Get-DataStoreFile -Name $Name -MustExist
14
15 # If it doesn't, stop
16 if (-not $? -or $null -eq $StoreFile) { return }
17
18 # Import CLIXML data from store
19 $Data = Import-Clixml -LiteralPath $StoreFile.FullName
20
21 # Return rich store object with name and file time
22 [pscustomobject]@{
23 Update = $StoreFile.LastWriteTimeUtc
24 Data = $Data
25 Name = $Name
26 }
27 }
28 }

⁵Pester Team. (2022, Jun. 25).Mocking with Pester. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/mocking. [Accessed:
Sep. 04, 2022].

⁶Pester Team. (2022, Mar. 06). Pester - Mock.ps1. L228-L261. Pester/Pester on GitHub. [Online]. Available: https://github.com/pester/
Pester/blob/main/src/functions/Mock.ps1. [Accessed: Jun. 14, 2022].

https://pester.dev/docs/usage/mocking
https://github.com/pester/Pester/blob/main/src/functions/Mock.ps1
https://github.com/pester/Pester/blob/main/src/functions/Mock.ps1

Mocking 74

To create a simple mock (stub) for this function, you can return a similar object without accessing
any real data.

All examples in this chapter are consistent with Pester 5.3.

Example 3: Mocking the Get-DataStore function

1 Describe 'Data store test' {
2
3 BeforeAll {
4 # Mock must be placed in a BeforeAll/BeforeEach block
5 # unless it's directly inside an It block
6 Mock Get-DataStore {
7 [pscustomobject]@{
8 Name = $Name # Copy name from $Name parameter
9 Update = (Get-Date).AddDays(-1) # Yesterday

10 Data = [pscustomobject]@{} # Empty store data
11 }
12 }
13 }
14
15 }

From Pester 5.0 and upwards, you don’t need to include a param() block in your mock
script. Pester copies the parameters from the real function. This is also the case when
you use the -TestCases parameter with It.⁷

If you work with earlier versions of Pester, you need to add param ($Name) to the top of the
mock script.

The mock script returns the same kind of object as the real function, but doesn’t check to see
if a real store exists with the passed name, nor tries to access any real data. Instead, it returns
the name passed with the $Name parameter as if it was a valid data store name, along with an
empty Data property and Update value of exactly one day ago. Running a few tests with random
names demonstrates that the mock is now receiving the function calls.

Example 4: Tests making use of the mock defined in Example 3

1 # Same Describe block as Example 3
2 It "Returns valid fake store object for '<RandomName>'" -TestCases @(
3 @{ RandomName = '1234' }
4 @{ RandomName = 'AnotherRandomName' }
5) {
6 $Store = Get-DataStore -Name $RandomName
7 $Store.Name | Should -BeExactly $RandomName
8 $Store.Update.DayOfYear | Should -Be ((Get-Date).DayOfYear - 1)
9 $Store.Data | Should -BeOfType [pscustomobject]

10 $Store.Data.PSObject.Properties | Should -BeNullOrEmpty
11 }

⁷Pester Team. (2021, May. 14).Migrating from Pester v4 to v5. Pester Docs. [Online]. Available: https://pester.dev/docs/migrations/v4-
to-v5. [Accessed: Jun. 16, 2022].

https://pester.dev/docs/migrations/v4-to-v5
https://pester.dev/docs/migrations/v4-to-v5

Mocking 75

Invoke-Pester .\Examples3and4.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 2 tests in 24ms.
Running tests.

Running tests from 'Examples3and4.Tests.ps1'
Describing Data store test

[+] Returns valid fake store object for '1234' 17ms (16ms|1ms)
[+] Returns valid fake store object for 'AnotherRandomName' 3ms (3ms|0ms)

Tests completed in 106ms
Tests Passed: 2, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples3and4.Tests.ps1⁸ file used in this example on the Extras⁹ repository on
GitHub.

It’s important that you define the mock in the same scope or a parent scope of the tests that use it.
It must also be inside a BeforeEach, BeforeAll, or It block. The chapter covers mock scoping
in more detail later.

4.3 Mock Testing and Verifiable Mocks

So how do you use Pester mocks for mock testing? The Should command has two assertions for
this, and both rely on mocks.

4.3.1 Should -Invoke

The first, Should -Invoke, counts how many times a test called a mock and fails the test if the
number doesn’t match. Assume for the following examples that the mock shown in Example 3
is present in the current block.

⁸https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples3and4.Tests.ps1

⁹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples3and4.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples3and4.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples3and4.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 76

Example 5: Using Should -Invoke to count mock calls

1 Describe 'Should -Invoke tests' {
2 # Same mock as Example 3
3
4 It 'Calls Get-DataStore five times' {
5 for ($i = 0; $i -lt 5; $i++) {
6 Get-DataStore -Name 'SomeName'
7 }
8 # At least once
9 Should -Invoke 'Get-DataStore'

10
11 # At least twice
12 Should -Invoke 'Get-DataStore' -Times 2
13
14 # Exactly 5 times
15 Should -Invoke 'Get-DataStore' -Exactly 5
16
17 # No more than 5
18 Should -Not -Invoke 'Get-DataStore' -Times 6
19
20 # Not exactly 4 times
21 Should -Not -Invoke 'Get-DataStore' -Exactly 4
22 }
23
24 }

The -Times and -Exactly parameters coupledwith -Not provide full control over the number of
times that your tests can call a mock. Should -Not -Invoke ...without -Times or -Exactly
means the tests shouldn’t call the mock at all in this scope. By default, Pester assumes you mean
calls to the mock made only in the current scope. In Example 5, this means the It block where
the Should assertions are.

To change the target scope of the assertion, use the -Scope parameter. This accepts either It,
Context, Describe, or a positive integer.

• It means the current It block containing the assertion
• Context and Describe mean the innermost block of that type that contains the current It
block

• A positive integer means the nth parent of the current It block

Since you can nest Context and Describe blocks in many ways, the nth parent mode is useful
for selecting an exact parent scope of the current It block. If you have one Context block inside
another, for example, you can’t target the outer one with -Scope Context.

The next example creates some more It tests, but inside nested Context blocks within the
Describe block.

Mocking 77

Example 6: Changing the target scope of Should -Invoke
1 # Same Describe block as Example 5
2 Context 'Scope tests' {
3
4 # Example 6a:
5 It 'Calls Get-DataStore exactly once in the It block' {
6 Get-DataStore -Name 'SomeOtherName'
7 Should -Invoke 'Get-DataStore' -Exactly 1 -Scope It
8 # Same as above since It is the 0th parent (this block)
9 Should -Invoke 'Get-DataStore' -Exactly 1 -Scope 0

10 }
11
12 Context 'An inner scope' {
13
14 # Example 6b:
15 It 'Calls Get-DataStore once in the current Context block' {
16 Get-DataStore -Name 'SomeOtherName'
17 Should -Invoke 'Get-DataStore' -Exactly 1 -Scope Context
18 # Same as above since Context is the 1st parent
19 Should -Invoke 'Get-DataStore' -Exactly 1 -Scope 1
20 }
21
22 # Example 6c:
23 It 'Fails to target outer Context block' {
24 # THIS TEST FAILS since the innermost Context block is selected
25 Should -Invoke 'Get-DataStore' -Exactly 2 -Scope Context
26 }
27 It 'Calls Get-DataStore twice in outer Context block' {
28 # The 2nd parent of this It block is the outer Context block
29 Should -Invoke 'Get-DataStore' -Exactly 2 -Scope 2
30 }
31 It 'Calls Get-DataStore seven times in outer Describe block' {
32 Should -Invoke 'Get-DataStore' -Exactly 7 -Scope Describe
33 # The 3rd parent of this It block is the Describe block
34 Should -Invoke 'Get-DataStore' -Exactly 7 -Scope 3
35 }
36
37 }
38
39 }

The two assertions in the first It block (Example 6a) target only the scope of the It block
itself. This is the same as the default behavior when -Scope isn’t present. The assertions in
the second It block (Example 6b) target the inner Context block, called ‘An inner scope’. This
demonstrates that -Scope Context selects the innermost parent of that type, and the same is
true with Describe.

Example 6c is where things get a little trickier. Since the It block is inside nested Context blocks,
the first assertion fails because the target scope is the inner one. Instead of the expected two calls,
it only sees one. To target the outer Context block, called ‘Scope tests’, you must use a numerical
scope. In the case of Example 6c, -Scope 1 is the inner Context block, -Scope 2 is the outer
Context block, and -Scope 3 is the Describe block (not shown).

If you pass a scope number of four, you’ve now reached the root scope of the test file, which
includes other Describe and Contexts blocks that run before this one. Therefore, calls to a
mock of the same name in those separate blocks will now count towards Should -Invoke, even
if defined with a different mock inside a different Before* block. You can’t go further than the
root scope, so scope numbers larger than this still target the root scope.

Mocking 78

4.3.2 Should -InvokeVerifiable

Should -InvokeVerifiable is much simpler and determines whether the tests have called all
mocks marked as verifiable at least once. To mark a mock as verifiable, pass the -Verifiable
switch parameter to the Mock statement.

Example 7: Marking a mock as verifiable

1 Mock Get-DataStore {...} -Verifiable

When Pester comes across the assertion, the test only passes if tests called all verifiable mocks
before that point.

Example 8: Checking that the tests called all verifiable mocks

1 It 'Calls all verifiable mocks at least once' {
2 Should -InvokeVerifiable
3 }

Since Pester evaluates the assertions at the time it comes across them, take care with your
placement of -Invoke and -InvokeVerifiable. Place them after any mock calls that you want
Pester to count.

4.3.3 Running the Mock Assertion Tests

The code from Examples 5 to 8 contains seven tests, of which six should pass and one should fail.

Example 9: Running the mock assertion tests

1 Invoke-Pester .\Examples5to8.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 7 tests in 10ms.
Running tests.

Running tests from 'Examples5to8.Tests.ps1'
Describing Should -Invoke tests

[+] Calls Get-DataStore five times 14ms (13ms|1ms)
Context Scope tests
[+] Calls Get-DataStore exactly once in the It block 4ms (3ms|1ms)
Context An inner scope
[+] Calls Get-DataStore once in the current Context block 5ms (3ms|1ms)
[-] Fails to target outer Context block 2ms (2ms|0ms)
Expected Get-DataStore to be called 2 times exactly but was called 1 times
at Should -Invoke 'Get-DataStore' -Exactly 2 -Scope Context,
Examples5to8.Tests.ps1:63 at <ScriptBlock>, Examples5to8.Tests.ps1:63

[+] Calls Get-DataStore twice in outer Context block 2ms (2ms|0ms)
[+] Calls Get-DataStore seven times in outer Describe block 5ms (5ms|1ms)
[+] Calls all verifiable mocks at least once 1ms (1ms|0ms)

Tests completed in 119ms
Tests Passed: 6, Failed: 1, Skipped: 0 NotRun: 0

Mocking 79

Find the Examples5to8.Tests.ps1¹⁰ file used in this example on the Extras¹¹ repository on
GitHub.

The test results confirm the assertions are scoped correctly. Notice also that the indentation of
the test result output varies based on the nesting of the blocks in the test file. The final (verifiable
mock assertion) test is inside the ‘Scope tests’ block, but not inside the ‘An inner scope’ block,
for example. This output can prove useful when diagnosing scoping errors for mock-related
assertions.

Assert-MockCalled and Assert-VerifiableMock
Pester versions before 5.0 tested mock calls with Assert-MockCalled and
Assert-VerifiableMock. While these are still available in Pester 5.0 and later,
they’re now deprecated and you should use the assertions Should -Invoke and
Should -InvokeVerifiable instead.

4.4 Mock Scoping

The chapter has so far described checking for mock calls in various scopes, but you can also apply
your mocks to specific scopes. By default, Pester scopes your mock based on the block you place
it in.¹²

• If you place the Mock... declaration in an It or BeforeEach block, it applies only to It
blocks.

– Placement in an It block applies the mock only within that It; others in the same
Context or Describe aren’t affected.

– Placement in a BeforeEach block applies the mock to every It block in the current
Context or Describe, as if the declaration was made inside each.

• If you place the Mock... declaration in a BeforeAll block, it applies to the whole of the
current Context or Describe.

• You shouldn’t place a Mock... declaration directly inside a Context or Describe block,
in line with Pester 5.0’s new discovery and run best practices.¹³

• You shouldn’t place a Mock... declaration inside BeforeDiscovery blocks—mocks don’t
function in the discovery phase since it’s only for inspecting the test file structure and
generating tests.

• Placing a Mock... declaration in AfterEach or AfterAll blocks is ineffective since Pester
resets the scope between tests. The section discusses this later.

You can see this in action with a few simple tests.

¹⁰https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples5to8.Tests.ps1

¹¹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
¹²Pester Team. (2022, Jun. 25).Mocking with Pester. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/mocking. [Accessed:

Sep. 04, 2022].
¹³Pester Team. (2022, Jun. 19). Discovery and Run. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/discovery-and-run.

[Accessed: Jun. 21, 2022].

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples5to8.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples5to8.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples5to8.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://pester.dev/docs/usage/mocking
https://pester.dev/docs/usage/discovery-and-run

Mocking 80

Example 10: Mock scoping is based on placement

1 Describe 'Mock scoping tests' {
2
3 # Example 10a:
4 It 'BeforeAll sets up mocks before all tests' {
5 Get-DataStore -Name RandomName | Should -Be 'Mocked'
6 }
7
8 BeforeAll {
9 # Applies to whole Describe

10 Mock Get-DataStore { 'Mocked' }
11 }
12
13 # Example 10b:
14 It 'BeforeAll applies mock to entire parent block' {
15 Get-DataStore -Name RandomName | Should -Be 'Mocked'
16 }
17
18 # Example 10c:
19 It 'Mocks applied inside It take precedence' {
20 # Override with local mock
21 Mock Get-DataStore { 'Re-mocked' }
22 $Result = Get-DataStore -Name RandomName
23 $Result | Should -Not -Be 'Mocked'
24 $Result | Should -Be 'Re-mocked'
25 }
26
27 }

Example 10a places an It block before the BeforeAll, but the mock is still available as
BeforeAll runs before any tests. Example 10b returns the same result and confirms that mocks
placed in BeforeAll apply to every It in the current Context or Describe. Example 10c
demonstrates that more locally defined mocks override existing ones. This means any mock
of the same dependency defined in an It block replaces the one that applies to the Context
or Describe. Likewise, any mocks defined in the BeforeAll or BeforeEach block of a nested
(child) block replace those from the parent block.

If not overridden, mocks are inherited by child blocks:

Example 11: Mocks are inherited in child scopes unless overridden

1 # Same Describe block as Example 10
2
3 # Example 11a:
4 Context 'Inner context' {
5
6 It 'Mocks apply to child scopes' {
7 # Inherits the mock from the Describe block
8 Get-DataStore -Name RandomName | Should -Be 'Mocked'
9 }

10
11 }
12
13 # Example 11b:
14 Context 'Another inner context' {
15
16 BeforeAll {
17 Mock Get-DataStore { 'Re-mocked again' }
18 }

Mocking 81

19
20 It 'Unless a more local mock takes precedence' {
21 # Inherits the overridden mock from the Context block
22 $Result = Get-DataStore -Name RandomName
23 $Result | Should -Not -Be 'Mocked'
24 $Result | Should -Not -Be 'Re-mocked'
25 $Result | Should -Be 'Re-mocked again'
26 }
27
28 }

Overriding a mock does so at the current scope and in all child scopes. The Context block in
Example 11a inherits the mock from the parent Describe and, in turn, the It block inherits
it from the Context. In Example 11b, a new mock replaces the inherited one, so the It block
inherits this replacement from the Context.

It’s important to remember that the BeforeAll block runs once before all the tests in the current
scope, whereas BeforeEach runs before every test in the same scope. Because of this, a mock
defined in a BeforeEach overrides one defined in a BeforeAll of the same scope.

Example 12: The execution order of BeforeAll and BeforeEach has consequences for mocks

1 # Same Describe block as Example 10
2 Context 'BeforeEach and BeforeAll execution order' {
3
4 BeforeEach {
5 if ($Alt) {
6 Mock Get-DataStore { 'BeforeEach Mock' }
7 }
8 }
9 BeforeAll {

10 Mock Get-DataStore { 'BeforeAll Mock' }
11 }
12
13 It 'Test <Test> should use the Before<Mock> Mock' -TestCases @(
14 @{ Test = 1; Alt = $false; Mock = 'All' }
15 @{ Test = 2; Alt = $true; Mock = 'Each' }
16 @{ Test = 3; Alt = $false; Mock = 'All' }
17) {
18 Get-DataStore -Name RandomName | Should -Be "Before$Mock Mock"
19 }
20
21 }

Example 12 runs three tests, and the mock they each use changes between them. Why is this?
Looking at the execution order, it becomes clear how andwhen the original mock gets overridden.

1. The BeforeAll of the Context block runs and overrides the original mock from the
Describe block

2. The BeforeEach of the Context block runs before Test 1, but the $Alt variable is False
so nothing happens

3. Test 1 runs and inherits the mock from the BeforeAll.
4. The BeforeEach runs before Test 2, and the $Alt variable is True this time, so it defines a

new mock

Mocking 82

5. Test 2 runs and inherits the replaced mock from the BeforeEach that just ran
6. The BeforeEach runs before Test 3, and the $Alt variable is again False, so nothing

happens
7. Test 3 runs and inherits the mock from the BeforeAll.

So, why does Test 3 not inherit the new mock, since the BeforeEach defines it earlier, before
Test 2? The answer is that Pester 5.0 runs each test in a new scope inherited directly from the
parent scope.¹⁴ Therefore, each generated test can’t communicate with others, and each run of
BeforeEach is specific to that test. The effects of the BeforeEach that runs for Test 2 end when
the test does, and the scope ‘resets’ to the parent Context one.When Test 3 runs, the environment
is exactly as it was before Test 2 and Test 1, so when BeforeEach does nothing, the mock created
in the BeforeAll is what gets inherited.

Considering the isolated nature of individual test scopes, it becomes apparent that definingmocks
in AfterAll or AfterEach blocks is useless for their intended purpose. Pester would create the
mock after all or each of the tests and immediately remove it as the test or block scope was torn
down.

Running the tests from Examples 10 to 12:

Example 13: Running the mock scoping tests

1 Invoke-Pester .\Examples10to12.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 8 tests in 54ms.
Running tests.

Running tests from 'Examples10to12.Tests.ps1'
Describing Mock scoping tests

[+] BeforeAll sets up mocks before all tests 14ms (12ms|1ms)
[+] BeforeAll applies mock to entire parent block 8ms (7ms|0ms)
[+] Mocks applied inside It take precedence 16ms (15ms|0ms)

Context Inner context
[+] Mocks apply to child scopes 9ms (8ms|1ms)

Context Another inner context
[+] Unless a more local mock takes precedence 16ms (14ms|1ms)

Context BeforeEach and BeforeAll execution order
[+] Test 1 should use the BeforeAll Mock 33ms (31ms|1ms)
[+] Test 2 should use the BeforeEach Mock 8ms (8ms|0ms)
[+] Test 3 should use the BeforeAll Mock 2ms (2ms|0ms)

Tests completed in 270ms
Tests Passed: 8, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples10to12.Tests.ps1¹⁵ file used in this example on the Extras¹⁶ repository
on GitHub.

¹⁴Pester Team. (2022, Jun. 19). Discovery and Run. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/discovery-and-run.
[Accessed: Jun. 21, 2022].

¹⁵https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples10to12.Tests.ps1

¹⁶https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples10to12.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://pester.dev/docs/usage/discovery-and-run
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples10to12.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples10to12.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 83

PesterBoundParameters
When inside a mock script, the $PSBoundParameters variable doesn’t work because
of how Pester uses proxy functions for mocking.¹⁷ Pester version 5.2 introduces a
functionally equivalent stand-in for this, $PesterBoundParameters. Use this variable
in the same way you would $PSBoundParameters.

4.5 Mocking in the Module Scope with -ModuleName

It’s often necessary to modify the behavior of dependencies, but what if the dependency is a
private function required by other functions inside a module? Mocking the dependency in the
test scope won’t help, since the functions in the module have their own scope. The answer is to
create the mock in the module’s scope.

There are two approaches to this:

• Use the -ModuleName parameter with Mock.
• Use InModuleScope { ... } to run themock code or the entire test in themodule scope.¹⁸

Consider the data store example once again. Imagine that the real Get-DataStore function relies
on an internal function, Get-DataStoreFile, to get valid store files from the disk. By mocking
the internal function in the module’s scope, you’ve changed the behavior of the module without
rewriting it.

The following snippet creates a module on-the-fly from the DataStoreFunctions.ps1¹⁹ file, which
the tests can interact with.

Example 14: Creating a module from a script file for use in tests

1 BeforeDiscovery {
2 $GetModuleParams = @{
3 Name = 'DataStoreFunctions'
4 ErrorAction = 'SilentlyContinue'
5 }
6 Get-Module @GetModuleParams | Remove-Module
7 New-Module -Name DataStoreFunctions -ScriptBlock {
8 # Load functions
9 . (Join-Path (Split-Path $PSCommandPath) 'DataStoreFunctions.ps1')

10 # Export public functions
11 $Exports = @{
12 Function = @(
13 'New-DataStore',
14 'Remove-DataStore',
15 'Get-DataStore',
16 'Get-DataStoreDate',
17 'Set-DataStore',
18 'Set-DataStoreDate',

¹⁷Pester Team. (2022, Jun. 25).Mocking with Pester. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/mocking. [Accessed:
Sep. 04, 2022].

¹⁸Pester Team. (2021, May. 13). InModuleScope. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/InModuleScope.
[Accessed: Jun. 22, 2022].

¹⁹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/DataStoreFunctions.ps1

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/DataStoreFunctions.ps1
https://pester.dev/docs/usage/mocking
https://pester.dev/docs/commands/InModuleScope
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/DataStoreFunctions.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/DataStoreFunctions.ps1

Mocking 84

19 'Update-DataStore'
20)
21 }
22 Export-ModuleMember @Exports
23 } | Import-Module -Force
24 }

If you try to use Get-DataStore with an invalid name, it throws an error because it’s currently
using the real Get-DataStoreFile internal function.

Example 15: The module uses its real internal functions without mocking

1 Describe 'Mocking in modules' {
2
3 It 'Throws an error because real private function called' {
4 { Get-DataStore -Name SomeName } | Should -Throw
5 }
6
7 }

You can’t use Mock for Get-DataStoreFile because it’s not exported as a public module
member.

Example 16: Attempting to mock a private function in the test scope

1 # Same Describe block as Example 15
2 It "Can't mock a private function in the test scope" {
3 Mock Get-DataStoreFile {}
4 }

[-] Can't mock a private function in the test scope 59ms (58ms|0ms)
CommandNotFoundException: Could not find Command Get-DataStoreFile

Using the -ModuleName parameter of Mock, you can create a mock of the private function, and
return a valid dummy store file. To make this work, you need to create the dummy data store in
the BeforeAll section. You can use Pester’s test drive for this, which is a temporary PSDrive
specifically for tests.²⁰

²⁰Pester Team. (2022, Jun. 19). Isolating File Operations using the TestDrive. Pester Docs. [Online]. Available: https://pester.dev/
docs/usage/testdrive. [Accessed: Jun. 21, 2022].

https://pester.dev/docs/usage/testdrive
https://pester.dev/docs/usage/testdrive

Mocking 85

Example 17: Creating the dummy data store using Pester’s test drive

1 BeforeAll {
2 $DummyXMLParams = @{
3 Path = 'TestDrive:\DummyDataStore.xml'
4 InputObject = [pscustomobject]@{}
5 }
6 Export-Clixml @DummyXMLParams
7 }

The module-scoped mock can now retrieve your dummy file:

Example 18: Mocking an internal function using a dummy file and Mock -ModuleName

1 # Same Describe block as Example 15
2 It 'Returns the dummy data when private function mocked' {
3 Mock Get-DataStoreFile {
4 Get-Item 'TestDrive:\DummyDataStore.xml'
5 } -ModuleName DataStoreFunctions
6 $Store = Get-DataStore -Name SomeName
7 $Store.Name | Should -Be 'SomeName'
8 $Store.Data | Should -BeNullOrEmpty
9 }

[+] Returns the dummy data when private function mocked 15ms (15ms|0ms)

You can achieve the same result using InModuleScope, either just for the creation of the mock
or by running the entire test in the module scope.

Example 19: Mocking an internal function with InModuleScope

1 # Same Describe block as Example 15
2 It 'Alternative method for mocking module functions' {
3 InModuleScope DataStoreFunctions {
4 Mock Get-DataStoreFile {
5 Get-Item 'TestDrive:\DummyDataStore.xml'
6 }
7 }
8 $Store = Get-DataStore -Name SomeName
9 $Store.Name | Should -Be 'SomeName'

10 $Store.Data | Should -BeNullOrEmpty
11 }

You can use InModuleScope anywhere that you’d usually place code in a Pester test file. You
can also use it to wrap entire Describe or Context blocks, in order to run entire test programs
in the scope of the module:

Mocking 86

Example 20: Running entire tests in the module scope

1 InModuleScope DataStoreFunctions {
2
3 Describe 'Running tests directly in the module scope' {
4
5 It 'Running the entire test in the module scope' {
6 Mock Get-DataStoreFile {
7 Get-Item 'TestDrive:\DummyDataStore.xml'
8 }
9 $Store = Get-DataStore -Name SomeName

10 $Store.Name | Should -Be 'SomeName'
11 $Store.Data | Should -BeNullOrEmpty
12 }
13
14 }
15
16 }

4.5.1 Mock Testing in the Module Scope

If you’ve created mocks in a module scope, you can still count calls to these with the -
ModuleName parameter of Should -Invoke. With this parameter, you can use Should in the
same way you would for globally scoped dependencies. Like with creating mocks, you can use
mock assertions inside an InModuleScope block as if the tests were running inside the module.

Pester counts verifiable mocks regardless of scope, making the assertions much simpler. Should
-InvokeVerifiable will succeed if the tests call all verifiable mocks, regardless of whether
they’re in a module scope or the global one.

Example 21: Mock assertions in the module scope

1 # Same Describe block as Example 15
2 It 'Mock assertions should work in the correct scope' {
3 Mock Get-DataStoreFile {} -ModuleName DataStoreFunctions -Verifiable
4 Get-DataStore -Name SomeName
5
6 Should -Invoke Get-DataStoreFile -ModuleName DataStoreFunctions -Exactly 1
7
8 InModuleScope DataStoreFunctions {
9 Should -Invoke Get-DataStoreFile -Exactly 1

10 }
11
12 Should -InvokeVerifiable
13 }

4.5.2 Running the Module Scope Tests

Running the tests from Examples 14 to 21 should yield six tests, one of which fails with an error.

Mocking 87

Example 22: Running the module scope tests

1 Invoke-Pester .\Examples14to21.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 6 tests in 15ms.
Running tests.

Running tests from 'Examples14to21.Tests.ps1'
Describing Mocking in modules

[+] Throws an error because real private function called 4ms (3ms|2ms)
[-] Can't mock a private function in the test scope 50ms (49ms|1ms)

CommandNotFoundException: Could not find Command Get-DataStoreFile
[+] Returns the dummy data when private function mocked 7ms (7ms|0ms)
[+] Alternative method for mocking module functions 5ms (4ms|0ms)
[+] Mock assertions should work in the correct scope 5ms (5ms|0ms)

Describing Running tests directly in the module scope
[+] Running the entire test in the module scope 5ms (4ms|2ms)

Tests completed in 163ms
Tests Passed: 5, Failed: 1, Skipped: 0 NotRun: 0

Find the Examples14to21.Tests.ps1²¹ file used in this example on the Extras²² repository
on GitHub.

4.6 Dynamic Mock Behavior with -ParameterFilter

So far, the chapter has only covered simple mock behavior. Creating dynamic responses to input
data or conditions is a little more complex, but Pester includes a feature that helps to ease this.

The -ParameterFilter parameter of Mock restricts the conditions under which Pester will
redirect a dependency call to the mock. You can use this to create multiple mocks that respond
to different sets of inputs. If no parameter filter matches the parameters, Pester passes the call
to the underlying (real) dependency. Alternatively, you can create an additional mock with no
parameter filters. This will receive all calls whose parameters don’t match the filters of the other
mocks.

The standard syntax of Mock with a parameter filter is:

Mock <Command Name> <Mock Script> -ParameterFilter <Filter Script>

²¹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples14to21.Tests.ps1

²²https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples14to21.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples14to21.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples14to21.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 88

The filter script is a script block that must return True in order for the mock to accept and handle
the call. Think of this as similar to the script block you would pass to Where-Object.

Consider the Update-DataStore function from Example 1. It makes two calls to Invoke-
RestMethod. One of these gets the list of updates to a remote data store, and the other gets
the contents of a single update. Any unit tests of the Update-DataStore function need the
dependency to behave consistently across tests, but differently according to the URI parameter.

Example 23: Mocking Invoke-RestMethod specifically for update checks

1 Describe 'Update-DataStore Tests' {
2
3 BeforeAll {
4
5 [int64]$LaterUnix = Get-Random -Minimum 16.1e+11 -Maximum 16.2e+11
6 [int64]$EarlierUnix = Get-Random -Minimum 16e+11 -Maximum 16.1e+11
7
8 Mock Invoke-RestMethod {
9 @{ class = 'updates'; updates = @(

10 @{ guid = [guid]::Empty; date = $EarlierUnix }
11 @{ guid = [guid]::Empty; date = $LaterUnix }
12)
13 }
14 } -ParameterFilter { $Uri -like '*/updates' } -Verifiable
15
16 }
17
18 }

The real API returns an object containing an array of update objects, each made of a GUID and
a Unix time stamp in milliseconds. The mock in the example replicates this with two updates
containing empty (zero) GUIDs and random time stamps in a predefined range. Returning two
fake updates with differing time stamps means that tests can ensure Update-DataStore is
selecting the latest updates correctly.

The new feature of this example is, of course, the -ParameterFilter parameter. Recall that
Pester copies the parameters of the real dependency in mocks, and the same is true for filter
scripts. The filter script here checks whether the -Uri parameter ends with ‘/updates’. Take a
look back at Example 1 and you’ll be able to see how this will ‘catch’ the right calls.

To mock the calls to Invoke-RestMethod that receive the new data store contents, a second
mock is necessary.

Example 24: Mocking Invoke-RestMethod for data store content requests

1 # Same Describe/BeforeAll block as Example 22
2 Mock Invoke-RestMethod {
3 $null = $Uri -match '/data/(\d+)$'
4 [int64]$Date = $Matches[1]
5
6 @{
7 class = 'data'
8 date = $Date
9 name = "Update $Date"

10 data = @{ Property1 = 'Value 1'; Property2 = 'Value 2' }
11 }
12 } -ParameterFilter { $Uri -match '/data/\d+$' } -Verifiable

Mocking 89

The filter script in this example matches any calls where the URI ends with ‘/data/ ’ and only
numbers. Since the real API supplies data stores based on the Unix time stamps, this mock will
intercept any attempts to retrieve new data store contents. The mock script itself simply provides
a fake data store object with fixed data, and a date that’s taken from the -Uri parameter passed
to it.

This just leaves the behavior when the URI doesn’t resemble an update or data store request at
all. With no additions to the test script, Pester passes these calls on to the real dependency. This
is undesirable given the purpose of unit tests, so you can use a third mock without a parameter
filter to catch any other calls.

Example 25: Catching unmatched mock calls with a filterless mock

1 # Same Describe/BeforeAll block as Example 22
2 Mock Invoke-RestMethod {
3 throw (
4 'Invoke-RestMethod called with unexpected parameters: {0}' -f (
5 $PesterBoundParameters.Keys.ForEach{
6 "$_ = $($PesterBoundParameters.$_)"
7 } -join ', '
8)
9)

10 }

This mock immediately throws an error in order to fail the test, since any URI passed that doesn’t
match the first two mocks is invalid for the real API. The extra code uses $PesterBoundParame-
ters to list any parameter keys and values passed in the invalid scenario, which helps to diagnose
and correct a test failure.

You’re almost ready to use these mocks in unit tests. An important thing to remember is full
dependency coverage. There aren’t any mocks for Get-DataStore or Set-DataStore in this
file, currently, and Update-DataStore calls both. Focusing on fully covering one dependency
and forgetting to account for others is a common unit testing mistake.

The next example creates a dummy data store that the other mocks access.

Example 26: Additional mocks for testing Update-DataStore

1 # Same Describe/BeforeAll block as Example 22
2 $DummyName = 'RandomName', (Get-Random) -join '_'
3 $DummyStore = [pscustomobject]@{
4 Name = 'Not Set'
5 Update = [datetime]::MinValue
6 Data = [pscustomobject]@{}
7 }
8
9 Mock Get-DataStore { $DummyStore } -Verifiable

10
11 Mock Set-DataStore {
12 $DummyStore.Name = $Name
13 $DummyStore.Update = $Update
14 $DummyStore.Data = [pscustomobject]$Data
15 } -Verifiable

Mocking 90

Notice how the values of the dummy store at definition differ from the fake values that
the Invoke-RestMethod mocks return. The following tests use these to verify that Update-
DataStore writes the correct values to the dummy store.

Example 27: Unit tests for Update-DataStore using the filtered mocks

1 # Same Describe block as Example 22
2 Context 'Unit tests' {
3
4 BeforeEach {
5 Update-DataStore -Name $DummyName -Source 'https://example.com'
6 }
7
8 It 'Accesses the right data store' {
9 $DummyStore.Name | Should -BeExactly $DummyName

10 }
11 It 'Chooses the latest update' {
12 $UnixEpoch = [datetime]::new(1970, 1, 1, 0, 0, 0, 0, 1)
13 $Later = $UnixEpoch.AddMilliseconds($LaterUnix)
14 $DummyStore.Update | Should -BeExactly $Later
15 }
16 It 'Adds new values to the data store' {
17 $DummyStore.Data.Property1 | Should -Be 'Value 1'
18 $DummyStore.Data.Property2 | Should -Be 'Value 2'
19 }
20
21 }

The tests in this example run Update-DataStore three times, once for each It block. The first
call should update the dummy data store with the values from the second Invoke-RestMethod
mock. The name stored in $DummyStore therefore changes from ‘Not Set’ to the randomly
generated name from Example 26. The two subsequent tests shouldn’t attempt to update the
dummy store again, since the date it contains now matches that from the mock. Later tests can
confirm this with mock assertions.

The second test causes Update-DataStore to run again, but, as discussed in the previous
paragraph, no values should change. This test checks that the dummy store’s date has changed
from the earliest that DateTime can represent, to the date represented by $LaterUnix. The test
uses the same method to convert the Unix time stamp from $LaterUnix to a DateTime, so these
dates should match if Update-DataStore is accessing and converting this value correctly. The
third test causes a third run, and this time checks that Update-DataStore has added the two
properties and values from the mock to the dummy data store.

Note that the three assertions in the example will work just as well if placed in the first It block.
All the data these tests look for should have been set in the first call to Update-DataStore.
Using three It blocks provides more granular results in the event of a single assertion failing
and has the added benefit of calling Update-DataStore multiple times, since the call is in a
BeforeEach block. The multiple calls support the following mock tests, which check that the
second two calls to Update-DataStore result in no further changes to the dummy store, since
it’s up-to-date after the first one.

Mocking 91

4.6.1 Filtered Mock Assertions

The next set of tests needs to verify that Update-DataStore only wrote to the dummy store
when it was out of date. Since there are multiple mocks for Invoke-RestMethod, you need to
filter these assertions, too. You can use the same parameter name, -ParameterFilter, with
Should -Invoke to restrict what Pester counts.

Example 28: Mock tests that check how Update-DataStore responds to an updated dummy store

1 # Same Describe block as Example 22
2 Context 'Mock tests' {
3
4 It 'Accesses data stores and API at least once' {
5 Should -InvokeVerifiable
6 }
7 It 'Calls Invoke-RestMethod 4 times overall' {
8 Should -Invoke Invoke-RestMethod -Exactly 4 -Scope Describe
9 }

10 It 'Calls Invoke-RestMethod 3 times for update URL' {
11 Should -Invoke Invoke-RestMethod -ParameterFilter {
12 $Uri -match '.+/updates$'
13 } -Exactly 3 -Scope Describe
14 }
15 It 'Calls Invoke-RestMethod once for data URL' {
16 Should -Invoke Invoke-RestMethod -ParameterFilter {
17 $Uri -match '/data/\d+$'
18 } -Exactly 1 -Scope Describe
19 }
20
21 }

Note first that -InvokeVerifiable isn’t affected at all by parameter filters, only by the -
Verifiable switch of Mock. If a test calls all mocks marked as verifiable, the assertion succeeds.
You could mark only some of your filtered mocks as verifiable, in which case those mocksmust
be called for the assertion to succeed. Additional mocks with the same name, but without the
-Verifiable switch, don’t count.

The second test checks Invoke-Restmethodwith no filtering, so the assertion counts calls to all
mocks with that name. There should be four calls—three with the update URI and one with the
data URI.

The third and fourth tests check this explicitly with the -ParameterFilter parameter of Should
-Invoke. Note how the third test uses a different parameter filter script than the one for the
mock itself. The filter script for the assertion uses a regex match, whereas the one for the mock
definition uses a wildcard match. This demonstrates that the filters you use for mock assertions
don’t have to be identical to the ones you use for mock definitions. Of course, if no mock exists
that would handle the parameters defined by your assertion filter, the assertion will always fail.
This freedom means you can cover overlapping parameter scenarios for multiple filtered mocks
(of the same dependency) in your assertions. Or, you can test more granular scenarios for the
same mock with individual assertions that have stricter parameter filters.

Finally, note that the Should -Invoke assertions all specify -Scope Describe. Since the calls
to Update-DataStore came from a different Context block (‘Unit tests’), they won’t count in

Mocking 92

this one (‘Mock tests’) due to mock scoping. By specifying the parent Describe of both Context
blocks, the assertions here will count them.

This just leaves a couple of mock tests for Get-DataStore and Set-DataStore. As with the
previous example, there should be three calls to Get-DataStore since three update checks should
occur. Only one call to Set-DataStore confirms that repeated calls to Update-DataStore
resulted in no action on the dummy store.

Example 29: Mock tests for the calls to Get-DataStore and Set-DataStore
1 # Same Describe/Context block as Example 28
2 It 'Calls Get-DataStore three times' {
3 Should -Invoke Get-DataStore -Exactly 3 -Scope Describe
4 }
5 It 'Calls Set-DataStore once' {
6 Should -Invoke Set-DataStore -Exactly 1 -Scope Describe
7 }

4.6.2 Running the Filtered Mock Tests

The code from Examples 23 to 29 yields nine tests, all of which should pass.

Example 30: Running the parameter filter tests
1 Invoke-Pester .\Examples23to29.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 9 tests in 15ms.
Running tests.

Running tests from 'Examples23to29.Tests.ps1'
Describing Update-DataStore Tests
Context Unit tests
[+] Accesses the right data store 12ms (8ms|3ms)
[+] Chooses the latest update 9ms (8ms|1ms)
[+] Adds new values to the data store 7ms (6ms|1ms)

Context Mock tests
[+] Accesses data stores and API at least once 2ms (1ms|1ms)
[+] Calls Invoke-RestMethod 4 times overall 3ms (3ms|1ms)
[+] Calls Invoke-RestMethod 3 times for update URL 11ms (10ms|1ms)
[+] Calls Invoke-RestMethod once for data URL 4ms (4ms|1ms)
[+] Calls Get-DataStore three times 3ms (2ms|0ms)
[+] Calls Set-DataStore once 3ms (3ms|1ms)

Tests completed in 185ms
Tests Passed: 9, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples23to29.Tests.ps1²³ file used in this example on the Extras²⁴ repository
on GitHub.

²³https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples23to29.Tests.ps1

²⁴https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples23to29.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples23to29.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples23to29.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 93

4.6.3 Restricting Mock Calls Further with -ExclusiveFilter

The Should -Invoke assertion has a second filter parameter, -ExclusiveFilter. This works
the same as assertions that use -ParameterFilter, but only succeeds if:

• The tests call the mock the number of times specified with -Times or -Exactly
• No other calls to the mock that don’t match the filter occur

This means that you can only use -ExclusiveFilter once for each mock in the current scope.
Any other assertions for the same mock and scope that use -ParameterFilter become useless.
Anymock calls that would cause additional assertions to pass, will cause the -ExclusiveFilter pass
to fail. This makes the filter useful when it’s imperative that a dependency call occurs only under
a single set of conditions. Examples includewhere the function under test transmits sensitive data
or makes important changes.

Example 31: Using -ExclusiveFilter to assert mock calls strictly

1 Describe 'Set-DataStore tests' {
2
3 Context 'Correct file' {
4
5 BeforeAll {
6 Mock Export-Clixml {}
7 Mock Set-ItemProperty {}
8 Mock Get-DataStoreFile { Join-Path 'TestDrive:' "$Name.xml" }
9

10 $Rand = 'Random', (Get-Random) -join ''
11 $ExpectPath = Join-Path 'TestDrive:' "$Rand.xml"
12 $ExpectDate = Get-Date -AsUTC
13 Set-DataStore -Name $Rand -Data @{} -Update $ExpectDate
14 }
15
16 It 'Calls Export-Clixml with correct path once' {
17 Should -Invoke Export-Clixml -Exactly 1 -ExclusiveFilter {
18 $LiteralPath -eq $ExpectPath
19 } -Scope Context
20 }
21
22 }
23
24 }

The exclusive filter ensures that no other calls to Export-Clixml occur, and also that the
matching call uses the correct file path. Note once again that the assertion specifies an explicit
scope (Context). The call to Set-DataStore happens in the BeforeAll block of Context, so
the mock call also happens in the Context scope, not the It scope.

You can use additional exclusive filters in assertions for other mocks.

Mocking 94

Example 32: ExclusiveFilter excludes nonmatching calls to the same mock and in the same scope

1 # Same Context block as Example 31
2 It 'Calls Set-ItemProperty with correct path, name, and value once' {
3 Should -Invoke Set-ItemProperty -Exactly 1 -ExclusiveFilter {
4 $LiteralPath -eq $ExpectPath -and
5 $Name -eq 'LastWriteTimeUtc' -and
6 $Value -eq $ExpectDate
7 } -Scope Context
8 }

The test script declares the $ExpectDate and $ExpectPath variables in the BeforeAll block,
so these are available to the entire Context block and all It blocks it contains. Run the tests to
confirm this:

Example 33: Running the ExclusiveFilter tests

Invoke-Pester .\Examples31and32.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 2 tests in 31ms.
Running tests.

Running tests from 'Examples31and32.Tests.ps1'
Describing Set-DataStore mock tests
Context Correct file
[+] Calls Export-Clixml with correct path once 12ms (11ms|2ms)
[+] Calls Set-ItemProperty with correct path, name,

and value once 12ms (11ms|1ms)
Tests completed in 147ms
Tests Passed: 2, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples31and32.Tests.ps1²⁵ file used in this example on the Extras²⁶ repository
on GitHub.

4.7 Calling Real Dependencies While They’re Mocked

Since Pester 4.0, mocks create an alias that redirects to your mock script.²⁷ ²⁸ This means you can
use Get-Command to retrieve the real dependency and call it, both in your tests and from within
your mock scripts.

²⁵https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples31and32.Tests.ps1

²⁶https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
²⁷Pester Team. (2022, Mar. 06). Pester - Mock.ps1. L228-L261. Pester/Pester on GitHub. [Online]. Available: https://github.com/pester/

Pester/blob/main/src/functions/Mock.ps1. [Accessed: Jun. 14, 2022].
²⁸Pester Team. (2022, Jun. 22). Migrating from Pester v3 to v4. Pester Docs. [Online]. Available: https://pester.dev/docs/migrations/v3-

to-v4. [Accessed: Jul. 02, 2022].

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples31and32.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples31and32.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples31and32.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/pester/Pester/blob/main/src/functions/Mock.ps1
https://github.com/pester/Pester/blob/main/src/functions/Mock.ps1
https://pester.dev/docs/migrations/v3-to-v4
https://pester.dev/docs/migrations/v3-to-v4

Mocking 95

Example 34: Accessing real dependencies when they’re mocked

1 Describe 'Set-DataStore unit tests' {
2
3 Context 'Correct data' {
4
5 BeforeAll {
6
7 Mock Get-DataStoreFile {
8 return (Join-Path 'TestDrive:' "$Name.xml")
9 }

10
11 Mock Export-Clixml {
12 $RealCmd = Get-Command Export-Clixml -CommandType Cmdlet
13 $Filename = Split-Path $LiteralPath -Leaf
14 $SafePath = Join-Path 'TestDrive:' $Filename
15 & $RealCmd -InputObject $InputObject -LiteralPath $SafePath
16 }
17
18 Mock Set-ItemProperty {
19 $RealCmd = Get-Command Set-ItemProperty -CommandType Cmdlet
20 $Filename = Split-Path $LiteralPath -Leaf
21 $SafePath = Join-Path 'TestDrive:' $Filename
22 & $RealCmd -LiteralPath $SafePath -Name $Name -Value $Value
23 }
24
25 $Rand = 'Random', (Get-Random) -join ''
26 $ExpectDate = Get-Date -AsUTC
27 $ExpectPath = Join-Path 'TestDrive:' "$Rand.xml"
28 }
29
30 It 'Writes CLIXML to data store file' {
31 $ExpectPath | Should -Not -Exist
32 Set-DataStore -Name $Rand -Data @{ a = 1 } -Update $ExpectDate
33 $ExpectPath | Should -Exist
34 }
35
36 }
37
38 }

In this example, the mocks modify incoming file paths to ensure data is only written to Pester’s
test drive. They then pass on the safe values to the underlying dependencies that Get-Command
returned. Additional tests confirm that Set-DataStore has written the correct data to the test
drive as if it was a real data store location.

Example 35: More tests to confirm the contents of the new test drive file

1 # Same Context block as Example 33
2 It 'Writes correct date to data store attributes' {
3 $File = Get-Item -LiteralPath $ExpectPath
4 $File.LastWriteTimeUtc | Should -Be $ExpectDate
5 }
6
7 It 'Stores PSCustomObject with property a = 1' {
8 [xml]$Data = Get-Content -LiteralPath $ExpectPath
9 $Types = $Data.Objs.Obj.TN.ChildNodes

10 $Types.Count | Should -Be 2
11 $Types[0].'#text' |
12 Should -Be 'System.Management.Automation.PSCustomObject'
13 $Values = $Data.Objs.Obj.MS.ChildNodes

Mocking 96

14 $Values.Count | Should -Be 1
15 $Values[0].Name | Should -Be 'I32'
16 $Values[0].N | Should -Be 'a'
17 $Values[0].'#text' | Should -Be '1'
18 }

Run the tests to confirm that you can access underlying dependencies in Pester.

Example 36: Running the dependency access tests

Invoke-Pester .\Examples34and35.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 3 tests in 13ms.
Running tests.

Running tests from 'Examples34and35.Tests.ps1'
Describing Set-DataStore unit tests
Context Correct data
[+] Writes CLIXML to data store file 10ms (8ms|2ms)
[+] Writes correct date to data store attributes 1ms (1ms|0ms)
[+] Stores PSCustomObject with property a = 1 14ms (13ms|0ms)

Tests completed in 99ms
Tests Passed: 3, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples34and35.Tests.ps1²⁹ file used in this example on the Extras³⁰ repository
on GitHub.

4.8 Removing Parameter Typecasting and Validation

As the chapter has already mentioned, Pester 5.0 copies the parameters of the dependencies that
you mock. This includes the validation and parameter attributes, and means that tests must pass
valid parameter sets to mocks, even if the mock doesn’t need them. This becomes problematic
in scenarios where you want simple mocks for complex dependencies.

Imagine you are mocking the Set-DataStore function. This function accepts three parameters,
all of which are mandatory; $Name (a string), $Data (a hashtable), and $Update (a DateTime
object).

The $Update parameter also has a validation script that checks if the date is on or after January
1st, 2000:

²⁹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples34and35.Tests.ps1

³⁰https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples34and35.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples34and35.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples34and35.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 97

[ValidateScript({
$_ -ge [DateTime]::new(2000, 1, 1, 0, 0, 0, 0, 1)

})]
[datetime]$Update

If you mock Set-DataStore and pass invalid parameters to it, the call throws an error.

Example 37: Pester copies parameter typecasting and validation from the real dependency for mocks

1 Describe 'Parameter validation and typecasting in mocks' {
2
3 It 'Mock calls with invalid parameters throw errors' {
4
5 Mock Set-DataStore {
6 # Does nothing
7 }
8
9 # Bad types for -Data and -Update

10 { Set-DataStore -Name 'AName' -Data '' -Update '' } |
11 Should -Throw
12
13 # The value of -Update is before 2000
14 { Set-DataStore -Name 'AName' -Data @{} -Update ([datetime]0) } |
15 Should -Throw
16
17 }
18
19 }

The Mock statement includes two parameters that can make things a little simpler in these
scenarios.

The -RemoveParameterType parameter sets the required type of the parameter value to Object,
from which all PowerShell objects derive. Any parameters you pass to this in your mock
definition will now accept any type. In other words, you’ve disabled typecasting for those
parameters.

The -RemoveParameterValidation parameter, on the other hand, removes the Validate*
attributes from the parameters you pass. This includes the [ValidateScript({...})] for the
-Update parameter of Set-DataStore.

Example 38: Removing typecasting and parameter validation from mocks

1 Describe 'Removing parameter validation and typecasting' {
2
3 BeforeAll {
4 Mock Set-DataStore {
5 # Does nothing
6 } -RemoveParameterValidation Update -RemoveParameterType Update, Data
7 }
8
9 It 'Succeeds when validation and typecasting are removed' {

10
11 Set-DataStore -Name 'AName' -Data '' -Update ''
12 Set-DataStore -Name 'AName' -Data @{} -Update ([datetime]0)
13
14 }
15
16 }

Mocking 98

The -Name parameter still retains its string type, as the mock doesn’t specify this one for
typecasting or validation removal. Note also that neither of these parameters makes mandatory
parameters optional. You must still pass non-null values for them, even with validation and
typecasting disabled.

Example 39: The Mandatory attribute isn’t affected by validation or typecasting removal

1 # Same Describe block as Example 38
2 It 'Null values always fail for mandatory parameters' {
3
4 # Name wasn't included in -RemoveParameterValidation
5 # or -RemoveParameterType
6 { Set-DataStore -Name '' -Data '' -Update '' } |
7 Should -Throw
8
9 # Update was included in both, but still can't accept $null

10 { Set-DataStore -Name 'AName' -Data '' -Update $null } |
11 Should -Throw
12
13 }

Run the tests to check that the statements do indeed throw errors as expected:

Example 40: Running the parameter validation and typecasting tests

Invoke-Pester .\Examples37to39.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 3 tests in 9ms.
Running tests.

Running tests from 'Examples37to39.Tests.ps1'
Describing Parameter validation and typecasting in mocks

[+] Mock calls with invalid parameters throw errors 6ms (4ms|2ms)

Describing Removing parameter validation and typecasting
[+] Succeeds when validation and typecasting are removed 4ms (2ms|2ms)
[+] Null values always fail for mandatory parameters 3ms (2ms|0ms)

Tests completed in 83ms
Tests Passed: 3, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples37to39.Tests.ps1³¹ file used in this example on the Extras³² repository
on GitHub.

³¹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples37to39.Tests.ps1

³²https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples37to39.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples37to39.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples37to39.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 99

4.9 Mocking Native Applications

You can mock native applications with Pester in almost the same way as you can PowerShell
functions and cmdlets. The difference arises with parameters and parameter filters. Native
applications don’t have a standardized parameter handling mechanism, and nor does PowerShell
when you make calls to those applications. You still have full access to command line arguments,
however, in the form of the $args variable.³³ This is the standard approach for accessing
unbound arguments in PowerShell, and the same is true for Pester tests. The $args variable
is an array of arguments, roughly equivalent to those you would separate with spaces on the
command line.

If some command line arguments were -a 1 -b 2, the $args variable would be:

@('-a', '1', '-b', '2')

Note how the keys and values common to many applications and also seen in PowerShell
parameters are individual items in the $args array. When mocking native applications, you
need to apply your own argument/parameter processing logic.

Example 41: Mocking a native application (tar) in Pester

1 Describe 'Mocking native applications' {
2
3 BeforeAll {
4 $MockFile = 'HelloGround.txt'
5 Mock tar {
6 $fileArg = -1
7 for ($i = 0; $i -lt $args.Count; $i++) {
8 if ($args[$i] -match '-\w*f') {
9 $fileArg = $i + 1

10 break
11 }
12 }
13 if ($fileArg -lt 0) { throw 'No archive file passed' }
14 $FilePath = (Join-Path 'TestDrive:' $MockFile)
15 Set-Content $FilePath 'Oh no, not again'
16 if (($args -match '-\w*v').Count -gt 0) {
17 return "x $MockFile"
18 }
19 } -ParameterFilter {
20 ($args -like '-x*').Count -gt 0
21 }
22
23 Mock tar {
24 return $MockFile
25 } -ParameterFilter {
26 ($args -like '-t*').Count -gt 0
27 }
28 }
29
30 }

³³Microsoft. (2022, Jan. 07). About Automatic Variables (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#args. [Accessed: Jul.
04, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#args

Mocking 100

tar is an application used to create and extract from archive files. It’s available in *nix
and in current Windows 10/11 environments.

The twomocks have parameter filters that check the array of arguments for their respective flags
(-x and -t). The mock for -x also checks for the v flag, which would print the names of extracted
files with the real dependency.

Example 42: Using mocks of native applications in tests
1 # Same Describe block as Example 40
2 It 'Lists mock archive' {
3 tar -tf test.zip | Should -Be $MockFile
4 }
5
6 It 'Extracts mock file' {
7 tar -xvf test.zip | Should -Be "x $MockFile"
8 $File = Join-Path 'TestDrive:' $MockFile
9 $File | Should -Exist

10 $File | Should -FileContentMatch 'Oh no, not again'
11 }
12
13 It 'Only calls tar in list or extract mode' {
14 Should -Invoke tar -Exactly 2 -ExclusiveFilter {
15 ($args -like '-t*').Count -gt 0 -or
16 ($args -like '-x*').Count -gt 0
17 } -Scope Describe
18 }

As Example 42 shows, you can also use the Should -Invoke assertions with mocks of native
applications. Any filters must again handle arguments through the $args variable.

Example 43: Running the native applications tests
Invoke-Pester .\Examples41and42.Tests.ps1 -Output Detailed

Pester v5.3.0

Starting discovery in 1 files.
Discovery found 3 tests in 8ms.
Running tests.

Running tests from 'Examples41and42.Tests.ps1'
Describing Mocking native applications

[+] Lists mock archive 7ms (6ms|2ms)
[+] Extracts mock file 7ms (6ms|1ms)
[+] Only calls tar in list or extract mode 2ms (2ms|0ms)

Tests completed in 84ms
Tests Passed: 3, Failed: 0, Skipped: 0 NotRun: 0

Find the Examples41and42.Tests.ps1³⁴ file used in this example on the Extras³⁵ repository
on GitHub.

³⁴https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/
DataStoreDemo/Examples41and42.Tests.ps1

³⁵https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples41and42.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples41and42.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/blob/main/Edition-01/Mocking/DataStoreDemo/Examples41and42.Tests.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Mocking 101

4.10 Mocking .NET Objects with New-MockObject

One aspect that the chapter hasn’t covered at all yet is .NET objects. PowerShell and .NET are
tightly interconnected and, as such, you’ll probably come across .NET objects that you need to
mock for the purposes of testing.

Pester can create mock objects from any .NET type that exists in the current scope. The standard
syntax for this is:

New-MockObject -Type 'System.Type.Name' [-Properties ...] [-Methods ...]

• -Properties accepts a hashtable of property names and values.
• -Methods accepts a hashtable of method names and script blocks that act as the methods
themselves.

Example 44: Mocking a .NET object with New-MockObject

1 $MockParams = @{
2 Type = 'System.Globalization.CultureInfo'
3 Properties = @{
4 Parent = 'en'
5 LCID = 1931
6 Name = 'en-mm'
7 DisplayName = 'Mocked Culture'
8 }
9 Methods = @{

10 GetConsoleFallbackUICulture = {
11 return Get-Culture -Name 'en-US'
12 }
13 }
14 }
15 $Culture = New-MockObject @MockParams
16
17 # Example 44a: A real CultureInfo
18 Get-Culture
19
20 # Example 44b: The mocked one
21 $Culture
22
23 # Example 44c: A mocked method
24 $Culture.GetConsoleFallbackUICulture()

Mocking 102

Example 44a:
LCID Name DisplayName
---- ---- -----------
2057 en-GB English (United Kingdom)

Example 44b:
LCID Name DisplayName
---- ---- -----------
1931 en-mm Mocked Culture

Example 44c:
LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

Another feature of mocked objects is that you can retrieve themethod call history for all methods.
By default, Pester stores the history as a property of the mocked object, with the same name as
the method but prefixed with an underscore _.

Example 45: Retrieving the call history of a mocked .NET object

1 # Run it a second time, this time with a parameter
2 $null = $Culture.GetConsoleFallbackUICulture($true)
3 # Retrieve the call history
4 $Culture._GetConsoleFallbackUICulture

Call Arguments
---- ---------

1 {}
2 {True}

The two method calls (the first made in Example 44) now show up in the _GetConsoleFall-
backUICulture member of the mocked object. Each call has a number starting from 1 and an
array of arguments that the call passed to the mocked method.

To change the prefix that Pester uses for this method call history, use the -
MethodHistoryPrefix parameter.

Example 46: Using an alternate history prefix for mocked .NET object methods

1 $MockSpan = New-MockObject -Type timespan -Methods @{
2 Test = {
3 param ($Value)
4 $Value
5 }
6 } -MethodHistoryPrefix '##'
7
8 $MockSpan.Test('Allons-y, Alonzo!')
9

10 $MockSpan.'##Test'

Mocking 103

Allons-y, Alonzo!

Call Arguments
---- ---------

1 {Allons-y, Alonzo!}

As is apparent in Example 46, you can use type accelerators with New-MockObject. In fact, you
can pass almost all the type names you would to New-Object.

There are some exceptions. The .NET type must support uninitialized object creation by the
serialization library.³⁶ However, since mock objects are most useful for complex data types, you
shouldn’t need to mock primitives.

For objects that can’t be created without calling a constructor, you can instantiate the object
normally and pass it to New-MockObject using the -InputObject parameter. This doesn’t work
with all .NET types, so checking outside of a Pester test might be necessary.

4.11 Next Steps

Check out theModern IT Automation with PowerShell Extras³⁷ repository on GitHub. The extras
repository contains chapter examples, extra code, and additional materials used in the chapters
of this book.

Additional material for this chapter includes the Data Store Demo Functions³⁸ that the tests are
based on.

You can also use the Static Dummy API³⁹ with the Update-DataStore function. Change 001
in the URL to access alternate stores of various sizes, all with randomly generated dummy data
(002–008).

4.12 Further Reading

• Official Pester Mocking Documentation⁴⁰
• Mock Command Documentation⁴¹
• Should Documentation⁴²
• New-MockObject Documentation⁴³
• InModuleScope Documentation⁴⁴
• Pester Migration Guide — v3 to v4⁴⁵

³⁶Pester Team. (2022, Jun. 30). Pester - New-MockObject.ps1. L90-L95. Pester/Pester on GitHub. [Online]. Available: https://github
.com/pester/Pester/blob/main/src/functions/New-MockObject.ps1. [Accessed: Jul. 04, 2022].

³⁷https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
³⁸https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/

DataStoreDemo/
³⁹https://github.com/TheFreeman193/mita-dummyapi/blob/main/README.md
⁴⁰https://pester.dev/docs/usage/mocking
⁴¹https://pester.dev/docs/commands/Mock
⁴²https://pester.dev/docs/commands/Should
⁴³https://pester.dev/docs/commands/New-MockObject
⁴⁴https://pester.dev/docs/commands/InModuleScope
⁴⁵https://pester.dev/docs/migrations/v3-to-v4

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/DataStoreDemo/
https://github.com/TheFreeman193/mita-dummyapi/blob/main/README.md
https://pester.dev/docs/usage/mocking
https://pester.dev/docs/commands/Mock
https://pester.dev/docs/commands/Should
https://pester.dev/docs/commands/New-MockObject
https://pester.dev/docs/commands/InModuleScope
https://pester.dev/docs/migrations/v3-to-v4
https://github.com/pester/Pester/blob/main/src/functions/New-MockObject.ps1
https://github.com/pester/Pester/blob/main/src/functions/New-MockObject.ps1
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/DataStoreDemo/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Mocking/DataStoreDemo/
https://github.com/TheFreeman193/mita-dummyapi/blob/main/README.md
https://pester.dev/docs/usage/mocking
https://pester.dev/docs/commands/Mock
https://pester.dev/docs/commands/Should
https://pester.dev/docs/commands/New-MockObject
https://pester.dev/docs/commands/InModuleScope
https://pester.dev/docs/migrations/v3-to-v4

Mocking 104

• Pester Migration Guide — v4 to v5⁴⁶
• Pester Migration Guide — Breaking Changes in v5⁴⁷

⁴⁶https://pester.dev/docs/migrations/v4-to-v5
⁴⁷https://pester.dev/docs/migrations/breaking-changes-in-v5

https://pester.dev/docs/migrations/v4-to-v5
https://pester.dev/docs/migrations/breaking-changes-in-v5
https://pester.dev/docs/migrations/v4-to-v5
https://pester.dev/docs/migrations/breaking-changes-in-v5

5. Unit Testing
5.1 Why Unit Testing?

Whether you’re writing PowerShell scripts or modules for an enterprise or simply for fun, you
should use a Git repository (repo) to store your PowerShell files. Even if it’s only you accessing
the repo, this habit is worth forming. Storing files in Git ensures that there’s a traceable history
of all changes, and it doubles as a backup strategy, giving you the power to revert any code
changes.

While people usually store their scripts in Git repos, they often overlook the need to support
unit testing. Usually, this is due to time or budget constraints in enterprise environments, or
developers don’t consider adding tests a worthwhile use of their time for personal projects.

So, why should you do this? Why should you care? Spending the time and effort to create unit
tests may seem overkill and unnecessary. For small repos, this may be true. But often, over time,
scripts in repos grow in size and complexity. Adding support for unit testing early on makes
creating new tests easier; you can simply update existing ones as repo complexity increases.
If you delay the addition of unit tests until your repo is more complex, adding them is more
complicated and time-consuming. A bonus is the warm and fuzzy feeling you’ll get when your
repo tests all pass!

5.2 What Is Unit Testing?

Unit tests should test the code in the Git repository and shouldn’t rely on external interfaces.
This is so the unit tests can be run via the testing framework anytime without requiring external
systems to be up and running. However, if external endpoints are used, and developers wish to
test how scripts handle the returned data, they can be mocked out,¹ so there’s no need to use
actual endpoints when executing the unit tests. One advantage of mocking is that it speeds up
unit test response times, as there’s no latency of external systems to consider.

For more information on mocking, refer to Mocking.

Running unit tests with a limited scope should be quick, allowing for frequent execution so
developers can gain more confidence that their script changes have broken nothing.

¹Pester Team. (2022, Jun. 25).Mocking with Pester. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/mocking. [Accessed:
Sep. 04, 2022].

105

https://pester.dev/docs/usage/mocking

Unit Testing 106

5.3 Testing Frameworks

Developers with experience in programming languages like C# are probably familiar with the
many testing frameworks currently available. These include xUnit², NUnit³, MSTest⁴, Specflow⁵,
and others. So what testing frameworks are there for PowerShell?

Pester⁶ is the de facto testing framework to use with PowerShell. It has been around for many
years and is currently up to version 5.3 at the time of writing. Version 5.0 of Pester was a
significant rewrite of much of the codebase.⁷ This new version has simplified Pester syntax,
making it easier to learn.

This chapter will focus only on Pester v5 features and examples.

5.3.1 Black Box vs. White Box Testing

Black Box testing is when the tester lacks visibility into the inner workings of the code. They can
call the component and view the output or results, but that’s the limit of the interaction.

White Box testing is when the tester has full access to the code of the tested component. Test
cases can be structured to pass through different execution flows to ensure that many scenarios
are executed. Another definition of white box testing is unit testing, since these tests can check
portions of internal code and code flows. Therefore, unit testing or white box testing is the focus
of the content for the rest of this chapter.

5.3.2 The AAA Approach

A common approach for structuring tests is the AAA approach (Arrange, Act, and Assert). It has
proven popular because of its simplicity of structuring tests into three easy-to-follow sections.

• Arrange: Setup any data or conditions for tests.
• Act: Run the commands for the test itself.
• Assert: Performs checks on the results to determine if they conform to the pass/fail criteria.

For more information on AAA, refer to The AAA Approach.

²https://xunit.net/
³https://nunit.org/
⁴https://learn.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-

tests?view=vs-2022
⁵https://specflow.org/
⁶https://pester.dev/
⁷Pester Team. (2021, May. 14). Breaking Changes in v5. Pester Docs. [Online]. Available: https://pester.dev/docs/migrations/breaking-

changes-in-v5. [Accessed: Apr. 26, 2022].

https://xunit.net/
https://nunit.org/
https://learn.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2022
https://specflow.org/
https://pester.dev/
https://xunit.net/
https://nunit.org/
https://learn.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2022
https://specflow.org/
https://pester.dev/
https://pester.dev/docs/migrations/breaking-changes-in-v5
https://pester.dev/docs/migrations/breaking-changes-in-v5

Unit Testing 107

5.4 Pester

5.4.1 Getting Started

Given the scenario of a developer or scripter creating a new Git repo with some added functions
and modules, start creating unit tests before the scripts get too complex. So where do you start? If
you haven’t already installed Pester, open a PowerShell prompt and run the following command.

Example 1: Installing the latest version of Pester

Install-Module -Name Pester -Force -SkipPublisherCheck

The -Force and -SkipPublisherCheck switches are usually required to install the
latest version of Pester on Windows. This is because version 3.4.0 is installed by default
and is the latest version that Microsoft signed. Later versions are signed with a different
certificate, so adding these switches is necessary.⁸

If you’re struggling to install the latest version of Pester, refer to the installation documentation⁹
for alternative installation approaches and troubleshooting.

Run Get-InstalledModule to confirm a successful installation, and Get-Module to check the
version of Pester loaded into the PowerShell session.

Example 2: Checking the Pester module version

1 # Example 2a: Checking Pester is installed from the PowerShell Gallery
2 Get-InstalledModule -Name Pester
3
4 # Example 2b: Checking the Pester version in the session
5 Import-Module -Name Pester
6 Get-Module -Name Pester

Example 2a:
Version Name Repository Description
------- ---- ---------- -----------
5.3.3 Pester PSGallery Pester provides a framework for running…

Example 2b:
ModuleType Version PreRelease Name ExportedCommands
---------- ------- ---------- ---- ----------------
Script 5.3.3 Pester {Add-ShouldOperator, AfterAll, …

⁸Pester Team. (2022, Jun. 22). Installation and Update. Pester Docs. [Online]. Available: https://pester.dev/docs/introduction/
installation. [Accessed: Sep. 09, 2022].

⁹https://pester.dev/docs/introduction/installation

https://pester.dev/docs/introduction/installation
https://pester.dev/docs/introduction/installation
https://pester.dev/docs/introduction/installation
https://pester.dev/docs/introduction/installation

Unit Testing 108

5.4.2 Defining Pester Test Files

The standard approach for the location of test files is to store them in the same folder as the source
code.¹⁰ The file names are the same as those of the source code files, but with a .Tests.ps1
extension. For example, if the script Calculator.ps1 contains the code to test, the tests would
be in a Calculator.Tests.ps1 file.

This file placement is suitable when a relatively small number of files require testing.

An alternative approach is to define tests in a tests folder that follows the same directory
structure as the source files directory:

/src/functions/Calculator.ps1
/tests/functions/Calculator.Tests.ps1

This second approach is more useful when you have dozens of files to test.

You can use your own approach to store Pester test files, but not following one of the standard
approaches adds complexity for other maintainers who are familiar with the standard. There
can also be issues with code editors or plugins that expect particular filenames and locations for
determining how to handle and display files. For example, the PowerShell plugin within Visual
Studio Code won’t recognize Pester files correctly if the filename doesn’t end with .Tests.ps1.

5.4.3 Pester Demo Code

The rest of this chapter uses the code below for all examples. Assume this code is in a file
Calculator.ps1 and the tests for it are in a file Calculator.Tests.ps1 in the same folder.

Example 3: Arithmetic functions that add or subtract an array of integers
1 function Invoke-Addition {
2 param (
3 [Parameter(Mandatory)]
4 [ValidateCount(1, 20)]
5 [int[]]$Numbers
6)
7
8 $Result = 0
9 $Numbers.ForEach{ $Result += $_ }

10
11 $Result
12 }
13
14 function Invoke-Subtraction {
15 param (
16 [Parameter(Mandatory)]
17 [ValidateCount(2, 20)]
18 [int[]]$Numbers
19)
20
21 $Result = $Numbers[0]
22 $Numbers | Select-Object -Skip 1 | ForEach-Object { $Result -= $_ }
23
24 $Result
25 }

¹⁰Pester Team. (2022, Jun. 19). File placement and naming. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/file-
placement-and-naming. [Accessed: Aug. 18, 2022].

https://pester.dev/docs/usage/file-placement-and-naming
https://pester.dev/docs/usage/file-placement-and-naming

Unit Testing 109

5.4.4 Pester Test Structure

If you’re new to Pester, refer to the earlier chapters on The AAA Approach and Mocking to gain
an understanding of the Pester test file structure.

5.4.4.1 Basic Tests

Below is a sample Pester test file demonstrating simple, clear, and clean test cases. Documentation
is barely required, as the code itself reads almost like English.

Example 4: A simple test of the Invoke-Addition function from Calculator.ps1
1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 }
4
5 Describe 'Invoke-Addition' {
6
7 It 'Correctly adds the numbers passed' {
8 # Arrange
9 $TestNums = @(1, 2, 3, 4, 5)

10
11 # Act
12 $Sum = Invoke-Addition -Numbers $TestNums
13
14 #Assert
15 $Sum | Should -Be 15
16 }
17
18 }

Starting discovery in 1 files.
Discovery found 1 tests in 7ms.
Running tests.

Running tests from 'Calculator.Tests.ps1'
Describing Invoke-Addition

[+] Correctly adds the numbers passed 16ms (1ms|15ms)
Tests completed in 83ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

5.4.4.2 Detailed Tests

From here, you can define more complex tests. This chapter touches on some more common
enhancements that you can add. However, if you require more detail, refer to the Pester
documentation¹¹.

5.4.4.2.1 Tags

You can add tags to your tests as a parameter to the Describe, Context, and It blocks to provide
grouping.¹² A good example of this is when you only want to run tests tagged with “Unit” locally
and leave “Integration” tagged tests for automated deployments.

¹¹https://pester.dev/docs/quick-start
¹²Pester Team. (2022, Jun. 19). Tags. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/tags. [Accessed: Sep. 04, 2022].

https://pester.dev/docs/quick-start
https://pester.dev/docs/quick-start
https://pester.dev/docs/quick-start
https://pester.dev/docs/usage/tags

Unit Testing 110

Example 5: Adding a tag to a Describe block

1 Describe 'Invoke-Addition' -Tag 'Unit' {
2 It 'Correctly adds the numbers passed' {
3 # Test code
4 }
5 }

5.4.4.3 -TestCases

If you need to test many scenarios, the -TestCases parameter is more suitable than creating
a separate It block for each one.¹³ Defining the -TestCases parameter with rows of data in a
single It block allowsmultiple tests to be executedwith one code block. You can use an additional
field in the -TestCases data to display accurate test information.

Example 6: Using test cases to reuse test code with various inputs

1 Describe 'Invoke-Addition' -Tag 'Unit' {
2
3 It 'Returns a result of <Sum> given <Desc> (<Values>)' -TestCases @(
4 @{ Desc = 'numbers 1 to 5'; Values = @(1, 2, 3, 4, 5); Sum = 15 }
5 @{ Desc = 'negative numbers'; Values = @(-2, -4, -9); Sum = -15 }
6 @{ Desc = 'only two numbers'; Values = @(10, 5); Sum = 15 }
7 @{ Desc = 'only one number'; Values = @(64); Sum = 64 }
8) {
9 # Act

10 $Result = Invoke-Addition -Numbers $Values
11
12 # Assert
13 $Result | Should -Not -BeNullOrEmpty
14 $Result | Should -Be $Sum
15 }
16
17 }

Starting discovery in 1 files.
Discovery found 4 tests in 5ms.
Running tests.

Running tests from 'Calculator.Tests.ps1'
Describing Invoke-Addition

[+] Returns a result of 15 given numbers 1 to 5 (1 2 3 4 5) 3ms (1ms|2ms)
[+] Returns a result of -15 given negative numbers (-2 -4 -9) 2ms (1ms|0ms)
[+] Returns a result of 15 given only two numbers (10 5) 2ms (2ms|0ms)
[+] Returns a result of 64 given only one number (64) 2ms (2ms|0ms)

Tests completed in 67ms
Tests Passed: 4, Failed: 0, Skipped: 0 NotRun: 0

¹³Pester Team. (2019, Jan. 09). It - TestCases. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/It#-testcases. [Ac-
cessed: Apr. 26, 2022].

https://pester.dev/docs/commands/It#-testcases

Unit Testing 111

5.4.5 Mocking

Code that you’re unit testing can sometimes call other external methods or servers. These
external dependencies may not always be available or could have access limitations; for example,
rate limits or long processing times. Pester can mock out calls to these dependencies to test the
internal code without worrying about any external impact.

For more detail on how to mock external interfaces and even internal cmdlets, refer to the
chapters on Mocking and The AAA Approach.

5.4.6 Running Pester Tests

You’ve now defined your tests within the *.Tests.ps1 files, but how do you run them? There
are two recommended approaches.

5.4.6.1 Visual Studio Code

Several text editors are suitable for PowerShell code, but you’re likely developing on Windows,
Linux, or macOS. The most used (and supported) PowerShell editor is Visual Studio Code¹⁴. It’s
free and open-source,¹⁵ cross-platform, flexible, and robust, thanks to a vast library of extensions.
With the free PowerShell plugin¹⁶, Pester support is built into the editor itself. You can see it by
opening test files in VS Code: Run Tests | Debug Tests should appear above any Describe,
Context or It blocks. These two links will execute the tests defined in the related block when
clicked.

A different level of verbosity is defined between the Run Tests and Debug Tests links. Debug
Tests sets the -Output parameter to Diagnostic to provide additional logging details to assist
with debugging the tests.

The output of the tests will appear in the Terminal output pane, which is usually below the editor.

Pester Test Buttons in VS Code

¹⁴https://code.visualstudio.com/
¹⁵While the codebase for Visual Studio Code is open-source, some elements of the binary releases and some plugins aren’t. You can

learn more at https://github.com/microsoft/vscode/.
¹⁶https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://code.visualstudio.com/
https://github.com/microsoft/vscode/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell

Unit Testing 112

5.4.6.2 Command Line

The Visual Studio Code approach is ideal for testing a single Describe block. To run all the tests
or define advanced settings like filtering options, use the command line approach.

The command to run Pester tests is Invoke-Pester. Using the example functions defined above,
you can run tests for them by passing the file path of a test file or a wildcard pattern.

Example 7: Running all test files in the current working directory

Invoke-Pester -Path *.Tests.ps1

Starting discovery in 1 files.
Discovery found 4 tests in 7ms.
Running tests.
[+] Calculator.Tests.ps1 55ms (7ms|41ms)
Tests completed in 57ms
Tests Passed: 4, Failed: 0, Skipped: 0 NotRun: 0

This is suitable for running all the tests, but it doesn’t show much detail in the output. To get
more detail, add the -Output Detailed parameter.

Example 8: Running tests with the -Output parameter to get detailed results

Invoke-Pester -Path *.Tests.ps1 -Output Detailed

Pester v5.3.3

Starting discovery in 1 files.
Discovery found 4 tests in 7ms.
Running tests.

Running tests from 'Calculator.Tests.ps1'
Describing Invoke-Addition

[+] Returns a result of 15 given numbers 1 to 5 (1 2 3 4 5) 4ms (1ms|2ms)
[+] Returns a result of -15 given negative numbers (-2 -4 -9) 2ms (1ms|0ms)
[+] Returns a result of 15 given only two numbers (10 5) 2ms (1ms|0ms)
[+] Returns a result of 64 given only one number (64) 3ms (2ms|0ms)

Tests completed in 64ms
Tests Passed: 4, Failed: 0, Skipped: 0 NotRun: 0

The output provides more details for each test in the Describe block.

To filter which tests are executed by tag, use the -TagFilter and -ExcludeTagFilter param-
eters. Since all tests in this chapter are tagged with ‘Unit’, adding another value to -TagFilter
means no tests run.

Unit Testing 113

Example 9: Running only the tests in blocks with the ‘Integration’ tag

Invoke-Pester -Path *.Tests.ps1 -TagFilter Integration -Output Detailed

Pester v5.3.3

Starting discovery in 1 files.
Discovery found 4 tests in 6ms.
Filter 'Tag' set to ('Integration').
Filters selected 0 tests to run.
Running tests.
Tests completed in 4ms
Tests Passed: 0, Failed: 0, Skipped: 0 NotRun: 4

5.4.7 Pester Configuration

Pester 5.0 introduces a PesterConfiguration object, which contains all configuration settings
and includes descriptions and default values.¹⁷ Use it with the -Configuration parameter of
Invoke-Pester to replace all other parameters in the command. It’s recommended for use with
more complex calls to wrap up all the settings into a single object. There are many parameters to
Invoke-Pestermarked as deprecated,¹⁸ so it’s worthwhile being familiar with the configuration
object in case the deprecated parameters are removed in future releases.

This is a replacement for running the tests using splatting.

Example 10: Running Invoke-Pester using splatting

1 $Params = @{
2 Path = './scripts/build'
3 TagFilter = 'Unit', 'Integration'
4 Output = 'Detailed'
5 PassThru = $true
6 }
7
8 $Results = Invoke-Pester @Params

Use the PesterConfiguration object with the -Configuration parameter of Invoke-
Pester.

¹⁷Pester Team. (2022, Jun. 19). Configuration. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/configuration. [Accessed:
Sep. 04, 2022].

¹⁸Pester Team. (2022, Apr. 29). Invoke-Pester. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/Invoke-Pester.
[Accessed: Sep. 11, 2022].

https://pester.dev/docs/usage/configuration
https://pester.dev/docs/commands/Invoke-Pester

Unit Testing 114

Example 11: Running Invoke-Pester with a Pester configuration object

1 $Config = New-PesterConfiguration
2 $Config.Run.PassThru = $true
3 $Config.Run.Path = './scripts/build'
4 $Config.Filter.Tag = 'Unit', 'Integration'
5 $Config.Output.Verbosity = 'Detailed'
6
7 $Results = Invoke-Pester -Configuration $Config

To learn more about Pester configuration, refer to the Configuration¹⁹ help article on Pester Docs.
For details on other parameters of Invoke-Pester, refer to the Invoke-Pester²⁰ command article.

5.4.8 Pester Automation

While it’s helpful to run Pester tests locally to confirm everything works as expected, it’s crucial
to implement them as part of automated checks during a pull request for script changes.

A pull request is when a developer wishes to merge the Git branch containing their changes
with the main branch of the Git repository. Other developers can review the changes and offer
comments and feedback. At the same time, automation checks can run on the branch to ensure
that code compiles and unit tests execute successfully.

These automated tests can now be so effective that there are suggestions from industry leaders
to merge automatically any pull requests that pass automated builds and tests without errors.²¹
²² If a developer needs a code review, they can request it when creating the pull request, but it
would no longer be mandatory.

The thinking here is that this approach speeds up pull requests for simple changes that don’t need
manual review and approval. When reviewers must approve every pull request manually, there’s
a risk of a code review bottleneck.While there’s nothing to compile with PowerShell scripts, there
are other tests to carry out like syntax and linting checks with tools like PSScriptAnalyzer²³ or
running unit tests with Pester.

The two primary DevOps systems in the Microsoft ecosystem are GitHub²⁴ and Azure DevOps²⁵.
Both platforms contain hosted agents that already have Pester preinstalled, so no additional setup
is required to run Pester tests as part of pull request checks.

You can run the Pester tests in a single pipeline step and process the output. However, there are
some differences in the process between Azure DevOps and GitHub.

¹⁹https://pester.dev/docs/usage/configuration
²⁰https://pester.dev/docs/commands/Invoke-Pester
²¹Alex Chan. (2019, Mar. 25). Creating a GitHub Action to auto-merge pull requests. alexwlchan. [Online]. Available: https://

alexwlchan.net/2019/03/creating-a-github-action-to-auto-merge-pull-requests/. [Accessed: Sep. 11, 2022].
²²GitHub. (2022, Sep. 01). Automatically merging a pull request. GitHub Docs. [Online]. Available: https://docs.github.com/en/pull-

requests/collaborating-with-pull-requests/incorporating-changes-from-a-pull-request/automatically-merging-a-pull-request. [Accessed:
Sep. 11, 2022].

²³https://github.com/PowerShell/PSScriptAnalyzer
²⁴https://resources.github.com/devops/
²⁵https://azure.microsoft.com/products/devops/

https://pester.dev/docs/usage/configuration
https://pester.dev/docs/commands/Invoke-Pester
https://github.com/PowerShell/PSScriptAnalyzer
https://resources.github.com/devops/
https://azure.microsoft.com/products/devops/
https://pester.dev/docs/usage/configuration
https://pester.dev/docs/commands/Invoke-Pester
https://alexwlchan.net/2019/03/creating-a-github-action-to-auto-merge-pull-requests/
https://alexwlchan.net/2019/03/creating-a-github-action-to-auto-merge-pull-requests/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/incorporating-changes-from-a-pull-request/automatically-merging-a-pull-request
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/incorporating-changes-from-a-pull-request/automatically-merging-a-pull-request
https://github.com/PowerShell/PSScriptAnalyzer
https://resources.github.com/devops/
https://azure.microsoft.com/products/devops/

Unit Testing 115

5.4.8.1 Azure DevOps

Azure DevOps defaults to using YAML pipelines for CI/CD automation.²⁶

YAML is a human-readable data-serialization language.²⁷

The following YAML script can be added to a repo containing the PowerShell scripts used in the
example above. The code below assumes Calculator.ps1 and Calculator.Tests.ps1 files
in a scripts folder in the root folder of a repo stored in Azure DevOps.

Example 12: YAML definition of an Azure DevOps pipeline

1 name: PesterTests
2 trigger: none
3 jobs:
4 # Runs Pester tests on the PowerShell Script in the scripts folder
5 - job: RunPesterTests
6 displayName: "Run Pester Tests"
7 pool:
8 vmImage: "ubuntu-latest"
9 steps:

10 - pwsh: |
11 $Config = New-PesterConfiguration
12 $Config.Run.Path = 'scripts/*.Tests.ps1'
13 $Config.Filter.Tag = 'Unit'
14 $Config.TestResult.OutputPath = 'Test-Pester.xml'
15 $Config.TestResult.Enabled = $true
16 Invoke-Pester -Configuration $Config
17 displayName: "Invoke Pester"
18 failOnStderr: false
19
20 - task: PublishTestResults@2
21 displayName: "Publish Test Results"
22 inputs:
23 testResultsFormat: "NUnit"
24 testResultsFiles: "**/Test-Pester.xml"
25 mergeTestResults: true
26 failTaskOnFailedTests: true

There are two steps in this workflow. The first is a PowerShell step that runs the Invoke-
Pester command similar to how you would run it locally. The main difference to the locally
run command is the addition of the -OutputFile './Test-Pester.xml', which will store the
output of the test into the current folder in the default NUnit XML format.²⁸

The failOnStderr argument set to false means the PowerShell step won’t fail if there’s an
error. The reason for this is so the second step can execute and store the failed test report as a
build artifact so it can be viewed for assessment.

²⁶Microsoft. (2022, Apr. 27). Template types & usage. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/azure/de-
vops/pipelines/process/templates?view=azure-devops. [Accessed: Sep. 16, 2022].

²⁷YAML Website Contributors. (2021, Nov. 17). The Official YAML Web Site. YAML.org. [Online]. Available: https://yaml.org/.
[Accessed: Sep. 11, 2022].

²⁸The NUnit Project. (2022). XML Formats. NUnit Docs. [Online]. Available: https://docs.nunit.org/articles/nunit/technical-
notes/usage/XML-Formats.html. [Accessed: Sep. 11, 2022].

https://learn.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://yaml.org/
https://docs.nunit.org/articles/nunit/technical-notes/usage/XML-Formats.html
https://docs.nunit.org/articles/nunit/technical-notes/usage/XML-Formats.html

Unit Testing 116

The second step uses a preconfigured task and contains properties, including the test output type
(NUnit) and the location of the first step’s output file to use for the test data. This step will fail
the build if there’s a test failure in the results (failTaskOnFailedTests), as it’s not ideal to
continue with the workflow defined in the pipeline.

If you prefer not to run a raw PowerShell command in the Azure pipeline, there’s a
preconfigured task²⁹ available from the Pester project.

The pipeline doesn’t have a trigger, because a Git branch policy will trigger it. To make it
selectable in a Git branch policy, you must add it to Azure DevOps first.

5.4.8.1.1 Add as a Pipeline

• In Azure DevOps, go to Pipelines → Pipelines and click on the New Pipeline button.
• Select Azure Repos Git.
• Select the name of the repo.
• Select Existing Azure pipelines YAML file.
• Select the branch and the path and click on Continue.
• You can review the resulting YAML code before clicking Run to test the pipeline.

5.4.8.1.2 Add as a Git Branch Policy

To configure this in Azure DevOps, navigate to:Azure DevOps Repo→ Repo Name→Branches
→ main → More options (on right end of row) → Branch Policies.

Under Build Validation:

• Click the Plus (+) Sign to get to the Add build policy screen and set the following options.

– Trigger: Automatic
– Policy requirement: Required
– Build Expiration: Immediately
– Display Name: Run Pester Tests

• Click Save at the bottom of the screen.
²⁹https://github.com/pester/AzureDevOpsExtension

https://github.com/pester/AzureDevOpsExtension
https://github.com/pester/AzureDevOpsExtension

Unit Testing 117

Azure DevOps Git Branch Build Policy Configuration

When there’s a new pull request in the repo, it’ll automatically run Pester tests and store the
results in the Tests tab of the build summary screen. The pull request can’t merge unless all tests
pass.

Unit Testing 118

Azure DevOps Test Summary Screen

5.4.8.2 GitHub

GitHub uses GitHub Actions for automation,³⁰ which stores configuration in YAML files in
the .github/workflows folder in a Git repository. GitHub Actions is more of an automation
platform, meaning the list of event triggers is extensive. CI/CD events are a small subsection of
what’s available.

You can place the following YAML script in the workflows folder of a Git repo to add a GitHub
Action that runs Pester tests.

³⁰GitHub. (2022, Aug. 25). Understanding GitHub Actions. GitHub Docs. [Online]. Available: https://docs.github.com/en/actions/learn-
github-actions/understanding-github-actions. [Accessed: Sep. 11, 2022].

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

Unit Testing 119

Example 13: YAML definition of a GitHub Actions workflow

1 name: Test PowerShell Scripts
2 on:
3 workflow_dispatch:
4 pull_request:
5 jobs:
6 run-pester-tests:
7 name: Run Pester tests
8 runs-on: ubuntu-latest
9 steps:

10 - name: Check out code
11 uses: actions/checkout@v3
12 - name: Perform all Pester Unit Tests from the Scripts folder
13 shell: pwsh
14 run: |
15 $Config = New-PesterConfiguration
16 $Config.Run.Path = 'scripts/*.Tests.ps1'
17 $Config.Filter.Tag = 'Unit'
18 $Config.TestResult.OutputPath = 'Test-Pester.xml'
19 $Config.TestResult.Enabled = $true
20 $Config.Run.PassThru = $true
21 $Result = Invoke-Pester -Configuration $Config
22 if ($null -eq $Result) { exit 1 }
23 '::notice title=Results::',
24 "Total: $($Result.TotalCount), ",
25 "Passed: $($Result.PassedCount), ",
26 "Failed: $($Result.FailedCount), ",
27 "Skipped: $($Result.SkippedCount)" -join ''
28 - name: Publish Test Results
29 uses: actions/upload-artifact@v3
30 if: always()
31 with:
32 name: test-results
33 path: "**/Test-Pester.xml"

There are two triggers for this action. The action runs when a pull request is created or updated,
and you can start it manually via the GitHub web interface or API. It contains a PowerShell step
that calls the Invoke-Pester command and displays the result. A second step exports the test
result file.

5.4.8.2.1 Run the Action Manually

• Visit the repository webpage and select the Actions tab.
• In the left pane, under All workflows, click the action you want to run. In this example,
the action is labeled Test PowerShell Scripts.

• The page now displays a list of historical runs for the action. Click the Run workflow
button to the top-right of this list.

• In the menu that pops up, select any settings the action requires, including the Git branch
that it should run on.

• Click the Run workflow button to start the action.

Unit Testing 120

Running a GitHub Action Manually

GitHub doesn’t have native support for viewing test results, but you can publish the test file as an
artifact.³¹ You can then use a third-party or custom action to process the NUnit XML test results
file. You can also use the -PassThru parameter of Invoke-Pester to display the results as an
annotation in the workflow run log using the ::notice text command in the standard output,³²
Example 13 uses this approach to display the test results.

5.4.8.2.2 View the Test Results File

• On the page for your action, click the workflow run you want to view the job summary
from. Each run is given a unique number.

• On the job summary page, scroll to the Artifacts list and click the artifact you want to
download. In this example, the name is test-results.

The downloaded file is a compressed archive containing the Test-Pester.xml file generated
by Pester.

³¹GitHub. (2022, Jun. 06). Storing workflow data as artifacts. GitHub Docs. [Online]. Available: https://docs.github.com/en/actions/
using-workflows/storing-workflow-data-as-artifacts. [Accessed: Sep. 12, 2022].

³²GitHub. (2022, Sep. 02). Workflow commands for GitHub Actions. GitHub Docs. [Online]. Available: https://docs.github.com/en/
actions/using-workflows/workflow-commands-for-github-actions. [Accessed: Sep. 12, 2022].

https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions

Unit Testing 121

Viewing Test Results as Run Artifacts

The if: conditional with always() in the second step in Example 13 causes the step to run
regardless of any earlier ones failing. This means the test results are always published, even on
test failure. The errors that Pester writes to the error stream also show up as error annotations.

Unit Testing 122

Run Failures Still Produce Artifacts with always()

That’s it. GitHub requires nothing else to create the action or link it to a repo’s build process.
From this point of view, it’s easier to create automated workflows on GitHub than on Azure
DevOps.

5.4.8.2.3 GitHub Job Summaries

Recently, GitHub introduced a new feature called Job Summaries³³.³⁴

With this feature, you can create a custom Markdown document and write it to a temporary
file defined in the environment variable GITHUB_STEP_SUMMARY. Markdown supports rich text
and numerous display elements like tables. The following example produces two tables. The first
contains the total counts, and the second shows each test result in detail.

Example 14: Using the job summaries feature in a GitHub Actions workflow step

1 - name: Perform all Pester Unit Tests from the Scripts folder
2 shell: pwsh
3 run: |
4 $Config = New-PesterConfiguration
5 $Config.Run.Path = 'scripts/*.Tests.ps1'
6 $Config.Filter.Tag = 'Unit'
7 $Config.Output.Verbosity = 'Detailed'
8 $Config.Run.PassThru = $true
9 $Result = Invoke-Pester -Configuration $Config

10 if ($null -eq $Result) { exit 1 }
11 $sb = [System.Text.StringBuilder]::new()
12 $sb.AppendLine('# Pester Test results')
13 $sb.AppendLine('## Summary')
14 $sb.AppendLine('|Item|Result|')

³³https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions#adding-a-job-summary
³⁴GitHub. (2022, May. 09). Supercharging GitHub Actions with Job Summaries. GitHub Docs. [Online]. Available: https://github

.blog/2022-05-09-supercharging-github-actions-with-job-summaries/. [Accessed: Sep. 12, 2022].

https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions#adding-a-job-summary
https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions#adding-a-job-summary
https://github.blog/2022-05-09-supercharging-github-actions-with-job-summaries/
https://github.blog/2022-05-09-supercharging-github-actions-with-job-summaries/

Unit Testing 123

15 $sb.AppendLine('|----|----|')
16 $sb.AppendLine("|**Pester Version**|$($Result.Version)|")
17 $sb.AppendLine("|**PowerShell Version**|$($Result.PSVersion)|")
18 $sb.AppendLine("|**Executed At**|$($Result.ExecutedAt)|")
19 $sb.AppendLine("|**Overall Result**|$($Result.Result)|")
20 $sb.AppendLine("|**Total**|$($Result.TotalCount)|")
21 $sb.AppendLine("|**Passed**|$($Result.PassedCount)|")
22 $sb.AppendLine("|**Failed**|$($Result.FailedCount)|")
23 $sb.AppendLine("|**Skipped**|$($Result.SkippedCount)|")
24 $sb.AppendLine("|**Not Run**|$($Result.NotRunCount)|")
25 $sb.AppendLine()
26 $sb.AppendLine('## Details')
27 $sb.AppendLine('|Test Name|Skip|Duration (secs)|Result|')
28 $sb.AppendLine('----|----|----|----|')
29 $Result.Tests | ForEach-Object {
30 $sb.AppendLine(
31 "|$($_.ExpandedName)|$($_.Skip)|" +
32 "$($_.Duration.ToString('ss\.fff'))|$($_.Result)|"
33)
34 }
35 $sb.ToString() | Out-File -Path $ENV:GITHUB_STEP_SUMMARY

This results in the following output on the Job Summary screen.

Unit Testing 124

Sample GitHub Job Summary output

The output in this example is relatively simple, but with the advanced formatting features in
Markdown and with Unicode support, you can create comprehensive reports this way.

This completes the comparison between Azure DevOps and GitHub for automating how Pester
tests can be run as part of the Pull Request approval process.

Unit Testing 125

5.5 Conclusion

In this chapter, you’ve seen why Pester is the recommended tool of choice for creating tests for
PowerShell scripts and modules. By exploring what Pester offers, you can create complex and
flexible test code quickly. You can execute tests locally either via the command line or from
within popular text editors. You’ve also learned how to automate build pipelines with Pester for
Azure DevOps and GitHub to ensure high code quality.

5.6 Further Reading

• Pester Quick Start—Pester Docs³⁵
• Pester Configuration—Pester Docs³⁶
• GitHub Actions Documentation—GitHub Docs³⁷
• Azure DevOps YAML Pipeline Reference—Microsoft Docs³⁸
• What is DevOps—GitHub Resources³⁹
• Azure DevOps—Microsoft Azure⁴⁰
• Difference Between Black Box and White Box Testing—Guru99⁴¹
• GitHub Actions Feature Overview—GitHub⁴²
• Install Visual Studio Code⁴³
• Install VS Code PowerShell Plugin⁴⁴

³⁵https://pester.dev/docs/quick-start
³⁶https://pester.dev/docs/usage/configuration
³⁷https://docs.github.com/en/actions
³⁸https://learn.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/?view=azure-pipelines
³⁹https://resources.github.com/devops/
⁴⁰https://azure.microsoft.com/products/devops/
⁴¹https://www.guru99.com/back-box-vs-white-box-testing.html
⁴²https://github.com/features/actions
⁴³https://code.visualstudio.com/
⁴⁴https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell

https://pester.dev/docs/quick-start
https://pester.dev/docs/usage/configuration
https://docs.github.com/en/actions
https://learn.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/?view=azure-pipelines
https://resources.github.com/devops/
https://azure.microsoft.com/products/devops/
https://www.guru99.com/back-box-vs-white-box-testing.html
https://github.com/features/actions
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://pester.dev/docs/quick-start
https://pester.dev/docs/usage/configuration
https://docs.github.com/en/actions
https://learn.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/?view=azure-pipelines
https://resources.github.com/devops/
https://azure.microsoft.com/products/devops/
https://www.guru99.com/back-box-vs-white-box-testing.html
https://github.com/features/actions
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell

6. Parameterized Testing
This chapter describes Parameterized Pester Tests to help you on your PowerShell journey. In
PowerShell, you can use parameters or param in script blocks, functions, and scripts. Parameters
define, transfer, limit, or validate inputs for your script. You can learn more about advanced
function parameters¹ and cmdlet parameters² at Microsoft Docs. A parameterized test is a test
that accepts external data as input. Use parameterized tests to avoid rewriting similar tests. If the
only difference between each of your tests is its inputs, using a parameterized test reduces code
length, improves readability, increases code coverage, and allows for faster changes.

The Pester module has great documentation and everything in this chapter has been inspired by
the original Data driven tests³ article. If you aren’t familiar with the module, there is an excellent
quick start guide⁴.

6.1 Pester Versions and Parameterized Tests

There are significant differences in how parameterized tests are written in Pester v3/v4 and Pester
v5.⁵ It is important to knowwhich version of Pester is executing your tests. This chapter primarily
focuses on parameterized tests in Pester 5.1.0 and later with a brief section on parameterized tests
in Pester v4.

We recommend you use the latest version of Pester when possible, and only use earlier versions
when your situation requires them. For Windows 10 and Server 2016 systems, PowerShell 5.1
ships with Pester version 3.4.0.⁶ You can use Install-Module to install more recent versions of
Pester from the PowerShell Gallery.

Use this command to check your Pester version:

$(Get-Command Invoke-Pester).Version

Use Install-Module with the -Force parameter to install the latest version of Pester side-by-
side already installed versions:

Install-Module -Name Pester -Force -SkipPublisherCheck

Use Import-Module with the -MinimumVersion or -MaximumVersion parameters to import
specific versions of the Pester module:

¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
²https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-parameters
³https://pester.dev/docs/usage/data-driven-tests
⁴https://pester.dev/docs/quick-start
⁵Pester Team. (2021, May. 14). Breaking Changes in v5. Pester Docs. [Online]. Available: https://pester.dev/docs/migrations/breaking-

changes-in-v5. [Accessed: Apr. 26, 2022].
⁶Pester Team. (2021, May. 15). Installation and Update - Compatibility. Pester Docs. [Online]. Available: https://pester.dev/docs/

introduction/installation#compatibility. [Accessed: Apr. 26, 2022].

126

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-parameters
https://pester.dev/docs/usage/data-driven-tests
https://pester.dev/docs/quick-start
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-parameters
https://pester.dev/docs/usage/data-driven-tests
https://pester.dev/docs/quick-start
https://pester.dev/docs/migrations/breaking-changes-in-v5
https://pester.dev/docs/migrations/breaking-changes-in-v5
https://pester.dev/docs/introduction/installation#compatibility
https://pester.dev/docs/introduction/installation#compatibility

Parameterized Testing 127

Import-Module -Name Pester -MaximumVersion 4.99.99

Import-Module -Name Pester -MinimumVersion 5.1.1

The Pester documentation also has a guide on how to uninstall the built-in version⁷ of Pester.

6.2 Your First Test

You need a file to test. Create a folder named PowerShellDate and change your working
directory to that folder:

New-Item 'PowerShelLDate' -Type Directory
Set-Location .\PowerShellDate\

Create a file named Get-PowerShellDate.ps1 and add the following function to the file:

Example 1: A simple function that returns the release dates of various PowerShell versions

1 function Get-PowerShellDate {
2 $VersionList = @{
3 'Windows PowerShell 1.0' = 'Nov 2006'
4 'Windows PowerShell 2.0' = 'Jul 2009'
5 'Windows PowerShell 3.0' = 'Oct 2012'
6 'Windows PowerShell 4.0' = 'Oct 2013'
7 'Windows PowerShell 5.0' = 'Feb 2016'
8 'Windows PowerShell 5.1' = 'Aug 2016'
9 'PowerShell Core 6.0' = 'Jan 2018'

10 'PowerShell Core 6.1' = 'Sep 2018'
11 'PowerShell Core 6.2' = 'Mar 2019'
12 'PowerShell Core 7.0' = 'Mar 2020'
13 'PowerShell Core 7.1' = 'Nov 2020'
14 }
15 return $VersionList[$args]
16 }

This function contains a hash table⁸ that will return the release date of each PowerShell version.
The automatic variable⁹ $args is an array of undeclared positional parameters passed to the
function.

Example 2: Retrieving the release date of Windows PowerShell 1.0

Get-PowerShellDate 'Windows PowerShell 1.0'

⁷https://pester.dev/docs/introduction/installation#removing-the-built-in-version-of-pester
⁸https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-hashtable
⁹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#args

https://pester.dev/docs/introduction/installation#removing-the-built-in-version-of-pester
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-hashtable
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#args
https://pester.dev/docs/introduction/installation#removing-the-built-in-version-of-pester
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/everything-about-hashtable
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#args

Parameterized Testing 128

Nov 2006

Example 3: Retrieving the release date of multiple versions

Get-PowerShellDate 'Windows PowerShell 1.0' 'Windows PowerShell 2.0'

Nov 2006
Jul 2009

To test your new function, create a file named Get-PowerShellDate.Tests.ps1 file and add
the following code to the file:

Example 4: A Pester test file for Get-PowerShellDate with 1 test

1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 }
4 Describe 'Get-PowerShellDate' {
5 It 'Returns Nov 2006' {
6 Get-PowerShellDate 'Windows PowerShell 1.0' | Should -Be 'Nov 2006'
7 }
8 }

This is the Pester test. The first part is a BeforeAll block where you set prerequisites for your
tests.¹⁰ In this case, it dot sources the ps1 file containing your function under test. The second
part is a Describe block that contains one It block. The third part is an It block where your
test is run. The part of the test to the left of the pipeline is your action, and the part of the test to
the right of the pipeline is your assertion. The result of your action is compared to your assertion,
and the test passes if they match. In this case, Get-PowerShellDate 'Windows PowerShell
1.0' is expected to return Nov 2006. Because Nov 2006 matches what your assertion expects,
the test should pass.

From the PowerShellDate folder, run the test with Invoke-Pester:

Example 5: Running the Pester test for Get-PowerShellDate

Invoke-Pester -Path .\Get-PowerShellDate.Tests.ps1

¹⁰Pester Team. (2019, Feb. 05). BeforeAll (v4). Pester Docs. [Online]. Available: https://pester.dev/docs/v4/commands/BeforeAll.
[Accessed: Apr. 26, 2022].

https://pester.dev/docs/v4/commands/BeforeAll

Parameterized Testing 129

Starting discovery in 1 files.
Discovery finished in 39ms.
[+] D:\PowershellDate\Get-PowerShellDate.Tests.ps1 355ms (16ms|306ms)
Tests completed in 368ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

Add the parameter -Output with the value Detailed, and rerun the test to see more detailed
output::

Example 6: Displaying detailed Pester test output

Invoke-Pester -Path .\Get-PowerShellDate.Tests.ps1 -Output Detailed

Starting discovery in 1 files.
Discovering in D:\PowerShellDate\Get-PowerShellDate.Tests.ps1.
Found 1 tests. 121ms
Discovery finished in 139ms.

Running tests from 'D:\PowerShellDate\Get-PowerShellDate.Tests.ps1'
Describing Get-PowerShellDate

[+] Returns Nov 2006 20ms (11ms|9ms)
Tests completed in 547ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

The detailed output includes the result, name, and execution time of each of your It blocks.

6.2.1 -ForEach

With the -ForEach parameter (an alias of -TestCases) you are able to decouple your test data
from your test actions and assertions.¹¹ Your actions and assertions can be written once, and
reused for each set of data you need to test.

To demonstrate how this improves the readability and maintainability of your tests,
first add an It block for each key/value pair in your function’s hash table. Your Get-
PowerShellDate.Tests.ps1 file should look like this:

Example 7: A set of comprehensive tests for Get-PowerShellDate

1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 }
4 Describe 'Get-PowerShellDate' {
5 It 'Returns Nov 2006' {
6 Get-PowerShellDate 'Windows PowerShell 1.0' | Should -Be 'Nov 2006'
7 }
8 It 'Returns Jul 2009' {
9 Get-PowerShellDate 'Windows PowerShell 2.0' | Should -Be 'Jul 2009'

10 }
11 It 'Returns Oct 2012' {
12 Get-PowerShellDate 'Windows PowerShell 3.0' | Should -Be 'Oct 2012'
13 }

¹¹Pester Team. (2019, Jan. 09). It - TestCases. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/It#-testcases. [Ac-
cessed: Apr. 26, 2022].

https://pester.dev/docs/commands/It#-testcases

Parameterized Testing 130

14 It 'Returns Oct 2013' {
15 Get-PowerShellDate 'Windows PowerShell 4.0' | Should -Be 'Oct 2013'
16 }
17 It 'Returns Feb 2016' {
18 Get-PowerShellDate 'Windows PowerShell 5.0' | Should -Be 'Feb 2016'
19 }
20 It 'Returns Aug 2016' {
21 Get-PowerShellDate 'Windows PowerShell 5.1' | Should -Be 'Aug 2016'
22 }
23 It 'Returns Jan 2018' {
24 Get-PowerShellDate 'PowerShell Core 6.0' | Should -Be 'Jan 2018'
25 }
26 It 'Returns Sep 2018' {
27 Get-PowerShellDate 'PowerShell Core 6.1' | Should -Be 'Sep 2018'
28 }
29 It 'Returns Mar 2019' {
30 Get-PowerShellDate 'PowerShell Core 6.2' | Should -Be 'Mar 2019'
31 }
32 It 'Returns Mar 2020' {
33 Get-PowerShellDate 'PowerShell Core 7.0' | Should -Be 'Mar 2020'
34 }
35 It 'Returns Nov 2020' {
36 Get-PowerShellDate 'PowerShell Core 7.1' | Should -Be 'Nov 2020'
37 }
38 }

You now have an action for all valid input being tested against an assertion for the action’s
expected output. However, your data are tightly coupled with your actions and assertions. If you
want to change your action or assertion, each It block will have to be updated with your change.

Update your tests to use a single It block with the -ForEach parameter and hash tables
containing your data:

Example 8: An equivalent set of tests using parameters

1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 }
4 Describe 'Get-PowerShellDate' {
5 It 'Returns <Date> for <Name>' -ForEach @(
6 @{Name = 'Windows PowerShell 1.0'; Date = 'Nov 2006'}
7 @{Name = 'Windows PowerShell 2.0'; Date = 'Jul 2009'}
8 @{Name = 'Windows PowerShell 3.0'; Date = 'Oct 2012'}
9 @{Name = 'Windows PowerShell 4.0'; Date = 'Oct 2013'}

10 @{Name = 'Windows PowerShell 5.0'; Date = 'Feb 2016'}
11 @{Name = 'Windows PowerShell 5.1'; Date = 'Aug 2016'}
12 @{Name = 'PowerShell Core 6.0'; Date = 'Jan 2018'}
13 @{Name = 'PowerShell Core 6.1'; Date = 'Sep 2018'}
14 @{Name = 'PowerShell Core 6.2'; Date = 'Mar 2019'}
15 @{Name = 'PowerShell Core 7.0'; Date = 'Mar 2020'}
16 @{Name = 'PowerShell Core 7.1'; Date = 'Nov 2020'}
17) {
18 Get-PowerShellDate $Name | Should -Be $Date
19 }
20 }

The -ForEach parameter accepts an array of hash tables¹². The hash tables contain a key/value
pair for each variable in your test. In this case, the $Name and $Date variables in the test will be

¹²https://devblogs.microsoft.com/scripting/combine-arrays-and-hash-tables-in-powershell-for-fun-and-profit/

https://devblogs.microsoft.com/scripting/combine-arrays-and-hash-tables-in-powershell-for-fun-and-profit/
https://devblogs.microsoft.com/scripting/combine-arrays-and-hash-tables-in-powershell-for-fun-and-profit/

Parameterized Testing 131

populated with values of the ‘Name’ and ‘Date’ keys in the hash tables. The <Name> and <Date>
templates in the It block’s description will also be populated with these values.

Run your tests again with detailed output:

Example 9: Running the parameterized tests
Invoke-Pester -Path .\Get-PowerShellDate.Tests.ps1 -Output Detailed

Starting discovery in 1 files.
Discovering in D:\PowerShellDate\Get-PowerShellDate.Tests.ps1.
Found 11 tests. 129ms
Discovery finished in 164ms.

Running tests from 'D:\PowerShellDate\Get-PowerShellDate.Tests.ps1'
Describing Get-PowerShellDate

[+] Returns Nov 2006 for Windows PowerShell 1.0 122ms (94ms|27ms)
[+] Returns Jul 2009 for Windows PowerShell 2.0 13ms (8ms|4ms)
[+] Returns Oct 2012 for Windows PowerShell 3.0 14ms (10ms|4ms)
[+] Returns Oct 2013 for Windows PowerShell 4.0 8ms (5ms|3ms)
[+] Returns Feb 2016 for Windows PowerShell 5.0 12ms (8ms|4ms)
[+] Returns Aug 2016 for Windows PowerShell 5.1 12ms (8ms|5ms)
[+] Returns Jan 2018 for PowerShell Core 6.0 13ms (8ms|4ms)
[+] Returns Sep 2018 for PowerShell Core 6.1 49ms (45ms|4ms)
[+] Returns Mar 2019 for PowerShell Core 6.2 13ms (8ms|5ms)
[+] Returns Mar 2020 for PowerShell Core 7.0 9ms (6ms|3ms)
[+] Returns Nov 2020 for PowerShell Core 7.1 9ms (7ms|3ms)

Tests completed in 904ms
Tests Passed: 11, Failed: 0, Skipped: 0 NotRun: 0

Because -ForEach and its array of hash tables is in your It block, a separate test is executed for
each hash table.

6.2.2 Templates ‘<>’

The values surrounded by angle brackets <> in your It block descriptions are called templates¹³.
Templates apply variable values inside the It, Describe, and Context block descriptions. An
example with an array:

Example 10: Using description templates with parameterized tests
1 Describe 'Building' {
2 It '<_> should not be null or empty' -ForEach @(
3 'Post', 'B2F1', 'B2F2', 'Contoso', 'Fabrikam'
4) {
5 $_ | Should -Not -BeNullorempty
6 }
7 }

The _ inside <_> is equivalent to $_ or $PSItem.¹⁴ It takes each value located in the array
@('Post','B2F1','B2F2','Contoso','Fabrikam') and passes it to the respective It block.

Another example using templates in Describe and It blocks:

¹³https://pester.dev/docs/usage/data-driven-tests#using--templates
¹⁴Microsoft. (2022, Jul. 07). About Automatic Variables (Microsoft.PowerShell.Core) - $_. Microsoft Docs. [Online]. Available:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#_. [Accessed: Aug.
15, 2022].

https://pester.dev/docs/usage/data-driven-tests#using--templates
https://pester.dev/docs/usage/data-driven-tests#using--templates
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#%5C_

Parameterized Testing 132

Example 11: Using description templates with multiple block types

1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 $title = 'function PowerShellDate '
4 }
5 Describe '<title>' {
6 It 'Returns <Date> for <Name>' -ForEach @(
7 @{Name = 'Windows PowerShell 1.0'; Date = 'Nov 2006'}
8) {
9 Get-PowerShellDate $Name | Should -Be $Date

10 }
11 }

Invoke-Pester '.\Get-PowerShellDate.Tests.ps1' -Output Detailed

Starting discovery in 1 files.
Discovering in D:\PowerShellDate\Get-PowerShellDate.Tests.ps1.
Found 1 tests. 105ms
Discovery finished in 122ms.

Running tests from 'D:\PowerShellDate\Get-PowerShellDate.Tests.ps1'
Describing function PowerShellDate

[+] Returns Nov 2006 for Windows PowerShell 1.0 19ms (10ms|9ms)
Tests completed in 521ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

The title variable is now showing its value and also the variables Date and Name. This is helpful
when reading detailed results. In Pester version v5, templates support dot navigation¹⁵. You can
use dot navigation to retrieve values from nested objects.

Example 12: Using dot navigation within description templates

1 Describe 'Building' {
2 It '<building1> does not host <building2.floor3.Apt1>' -ForEach @(
3 @{
4 Building1 = 'Post'
5 Building2 = @{
6 Floor1 = 'B2F1'
7 Floor2 = 'B2F2'
8 Floor3 = @{
9 Apt1 = 'Contoso'

10 Apt2 = 'Fabrikam'
11 }
12 }
13 }
14) {
15 $PSitem | Should -Not -BeNullOrEmpty
16 }
17 }

Running the test returns:

¹⁵https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_properties#properties-of-scalar-
objects-and-collections

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_properties#properties-of-scalar-objects-and-collections
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_properties#properties-of-scalar-objects-and-collections
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_properties#properties-of-scalar-objects-and-collections

Parameterized Testing 133

...

Describing Building
[+] Post does not host Contoso 19ms (10ms|9ms)

Tests completed in 482ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

The object defined as a hashtable after the -ForEach displays the third nested level correctly:
this third value, ‘Contoso’, can be seen in the detailed output.

6.2.3 BeforeDiscovery

There are two execution phases¹⁶ in Pester v5. These two phases are named discovery and run¹⁷.
Place code required to setup your test code inside the BeforeDiscovery block.¹⁸ This code is
executed during the discovery phase of Pester execution. Your test code is executed during the
run phase of Pester execution. The results from code executed during the discovery phase are
available to your tests during the run phase.

Move the array of hash tables from the -Foreach parameter in your It block to the BeforeDis-
covery block:

Example 13: Using the BeforeDiscovery section to initialize variables that must be available in both the discovery
and test phases

1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 }
4 BeforeDiscovery {
5 $title = 'function PowerShellDate '
6 $HList = [System.Collections.Generic.List[Hashtable]]::new()
7 $HList.Add(@{Name = 'Windows PowerShell 1.0'; Date = 'Nov 2006'})
8 $HList.Add(@{Name = 'Windows PowerShell 2.0'; Date = 'Jul 2009'})
9 $HList.Add(@{Name = 'Windows PowerShell 3.0'; Date = 'Oct 2012'})

10 $HList.Add(@{Name = 'Windows PowerShell 4.0'; Date = 'Oct 2013'})
11 $HList.Add(@{Name = 'Windows PowerShell 5.0'; Date = 'Feb 2016'})
12 $HList.Add(@{Name = 'Windows PowerShell 5.1'; Date = 'Aug 2016'})
13 $HList.Add(@{Name = 'PowerShell Core 6.0'; Date = 'Jan 2018'})
14 $HList.Add(@{Name = 'PowerShell Core 6.1'; Date = 'Sep 2018'})
15 $HList.Add(@{Name = 'PowerShell Core 6.2'; Date = 'Mar 2019'})
16 $HList.Add(@{Name = 'PowerShell Core 7.0'; Date = 'Mar 2020'})
17 $HList.Add(@{Name = 'PowerShell Core 7.1'; Date = 'Nov 2020'})
18 }
19 Describe "$title" {
20 It 'Returns <Date> for <Name>' -ForEach $HList {
21 Get-PowerShellDate $Name | Should -Be $Date
22 }
23 }

The variable title is set in the BeforeDiscovery block and displayed in the Describe block.
HList is a list of hashtables and is also available for all Describe and It blocks.

¹⁶https://pester.dev/docs/usage/data-driven-tests#execution-is-not-top-down
¹⁷https://pester.dev/docs/usage/discovery-and-run
¹⁸Pester Team. (2021, Sep. 12). BeforeDiscovery. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/BeforeDiscovery.

[Accessed: Aug. 18, 2022].

https://pester.dev/docs/usage/data-driven-tests#execution-is-not-top-down
https://pester.dev/docs/usage/discovery-and-run
https://pester.dev/docs/usage/data-driven-tests#execution-is-not-top-down
https://pester.dev/docs/usage/discovery-and-run
https://pester.dev/docs/commands/BeforeDiscovery

Parameterized Testing 134

6.2.3.1 BeforeAll

BeforeAll¹⁹ is the location where you import the file that contains your function and setup before
running the tests.

It’s usually this:

1 BeforeAll {
2 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
3 }

Storing functions and tests in separate folders is a common pattern in PowerShell module
development.²⁰ You can add another Replace() method to $PSCommandPath to handle this
scenario:

1 BeforeAll {
2 . $PSCommandPath.Replace('\Tests\', '\Src\').Replace('.Tests.ps1', '.ps1')
3 }

This replaces the path \Tests\Get-PowerShellDate.Tests.ps1 with \Src\Get-
PowerShellDate.ps1.

6.2.3.2 AfterAll

AfterAll²¹ follows the same principle as BeforeAll, but it runs after the test. You usually perform
clean-up activities, such as deleting temporary files, in the AfterAll block.

Example 14: Cleaning up temporary test files in the AfterAll block
1 Describe 'PSversion Check' {
2 BeforeAll {
3 $FullName = '.\psversiontable.xml'
4 $PSVersionTable | Export-Clixml $FullName
5 }
6 It 'File PSversion Should Not Be Null Or Empty' {
7 Get-Content $FullName | Should -Not -BeNullOrEmpty
8 }
9 AfterAll {

10 Remove-Item -Path $FullName -Force
11 }
12 }

6.2.3.3 BeforeEach and AfterEach

BeforeEach²² and AfterEach²³ are similar in function to BeforeAll, but are only for Context or
Describe blocks. This block runs once for every It block contained within the current Context
or Describe block.²⁴

¹⁹https://pester.dev/docs/commands/BeforeAll
²⁰Pester Team. (2022, Jun. 19). File placement and naming. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/file-

placement-and-naming. [Accessed: Aug. 18, 2022].
²¹https://pester.dev/docs/commands/AfterAll
²²https://pester.dev/docs/commands/BeforeEach
²³https://pester.dev/docs/commands/AfterEach
²⁴Pester Team. (2022, Apr. 20). Setup and teardown - BeforeEach. Pester Docs. [Online]. Available: https://pester.dev/docs/usage/setup-

and-teardown#beforeeach. [Accessed: Apr. 26, 2022].

https://pester.dev/docs/commands/BeforeAll
https://pester.dev/docs/commands/AfterAll
https://pester.dev/docs/commands/BeforeEach
https://pester.dev/docs/commands/AfterEach
https://pester.dev/docs/commands/BeforeAll
https://pester.dev/docs/usage/file-placement-and-naming
https://pester.dev/docs/usage/file-placement-and-naming
https://pester.dev/docs/commands/AfterAll
https://pester.dev/docs/commands/BeforeEach
https://pester.dev/docs/commands/AfterEach
https://pester.dev/docs/usage/setup-and-teardown#beforeeach
https://pester.dev/docs/usage/setup-and-teardown#beforeeach

Parameterized Testing 135

Example 15: Running code before every It test using BeforeEach

1 Describe 'PSversion Check' {
2 BeforeEach {
3 $FullName = '.\psversiontable.xml'
4 $PSVersionTable | Export-Clixml $FullName
5 }
6 It 'File PSversion Should Not Be Null Or Empty' {
7 Get-Content $FullName | Should -Not -BeNullOrEmpty
8 }
9 AfterEach {

10 Remove-Item -Path $FullName -Force
11 }
12 }

6.2.4 Param

As described earlier, you can use the full Param syntax in your Pester test files.²⁵ The Param block
will inherit the same validation properties, parameter sets, etc. available in scripts and functions.
This allows you to control the type of input and detect potential errors before you run any tests.

Create a new test file named Get-PSVersionTable.Tests.ps1 that contains the following:

Example 16: Using a param() block in a test script

1 param (
2 [Parameter(Mandatory)]
3 [ValidateScript({Test-Path $_})]
4 [string] $ImportPath
5)
6 BeforeAll {
7 $PSVersionTableContent = Import-Clixml $ImportPath
8 $PSversion = $($PSVersionTableContent.PSVersion.ToString())
9 }

10 Describe 'Current PSVersionTable' {
11 It 'Current PSversion should be <PSVersionTableContent.PSVersion>' {
12 $PSVersionTable.PSVersion | Should -Match $PSversion
13 }
14 }

The $ImportPath parameter is (Mandatory), must be of type [string], and must pass the
validation script {Test-Path $_}. In the BeforeAll block, the $PSVersionTableContent
variable is populated using Import-CliXml and the value of $ImportPath. The action on the
left of the It block gets the Version property of the $PSVersionTable automatic variable. The
assertion on the right of the It block compares the action’s result with a string from the imported
SemanticVersion object in $PSVersionTableContent.

You can use parameters to reuse the same test code with different actions and assertions. To
invoke test files with parameters, you’ll have to create a Pester container in version v5, or use
the -Script parameter of Invoke-Pester in v4.

²⁵Pester Team. (2022, Apr. 20). Data driven tests - Providing external data to tests. Pester Docs. [Online]. Available: https://pester
.dev/docs/usage/data-driven-tests#providing-external-data-to-tests. [Accessed: Apr. 26, 2022].

https://pester.dev/docs/usage/data-driven-tests#providing-external-data-to-tests
https://pester.dev/docs/usage/data-driven-tests#providing-external-data-to-tests

Parameterized Testing 136

6.2.5 Pester Container

Pester v5 introduced many new concepts, one of them being the Pester Container.²⁶ These objects
are used by Invoke-Pester when the test file has a param block. The -Data parameter accepts
a hashtable of parameter names and values for the script’s parameters, and -Path is the location
of the test file. In this case, the parameter name needs to be ImportPath. Create a folder named
Import and two reference files. First, open PowerShell 7 or later and run:

New-Item -ItemType Directory -Name 'Import'

$PSVersionTable | Export-Clixml .\Import\psversiontable-pwsh.xml

Then, open Windows PowerShell 5.1 and run:

$PSVersionTable | Export-Clixml .\Import\psversiontable5.1.xml

Create the container and invoke it with detailed output:

Example 17: Passing parameters to tests in Pester v5 using containers

1 $ContainerParams = @{
2 Path = '.\Tests\Get-PSVersionTable.Tests.ps1'
3 Data = @{ ImportPath = '.\Import\PSVersiontable-pwsh.xml' }
4 }
5 $container = New-PesterContainer @ContainerParams
6 Invoke-Pester -Container $container -Output Detailed

Starting discovery in 1 files.
Discovering in D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1.
Found 1 tests. 129ms
Discovery finished in 145ms.

Running tests from 'D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1'
Describing Current PSVersionTable

[+] Current PSversion should be 7.1.3 41ms (32ms|9ms)
Tests completed in 621ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

Now perform the same tests with the PSVersiontable5.1.xml file:

²⁶Pester Team. (2021, Sep. 12). New-PesterContainer. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/New-
PesterContainer. [Accessed: Apr. 26, 2022].

https://pester.dev/docs/commands/New-PesterContainer
https://pester.dev/docs/commands/New-PesterContainer

Parameterized Testing 137

Example 18: Running the test in PowerShell 7 with the XML file from PowerShell 5.1

1 $ContainerParams = @{
2 Path = '.\Tests\Get-PSVersionTable.Tests.ps1'
3 Data = @{ ImportPath = '.\Import\PSVersiontable5.1.xml' }
4 }
5 $container = New-PesterContainer @ContainerParams
6 Invoke-Pester -Container $container -Output Detailed

Starting discovery in 1 files.
Discovering in D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1.
Found 1 tests. 9ms
Discovery finished in 12ms.
Running tests.

Running tests from 'D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1'
Describing Current PSVersionTable

[-] Current PSversion should be 5.1.19041.1645 12ms (10ms|1ms)
Expected regular expression '5.1.19041.1645' to match 7.1.3, but it
did not match.
at $PSVersionTable.PSVersion | Should -Match $PSversion,
D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1:12
at <ScriptBlock>, D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1:12

Tests completed in 255ms
Tests Passed: 0, Failed: 1, Skipped: 0 NotRun: 0

This test fails because 5.1 is different from 7.1.3. It doesn’t need two ps1 files to test both versions
as all work is done in the BeforeAll block. With New-PesterContainer you can leverage -
Path and -Data as inputs. Then, once inside the test, use -ForEach to generate many tests. This
concept is the core of this chapter.

6.2.6 PesterConfiguration

Finally, parameterized tests might generate a lot of output and these need to be handled via
[PesterConfiguration]²⁷. Pester configuration helps you manage all types of scenarios. Here
is an example running the tests from examples 17 and 18 with diagnostic verbosity:

Example 19: Running the test with diagnostic verbosity

1 $PesterconfigDiag = [PesterConfiguration]::Default
2 $PesterconfigDiag.Output.Verbosity = 'Diagnostic'
3 $PesterconfigDiag.Run.Container = $container
4 Invoke-Pester -Configuration $PesterconfigDiag

There is also the OutputFormat option that can handle NUnitXml, NUnit2.5 or JUnitXml.

²⁷https://pester.dev/docs/usage/Configuration

https://pester.dev/docs/usage/Configuration
https://pester.dev/docs/usage/Configuration

Parameterized Testing 138

Example 20: Running the test and outputting to JUnit XML

1 $PesterconfigDiag = [PesterConfiguration]::Default
2 $PesterconfigDiag.TestResult.OutputFormat = 'JUnitXml'
3 $PesterconfigDiag.TestResult.Enabled = $true
4 $PesterconfigDiag.Run.Container = $container
5 Invoke-Pester -Configuration $PesterconfigDiag
6
7 Get-ChildItem -Path *.xml -Name

Starting discovery in 1 files.
Discovery finished in 9ms.
Running tests.
[+] D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1 204ms (2ms|195ms)
Tests completed in 206ms
Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

testResults.xml

Calling New-PesterConfiguration²⁸ is equivalent to using
[PesterConfiguration]::Default.²⁹

6.3 Pester v4

If you are using Pester versions v3 or v4, you will need to use the -Script parameter.³⁰ It has two
properties, -Path and -Parameters. Here is an example for Get-PSVersionTable that works
with these Pester versions:

Example 21: Running Get-PSVersionTable Tests with parameters in Pester v4

1 param (
2 [Parameter(Mandatory)]
3 [ValidateScript({Test-Path $_})]
4 [string] $ImportPath
5)
6 $PSVersionTableContent = Import-Clixml $ImportPath
7 $PSversion = $($PSVersionTableContent.PSVersion.ToString())
8 Describe 'Current PSVersionTable' {
9 It "Current PSversion should be $($PSVersionTableContent.PSVersion)" {

10 $PSVersionTable.PSVersion | Should Be $PSversion
11 }
12 }

²⁸https://pester.dev/docs/commands/New-PesterConfiguration
²⁹Pester Team. (2021, Apr. 30). New-PesterConfiguration. Pester Docs. [Online]. Available: https://pester.dev/docs/commands/New-

PesterConfiguration. [Accessed: Apr. 26, 2022].
³⁰Pester Team. (2021, Apr. 17). Invoke-Pester - Parameters. Pester Docs. [Online]. Available: https://pester.dev/docs/v4/commands/

Invoke-Pester#-script. [Accessed: Apr. 26, 2022].

https://pester.dev/docs/commands/New-PesterConfiguration
https://pester.dev/docs/commands/New-PesterConfiguration
https://pester.dev/docs/commands/New-PesterConfiguration
https://pester.dev/docs/commands/New-PesterConfiguration
https://pester.dev/docs/v4/commands/Invoke-Pester#-script
https://pester.dev/docs/v4/commands/Invoke-Pester#-script

Parameterized Testing 139

1 $InvokePesterScript = @{
2 Path = 'D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1'
3 Parameters = @{
4 Importpath = 'D:\PowerShellDate\Tests\Import\PSVersiontable5.1.xml'
5 }
6 }
7 Invoke-Pester -Script $InvokePesterScript

Pester v4.10.1
Executing all tests in 'D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1'

Executing script D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1

Describing Current PSVersionTable
[+] Current PSversion should be <PSVersionTableContent.PSVersion> 36ms

Tests completed in 215ms
Tests Passed: 1, Failed: 0, Skipped: 0, Pending: 0, Inconclusive: 0

You can also use splatting³¹ with an advanced configuration:

Example 22: Running the tests with advanced configuration in Pester v4

1 $InvokePesterParams = @{
2 Script = @{
3 Path = 'D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1'
4 Parameters = @{
5 Importpath = 'D:\PowerShellDate\Tests\Import\PSVersiontable5.1.xml'
6 }
7 }
8 Outputfile = 'test.xml'
9 Outputformat = 'NUnitXml'

10 PassThru = $true
11 }
12 $ResultPester = Invoke-pester @InvokePesterParams
13
14 Test-Path .\test.xml

Pester v4.10.1
Executing all tests in 'D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1'

Executing script D:\PowerShellDate\Tests\Get-PSVersionTable.Tests.ps1

Describing Current PSVersionTable
[+] Current PSversion should be <PSVersionTableContent.PSVersion> 0ms

Tests completed in 111ms
Tests Passed: 1, Failed: 0, Skipped: 0, Pending: 0, Inconclusive: 0

True

As you can see, the idea is the same: -Parameters provides the input variables and -Path selects
the test file. You may need to adjust the syntax based on your environment.

³¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting

Parameterized Testing 140

6.4 Outputs

With the ability to have many variables as input, your test results will also increase. Here, Get-
Service.Tests.ps1 tests if each service is currently running. Not helpful in real-life scenarios,
but practical for this example.

Example 23: Collecting result data with -PassThru

1 BeforeDiscovery {
2 $AllServices = Get-Service
3 $HList = [System.Collections.Generic.List[hashtable]]::new()
4 $AllServices.ForEach{
5 $HList.add(@{ Name = $_.name })
6 }
7 }
8
9 BeforeAll {

10 $AllServices = Get-Service
11 }
12
13 Describe 'Services' {
14 It '<Name> Should be Running' -ForEach $HList {
15 $AllServices.Where{ $_.name -match $name }.Status |
16 Should -Match 'Running'
17 }
18 }

1 $PesterParams = @{
2 Path = '.\Tests\Get-Service.Tests.ps1'
3 Output = 'Detailed'
4 PassThru = $true
5 }
6 $ResultPester = Invoke-Pester @PesterParams

$ResultPester is a [Pester.Run] object and contains one test result for each service on your
machine.³² You could select only the ones that passed and export them to CSV:

$ResultPester.Passed | Select ExpandedName, Result | Export-Csv '.\Passed.csv'

Or output a detailed failed test report to the host:

$ResultPester.Failed |
Select-Object ExpandedName,Result,ErrorRecord,Block,ExecutedAt,Duration

With the ImportExcel³³ module, you can create an Excel report with conditional formatting to
highlight your Pass/Fail results:

³²Pester Team. (2021, Mar. 07). Pester - Run.cs. pester/Pester on GitHub. [Online]. Available: https://github.com/pester/Pester/blob/
main/src/csharp/Pester/Run.cs. [Accessed: Apr. 26, 2022].

³³https://github.com/dfinke/ImportExcel

https://github.com/dfinke/ImportExcel
https://github.com/pester/Pester/blob/main/src/csharp/Pester/Run.cs
https://github.com/pester/Pester/blob/main/src/csharp/Pester/Run.cs
https://github.com/dfinke/ImportExcel

Parameterized Testing 141

Example 24: Exporting Pester result data to an Excel spreadsheet with ImportExcel

1 $ResultData = $ResultPester.Tests |
2 Select-Object ExpandedName, Result, { $_.ErrorRecord },
3 Block, ExecutedAt, Duration
4
5 $ResultData | Export-Excel -Path .\test.xlsx -ConditionalText $(
6 $TextPARAMs = @{
7 Text = 'Passed'
8 Range = 'B:B'
9 BackgroundColor = 'Green'

10 ConditionalTextColor = 'White'
11 }
12 New-ConditionalText @TextPARAMs
13 $TextPARAMs2 = @{
14 Text = 'Failed'
15 Range = 'B:B'
16 BackgroundColor = 'Red'
17 ConditionalTextColor = 'White'
18 }
19 New-ConditionalText @TextPARAMs2
20)

6.5 One Last Example

Finally, consider one last example. Create a new file named Get-FileContent.Tests.ps1. This
test will read the content of a file and check each line for two conditions. The first condition tests
if the line length is less than 100 characters. The second condition tests if the line contains the
letter ‘o’. The FullName property provides a file for the Get-Content command.

Example 25: Exporting Pester result data to an Excel spreadsheet with ImportExcel

1 param (
2 [Parameter(Mandatory)]
3 [string] $FullName
4)
5
6 BeforeDiscovery {
7 $FileContent = Get-Content -Path $FullName
8 $HList = [System.Collections.Generic.List[hashtable]]::new()
9 $L = 0

10 $FileContent.ForEach{
11 $L++
12 $HList.Add(@{
13 LineNumber = $L
14 LineLength = $PSItem.Length
15 LineContent = $PSItem
16 })
17 }
18 }
19
20 Describe 'FileContent' -ForEach $HList {
21 Context 'Line <LineNumber>' {
22 It 'Line <LineNumber> Should be less than 100 char' {
23 $PSItem.Length | Should -BeLessThan 100
24 }
25 It "Line '<LineContent>' Should Match 'o'" {
26 $PSItem.LineContent | Should -Match 'o'

Parameterized Testing 142

27 }
28 }
29 }

Running the following will create an Excel file with the failed/passed results for each line:

1 $ContainerParams = @{
2 Path = '.\Tests\Get-FileContent.Tests.ps1'
3 Data = @{ FullName = '.\Import\psversiontable-pwsh.xml'}
4 }
5 $Container = New-PesterContainer @ContainerParams
6
7 $ResultPester = Invoke-Pester -Container $Container -Output None -PassThru
8
9 $ResultData = $ResultPester.Tests |

10 Select-Object ExpandedName, Result, { $_.ErrorRecord },
11 Block, ExecutedAt, Duration
12
13 $ResultData | Export-Excel -Path .\test.xlsx -ConditionalText $(
14 $TextPARAMs = @{
15 Text = 'Passed'
16 Range = 'B:B'
17 BackgroundColor = 'Green'
18 ConditionalTextColor = 'White'
19 }
20 New-ConditionalText @TextPARAMs
21 $TextPARAMs2 = @{
22 Text = 'Failed'
23 Range = 'B:B'
24 BackgroundColor = 'Red'
25 ConditionalTextColor = 'White'
26 }
27 New-ConditionalText @TextPARAMs2
28)

Modify the test to accept multiple input files. The Get-FileContent.Tests.ps1 file should
look like this:

Example 26: A modified test script that accepts multiple files

1 param (
2 [Parameter(Mandatory)]
3 [string[]]$FullNameList
4)
5
6 BeforeDiscovery {
7 $HList = [System.Collections.Generic.List[hashtable]]::new()
8 foreach ($FullName in $FullNameList) {
9 $FileContent = Get-Content -Path $FullName

10 $FileName = Split-Path $FullName -Leaf
11 $L = 0
12 $FileContent.ForEach{
13 $L++
14 $HList.Add(@{
15 FileName = $FileName
16 LineNumber = $L
17 LineLength = $PSItem.Length
18 LineContent = $PSItem
19 })

Parameterized Testing 143

20 }
21 }
22 }
23
24 Describe 'FileContent' -ForEach $HList {
25 Context 'Line <LineNumber> from <FileName>' {
26 It 'Line <LineNumber> Should be less than 100 char' {
27 $PSItem.Length | Should -BeLessThan 100
28 }
29 It "Line '<LineContent>' Should Match 'o'" {
30 $PSItem.LineContent | Should -Match 'o'
31 }
32 }
33 }

The $ContainerParams variable changes as follows:

1 $ContainerParams = @{
2 Path = '.\Tests\Get-FileContent.Tests.ps1'
3 Data = @{ FullNameList = @(
4 '.\Import\psversiontable-pwsh.xml'
5 '.\Import\psversiontable5.1.xml'
6)}
7 }

The FullName parameter is now FullNameList and has the [string[]] type accelerator
instead of [string]. The extra brackets in [string[]] changes the parameter’s type from a
string object to a string array. In the BeforeDiscovery block, a foreach loop iterates through
each path passed to the $FullNameList parameter. The $FileName variable is populated with
the file name of the current object in the loop, and added as an additional key/value in $HList.
The FileName key is then used in the Context block’s description to distinguish between the
files under test. The rest of the test code is the same as before. You now have a test script that
can accept a list of file paths and generate tests for each line in each file.

6.6 Conclusions

With parameters, you can write test code that is dynamic and reusable with external data from
any source. Parameter values can be combined with code executed during test discovery and
the -Foreach parameter of Pester test control blocks such as Context and It that get executed
during test run. Your actions and assertions are written once, and Pester generates a separate test
for each data set passed to the tests. The results can be output in a variety of formats for further
automated or interactive processes to identity and fix errors in your code.

6.7 Further Reading

• Official Pester v5 Documentation³⁴
³⁴https://pester.dev/docs/quick-start

https://pester.dev/docs/quick-start
https://pester.dev/docs/quick-start

Parameterized Testing 144

• Official Pester v4 Documentation³⁵
• Data Driven Tests article³⁶
• Breaking changes in Pester v5³⁷
• Migrating from Pester v4 to v5³⁸
• Migrating from Pester v3 to v4³⁹
• Pester Articles List⁴⁰
• Pester Courses List⁴¹
• Pester on GitHub⁴²

³⁵https://pester.dev/docs/v4/quick-start
³⁶https://pester.dev/docs/usage/data-driven-tests
³⁷https://pester.dev/docs/migrations/breaking-changes-in-v5
³⁸https://pester.dev/docs/migrations/v4-to-v5
³⁹https://pester.dev/docs/migrations/v3-to-v4
⁴⁰https://pester.dev/docs/additional-resources/articles
⁴¹https://pester.dev/docs/additional-resources/courses
⁴²https://github.com/pester/pester/

https://pester.dev/docs/v4/quick-start
https://pester.dev/docs/usage/data-driven-tests
https://pester.dev/docs/migrations/breaking-changes-in-v5
https://pester.dev/docs/migrations/v4-to-v5
https://pester.dev/docs/migrations/v3-to-v4
https://pester.dev/docs/additional-resources/articles
https://pester.dev/docs/additional-resources/courses
https://github.com/pester/pester/
https://pester.dev/docs/v4/quick-start
https://pester.dev/docs/usage/data-driven-tests
https://pester.dev/docs/migrations/breaking-changes-in-v5
https://pester.dev/docs/migrations/v4-to-v5
https://pester.dev/docs/migrations/v3-to-v4
https://pester.dev/docs/additional-resources/articles
https://pester.dev/docs/additional-resources/courses
https://github.com/pester/pester/

III PowerShell in Depth

“Give a person PowerShell and they will do their job. Teach a person PowerShell and they will
automate their job.” — Michael Zanatta

For most administrators, PowerShell is a simple tool used to perform simple tasks quickly.
However, when used correctly, PowerShell is a powerful automation tool that can solve complex
problems with efficiency. This section will cover advanced PowerShell concepts in code design
and refactoring, progressive conditions, logging, and Infrastructure as Code (IaC). It features
deep-dive topics such as interpolation, data management, bitwise operators, and operator
precedence.

7. Refactoring PowerShell
Refactoring code is an everyday task that improves the code’s design and implementation
structure, improving the coder’s skills as new programming concepts are introduced, learned,
and understood. This chapter explores the concepts of how to refactor your code to make it more
readable and maintainable, including:

• Expanding on the PowerShell pipeline to simplify code logic.
• Expanding on splatting to simplify cmdlet execution.
• Utilizing interpolation to make strings more readable and maintainable.
• A deep dive into refactoring functions, making them more readable and maintainable.
• Writing better code.
• Data management.

7.1 Expanding on the Pipeline

When developing scripts, the PowerShell pipeline is often forgotten and substituted for Pow-
erShell’s programmable syntax. Scripts are commonly written in the traditional programming
syntax, preferring to have additional logic with less use of the PowerShell pipeline. The objective
of writing code is to be ‘simple and testable’, needing minor changes to the design of the existing
PowerShell code.

Introducing PowerShell Grouping, Sorting, and Filtering (GSF). GSF is a simplification of
functional programming, simplifying logic through function expressions instead of sequenced
steps. The PowerShell GSF approach simplifies code by using pipeline grouping, sorting, and
filtering to streamline the readability and execution of code. Grouping uses the Group-Object
cmdlet to group objects based on object properties. The Sort-Object and Select-Object
cmdlets are used to sort and create object properties. The Where-Object cmdlet or the ‘filtering
left’ technique is used to filter objects based on criteria.¹

In the following example, duplicate processes are filtered, grouped, and sorted:

¹Microsoft. (2021, Jun. 10). PowerShell 101: Chapter 4 - One-liners and the pipeline - Filtering Left. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/04-pipelines#filtering-left. [Accessed: May. 25, 2022].

146

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/04-pipelines#filtering-left

Refactoring PowerShell 147

Example 1: Filtering, grouping, and sorting process information

1 # Apply Filtering Left by selecting the processes that we need.
2 # Where-Object isn't required here.
3 $DuplicateProcesses = Get-Process node, pwsh, sh, git |
4 # The object properties are selected before
5 # the grouping since it's more difficult
6 # after Group-Object has executed.
7 Select-Object -Property Name, Id |
8 Group-Object -Property Name |
9 Sort-Object -Property Name

The GSF approach simplifies the required data or information before invoking it. In some
circumstances, the Where-Object cmdlet increases processing time by lacking looping controls
and executing a condition statement on each item within the array or list. The Where()method
is a suitable alternative; however, it lacks pipeline support.² Below is an example of some
PowerShell code that can be refactored using the GSF approach.

Example 2: Matching Windows process and service information using a traditional looping approach

1 #Requires -Version 5.1
2 #
3 # In this script, the Process and Windows Service
4 # data is formatted and joined:
5
6 $WindowsServices = Get-CimInstance -ClassName Win32_Service
7 $WindowsProcesses = Get-Process
8 $NewObj = @()
9

10 # Iterate through each of the processes and find Windows processes.
11 foreach ($WindowsProcess in $WindowsProcesses) {
12
13 $matchedService = $WindowsServices | ForEach-Object {
14 if ($WindowsProcess.Id -eq $_.ProcessId) { Write-Output $_ }
15 }
16
17 if ([Array]$matchedService.Count -eq 0) { continue }
18
19 $NewObj += $WindowsProcess | Select-Object *,
20 @{ Name = 'WindowsService'; Expression = { $matchedService } }
21
22 }
23
24 $NewObj | Where-Object { $_.WindowsService -ne $null } |
25 Export-Clixml ProcessesWithServiceInfo.clixml

This can be refactored into:

²Microsoft. (2022, Mar. 17). About Methods (Microsoft.PowerShell.Core) - ForEach and Where methods. Microsoft Docs. [Online].
Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_methods#foreach-and-where-
methods. [Accessed: May. 25, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_methods#foreach-and-where-methods
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_methods#foreach-and-where-methods

Refactoring PowerShell 148

Example 3: Refactoring the code from example 2 using grouping, sorting, and filtering

1 # Get the Items that are needed.
2 $WindowsServices = Get-CimInstance -ClassName Win32_Service
3
4 # Let's slow down here and explain each pipline step:
5
6 # Perform the Process Lookup, but since we have the Windows Services
7 # we can 'filter-left' and parse the Process id's directly into the cmdlet.
8 # This removes the Where-Object, filtering processes for only Windows Services.
9 # By utilizing filtering left, the number of objects have been reduced

10 # improving script execution performance.
11 Get-Process -Id $WindowsServices.ProcessId |
12 # We can use select expressions to attach the matched
13 # Windows Service object to the process object
14 Select-Object *, @{
15 Name = "WindowsService"
16 Expression = {
17 # We need to declare a variable here since the pipeline
18 # token is lost when piped into where-object.
19 $processId = $_.Id
20 $WindowsServices | Where-Object { $_.ProcessId -eq $processId }
21 }
22 } |
23 # Finally Export to CLIXML
24 Export-Clixml ProcessesWithServiceInfo.clixml

Notice the performance difference between the two examples:

Seconds : 45
Milliseconds : 232

Seconds : 15
Milliseconds : 243

Notice how the first example is significantly slower than the second example (by 30 seconds).
Why? The final filtering is done after the processing is completed, whereas in the second example,
the filtering was applied before using the ‘filtering left’ technique.

7.2 Expanded Splatting

Splatting is a concept that’s used to simplify the execution of PowerShell cmdlets or parame-
terized script blocks, by defining parameters within an array or Hashtable.³ The array or
Hashtable is parsed into the expression using an @ operator. You can read more about the basics
of splatting at Microsoft Docs⁴.

Splatting is commonly used to simplify execution; however, it’s also used to simplify your logic.
Enter expanded splatting.

The purpose of expanded splatting is to apply logic to the Hashtable rather than the cmdlet.
Hashtables are modified with:

³Microsoft. (2022, Mar. 19). About Splatting (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting. [Accessed: May. 25, 2022].

⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting

Refactoring PowerShell 149

• $Hashtable.NewKey to define a new key within the Hashtable. Previously, the Add()
method was used. Today, PowerShell keys are automatically created by declaring the new
key within the table (Hashtable.NewKey).

• $Hashtable.Remove() to remove a key from the Hashtable.
• $Hashtable.ExistingKey = 'Value’, to update the value for an existing key.

Example 4: Working with hashtables in PowerShell

1 #
2 # Example 1: Basic Usage with a Hashtable
3 # Define the Hashtable
4 $Hashtable = @{
5 Name = 'Michael Zanatta'
6 Age = 21
7 Occupation = 'PowerShell Developer'
8 TreeColor = 'Green'
9 }

10
11 # Adding a Key
12 $Hashtable.Salary = '$50000'
13
14 # Removing a Key
15 $Hashtable.Remove('TreeColor')
16
17 # Updating a Key
18 $Hashtable.Age = 30
19
20 # Output the Hashtable
21 $Hashtable

Example 1:
Name Value
---- -----
Name Michael Zanatta
Occupation PowerShell Developer
Age 30
Salary $50000

Using these concepts, PowerShell code can be refactored to be simpler by applying logic to the
parameterized hashtable rather than the cmdlet itself. Typical parameters are defined initially
within the hashtable and then transformed by the logic. In the example below is some PowerShell
and some logic without splatting:

Refactoring PowerShell 150

Example 5: A traditional approach to cmdlet parameter selection

1 function Do-Something {
2 param($Parameter1, $Parameter2, $Parameter3, $Parameter4)
3 $PSBoundParameters.Keys.ForEach{
4 '{0} = {1}' -f $_, $PSBoundParameters[$_]
5 }
6 }
7
8 $Condition2 = $true
9

10 if ($Condition) {
11 Do-Something -Parameter1 'Value' -Parameter2 'Value2'
12 }
13 elseif ($Condition2) {
14 Do-Something -Parameter1 'Value' -Parameter3 'Value3'
15 }

Parameter1 = Value
Parameter2 = Value3

This can be refactored with splatting to make it easier to read:

Example 6: Selecting cmdlet parameters using hashtable splatting

1 # Parameter1 is a common parameter that's used in both lines of logic.
2 $Params = @{
3 Parameter1 = 'Value'
4 }
5
6 $Condition2 = $true
7
8 # The Logic can be applied now:
9 # Either add the key 'Parameter2' or 'Parameter3' to the Hashtable.

10 if ($Condition) { $Params.Parameter2 = 'Value2' }
11 elseif ($Condition2) { $Params.Parameter3 = 'Value3' }
12
13 # Splat the contents of the Hashtable into the cmdlet.
14 Do-Something @Params

Parameter1 = Value
Parameter3 = Value3

Let’s expandwith a detailed example. Below, several conditions are defined that need refactoring:

Refactoring PowerShell 151

Example 7: More complex parameter permutations using the traditional approach

1 $Condition2 = $true
2
3 if ($Condition) {
4 Do-Something -Parameter1 'Value' -Parameter2 'Value2'
5 }
6 elseif ($Condition2) {
7 # Splatted for line formatting in book.
8 $Params = @{
9 Parameter1 = 'NewValue'

10 Parameter3 = 'Value3'
11 Parameter4 = 'Value4'
12 }
13 Do-Something @Params
14 }
15 elseif ($Condition3) {
16 Do-Something -Parameter3 'Value3'
17 }
18 else {
19 Do-Something -Parameter1 'Value'
20 }

Parameter4 = Value4
Parameter3 = Value3
Parameter1 = NewValue

To refactor this code:

• Declare the Hashtable with the common parameters that occur to all the items within the
cmdlet. In this instance, it’s Parameter1, which is present in all the conditions. The else
statement is removed since Parameter1 is declared (implicitly) in the Hashtable.

• Condition2 changes items in Parameter1, and adds keys Parameter3 and Parameter4.
• Condition3 removes Parameter1, and adds Parameter3.

Example 8: Complex parameter permutations using splatting

1 $Condition2 = $true
2
3 # Parameter1 is the Common Value; set it initially.
4 $Params = @{
5 Parameter1 = 'Value'
6 }
7
8 # Add Parameter2
9 if ($Condition) { $Params.Parameter2 = 'Value2' }

10
11 if ($Condition2) {
12 # Update Parameter1
13 $Params.Parameter1 = 'NewValue'
14 # Add Parameter3 and Parameter4
15 $Params.Parameter3 = 'Value3'
16 $Params.Parameter4 = 'Value4'
17 }
18
19 if ($Condition3) {

Refactoring PowerShell 152

20 # Remove Parameter1
21 $Params.Remove('Parameter1')
22 $Params.Parameter3 = 'Value3'
23 }
24
25 Do-Something @Params

Parameter4 = Value4
Parameter3 = Value3
Parameter1 = NewValue

Much better!

7.3 Interpolation

Before PowerShell, VBScript was the scripting language for Windows System Administrators.
VBScript lacked modern features, which made it difficult to use. PowerShell changed that; it was
derived from C#, inheriting the language structure, management, and syntax. In PowerShell,
string management switched from concatenation to interpolation. Interpolation is a technique
where string data is substituted into a string using different methods. This segment explores
variable substitution and string formatting.

7.3.1 Variable Substitution

Variable substitution is a method of interpolation where variables are declared within the string
and substituted on execution. Variable substitution uses expandable (non-literal) strings "" for
interpolation. When referencing object properties, use the subexpression operator $() to wrap
the object and its property within the expandable string:⁵

Example 9: Variable substitution in expandable strings

1 #
2 # Example 1: Basic Substitution
3 $value = 'string!'
4 "This is a $value"
5 #
6 # Example 2: Substitution using an Object
7 $obj = [PSCustomObject]@{
8 Property = "string inside a property!"
9 }

10 "This is a $($obj.Property)"
11 #
12 # Example 3: Multiple string substitution
13 $value1 = 'is a'
14 $value2 = 'string!'
15 "This $value1 $value2"

⁵Microsoft. (2022, Mar. 19). About Operators (Microsoft.PowerShell.Core) - Subexpression operator. Microsoft Docs. [On-
line]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#subexpression-
operator–. [Accessed: May. 25, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#subexpression-operator--
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#subexpression-operator--

Refactoring PowerShell 153

Example 1:
This is a string!

Example 2:
This is a string inside a property!

Example 3:
This is a string!

The drawbacks of using this method are increasing complexity and lack of formatting capabilities.
Three object properties are interpolated into a string in the following example. Note the
complexity of the PowerShell before and after the refactorization using the -join operator.

Example 10: Using the -join operator in place of variable substitution

1 #
2 # Top Level Object used in the examples
3 $obj = [PSCustomObject]@{
4 Property = 'string inside a property!'
5 SecondProperty = 'another string!'
6 ThirdProperty = 'And another!'
7 }
8 #
9 # Example 1: Completed String Interpolation.

10
11 # Note the complexity of the string.
12 "Initial $($obj.Property) $($obj.SecondProperty) $($obj.ThirdProperty)"
13 #
14 # Example 2: Refactor the initial interpolation.
15
16 # We can use the join operator to join the three strings together and then
17 # insert it into the output string. Note the complexity. It's not preferred.
18 $string = $($obj.Property), $($obj.SecondProperty),
19 $($obj.ThirdProperty) -join ' '
20 "This is the initial $string"

Example 1:
Initial string inside a property! another string! And another!

Example 2:
This is the initial string inside a property! another string! And another!

Variable substitution is best used for simple string interpolation. For more complex substitution,
use the -f (format) operator with composite formatting.

7.3.2 Using the Format (-f) Operator

Format operator syntax:⁶

⁶Microsoft. (2022, Mar. 19). About Operators (Microsoft.PowerShell.Core) - Format operator. Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#format-operator–f. [Ac-
cessed: May. 25, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#format-operator--f

Refactoring PowerShell 154

"String with placeholders" -f $arrayOfPlaceHolders

Composite formatting syntax:

"{ Index[,Alignment][:FormatString] }" -f $arrayOfPlaceHolders

The format (-f) operator is a relatively unknown feature used to interpolate and format literal
and expandable strings within .NET languages.

On the left side, the string is defined with placeholders containing array indexes to associate
them. These are called format items.⁷ Format items are defined as curly braces within the string
{}, which contains the composite formatting syntax:

1. The Index component denotes the placeholder array index, starting at 0.
2. (Optional) The alignment component. An optional item used to denote the alignment

position of the string.
3. (Optional) The format string component. An optional item used to denote what string

formatting is to be applied.

Note that the delimiter to separate the index and alignment is a comma (,), and the secondary
delimiter is a colon (:). On the right side is an array of items nested in a root object type (for
example, String, Int, or Char)

The format operator performs simple interpolation without the Alignment and FormatString
properties. In the following example, PowerShell performs a basic interpolation by adding
String and ! to the initial string. Note the format items and the index values ({IndexNumber})
on the left side of the string:

Example 11: Using the -f format operator

"This is a {0}{1}" -f 'string', '!'

This is a string!

If a format item’s index value on the left side is out of range of the array on the right side, an
error is thrown:

⁷Microsoft. (2021, Nov. 20). Composite formatting. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/s-
tandard/base-types/composite-formatting. [Accessed: May. 25, 2022].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

Refactoring PowerShell 155

Example 12: Out of range format items result in errors

Note the {2} index value. There is no third item in the array
"This is a {0}{1}{2}" -f 'string', '!'

InvalidOperation: Error formatting a string: Index (zero based) must be greater
than or equal to zero and less than the size of the argument list..

It’s possible to have additional array items on the right side, but unless explicitly defined within
the format item, it won’t be interpolated into the string:

Example 13: Additional placeholder array items are ignored

Note the extra '?' in the right side array.
"This is a {0}{1}" -f 'string', '!', '?'

This is a string!

Format items on the left side don’t need to be in order in the string. However, it’s recommended
to order the left side for readability and maintainability:

Example 14: The position of format items in the composite format string doesn’t matter

Note that 1 and 0 are swapped around.
"This is a {1}{0}" -f 'string', '!'

This is a !string

Format item indexes can be used multiple times within the left side string:

Example 15: Format items are reusable

Note the repeated use of the format item.
"This is a {0} {0} {0}!" -f 'string'

This is a string string string!

7.3.2.1 Alignment Component

The optionalAlignment component ({Index,Alignment:FormatString}) is used to define the
preferred field width by padding white spaces into the string. A positive number {Index,n}
right-aligns n characters from the rightmost side of the string by applying padding to the left
side of the string. A negative number {Index,-n} left-aligns n characters from the leftmost side
of the string by applying padding to the right side of the string. In the example, left and right
alignments are shown:

Refactoring PowerShell 156

Example 16: Using the Alignment component in format items

1 #
2 # Example 1: Basic Right Alignment
3 $String = "{0,10}" -f 'value'
4 # Note that the string length is exactly 10.
5 $String.Length
6 $String
7 #
8 # Example 2: Same as Example 1, wrapped with '' quotation marks
9 $String = "'{0,10}'" -f 'value'

10 $String.Length
11 $String
12 #
13 # Example 3: Basic Left Alignment
14 $String = "{0,-10}" -f 'value'
15 # Note that the string length is 10.
16 $String.Length
17 $String
18 #
19 # Example 4: Same as Example 3, wrapped with '' quotation marks
20 $String = "'{0,-10}'" -f 'value'
21 $String.Length
22 $String
23 #
24 # Example 5: The difference between a left and right-hand alignment
25
26 # LeftHand
27 $LHString = "'{0,-10} {0,-10}'" -f 'value'
28 # Note that the string length of each format item is exactly 10.
29
30 # RightHand
31 $RHString = "'{0,10} {0,10}'" -f 'value'
32 # Note that the string length of each format item is exactly 10.
33
34 $RHString
35 $LHString
36 #
37 # Example 6: What happens if we left-hand and right-hand in the same string?
38 $String = "'{0,10}{0,-10}'" -f 'value'
39 $String2 = "'{0,-10}{0,10}'" -f 'value'
40 $String
41 $String2

Example 1: Basic Right Alignment
10

value

Example 2: Same as Example 1, wrapped with '' quotation marks
12
' value'

Example 3: Basic Left Alignment
10
value

Example 4: Same as Example 3, wrapped with '' quotation marks
12
'value '

Example 5: The difference between a left and right-hand alignment.
' value value'

Refactoring PowerShell 157

'value value '

Example 6: Left and right-hand alignment in the same string
' valuevalue '
'value value'

Below are some observations to note from the examples above:

• In Example 1, ‘value’ is aligned to the right side of the 10 character string. The placeholder
value (string 'value') is included within the alignment padding.

• Example 2 is the same as Example 1; the string is wrapped with quotes to show the start
and end of the string.

• In Example 3, ‘value’ is aligned to the left side of the 10 character string. Again, note that
the placeholder value is included within the alignment padding.

• In Example 4, quotes are wrapped around the string from Example 3 to show the start and
end of the string.

• In Example 5, note the difference between the left-hand and right-hand formatting when
used with multiple format items. Notice how the padding is relative to its own format item.

• In Example 6, note how the padding is again relative to its own format item, making it
impossible to overlap text with each other.

In the example above, the placeholder string length was smaller than the alignment value, so
what happens when it’s larger? The padding is ignored when the placeholder value string length
is equal to or larger than the alignment value.

Example 17: Placeholder values aren’t truncated when they’re longer than the alignment value

1 #
2 # Example 1
3 # The string length 'value' is larger then three characters when
4 # using the left-hand alignment.
5 $String = "'{0,3}'" -f 'value'
6 $String
7 #
8 # Example 2
9 # Let's swap sides and now try the right-hand

10 # alignment.
11 $String = "'{0,-3}'" -f 'value'
12 $String

Example 1
'value'

Example 2
'value'

7.3.2.2 Format String Component

The format string component defines what composite formatting type is to be performed on the
format item. The following table lists some custom formatting types (with examples):

Refactoring PowerShell 158

Key Description Example Output

:c Formats a number as the
local currency defined in
the culture

'{0:c}' -f 15000 '$15,000.00'

:dn (n = Number of
decimal places)

Adds leading zeros to the
beginning of a whole
number. If n exceeds the
length, no padding is
added.

'{0:d7}' -f 15000 '0015000'

:e Formats a number in
exponential notation

'{0:e}' -f
10000000000

'1.000000e+010'

:fn (n = Number of
decimal places)

Formats as a fixed point
decimal with following
zeros as defined by n. If
the length of the decimal
exceeds n, it’s rounded.
'{0:f1}' -f 15.14 is
rounded to: '15.1'

'{0:f4}' -f 15.14 15.1400

:gn (n = Number of
digits)

Formats a number in its
more compact format,
either fixed or in
exponential notation.

'{0:g1}' -f 15.14 '2e+01'

:nP (P = Number of
decimal places)

Formats a number as the
local culture
representation. :n is
similar to :f, where P is
used to define the
number of decimal
places. If the length of
the decimal exceeds n,
it’s rounded.

'{0:n2}' -f
150000.1455

'150,000.15'

:pn (n = Number of
decimal places)

Formats a decimal
number as a percentage.
n is similar to :fn,
where n is used to define
the number of decimal
places. If the length of
the decimal exceeds n,
it’s rounded.

'{0:p}' -f .1 '10%'

:x Formats a number to
hexadecimal

'{0:x}' -f 30 '1E'

:hh Formats a Datetime
object to a 2-digit hour

'{0:hh}' -f
(Get-Date)

06

:HH Formats a Datetime
object to a 2-digit
24-hour format

'{0:hh}' -f
(Get-Date)

20

:mm Formats a Datetime
object to a 2-digit minute

'{0:mm}' -f
(Get-Date)

15

:ss Formats a Datetime
object to a 2-digit second

'{0:ss}' -f
(Get-Date)

15

Refactoring PowerShell 159

Key Description Example Output

:t Formats a Datetime
object to compact time

'{0:t}' -f
(Get-Date)

6:23 AM

:tt Formats a Datetime
object AM or PM

'{0:tt}' -f
(Get-Date)

AM

:d Formats a Datetime
object to a compact date
according to the local
culture.

'{0:d}' -f
(Get-Date)

2/2/2022

:dd Formats a Datetime
object to a 2-digit day of
the month

'{0:dd}' -f
(Get-Date)

15

:ddd Formats a Datetime
object to the compact
day of the week

'{0:ddd}' -f
(Get-Date)

'Sun'

:dddd Formats a Datetime
object to a day of the
week

'{0:dddd}' -f
(Get-Date)

'Sunday'

:M Formats a Datetime
object to the full month
name and day of the
month.

'{0:M}' -f
(Get-Date)

'February 20'

:MM Formats a Datetime
object to a 2-digit month.

'{0:MM}' -f
(Get-Date)

'02'

:MMM Formats a Datetime
object to the compact
month.

'{0:MMM}' -f
(Get-Date)

'Feb'

:MMMM Formats a Datetime
object to the full month.

'{0:MMMM}' -f
(Get-Date)

'Febuary'

:y Formats a Datetime
object to the full month
name and the year.

'{0:y}' -f
(Get-Date)

'February 2022'

:yy Formats a Datetime
object to the 2-digit year
of the century.

'{0:yy}' -f
(Get-Date)

'22'

:yyyy Formats a Datetime
object to a 4-digit year.

'{0:yyyy}' -f
(Get-Date)

'2022'

You can find out more about composite formatting at Microsoft Docs⁸.

When formatting dates, multiple date formats can be grouped into the same format string:

Example 18: Composite date formats in format items

'{0:ddddMMMMyyyy}' -f (Get-Date)

⁸https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

Refactoring PowerShell 160

SundayFebruary2022

This can be expanded further by adding some literal formatting within the format strings
component. In this example, a space between the format strings is added:

Example 19: Spaces are treated literally inside format string components

'{0:dddd d MMMM yyyy}' -f (Get-Date)

Sunday 20 February 2022

Strings can be wrapped within the format string component by using a literal or an expandable
string (''). By wrapping the strings within a string, special characters are ignored. If using the
same string type to escape, use double quotation marks ('' or ""). In the example below, 'Day
:', 'Month:' and 'Year:' are added to the format string. However, since wrapped in a string,
special characters are ignored:

Example 20: Including literal characters in format string components

1 #
2 # Example 1: String wrapping using single quotation marks within
3 # an expandable string
4 "{0:'Day: 'dddd d', Month: 'MMMM', Year: 'yyyy}" -f (Get-Date)
5 #
6 # Example 2: Same as Example 1, however using two single quotation
7 # marks to escape the literal string.
8 '{0:''Day: ''dddd d'', Month: ''MMMM'', Year: ''yyyy}' -f (Get-Date)
9 #

10 # Example 3: Same as Example 1, however using double quotation
11 # marks within a literal string.
12 '{0:"Day: "dddd d", Month: "MMMM", Year: "yyyy}' -f (Get-Date)
13 #
14 # Example 4: Same as Example 1, however using two double quotation
15 # marks to escape the expandable string.
16 "{0:""Day: ""dddd d"", Month: ""MMMM"", Year: ""yyyy}" -f (Get-Date)

Example 1:
Day: Sunday 20, Month: February, Year: 2022

Example 2:
Day: Sunday 20, Month: February, Year: 2022

Example 3:
Day: Sunday 20, Month: February, Year: 2022

Example 4:
Day: Sunday 20, Month: February, Year: 2022

The ToString() method also accepts the format string operators.⁹

⁹Microsoft. (2022, Mar. 11). Overview: How to format numbers, dates, enums, and other types in .NET. Microsoft Docs. [Online].
Available: https://learn.microsoft.com/en-us/dotnet/standard/base-types/formatting-types. [Accessed: Jun. 08, 2022].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

Refactoring PowerShell 161

Example 21: Format string operators with ToString()

#
Example 1: Formatting a date
(Get-Date).ToString('dddd d MMMM yyyy')

#
Example 2: Formatting a number
(0.42).ToString('p0')

Example 1:
Sunday 20 February 2022

Example 2:
42%

If two format string operators are ambiguous and need to be separated logically, use an empty
literal span:

Example 22: Separating ambiguous operators with an empty literal span

Example 1: Five 'd' operators results in the long day name
'{0:ddddd}' -f (Get-Date)
#
Example 2: Separating these with an empty literal span solves the issue
'{0:dddd""d}' -f (Get-Date)

Example 1:
Sunday

Example 2:
Sunday20

The advantages of using the format operator expand from interpolation to string formatting,
simplifying scripts. Some drawbacks are that the substitution and format operators are only
used for static strings, making it difficult to construct and interpolate many strings.

7.4 Refactoring Functions

PowerShell functions are overlooked when refactoring code; however, it’s one of the essential
methods of structuring code to be maintainable and testable. This segment explores several
methodologies that are used to make code more maintainable and testable. These are:

• Simplifying functions to perform a singular task.
• Using typecasting on parameters.
• Using advanced function parameters.
• Using approved verbs.
• Using a singular output object type.

Refactoring PowerShell 162

7.4.1 Simplify Functions to Perform a Singular Task

You should structure functions to be as simple as possible or perform a singular task. This
improves the testability and readability of the code. In the example below, the function Process-
File is used to perform several tasks; unzipping, verifying files, and inserting ‘test’ to the end
of each of the expanded files:

Example 23: A single function performing multiple tasks

1 function Process-File {
2 param($Filename, $VerifyHashes)
3
4 #
5 # Get the File object, expand it, and return an SHA256 hash of the contents
6
7 $File = Get-Item -LiteralPath $Filename
8 $ExpandPath = Join-Path ([System.IO.Path]::GetTempPath()) (New-Guid)
9 $File | Expand-Archive -DestinationPath $ExpandPath

10
11 $GetChildItemParams = @{
12 LiteralPath = $ExpandPath
13 File = $true
14 Recurse = $true
15 }
16
17 $Hashes = (Get-ChildItem @GetChildItemParams | Get-FileHash).Hash
18
19 #
20 # Perform a comparision on the hashes to ensure
21
22 $CompareObjectParams = @{
23 ReferenceObject = $Hashes
24 DifferenceObject = $VerifyHashes
25 }
26
27 $Difference = Compare-Object @CompareObjectParams
28
29 if ($Difference.InputObject.Count -ne 0) {
30
31 $MailMessageParams = @{
32 To = 'Helpdesk'
33 From = 'NoReply'
34 Subject = 'File Transfer Failed'
35 }
36
37 Send-MailMessage @MailMessageParams
38 throw "Issue with the hash"
39
40 }
41
42 #
43 # Insert 'Test' at the end of each of the files
44 Get-ChildItem @GetChildItemParams | Add-Content -Value 'Test'
45
46 return $ExpandPath
47 }

While the code is relatively succinct, it’s not maintainable or testable. The function is performing
several tasks, making it difficult to test. Process-File can be refactored further, splitting out the

Refactoring PowerShell 163

file extraction, the validation, and the file transformation, wrapped with an additional function
to join them together:

Example 24: Refactoring the function from Example 24 yields discrete functions for each task

1 #
2 # The First Function to Expand the File
3 function Extract-File {
4 param ($Filename)
5
6 $File = Get-Item -LiteralPath $Filename
7 $ExpandPath = Join-Path ([System.IO.Path]::GetTempPath()) (New-Guid)
8 $File | Expand-Archive -DestinationPath $ExpandPath
9

10 return $ExpandPath
11 }
12
13 #
14 # The Second Function to Test Exported Files
15 function Test-ExportedFiles {
16 param($LiteralPath, $VerifyHashes)
17
18 $GetChildItemParams = @{
19 LiteralPath = $LiteralPath
20 File = $true
21 Recurse = $true
22 }
23
24 $CompareObjectParams = @{
25 ReferenceObject = $(Get-ChildItem @GetChildItemParams |
26 Get-FileHash).Hash
27 DifferenceObject = $VerifyHashes
28 }
29
30 $Difference = Compare-Object @CompareObjectParams
31
32 if ($Difference.InputObject.Count -ne 0) { return $false }
33
34 $true
35
36 }
37
38 #
39 # The third to Append the string to the end of the file.
40 function Add-StringToEndOfFile {
41 param($FilePath, $Value)
42
43 Get-ChildItem $FilePath -File -Recurse | Add-Content -Value $Value
44
45 }
46
47 #
48 # The Final to join them together.
49 function Process-File {
50 param($Filename, $VerifyHashes)
51
52 # Extract the File to C:\Windows
53 $ExpandPath = Extract-File -Filename $Filename
54
55 # Test the files
56 $Params = @{
57 LiteralPath = $ExpandPath
58 VerifyHash = $VerifyHashes
59 }

Refactoring PowerShell 164

60
61 if (-not (Test-ExportedFiles @Params)) {
62
63 $MailMessageParams = @{
64 To = 'Helpdesk'
65 From = 'NoReply'
66 Subject = 'File Transfer Failed'
67 }
68
69 Send-MailMessage @MailMessageParams
70 throw "Issue with the hash"
71 }
72
73 #
74 # Add Test to the end of every file.
75 Add-StringToEndOfFile -FilePath $ExpandPath -Value 'Test'
76
77 return $ExpandPath
78 }

7.4.2 Use Typecasting on Parameters

Always typecast parameters with [type]$parameterName ensure that parameters are the
correct type.¹⁰ ¹¹ In the following example, the function has two parameters: $FileName and
$ExtractPath. These parameters aren’t typecasted, so any object type can be parsed:

Example 25: A function with unlimited parameter types

1 function Extract-File {
2 param ($FileName, $ExtractPath)
3
4 $File = Get-Item -LiteralPath $FileName
5 $File | Expand-Archive -DestinationPath $ExtractPath
6
7 }

To make the code more maintainable/testable, setting the type of the parameters identifies
the exact allowed parameter types. In the following example, the parameters $FileName and
$ExtractPath are protected by adding the [String] type:

¹⁰Microsoft. (2021, Jul. 30). PowerShell Language Specification: Chapter 6 - Conversions. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-06. [Accessed: May. 26, 2022].

¹¹PowerShell Team. (2007, Oct. 29). Dynamic Casting. Microsoft Dev Blogs. [Online]. Available: https://devblogs.microsoft.com/
powershell/dynamic-casting/. [Accessed: May. 26, 2022].

https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-06
https://devblogs.microsoft.com/powershell/dynamic-casting/
https://devblogs.microsoft.com/powershell/dynamic-casting/

Refactoring PowerShell 165

Example 26: The function from Example 26, with typecast parameters

1 function Extract-File {
2 param ([String]$FileName, [String]$ExtractPath)
3
4 $File = Get-Item -LiteralPath $FileName
5 $File | Expand-Archive -DestinationPath $ExtractPath
6
7 }

7.4.3 Use Advanced Function Parameters

Using advanced function parameters provides different mechanisms to simplify your code
when the script/function is invoked, by requiring or validating the correct input.¹² To simplify
PowerShell functions, parameter sets and mandatory parameters can be used. Parameter sets
simplify the execution experience by removing parameters that aren’t required for a particular
combination. In the following example, parameter sets are used to simplify the parameters:

Example 27: Restricting parameter combinations with parameter sets

1 #
2 # Function Code:
3 function Invoke-Something {
4 [CmdletBinding(DefaultParameterSetName = 'P1')]
5 param(
6 [Parameter(ParameterSetName = 'P1')]
7 [string]$Parameter1,
8 [Parameter(ParameterSetName = 'P2')]
9 [string]$Parameter2,

10 [Parameter(ParameterSetName = 'P1')]
11 [Parameter(ParameterSetName = 'P2')]
12 [string]$Parameter3
13)
14
15 # Print out the parameter set
16 $PSCmdlet.ParameterSetName
17
18 }
19 #
20 # Example 1: Invoke the Function with no parameter
21 Invoke-Something
22 #
23 # Example 2: Invoke the Function with 'Parameter1'
24 Invoke-Something -Parameter1 ''
25 #
26 # Example 3: Invoke the Function with 'Parameter2'
27 Invoke-Something -Parameter2 ''
28 #
29 # Example 4: Invoke the Function with 'Parameter3'
30 Invoke-Something -Parameter3 ''
31 #
32 # Example 5: Invoke the Function with 'Parameter1' and 'Parameter2'
33 Invoke-Something -Parameter1 '' -Parameter2 ''

¹²Microsoft. (2021, Jun. 10). About Functions Advanced (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://
learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced. [Accessed: May. 26, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced

Refactoring PowerShell 166

Example 1:
P1

Example 2:
P1

Example 3:
P2

Example 4:
P1

Example 5:
Invoke-Something: Parameter set cannot be resolved using the specified
named parameters. One or more parameters issued cannot be used together
or an insufficient number of parameters were provided.

Let’s review the examples from the previous tests:

• In Example 1, the test shows that the default parameter set is ‘P1’ as parameters weren’t
included.

• In Example 2, the test shows the parameter set ‘P1’ is applied when -Parameter1 is
specified.

• In Example 3, the test shows the parameter set ‘P2’ is applied when -Parameter2 is
specified.

• In Example 4, -Parameter3 is parsed being present in both parameter sets ‘P1’ and ‘P2’.
Since no other parameters in the corresponding parameter set are included, PowerShell
defaults to the DefaultParameterSetName in the CmdletBinding attribute, which is ‘P1’.

• In Example 5, parameters -Parameter1 and -Parameter2 (from different parameter sets)
are parsed into the function, raising an error. The error raised demonstrates that parameters
from different parameter sets can’t mix.

Adding mandatory parameters ensures that parameter inputs are met, simplifying the internal
function code. An important thing to remember is that when using parameter sets, ensure you
set the DefaultParameterSetName argument within the CmdletBinding attribute:

Example 28: Always define a default parameter set if using them

1 function Invoke-Something {
2 # Set the CmdletBinding Attribute and Set the Default Parameter Set Name
3 [CmdletBinding(DefaultParameterSetName = 'P1')]
4 param(
5 # Define the Parameter and the ParameterSetName
6 [Parameter(ParameterSetName = 'P1')]
7 [string]$Parameter1
8)
9 }

When the Mandatory attribute is set, and no parameter input is found, PowerShell prompts the
user to supply values for the parameter, as seen in the example below:

Refactoring PowerShell 167

Example 29: Omitting mandatory parameters results in a prompt for input

Invoke-Something has a mandatory parameter here
Invoke-Something

cmdlet Invoke-Something at command pipeline position 1
Supply values for the following parameters:

In the following example, the Mandatory attribute is used to filter the input parameters:

Example 30: Using mandatory parameters to ensure an input is present

1 #
2 # Function Definition
3 function Invoke-Something {
4 param(
5 # Add the Parameter Attribute and Include
6 # the Mandatory Argument
7 [Parameter(Mandatory)]
8 [String]$Parameter1,
9 [String]$Parameter2

10)
11 'Complete!'
12 }
13 #
14 # Example 1: Call the Function without -Parameter1
15 Invoke-Something -Parameter2 ''
16 #
17 # Example 2: Call the Function with a -Parameter1 value
18 # and -Parameter2 without a value.
19 Invoke-Something -Parameter1 'Value' -Parameter2 ''

Example 1:
Supply values for the following parameters:
Parameter1:
Invoke-Something: Cannot bind argument to parameter 'Parameter1'
because it is an empty string.

Example 2:
Complete!

Notice from the example above the use of theMandatory attribute. The error in Example 1 occurs
when an input prompt is left empty for a mandatory parameter.

Another method for simplifying the input parameters is using the Validate* Attributes to test the
input itself. This chapter focuses on the following attributes:

• ValidateSet
• ValidatePattern
• ValidateLength
• ValidateCount
• ValidateNotNull

Refactoring PowerShell 168

• ValidateNotNullOrEmpty
• ValidateScript

A notable feature of the Validate* attributes is that they stack on each parameter value, further
narrowing the input requirements. In the following example, ValidateScript and ValidateNotNul-
lOrEmpty are added. Pay attention to the script block within the ValidateScript Attribute:

Example 31: Combining Validate* attributes for a single parameter

1 #
2 # Example Function
3 function Invoke-Something {
4 param(
5 # Add the first attribute
6 [ValidateScript({
7 # Note! There's PowerShell Code in here!
8 Test-Path -Path $_
9 })]

10 # Add the second one (executed first)
11 [ValidateNotNullOrEmpty()]
12 [string]$Path
13)
14 $Path
15 }
16 #
17 # Example 1: Parse $null into the Parameter
18 Invoke-Something -Path $null
19 #
20 # Example 2: Parse a Valid Path
21 Invoke-Something -Path "$PSHOME"
22 #
23 # Example 3: Parse an invalid Path
24 Invoke-Something -Path '\:BadPath?'

Example 1:
Invoke-Something : Cannot validate argument on parameter 'Path'.
The argument is null or empty. Provide an argument that is not null or empty,
and then try the command again.

Example 2:
C:\Program Files\PowerShell\7

Example 3:
Invoke-Something: Cannot validate argument on parameter 'Path'. The "

Note! There's PowerShell Code in here!
Test-Path -Path $_ -IsValid

" validation script for the argument with value "\:BadPath?" did not
return a result of True. Determine why the validation script failed,
and then try the command again.

Note from the previous example the different errors that were raised when the string validation
failed. In the following example, the same attribute ValidateScript is used. However, note the
order of execution:

Refactoring PowerShell 169

Example 32: The execution order of multiple ValidateScript attributes is last to first
1 #
2 # Example Function
3 function Invoke-Something {
4 param(
5 # First Script Block
6 [ValidateScript({
7 Write-Host 'First'
8 $_ -ne 'D:\Temp'
9 })]

10 # Second Script Block
11 [ValidateScript({
12 Write-Host 'Second'
13 $_ -ne 'Z:\Temp'
14 })]
15 # Third Script Block
16 [ValidateScript({
17 Write-Host 'Third'
18 Test-Path -Path $_ -IsValid
19 })]
20 [string]$Path
21)
22 $Path
23 }
24 #
25 # Parse a valid path
26 Invoke-Something -Path $PSHOME

Third
Second
First
C:\Program Files\PowerShell\7

Note how the execution order is from the bottom-up, not top-down.

Other validation attributes provide different means to simplify your logic. These are:

• [ValidateSet('Value1', 'Value2')]. Used to test against an array of string inputs:

Example 33: Specifying a fixed set of inputs with the ValidateSet attribute
1 #
2 # ValidateSet Function
3 function Invoke-Something {
4 param(
5 # Add the first attribute
6 [Parameter(Mandatory)]
7 [ValidateSet('Value1', 'Value2')]
8 [String]$Parameter
9)

10 $Parameter
11 }
12
13 #
14 # Example 1: ValidateSet
15 Invoke-Something -Parameter 'Value1'
16
17 #
18 # Example 2: ValidateSet: Unknown ParameterValue
19 Invoke-Something -Parameter 'Unknown'

Refactoring PowerShell 170

Example 1:
Value1

Example 2:
Invoke-Something: Cannot validate argument on parameter 'Parameter'.
The argument "Unknown" does not belong to the set "Value1,Value2"
specified by the ValidateSet attribute. Supply an argument that is
in the set and then try the command again.

• [ValidatePattern('RegexPattern')]. Validates the string input against a regex pat-
tern:¹³

Example 34: Limiting input to strings that match a regex pattern with the ValidatePattern attribute
1 #
2 # ValidatePattern Function
3 function Invoke-Something {
4 param(
5 # Add the first attribute
6 [Parameter(Mandatory)]
7 [ValidatePattern('^(Value)[0-9]$')]
8 [String]$Parameter
9)

10 $Parameter
11 }
12
13 #
14 # Example 1: ValidatePattern
15 Invoke-Something -Parameter 'Value9'
16
17 #
18 # Example 2: ValidatePattern Bad Input
19 Invoke-Something -Parameter 'SomeOtherValue'

Example 1:
Value9

Example 2:
Invoke-Something: Cannot validate argument on parameter 'Parameter'.
The argument "SomeOtherValue" does not match the "^(Value)[0-9]$" pattern.
Supply an argument that matches "^(Value)[0-9]$" and try the command again.

• [ValidateLength(MinIntLength, MaxIntLength)]. Validates the length of the string
input:

¹³Microsoft. (2022, Mar. 18). About Regular Expressions (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions. [Accessed: May. 27,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions

Refactoring PowerShell 171

Example 35: Controlling input string length with the ValidateLength attribute
1 #
2 # ValidateLength Function
3 function Invoke-Something {
4 param(
5 # Add the first attribute
6 [Parameter(Mandatory)]
7 # Minimum Length is 5
8 # Maxiumum Length is 7
9 [ValidateLength(5, 7)]

10 [String]$Parameter
11)
12 $Parameter
13 }
14
15 #
16 # Example 1: ValidateLength
17 Invoke-Something -Parameter 'Value'
18
19 #
20 # Example 2: ValidateLength. Too Short
21 Invoke-Something -Parameter 'Two'
22
23 #
24 # Example 3: ValiadateLength. Too Long
25 Invoke-Something -Parameter 'StringisTooLong'

Example 1:
Value

Example 2:
Invoke-Something: Cannot validate argument on parameter 'Parameter'.
The character length (3) of the argument is too short.
Specify an argument with a length that is greater than or equal to "5",
and then try the command again.

Example 3:
Invoke-Something: Cannot validate argument on parameter 'Parameter'.
The character length of the 15 argument is too long.
Shorten the character length of the argument so it is fewer than or
equal to "7" characters, and then try the command again.

• [ValidateCount(MinIntLength, MaxIntLength)]. Validates the number of allowed
arguments (array items):

Example 36: Limiting the input array size with the ValidateCount attribute
1 #
2 # ValidateCount Function
3 function Invoke-Something {
4 param(
5 # Add the first attribute
6 [Parameter(Mandatory)]
7 # Minimum Length is 5
8 # Maxiumum Length is 7
9 [ValidateCount(5, 7)]

10 # Note the type of the string
11 [String[]]$Parameter
12)
13 $Parameter -join ' '
14 }

Refactoring PowerShell 172

15
16 #
17 # Example 1: Count
18 Invoke-Something -Parameter 1, 2, 3, 4, 5
19
20 #
21 # Example 2: ValidateLength. Too Short
22 Invoke-Something -Parameter 1
23
24 #
25 # Example 3: ValiadateLength. Too Long
26 Invoke-Something -Parameter 1, 2, 3, 4, 5, 6, 7, 8

Example 1:
1 2 3 4 5

Example 2:
Invoke-Something: Cannot validate argument on parameter 'Parameter'.
The parameter requires at least 5 value(s) and no more than 7 value(s) -
1 value(s) were provided.

Example 3:
Invoke-Something: Cannot validate argument on parameter 'Parameter'.
The parameter requires at least 5 value(s) and no more than 7 value(s) -
8 value(s) were provided.

• [ValidateScript({ #ScriptBlock })]. Use a PowerShell script block to test the input:
The validation process is similar to the script block you use with Where-Object, where
the $_ token denotes the current parameter, and the script block needs to return a Boolean
value. Other parameter values aren’t accessible inside the script block. It’s tempting to write
comprehensive code but keep it as simple as possible since it can be challenging to test:

Example 37: Validating an input using a script block with the ValidateScript attribute
1 #
2 # ValidateScript Function
3
4 function Invoke-Something {
5 param(
6 # Add the first attribute
7 [Parameter(Mandatory)]
8 # In this example, we test the input
9 # for a valid filepath

10 [ValidateScript({
11 # Access the current parameter by
12 # using the $_ token:
13 Test-Path -LiteralPath $_
14 })]
15 [String]$Parameter
16)
17 $Parameter
18 }
19
20 #
21 # Example 1: Using a known file path.
22 Invoke-Something -Parameter "$PSHOME"
23
24 #
25 # Example 2: Using an unknown file path.
26 Invoke-Something -Parameter 'D:\Bad\FilePath'

Refactoring PowerShell 173

#
Example 1:
C:\Program Files\PowerShell\7

#
Example 2:
Invoke-Something: Cannot validate argument on parameter 'Parameter'. The "

Access the current parameter by
using the $_ token:
Test-Path -LiteralPath $_

" validation script for the argument with value "D:\Bad\FilePath"
did not return a result of True. Determine why the validation script
failed, and then try the command again.

7.4.4 Use Approved Verbs

Approved verbs describe the intended use of the PowerShell function.¹⁴ For a list of approved
verbs and suggestions, see the list on Microsoft Docs¹⁵. Another thing to consider is the expected
output object type in conjunction with the verb. For instance, if the verb of the function is ‘test’,
the output of that function should be a boolean result. In the following example, the function
Test-FileContents returns the contents of the file if successful:

Example 38: This function shouldn’t output file content since it’s named with the ‘Test’ verb

1 function Test-FileContents {
2 param([String]$LiteralPath)
3
4 $Content = Get-Content -LiteralPath $LiteralPath -Raw
5 if ($Content.Length -eq 0) { return $false }
6 $Content
7 }

The verb ‘Test’ shouldn’t be returning the contents of the file. Instead, it should return a boolean
object type. The code is refactored to return a boolean result in the following example:

Example 39: A more typical behavior for a Test-* function

1 function Test-FileContents {
2 param([String]$LiteralPath)
3
4 $Content = Get-Content -LiteralPath $LiteralPath -Raw
5 if ($Content.Length -eq 0) { return $false }
6 $true
7 }

If you’re returning the file content, the ‘Get’ verb is more appropriate.

¹⁴Microsoft. (2022, Jan. 02). Approved Verbs for PowerShell Commands. Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands. [Accessed: May. 26,
2022].

¹⁵https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands

Refactoring PowerShell 174

7.4.5 Use a Singular Output Object Type

Standardizing a function’s output type simplifies the testing and debugging processes. If several
object types are required, wrap the output within a [PSCustomObject]with separate properties
for different types. In the example below, the function Import-FileasXML imports a file’s
contents and attempts to typecast the contents as XML. If successful, an [XML] object is returned;
otherwise, the file contents are returned as a string array [String[]] of lines:

Example 40: A function that outputs different data types based on file contents

1 function Import-FileasXML {
2 param([String]$LiteralPath)
3
4 $Content = Get-Content -LiteralPath $LiteralPath
5
6 try {
7 $Content = [XML]$Content
8 } catch {}
9

10 $Content
11 }

This function can be refactored by splitting out the object functionality into two separate
properties (Content and XMLContent):

Example 41: The refactored function always returns a custom object with two properties

1 function Import-FileasXML {
2 param([String]$LiteralPath)
3
4 $Content = Get-Content -LiteralPath $LiteralPath
5
6 [PSCustomObject]@{
7 Content = $Content
8 XMLContent = try { [XML]$Content } catch { $null }
9 }

10 }

The previous example shows that the file content was loaded initially and then added to
a [PSCustomObject] with two properties: Content and XMLContent. Within the property
XMLContent, the file’s contents are tentatively parsed as an XML file. If successful, the XML
object is added to the XMLContent property; otherwise, $null is returned.

7.5 Writing Better Code

Whether you are a novice or a seasoned professional reading this book, the goal is always to
write simple and maintainable code. Each programming language has nuances that developers
use to make development easier. This segment explores PowerShell’s nuances to make your code
simpler and more maintainable.

Refactoring PowerShell 175

7.5.1 Simplify Nested Statements

Nested statements are a fact of life for any developer, and managing them can be tricky. Nested
statements also drift away from the goal of writing readable and maintainable code. So, what’s
the solution? It’s a tricky answer that depends on the implementation, with code requirements
dictating the outcome. This segment aims to provide options to manage nested statements better.

7.5.1.1 Option 1: Grouping Nested Conditions

Nested conditions use the following code structure:

if ($Condition1) {
if ($Condition2) {

if ($Condition3) {
Do Something

}
}

}

Suppose the conditions are singular, meaning that there aren’t other actions of dependencies on
the condition. In that case, each of the conditions can be grouped by using parentheses and the
-and operator:

if (($Condition1) -and ($Condition2) -and ($Condition3)) {
Do Something

}

If the condition isn’t singular, this makes it a lot trickier; however, it can be refactored with the
use of the elseif statement. The example below demonstrates the use case where each condition
isn’t singular and contains an alternate execution path after each condition:

Example 42: A nested block of ‘if’ and ‘else’ statements

1 if ($Condition1) {
2 if ($Condition2) {
3 if ($Condition3) {
4 # Do Something
5 }
6 else {
7 # [Third Condition] Do Something Else
8 }
9 }

10 else {
11 # [Second Condition] Do Something Else
12 }
13 }
14 else {
15 # [First Condition] Do Something Else
16 }

This can be refactored to:

Refactoring PowerShell 176

Example 43: The same logic as Example 43, using a more linear structure

1 if (($Condition1) -and ($Condition2) -and ($Condition3)) {
2 # Do Something
3 }
4 elseif (-not ($Condition1)) {
5 # [First Condition] Do Something Else
6 }
7 elseif (($Condition1) -and (-not ($Condition2))) {
8 # [Second Condition] Do Something Else
9 }

10 elseif (($Condition1) -and ($Condition2) -and (-not ($Condition3))) {
11 # [Third Condition] Do Something Else
12 }

The nested code can be flattened by grouping the conditions, but notice (from the previous
example) that it’s not readable or maintainable. So how can this be taken further? First, questions
need to be asked about the design of the script:

1. What requirements are needed for this code?
2. Can the conditions be solved further up the code stack?
3. Can the use of the pipeline resolve any issues?

In this example, the code has been optimized, and the conditions depend on each other. This
presents two options:

1. Use the existing examples, or
2. Refactor the code by using implicit conditions.

The code can be refactored further by simplifying the conditions:

Example 44: Simplifying further by understanding the execution logic

1 if (($Condition1) -and ($Condition2) -and ($Condition3)) {
2 # Do Something
3 }
4 elseif (-not ($Condition1)) {
5 # [First Condition] Do Something Else
6 }
7 elseif (-not ($Condition2)) {
8 # [Second Condition] Do Something Else
9 }

10 elseif (-not ($Condition3)) {
11 # [Third Condition] Do Something Else
12 }

In the example, all irrelevant conditions are removed. In this case, the nested conditions
validating the $Condition1 and $Condition2 are removed. Why? Within the elseif state-
ment, each previous condition is implicitly $true based on the previous condition. The first
condition is testing for success. If the first condition fails, either $Condition1, $Condition2,
or $Condition3 is $false. The subsequent elseif conditions are then explicitly ordered based
on the nesting in the original example ($Condition1 → $Condition2 → $Condition3).

Refactoring PowerShell 177

...
}
elseif (-not ($Condition1)) {

[First Condition] Do Something Else
}
elseif (($Condition1) -and (-not ($Condition2))) {

[Second Condition] Do Something Else
}

In the first elseif statement, the code tests if $Condition1 is $false. In the second statement,
the code tests if $Condition1 is $true and condition2 is $false. However, the assumption is
made:

In the first elseif statement, condition1 is being tested for $false, making it implicitly $true
for subsequent statements.

This removes the requirements to test the aforementioned conditions again since it’s not $true.

There is a risk here that the outcomes are affected since they depend on the ordering within
the elseif statement. To mitigate this, write unit tests to test for variations and document the
ordering within the code.

7.5.1.2 Option 2: Simplifying Nested Loops

PowerShell loop statements can become unwieldy when multiple statements are nested, increas-
ing the complexity of the code and associated unit tests with it. Loop statements shouldn’t be
nested more than three times without clear loop-controls (using continue and break).¹⁶ ¹⁷ ¹⁸

Each nested loop statement increases the number of loops, multiplying the number of possibili-
ties.

Consider the following example:

Example 45: Nested looping constructs increase the number of operations exponentially

1 $Counter = 0
2 for ($i = 0; $i -ne 10; $i++) {
3 for ($x = 0; $x -ne 10; $x++) {
4 $Counter++
5 Write-Host "$Counter"
6 }
7 }

¹⁶Microsoft. (2014, May. 08). PowerShell Looping: Advanced Break. Microsoft Dev Blogs. [Online]. Available: https://devblogs
.microsoft.com/scripting/powershell-looping-advanced-break/. [Accessed: May. 26, 2022].

¹⁷Microsoft. (2022, Mar. 03). About Break (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_break. [Accessed: May. 26, 2022].

¹⁸Microsoft. (2022, Mar. 19). About Continue (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_continue. [Accessed: May. 26, 2022].

https://devblogs.microsoft.com/scripting/powershell-looping-advanced-break/
https://devblogs.microsoft.com/scripting/powershell-looping-advanced-break/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_continue
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_continue

Refactoring PowerShell 178

1
2
3
...
98
99
100

The previous statement contains two nested statements that both count to 10. However, if an
additional nested loop statement is added, it’s now (10x10x10) 1000:

Example 46: Nested looping constructs increase the number of operations exponentially
1 $Counter = 0
2 for ($i = 0; $i -ne 10; $i++) {
3 for ($x = 0; $x -ne 10; $x++) {
4 for ($z = 0; $z -ne 10; $z++) {
5 $Counter++
6 Write-Host "$Counter"
7 }
8 }
9 }

1
2
3
...
998
999
1000

Sometimes nested looping statements are inevitable—a necessary evil; however, they can be
refactored. These are the following rules to apply:

1. Cmdlet parameters. Check the cmdlet parameter object type to see if it supports arrays be-
ing parsed. For example, the following loop statement individually runs Invoke-Command
on a number of remote computers:

Example 47: Running Invoke-Command many times inside a loop is inefficient
1 $Computers = Get-ADComputer -Filter *
2 foreach ($Computer in $Computers) {
3 $params = @{
4 ComputerName = $Computer
5 ScriptBlock = { Write-Host "Hello World" }
6 }
7 Invoke-Command @params
8 }

This code can be refactored since the -ComputerName Parameter accepts arrays and the
-AsJob parameter is also present. The -AsJob parameter (in this use case) defers the
execution of PowerShell for each computer into PowerShell jobs.¹⁹ This simplifies and
improves the performance at the same time since you can parse the entire array, removing
the loop statement as well as deferring all the execution for each computer into a PowerShell
job:

¹⁹Microsoft. (2022, Mar. 18). About Jobs (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs. [Accessed: May. 27, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs

Refactoring PowerShell 179

Example 48: Running Invoke-Command once with an array of computers is more efficient
1 $Computers = Get-ADComputer -Filter *
2 $Params = @{
3 ComputerName = $Computers
4 ScriptBlock = {
5 Write-Host 'Hello-World'
6 }
7 AsJob = $true
8 }
9 Invoke-Command @Params | Wait-Job

From the example above, you can use Wait-Job to pause execution until all the PowerShell
jobs have been completed.

2. Use Where-Object to filter content. Where-Object can be used to perform the final
condition by removing a nested statement. In the following example, a list of users is
returned if one of the group’s distinguished names (that they’re a member of) contains
‘test’:

Example 49: Identifying group members using nested foreach constructs
1 # Define an Output Array
2 $AffectedUsers = @()
3 # Retrive all the Users from Active Directory
4 $Users = Get-ADUser -Filter *
5 # Iterate through each of the Users.
6 foreach ($user in $Users) {
7 # Retrive the group membership for the user
8 $UsersGroups = $_ | Get-ADPrincipalGroupMembership
9 # Set ContainsTest to be implicitly false

10 $ContainsTest = $false
11 foreach ($userGroup in $UsersGroups) {
12 if ($userGroup.DistinguishedName -match 'test') {
13 # It contains test
14 $ContainsTest = $true
15 # Stop processing
16 break
17 }
18 }
19 if ($ContainsTest) { $AffectedUsers += $user }
20 }

This can be refactored by reducing the number of nested statements with the use of Where-
Object:

Example 50: Using Where-Object in place of nested foreach statements
1 # Define an Output Array
2 $AffectedUsers = @()
3 # Retrive all the Users from Active Directory
4 $Users = Get-ADUser -Filter *
5 # Iterate through each of the Users.
6 foreach ($user in $Users) {
7 # Retrive the group membership for the user
8 $UsersGroups = $_ | Get-ADPrincipalGroupMembership
9 # Use Where-Object

10 [array]$ContainsTest = $UsersGroups | Where-Object {
11 $_.DistinguishedName -match 'test'
12 }
13 if ($ContainsTest.Count -ne 0) { $AffectedUsers += $user }
14 }

Refactoring PowerShell 180

Notice how the nested loop is removed? It’s not, really. Where-Object has just simplified
it.

Never nest Where-Object statements within Where-Object script blocks.

3. Consider the use case situations for a nested loop. Either remove the loop or abstract it away
into a cmdlet. Nested statements can be filtered using Where-Object. However, when a
left-hand and right-hand comparison is needed, simplify the list into an array and use the
Compare-Object cmdlet. For example, consider the following comparison code comparing
two byte arrays:

Example 51: Manually comparing two byte arrays from both directions
1 # Strings
2 $ByteArray1 = [System.Text.Encoding]::UTF8.GetBytes('Hello World1')
3 $ByteArray2 = [System.Text.Encoding]::UTF8.GetBytes('Hello World2')
4 # Note that $ByteArray1 and ByteArray2 are arrays.
5 # See: Output1 in 'Output'
6 #
7 # Output 1:
8 $ByteArray1 -join ' '
9 $ByteArray2 -join ' '

10 # While we can compare strings, for this demo
11 # we're assuming we're comparing byte strings.
12
13 # Compare the left
14 $LeftDifference = @()
15 for ($i = 0; $i -ne $ByteArray1.Count; $i++) {
16 if ($ByteArray1[$i] -ne $ByteArray2[$i]) {
17 $LeftDifference += [pscustomobject]@{
18 Index = $i
19 Pos = 'left'
20 ValueLeft = $ByteArray1[$i]
21 ValueRight = $ByteArray2[$i]
22 }
23 }
24 }
25
26 # Compare the right
27 $RightDifference = @()
28 for ($i = 0; $i -ne $ByteArray2.Count; $i++) {
29 if ($ByteArray1[$i] -ne $ByteArray2[$i]) {
30 $RightDifference += [pscustomobject]@{
31 Index = $i
32 Pos = 'right'
33 ValueLeft = $ByteArray1[$i]
34 ValueRight = $ByteArray2[$i]
35 }
36 }
37 }
38
39 #
40 # Output 2:
41 $LeftDifference
42 $RightDifference

Refactoring PowerShell 181

#
Output 1
72 101 108 108 111 32 87 111 114 108 100 49
72 101 108 108 111 32 87 111 114 108 100 50
#
Output 2
Index Pos ValueLeft ValueRight
----- --- --------- ----------

11 left 49 50
11 right 49 50

This can be refactored using Compare-Object to simplify the code execution:

Example 52: Comparing two byte arrays using Compare-Object
1 # Strings
2 $ByteArray1 = [System.Text.Encoding]::UTF8.GetBytes('Hello World1')
3 $ByteArray2 = [System.Text.Encoding]::UTF8.GetBytes('Hello World2')
4 # While we can compare strings, for this demo
5 # we're assuming we're comparing byte strings.
6
7 Compare-Object -ReferenceObject $ByteArray1 -DifferenceObject $ByteArray2

InputObject SideIndicator
----------- -------------

50 =>
49 <=

7.5.2 Grouping Similar Code

Code that’s grouped together improves the readability and maintainability of code. Consider the
following PowerShell script; the code isn’t grouped and is difficult to follow:

Example 53: Ungrouped code is difficult to read and maintain

1 # CSV format:
2 # "Source","Destination"
3
4 # Importing CSV
5 $CSVContent = Import-Csv -LiteralPath 'Example.csv'
6 # Filtering CSV with another Object
7 $Filtered = $CSVContent | Where-Object { $_.Destination -eq 'Temp' }
8 # Process some changes
9 $Temp = New-Item -ItemType Directory -Name (New-Guid)

10 $Filtered | ForEach-Object {
11 Copy-Item -Path ($_.Source) -Destination $Temp
12 }
13 $CSVContent2 = Import-Csv -LiteralPath 'Example2.csv'
14 # Filtering CSV with another Object
15 $Filtered2 = $CSVContent2 | Where-Object { $_.Destination -eq 'Temp' }
16 # Process some changes
17 $Temp2 = New-Item -ItemType Directory -Name (New-Guid)
18 $Filtered2 | ForEach-Object {
19 Copy-Item -Path ($_.Source) -Destination $Temp2
20 }
21 # Random Function
22 function Get-Something {
23 Get-Random

Refactoring PowerShell 182

24 }
25 # Send an Email Confirming the Changes
26 $Params = @{
27 To = 'helpdesk@contoso.com'
28 From = 'noreply@contoso.com'
29 Subject = 'Report'
30 }
31 Send-MailMessage @Params

Below are guidelines describing the order of grouping that’s used to refactor the code to be more
readable and maintainable:

1. Group top-level code together. Top-level code means top-level script items such as parame-
ters and global variables, classes, functions, pre/post execution, and the main code segment.
The order of grouping is:

1. Parameters and Global Variables: Defining top-level variables such as passwords or
variables that cascade into functions.

2. Classes: Classes need to be added before adding the functions to ensure there aren’t
any issues.

3. Functions: Functions are added after classes and before any PowerShell statement
execution.

4. Pre-Execution: Any code that needs to run before the main code block. For instance:
SQL connections, setup log files, setup HTTPS TLS versioning.

5. Main Code Block: The main code block where the code is executed.
6. Post-Execution: Any code that needs to run after the main code block. For instance:

Closing SQL connections, closing log files.

2. Group related code by inserting blank (empty) lines. Adding blank lines to separate code
provides ‘physical’ separation of code, similar to how paragraphs group common points or
ideas.

3. Group common actionable items together. Everyday actionable items can be things that
share the same objective or have the same/similar logic. It’s essential when grouping not
to break the logic flow. This approach works well with the Grouping, Sorting, and Filtering
approach mentioned in the Expanding on the Pipeline section.

Let’s refactor the previous example by:

• Grouping the top-level code.
• Grouping related code by adding blank lines.
• Grouping common actionable items together.

Refactoring PowerShell 183

Example 54: Grouped code is much easier to read and maintain

1 # Random Function
2 function Get-Something {
3 Get-Random
4 }
5
6 # (NOTE: A blank line is inserted above to separate groups)
7 # (NOTE: The CSV imports are the same so they can be grouped together.)
8 # Importing CSV
9 $CSVContent = Import-Csv -LiteralPath 'Example.csv'

10 $CSVContent2 = Import-Csv -LiteralPath 'Example2.csv'
11
12 # (NOTE: A blank line is inserted above to separate groups)
13 # (NOTE: The directory creations are the same so they can be grouped together.)
14 # Creating temporary directories
15 $Temp = New-Item -ItemType Directory -Name (New-Guid)
16 $Temp2 = New-Item -ItemType Directory -Name (New-Guid)
17
18 # (NOTE: A blank line is inserted above to separate groups)
19 # (NOTE: Where-Object calls are the same so they can be grouped together.)
20 # Filtering CSV with another Object
21 $Filtered = $CSVContent | Where-Object { $_.Destination -eq 'Temp' }
22 $Filtered2 = $CSVContent2 | Where-Object { $_.Destination -eq 'Temp' }
23
24 # (NOTE: A blank line is inserted above to separate groups)
25 # (NOTE: The following code is similar so it can be grouped together.)
26 # Process some changes
27 $Filtered | ForEach-Object {
28 Copy-Item -Path ($_.Source) -Destination $Temp
29 }
30 # Process some other changes
31 $Filtered2 | ForEach-Object {
32 Copy-Item -Path ($_.Source) -Destination $Temp2
33 }
34
35 # (NOTE: A blank line is inserted above to separate groups)
36 # Send an Email Confirming the Changes
37 $Params = @{
38 To = 'helpdesk@contoso.com'
39 From = 'noreply@contoso.com'
40 Subject = 'Report'
41 }
42 Send-MailMessage @Params

By applying these guidelines, the code becomes more readable and maintainable.

7.5.3 Refactoring Comments and Documentation

Commenting PowerShell scripts documents your code, describing in detail to the reader what’s
going on and why. Issues arise when code is grouped into similar segments with no description
or delimiter, making it difficult for the reader to identify the two segments.

Structure comments by adding ‘headers’ to the code by using the following guide:

Refactoring PowerShell 184

#
Header 1:
#

#
Header 2:

Comment:

The heading structure follows the same waterfall heading design in Microsoft Word. The three
hashes denote top-level headers. Secondary headers are denoted by two hashes, with the blank
hash above, and finally, the text body is a standard comment.

Consider the following PowerShell code:

Example 55: Code comments with a single heading level can be confusing as the importance of each comment is
unknown

1 # Random Function
2 function Get-Something {
3 Get-Random
4 }
5
6 # Importing CSV
7 $CSVContent = Import-Csv -LiteralPath 'Example.csv'
8 $CSVContent2 = Import-Csv -LiteralPath 'Example2.csv'
9

10 # Creating temporary directories
11 $Temp = New-Item -ItemType Directory -Name (New-Guid)
12 $Temp2 = New-Item -ItemType Directory -Name (New-Guid)
13
14 # Filtering CSV with another Object
15 $Filtered = $CSVContent | Where-Object { $_.Destination -eq 'Temp' }
16 $Filtered2 = $CSVContent2 | Where-Object { $_.Destination -eq 'Temp' }
17
18 # Process some changes
19 $Filtered | ForEach-Object {
20 Copy-Item -Path ($_.Source) -Destination $Temp
21 }
22 # Process some other changes
23 $Filtered2 | ForEach-Object {
24 Copy-Item -Path ($_.Source) -Destination $Temp2
25 }
26
27 # Send an Email Confirming the Changes
28 $Params = @{
29 To = 'helpdesk@contoso.com'
30 From = 'noreply@contoso.com'
31 Subject = 'Report'
32 }
33 Send-MailMessage @Params

The PowerShell code is well-documented and grouped; however, it’s unclear. You can segment
the groupings by adding multiple headers into the code:

Refactoring PowerShell 185

Example 56: Using comments with three heading levels clarifies the priority of each comment

1 #
2 # Functions
3 #
4
5 # Random Function
6 function Get-Something {
7 Get-Random
8 }
9

10 #
11 # Main: Process CSV Files and Send an Email
12 #
13
14 #
15 # Importing CSV
16 $CSVContent = Import-Csv -LiteralPath 'Example.csv'
17 $CSVContent2 = Import-Csv -LiteralPath 'Example2.csv'
18
19 #
20 # Creating temporary directories
21 $Temp = New-Item -ItemType Directory -Name (New-Guid)
22 $Temp2 = New-Item -ItemType Directory -Name (New-Guid)
23
24 #
25 # Filtering CSV with another Object
26 $Filtered = $CSVContent | Where-Object { $_.Destination -eq 'Temp' }
27 $Filtered2 = $CSVContent2 | Where-Object { $_.Destination -eq 'Temp' }
28
29 #
30 # Process Changes:
31
32 # Process some changes
33 $Filtered | ForEach-Object {
34 Copy-Item -Path ($_.Source) -Destination $Temp
35 }
36 # Process some other changes
37 $Filtered2 | ForEach-Object {
38 Copy-Item -Path ($_.Source) -Destination $Temp2
39 }
40
41 #
42 # Send an Email Confirming the Changes
43 $Params = @{
44 To = 'helpdesk@contoso.com'
45 From = 'noreply@contoso.com'
46 Subject = 'Report'
47 }
48 Send-MailMessage @Params

Notice how easy the code is to follow with some headers describing the actions. Headers also
apply to multiline comments as well, and body comments don’t require a hash:

Refactoring PowerShell 186

Example 57: Multilevel comment headings in multiline comments

1 <#
2 #
3 # Step 3: Processing Changes and Generating Report
4 #
5
6 #
7 # Import items of work.
8
9 Importing CSV

10 #>
11 Import-Csv -LiteralPath 'Example.csv'

It’s essential to provide end user documentation of a script and/or public function using
PowerShell’s comment-based help. Within complex scripts, it’s best to have the documentation
at the top of the script or function, since it also assists code review, documentation, and code
readability.

More information on PowerShell’s comment-based help and Get-Help can be found atMicrosoft
Docs²⁰.

7.5.4 Using Code Regions

Syntax:

#region <name>
Get-Random
#endregion (optional)<name>

Code regions (region folding) are groupings of code that ‘interact’ (fold/collapse) within an IDE
editor.²¹ It provides a means of folding/collapsing groupings of code, aiding in the readability
and maintainability of code. Regions are denoted by the #region comment, some code, and the
#endregion comment. Regions can be nested as well, enabling finer control over groupings.

Example 58: Using code regions in PowerShell code

1 #region
2 Get-Random
3 #endregion
4
5 #region someName
6 Get-Random
7 #endregion
8
9 #region TopLevel

10 #region AnotherLevel
11 Get-Random
12 #endregion AnotherLevel
13 #endregion TopLevel

²⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help
²¹Microsoft. (2014, Nov. 12). Use Regions for PowerShell Comments. Microsoft Dev Blogs. [Online]. Available: https://devblogs

.microsoft.com/scripting/use-regions-for-powershell-comments/. [Accessed: May. 26, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://devblogs.microsoft.com/scripting/use-regions-for-powershell-comments/
https://devblogs.microsoft.com/scripting/use-regions-for-powershell-comments/

Refactoring PowerShell 187

It’s always recommended to be explicit and define region names to prevent possible IDE
issues.

In the following example, regions are added to the code groupings:

Example 59: Regions work alongside comment heading levels and code groupings to aid reading

1 #
2 # Functions
3 #
4 #region Functions
5
6 # Random Function
7 #region Function-Something
8 function Get-Something {
9 Get-Random

10 }
11 #endregion Function-Something
12
13 #endregion Functions
14 #
15 # Main: Process CSV Files and Send an Email
16 #
17 #region Main
18
19 #
20 # Importing CSV
21 $CSVContent = Import-Csv -LiteralPath 'Example.csv'
22 $CSVContent2 = Import-Csv -LiteralPath 'Example2.csv'
23
24 #
25 # Creating temporary directories
26 $Temp = New-Item -ItemType Directory -Name (New-Guid)
27 $Temp2 = New-Item -ItemType Directory -Name (New-Guid)
28
29 #
30 # Filtering CSV with another Object
31 $Filtered = $CSVContent | Where-Object { $_.Destination -eq 'Temp' }
32 $Filtered2 = $CSVContent2 | Where-Object { $_.Destination -eq 'Temp' }
33
34 #
35 # Process Changes:
36
37 # Process some changes
38 $Filtered | ForEach-Object {
39 Copy-Item -Path ($_.Source) -Destination $Temp
40 }
41 # Process some other changes
42 $Filtered2 | ForEach-Object {
43 Copy-Item -Path ($_.Source) -Destination $Temp2
44 }
45
46 #
47 # Send an Email Confirming the Changes
48 $Params = @{
49 To = 'helpdesk@contoso.com'
50 From = 'noreply@contoso.com'
51 Subject = 'Report'
52 }
53 Send-MailMessage @Params
54 #endregion Main

Refactoring PowerShell 188

Within a compatible IDE, these regions can be collapsed, hiding the blocks of code they contain:

Example 60: The code from Example 60 with collapsed regions as seen in an IDE

#
Functions
#
#region Functions ···
#endregion Functions
#
Main: Process CSV Files and Send an Email
#
#region Main ···
#endregion Main

While regions are handy, there can be too much of a good thing. As a rule of thumb, use regions
to group ‘top-level’ items, such as functions, classes and large code-block groupings. Low-level
regions don’t add anything and can add complexity to the code and comment structure.

7.5.5 Refactoring Logic Flow to be Implicitly $True or $False

Unstructured PowerShell function code traditionally follows a varying logic flow with no clear
guidelines. Parameters are parsed into the function; the function performs a task and outputs
the result. From the testability point of view, functions can behave as ‘black box’ entities that
developers fear making changes to.

Junior PowerShell developers write functions based on an input/output methodology, focusing
on the task and the needed output without consideration given to the logic flow.

Example 61: Code without a clear execution and logic flow is difficult to maintain

1 # Test the files to make sure that they exist
2 if ('SomeCSVPath', 'SomeCLIXMLPath', 'SomeOtherCLIXMLPath' | Test-Path) {
3 # Import the File
4 $CSVFile = Import-Csv -LiteralPath 'SomeCSVPath'
5 # Import the CLIXML
6 if ($someCondition) {
7 if ($anotherCondition) {
8 $CLIXML = Import-Clixml -LiteralPath 'SomeCLIXMLPath'
9 }

10 else {
11 $CLIXML = Import-Clixml -LiteralPath 'SomeOtherCLIXMLPath'
12 }
13 Write-Host "Completed!"
14 Write-Output $CLIXML
15 }
16 else {
17 throw "Condition Failed. Stopping"
18 }
19 }

The PowerShell code is functional; however, the logic flow of this code is difficult to follow. The
code doesn’t follow a natural flow; the success output is inside a nested if statement. While this
is a simple point, lots of developers make this mistake, and the effect is immediate, producing

Refactoring PowerShell 189

black box code that everyone (including the author) will struggle to reread in a fewmonths. Logic
should be a structured model similar to a waterfall, where inputs via parameters are parsed into
the top, and the process executes and falls to the bottom. The advantage of using this design
is that it’s readable and maintainable three months from deployment. Why? People generally
read a page from top to bottom when reading a book; that’s how you should write code. It’s that
simple.

To do this, you need to use some techniques to refactor the code. These are:

1. Reducing nested statements
2. Inverting conditions
3. Using splatting²²

Using these techniques, the code can be refactored to follow a waterfall design:

Example 62: The code from Example 62 with clearer execution and logic flows

1 # Test if the Paths Exist. If not, return to the caller
2 if (-not ('SomeCSVPath', 'SomeCLIXMLPath', 'SomeOtherCLIXMLPath' | Test-Path)) {
3 return
4 }
5
6 # Import the CSV File
7 $CSVFile = Import-Csv -LiteralPath 'SomeCSVPath'
8
9 # Invert $someCondition

10 if (-not ($someCondition)) {
11 throw "Condition Failed. Stopping"
12 }
13
14 <#
15 We can use splatting to simplify the output here.
16 Multiple examples are used to demonstrate different
17 means of refactoring the code. These are:
18
19 1. Standard Execution (used in the example)
20 2. Subexpression (shown below)
21 3. Ternary operator (shown below)
22
23 #>
24 $Params = @{
25 LiteralPath = 'SomeCLIXMLPath'
26 }
27
28 # Standard Execution
29 if (-not ($anotherCondition)) { $Params.LiteralPath = 'SomeOtherCLIXMLPath' }
30
31 # Splat it in!
32 Import-Clixml @Params

You can use subexpressions within hashtable constructs to select values dynamically:

²²Microsoft. (2022, Mar. 19). About Splatting (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting. [Accessed: May. 25, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting

Refactoring PowerShell 190

$Params = @{
LiteralPath = $(

if ($anotherCondition) { 'SomeCLIXMLPath' }
else { 'SomeOtherCLIXMLPath' }

)
}

Other logic, such as PowerShell 7’s ternary operator, is also usable:²³ ²⁴

$Params = @{
LiteralPath = ($anotherCondition) ? 'SomeCLIXMLPath' : 'SomeOtherCLIXMLPath'

}

The preferred example in the demo is the ternary operator, since a singular value is returned
from a condition. However, the logic is much easier to follow from the previous example. This
waterfall design is implicitly true. By implicitly ‘true’, it means filtering out all the conditions
that aren’t required, cascading towards the result qualifying as ‘true’.

Function Execution

²³Microsoft. (2022, Mar. 19). About Operators (Microsoft.PowerShell.Core) - Ternary operator. Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#ternary-operator–if-true–
if-false. [Accessed: May. 26, 2022].

²⁴Microsoft. (2022, Mar. 18). About If (Microsoft.PowerShell.Core) - Using the ternary operator syntax. Microsoft Docs. [On-
line]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if#using-the-ternary-op-
erator-syntax. [Accessed: Jun. 04, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#ternary-operator--if-true--if-false
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#ternary-operator--if-true--if-false
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if#using-the-ternary-operator-syntax
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if#using-the-ternary-operator-syntax

Refactoring PowerShell 191

The waterfall approach also applies to implicitly ‘false’ function flows. These flows invert the
logic, where the bottom of the function is ‘false’, and the filtering conditions are true. An example
would be to write a function to perform a number of file checks, which would qualify a ‘True’
result. After the cascade ends, the implicit result would be ‘false’.

Example 63: A function with an ‘implicitly false’ logic flow

1 function Invoke-Something {
2 param($FilePath)
3
4 #
5 # If the File Extension is an '.exe'
6 # Then return true.
7 if ((Get-Item $FilePath).Extension -eq '.exe') { return $true }
8
9 #

10 # Load the file
11 $Content = Get-Content $FilePath
12
13 # If the first line of the file contains 'Value'
14 # Then return true.
15 if ($Content[0] -eq 'Value') { return $true }
16
17 # If the last line of the file contains 'EndOfFile'
18 # Then return true.
19 if ($Content[-1] -eq 'EndOfFile') { return $true }
20
21 # Return false
22 return $false
23 }

Another example of using an implicitly ‘false’ approach in the wild is to compare this approach
against network IP firewalls. As the packet is evaluated within the IP tables (firewall rules), it
falls down through all the source/destination rules. If no rules are valid, the packet falls into a
‘global block’ (at the bottom), where packets are dropped. This approach makes it a lot easier to
trace issues since they’re ‘allowlisting’ a limited set of inputs. Everything else is dropped.

7.6 Data Management

Data structure management within PowerShell is always a key consideration when dealing with
scripts that store data. This segment explores the common data structures, how to use them and
best practices when using them.

7.6.1 JSON

JSON (JavaScript Object Notation) is an open standard format that uses human-readable text to
store and transmit object information. JSON natively encodes scalars (base object types) such as
strings, integers, lists, arrays and associative arrays (dictionary or hashtable). JSON is commonly
used in the HTTP body content type for REST APIs and also for application configuration files.
To serialize and deserialize JSON, use the ConvertTo-Json and ConvertFrom-Json cmdlets.
Please note these cmdlets don’t directly serialize or deserialize to a file, so they need to be piped
from Get-Content or to Set-Content.

Refactoring PowerShell 192

Example 64: Data can only be deserialized from or serialized to JSON strings natively

1 #
2 # Read from a File
3 Get-Content -Path 'demo.json' | ConvertFrom-Json
4 #
5 # Write to a File
6 $PSObject | ConvertTo-Json | Set-Content -Path 'demo.json'

It’s crucial to remember that when using Invoke-RestMethod, the request body needs to be
serialized into JSON. The response is automatically deserialized into a [PSCustomObject] if the
Content-Type header is set within the request header (by default, the content type implicitly
set). Invoke-WebRequest doesn’t deserialize the response body since it’s used to interact with
web pages or web services rather than explicit REST services. ConvertTo-Json can serialize all
object types and ConvertFrom-Json only deserializes JSON into a [PSCustomObject].

In PowerShell 6 and later, the ConvertFrom-Json cmdlet accepts the -AsHashtable
parameter. This results in a hashtable structure of deserialized data instead of
[PSCustomObject].

Example 65: Serializing and deserializing JSON data, and data type limitations

1 #
2 # Example 1: Serialize as JSON
3 $Object = [PSCustomObject]@{
4 Property = 'Value'
5 AnotherProperty = 'AnotherValue'
6 }
7 # Store the output into a variable
8 $JSONString = $Object | ConvertTo-Json
9 $JSONString

10 #
11 # Example 2: Deserialize JSON
12 $JSONString | ConvertFrom-Json
13
14 # Example 3: Explore Object Type
15 $Process = Get-Process | Select-Object -First 1
16 $Process.GetType() | Select-Object Name, BaseType
17 #
18 # Example 4: Using the Process Variable, let's serialize it
19
20 $JSONString = $Process | ConvertTo-Json
21 $JSONString.Length
22 #
23 # Example 5: Deserialize $JSONString and check the Object Type
24 ($JSONString | ConvertFrom-Json).GetType() | Select-Object Name, BaseType

Refactoring PowerShell 193

Example 1:
{

"Property": "Value",
"AnotherProperty": "AnotherValue"

}

Example 2:
Property AnotherProperty
-------- ---------------
Value AnotherValue

Example 3:
Name BaseType
---- --------
Process System.ComponentModel.Component

Example 4:
5722

Example 5:
Name BaseType
---- --------
PSCustomObject System.Object

7.6.2 YAML

YAML (Yet Another Markup Language) is a markup language that’s used to store configuration
for applications. It’s used by configuration management solutions (Ansible and DSCDatum) to
store complex machine configurations in a human-readable syntax. YAML natively encodes
scalars (base object types) such as strings, integers, lists, arrays and associative arrays (dictionary
or hashtable). It’s simpler than JSON, using a Python-style indentation to represent nesting. It’s
also more compact, using square brackets to denote lists and curly braces for associative arrays.
PowerShell has no native YAML serialization and deserialization (compared to JSON), so third-
party modules are used. The module powershell-yaml²⁵ from the PowerShell Gallery is used in
the following examples.

Remember: Install-Module is used to install PowerShell modules from the Power-
Shell Gallery.

YAML is serialized and deserialized by using ConvertTo-Yaml and ConvertFrom-Yaml:

²⁵https://www.powershellgallery.com/packages/powershell-yaml

https://www.powershellgallery.com/packages/powershell-yaml
https://www.powershellgallery.com/packages/powershell-yaml

Refactoring PowerShell 194

Example 66: Serializing and deserializing

1 #Requires -Modules "powershell-yaml"
2 #
3 # Example 1: Serialize a PowerShell Object to YAML
4 $Object = [PSCustomObject]@{
5 Property = 'Value'
6 AnotherProperty = 'AnotherValue'
7 }
8 $Object | ConvertTo-Yaml
9 #

10 # Example 2: Deserialize a YAML string into a PowerShell Object
11 $Text = @'
12 Property: Value
13 AnotherProperty: AnotherValue
14 '@
15 $Deserialized = $Text | ConvertFrom-Yaml
16 $Deserialized
17 #
18 # Example 3: Show the PowerShell Object Type of a Deserialized YAML string.
19 $Deserialized.GetType() | Select-Object Name, BaseType

Example 1:
Property: Value
AnotherProperty: AnotherValue

Example 2:
Name Value
---- -----
AnotherProperty AnotherValue
Property Value

Example 3:
Name BaseType
---- --------
Hashtable System.Object

7.6.3 XML

XML (eXtensible Markup Language) is a markup language format for storing and transmitting
object data. XML is designed to be ‘semi-human’ and machine-readable. XML has largely been
superseded by newer markup languages (such as JSON and YAML). XML can be parsed natively
within PowerShell. XML is loaded by reading the XML content as a string and then typecasting
the string to the [XML] class.

Refactoring PowerShell 195

Example 67: Deserializing XML into an XML object

1 $XMLString = @'
2 <?xml version="1.0" encoding="utf-8"?>
3 <resources>
4 <string name="app_name">$projectname$</string>
5 </resources>
6 '@
7
8 # TypeCast the FileContents as an XML.
9 $XMLObject = [XML]$XMLString

10 $XMLObject

xml resources
--- ---------
version="1.0" encoding="utf-8" resources

To serialize an XML document to file, use the Save()Method:

Example 68: Serializing PowerShell XML objects to an XML file

1 $FilePath = Join-Path $PWD 'demo.xml'
2 $XMLObject.Save($FilePath)
3
4 Get-Item $FilePath

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 20/02/2022 6:47 PM 118 demo.xml

You can access the raw serialized string using the OuterXml property:

Example 69: Retrieving the serialized string from an XML object

1 $XMLString = $XMLObject.OuterXml
2 $XMLString

<?xml version="1.0" encoding="utf-8"?><resources><string name="app_name">
$projectname$</string></resources>

XML’s key advantage over newer markup languages is its native ability to use XPATH to search
the XML dataset. There are two methods of searching XML, using the object methods and using
Select-Xml:

1. Using SelectSingleNode([string] $XPath) or SelectNodes([string] $XPath)
methods within the typecasted XML object.

Refactoring PowerShell 196

Example 70: Searching XML objects using SelectNodes() and SelectSingleNode()
1 $XMLString = "
2 <note>
3 <to>Michael</to>
4 <from>George</from>
5 <type>Event</type>
6 <body>Meet you at the park.</body>
7 </note>
8 "
9

10 $XML = [XML]$XMLString
11
12 #
13 # Example 1: Use the SelectNodes method
14 $XML.SelectNodes('//note')
15
16 #
17 # Example 2: Use the SelectSingleNode method
18 $XML.SelectSingleNode('//to')

Example 1:
to from type body
-- ---- ---- ----
Michael George Event Meet you at the park.

Example 2:
#text

Michael

2. Using Select-Xml to find text in an XML string or document.

Example 71: Searching XML strings using Select-Xml
1 $XMLString = "
2 <note>
3 <to>Michael</to>
4 <from>George</from>
5 <type>Event</type>
6 <body>Meet you at the park.</body>
7 </note>
8 "
9

10 $Result = Select-Xml -Content $XMLString -XPath '//to'
11 #
12 # Example 1: Result object
13 $Result
14 #
15 # Example 2: Actual XML node
16 $Result.Node

Refactoring PowerShell 197

Example 1:
Node Path Pattern
---- ---- -------
to InputStream //to

Example 2:
#text

Michael

7.6.4 CSV

CSV (Comma-Separated Values) is a standard for storing simple data structures (containing rows
and columns) using the comma ‘,’ as a delimiter. Other delimiter-separated values (DSV) are
also common, and in PowerShell, the delimiter is adjustable. A drawback of CSV is that objects
with nested objects can’t be serialized, limiting the scope of the data. For more complex data
storage, CLIXML is preferred. In PowerShell, files (Import-Csv and Export-Csv) and strings
(ConvertTo-Csv and ConvertFrom-Csv) are used to serialize and deserialize CSV and DSV data.

Example 72: Serializing to and deserializing from CSV and DSV

1 #
2 # Example 1: Serializing an Object with CSV
3 $ObjectList = @(
4 [PSCustomObject]@{
5 Property = 'Value'
6 AnotherProperty = 'Another Value'
7 }
8 [PSCustomObject]@{
9 Property = 'Second Value'

10 AnotherProperty = 'Second Another Value'
11 }
12)
13 $ObjectList | ConvertTo-Csv
14 #
15 # Example 2: Serializing a List with CSV
16 $ObjectList = Get-Process | Select-Object -First 2 -Property E*, H*, Id, Name
17 $ObjectList | ConvertTo-Csv
18 #
19 # Example 3: Serializing a CSV file
20 $ObjectList | Export-Csv -Path 'List.csv'
21 #
22 # Example 4: Deserializing a CSV File
23 Import-Csv -Path 'List.csv' | Select-Object Id, Name, Handles
24 #
25 # Example 5: Deserializing a CSV String
26 $string = @'
27 "Property","AnotherProperty"
28 "Value","Another Value"
29 "Second Value","Second Another Value"
30 '@
31 $String | ConvertFrom-Csv
32 #
33 # Example 6: Serializing Using a Different Delimiter
34 $ObjectList = @(
35 [PSCustomObject]@{
36 Property = 'Value'
37 AnotherProperty = 'Another Value'
38 }

Refactoring PowerShell 198

39 [PSCustomObject]@{
40 Property = 'Second Value'
41 AnotherProperty = 'Second Another Value'
42 }
43)
44 $ObjectList | ConvertTo-Csv -Delimiter '>'
45 #
46 # Example 7: De-Serializing Using a Different Delimiter
47 $String = @'
48 "Property">"AnotherProperty"
49 "Value">"Another Value"
50 "Second Value">"Second Another Value"
51 '@
52 $String | ConvertFrom-Csv -Delimiter '>'

Example 1:
"Property","AnotherProperty"
"Value","Another Value"
"Second Value","Second Another Value"

Example 2:
"ExitCode","ExitTime","EnableRaisingEvents","Handles","Handle","HasExited", ...

"HandleCount","Id","Name"
,,"False","88",,,"88","6996","AggregatorHost"
,,"False","550","1908","False","550","33056","ApplicationFrameHost"

Example 3:
Id Name Handles
-- ---- -------
6996 AggregatorHost 88
33056 ApplicationFrameHost 550

Example 4:
Property AnotherProperty
-------- ---------------
Value Another Value
Second Value Second Another Value

Example 5:
"Property">"AnotherProperty"
"Value">"Another Value"
"Second Value">"Second Another Value"

Example 6:
Property AnotherProperty
-------- ---------------
Value Another Value
Second Value Second Another Value

7.6.5 CLIXML

Did you know? CLIXML is the data type that’s used to transmit the PowerShell Session
content when using PowerShell Remoting.

CLIXML (Common Language Infrastructure eXtensible Markup Language) is a subset of XML,
where complex PowerShell objects are serialized into XML, attempting to preserve object types.

Refactoring PowerShell 199

For complex objects that aren’t a base type, PowerShell won’t attempt to typecast them and
they’re placed in a PSObject.

Serializing PowerShell secure strings²⁶ as CLIXML can be problematic since it uses the
Windows DPAPI (user-based) to encrypt the secure string. If another user or machine
deserializes the CLIXML, the process fails.

To serialize and deserialize CLIXML, use Import-Clixml and Export-Clixml.

Example 73: Serializing and deserializing data to CLIXML

1 #
2 # Example 1: Serialize a PowerShell Object as CLIXML
3 $PSObject = [PSCustomObject]@{
4 Property = 'Value'
5 AnotherProperty = 'AnotherValue'
6 }
7 $PSObject | Export-Clixml -Path 'SomePath.clixml'
8 #
9 # Example 2: Note the object type

10 $PSObject.GetType().Name
11 #
12 # Example 3: Deserialize a CLIXML file as an PowerShell Object.
13 $Object = Import-Clixml -Path 'SomePath.clixml'
14 $Object
15 #
16 # Example 4: Note the object type
17 $Object.GetType().Name
18 #
19 # Example 5: What does a CLIXML file look like?
20 Get-Content -Path 'SomePath.clixml'

Example 1:
(no output)

Example 2:
PSCustomObject

Example 3:
Property AnotherProperty
-------- ---------------
Value AnotherValue

Example 4:
PSCustomObject

²⁶https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring

Refactoring PowerShell 200

Example 5:
<Objs Version="1.1.0.1"

xmlns="http://schemas.microsoft.com/powershell/2004/04">
<Obj RefId="0">
<TN RefId="0">

<T>System.Management.Automation.PSCustomObject</T>
<T>System.Object</T>

</TN>
<MS>

<S N="Property">Value</S>
<S N="AnotherProperty">AnotherValue</S>

</MS>
</Obj>

</Objs>

In the example listed, a PSCustomObject was serialized and deserialized, preserving the object
type. In the following example, a complex object is used:

Example 74: Working with more complex data and CLIXML

1 #
2 # Example 1: Serialize an Object as CLIXML
3 $Processes = Get-Process | Select-Object -First 1
4 $Processes | Export-Clixml -Path 'SomePath.clixml'
5 #
6 # Example 2: Note the object type
7 $Processes.GetType().Name
8 #
9 # Example 3: Deserialize a CLIXML file as an PowerShell Object.

10 $CustomObject = Import-Clixml -Path 'SomePath.clixml'
11 $CustomObject
12 #
13 # Example 4: Note the object type
14 $CustomObject.GetType().Name

Example 1:
(no output)

Example 2:
Process

Example 3:
NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
------ ----- ----- ------ -- -- -----------

0 0.00 39.09 0.29 89 78 node

Example 4:
PSObject

In the example, the initial object type was [Process]; however, after exporting and importing
from CLIXML, it’s now a [PSObject].

Remember, complex objects won’t retain their object types after serialization/deserial-
ization.

Refactoring PowerShell 201

7.6.6 Best Practices for Data Management

The following best practices should be followed when dealing with data storage and transmis-
sion:

• Use known data structures such as XML, JSON, YAML, CSV, and CLIXML. Never create a
markup language unless it’s necessary.

• Try always to serialize/deserialize using out-of-the-box or native modules.
• Never create or adjust data structures by changing the serialized string.
• Use JSON and YAML to store simple human-readable data. Try not to use XML; JSON and
YAML are better suited.

• Use CSV, CLIXML, and SQL for non human-readable data structures. Use CSV for simple
data sheets, CLIXML for complex nested objects, and SQL for large complex object
structures.

• Use PowerShell Secrets Management to store passwords and avoid exporting secure strings
in CLIXML.

7.7 Further Reading

• Introduction to JSON—Microsoft Tech Community²⁷
• About Quoting Rules—Microsoft Docs²⁸
• Understanding Advanced Functions in PowerShell—Microsoft DevBlogs²⁹
• Introduction to Advanced PowerShell Functions—Microsoft DevBlogs³⁰
• About Functions Advanced Parameters—Microsoft Docs³¹
• Cmdlet Attributes—Microsoft Docs³²
• Export-Clixml—Microsoft Docs³³
• Import-Clixml—Microsoft Docs³⁴
• Composite Formatting—Microsoft Docs³⁵
• PowerShell Language Specification Chapter 6: Conversions—Microsoft Docs³⁶

²⁷https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/introduction-to-json/ba-p/2049369
²⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules
²⁹https://devblogs.microsoft.com/scripting/understanding-advanced-functions-in-powershell/
³⁰https://devblogs.microsoft.com/scripting/introduction-to-advanced-powershell-functions/
³¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
³²https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-attributes
³³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-clixml
³⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-clixml
³⁵https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
³⁶https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-06

https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/introduction-to-json/ba-p/2049369
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules
https://devblogs.microsoft.com/scripting/understanding-advanced-functions-in-powershell/
https://devblogs.microsoft.com/scripting/introduction-to-advanced-powershell-functions/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-attributes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-clixml
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-clixml
https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-06
https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/introduction-to-json/ba-p/2049369
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules
https://devblogs.microsoft.com/scripting/understanding-advanced-functions-in-powershell/
https://devblogs.microsoft.com/scripting/introduction-to-advanced-powershell-functions/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-attributes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-clixml
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-clixml
https://learn.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-06

8. Advanced Conditions
PowerShell has several advanced conditions available to you for refactoring your code. You’ll
use familiar conditional operators in most of your scripts, but there are more advanced features
you may not have explored in depth. This chapter will explore the following topics:

1. Case Sensitive Operators
2. Switch Statement
3. Conversion Operators
4. Type Comparison using -is and -isnot
5. Typecasting using -as
6. Bitwise Operators
7. -like and -notlike
8. -match and -notmatch
9. -contains and -in
10. -replace
11. Ternary Operators
12. Null-Coalescing Operator
13. Null-Coalescing Assignment Operator
14. Null-Conditional Operators
15. Loop Labels
16. PowerShell Operator Precedence

8.1 Case Sensitive Operators

PowerShell is case-insensitive by default, which influences the behavior of most common
comparison operators.

Example 1: PowerShell operators are case-insensive by default

1 # Example 1: Using the -eq Operator
2 'test' -eq 'TEST'
3
4 # Example 2: Using the -in Operator
5 'test' -in 'TEST','VALUE'

202

Advanced Conditions 203

Example 1:
True

Example 2:
True

PowerShell also features case-sensitive operators with names having a ‘c’ prefix.

Example 2: Case-sensitive operator equivalents

1 # Example 1: Using the -ceq Operator
2 'test' -ceq 'TEST'
3
4 # Example 2: Using the -cin Operator
5 'test' -cin 'TEST','VALUE'

Example 1:
False

Example 2:
False

The following table lists each case-sensitive operator, its description, and an example:¹

Operator Description Example

-ceq Case Sensitive Equal 'VALUE' -ceq 'value'

-cne Case Sensitive Not Equal 'VALUE' -cne 'value'

-clike Case Sensitive Like 'VALUE' -clike 'value*'

-cnotlike Case Sensitive Not Like 'VALUE' -cnotlike 'value*'

-ccontains Case Sensitive Contains 'VALUE','Value' -ccontains
'value'

-cnotcontains Case Sensitive Not Contains 'VALUE','Value' -cnotcontains
'value'

-cin Case Sensitive In 'value' -cin 'value','Value'

-cnotin Case Sensitive Not In 'value' -cnotin 'value','Value'

-csplit Case Sensitive Split 'valueVALUEvalue' -csplit
'VALUE'

-cmatch Case Sensitive Match 'VALUE' -cmatch 'value'

-cnotmatch Case Sensitive Not Match 'VALUE' -cnotmatch 'value'

-cgt Case Sensitive Greater Than 5 -cgt 2

-clt Case Sensitive Less Than 1 -clt 2

-cge Case Sensitive Greater Than or Equal To 2 -ceg 2

-cle Case Sensitive Less Than or Equal To 2 -cle 2

¹Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators. [Accessed: Mar. 30,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Advanced Conditions 204

PowerShell rarely uses explicit case-insensitive operators since the language supports this mode
by default. Explicit case-insensitive operators have names prefixed with an ‘i’, similar to case-
sensitive operators.²

Example 3: Explicit case-insensitive operators are aliases of the standard ones

1 # Example 1:
2 # Note: These two statements are the same.
3 # That's because they are!
4
5 # Explicit Case-Insensitive Matching
6 'value' -ieq 'VALUE'
7 # Implicit Case-Insensitive Matching
8 'value' -eq 'VALUE'

Example 1:
True
True

8.2 Using the Switch Statement

Syntax:

1 switch [-Regex|-Wildcard|-Exact][-CaseSensitive] (<value>)
2 {
3 "string"|number|variable|{ expression } { statementlist }
4 default { statementlist }
5 }

The switch statement is an operator used to test a value against multiple conditions.³

Example 4: Using the switch statement for multiple conditions

1 switch (3) {
2 1 { 'one' }
3 2 { 'two' }
4 3 { 'three' }
5 default { 'Something else' }
6 }

three

The switch statement accepts optional parameters (-Regex, -Wildcard, -Exact and
-CaseSensitive) that are used with two parameter sets. The -Regex, -Wildcard and -Exact
parameters are mutually exclusive, controlling [string]"string" matching behavior. The
optional -CaseSensitive parameter enables case-sensitive matching.

²Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators. [Accessed: Mar. 30,
2022].

³Microsoft. (2022, Mar. 19). About Switch (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch. [Accessed: Mar. 30, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch

Advanced Conditions 205

8.2.1 Using -Regex

The -Regex parameter enables string matching against regular expressions.

Example 5: Using the switch statement in regex mode

1 # With -Regex:
2
3 $value = 'value'
4 switch -Regex ($value) {
5 # Match strings that contain exactly four characters
6 '^\w{4}$' {
7 'Skipped'
8 }
9 # Match strings that contain numerals

10 '^[0-9]*$' {
11 'Also Skipped'
12 }
13 # Match any string that contains alphanumeric characters.
14 '^\w*$' {
15 'Match'
16 }
17 }

Match

8.2.2 Using -Wildcard

The -Wildcard parameter enables non-literal string matching within the condition.

Example 6: Using the switch statement in wildcard mode

1 # With -Wildcard:
2
3 # Value contains white space on each side
4 $value = ' value '
5 switch -Wildcard ($value) {
6 '*value*' {
7 'This matches'
8 }
9 '*valu*' {

10 'This also matches'
11 }
12 'value*' {
13 'This does not match'
14 }
15 }
16 $output

Advanced Conditions 206

This matches
This also matches

8.2.3 Using -Exact

-Exact is used to enable case-insensitive string matching, character-for-character.⁴ This is the
default behavior when all other parameters aren’t present.

Example 7: The -Exact parameter causes the default - literal comparison

1 # With -Exact:
2
3 $value = 'value'
4 switch -Exact ($value) {
5 'vAlue' {
6 'Not skipped'
7 }
8 'Value' {
9 'Also not Skipped'

10 }
11 'value' {
12 'Match'
13 }
14 }

Not skipped
Also not Skipped
Match

8.2.4 Using -CaseSensitive

The -CaseSensitive parameter enables case-sensitive matching behavior (applies to
[String]). If an exact string match isn’t matched, it’s ignored.

Example 8: Using switch in case-sensitive mode

1 # Example 1: Without -CaseSenitive:
2
3 $value = 'value'
4 switch ($value) {
5 'vAlue' {
6 'Wrong case'
7 }
8 'Value' {
9 'Also wrong case'

10 }
11 'value' {
12 'Match'
13 }
14 }

⁴Microsoft. (2022, Mar. 19). About Switch (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch. [Accessed: Mar. 30, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch

Advanced Conditions 207

15
16 # Example 2: With -CaseSenitive:
17 $value = 'value'
18 switch -CaseSensitive ($value) {
19 'vAlue' {
20 'Wrong case'
21 }
22 'Value' {
23 'Also wrong case'
24 }
25 'value' {
26 'Match'
27 }
28 }

Example 1:
Wrong case
Also wrong case
Match

Example 2:
Match

8.2.5 Using PowerShell Expressions for Matching

When more complex matching is required, the switch statement can match expressions
with a syntax similar to the Where-Object cmdlet. Expressions wrapped with curly-braces
([Scriptblock]{}) precede the statement list and must return either $true or $false ($null
is treated as $false). $_ is used inside an expression to reference the current $PSItem.⁵

Example 9: Using expression cases with switch

1 # With Expressions:
2
3 # Value contains white space on each side
4 $value = ' value '
5 switch ($value) {
6 # Trim both the start and ending white space and perform a match
7 { $_.Trim() -eq 'value' } {
8 'This matches'
9 }

10 # Perform string manipulation and test
11 { ($value.Substring(3) -replace 'PowerShell') -eq $_ } {
12 'This does not match'
13 }
14 # This condition is always $true
15 { $true } {
16 'This also matches'
17 }
18 # This one is always $false
19 { $false } {
20 'This does not match'
21 }
22 # This one is always $false, too

⁵Microsoft. (2022, Mar. 19). About Switch (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch. [Accessed: Mar. 30, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch

Advanced Conditions 208

23 { $null } {
24 'This does not match'
25 }
26 }

This matches
This also matches

8.2.6 Default

The default statement is an optional reserved statement used when all other conditions aren’t
met.⁶

Example 10: Using the default statement with switch

1 # Example 1: All other conditions will fail.
2 $string = 'value'
3 switch -CaseSensitive ($string) {
4 'string' {
5 'Skipped'
6 }
7 'another string' {
8 'Also Skipped'
9 }

10 default {
11 'default'
12 }
13 }
14
15 # Example 2: The default statement is included, however won't be called.
16 # One of the conditions will succeed.
17 $string = 'value'
18 switch -CaseSensitive ($string) {
19 'value' {
20 'success'
21 }
22 'another string' {
23 'Also Skipped'
24 }
25 default {
26 'default'
27 }
28 }

⁶Microsoft. (2022, Mar. 19). About Switch (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch. [Accessed: Mar. 30, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch

Advanced Conditions 209

Example 1:
default

Example 2:
success

8.2.7 Parsing Lists and Arrays

Under the hood, the switch statement functions as a loop statement, iterating through each item
within a list.

Example 11: The switch statement behaves like a loop

1 # Example 1: Parse an array
2 $values = 'one','two','three','four'
3 switch ($values) {
4 'one' { 'this is one' }
5 'two' { 'this is two' }
6 'three' { 'this is three' }
7 default { 'default' }
8 }
9

10 # Example 2: Parse an array with loop control 'break' in the statement
11 $values = 'one','two','three','four'
12 switch ($values) {
13 'one' { 'this is one' }
14 'two' { break; }
15 'three' { 'this is three' }
16 default { 'default' }
17 }
18
19 # Example 3: Parse an array with loop control 'continue' in the statement
20 $values = 'one','two','three','four'
21 switch ($values) {
22 'one' { 'this is one' }
23 'two' { continue; }
24 'three' { 'this is three' }
25 default { 'default' }
26 }

Example 1:
this is one
this is two
this is three
default

Example 2:
this is one

Example 3:
this is one
this is three
default

Here we replace the switch statement with equivalent logic using foreach and if statements:

Advanced Conditions 210

Example 12: An equivalent foreach loop to the switch statement in Example 11

1 # While an explicit array cast is not required,
2 # it's used to associate a singular array item.
3 $strings = @('value')
4 # Iterate through each of the array items
5 foreach ($string in $strings) {
6 #
7 # Switch Conditions
8 if ($string -eq 'value') {
9 'matched'

10 }
11 if ($string -eq 'value2') {
12 'not matched'
13 }
14 #
15 # Default Statement
16 # Note: How the "default" statement is structured.
17 # The conditional logic explicitly tests all previous conditions.
18 # and if $null, then is considered true.
19 if (($string -ne 'value') -and ($string -ne 'value2')) {
20 'default'
21 }
22 }

matched

Loop control statements are applied to control the outcome of the execution. Since switch
functions the same as a loop statement, break and continue will change the behavior. The
break statement exits the program loop, the switch statement in this case, skipping all future
items parsed into the statement.⁷ The continue statement will stop and jump to the top of the
innermost loop, processing the next item in the switch statement.

Example 13: Using the break and continue statements with switch

1 # Example 1: Use of a break statement in a singular array
2 $string = 'value'
3 switch ($string) {
4 'value' {
5 'This matches'
6 # Add the break statement
7 break
8 }
9 # Note that the matching condition is the same as

10 # the previous condition. Without the break statement,
11 # this wouldn't be skipped.
12 'value' {
13 'This also matches'
14 }
15 'values' {
16 'This does not match'
17 }
18 }
19
20 # Example 2: Use of a continue statement in a singular array

⁷Microsoft. (2022, Mar. 19). PowerShell 101: Chapter 6 - Flow control - Break, Continue, and Return. Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/06-flow-control#break-continue-and-return. [Accessed: Mar. 31,
2022].

https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/06-flow-control#break-continue-and-return

Advanced Conditions 211

21 # This example is the same as the previous example, except
22 # replaces 'break' with 'continue'.
23 # Note how the statement executes the same with a singular array.
24
25 $string = 'value'
26 switch ($string) {
27 'value' {
28 'This matches'
29 # This time add the continue statement
30 continue
31 }
32 # Note that the matching condition is the same as
33 # the previous condition. Without the continue statement,
34 # this wouldn't be skipped.
35 'value' {
36 'This also matches'
37 }
38 'values' {
39 'This does not match'
40 }
41 }
42
43 # Example 3: Use of a break statement in an array
44 # This is the same execution path in Example 1,
45 # however, notice how the break statement
46 # stops matching with the current and future iterations.
47
48 $string = 'value','value'
49 switch ($string) {
50 'value' {
51 'This matches'
52 # Add the break statement
53 break
54 }
55 # Note that the matching condition is the same as
56 # the previous condition. Without the break statement,
57 # this wouldn't be skipped.
58 'value' {
59 'This also matches'
60 }
61 'values' {
62 'This does not match'
63 }
64 }
65
66 # Example 4: Use of a continue statement in an array
67 # This is the same execution path in Example 2,
68 # however notice how the continue statement
69 # stops matching with the current iteration, but
70 # continues with future iterations.
71
72 $string = 'value','value'
73 switch ($string) {
74 'value' {
75 'This matches'
76 # This time add the continue statement
77 continue
78 }
79 # Note that matching condition is the same as
80 # the previous condition. Without the break statement,
81 # this wouldn't be skipped.
82 'value' {
83 'This also matches'
84 }

Advanced Conditions 212

85 'values' {
86 'This does not match'
87 }
88 }

Example 1:
This matches

Example 2:
This matches

Example 3:
This matches

Example 4:
This matches
This matches

The switch statement can match on different object-types. In the following example, different
object-types are tested from an array:

Example 14: Using expressions with a switch statement to change behavior based on type

1 # Parsing an Array
2
3 $values = @(
4 # HashTable
5 @{
6 Key = 'HashTable Value'
7 },
8 # PSCustomObject
9 [PSCustomObject]@{

10 FirstProperty = 'Property Value'
11 SecondProperty = 'Some other property value'
12 }
13 # DateTime
14 ([datetime]::Now)
15)
16
17 switch ($values) {
18 { $_ -is [Hashtable] } {
19 $_.Key
20 }
21 { $_ -is [PSCustomObject] } {
22 $value = $_
23 $_ | Get-Member -MemberType NoteProperty | ForEach-Object {
24 $value."$($_.Name)"
25 }
26 }
27 { $_ -is [DateTime] } {
28 $_.Date.ToString()
29 }
30 }

Advanced Conditions 213

HashTable Value
Property Value
Some other property value
11/10/2021 12:00:00 AM

8.3 Type Comparison and Conversion Operators: -is,
-isnot and -as

8.3.1 Using -is and -isnot

Syntax: <object> -is [type].

The -is operator is used to test .NET object instance types, returning $true for a type match,
and $false otherwise. Instead of using Get-Member or the GetType() method, this provides a
cleaner, more robust solution.⁸

Example 15: Testing for type with the -is operator

1 # Example 1: Simple String Test with [string] type
2 $string = 'this is a string'
3 $string.GetType().Name
4 $string -is [string]
5
6
7 # Example 2: Simple String Test with [int] type
8 $string = 'this is a string'
9 $string.GetType().Name

10 $string -is [int]
11
12
13 # Example 3: String Array Test with [string[]]
14 $arr = @(
15 'this is a string'
16 'this is also a string'
17 'this is some other string'
18)
19 $arr -is [string[]]
20
21
22 # Example 4: String Array Test with [array] type
23 $arr = @(
24 'this is a string'
25 'this is also a string'
26 'this is some other string'
27)
28 $arr -is [array]
29
30
31 # Example 5: String Array Test with Explicit Cast
32 [string[]]$arr = @(
33 'this is a string'
34 'this is also a string'
35 'this is some other string'

⁸Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core) - Type comparison. Microsoft Docs.
[Online]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_opera-
tors#type-comparison. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#type-comparison
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#type-comparison

Advanced Conditions 214

36)
37 $arr -is [string[]]

Example 1: Simple String Test with [string] type
String
True

Example 2: Simple String Test with [int] type
String
False

Example 3: String Array Test with [string[]] type
False

Example 4: String Array Test with [array] type
True

Example 5: String Array Test with Explicit Cast
True

The -isnot operator is the inverse to -is. It’s used to test that the object instance is not of the
specified type.⁹

Example 16: Excluding types with the -isnot operator

1 # Example 1: Simple String Test with [string] type
2 $string = 'this is a string'
3 $string.GetType().Name
4 $string -isnot [string]
5
6
7 # Example 2: Simple String Test with [int] type
8 $string = 'this is a string'
9 $string.GetType().Name

10 $string -isnot [int]

Example 1: Simple String Test with [string] type
String
False

Example 2: Simple String Test with [int] type
String
True

⁹Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core) - Type comparison. Microsoft Docs.
[Online]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_opera-
tors#type-comparison. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#type-comparison
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#type-comparison

Advanced Conditions 215

8.4 Using -as to Typecast Safely

The -as operator is used to typecast a .NET object to another type within PowerShell safely.¹⁰ If
successful, it will return the converted object. Otherwise, it will return $null. Both terminating
and non-terminating errors are suppressed when using -as. Syntax:

$Object -as [NewObjectType]

In both examples below, the output is the same whether using explicit typecasting or the -as
operator:

Example 17: Two ways to cast an object to a type

1 # Example 1: Using -as for type conversion to cast a string to a URI
2 "https://example.com" -as [URI] | Format-Table
3
4 # Example 2: Using typecasting to cast a string to a URI
5 [URI]"https://example.com" | Format-Table

Example 1: Using -as for type conversion

AbsolutePath AbsoluteUri LocalPath Authority HostNameType
------------ ----------- --------- --------- ------------
/ https://example.com/ / example.com Dns

Example 2: Using typecasting

AbsolutePath AbsoluteUri LocalPath Authority HostNameType
------------ ----------- --------- --------- ------------
/ https://example.com/ / example.com Dns

In the examples below, "String" can’t be typecast to a [DateTime], but using -as suppresses
the error.

Example 18: Safe typecasting with -as

1 # Example 1: Typecasting "String" to [DateTime] using -as
2 "String" -as [DateTime]
3 $null -eq ("String" -as [DateTime])
4
5 # Example 2: Explicit casting [String] to [DateTime]
6 [DateTime]"String"

¹⁰Microsoft. (2022, Mar. 19). About Type Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_type_operators. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_type_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_type_operators

Advanced Conditions 216

Example 1: Typecasting "String" to [DateTime] using -as
True

Example 2: Explicit casting [String] to [DateTime]

InvalidArgument: Cannot convert value "String" to type "System.DateTime". Error:
"The string 'String' was not recognized as a valid DateTime.
There is an unknown word starting at index '0'."

8.5 Bitwise Operators (-band, -bor, -bxor, -bnot, -shl
and -shr)

Bitwise operators enable bit manipulation and comparison of binary numbers (similar to logic
gates).¹¹ Bitwise operators are commonly used with enums to represent a selection of flags
instead of a single value.

8.5.1 What is an Enum?

The Enumeration type (Enum) is a class used to represent a group of constants.¹² ¹³ In the example
below, an Enum called ‘Colors’ is created with the following properties:

Example 19: Creating enumerations with Add-Type

1 # Example 1: Create an Enum and list it's properties.
2
3 # Create an Enum in PowerShell Called Colors
4 Add-Type -TypeDefinition @"
5 public enum Colors
6 {
7 Red,
8 Green,
9 Blue,

10 Yellow,
11 Black,
12 White
13 }
14 "@
15
16 # Example 1:
17
18 # List the properties of the enum.
19 [Colors].GetEnumNames()
20
21
22 # Example 2:
23
24 # List the combinations:
25 foreach ($val in [Enum]::GetValues([Colors])) {

¹¹Microsoft. (2022, Mar. 19). About Arithmetic Operators (Microsoft.PowerShell.Core) - Bitwise operators. Microsoft Docs. [Online].
Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arithmetic_operators#bitwise-
operators. [Accessed: Mar. 31, 2022].

¹²Microsoft. (2015, Aug. 27).Working with Enums in PowerShell 5. Microsoft Dev Blogs. [Online]. Available: https://devblogs.microsoft
.com/scripting/working-with-enums-in-powershell-5/. [Accessed: Mar. 31, 2022].

¹³Microsoft. (2022, Jan. 25). Enumeration types (C# reference). Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/csharp/language-reference/builtin-types/enum. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arithmetic_operators#bitwise-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arithmetic_operators#bitwise-operators
https://devblogs.microsoft.com/scripting/working-with-enums-in-powershell-5/
https://devblogs.microsoft.com/scripting/working-with-enums-in-powershell-5/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/enum
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/enum

Advanced Conditions 217

26 "{0} {1}" -f [int]$val, $val
27 }
28
29 # Example 3:
30
31 # Casting enums as integer's and strings
32 [Colors]'Green'
33 [Colors]'Red'
34 [Colors]0 # Red

Example 1:
Red
Green
Blue
Yellow
Black
White

Example 2:
0 Red
1 Green
2 Blue
3 Yellow
4 Black
5 White

Example 3:
Green
Red
Red

Basic enums can only set a singular value within it ([Enum]::Green), which is fine for constant
use cases. Ideally, from the example above, multiple colors should be allowed to be selected. We
can change the functionality by using a ‘flag enum’ (or bitflag). Within the flag enum, item
properties must use powers of two (for example 1,2,4,8,16,…) to work with bitwise operators.

Example 20: Creating bitflag enums with Add-Type

1 Add-Type -TypeDefinition @"
2 [System.Flags]
3 public enum Colors
4 {
5 Red = 1,
6 Green = 2,
7 Blue = 4,
8 Yellow = 8,
9 Black = 16,

10 White = 32,
11 // You must use powers of 2 (for example: 1,2,4,6,8,...)
12 }
13 "@
14 # Same as the previous example, print Every Combination of the color up to 16
15 # Please note that the upper limit is 63.
16 for ($i = 0; $i -le 16; $i++) {
17 "{0} {1}" -f $i, [Colors]$I
18 }

Advanced Conditions 218

0 0
1 Red
2 Green
3 Red, Green
4 Blue
5 Red, Blue
6 Green, Blue
7 Red, Green, Blue
8 Yellow
9 Red, Yellow
10 Green, Yellow
11 Red, Green, Yellow
12 Blue, Yellow
13 Red, Blue, Yellow
14 Green, Blue, Yellow
15 Red, Green, Blue, Yellow
16 Black

Since version 5.0, PowerShell supports the enum statement, enabling enums to be declared
natively without Add-Type.¹⁴ Syntax:

1 enum <enum-name> {
2 <label> [= <int-value>]
3 }

The enum-name, follows directly after the enum statement describing the enum type, followed
by the labels. Use the [Flags()] attribute to create flag enums, as with Add-Type. Note in the
example below how no commas are required at the end of each of the labels. In the example
below, the Colors enum used previously will be updated:

Example 21: Creating flag enums with the enum statement

1 [Flags()]
2 enum Colors
3 {
4 Red = 1
5 Green = 2
6 Blue = 4
7 Yellow = 8
8 Black = 16
9 White = 32

10 }

Unlike enums created with Add-Type, you can update native enums with new values.

Enum Reference
For more information, refer to the about Enum¹⁵ page at Microsoft Docs.

¹⁴Microsoft. (2021, Sep. 28). About Enum. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/mod-
ule/microsoft.powershell.core/about/about_enum. [Accessed: Mar. 31, 2022].

¹⁵https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_enum

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_enum
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_enum
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_enum
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_enum

Advanced Conditions 219

8.5.2 Base-2 vs. Base-10 (Binary vs. Decimal)

Binary (base-2) is a numerical system that uses two values to represent $true or $false (“on” or
“off”). Each digit in a binary number must be either ‘0’ or ‘1’ and represents a power of 2. You’re
probably much more familiar with the decimal (base-10) system where each digit is one of ‘0’,
‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’. Each digit in a decimal number represents a power of 10.

For example:

• Base-10 [1,10,100,1000]: Each position in this block increments the power of 10 (10⁰, 10¹, 10²,
and 10³ in this case). Note: Any number raised to the zeroth power equals one.

• Base-2 [1,2,4,8,16,32,64,128,256,512,1024]: Each position in this block increments the power
of 2 (2⁰, 2¹, 2², 2³, … 2¹⁰). One disadvantage of base-2 is that the sequence of digits needed to
represent a number is usually longer than in base-10. Within base-2, each digit is called a
‘bit’, and a grouping of eight bits is called a ‘byte’. Binary numbers are typically formatted
into groups of 4 digits called ‘nibbles’, making them easier to read. Bit groups having less
than 4 bits are prefix-padded with zeros.

For example: The 7-digit binary number 1000001 is formatted as 2 nibbles: 0100 0001.

The Least Significant Bit (LSB) is the position that represents the binary one’s place of an integer.
The Most Significant Bit (MSB) is the “left-most” binary digit available for an integer type. For
example:

MSB LSB

0 1 0 0 0 0 0 1

Below are two tables representing the 6 least significant places for base-10 and base-2 (in
decimal):

base-10:

100000 10000 1000 100 10 1

base-2:

32 16 8 4 2 1

For example, the decimal number “One-Thousand and Forty-Two” is represented in base-10 as:

1000 100 10 1

1 0 4 2

Notice that this same value has a longer binary representation:

1024 512 256 128 64 32 16 8 4 2 1

1 0 0 0 0 0 1 0 0 1 0

This same value is represented: 1042 decimal = 0100 0001 0010 binary.

Advanced Conditions 220

8.5.3 The AND Logic Gate

ANDLogicGate

The AND logic gate requires both inputs to be ‘1’ ($true) to output ‘1’. All other combinations
will be ‘0’ ($false).

Input 1 Input 2 Output

1 0 0

0 1 0

0 0 0

1 1 1

For example:

1001 - 9
0101 - 5 (AND)

0001 - 1

Advanced Conditions 221

8.5.4 The OR Logic Gate

ORLogicGate

The OR logic gate requires only one input to be ‘1’ ($true) to output ‘1’.

Input 1 Input 2 Output

1 0 1

0 1 1

0 0 0

1 1 1

For example:

1001 - 9
0101 - 5 (OR)

1101 - 13

Advanced Conditions 222

8.5.5 The NOT Logic Gate

NOTLogicGate

The NOT logic gate inverts the input.

Input 1 Output

1 0

0 1

For example:

1001 - 9 (NOT)

0110 - 6

Advanced Conditions 223

8.5.6 The XOR Logic Gate

XORLogicGate

The XOR (exclusive-OR) logic gate is similar to an OR gate; however, if both inputs are ‘1’, the
output is ‘0’.

Input 1 Input 2 Output

1 0 1

0 1 1

0 0 0

1 1 0

For example:

1001 - 9
0101 - 5 (XOR)

1100 - 12

8.5.7 -band Bitwise AND

The bitwise ‘AND’ operator performs an ‘AND’ bitwise comparison for each input. Keep in mind,
for this example; the inputs are ASCII representations of two characters.

Example 22: Bitwise AND with -band

1 $Value1 = [int]72 # 72 decimal
2 $Value2 = [int]101 # 101 decimal
3 $Value1 -band $Value2

Advanced Conditions 224

64

The following table shows the same operation using binary (base-2):

• Value 1 = 0100 1000 binary = 72 decimal
• Value 2 = 0110 0101 binary = 101 decimal
• Perform a bitwise AND comparison between each of the inputs:

Value 1 Value 2 Output

0 0 0

1 1 1

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

0 1 0

• The output is 0100 0000 binary, which is 64 decimal.

8.5.8 -bor Bitwise OR

The ‘bitwise OR’ operator performs an ‘OR’ bitwise comparison for each input.

Example 23: Bitwise OR with -bor

1 $Value1 = [int]72 # 72 decimal
2 $Value2 = [int]101 # 101 decimal
3 $Value1 -bor $Value2

109

The following table shows the same operation using binary (base-2):

• Value 1 = 0100 1000 binary = 72 decimal
• Value 2 = 0110 0101 binary = 101 decimal
• Perform a bitwise OR comparison between each of the inputs:

Advanced Conditions 225

Value 1 Value 2 Output

0 0 0

1 1 1

0 1 1

0 0 0

1 0 1

0 1 1

0 0 0

0 1 1

• The output is 0110 1101 binary, which is 109 decimal.

8.5.9 -bxor Bitwise XOR

The ‘bitwise XOR’ operator performs an exclusive-‘OR’ bitwise comparison for each input.

Example 24: Bitwise XOR with -bxor

1 $Value1 = [int]72 # 72 decimal
2 $Value2 = [int]101 # 101 decimal
3 $Value1 -bxor $Value2

45

The following example will perform the same calculation in binary (base-2):

• Value 1 = 0100 1000 binary = 72 decimal
• Value 2 = 0110 0101 binary = 101 decimal
• Perform a bitwise XOR comparison between each of the inputs:

Value 1 Value 2 Output

0 0 0

1 1 0

0 1 1

0 0 0

1 0 1

0 1 1

0 0 0

0 1 1

Advanced Conditions 226

• The output is 0010 1101 binary, which is 45 decimal.

8.5.10 -bnot Bitwise NOT

The ‘bitwise NOT’ operator inverts the character string to its opposite binary value.

Example 25: Bitwise NOT with -bnot

1 $Value1 = [int]72 # 72 decimal
2 -bnot $Value1

-73

The following example will perform the same calculation in binary (base-2):

• Value 1 = 0100 1000 (base-2) [72 (base-10) represented in binary (base-2)]
• Perform a NOT inversion with the input:

Value 1 Output

0 1

1 0

0 1

0 1

1 0

0 1

0 1

0 1

• The output is 1011 0111 (base-2), which is 183 (base-10), different from the expected result
to –73 (base-10).

Why? Technically, the output is correct. The table expresses an unsigned binary NOT operation,
while PowerShell’s -bnot operator returns a signed integer (in this case, a 32-bit [Int]/[Int32])
for [Int]$Value1.

Signing describes an integer object’s capability to process negative numbers, using various
‘methods of representation’ for negative numbers. [Int] values are a formatted representation
of a number in 32 bits (or 4 bytes), using the leading bit (1000 0000 ...) to denote a positive
or negative number. For 8 bits, the leading bit is effectively equivalent to -128.

Signed:

Advanced Conditions 227

-128 64 32 16 8 4 2 1

1 0 1 1 0 1 1 1

−128 + 32 + 16 + 4 + 2 + 1 = −73

Unsigned:

128 64 32 16 8 4 2 1

1 0 1 1 0 1 1 1

128 + 32 + 16 + 4 + 2 + 1 = 183

So, repeating the same example as before, extended to a signed 32-bit integer:

• Value 1 = 0000 0000 0000 0000 0000 0000 0100 1000 (base-2) [72 (base-10) represented in
binary (base-2) as a signed integer]

• Perform a NOT inversion with the input:

Value 1 Output

0 1

0 1

0 1

0 1

… …

0 1

0 1

0 1

0 1

0 1

1 0

0 1

0 1

1 0

0 1

0 1

0 1

Advanced Conditions 228

• Output is 1111 1111 1111 1111 1111 1111 1011 0111 (base-2), which is –73 (base-10).

8.5.11 -shl Shift Bits Left

‘Shift Bits Left’ moves the [Int] bits to the left, ‘x’ number of times. If done in base-10, 455
(base-10) moved two times to the left would be 45500 (base-10).

The following example describes the usage in PowerShell:

Example 26: Bit-shifting to the left with -shl
1 $Value1 = 72
2 $Times = 2
3 $Value1 -shl $Times

288

The following example will perform the same bit-shift in binary (base-2):

• Value 1 = 0000 0000 0000 0000 0000 0000 0100 1000 (base-2) [72 (base-10) represented in
binary (base-2) as a signed integer]

• Perform a bit shift to the left 2 times.
• Output will be: 0000 0000 0000 0000 0000 0001 0010 0000 (base-2) [288 (base-10) represented
in binary (base-2) as a signed integer]. Note how the bits have been shifted to the left.

8.5.12 -shr Shift Bits Right

‘Shift Bits Right’ moves the [Int] bits to the right, ‘x’ number of times. If done in base-10, 455
(base-10) moved two times to the left would be 4.55 (base-10).

Example 27: Bit-shifting to the right with -shr
1 $Value1 = 72
2 $Times = 2
3 $Value1 -shr $Times

18

Note: Integer types can’t represent floating-point numbers. Bits shifted past the least significant
bit (LSB) or binary one’s place are lost.

The following example will perform the same bit-shift in binary (base-2):

• Value 1 = 0000 0000 0000 0000 0000 0000 0100 1000 (base-2) [72 (base-10) represented in
binary (base-2) as a signed integer]

• Perform a bit shift to the right 2 times.
• Output will be: 0000 0000 0000 0000 0000 0000 0001 0010 (base-2) [18 (base-10) represented
in binary (base-2) as a signed integer]. Note how the bits have been shifted to the right this
time.

Advanced Conditions 229

8.5.13 Practical Applications

Bitwise operators are used commonly with flag enums to perform different operations, such as
combination and searching. In the example below, the -bor operator will be used to combine
two separate enums together:

Example 28: Combining bitflag enums with -bor

1 [Flags()]
2 enum Colors
3 {
4 Red = 1
5 Green = 2
6 Blue = 4
7 Yellow = 8
8 Black = 16
9 White = 32

10 }
11
12 # Example 1: Combination
13 # In the following example, Red has been initially
14 # set within the variable $value.
15 # We will use the -bor operator to add Blue.
16 $value = [Colors]::Red
17 $value = $value -bor [Colors]::Blue
18 $value
19
20 # Example 1a: Return the integer.
21 [int]$value

Example 1:
Red, Blue

Example 1a:
5

Note the integer output is 5. Red is equal to ‘1’, and Blue is equal to ‘4’. The -bor operator
combined the two integers:

Binary Output Description

0001 Red Initial item

0100 Blue Item to combine

0101 Red, Blue Combined item

In the following example, the -band operator will be used to search the value for ‘Red’ and
‘Yellow’.

Advanced Conditions 230

Example 29: Checking for bitflag enums with -band

1 # Example 1: Searching
2 $value = [Colors]'Red, Green, Blue'
3 $value = $value -band [Colors]'Red, Yellow'
4 $value
5
6 # Example 1a: Return the integer.
7 [int]$value

Example 1:
Red

Example 1a:
1

Note the integer output is 1 being ‘Red’, matching only the found integer within the flag. In the
following table, the -band calculation is performed:

Binary Output Description

0111 Red,Green,Blue Initial list

1001 Red,Yellow Items to find

0001 Red Output

8.6 -like and -notlike

The -like operator is a case-insensitive simple [String] comparison operator similar to the
-match operator.¹⁶ -like can use the wildcard * character to denote a string matching pattern
and returns either $true or $false. For example, this comparison will return $true, since the
character 'a' is present within the string:

Example 30: Searching for a phrase anywhere in a string with wildcards

1 # When a string is present
2
3 $string = 'This is a string'
4 $string -like '*a*'

True

In this example, the comparison will return $false since the string ‘hello’ is not present:

¹⁶Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-op-
erators. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators

Advanced Conditions 231

Example 31: Match failures with -like return $false

1 # When a string is not present
2
3 $string = 'This is a string'
4 $string -like '*hello*'

False

Wildcard characters are used to represent one or more characters within a string (for example:
*, ? and []). These are:

Wildcard Description Example

* Match one or more characters Str*

? Match one character in that position Strin?

[rangeStart-rangeEnd] Match a range of characters (separated by ‘hyphen’) [a-z]tring

[charcharchar] Match a range of predefined characters (no separator) [sz]tring

To escape matching for a non-wildcard string, use a singular backtick “’ to escape the character.

Example 32: Escaping wildcard characters with -like

1 # Example 1:
2 # Since the question mark is used, it will be escaped with a backtick.
3 'string?! 123' -like 'string`?!*'

Example 1:
True

Different configurations can be used to fit different scenarios. The table below demonstrates the
different configurations of the wildcards:¹⁷

Wildcard Condition String Description String to test Output

* "This*" Test for the first word
in the string.

This is a string! $true

* "this*" Test for the first word
in the string.
(Case-insensitive)

This is a string! $true

* "This*" Test for the first word
in the string.

Hello! This is a
string!

$false

* "*This*" Test for a word inside
the string.

Hello! This is a
string!

$true

¹⁷Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-op-
erators. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators

Advanced Conditions 232

Wildcard Condition String Description String to test Output

* "*This*" Test for a word inside
the string

This is a string! $true

* "*This*" Test for a word inside
the string

Hello! This $true

* "*String" Test for the last word
in the string.

The last word in
string

$true

* "*String" Test for the last word
in the string.

Hello! This my
name is Michael!

$false

? "Strin?" Test the last character
in the position.

Strin5 $true

? "Strin?" Test the last character
in the position.

This is a String! $false

? "b?ok" Test a random
character in the
position.

book $true

? "b?ok" Test a random
character in the
position.

cook $false

text-range
[start-end]

"[a-z]ook" Test a range of
characters.

cook $true

text-range
[start-end]

"[a-z]ook" Test a range of
characters.

book $true

text-range
[start-end]

"[a-z]ook" Test a range of
characters.

took $true

text-range
[start-end]

"[a-z]ook" Test a range of
characters.

a book $false

[charchar] "[lb]ook" Match a range of
predefined characters.

book $true

[charchar] "[lb]ook" Match a range of
predefined characters.

look $true

[charchar] "[lb]ook" Match a range of
predefined characters.

cook $false

The -like operator can also be applied to lists and arrays, where the array is defined on the left
side. Instead of a boolean, the operator will return any matching values in the array.

Example 33: Using the -like operator to filter arrays

1 # Example 1:
2 $arr = 'string','bees','timber'
3 $arr -like '*e*'
4 # Example 2:
5 $arr = 'A small string','There are some bees','Some timber'
6 $arr -like '*e*'

Advanced Conditions 233

bees
timber

There are some bees
Some timber

If the array or list doesn’t contain a value, -likewill return an empty array, which can be tested
using -not ($arr -like '*is not in list*').

Example 34: -like returns an empty array if it finds no matches

1 $arr = 'string','bees','timber'
2 # Example 1
3 -not ($arr -like '*is not in list*')
4 # Example 2
5 ($arr -like '*is not in list*').Count
6 # Example 3
7 ($arr -like '*is not in list*').GetType()

Example 1
True
Example 2
0
Example 3
IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Object[] System.Array

The -notlike operator is the inverse of the -like operator.¹⁸ This also applies to matching
against lists and arrays, where -notlike will return an array of strings that don’t match.

Example 35: -notlike provides the inverse results for scalars and arrays

1 $arr = 'string','bees','timber'
2 # Output 1
3 $arr -notlike '*is not in list*'
4 # Output 2
5 ($arr -notlike '*is not in list*').Count

Output 1
string
bees
timber
Output 2
3

¹⁸Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-op-
erators. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators

Advanced Conditions 234

Note: If advanced matching is required, consider using the -match operator.

8.7 -match and -notmatch

Syntax:

'String' -match 'Regex Expression'

The -match and -notmatch operators use regular expressions to search for a pattern within a
string.¹⁹ The left side of the expression contains the string, whereas the right side contains the
regular expression. When parsing arrays into the left side, -match functions similar to -like,
where it outputs each matching value in the defined array.

Example 36: Matching with regex using -match

1 # Example 1: Standard Match
2 $string = 'this is a string'
3 $string -match '.+'
4
5 # Example 2: Array Match
6 $arr = 'this is a string', 'this also is a string'
7 $arr -match '.+'

Example 1:
True

Example 2:
this is a string
this also is a string

-match is covered extensively in the Regex Chapters.

8.8 -in, -contains, -notin and -notcontains

The -in and -contains operators test whether a list, array or collection contains a specific value,
similar to the IndexOf() method.²⁰

The -in operator functions in the left-hand one-to-many case, where a value may exist in a list
or array:

¹⁹Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-op-
erators. [Accessed: Mar. 31, 2022].

²⁰Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core) - Containment operators. Microsoft
Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_op-
erators#containment-operators. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#matching-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#containment-operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#containment-operators

Advanced Conditions 235

INOperatorImage

Example 37: Testing for values in collections with -in

1 $values = @(
2 "Value1",
3 "Value2",
4 "Value3"
5)
6
7 $string = "Value1"
8
9 $string -in $values

True

Conversely, the -contains operator functions in the right-hand many-to-one case, where the
list or array may contain a value.

Advanced Conditions 236

ContainsOperatorImage

Example 38: Testing whether a collection contains a value with -contains

1 $values = @(
2 "Value1",
3 "Value2",
4 "Value3"
5)
6
7 $string = "Value1"
8
9 $values -contains $string

True

All base types are supported.

Advanced Conditions 237

Example 39: -contains works with all base types

1 $arr = @(
2 [Int]1,
3 [DateTime]"05-15-2021",
4 [String]"String",
5 [Byte]14,
6 [TimeSpan]15,
7 [Bool]'True',
8 [char]'C'
9)

10
11 $arr -contains ([DateTime]"05-15-2021")
12 $arr -contains [Int]1
13 $arr -contains [String]'String'
14 $arr -contains [Byte]14
15 $arr -contains [TimeSpan]15
16 $arr -contains $true
17 $arr -contains [char]'C'

True
True
True
True
True
True
True

The -in and -contains operators simplify code within conditions by removing the need to use
a Where-Object within the logic.

Example 40: Testing an array for a value with -in

1 $values = @(
2 "Value1",
3 "Value2",
4 "Value3"
5)
6
7 $string = "Value1"
8
9 # Integrate the Operator into the Condition

10 if ($string -in $values) {
11 # Do something
12 }

These operators are limited to comparison with members of a list or array. When interrogating
a collection of objects, use an expression to store the desired property values from each object
into an array.

In the following example, the Name property array is returned from Get-Process, allowing the
use of -contains.

Advanced Conditions 238

Example 41: Checking an array of process names for a value with -contains

1 # Fetch the Processes and Select the Name property
2 if ((Get-Process).Name -contains 'pwsh') {
3 # Do something
4 }

The -notin and -notcontains operators test the inverse to -in -and -contains. They are used
to test if an object doesn’t exist in a list or array.

Example 42: -notcontains checks for the absence of a value

1 # In this instance, we are testing to make sure
2 # that the process doesn't contain the PowerShell Process
3 if ((Get-Process).Name -notcontains 'pwsh') {
4 # The process doesn't exist
5 } else {
6 # The process does exist
7 }

8.9 -replace

Syntax: <input> -replace <regular-expression>, <substitute>

The -replace operator is a regex-enabled string operator, similar to the String.Replace()
method.²¹

For example, the -replace operator can perform a basic string replacement:

Example 43: Using the -replace operator to substitute a substring

1 $Name = 'Hello! My name is: Ben!'
2 $Name -replace 'Ben', 'Michael'

Hello! My name is: Michael!

Reviewing the example, the variable $Name is declared as: 'Hello! My name is: Ben!'. Using
the -replace operator, Ben is changed to Michael.

Unlike String.Replace(), the -replace operator uses regex to match patterns to replace. In
this example, the first two words ‘X marks’ are replaced in ‘Lets find the spot!’

²¹Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core) - Replacement operator. Microsoft
Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_op-
erators#replacement-operator. [Accessed: Mar. 31, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#replacement-operator
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#replacement-operator

Advanced Conditions 239

Example 44: Using regex patterns with -replace
1 $string = 'Lets find the spot. OR should it go north?'
2 $string -replace '^(?:\S+\s){1}(\S+)', 'X marks'

X marks the spot. OR should it go north?

Here, the second word, ‘PowerShell’, is replaced with ‘is cool!’:

Example 45: Using substitutions with -replace
1 $string = 'PowerShell PowerShell'
2 $string -replace '(\w+) \w+$', '$1 is cool!'

PowerShell is cool!

When parsing a string that contains regex queries, use the [Regex]::Escape() method to
escape these characters.

Example 46: Escaping regex language elements in a string with Escape()
1 $string = "PowerShell [(\w+)$)] is cool!"
2 [Regex]::Escape($string)

PowerShell\ \[\(\\w\+\)\$\)]\ is\ cool!

For more information on regex, please refer to the Regex Chapters.

8.10 Ternary Operator (condition) ? <true> : <false>

Note: This is a PowerShell 7 feature.

Syntax:

(condition) ? <value if true> : <value if $false>

The ternary operator is essentially a simplified if-statement.²² It consists of three parts:

1. The condition (condition). The condition is wrapped in parentheses () (like the if-
statement) and followed by a question mark.

2. The true expression (precedes the colon). The true expression denotes the output if the
condition evaluates to $true.

3. The false expression (follows the colon). The false expression denotes the output if the
condition evaluates to $false.

²²Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators. [Accessed: Mar. 30,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Advanced Conditions 240

Example 47: Using the ternary operator for conditional statements

1 # Example 1: A Simple Condition where it evaluates to be $true.
2 $result = ('value' -eq 'value') ? 'isPresent' : 'notPresent'
3 $result
4
5 # Example 2: A Simple Condition where it evaluates to be $false.
6 $result = ('value' -eq 'another value') ? 'isPresent' : 'notPresent'
7 $result
8
9 # Example 3: Using a different condition.

10 $result = ('value' -in
11 ('value','option','selection')) ? 'isPresent' : 'notPresent'
12 $result

Example 1:
isPresent

Example 2:
notPresent

Example 3:
isPresent

8.11 Null-Coalescing Operator ??

Note: This is a PowerShell 7 feature.

Syntax:

<Value to test> ?? <Value if $null>

The null-coalescing operator ?? tests a value or expression and returns an alternative value if
$null.²³

²³Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators. [Accessed: Mar. 30,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Advanced Conditions 241

Example 48: Using the null-coalescing operator to provide fallback values

1 # Example 1: Test 'not-null' -eq $null.
2 # In this test, it will evaluate to be $false,
3 # so no changes are applied.
4 'not-null' ?? 'is null'
5 # Example 2: Test $null -eq $null.
6 # In this test, it will evaluate to be $false,
7 # so 'is null' is returned.
8 $null ?? 'is null'

Example 1:
'not-null'

Example 2:
'is null'

There are many practical applications for using these operators.

Example 49: The traditional approach for handling null cmdlet results

1 $params = @{
2 URI = 'https://example.com/'
3 ErrorAction = 'SilentlyContinue'
4 Method = $(
5 if ($method -ne $null) { $method }
6 else { 'GET' }
7)
8 }
9

10 $result = Invoke-WebRequest @params
11 if ($null -eq $result) {
12 $result = @{error = 'no response'}
13 }

This can be refactored to:

Example 50: Handling null cmdlet results concisely with the null-coalescing operator

1 $params = @{
2 URI = 'https://example.com/'
3 ErrorAction = 'SilentlyContinue'
4 Method = $method ?? 'GET'
5 }
6
7 $result = Invoke-WebRequest @params ?? @{error = 'no response'}

It’s important to remember that empty [String] objects and those with only white space
characters are not $null and the right side will not be evaluated in these cases. This is also
the case for values that evaluate to false.

Advanced Conditions 242

Example 51: Empty strings and false values don’t count as null conditions
1 # Example 1:
2 '' ?? 'is null'
3
4 # Example 2:
5 ' ' ?? 'is null'
6
7 # Example 3:
8 $false ?? 'is null'

Example 1:

Example 2:

Example 3:
False

Expressions can be parsed by wrapping them in a subexpression $().

Example 52: Using subexpressions with the null-coalescing operator
1 $($null) ?? $(Get-Process)

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
------ ----- ----- ------ -- -- -----------

0 0.00 32.71 0.16 79 79 node
0 0.00 65.89 13.95 98 79 node
0 0.00 51.18 2.65 251 79 node
0 0.00 41.03 2.57 451 451 node
0 0.00 41.23 1.05 484 79 node
0 0.00 52.50 6.13 496 496 node
0 0.00 316.03 146.35 514 79 node
0 0.00 126.63 3.49 529 529 pwsh
0 0.00 1.60 0.41 1 1 sh
0 0.00 1.59 0.04 12 12 sh
0 0.00 0.52 0.00 96 79 sh
0 0.00 0.59 0.00 585 79 sh
0 0.00 0.57 0.00 8981 1 sleep
0 0.00 104.09 4.56 586 79 vsls-agent

8.12 Null-Coalescing Assignment Operator ??=

Note: This is a PowerShell 7 feature.

The null-coalescing assignment operator is used to assign an expression to a variable only if the
variable value is $null.²⁴

²⁴Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators. [Accessed: Mar. 30,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Advanced Conditions 243

Example 53: Assigning values only to null variables with the null-coalescing assignment operator
1 # Example 1: $var will not be $null
2 $var = 'not-null'
3 $var ??= 'is null'
4 $var
5
6 # Example 2: $var will be $null
7 $var = $null
8 $var ??= 'is null'
9 $var

10
11 # Example 3: $var will be Empty String
12 $var = ''
13 $var ??= 'is null'
14 $var

Example 1:
not-null

Example 2:
is null

Example 3:

For example, the following logic:

Example 54: The traditional approach for assigning alternative values to null variables
1 $var = Do-Something
2 if ($null -eq $var) {
3 $var = 'something else'
4 }

Can be refactored to:

Example 55: Assigning a null-conditional alternative value with the null-coalescing assignment operator
1 $var = Do-Something
2 $var ??= 'something else'

8.13 Null-Conditional Operator ?. and ?[]

Note: This is a PowerShell 7 feature.

Null-Conditional object selection operators allow you to select object properties tentatively (?.)
or array items (?[]), returning $null if the property or item is $null.²⁵

The character ‘?’ is permitted within variable names; variables must be wrapped with curly
braces ${var}. Subexpressions are also permitted as well $($var)?.Method().

²⁵Microsoft. (2022, Mar. 19). About Comparison Operators (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators. [Accessed: Mar. 30,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Advanced Conditions 244

Example 56: Using the null-conditional member access operator

1 # Example 1: VariableName
2 $va? = 'test'
3 ${va?}
4
5 # Example 2: SubExpression
6 $var = 'string'
7 $($var)?.Replace('g','gs')
8
9 # Example 3: SubExpression, with quotation

10 $va? = 'test'
11 ${va?}?.Replace('e', 'oa')
12
13 # Example 4: SubExpression, with quotation
14 $va? = $null
15 ${va?}?.Replace('e', 'oa')

Example 1:
test

Example 2:
strings

Example 3:
toast

Example 4:

8.13.1 Examples of ?.

The following examples demonstrate the use of: ‘?.’:

Example 57: Accessing a valid object property with and without the null-conditional operator

1 # Example 1: Create an Object and Select a Property
2 # Nothing is changed here.
3
4 $obj = [PSCustomObject]@{
5 Property = 'Value'
6 }
7 $obj.Property
8
9 # Example 2: Create an Object and Select the Property

10 # using a Null Conditional Operator
11
12 $obj = [PSCustomObject]@{
13 Property = 'Value'
14 }
15 # Note that the variable needs to be wrapped in curly braces:
16 ${obj}?.Property

Advanced Conditions 245

Example 1:
Value

Example 2:
Value

In this example, the object property will be set to $null:

Example 58: Trying to access an invalid property with the null-conditional operator

1 # Example 1: Create an Object. However, the property is $null
2 $obj = [PSCustomObject]@{
3 Property = $null
4 }
5 # Note that the property returns nothing
6 ${obj}?.Property
7 # Let's test to make sure it's null
8 ${obj}?.Property -eq $null
9

10 # Example 2: Create an Object and select a different property:
11 $obj = [PSCustomObject]@{
12 Property = 'value'
13 }
14 # Note that the property returns nothing
15 ${obj}?.AnotherProperty
16 # Let's test to make sure it's null
17 ${obj}?.AnotherProperty -eq $null

Example 1:
True

Example 2:
True

The use cases for this operator are unclear since PowerShell 5.1 already casts empty object
properties to $null (null-soaking). However, attempting to access null properties in strict mode
throws a reference error.²⁶ This operator therefore has some uses in strict mode.

Example 59: The null-conditional member access operator is useful in strict mode

1 # Example 1: Null-soaking in default mode
2 $obj = [PSCustomObject]@{
3 Property = $null
4 }
5 $obj.Property.SecondProperty.ThirdProperty -eq $null
6
7 # Example 2: Reference errors in strict mode
8 Set-StrictMode -Version 2
9 $obj.Property.SecondProperty -eq $null

10
11 # Example 3: Safe access to null properties with ?.
12 $obj.Property?.SecondProperty -eq $null
13
14 # Example 4: The ?. operator doesn't protect against nonexistent properties

²⁶Microsoft. (2022, Mar. 08). Set-StrictMode (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/set-strictmode. [Accessed: Apr. 03, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/set-strictmode
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/set-strictmode

Advanced Conditions 246

15 # in strict mode
16 ${obj}?.AnotherProperty -eq $null
17
18 Set-StrictMode -Off

Example 1:
True

Example 2:
PropertyNotFoundException: The property 'SecondProperty' cannot be found
on this object. Verify that the property exists.

Example 3:
True

Example 4:
PropertyNotFoundException: The property 'AnotherProperty' cannot be found
on this object. Verify that the property exists.

8.13.2 Examples of ?[]

The following examples demonstrate the use of: ‘?[]’:

Example 60: Accessing array elements safely with ?[]

1 # Example 1: Accessing an array element with []
2 $arr = 1,2,3,4
3 $arr[1]
4
5 # Example 2: Accessing an array element with ?[]
6 # Note: The variable needs to be wrapped with curly braces:
7 $arr = 1,2,3,4
8 ${arr}?[1]
9

10 # Example 3: Accessing an array element that doesn't
11 # exist, without the operator.
12 $arr = $null
13 $arr[10] -eq $null
14
15 # Example 4: The same example as before, however
16 # using the ?[] operator.
17 $arr = $null
18 ${arr}?[10] -eq $null
19
20 # Example 5: A Complex Object Structure.
21 $objlist = $null
22 ${objlist}?[10].List?[10] -eq $null

Advanced Conditions 247

Example 1:
2

Example 2:
2

Example 3:
InvalidOperation: Cannot index into a null array.

Example 4:
True

Example 5:
True

8.14 :parent Loop Labels

Syntax:

1 :<LabelName> <Loop Construct> {
2 # ScriptBlock
3 }

PowerShell loop labeling adds a label to a loop construct, which is used to control the flow of
the loop.²⁷ ²⁸ Labels are defined at the start of a loop construct, prefixing the label with a colon
:.

Example 61: Labeling a loop statement

1 # Define the Loop Label inside a 'do loop'.
2
3 # Create a label called 'loopLabel'
4 :loopLabel do {
5 # Do something
6 } until ($true)

Once the loop label has been defined, break/continue statements can reference the label to exit
at that loop level. This is useful when managing nested loop statements, since there is less need
for complex branching logic. In the following example, the nested loop statement will exit the
parent loop once the counter reaches 3:

²⁷Microsoft. (2014, May. 08). PowerShell Looping: Advanced Break. Microsoft Dev Blogs. [Online]. Available: https://devblogs.microsoft
.com/scripting/powershell-looping-advanced-break/. [Accessed: Mar. 31, 2022].

²⁸Microsoft. (2022, Mar. 19). About Break (Microsoft.PowerShell.Core) - Using a labeled break in a loop. Microsoft
Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break#using-a-
labeled-break-in-a-loop. [Accessed: Mar. 31, 2022].

https://devblogs.microsoft.com/scripting/powershell-looping-advanced-break/
https://devblogs.microsoft.com/scripting/powershell-looping-advanced-break/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break#using-a-labeled-break-in-a-loop
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break#using-a-labeled-break-in-a-loop

Advanced Conditions 248

Example 62: Breaking an outer loop using a loop label

1 # Define the Loop Label to be 'loopLabel'
2 # This parent do-loop will loop forever by default.
3 :loopLabel do {
4 # Nested for-loop within the do-loop
5 # This loop will count from 0 to 10.
6 for ($i=0; $i -ne 10; $i++) {
7
8 # If the counter reaches 3, we will break (exit) the parent do-loop.
9 if ($i -eq 3) {

10 # Specify the target label for the break statement.
11 break :loopLabel
12 }
13
14 Write-Host "Nested Counter: $i"
15
16 }
17
18 } until ($true)

Nested Counter: 0
Nested Counter: 1
Nested Counter: 2

In the following example, the Continue statement will be used to increment the top-level
counter:

Example 63: Continuing an outer loop using a loop label

1 # Define the Loop Label to be loopLabel
2 # This top-level loop will count from 0 to 5.
3 $Counter = 0
4 :loopLabel do {
5 # Nest a secondary loop within the first.
6 # This loop will count from 0 to 10.
7 for ($i=0; $i -ne 10; $i++) {
8
9 # If the counter reaches 3, we will exit the nested loop

10 # and continue within the parent loop.
11 if ($i -eq 3) {
12 # Specify the target label for the continue statement.
13 continue :loopLabel
14 }
15
16 Write-Host "Top Level Counter: $Counter Nested Counter: $i"
17
18 }
19
20 $Counter++
21
22 } until ($Counter -eq 5)

Advanced Conditions 249

Top Level Counter: 0 Nested Counter: 0
Top Level Counter: 0 Nested Counter: 1
Top Level Counter: 0 Nested Counter: 2
Top Level Counter: 0 Nested Counter: 4
Top Level Counter: 0 Nested Counter: 5
Top Level Counter: 0 Nested Counter: 6
Top Level Counter: 0 Nested Counter: 7
Top Level Counter: 0 Nested Counter: 8
Top Level Counter: 0 Nested Counter: 9
Top Level Counter: 1 Nested Counter: 0
Top Level Counter: 1 Nested Counter: 1
Top Level Counter: 1 Nested Counter: 2
Top Level Counter: 1 Nested Counter: 4
Top Level Counter: 1 Nested Counter: 5
Top Level Counter: 1 Nested Counter: 6
Top Level Counter: 1 Nested Counter: 7
Top Level Counter: 1 Nested Counter: 8
Top Level Counter: 1 Nested Counter: 9
Top Level Counter: 2 Nested Counter: 0
Top Level Counter: 2 Nested Counter: 1
Top Level Counter: 2 Nested Counter: 2
Top Level Counter: 2 Nested Counter: 4
Top Level Counter: 2 Nested Counter: 5
Top Level Counter: 2 Nested Counter: 6
Top Level Counter: 2 Nested Counter: 7
Top Level Counter: 2 Nested Counter: 8
Top Level Counter: 2 Nested Counter: 9
Top Level Counter: 3 Nested Counter: 0
Top Level Counter: 3 Nested Counter: 1
Top Level Counter: 3 Nested Counter: 2
Top Level Counter: 3 Nested Counter: 4
Top Level Counter: 3 Nested Counter: 5
Top Level Counter: 3 Nested Counter: 6
Top Level Counter: 3 Nested Counter: 7
Top Level Counter: 3 Nested Counter: 8
Top Level Counter: 3 Nested Counter: 9
Top Level Counter: 4 Nested Counter: 0
Top Level Counter: 4 Nested Counter: 1
Top Level Counter: 4 Nested Counter: 2
Top Level Counter: 4 Nested Counter: 4
Top Level Counter: 4 Nested Counter: 5
Top Level Counter: 4 Nested Counter: 6
Top Level Counter: 4 Nested Counter: 7
Top Level Counter: 4 Nested Counter: 8
Top Level Counter: 4 Nested Counter: 9

Loop labels are unsupported in both the foreach and ForEach-Object statements and the
$List.ForEach() method. For example, loop labels do not affect the foreach statement:

Example 64: Loop labels don’t apply to foreach statements

1 $array = 1,2,3,4,5
2
3 :loopLabel foreach ($item in $array) {
4 for ($i=0; $i -ne 10; $i++) {
5
6 # If the counter reaches 3, we will break (exit) the loop,
7 # On the parent loop.
8 if ($i -eq 3) {
9 # Define the loop label by appending the label after

10 # the break statement.
11 break :loopLabel

Advanced Conditions 250

12 }
13
14 Write-Host "Top Level Counter: $item Nested Counter: $i"
15
16 }
17 }

Top Level Counter: 1 Nested Counter: 0
Top Level Counter: 1 Nested Counter: 1
Top Level Counter: 1 Nested Counter: 2
Top Level Counter: 2 Nested Counter: 0
Top Level Counter: 2 Nested Counter: 1
Top Level Counter: 2 Nested Counter: 2
Top Level Counter: 3 Nested Counter: 0
Top Level Counter: 3 Nested Counter: 1
Top Level Counter: 3 Nested Counter: 2
Top Level Counter: 4 Nested Counter: 0
Top Level Counter: 4 Nested Counter: 1
Top Level Counter: 4 Nested Counter: 2
Top Level Counter: 5 Nested Counter: 0
Top Level Counter: 5 Nested Counter: 1
Top Level Counter: 5 Nested Counter: 2

8.15 PowerShell Operator Precedence

Operator precedence describes the list of rules for how PowerShell operators are evaluatedwithin
an expression.²⁹ The precedence order is an ordered list of which operators are evaluated by
PowerShell first. An expression is a piece of valid code that returns a value (for example: 1 -eq
1).

During the evaluation process, several rules apply:

• If the operator is an assignment operator (=, +=, -=, *=, /=, %=, ++, and --), a cast operator
([type]$val) or a negation operator (-not, -isnot, and -notcontains), the expression
is evaluated from right to left.

• Otherwise, the precedence order is applied from the list (see table below):

Example 65: Assignment operators have the lowest precedence

1 $var = 'Value' -eq 'Value'

In this example, a variable is declared containing the string value 'value' -eq 'value'. The
process is as follows:

1. PowerShell reviews the expression by scanning left-to-right.

²⁹Microsoft. (2022, Mar. 19). About Operator Precedence (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operator_precedence. [Accessed: Mar. 19, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operator_precedence
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operator_precedence

Advanced Conditions 251

2. The comparison operator (-eq) is found in 'Value' -eq 'Value'. The comparison oper-
ator (-eq) is higher than the assignment operator, so it’s evaluated first, producing $true.

3. The assignment operator (=) comes last and will assign the output to the variable $var
(reading from right-to-left).

The following table describes the order of precedence; items in the same precedence group follow
the same precedence rules:

Precedence Operator Description Example

1 $(), @(), (), @{} Subexpression, array
subexpression, grouping,
and hashtable

"$(1+1)", @(1,2,3)

2 ., ?. Member access and
null-conditional

$Object.Property,
${Object}?.Property

3 :: Static [String]::Copy($string)

4 [], ?[] Index and null-conditional $arr[0], ${arr}?[0]

5 [type] Cast [string]

6 -split Unary split -split 'string1
string2'

7 -join Unary join -join ('string1',
'string2')

8 , Comma 1,2,3

9 ++, -- Increment, Decrement $i++

10 !, -not Logical inverse -not($false)

11 .. Range [0..5]

12 -f Format "{0}" -f 'val'

13 - Unary minus/negative -1

14 *, /, % Multiply, Divide, Modulo 3 * 1, 10 / 2, 10 % 2

15 +, - Add, Subtract 3 + 1, 10 - 2

16 -split Binary split '1,2,3,4' -split ','

17 -join Binary join 1,2,3,4 -join ','

18 -is, -isnot, -as Type compare/Coerce 1 -is [int]

19 -eq, -ne, -gt, -ge, -lt,
-le

Equality/Comparison 1 -eq 1

20 -like, -notlike Matching (wildcard) 'string' -like 's*'

21 -match, -notmatch Matching (regex) 'string' -match 's'

22 -in, -notin Containment (right hand) 1 -in 1,2,3

23 -contains, -notcontains Containment (left hand) 1,2,3 -contains 1

24 -replace Replacement 1,2,3 -replace 1, 0

25 -band, -bnot, -bor, -bxor,
-shr, -shl

Binary arithmetic 10 -band 15

26 -and, -or, -xor Logical 1 -eq 1 -and 2 -eq 2

27 . Dot source . { $val = 'string'};
$val

Advanced Conditions 252

Precedence Operator Description Example

28 & Call & { Write-Host
'Hello!'}

29 ? <True> : <False> Ternary operator $val = (1 -eq 1) ? 15
: 20

30 ?? Null-coalescing $null ?? 100

31 | Pipe Get-Process -Name
Notepad |
Stop-Process

32 >, >>, 2>, 2>>, 2>&1 Redirect Get-Process -Name
Notepad > np.txt

33 &&, || Pipeline chain 'First' || 'Second'

34 =, +=, -=, *=, /=, %=, ??= Assignment $var = 'value'

Remember, the semi-colon (;) represents the end of the statement!

8.15.1 Example - Operator Precedence (,, [])

The following examples will explore the operator precedence for different statements. This
example will explore the order of precedence with the comma (,) and index ([]) operators.

Example 66: Array index operators have a higher precedence than commas

1 1,2,'string'[0]

1
2
s

PowerShell performs the following steps:

1. PowerShell reviews the expression by scanning left-to-right.
2. The comma operators 1,2,'string' are found.
3. The index operator [0] is found. The operator precedence is: [] then ,.
4. Since the index operator ([]) has higher precedence to the comma operator (,),

'string'[0] is evaluated first, returning a substring value of 's'.
5. The comma operator is parsed, returning an array of 1,2,'s'.

8.15.2 Example - Parentheses ()

In the example below, the same expression is evaluated, but parentheses are added:

Advanced Conditions 253

Example 67: Parentheses have the highest precedence

1 ('string',1,2)[0]

string

PowerShell performs the following steps:

1. PowerShell reviews the expression by scanning left-to-right.
2. The parentheses operators () are found.
3. The comma operators 'string',1,2 are found.
4. The index operator [0] is found. The operator precedence is: () then [].
5. The parentheses operators have the highest precedence, and the nested statement is parsed.
The statement contains the comma operator (,) and no other operators. The comma operator
will have the highest precedence in this subexpression.

6. The comma operator is parsed, returning an array of string,1,2.
7. The index operator lastly is parsed, returning: 'string'.

8.15.3 Example - Negation Operator -not

In the example below, the following expression is parsed:

Example 68: Negation operators change the processing direction locally

1 @{index=1}, -not $true, 3

Name Value
---- -----
index 1
False
3

PowerShell performs the following steps:

1. PowerShell reviews the expression by scanning left-to-right.
2. The hashtable literal syntax @{} is found.
3. The comma operators @{index=1}, -not$true, 3 are found.
4. The -not operator is found. The operator precedence is: @{}, , then -not.
5. The hashtable literal syntax has the highest precedence, and the key/item expressions are

evaluated first.
6. @{index=1} is parsed.

• PowerShell reviews the expression by scanning left-to-right.
• The assignment operator is the only operator.

Advanced Conditions 254

• The value is assigned to index.

7. The comma operator has the next highest precedence, and the items are cast as an array.
8. The -not expression is evaluated:

• PowerShell reviews the expression by scanning left-to-right.
• The expression -not is found.
• The expression switches from left-to-right to right-to-left, returning $false.

9. The array is returned to the output stream.

8.15.4 Example - Equal Precedence

In the example below, the operators -eq and -ne will be used multiple times in the same
expression:

Example 69: Left-to-right processing is used for operators with equal precedence

1 1 -eq 2 -eq 2 -ne 2

True

PowerShell performs the following steps:

1. PowerShell reviews the expression by scanning left-to-right.
2. The first -eq comparison operator is found.
3. The second -eq comparison operator is found.
4. The third -eq comparison operator is found.
5. The -ne comparison operator is found. Since all the operators have ‘equal precedence’, the

order of operations will be from left to right. The operator precedence is: -eq, -eq, -eq,
then -ne.

6. 1 -eq 2 is evaluated, returning $false.
7. $false -eq 2 is evaluated, returning $false.
8. $false -ne 2 is evaluated as $true, returning the output.

8.15.5 Example - A Complex Expression

In the example below, a complex expression will be broken down:

Advanced Conditions 255

Example 70: Processing for a complex expression with many operators

1 $PSCustomObject = [PSCustomObject]@{
2 DateTime = '1/1/2021' -as [DateTime]
3 Processes = (Get-Process -Name 'code').id -join ''
4 BinaryOperation = -bnot 15 -shl 1; AnotherValue = 4
5 }
6 $PSCustomObject

DateTime Processes
-------- ---------
1/1/2021 12:00:00 AM 605261729300122641423220776299883124035616

BinaryOperation AnotherValue
--------------- ------------
-32 4

PowerShell performs the following steps:

1. The multiline expression is formatted as a single-line expression.
2. PowerShell reviews the expression by scanning left-to-right.
3. The assignment operator is found (=).
4. PowerShell finds the ‘cast operator’ [PSCustomObject].
5. The hashtable literal syntax @{} is found, with several nested expressions. The expressions

are separated by ‘semi-colon’ (;) or newline, split ‘BinaryOperation’ and ‘AnotherValue’
into two different expressions. The operator precedence is: @{}, [], then =. The hashtable
literal syntax has the highest precedence; PowerShell will now evaluate the nested key/item
expressions.

6. DateTime = '1/1/2021' -as [DateTime] is parsed:

• PowerShell reviews the expression by scanning left-to-right.
• The assignment operator is found (=).
• The type operator -as is found. The operator precedence is: -as then =.
• -as is parsed, and the output is stored in the key ‘DateTime’.

7. Processes = (Get-Process -Name 'code').id -join '' is parsed:

• PowerShell reviews the expression by scanning left-to-right.
• The assignment operator is found (=).
• Parentheses () operators are found.
• The member access operator ($object.) is found.
• The -join operator is found. The operator precedence is: (), ., -join, then =.
• Since the parentheses have the highest precedence to -join, . and =, the expression
inside is evaluated first.

• The output of the expression is:

Advanced Conditions 256

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------

214 12 9768 25856 0.09 6052 1 Code
631 40 326800 157644 97.91 6172 1 Code
887 37 47232 101088 221.19 9300 1 Code
334 44 50116 104012 26.23 12264 1 Code
725 32 229060 281708 456.44 14232 1 Code
279 19 12920 39904 17.27 20776 1 Code
350 19 42996 90804 91.52 29988 1 Code
170 13 20244 67196 0.31 31240 1 Code
173 13 18924 70404 0.72 35616 1 Code

• Once the expression is evaluated, the remaining operators (., -join and =) are evalu-
ated. The member access operator (.) has the next highest precedence over the -join
operator and the assignment operator (=). PowerShell will evaluate (expression).id
first. The output of (expression).id:

6052
6172
9300
12264
14232
20776
29988
31240
35616

• Two operators remain (-join and =). The -join operator has the higher precedence
and will be evaluated first. The output of (expression).id -join '':

605261729300122641423220776299883124035616

• The remaining operator is the assignment operator =.
• The output is stored in the key ‘Processes’.

8. BinaryOperation = -bnot 15 -shl 1 is parsed:

• PowerShell reviews the expression by scanning left-to-right.
• The assignment operator is found (=).
• The -shl arithmetic operator is found.
• The -bnot arithmetic is found. Note that -shl and -bnot have equal precedence. The
expression will be evaluated from left-to-right. The operator precedence is: -bnot,
-shl, then =.
• -bnot 15 is evaluated (giving -16), leaving -shl and =.
• -16 -shl 1 is evaluated, leaving =.
• The output -32 is stored.

9. AnotherValue = 4 is parsed:

• PowerShell reviews the expression by scanning left-to-right.
• The assignment operator is the only operator.
• The value is assigned to AnotherValue.

10. The hashtable expression parsing is complete, leaving operators [PSCustomObject] and
=. The cast operator [PSCustomObject] has the higher precedence, so the [HashTable]
object is cast as a [PSCustomObject].

11. The returned [PSCustomObject] is stored in the variable $PSCustomObject.

Advanced Conditions 257

8.16 Further Reading

• About Switch—Microsoft Docs³⁰
• About If—Microsoft Docs³¹
• About Assignment Operators—Microsoft Docs³²
• About Operator Precedence—Microsoft Docs³³
• About Operators—Microsoft Docs³⁴
• PowerShell Parser Tokenizer Source Code—GitHub³⁵
• About Wildcards—Microsoft Docs³⁶

³⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
³¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if
³²https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators
³³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operator_precedence
³⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators
³⁵https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/tokenizer.cs
³⁶https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wildcards#long-description

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operator_precedence
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/tokenizer.cs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wildcards#long-description
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_assignment_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operator_precedence
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/tokenizer.cs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wildcards#long-description

9. Logging
On the surface, the subject of logging seems simple. It could be as straightforward as “saving
output for later use or review.” It is, however, much more nuanced—and important—than many
realize.

This chapter covers the basics of logging in PowerShell. It lays the groundwork for establishing
some best practices that most developers and engineers should implement. The chapter aims to
combine the latest information available for a range of logging options and present it to you in
a single resource.

At the time of writing, Windows PowerShell is at version 5.1, and PowerShell is at version 7.2.
These version numbers aren’t referenced here. Rather, the edition names are used when there
are differences in functionality between editions.

There are several well-known logging options for Windows PowerShell.¹ However, with Pow-
erShell now available—a cross platform solution—there are more differences that need to be
addressed. Methods commonly employed in the past may not be the best solution in the
present and future. You may even find that approaches you’ve taken in the past with Windows
PowerShell are no longer available in PowerShell.

There are now technical considerations needed with different versions and platforms:²

• Differences in logging between Windows PowerShell and PowerShell.
• Differences in logging across Windows, WSL (Windows Subsystem for Linux), Linux, Mac,
and CloudShell.

• There are many cloud shells and other serverless options available.

The two categories of logging, system-level and on-demand. Both provide a way to track the
actions of your code. Both options are presented ahead and you can use either, or both, based on
your needs.

The chapter presents simple use cases as examples. Note that these are simplistic and intended
to show the ways you can use logging. These aren’t scripts that you would use in production.

¹Microsoft. (2022, Mar. 19). About Logging (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging. [Accessed: Aug. 03, 2022].

²Microsoft. (2022, May. 16). Differences between Windows PowerShell 5.1 and PowerShell 7.x. Microsoft Docs. [Online].
Available: https://learn.microsoft.com/en-us/powershell/scripting/whats-new/differences-from-windows-powershell?view=powershell-
7.2. [Accessed: Aug. 03, 2022].

258

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/differences-from-windows-powershell?view=powershell-7.2
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/differences-from-windows-powershell?view=powershell-7.2

Logging 259

9.1 Why Log?

One of the first question to ask is why you’re logging.

There are a variety of reasons for doing this and these change the logging methods you select:

• Are you logging output to help debug your code?
• Do you need a history you can refer to that shows what actions were taken when?
• Is there an audit requirement for compliance?

Logging all code run on a system for security is a common security requirement. You may also
need to have JEA session logs available for review. You can learn more about JEA in the Just
Enough Administration chapter.

9.2 What Makes for Good Logging

As you create custom logging for your code, think about the level of detail you want to capture.
If you’re writing code that will only affect you, minimal logging may be acceptable.

It’s useful to contemplate who else will review the logs. Ensure you take the reviewer’s
competency level into account for the level of data you’re logging. Be consistent in the style
and level of logging you perform across all your code.

So, where should you store the data? Logging locally towhere your code lives is a straightforward
answer. However, you must ask yourself if others need to review the output. Consider if you
should centralize it for monitoring and alerting based on the output.

When writing output, try to find a balance between human readability and consumption by an
event monitoring solution. Logs should be readable enough for reviewers to identify errors and
target details quickly. They should also be consistently formatted, such that software can parse
and process them without complex analysis or extensive pattern-matching.

Always consider the purposes of the log. Are you creating data only for troubleshooting, or is it
capturing the day-to-day operation of your software? Implement your logging such that you can
easily change it when new requirements come in for auditing, statistics, or tracking performance.

One outcome to avoid is logging everything to a point where the output is overwhelming and
unusable. Capture enough context so a reviewer can understand what created the message and
why.

While it may seem excessive to account for so many factors, it’s worth your time to go through
and consider them. Getting this right up front could save hours of time for people looking through
your logs and minimize any rework required by you to adjust the level of output you’ve created.

As a minimum, the log data you create should provide answers to these questions:

• What was done?
• Where was it done?

Logging 260

• When was it done?
• Who did it?

For high-impact changes, such as writing code to change users’ access in AD (Active Directory)
or Azure, your output should be comprehensive enough that a person or system could identify
and undo all the changes.

When working with live data that affects the ability of others to work, taking this extra effort
and time to create detailed output can reduce the impact if something goes wrong. You should
also test the output to make sure you could use it to revert a change in practice.

9.3 What Should Never Be Logged

As you consider what to log, you should also note there are many items that shouldn’t be logged:

• Credentials
• Passwords
• Access tokens
• API keys
• Encryption keys
• Personally identifiable information
• Social Security or national identity numbers
• Credit card numbers
• Any other data protected by laws such as GDPR (General Data Protection Regulation)³

System-level logging may be configured in such a way that it will capture all on-screen input
and output. No matter what logging options you select, it’s important to keep secrets out of your
code, and know when user input may expose secrets within your logs.

In most cases, system-level logging prevents properly identified secrets from being captured.
However, if your code is written such that the system doesn’t recognize sensitive data, secrets
may be stored in plain text in your logs. Ensure you understand how to identify sensitive data
and prevent its accidental capture.⁴

The chapter discusses ways to protect sensitive data stored in logs later. However, following best
practices and preventing it from being logged at the start is the best solution.

While outside the scope of logging, the use of the SecretManagement⁵ Module and Azure
KeyVault⁶ would help ensure this data is stored and protected properly. There’s an informative
Microsoft DevBlogs article⁷ for getting up to speed on this module.

³Proton AG. (2022, May. 26).What is GDPR, the EU’s new data protection law?. GDPR.EU. [Online]. Available: https://gdpr.eu/what-
is-gdpr/. [Accessed: Aug. 29, 2022].

⁴Microsoft. (2022, Mar. 18). About_Logging (Microsoft.PowerShell.Core) - Protected Event Logging. Microsoft Docs. [Online].
Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging?view=powershell-
5.1#protected-event-logging. [Accessed: Aug. 03, 2022].

⁵https://www.powershellgallery.com/packages/Microsoft.PowerShell.SecretManagement
⁶https://learn.microsoft.com/en-us/azure/key-vault/general/basic-concepts
⁷https://devblogs.microsoft.com/powershell/secretmanagement-and-secretstore-are-generally-available/

https://www.powershellgallery.com/packages/Microsoft.PowerShell.SecretManagement
https://learn.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://learn.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://devblogs.microsoft.com/powershell/secretmanagement-and-secretstore-are-generally-available/
https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging?view=powershell-5.1#protected-event-logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging?view=powershell-5.1#protected-event-logging
https://www.powershellgallery.com/packages/Microsoft.PowerShell.SecretManagement
https://learn.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://devblogs.microsoft.com/powershell/secretmanagement-and-secretstore-are-generally-available/

Logging 261

9.4 Logging Basics

Because of PowerShell’s ease of use, it was popular with red teams and attackers, and used in
many environments before 2015. In response, Microsoft posted a DevBlogs article⁸ detailing the
improvements to PowerShell logging that engineers and developers use today.

By the release of Windows PowerShell 5, Microsoft had added a multitude of logging features.
This was enough that some prominent red teamers posted blogs stating that PowerShell had too
much tracking and was too easily detected to continue to be their primary method for living off
the land. They changed some tools of their trade to C#, as the system-level logging there still
isn’t as robust.⁹ ¹⁰

While the ability to log is now best-in-class, the enablement of such logging and the review of
logs may still trail behind.

9.5 Enable System-Level Logging

The section starts with system-level logging, as you can leverage this configuration in other
methods discussed later in the chapter.

9.5.1 Windows

There are a few options to enable logging in Windows.¹¹ For enterprise systems, the enablement
should be completed by your IT or security department, which has historically been deployed
via Group Policy or Intune. For a standalone system, you can use the Local Group Policy Editor¹²
(gpedit.msc) to access the same settings. Once the Local Group Policy Editor is open, find the
following configuration path:

Computer Configuration\
Administrative Templates\
Windows Components\

Windows PowerShell

Change the following four group policy settings:

• Turn on Module Logging: Enabled. Use * in theModule Names selection to apply logging
to all modules, or add each module you wish to log.

• Turn on PowerShell Script Block Logging: Enabled.

⁸https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
⁹SecTor. (2019, Oct. 09). Powershell is Dead. Long Live C# - Lee Kagan. SecTor 2019. [Online]. Available: https://sector.ca/sessions/

powershell-is-dead-long-live-c/. [Accessed: Aug. 29, 2022].
¹⁰BSides Scotland. (2019, Apr. 23). Powershell Is DEAD – Epic Learnings! - Ben Turner and Doug McLeod - BSides Scotland 2019.

YouTube. [Online]. Available: https://www.youtube.com/watch?v=PPDUU3ObX88. [Accessed: Aug. 29, 2022].
¹¹Microsoft. (2022, Mar. 18). About Group Policy Settings (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings. [Accessed: Aug. 29,
2022].

¹²https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn789185(v=ws.11)

https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn789185(v=ws.11)
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://sector.ca/sessions/powershell-is-dead-long-live-c/
https://sector.ca/sessions/powershell-is-dead-long-live-c/
https://www.youtube.com/watch?v=PPDUU3ObX88
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn789185(v=ws.11)

Logging 262

– Check the box for Log script block invocation start/stop events.

• Turn on Script Execution: Enabled.

– Set Execution Policy toAllow local scripts and remote signed scripts. This is the default
for Windows 10+ and Windows Server 2016+.

• Turn on PowerShell Transcription: Disabled. This is because of the likelihood of capturing
plain text secrets if best practices aren’t followed. With this set, you’ll still be able to enable
transcription temporarily as needed.

Another setting only used by enterprises is found in the Local Group Policy Editor, at the
following configuration path:

Computer Configuration\
Administrative Templates\
Windows Components\

Event Logging\
Enable Protected Event Logging

This setting requires PKI (Public Key Infrastructure) certificates to encrypt and decrypt sensitive
data being written to the Windows Event Logs. You wouldn’t use this for standalone systems, as
the private key shouldn’t be available on the computer where the logs are created and encrypted.
Instead, the private key would live only in the location where the logs are being collected and
decrypted.

An event log consolidation solution like this is highly encouraged in enterprises, but is outside
the scope of this chapter.

9.5.2 Event Log Locations

PowerShell-specific logs on Windows are written to the following default locations:¹³

Windows PowerShell:

Application and Services Logs\
Windows PowerShell

Application and Services Logs\
Microsoft\
Windows\

PowerShell\
Operational

PowerShell:

¹³Microsoft. (2022, Mar. 18). About Eventlogs (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs?view=powershell-5.1. [Accessed: Aug. 29, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs?view=powershell-5.1

Logging 263

Application and Services Logs\
PowerShell Core\
Operational

These are viewable in the Windows Event Viewer¹⁴ or can be queried from PowerShell or other
tools.

9.6 Linux, macOS, WSL

According to Microsoft documentation,¹⁵ the logging configuration for non-Windows sys-
tems is managed via a JSON (JavaScript Object Notation) configuration file named Power-
Shell.config.json and stored in one of two locations:

• System-wide settings are stored in $PSHome. This is often /opt/microsoft/Power-
Shell/7/.

• User-specific settings are stored in the same directory as a user’s PowerShell profile. Use
Split-Path $PROFILE.CurrentUserCurrentHost to find this folder.

If the configuration file doesn’t exist, create it using your preferred text editor, and copy the
sample configuration. Be sure to change the paths to suit your needs.

The configuration options available within the JSON files are the same as those covered for
Windows above:

Example 1: PowerShell.config.json configuration file for non-Windows systems

1 {
2 "Microsoft.PowerShell:ExecutionPolicy": "RemoteSigned",
3 "PowerShellPolicies": {
4 // Equivalent: Turn on Script Execution
5 "ScriptExecution": {
6 "ExecutionPolicy": "RemoteSigned",
7 "EnableScripts": true
8 },
9 // Equivalent: Turn on PowerShell Script Block Logging

10 "ScriptBlockLogging": {
11 "EnableScriptBlockInvocationLogging": true,
12 "EnableScriptBlockLogging": true
13 },
14 // Equivalent: Turn on Module Logging
15 "ModuleLogging": {
16 "EnableModuleLogging": false,
17 "ModuleNames": [
18 // Use "*" to log all modules
19 "PSReadline",
20 "PowerShellGet"
21]
22 },
23 // Equivalent: Enable Protected Event Logging
24 "ProtectedEventLogging": {

¹⁴https://learn.microsoft.com/en-us/shows/inside/event-viewer
¹⁵Microsoft. (2022, Mar. 18). About PowerShell Config (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_config. [Accessed: Aug. 26,
2022].

https://learn.microsoft.com/en-us/shows/inside/event-viewer
https://learn.microsoft.com/en-us/shows/inside/event-viewer
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_config

Logging 264

25 "EnableProtectedEventLogging": false,
26 "EncryptionCertificate": [""]
27 },
28 // Equivalent: Turn on PowerShell Transcription
29 "Transcription": {
30 "EnableTranscripting": true,
31 "EnableInvocationHeader": true,
32 "OutputDirectory": "\\tmp\\new"
33 },
34 // Other settings
35 "UpdatableHelp": {
36 "DefaultSourcePath": "\\temp"
37 },
38 "ConsoleSessionConfiguration": {
39 "EnableConsoleSessionConfiguration": false,
40 "ConsoleSessionConfigurationName": "name"
41 }
42 },
43 "LogLevel": "verbose"
44 }

The following additional configuration option is also noted for macOS:

log config --subsystem com.microsoft.powershell --mode=persist:info,level:info

9.7 Logging for Troubleshooting

This section covers logging specifically for troubleshooting or debugging.

9.7.1 Writing Console Output

• Pro: Quick and easy
• Pro: Flexible output options
• Pro: Cross platform support with minor changes
• Con: Alone, this output isn’t persistent

As you’re writing code, a common troubleshooting method is to write a status message to the
console to see results using Write-Host or Write-Output. This is a quick-and-dirty option;
however, there are better ways to perform this simple task. As you probably know, PowerShell
has multiple output streams available.¹⁶ ¹⁷ The following write cmdlets are available and provide
better solutions than simply sending your output to the console during each run:

• Write-Verbose¹⁸: Show events only when running with the -Verbose parameter.

¹⁶Microsoft. (2022, Mar. 18). About Output Streams (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_output_streams. [Accessed: Aug. 27, 2022].

¹⁷Microsoft. (2022, Mar. 18). About Redirection (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_redirection. [Accessed: Aug. 29, 2022].

¹⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-verbose

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-verbose
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_output_streams
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_output_streams
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_redirection
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_redirection
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-verbose

Logging 265

• Write-Debug¹⁹: Show events only when running with the -Debug parameter.
• Write-Information²⁰: Add informational messages to your output.
• Write-Warning²¹: Adds a warning message to your output.
• Write-Error²²: Declares a non-terminating error, and adds it to the error stream.
• Write-Progress²³: Displays a progress bar in the PowerShell console.
• Write-Host²⁴: Writes customized output to a host and terminates the pipeline (no longer
kills a puppy²⁵).

By default, these cmdlets only write to the console and provide no permanent storage of the
output.

9.8 Persistent Logging Options

Ahead are some approaches for creating more persistent logging data.

9.8.1 PowerShell Transcription

PowerShell transcription records all commands entered, and all output produced. This data
is written into plain text files. There are two basic commands to control this (aside from the
system-level controls noted earlier), which are self-explanatory and can be used with or without
additional parameters for file names and locations.

Example 2: Starting and stopping transcription in PowerShell

1 Start-Transcript
2 Stop-Transcript

Transcription is also stopped when closing the PowerShell console.

You can read more about transcription on the Microsoft Docs page for Start-Transcript²⁶.

¹⁹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-debug
²⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-information
²¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-warning
²²https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-error
²³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-progress
²⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host
²⁵The phrase “Every time you use Write-Host, you kill a puppy…” was coined by PowerShell MVP Don Jones. Around 2013, both

he and the father of PowerShell, Jeffrey Snover, advocated for limited use of this cmdlet as it negatively impacted automation. Many
people were using Write-Host to convey results or information to the user. Write-Host had some limited use cases, but was considered
the wrong tool in the toolbelt for many situations because it didn’t write to any of the available output streams. Starting with PowerShell
5.0, Write-Host is now just a wrapper for Write-Information. The etymology of this phrase could be linked back to a famous line from
the 1946 classic movie It’s a Wonderful Life when the character Zuzu Bailey, daughter of the protagonist, George Bailey, proclaims at the
end of the movie, “Look, Daddy! Teacher says ‘every time a bell rings, an angel gets his wings.’“.

²⁶https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-debug
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-information
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-warning
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-error
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-progress
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-debug
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-information
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-warning
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-error
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-progress
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.host/start-transcript

Logging 266

9.8.2 Logging to Files

• Pro: Quick and easy
• Pro: Flexible output options
• Pro: Cross-platform support with minor changes
• Con: A custom solution may not be easily discoverable or usable by other automation

If you want to add data to existing log files without overwriting them, don’t forget to use the
-Append switch where noted below. The cmdlets available are:

• Out-File²⁷: Writes the output of a pipeline to a file.
• Export-Csv²⁸: Exports data in the common CSV (comma-separated values) format.
• Add-Content²⁹: Appends text to a file.
• Set-Content³⁰: Writes text to a file, overwriting any existing content.

Using Out-File is the simplest option.

As an example, say you’re tasked with daily tracking of all services on your systems set to start
automatically, but have stopped. You could create a separate file, including the date and time it
was created as a part of the file name, for each run with:

Example 3: Logging all stopped automatic-start services to a dated file

1 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'
2 Get-Service |
3 Where-Object {
4 ($_.Status -eq 'Stopped') -and ($_.StartType -eq 'Automatic')
5 } |
6 Out-File "C:\temp\StoppedServices-$FormattedDate.txt"

When using Export-Csv, it’s best to create PSCustomObjects³¹ before attempting to write the
data.

You could use an approach similar to the following to collect the required data and keep a running
log in a single file:

²⁷https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-file
²⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-csv
²⁹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/add-content
³⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-content
³¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pscustomobject

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-file
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-csv
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/add-content
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-content
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pscustomobject
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-file
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-csv
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/add-content
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-content
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pscustomobject

Logging 267

Example 4: A more advanced logging strategy keeping a tally in a single file
1 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'
2 $Count = (
3 Get-Service | Where-Object {
4 ($_.Status -eq 'Stopped') -and ($_.StartType -eq 'Automatic')
5 }
6).Count
7 $MyCustomObject = [PSCustomObject]@{
8 DateTime = $FormattedDate
9 Count = $Count

10 }
11 $MyCustomObject |
12 Export-Csv 'C:\temp\StoppedServices.csv' -NoTypeInformation -Append
13
14 Get-Content 'C:\temp\StoppedServices.csv'

"DateTime","Count"
"20210504T1933","8"

Depending on your use case, there are other options available. You can use Set-Content to
replace all the content of an existing file. You can use Add-Content to append content to a file,
without removing its existing content.

Both cmdlets create the file if it doesn’t exist. You can use Set-Content to empty an existing
file and then Add-Content to append additional data to it. This is useful in situations where old
log data can be safely cleared to reduce filesystem space utilization.

Your use case and personal preferences will determine which cmdlets you use.

Example 5: Optionally clearing old log data
1 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'
2 $Count = (
3 Get-Service | Where-Object {
4 ($_.Status -eq 'Stopped') -and ($_.StartType -eq 'Automatic')
5 }
6).Count
7
8 $Params = @{
9 Path = 'C:\temp\test.csv'

10 Value = "$FormattedDate,$Count"
11 }
12 if ($ClearLog) {
13 $Params.Value = @('"DateTime","Count"', $Params.Value)
14 Set-Content @Params
15 }
16 else {
17 Add-Content @Params
18 }

In the example, a log file is overwritten if $ClearLog is $true. Otherwise, a new entry is
appended to the end of the file.

9.8.3 Using Tee-Object

The Tee-Object³² cmdlet is used to send data both to a file and display the output in the console:

³²https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/tee-object

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/tee-object
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/tee-object

Logging 268

Example 6: Using Tee-Object to write information to the console and a file simultaneously

1 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'
2 $Count = (
3 Get-Service | Where-Object {
4 ($_.Status -eq 'Stopped') -and ($_.StartType -eq 'Automatic')
5 }
6).Count
7 "$FormattedDate,$Count" | Tee-Object -Path 'C:\temp\test.csv' -Append

This is useful when you want to monitor the work being done, but you also want to keep a
persistent log.

9.9 History

PowerShell has two native history providers that record the list of commands run, but not their
output.³³

The built-in history is only available within the current PowerShell session. It isn’t persistent
and not available from other open sessions.

9.9.1 Built-in History

To view this history, use Get-History³⁴:

Example 7: Using Get-History to retrieve session command history

1 # Example 7a: Get all session command history
2 Get-History
3
4 # Example 7b: Get the last 2 commands
5 Get-History -Count 2
6
7 # Example 7c: Get the 2nd command from the start of the session
8 Get-History -Id 2

Example 7a:
Id Duration CommandLine
-- -------- -----------
1 0.145 Start-Transcript…
2 0.368 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'…
3 0.276 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'…
4 0.283 $FormattedDate = Get-Date -Format 'yyyyMMddTHHmm'…
5 0.258 $FormattedDate = Get-Date -Format yyyyMMddTHHmm…

Example 7b:
Id Duration CommandLine
-- -------- -----------
5 0.258 $FormattedDate = Get-Date -Format yyyyMMddTHHmm…

³³Microsoft. (2022, Mar. 18). About History (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.core/about/about_history. [Accessed: Aug. 29, 2022].

³⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-history

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-history
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-history

Logging 269

6 0.015 Get-History

Example 7c:
Id Duration CommandLine
-- -------- -----------
1 0.145 Start-Transcript…

You can use standard PowerShell parsing to find specific commands that have run and use
Export-Csv to store the history if you desire.

For example, to find all commands in your history that include ‘UserName’, you could run:

Example 8: Finding commands with the term ‘UserName’

1 Get-History |
2 Where-Object CommandLine -Like '*UserName*' |
3 Export-Csv 'C:\temp\history.csv'

9.9.2 PSReadline History

PSReadline is a cross-platform module that stores information on disk, so it’s available to
all sessions on your system.³⁵ Unlike the built-in history, PSReadline history is kept between
sessions. You can also use the module’s command and argument completion, called Predictive
IntelliSense.³⁶ To find the path where PSReadLine stores command history, use:

Example 8: Finding commands with the term ‘UserName’

(Get-PSReadlineOption).HistorySavePath

C:\Users\User\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\
ConsoleHost_history.txt

Command history on Linux is stored in the following location:

/home/<USERNAME>/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

Command history on Windows is located here:

³⁵Microsoft. (2022, Jul. 25). About PSReadLine. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/-
module/psreadline/about/about_psreadline. [Accessed: Aug. 29, 2022].

³⁶Microsoft. (2022, Aug. 17). Using predictors in PSReadLine. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/powershell/scripting/learn/shell/using-predictors. [Accessed: Aug. 29, 2022].

https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/using-predictors
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/using-predictors

Logging 270

C:\Users\<USERNAME>\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\
ConsoleHost_history.txt

These files provide logging of the commands run, but not their output.

It’s possible to clean the history file. You would do this to remove typos or mistakes so the
autocompleted items in your history are correct, and don’t cause future confusion or problems.

If you accidentally enter secrets in plain text as part of a command, you’ll have to edit this file to
remove them from history. Many engineers and developers have accidentally typed passwords
into username fields or started typing a second command, not realizing there was already text
in the console. Being able to fix mistakes like these can be done quickly and easily.

If you’re using VS Code (Visual Studio Code), this command opens the history file for review
and editing:

Example 9: Opening the PSReadline history file in VS Code

code (Get-PSReadlineOption).HistorySavePath

As an example, here’s a typo from the history file:

1 clsGet-Process -IncludeUserName | Where-Object { $null -ne $_.UserName } |
2 Select-Object Name,Username

Once in the history, this will be the first highlighted option shown by Predictive IntelliSense
when you type cls. To fix issues like this, open the history file, use the find command to locate
the typo, delete the row containing the typo, and save the file. Once those steps are completed,
and you start a new session, the IntelliSense suggestion will no longer be presented.

9.9.3 Writing to Windows Event Logs

• Pro: Logs can be pulled to a central location using existing tooling already deployed for log
management.

• Pro: After registering a provider, you can write to the Application log without administra-
tive rights.

• Con: You must perform a one-time configuration step, requiring administrative rights
(elevation), before using this approach.

• Con: No cross-platform support.
• Con: Only available in Windows PowerShell.

Be sure to validate the event log retention settings if you’re going to rely on this solution.

Ahead is a simple example function to show how you can write data to Windows Event logs.
While you can create custom event logs, using the existing Application log and registering

Logging 271

a custom provider allows data to be handled by existing event collection engines without
additional modifications.

Creating your own message and category resource files for your event IDs and categories will
also simplify validation and alerting.³⁷

Example 10: Writing to the Windows event log in Windows PowerShell

1 function Write-PS5Event {
2 param (
3 [Parameter(Mandatory = $true)]
4 $Message,
5 [Parameter(Mandatory = $true)]
6 $EventID,
7 [Parameter(Mandatory = $true)]
8 [ValidateSet('Warning', 'Error', 'Information')]
9 $EventLevel

10)
11
12 $SourceName = 'MyPS5Log'
13 $ErrorActionPreference = 'Stop'
14
15 # Create the EventLog Source
16 if (-not [System.Diagnostics.EventLog]::SourceExists($SourceName)) {
17 Write-Verbose (
18 'EventSource was missing, attempting to add. This will fail' +
19 ' if not running in an elevated PowerShell session'
20)
21 New-EventLog -LogName Application -Source $SourceName
22 }
23
24 Write-Verbose $Message
25 $EventLogParams = @{
26 LogName = 'Application'
27 Source = $SourceName
28 EventID = $EventID
29 EntryType = $EventLevel
30 Message = $Message
31 Category = $EventID
32 }
33 Write-EventLog @EventLogParams
34 }

The function first checks if an event source with the name ‘MyPS5Log’ exists and, if not, creates
it. This step requires elevation and fails otherwise. It then writes an event to the Application
event log using the source name.

9.9.4 Cloud Shell

Once configured, Azure Cloud Shell³⁸ has access to persistent storage.³⁹ This storage can store
script files and hold the output of the scripts.

³⁷Microsoft. (2021, Jul. 01). Message Files. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/windows/
win32/eventlog/message-files. [Accessed: Aug. 29, 2022].

³⁸https://learn.microsoft.com/en-us/azure/cloud-shell/overview
³⁹Microsoft. (2022, Mar. 01). Persist files in Azure Cloud Shell. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-

us/azure/cloud-shell/persisting-shell-storage. [Accessed: Aug. 29, 2022].

https://learn.microsoft.com/en-us/azure/cloud-shell/overview
https://learn.microsoft.com/en-us/windows/win32/eventlog/message-files
https://learn.microsoft.com/en-us/windows/win32/eventlog/message-files
https://learn.microsoft.com/en-us/azure/cloud-shell/overview
https://learn.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage
https://learn.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage

Logging 272

Cloud Shell configuration is beyond the scope of this chapter, but you can read more in the
Persisting Shell Storage⁴⁰ article on Microsoft Docs.

You can use this storage in the same way as any local storage. For example, to list all Azure
Resource Group names in your subscription, you can run:

Example 11: Displaying Azure Resource Group Names

Get-AzResourceGroup |
Select-Object ResourceGroupName |
Out-File ./output/ResourceGroups.txt

To create a list of all Azure AD users, and write the output to a file, you could run the following
in Cloud Shell:

Example 12: Logging an Azure AD user list to a file

1 Connect-AzureAD
2
3 Get-AzureADUser |
4 Select-Object UserPrincipalName, DisplayName |
5 Out-File ./output/AzureUserList.txt

To see the output, you can access it as you would any other file. To do so from the shell itself,
use Get-Content to read the file into the console:

Example 13: Reading logs directly in Azure Cloud Shell

1 # Example 13a: Displaying resource groups list
2 Get-Content ./output/ResourceGroups.txt
3
4 # Example 13b: Displaying AD users list
5 Get-Content ./output/AzureUserList.txt

1 # Example 13a:
2 ResourceGroupName
3 -----------------
4 MyTestApp
5
6 # Example 13b:
7 UserPrincipalName DisplayName
8 ----------------- -----------
9 JaneDoe@contoso.onmicrosoft.com Jane Doe

You could also open it in the web version of VS Code if you need to change it as well:

⁴⁰https://learn.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage

https://learn.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage
https://learn.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage

Logging 273

Example 14: Opening logs in VS Code for the Web

1 code ./output/ResourceGroups.txt
2 code ./output/AzureUserList.txt

You can see from these examples that you can specify a relative path in Cloud Shell. Without
specifying the path, file names are relative to the current directory, as in other shells.

If you desire, you can also enable transcription logs for your Cloud Shell sessions. While you can
do this manually as you would in any local session, you can also create a profile that will start
transcription with the launch of any future session.

From within a Cloud Shell session, edit your profile by opening the current user all hosts profile
file with VS Code for the Web.

Example 15: Opening the PowerShell profile for modification in Cloud Shell

code $PROFILE.CurrentUserAllHosts

Add the following two lines to your profile to create a new transcription log file each time you
launch Cloud Shell.

Example 16: Code for the Cloud Shell profile to start transcription

$Now = Get-Date -Format 'yyyyMMddTHHmm'
Start-Transcript "./Transcripts/Transcript-$Now.txt"

If the path you enter doesn’t exist, Start-Transcript creates intermediate folders
automatically.

9.9.5 Using Third Party modules for logging

The primary emphasis in this chapter is covering the built-in tools available within the different
editions of PowerShell. However, there are third party modules that can be configured to hide
much of the complexity involved in creating logs.

The PSFramework module includes the ability to simplify logging as just one of its many
features.⁴¹

Going in depth with this module would require an entire chapter of its own, and there have
been multiple conference sessions on the subject. You can find out more about the PSFramework
module on the PSFramework Website⁴².

⁴¹PowerShell Framework Collective. (2021, Jan. 18). PowerShell Framework - The Logging System. PowerShell Framework Documen-
tation. [Online]. Available: https://psframework.org/documentation/documents/psframework/logging.html. [Accessed: Aug. 28, 2022].

⁴²https://psframework.org/

https://psframework.org/
https://psframework.org/documentation/documents/psframework/logging.html
https://psframework.org/

Logging 274

9.10 Summary

This has been a relatively brief chapter, but you should now have a better grasp of the logging
options available to you in PowerShell. Start with the questions on why you’re logging the
data—and who’ll consume it—to help you choose the options you need to meet your logging
requirements.

Understand that several options have changed from Windows PowerShell to PowerShell. Con-
versely, several options work in the same way regardless of the edition and platform on which
they’re run.

Finally, realize that there are exceptional third-party modules available that may have already
solved the problem in front of you.

9.11 Further Reading

• Script Tracing and Logging—Microsoft Docs⁴³
• About Event Logs (Windows PowerShell 5)—Microsoft Docs⁴⁴
• About Windows Logging (Windows PowerShell 5)—Microsoft Docs⁴⁵
• About Windows Logging—Microsoft Docs⁴⁶
• About Non-Windows Logging—Microsoft Docs⁴⁷
• About History—Microsoft Docs⁴⁸
• About PSReadLine—Microsoft Docs⁴⁹
• About PowerShell Config—Microsoft Docs⁵⁰
• PSReadLine—PowerShell Gallery⁵¹
• PSFramework—PowerShell Gallery⁵²
• SecretManagement—PowerShell Gallery⁵³

⁴³https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/script-logging
⁴⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs?view=powershell-5.1
⁴⁵https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging?view=powershell-5.1
⁴⁶https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows
⁴⁷https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows
⁴⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
⁴⁹https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline
⁵⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_config
⁵¹https://www.powershellgallery.com/packages/PSReadLine
⁵²https://www.powershellgallery.com/packages/PSFramework
⁵³https://www.powershellgallery.com/packages/Microsoft.PowerShell.SecretManagement

https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/script-logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_config
https://www.powershellgallery.com/packages/PSReadLine
https://www.powershellgallery.com/packages/PSFramework
https://www.powershellgallery.com/packages/Microsoft.PowerShell.SecretManagement
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/wmf/whats-new/script-logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_eventlogs?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging?view=powershell-5.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_config
https://www.powershellgallery.com/packages/PSReadLine
https://www.powershellgallery.com/packages/PSFramework
https://www.powershellgallery.com/packages/Microsoft.PowerShell.SecretManagement

10. Infrastructure as Code (IaC)
This chapter covers the concepts, technical elements, and benefits of IaC. It also provides common
guidance for developing your IaC artifacts. It introduces the concept of Configuration as Code
(CaC) with PowerShell Desired State Configuration (DSC) and its use cases.

IaC and PowerShell aren’t restricted to a specific platform.¹ However, considering
PowerShell is a Microsoft product, the examples used in this chapter demonstrate the
provisioning and configuration of resources in Microsoft Azure. You can create a free
trial account² in Microsoft Azure.

10.1 Overview

Historically, datacenters’ infrastructure was built by manual processes and the use of configura-
tion tools requiring human interaction.³ However, with the rise of virtualization and the advent
of cloud computing, scalability became an issue. Large infrastructure deployments were labor-
intensive, inefficient, and plagued with configuration drift and human error. For this reason, the
concept of Infrastructure as Code was born as a method to solve these problems and automate
the deployment of infrastructure resources.

Imagine the sizes of Microsoft, Google, and Amazon cloud infrastructures and the challenges
they would face if they were to provision and configure all their infrastructure manually. You
can’t because it would be impossible and would not scale. IaC is one of many concepts engineers
envisioned to solve those problems and make large-scale deployments feasible.

It’s important to note that IaC isn’t only for cloud computing. You can apply the same concept
to virtual servers or physical hardware hosted on-premises.

10.2 IaC Key Concepts

IaC is the DevOps practice of defining configuration files, usually stored in source control, to
automate the provisioning of your infrastructure. These configuration files fall into two distinct
categories.⁴

• Imperative IaC: You make use of scripts—such as PowerShell and Bash scripts—to define
a series of steps to provision the infrastructure.

¹Microsoft. (2021, Jun. 29). What is Infrastructure as Code?. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/devops/deliver/what-is-infrastructure-as-code. [Accessed: Jul. 09, 2022].

²https://azure.microsoft.com/en-us/free/
³Rendón, D. (2022, Jan.).Why Infrastructure as Code?. In: Building Applications with Azure Resource Manager (ARM). Berkeley, CA:

Apress. ISBN: 978-1-4842-7747-8.
⁴Microsoft. (2021, Jun. 29). What is Infrastructure as Code?. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-

us/devops/deliver/what-is-infrastructure-as-code. [Accessed: Jul. 09, 2022].

275

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://azure.microsoft.com/en-us/free/
https://doi.org/10.1007/978-1-4842-7747-8_1
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

Infrastructure as Code (IaC) 276

• Declarative IaC: You declare how the infrastructure should be and tools—such as Azure
Resource Manager (ARM), AmazonWeb Services (AWS) CloudFormation, and Terraform—
take care of the outcome.

This chapter focuses on Imperative IaC as it relates to PowerShell and Declarative IaC as it
relates to PowerShell DSC.

It’s also important to define the concepts of idempotency and immutability as they’re important
to IaC.

• Idempotency: An infrastructure resource is idempotent when, independently of howmany
times you deploy it, the results are always the same.

• Immutability: An immutable infrastructure resource never changes. If the resource needs
to be patched or tweaked, it’s destroyed and redeployed.

Declarative IaC is the most common implementation of IaC. In the examples used in
this chapter, the infrastructure would most likely be deployed using tools such as Azure
ARM templates, Azure Biceps, or Terraform.

10.3 IaC Benefits

IaC brings several benefits for organizations that implement it, ranging from cost savings to
increased scalability. The following are some examples:

• Scalability: IaC introduces a high level of automation which allows you to provision entire
infrastructure stacks as code.

• Cost: IaC reduces the effort required to deploy, maintain and troubleshoot infrastructure
resources, thus decreasing the operational cost.

• Consistency: You can provision entire environments—such as non-production and
production—and be confident they’re the same because they’re deployed using the same
code.

• Speed: You can deploy infrastructure resources in minutes if not seconds as opposed to
doing it manually, which could take hours or even days.

• CI/CD: You can integrate your scripts and configuration files with your continuous
integration/continuous delivery pipelines to deploy entire applications.

• Source Control: All your configuration files can be stored in source control, which gives
you the ability to version your infrastructure, providing easy roll-back capabilities.

10.4 IaC Principles

To get all the benefits from IaC, follow these principles of Infrastructure as Code.

Infrastructure as Code (IaC) 277

10.4.1 Source Control as the Single Source of Truth

Store all your scripts and configuration files in a single repository. Change your infrastructure
resources by changing the code and committing to source control. To keep your source control
system as the single source of truth, only allow changes to the infrastructure from accounts used
in your CI/CD system. This principle is aligned with the key concept of idempotency.

To learn more about source control, see the Git chapter.

10.4.2 Modular

You shouldn’t define all your resources in a single script or configuration file because, in the long
term, they’ll be hard to maintain. Instead, break your code into modules. Modularizing your code
makes it easier to maintain, increases readability, and allows it to be independently deployed.

Once you have modules defined, you can build blueprints that are a combination of modules for
a specific deployment pattern. Because of the modular approach, each module can be updated
to a newer version without impacting the blueprint or deployments that use previous versions
of the module.

For example, say you create a new pattern that comprises a load-balanced two-tier web
application. You can then bring to life that pattern by creating a blueprint with the required
modules. You would create a blueprint and include the modules for the web application and the
load balancer. You can use those same modules in other patterns.

10.4.3 Versioning

The versioning and modular principles are aligned. Every time you update a module, you should
also update its version. When you version your modules, you can identify changes between
versions thatmay create unexpected issues in your infrastructure and roll back to an older version
if required. By versioning your modules, when you update them to a newer version, you won’t
impact other teams that may already have utilized the previous version. Versioning also allows
you to track what code changed and who made the changes.

10.4.4 Repeatable

The replacement of manual deployments with IaC and the abstraction of the infrastructure as
codemake the process less prone to human error and, most importantly, repeatable. This principle
aligns with the concept of idempotency. This means you should be able to deploy a piece of
code multiple times and always get the same results. Because it’s repeatable, IaC gives you the
confidence that what you’ve deployed in one environment—such as a development—will be the
same when deployed in production.

10.4.5 Disposable

This principle aligns with the concept of immutability. IaC enables you to create, replace, and
destroy resources. A classic example is the timewasted by systems admins troubleshooting issues
with servers. When using IaC, if you encounter issues with servers, you can simply destroy and
recreate them. Therefore, they’re considered disposable.

Infrastructure as Code (IaC) 278

10.4.6 Self-Documented

Infrastructure documentation is often outdated, either because people forget to update it or
unauthorized changes weren’t documented. When you write your infrastructure as code, it
becomes a minimum set of documentation. You can refer to the code and understand what
was deployed and how it was configured. In addition, when all your changes come from code
modifications rather than manual infrastructure changes, the documentation is always kept up-
to-date.

10.4.7 Testing and Monitoring

IaC is an intersection of development and operations and therefore should incorporate one of the
core practices of development teams, which is automated testing. Automated testing is important
when implementing IaC because small changes to the infrastructure can carry great impact.
There’s a variety of tests that can be performed for IaC such as unit testing, integration testing,
and smoke tests. You can use Pester⁵ to perform unit and integration tests on your PowerShell
scripts. Refer to the PowerShell Testing part of the book for more details about Pester.

You use automated testing to ensure the quality of your code and that it meets your expectations.
However, this isn’t all. You should also monitor the infrastructure that the code deployed and
continuously monitor your code to ensure that quality is maintained.

10.5 IaC in Action

Now that you’ve been introduced to the concepts, benefits, and principles of IaC, it’s time to
examine how you can use PowerShell to provision infrastructure resources.

Throughout the rest of this chapter, the examples work with a load balanced, two-tier web
application that was mentioned in an earlier section. You’re going to deploy a load balancer,
two virtual machines, and one Azure SQL server to the Microsoft Cloud.

As covered in the IaC Key Concepts section, using PowerShell scripts to deploy infrastructure is
Imperative IaC.⁶ The scripts contain a series of commands which have to be executed for the
infrastructure to reach the desired state.

For brevity, the code for connecting to an Azure subscription isn’t displayed. Azure
Resource Manager modules are also required to execute the commands covered in
this example. It’s recommended you execute the commands in Azure Cloud Shell⁷,
as modules are pre-installed and connectivity to your Azure subscription is already
established.

Following the principle of modularization, you’ll build four modules and two scripts. One
is a DSC configuration script and the other imports the modules and executes the required
commands.

⁵Pester Team. (2022, Jun. 22). Quick Start - Pester. Pester Docs. [Online]. Available: https://pester.dev/docs/quick-start. [Accessed: Jul.
10, 2022].

⁶Microsoft. (2021, Jun. 29). What is Infrastructure as Code?. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/devops/deliver/what-is-infrastructure-as-code. [Accessed: Jul. 09, 2022].

⁷https://learn.microsoft.com/en-us/azure/cloud-shell/overview

https://learn.microsoft.com/en-us/azure/cloud-shell/overview
https://pester.dev/docs/quick-start
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/azure/cloud-shell/overview

Infrastructure as Code (IaC) 279

• Azure-SQL-Server.psm1: A module to deploy an Azure SQL instance.
• Azure-Storage-Account.psm1:Amodule to deploy an Azure Storage Account where your
DSC scripts will be stored.

• Azure-Load-Balancer.psm1:Amodule to deploy an Azure Load Balancer with a public IP
address.

• Azure-Virtual-Machine.psm1:Amodule to deploy Azure VMs to an existing network and
add the VMs to the back-end pool of an Azure Load Balancer.

• Deploy-WebServer.ps1: A DSC configuration script that adds the Internet Information
Services (IIS) Windows feature and modifies the default website start page to display the
SQL database connection string.

• Two-Tier-App-Blueprint.ps1: The blueprint script that imports the four modules and calls
the required functions which deploy the resources. You can find this later in the chapter,
where it ties together all the concepts.

Each module ahead contains a single function. To simplify the provided examples, all function
parameters in the modules are optional and include default values. Comments summarize what
each function is doing.

Some examples ahead are very long, and they may be difficult to read across pages. You
can find the scripts and modules⁸ from this chapter in the Extras repository⁹ for this
book.

10.5.1 Azure-SQL-Server.psm1

Example 1: The Azure-SQL-Servermodule contains a function that creates a new Azure SQL server instance and
database, and configures the firewall for access

1 function New-AzureSQLServer {
2 param (
3 [Parameter(Mandatory = $false)]
4 [String]$RGName = 'MyApp',
5
6 [Parameter(Mandatory = $false)]
7 [String]$ServerName = 'myuniquesqlserver956x',
8
9 [Parameter(Mandatory = $false)]

10 [String]$DbName = 'mydb',
11
12 [Parameter(Mandatory = $false)]
13 [String]$Location = 'AustraliaEast',
14
15 [Parameter(Mandatory = $false)]
16 [String]$StartIP = '0.0.0.0',
17
18 [Parameter(Mandatory = $false)]
19 [String]$EndIP = '0.0.0.0',
20
21 [Parameter(Mandatory = $false)]
22 [String]$User = 'sqladmin',
23

⁸https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/IaC/Scripts/
⁹https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/IaC/Scripts/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/IaC/Scripts/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Infrastructure as Code (IaC) 280

24 [Parameter(Mandatory = $false)]
25 [String]$Password = 'MyC0mplexP@ssWord!'
26)
27
28 ## Create Resource Group if it doesn't exist
29 if (-not (Get-AzResourceGroup -Name $RGName -ea:si)) {
30 $Rg = New-AzResourceGroup -Name $RGName -Location $Location
31 }
32
33 ## Create a username and password for the SQL server.
34 ## You wouldn't have credentials in your code.
35 ## This is for demonstration purposes only.
36 $Pw = ConvertTo-SecureString $Password -AsPlainText -Force
37 $Cred = New-Object PSCredential $User, $Pw
38
39 ## Create SQL Server
40 $SqlParams = @{
41 ResourceGroupName = $RGName
42 ServerName = $ServerName
43 Location = $Location
44 SqlAdministratorCredentials = $Cred
45 }
46
47 $Server = New-AzSqlServer @SqlParams
48
49 ## Create firewall rule allowing access from the specified IP range
50 $FwRuleParams = @{
51 ResourceGroupName = $RGName
52 ServerName = $ServerName
53 FirewallRuleName = 'AllowedIPs'
54 StartIpAddress = $StartIP
55 EndIpAddress = $EndIP
56 }
57
58 $ServerFirewallRule = New-AzSqlServerFirewallRule @FwRuleParams
59
60 ## Create a blank database with an S0 performance level
61 $DbParams = @{
62 ResourceGroupName = $RGName
63 ServerName = $ServerName
64 DatabaseName = $DbName
65 RequestedServiceObjectiveName = 'S0'
66 SampleName = 'AdventureWorksLT'
67 }
68
69 $Database = New-AzSqlDatabase @DbParams
70
71 ## Return database connection string
72 $ConnectionString = @(
73 "Server=tcp:$ServerName.database.windows.net,1433;",
74 "Database=$DbName;",
75 "User ID=$User;",
76 "Password=$Password;",
77 "Trusted_Connection=False;",
78 "Encrypt=True;"
79)
80
81 return $ConnectionString
82
83 }

Infrastructure as Code (IaC) 281

10.5.2 Azure-Storage-Account.psm1

Example 2: The Azure-Storage-Account contains a function that creates a new Azure storage account

1 function New-AzureStorageAccount {
2 param (
3 [Parameter(Mandatory = $false)]
4 [String]$RGName = 'MyApp',
5
6 [Parameter(Mandatory = $false)]
7 [String]$StorageAccountName = 'myuniquestorage593x',
8
9 [Parameter(Mandatory = $false)]

10 [String]$Location = 'AustraliaEast'
11)
12
13 ## Create Resource Group if it doesn't exist
14 if (-not (Get-AzResourceGroup -Name $RGName -ea:si)) {
15 $Rg = New-AzResourceGroup -Name $RGName -Location $Location
16 }
17
18 ## Create Storage Account
19 $StorageAccountParams = @{
20 Name = $StorageAccountName
21 ResourceGroupName = $RGName
22 Location = $Location
23 SkuName = 'Standard_LRS'
24 Kind = 'StorageV2'
25 }
26
27 $StorageAccount = New-AzStorageAccount @StorageAccountParams
28
29 return $StorageAccount.StorageAccountName
30 }

10.5.3 Azure-Load-Balancer.psm1

Example 3: The Azure-Load-Balancer module contains a function that creates a new Azure load balancer and
configures the necessary resources

1 function New-AzureLoadBalancer {
2 param (
3 [Parameter(Mandatory = $false)]
4 [String]$RGName = 'MyApp',
5
6 [Parameter(Mandatory = $false)]
7 [String]$LbName = 'MyLb',
8
9 [Parameter(Mandatory = $false)]

10 [String]$Location = 'AustraliaEast'
11)
12
13 ## Create Resource Group if it doesn't exist
14 if (-not (Get-AzResourceGroup -Name $RGName -ea:si)) {
15 $Rg = New-AzResourceGroup -Name $RGName -Location $Location
16 }
17
18 ## Create public ip and place in variable
19 $PublicIPParams = @{

Infrastructure as Code (IaC) 282

20 Name = "$LbName-pip"
21 ResourceGroupName = $RGName
22 Location = $Location
23 Sku = 'Basic'
24 AllocationMethod = 'static'
25 }
26
27 $Pip = New-AzPublicIpAddress @PublicIPParams
28
29 ## Create load balancer frontend configuration and place in variable
30 $FeIPParams = @{
31 Name = 'fePool'
32 PublicIpAddress = $Pip
33 }
34
35 $FeIP = New-AzLoadBalancerFrontendIpConfig @FeIPParams
36
37 ## Create Backend address pool configuration and place in variable
38 $BePool = New-AzLoadBalancerBackendAddressPoolConfig -Name 'bePool'
39
40 ## Create the health probe and place in variable
41 $ProbeParams = @{
42 Name = 'healthProbe'
43 Protocol = 'http'
44 Port = '80'
45 IntervalInSeconds = '360'
46 ProbeCount = '5'
47 RequestPath = '/'
48 }
49
50 $HealthProbe = New-AzLoadBalancerProbeConfig @ProbeParams
51
52 ## Create the load balancer rule and place in variable
53 $LbRuleParams = @{
54 Name = 'HTTPRule'
55 Protocol = 'tcp'
56 FrontendPort = '80'
57 BackendPort = '80'
58 IdleTimeoutInMinutes = '15'
59 FrontendIpConfiguration = $FeIP
60 BackendAddressPool = $BePool
61 }
62
63 $Rule = New-AzLoadBalancerRuleConfig @LbRuleParams
64
65 ## Create the load balancer resource
66 $LoadBalancerParams = @{
67 ResourceGroupName = $RGName
68 Name = $LbName
69 Location = $Location
70 Sku = 'Basic'
71 FrontendIpConfiguration = $FeIP
72 BackendAddressPool = $BePool
73 LoadBalancingRule = $Rule
74 Probe = $HealthProbe
75 }
76
77 $Lb = New-AzLoadBalancer @LoadBalancerParams
78
79 return $Pip.IpAddress
80
81 }

Infrastructure as Code (IaC) 283

10.5.4 Azure-Virtual-Machine.psm1

Example 4: The Azure-Virtual-Machine module contains a function that creates and configures a new Azure
Windows Server VM

1 function New-AzureVirtualMachine {
2 param (
3 [Parameter(Mandatory = $false)]
4 [String]$RGName = 'MyApp',
5
6 [Parameter(Mandatory = $false)]
7 [String]$VmBaseName = 'MyVM',
8
9 [Parameter(Mandatory = $false)]

10 [int]$VMInstances = 2,
11
12 [Parameter(Mandatory = $false)]
13 [String]$LbName = 'MyLb',
14
15 [Parameter(Mandatory = $false)]
16 [String]$PoolName = 'BEPool',
17
18 [Parameter(Mandatory = $false)]
19 [String]$VnetName = 'VNet-01',
20
21 [Parameter(Mandatory = $false)]
22 [String]$VnetRGName = 'Connectivity',
23
24 [Parameter(Mandatory = $false)]
25 [String]$SubnetName = 'default',
26
27 [Parameter(Mandatory = $false)]
28 [String]$Location = 'AustraliaEast',
29
30 [Parameter(Mandatory = $false)]
31 [String]$User = 'iacadmin',
32
33 [Parameter(Mandatory = $false)]
34 [String]$Password = 'MyC0mplexP@ssWord!'
35)
36
37 ## Create Resource Group if it doesn't exist
38 if (-not (Get-AzResourceGroup -Name $RGName -ea:si)) {
39 $Rg = New-AzResourceGroup -Name $RGName -Location $Location
40 }
41
42 ## Get vnet, subnet and Backend pool objects
43 $VnetParams = @{
44 Name = $VnetName
45 ResourceGroupName = $VnetRGName
46 }
47
48 $Vnet = Get-AzVirtualNetwork @VnetParams
49 $Subnet = Get-AzVirtualNetworkSubnetConfig -VirtualNetwork $Vnet
50
51 $BePoolParams = @{
52 ResourceGroupName = $RGName
53 LoadBalancerName = $LbName
54 Name = $PoolName
55 }
56
57 $BePool = Get-AzLoadBalancerBackendAddressPool @BePoolParams
58
59 ## Deploy Availability Set

Infrastructure as Code (IaC) 284

60 $AvSetParams = @{
61 Location = $Location
62 Name = "$VMBaseName-avset"
63 ResourceGroupName = $RGName
64 Sku = 'Aligned'
65 PlatformFaultDomainCount = 2
66 PlatformUpdateDomainCount = 2
67 }
68
69 $AvSet = New-AzAvailabilitySet @AvSetParams
70
71 for ($i = 1; $i -lt $VMInstances + 1; $i++) {
72 $Id = '{0:d3}' -f $i
73
74 ## Create network interface
75 $NicParams = @{
76 ResourceGroupName = $RGName
77 Location = $Location
78 Name = "$VmBaseName$id-nic"
79 LoadBalancerBackendAddressPool = $BePool
80 Subnet = $Subnet
81 }
82
83 $Nic = New-AzNetworkInterface @NicParams
84
85 ## Create a username and password for the virtual machine.
86 ## You wouldn't have credentials in your code.
87 ## This is for demonstration purposes only.
88 $Pw = ConvertTo-SecureString $Password -AsPlainText -Force
89 $Cred = New-Object PSCredential $User, $Pw
90
91 ## Create a virtual machine configuration
92 $VmSize = 'Standard_DS1_v2'
93 $Pub = 'MicrosoftWindowsServer'
94 $Offer = 'WindowsServer'
95 $Sku = '2019-Datacenter'
96
97 $VmConfigParams = @{
98 VMName = "$VmBaseName$Id"
99 VMSize = $VmSize

100 AvailabilitySetId = $($AvSet.Id)
101 }
102
103 $VMOSParams = @{
104 Windows = $true
105 ComputerName = "$VmBaseName$Id"
106 Credential = $Cred
107 }
108
109 $VMSourceImageParams = @{
110 PublisherName = $Pub
111 Offer = $Offer
112 Skus = $Sku
113 Version = 'latest'
114 }
115
116 $VMNicParams = @{
117 Id = $Nic.Id
118 }
119
120 $VmConfig = New-AzVMConfig @VmConfigParams
121 $VmConfig = $VmConfig | Set-AzVMOperatingSystem @VMOSParams
122 $VmConfig = $VmConfig | Set-AzVMSourceImage @VMSourceImageParams
123 $VmConfig = $VmConfig | Add-AzVMNetworkInterface @VMNicParams

Infrastructure as Code (IaC) 285

124
125 ## Create a virtual machine using the configuration
126 $VmParams = @{
127 ResourceGroupName = $RGName
128 Location = $Location
129 VM = $VmConfig
130 }
131
132 New-AzVM @VmParams
133 }
134 }

At this point, your resources should be deployed. However, you still don’t have your desired state
because no configuration was performed. You still need to configure the servers as web servers
and set the connection string to point to the SQL server. This is where Configuration as Code
complements IaC.

Because you aren’t deploying a full application with source code, you’ll just display the
connection string on the home page so you understand how file manipulation works in
DSC.

10.6 Configuration as Code (CaC)

CaC is a different concept from IaC. However, it falls under the umbrella of IaC, where CaC
can be categorized as an enabler of IaC. CaC configures infrastructure resources after they’re
provisioned by IaC. If you want to provision a Windows virtual machine (VM) with IIS installed
and configured, first use IaC to provision the VM and its dependent resources. You can then use
CaC to install and configure IIS on that VM.

10.6.1 PowerShell Desired State Configuration (DSC)

PowerShell DSC isn’t the same as PowerShell.¹⁰ DSC is a feature introduced with PowerShell 4.0
that leverages the PowerShell scripting language to enable you to configure your infrastructure
resources in a declarative way. DSC can help you have the correct configuration and avoid
configuration drift.

PowerShell DSC scripts comprise three main blocks:

• Configurations: This is the outermost part of the script defined by the Configuration
keyword.¹¹ It can contain one or more Node blocks and one or more Resource blocks.

• Nodes: These are the targets of the configuration.¹² You can define multiple computer
names in a Node block.

¹⁰Microsoft. (2021, Dec. 15). PowerShell Desired State Configuration (DSC) Overview. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/scripting/dsc/overview. [Accessed: Jul. 10, 2022].

¹¹Microsoft. (2022, Jun. 06). DSC Configurations. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/d-
sc/configurations/configurations. [Accessed: Jul. 10, 2022].

¹²Microsoft. (2021, Dec. 13). Apply, Get, and Test Configurations on a Node. Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test. [Accessed: Jul. 10, 2022].

https://learn.microsoft.com/en-us/powershell/scripting/dsc/overview
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configurations
https://learn.microsoft.com/en-us/powershell/dsc/configurations/configurations
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test

Infrastructure as Code (IaC) 286

• Resources: This is where you define the properties of a Resource that sets the desired state
of your configuration.¹³

The Local Configuration Manager (LCM) is the DSC engine that ensures the state you’ve defined
in Configurations is achieved and maintained.¹⁴

PowerShell DSC scripts have the same .ps1 extension as PowerShell scripts. The code snippet
below is an example of a Configuration that declares a Resource of type WindowsFeature¹⁵
and name Web-Server, should be present in the specified Node. It contains a second Script
resource,¹⁶ called EditStartPage, that modifies the IIS start page to display a custom message.

Example 5: Deploy-WebServer.ps1 is a DSC script that installs IIS and adds some custom data to the default start
page

1 Configuration Configure-IISServer
2 {
3 param (
4 [String[]]$ComputerName = 'localhost',
5 [String]$ConnectionString
6)
7 Node $ComputerName
8 {
9 ## Install IIS

10 WindowsFeature AddIIS {
11 Ensure = 'Present'
12 Name = 'Web-Server' # Internal name for IIS
13 }
14 ## Manipulate home page to display custom strings
15 Script EditStartPage {
16 GetScript = { @{ Result = { "" } } }
17 SetScript = {
18 $GetContentParams = @{
19 Path = "$env:SystemDrive\inetpub\wwwroot\iisstart.htm"
20 }
21 $File = Get-Content @GetContentParams
22 $NewFile = $File | ForEach-Object {
23 $_
24 if ($_ -match 'IIS Windows Server') {
25 '<h1>IaC and CaC: Better Together!</h1>'
26 "<h2>Connection String is $using:ConnectionString</h2>"
27 }
28 }
29 $SetContentParams = @{
30 Value = $NewFile
31 Path = "$env:SystemDrive\inetpub\wwwroot\iisstart.htm"
32 }
33 Set-Content @SetContentParams
34 }
35 TestScript = {
36 $GetContentParams = @{
37 Path = "$env:SystemDrive\inetpub\wwwroot\iisstart.htm"
38 }
39 $Content = Get-Content @GetContentParams

¹³Microsoft. (2021, Dec. 13). DSC Resources. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/dsc/re-
sources/resources. [Accessed: Jul. 10, 2022].

¹⁴Microsoft. (2021, Dec. 15).Configuring the Local ConfigurationManager. Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/dsc/managing-nodes/metaconfig. [Accessed: Jul. 10, 2022].

¹⁵Microsoft. (2021, Dec. 13). DSC WindowsFeature Resource. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/powershell/dsc/reference/resources/windows/windowsfeatureresource. [Accessed: Jul. 10, 2022].

¹⁶Microsoft. (2021, Dec. 13). DSC Script Resource. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershel-
l/dsc/reference/resources/windows/scriptresource. [Accessed: Jul. 10, 2022].

https://learn.microsoft.com/en-us/powershell/dsc/resources/resources
https://learn.microsoft.com/en-us/powershell/dsc/resources/resources
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/metaconfig
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/metaconfig
https://learn.microsoft.com/en-us/powershell/dsc/reference/resources/windows/windowsfeatureresource
https://learn.microsoft.com/en-us/powershell/dsc/reference/resources/windows/windowsfeatureresource
https://learn.microsoft.com/en-us/powershell/dsc/reference/resources/windows/scriptresource
https://learn.microsoft.com/en-us/powershell/dsc/reference/resources/windows/scriptresource

Infrastructure as Code (IaC) 287

40 if ($Content -match 'IaC and CaC') { return $true }
41 else { return $false }
42 }
43 }
44 }
45 }

Use the $using: scope modifier¹⁷ to access variables in the DSC script file from within
a script resource block.

The code in the example behaves as a PowerShell function. You can test this configuration by
adding the configuration name Configure-IISServer to the end of the script and running it,
or by “dot-sourcing” it and calling it as a function from within PowerShell.

The following is an example of using the “dot-sourcing” method and calling the function with
no arguments.

Example 6: Load and run DSC configurations by dot-sourcing and running them as functions

1 . .\Deploy-WebServer.ps1
2 Configure-IISServer

Directory: C:\DSC\Configure-IISServer

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/11/2021 5:48 PM 1984 localhost.mof

The following is how you can pass multiple computer names as arguments.

Example 7: You can run DSC configurations with parameters

1 . .\Deploy-WebServer.ps1
2 Configure-IISServer -ComputerName @('server01','server02')

¹⁷Microsoft. (2022, Mar. 18). About Remote Variables. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/power-
shell/module/microsoft.powershell.core/about/about_remote_variables. [Accessed: Jul. 12, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_variables
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_variables

Infrastructure as Code (IaC) 288

Directory: C:\DSC\Configure-IISServer

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/11/2021 4:56 PM 1982 server01.mof
-a---- 9/11/2021 4:56 PM 1982 server02.mof

Per the results in the example, two Managed Object Format (MOF) files are created inside a new
folder that has the same name as the Configuration block. These MOF files contain what you
defined in your Configuration block. The data in the MOF files is formatted so that it can be
applied using Windows Management Instrumentation (WMI). PowerShell generates one MOF
file per node.¹⁸

You can apply those configurations by running the following PowerShell cmdlet from the same
folder where you executed the previous script.

Example 8: Applying the Configure-IISServer DSC configuration locally

1 Start-DscConfiguration -Path .\Configure-IISServer

Id Name PSJobTypeName State HasMoreData Location Command
-- ---- ------------- ----- ----------- -------- -------
1 Job1 Configuratio... Running True localhost Start-DscConfiguration...

To check the status of the DSC configuration, use Get-DscConfigurationStatus.¹⁹

Example 9: Checking the DSC configuration status

1 Get-DscConfigurationStatus

Status Type Mode RebootRequested NumberOfResources
------ ---- ---- --------------- -----------------
Success Initial PUSH False 2

From the results, you can see the configuration was applied successfully to two resources (AddIIS
and EditStartPage) and no reboot is required. The Type is Initial since you’re applying a new
configuration. Consistency checks made by the LCM show up as the Consistency type.

You can pass the -All switch parameter to display all configuration status history. The output
also contains a property named Mode that represents the LCM Refresh Mode, which can be
Disabled, Push, or Pull.²⁰

¹⁸Microsoft. (2021, Dec. 13). Apply, Get, and Test Configurations on a Node. Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test. [Accessed: Jul. 10, 2022].

¹⁹Microsoft. (2022, Apr. 11). Get-DscConfigurationStatus. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/powershell/module/PSDesiredStateConfiguration/Get-DscConfigurationStatus. [Accessed: Jul. 12, 2022].

²⁰Microsoft. (2021, Dec. 13). Enacting configurations. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/power-
shell/dsc/pull-server/enactingconfigurations. [Accessed: Jul. 10, 2022].

https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
https://learn.microsoft.com/en-us/powershell/module/PSDesiredStateConfiguration/Get-DscConfigurationStatus
https://learn.microsoft.com/en-us/powershell/module/PSDesiredStateConfiguration/Get-DscConfigurationStatus
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingconfigurations
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingconfigurations

Infrastructure as Code (IaC) 289

• Disabled: DSC configurations are disabled for that specific node
• Push: You have to manually initiate the configuration by calling Start-
DscConfiguration. This is the mode used in the previous examples.

• Pull: The configuration is pulled from a pull service or Server Message Block (SMB) path
on a specified interval.

To list the DSC configurations and associated resources on the current node, use Get-
DscConfigurationStatus.²¹

Example 10: Checking all DSC configurations on the current node

1 Get-DscConfiguration | Select-Object ConfigurationName, ResourceId

ConfigurationName ResourceId
----------------- ----------
Configure_IISServer [WindowsFeature]InstallIIS
Configure_IISServer [Script]EditStartPage

The LCM has many other settings that you can change. Refer to Configuring the Local Configu-
ration Manager²² for more information on these.

For more information about DSC in general, refer to The DSC Book²³ by Don Jones and Missy
Januszko.

10.6.2 CaC in Action

The previous section described how to use PowerShell DSC triggered locally on a computer.
You’ll now use PowerShell DSC to configure your remote Azure virtual machines.

For simplicity, DSC configurations are stored in an Azure Storage Account. However, for more
advanced scenarios, you can use an Azure Automation Account.

Imagine you’ve already deployed the Azure SQL server, storage account, and load balancer
covered in previous sections. Using the Deploy-WebServer.ps1 DSC script as an example, the
code snippet below installs IIS to a VM named MyVM001.

²¹Microsoft. (2022, Apr. 11). Get-DscConfiguration. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/powershell/module/PSDesiredStateConfiguration/Get-DscConfiguration. [Accessed: Jul. 12, 2022].

²²https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
²³https://leanpub.com/the-dsc-book

https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
https://leanpub.com/the-dsc-book
https://learn.microsoft.com/en-us/powershell/module/PSDesiredStateConfiguration/Get-DscConfiguration
https://learn.microsoft.com/en-us/powershell/module/PSDesiredStateConfiguration/Get-DscConfiguration
https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
https://leanpub.com/the-dsc-book

Infrastructure as Code (IaC) 290

Example 11: These two commands publish DSC configurations to Azure storage and apply them to VMs

1 $ResourceGroup = 'MyApp'
2 $VmName = 'MyVM001'
3 $StorageName = 'myuniquestorage593x'
4
5 ## Publish the configuration script to user storage
6 $DSCConfigurationParams = @{
7 ConfigurationPath = '.\Deploy-WebServer.ps1'
8 ResourceGroupName = $ResourceGroup
9 StorageAccountName = $StorageName

10 Force = $true
11 }
12
13 Publish-AzVMDscConfiguration @DSCConfigurationParams
14
15 ## Set the VM to run the DSC configuration
16 $DSCExtensionParams = @{
17 Version = '2.76'
18 ResourceGroupName = $ResourceGroup
19 VMName = $VmName
20 ArchiveStorageAccountName = $StorageName
21 ArchiveBlobName = 'Deploy-WebServer.ps1.zip'
22 AutoUpdate = $true
23 ConfigurationName = 'Configure-IISServer'
24 }
25
26 Set-AzVMDscExtension @DSCExtensionParams

The next logical step is to incorporate the code snippet into the Azure-Virtual-Machine module.

Add this to the bottom of the New-AzureVirtualMachine function of your Azure-Virtual-
Machine.psm1 module file:

Example 12: Add the Azure DSC configuration code to the Azure-Virtual-Machine module

1 for ($i = 1; $i -lt $VMInstances + 1; $i++) {
2
3 $Instance = '{0:d3}' -f $i
4
5 ## Publish the configuration script to user storage
6 $DSCConfigurationParams = @{
7 ConfigurationPath = "$PSScriptRoot\Deploy-WebServer.ps1"
8 ResourceGroupName = $RGName
9 StorageAccountName = $StorageAccountName

10 Force = $true
11 }
12
13 Publish-AzVMDscConfiguration @DSCConfigurationParams
14
15 ## Set the VM to run the DSC configuration
16 $DSCExtensionParams = @{
17 Version = '2.76'
18 ResourceGroupName = $RGName
19 VMName = "$VmBaseName$Instance"
20 ArchiveStorageAccountName = $StorageAccountName
21 ArchiveBlobName = 'Deploy-WebServer.ps1.zip'
22 AutoUpdate = $true
23 ConfigurationName = 'Configure-IISServer'
24 ConfigurationArgument = @{
25 ConnectionString = $ConnectionString
26 }

Infrastructure as Code (IaC) 291

27 }
28
29 Set-AzVMDscExtension @DSCExtensionParams
30
31 }

You’ll also need to add two parameters to the param() block:

Example 13: Add the necessary additional parameters to the New-AzureVirtualMachine function

1 [Parameter(Mandatory = $false)]
2 [String]$StorageAccountName,
3
4 [Parameter(Mandatory = $false)]
5 [String]$ConnectionString

You can find the completedAzure-Virtual-Machine.psm1module file in the IaC Scripts²⁴
folder of the Extras²⁵ repository.

10.7 IaC and CaC: Better Together

So far, you’ve learned about Infrastructure as Code and Configuration as Code. You’ve learned
the concepts and developed code for both IaC and CaC. Now it’s time to see how they work
together. Let’s combine all scripts and code snippets covered in earlier sections into a blueprint
script. The blueprint script below, Two-Tier-App-Blueprint.ps1, deploys all resources and
triggers DSC, providing a full application deployment.

This script uses the default parameter values for the four module functions New-Azure*.

Example 14: The Two-Tier-App-Blueprint.ps1 script ties together all the code to deploy the Azure resources
and apply the DSC configuration

1 ## Import all modules in current directory
2 foreach ($Module in Get-ChildItem $PSScriptRoot -Filter '*.psm1') {
3 Import-Module -Name $Module.FullName
4 }
5
6 ## Create SQL Server and store connection string
7 $ConnectionString = New-AzureSQLServer
8 $ConnectionString = -join $ConnectionString
9

10 ## Create Storage Account
11 $StorageAccountName = New-AzureStorageAccount
12
13 ## Create Load Balancer and store public ip address
14 $Pip = New-AzureLoadBalancer

²⁴https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/IaC/Scripts/
²⁵https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/IaC/Scripts/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/IaC/Scripts/
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/

Infrastructure as Code (IaC) 292

15
16 ## Create Virtual Machine(s)
17 $VMParams = @{
18 ConnectionString = $ConnectionString
19 StorageAccountName = $StorageAccountName
20 }
21 New-AzureVirtualMachine @VMParams
22
23 ## Load webpage on default browser
24 Start-Process "http://$Pip"

The blueprint script deploys all resources. At the end, it opens your default browser and displays
a customized IIS start page. This customized page is based on the string manipulation you did
with PowerShell DSC in Deploy-WebServer.ps1.

Custom strings on the IIS start page

10.8 Conclusion

Infrastructure as Code is at the core of DevOps practices, and it solves real problems. It helps you
deploy consistently across different environments at scale while avoiding configuration drift.

In this chapter, you learned about the key concepts and principles of Infrastructure as Code.
You also learned how to use IaC and CaC together to deploy and configure your infrastructure
resources.

All the examples of IaC are based on PowerShell scripts. You’re encouraged to create a free
trial account in Microsoft Azure and experiment with the scripts provided in previous sections.
Replicate what was explained in this chapter and get comfortable with the basics. Once you
understand the basics, start making changes of your own and re-deploy. There’s nothing like
trial and error to get a deeper understanding of a subject.

10.9 Further Reading

• What is IaC?—Microsoft Docs²⁶
• DSC Overview for Engineers—Microsoft Docs²⁷
• PowerShell DSC Scripting Overview—Microsoft Docs²⁸
²⁶https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
²⁷https://learn.microsoft.com/en-us/powershell/dsc/overview/dscforengineers
²⁸https://learn.microsoft.com/en-us/powershell/scripting/dsc/overview

https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/powershell/dsc/overview/dscforengineers
https://learn.microsoft.com/en-us/powershell/scripting/dsc/overview
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/powershell/dsc/overview/dscforengineers
https://learn.microsoft.com/en-us/powershell/scripting/dsc/overview

Infrastructure as Code (IaC) 293

• PowerShell DSC 2.0 Overview—Microsoft Docs²⁹
• Configuring the LCM—Microsoft Docs³⁰
• Get Started with DSC for Windows—Microsoft Docs³¹
• Get Started with DSC for Linux—Microsoft Docs³²
• Apply, Get, and Test Configurations on a Node—Microsoft Docs³³
• Enacting DSC Configurations—Microsoft Docs³⁴
• The DSC book—LeanPub³⁵
• Microsoft Azure free trial³⁶
• Azure Cloud Shell—Microsoft Docs³⁷
• Azure DSC Extension Handler—Microsoft Docs³⁸

²⁹https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0
³⁰https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
³¹https://learn.microsoft.com/en-us/powershell/dsc/getting-started/wingettingstarted
³²https://learn.microsoft.com/en-us/powershell/dsc/getting-started/lnxgettingstarted
³³https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
³⁴https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingconfigurations
³⁵https://leanpub.com/the-dsc-book
³⁶https://azure.microsoft.com/en-us/free/
³⁷https://learn.microsoft.com/en-us/azure/cloud-shell/overview
³⁸https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/dsc-overview

https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0
https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
https://learn.microsoft.com/en-us/powershell/dsc/getting-started/wingettingstarted
https://learn.microsoft.com/en-us/powershell/dsc/getting-started/lnxgettingstarted
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingconfigurations
https://leanpub.com/the-dsc-book
https://azure.microsoft.com/en-us/free/
https://learn.microsoft.com/en-us/azure/cloud-shell/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/dsc-overview
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0
https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaconfig
https://learn.microsoft.com/en-us/powershell/dsc/getting-started/wingettingstarted
https://learn.microsoft.com/en-us/powershell/dsc/getting-started/lnxgettingstarted
https://learn.microsoft.com/en-us/powershell/dsc/managing-nodes/apply-get-test
https://learn.microsoft.com/en-us/powershell/dsc/pull-server/enactingconfigurations
https://leanpub.com/the-dsc-book
https://azure.microsoft.com/en-us/free/
https://learn.microsoft.com/en-us/azure/cloud-shell/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/dsc-overview

IV Using Regexes

“Garbage in, Garbage out.” — George Fuechsel, Raymond Crowley, et al.

Administrators must often work with external data, so pattern matching is a valuable tool.
Regex patterns play an important role in transforming and bringing data into the PowerShell
environment. This role becomes even more significant now that PowerShell is cross-platform.
This section takes you right from the beginning, through to advanced uses for regexes, including:

• A 101-style introduction to regexes.
• Accessing and using regex patterns in PowerShell.
• A deep dive into PowerShell and .NET regex.
• Best practices for using regexes in PowerShell.

11. Regex 101
Regular expressions, or regexes¹, are a powerful pattern-matching technology and language
for parsing plain text into usable objects. In PowerShell, much of the data you work with is
already in this form. A regex is therefore most useful when processing the output from external
applications or environments, such as log files and templates. You may have happened upon
regexes in other learning materials, or other programming languages and environments. They
might have appeared to be a daunting subject or otherwise a niche area of expertise. Developers,
engineers, and administrators use these patterns often, if not daily. They’re an essential tool in
your toolkit and can become intuitive with a basic understanding of how regex engines process
text strings.

Did you know?
Mathematician Stephen Cole Kleene developed regular language, the concept behind
regular expressions, in the early 1950s.² It was almost twenty more years before the first
computer implementations existed. An early adopter of the syntax was Ken Thompson’s
Quick Editor (QED) in 1968.³

This chapter recaps the fundamental syntax and structure of regex patterns and explains how
to use these in the PowerShell environment. Accessing Regexes introduces more complex
constructs, solving relevant examples to explain these and demonstrate the power of regexes.
Regex Deep Dive discusses deconstructing and debugging your patterns, looking from the
perspective of the regex engine, and getting familiar with the machinery within. It also covers
the remaining syntax to complete your PowerShell regex toolkit. Finally, Regex Best Practices
rounds off with some best practices, design strategies, and where to go for more on regexes in
PowerShell and in general.

11.1 First Principles and Limitations

There is some debate about whether modern regexes can still be considered regular expressions.
The regex chapters use the terms regex and regexes to avoid confusion.

Regexes are, in essence, instructions that tell a regex engine how to read some text for you. They
define patterns to match in a text string and can capture substrings. You can use these captures

¹Though regexes is the correct plural, the uncountable plural form regex is also common when referring to the topic as a whole, as
is regex to describe the underlying theory.

²S. C. Kleene. (1956). Representation of Events in Nerve Nets and Finite Automata. In: Automata Studies, (AM-34), pp. 3–42. C. E.
Shannon and J. McCarthy (eds.). Princeton University Press. DOI: 10.1515/9781400882618-002.

³K. Thompson. (1968). Programming Techniques: Regular expression search algorithm. Commun. ACM, vol. 11, no. 6, pp. 419–422.
DOI: 10.1145/363347.363387.

295

https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1145/363347.363387

Regex 101 296

as backreferences later in the pattern, and they’re also returned by the engine back into the
programming environment. Captures are also used to substitute a replacement into the input
string.

Regexes have limitations, of course. The idea of Garbage In, Garbage Out (GIGO) is relevant
here. The regex engine interprets the provided pattern sequentially, reading through the input
text and backtracking as necessary until no more matches are possible. It can’t observe the input
text as a whole or make decisions from a big picture perspective, as humans can. It’s therefore
prudent to make use of the programming environment to supplement your regex patterns. You
can find out more about this later.

PowerShell regex uses the .NET regex engine. Examples in this book can be applied to
other .NET languages (C#, VB.NET, F#, and ASP.NET).

11.1.1 Wildcard Patterns vs. Regexes

PowerShell also supports wildcard expressions. These are much simpler pattern matching
expressions that don’t support capturing. You can use these with the -like and -notlike
operators, andwith cmdlet parameters that support wildcards. TheAdvanced Conditions chapter
covers wildcard patterns comprehensively.

11.1.2 Differences Between PowerShell Regexes and Others

PowerShell’s regex flavor is largely based on Perl 5⁴. The flavor hasn’t changed since 2.0 and is
therefore relevant to all supported editions of PowerShell at the time of writing.

There are several differences between PowerShell regexes and other common flavors, such as
Perl-Compatible Regular Expressions (PCRE), Python, and Java.⁵ The more important ones are:

Not Supported:

• Pattern recursion (alternative: balancing groups)
• Possessive quantifiers (alternative: atomic groups)
• Unicode scripts (alternative: Unicode blocks)
• Unicode whole graphemes (alternative: individual code points)
• Global /g modifier (alternative: use [regex]::Matches() instead of ::Match() or -
match)

• Subroutines
• Branch reset groups
• Literal text spans
• Character class intersection

Supported:
⁴Microsoft. (2020, Jun. 30). .NET regular expressions. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/-

standard/base-types/regular-expressions. [Accessed: Jun. 12, 2021].
⁵J. E. F. Friedl. (2006). Mastering Regular Expressions. 3rd ed. Beijing [u.a.]: O’Reilly. ISBN: 978-0-596-52812-6.

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/

Regex 101 297

• Named groups (?<name>) or (?'name')
• Backreferences \NN and \k<name> or \k'name'
• Conditional subexpressions
• Atomic groups
• Unicode

– Code points \uHHHH
– Blocks \p{Is<BlockName>}
– Categories Short form/key: \p{X} or \p{Xy}

• Balancing groups (?<First>...)...(?<Second-First>...)
• Inline comments (?# Comment)
• Inline options (?msnix-msnix)
• Option spans (?msnix-msnix:...)
• Variable-length lookarounds, including lookbehinds

– Positive lookahead (?=...)
– Negative lookahead (?!...)
– Positive lookbehind (?<=...)
– Negative lookbehind (?<!...)

This list is primarily for reference, and you can learn more about the topics described later.

11.2 Getting Started

This chapter covers the basics of regexes. If you already have an intermediate under-
standing of regexes, you can consider skipping ahead to the Accessing Regexes chapter.

However, there are lots of useful pointers, so reading through will help set you up for
later.

To introduce the fundamentals of regexes, consider this example. The days of the week in the
English language all end in ‘day’, with three to six preceding letters. You could simply match
each day individually.

Regex 101 298

Example 1: Matching ‘Friday’

1 $MyString = 'Fridays are the best days.'
2
3 $MyString -match 'Monday'
4 $MyString -match 'Tuesday'
5 $MyString -match 'Wednesday'
6 $MyString -match 'Thursday'
7 $MyString -match 'Friday'
8 $MyString -match 'Saturday'
9 $MyString -match 'Sunday'

False
False
False
False
True
False
False

This works because the regex engine interprets the letters of Friday and Saturday literally. To
avoid using the -match operator many times, you can use alternation. Think of this as a logical
OR. Regexes use the pipe | character for alternation.

Example 2: Matching any day of the week

1 $MyString = 'It rained on Friday, but Monday will be clear.'
2
3 $MyPattern = 'Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday'
4
5 $MyString -match $MyPattern

True

11.3 Character Classes

What about matching any word ending in ‘day’? Character classes match one character from
a list. Perhaps the most common of these is \w, the word character class. This matches letters,
numbers, and marks that aren’t punctuation (except the underscore _) and aren’t white space.
PowerShell regexes support Unicode, so this includes word characters for many other languages,
too. In fact, of the first 65,536 Unicode code points, \wmatches 50,320 of them. For everyday use
with English language characters, this matches A–Z, a–z, 0–9, and _.

Regex 101 299

Example 3: Matching 4 letters before ‘day’
1 $MyRegex = '\w\w\w\wday'
2
3 'Tomorrow is a holiday.' -match $MyRegex
4 'Tomorrow is Monday.' -match $MyRegex
5 'Tomorrow is Wednesday.' -match $MyRegex

True
False
True

Notice the backslash \ used with the w here. Backslashes are metacharacters in regexes—they
have a special meaning. They denote special tokens, including character classes. They can also
denote escape sequences.

1. holiday results in a match, since \w\w\w\w matches ‘holi’.
2. Monday results in no match, because \w doesn’t match spaces, and there are only three

letters before ‘day’.
3. Wednesday results in a match, even though there are more than four letters before ‘day’.
This is because the pattern can still match \w\w\w\w with ‘dnes’. Anchors overcome this
problem. You can read more about them later in the chapter.

There are three other predefined character classes in PowerShell regexes:

• To match numeric digits, use \d (for everyday English, think 0-9).
• To match space characters, use \s (for everyday English, think spaces, tabs, and newlines).
• To match any character except a newline, use a period (.).

There are also three inverse character classes matching any character that isn’t in that class.
Each uses the same letter but capitalized: \W \D \S.

Example 4: Using character classes and their inverses
1 'ab' -match '\S\s'
2 'ab' -match '\S\S'
3 'ab c1' -match '\w\w\s\D\d'

False
True
True

The first pattern is looking for one not-space and one space, but the string contains no spaces.
The second pattern is looking for two not-spaces, which match ‘ab’. The third pattern is looking
for two word characters, a space, one not-decimal, and one decimal. This matches ‘ab c1’, as ‘c’
isn’t a decimal.

There are also escape sequences that match single characters, such as a newline. You can
find out about these later in the chapter.

Regex 101 300

11.4 Custom Character Classes

If you need to define your own set of characters to match, use square brackets [...]. This
can be useful for narrowing the scope when searching for specific text, such as punctuation or
disallowed characters in user input.

Example 5: Using a custom class to match punctuation

1 $MyPattern = '\w[,."'':;?!]'
2
3 'This sentence has no punctuation' -match $MyPattern
4 'This is punctuated with a period.' -match $MyPattern
5 'The period in "1.2" also matches' -match $MyPattern

False
True
True

Note the two single quotationmarks '', which insert a single mark ' into a literal string. Observe
also that a period . inside a custom character class matches only a period, not any character.

Custom character classes are also capable of inversion. By inserting a caret ^ after the opening
square bracket [, the class matches any character not in it.

The following example uses the $Matches automatic variable. The next chapter, Access-
ing Regexes, discusses this further. For now, know that PowerShell sets $Matches each
time you call -match and it succeeds. The entry $Matches[0] reveals what the entire
pattern matched in the input string.

Example 6: Inverse character classes

1 $MyPattern = '"[^"]+"'
2
3 'This is a string with a "quoted" word' -match $MyPattern
4 $Matches[0]

True
"quoted"

Example 6 matches one or more characters that aren’t quotation marks, surrounded by quotation
marks. The plus + is a quantifier meaning, match one or more instances of the last token.

Character Classes Reference
You can view a complete reference for character classes atMicrosoft Docs⁶.

⁶https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions

Regex 101 301

11.5 Quantifiers

Repeating literal characters or character classes for largematch spans would take up a lot of space.
Regexes make use of quantifiers to control the number of allowed repetitions of the preceding
token in the pattern. You can rewrite the pattern from earlier, \w\w\w\wday, as \w{4}day. What
about a range of repeats?

Example 7: Using the range quantifier

1 $MyPattern = '\w{3,6}day'
2
3 'Today' -match $MyPattern # 2 letters before 'day'
4 'Tuesday' -match $MyPattern # 4 letters before 'day'

False
True

This results in the general formula {min,max}. Don’t use a space character on either side of the
comma. You can omit max, leaving the comma (,) in place, to match min or more.

Example 8: Using the ‘at least’ quantifier

1 # 6 or more word characters before 'day'
2 $MyPattern = '\w{6,}day'
3
4 'Tuesday' -match $MyPattern # 4 letters before 'day'
5 'Wednesday' -match $MyPattern # 6 letters before 'day'
6 'Postholiday' -match $MyPattern # 8 letters before 'day'

False
True
True

There are also shorthand quantifiers for common requirements.

• Plus +, which matches one or more repetitions (think {1,})
• Star *, which matches zero or more repetitions (think {0,})
• Question mark ?, which matches zero or one repetition (think {0,1})

You can use the zero or one quantifier to make tokens optional.

Regex 101 302

Example 9: Using the ‘zero or one’ quantifier

1 $MyPattern = 'h?ello'
2
3 'hello' -match $MyPattern
4 'yellow' -match $MyPattern

True
True

Example 10: The ‘zero or more’ quantifier, and greedy matching

1 $MyPattern = 'ab.*ly'
2
3 'absolutely' -match $MyPattern
4 $Matches[0]
5
6 'ably' -match $MyPattern
7 $Matches[0]
8
9 'absolutely lovely' -match $MyPattern

10 $Matches[0]

True
absolutely

True
ably

True
absolutely lovely

The first match understandably succeeds, with .* matching ‘solute’. The second proves that
* can match zero times. What’s going on with number three, then? Wouldn’t it just match
‘absolutely’?

Going back to the idea of sequential processing, the engine performs the following steps:

1. The regex engine matches a to ‘a’, then b to ‘b’, so it moves on.
2. .* matches zero or more characters, and the engine doesn’t yet care what comes next in

the pattern. Therefore, it matches ‘solutely lovely’.
3. The engine tries to match l, but there are no more characters, so the .* gives up the last
‘y’.

4. The engine still can’t match l to ‘y’, so the .* gives up the last ‘l’.
5. The engine now matches l to ‘l’ and moves on.
6. Finally, the engine matches y to ‘y’, and has now matched the pattern fully, so processing

stops.

Regex 101 303

Matching as much as possible, then giving back as needed, is greedy matching. This is the
default in PowerShell regexes. The opposite of greedy is lazy matching, where the quantifier
matches as little as possible and takes more if needed. You can make any quantifier lazy by
adding a question mark ? after it:

• +?: Matches one or more lazily
• *?: Matches zero or more lazily
• ??: Matches zero or one lazily
• {min,max}?: Matches between min and max times lazily
• {min,}?: Matches min or more lazily

With this in mind, the lazy .*? fixes the last match in Example 10.

Example 11: Using the ‘lazy quantifier’ modifier

1 $MyPattern = 'ab.*?ly'
2
3 'absolutely lovely' -match $MyPattern
4 $Matches[0]

True
absolutely

The engine only matches ‘absolutely’ this time. Initially, .*? only matches the first ‘s’ but takes
more characters until the next token l matches the first ‘l’. This matches, but the following ‘u’
doesn’t. Therefore, the engine backtracks in the pattern, with .*? taking more characters until
the next token lmatches the second ‘l’. The final token y then matches the last ‘y’ and processing
stops with a successful match.

The Regex Deep Dive chapter discusses backtracking and branching in more detail.

Quantifiers Reference
You can view a complete reference for quantifiers atMicrosoft Docs⁷.

11.6 Character Escape Sequences

Character escape sequences match a single character instead of a character from a range, like
character classes. You can use them to match characters you can’t type, or would otherwise have
a special meaning (think ?, *, or \, for example).

The following example uses a literal here-string. Use these to create multiline strings in
PowerShell. Expandable here-strings @" and "@ also exist.

⁷https://learn.microsoft.com/en-us/dotnet/standard/base-types/quantifiers-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/quantifiers-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/quantifiers-in-regular-expressions

Regex 101 304

Example 12: Matching line endings with character escape sequences

1 $MyPattern = '\r?\n'
2
3 @'
4 This is a uniline (single line) string
5 '@ -match $MyPattern
6
7 @'
8 This is
9 a multiline string

10 '@ -match $MyPattern

False

True

Example 12 matches line endings for both Windows and Unix-like systems. This is useful when
working in PowerShell 6.0 and later, which is cross-platform. The first part of the pattern, \r?,
matches an optional single carriage return (0x0D). The second part, \n, matches a line feed
(0x0A).

You can escape character classes too. Escaping the backslash \ causes the engine to interpret it
literally. The sequence \\n matches a backslash followed by an ‘n’, not a line feed.

Character Escape Sequences Reference
You can view a complete reference for escape sequences atMicrosoft Docs⁸.

11.7 Anchors (Zero-Width Assertions)

The pattern \w{3,6}day from Example 7 matches all days of the week, but also longer words.
The engine matches the word ‘postholiday’ after backtracking twice, skipping the ‘po’. Is this
preventable? The answer is yes, with anchors. These are assertions that set conditions for
matches but don’t take any characters from the string. Therefore, they’re also known as zero-
width assertions.

Perhaps the most common of these is the caret ^ and dollar $. A caret matches the beginning
of the string, so ^aa\w+ matches ‘aardvark’, but not ‘the aardvark’. A dollar matches the end of
the string, so ero$ matches ‘zero’, but not ‘zeroes’. Multiline mode, a regex option, causes these
anchors to match the beginning and end of lines, too. You can read more about regex options in
the Regex Deep Dive chapter.

Another commonly used anchor is theword boundary \b. This matches the boundary between
a word \w character and a not-word \W character. It also has an inverse, the not-word-boundary
\B. This can never match a word boundary.

⁸https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-escapes-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-escapes-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-escapes-in-regular-expressions

Regex 101 305

Another kind of zero-width assertion is the lookaround. This feature matches one or more regex
tokens in a subexpression while still being zero-width. The Regex Deep Dive chapter discusses
subexpressions further.

Anchors Reference
You can view a complete reference for regex anchors atMicrosoft Docs⁹

11.8 Captures

The final topic that this chapter covers is the capturing subexpression, or capturing group. These
enable you to extract substrings from the input string and use brackets (parentheses) (and). You
can wrap any part of a regex pattern to make it a capturing subexpression. The engine assigns
it a number starting from 1, and if it makes a match, it returns the captured substring into the
programming environment. The next example extracts the original word from an infixed one.

The terms capturing group and capturing subexpression are often used interchangeably.
Technically, a subexpression is any part of a regex pattern delimited by grouping
constructs. Capturing subexpressions create capturing groups, which capture matches
made by the subexpressions within. To avoid confusion, this chapter uses the term group
for both the construct and the resulting group.

Example 13: Extracting infixed text with a capturing group

1 $MyPattern = '\b(\w+)-\w{6,}-(\w+)\b'
2
3 'This is fan-flaming-tastic!' -match $MyPattern
4 $Matches[0]
5
6 $Matches[1], $Matches[2] -join ''

True
fan-flaming-tastic

fantastic

This pattern may seem a bit complicated but, when broken down, it’s straightforward.

• The word boundary \b anchors at each end force the engine to match no more or less than
the infixed word.

• The first (\w+) matches and captures the part of the word before the first hyphen.
• The -\w{6,}- matches an infixation with at least six letters. This eliminates most other
multi-word phrases like ‘up-to-date’, but not phrases with longer middle words, like ‘well-
thought-out’.

⁹https://learn.microsoft.com/en-us/dotnet/standard/base-types/anchors-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/anchors-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/anchors-in-regular-expressions

Regex 101 306

• The last (\w+) matches and captures the part of the word after the last hyphen.

Try the examples in this chapter in PowerShell and observe how changing the input or
pattern changes the output.

Experimentation is a great way to familiarize yourself with regexes.

The $Matches automatic variable stores these numbered captures as entries in a hashtable. Recall
that the zeroth entry $Matches[0] is the capture of the entire pattern. It’s also possible to group
regex tokenswithout capturing them. This is anon-capturing group and takes the form (?:...)
where ... is any regex subexpression.

The $Matches automatic variable isn’t nullified before each regex operation. This means
that if a match fails, $Matches will still contain the result of the last successful match.¹⁰
You should therefore check for match success before reading this variable.

11.9 Visualizing Captures

Sometimes, it can be a little hard to visualize what matches, groups, and captures actually are.
The following example provides a helpful representation using .NET methods. You can find out
more about the .NET methods in the Accessing Regexes chapter.

Example 14: Visualizing captures

1 $Result = [regex]::Matches(
2 'abcdefg hijklmn', '(?:(?<first>\w)(?<second>\w))+'
3)
4
5 if ($Result.Success) {
6 $matchCount = -1
7 $Result.ForEach{
8 Write-Host ('Match {0}:' -f ++$matchCount)
9 $groupCount = -1

10 $_.Groups.ForEach{
11 Write-Host (' Group {0} (Name = {1}):' -f ++$groupCount, $_.Name)
12 $captureCount = -1
13 $_.Captures.ForEach{
14 Write-Host (
15 ' Capture {0} (pos {1}) = {2}' -f
16 ++$captureCount, $_.Index, $_.Value
17)
18 }
19 }
20 }
21 } else { Write-Host 'No matches' }

¹⁰Microsoft. (2021, Oct. 27). About Automatic Variables (Microsoft.PowerShell.Core) - Matches. Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#matches. [Ac-
cessed: Nov. 15, 2021].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables#matches

Regex 101 307

Match 0:
Group 0 (Name = 0): <-- Entire match 'abcdef'
Capture 0 (pos 0) = abcdef <-- $0 or $& in replacement pattern

Group 1 (Name = first): <-- From subexpression (?<first>\w)
Capture 0 (pos 0) = a
Capture 1 (pos 2) = c
Capture 2 (pos 4) = e <-- $1 or ${first} in replacement pattern

Group 2 (Name = second): <-- From subexpression (?<second>\w)
Capture 0 (pos 1) = b
Capture 1 (pos 3) = d
Capture 2 (pos 5) = f <-- $2 or ${second} in replacement pattern

Match 1:
Group 0 (Name = 0): <-- Entire match 'hijklm'
Capture 0 (pos 8) = hijklm <-- $0 or $& in replacement pattern

Group 1 (Name = first): <-- (From subexpression (?<first>\w)
Capture 0 (pos 8) = h
Capture 1 (pos 10) = j
Capture 2 (pos 12) = l <-- $1 or ${first} in replacement pattern

Group 2 (Name = second): <-- From subexpression (?<second>\w)
Capture 0 (pos 9) = i
Capture 1 (pos 11) = k
Capture 2 (pos 13) = m <-- $2 or ${second} in replacement pattern

Grouping Constructs Reference
You can view a complete reference for grouping constructs atMicrosoft Docs¹¹.

¹¹https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions

12. Accessing Regexes
The Regex 101 chapter introduced the -match operator. There are, however, lots of ways to use
regexes in PowerShell. This chapter introduces you to them.

12.1 Using PowerShell Syntax

The native PowerShell operators, statements, and cmdlets are the easiest way to use regex
patterns in PowerShell. They’re likely the ones you’ll use when writing quick PowerShell scripts
or performing tasks. This section covers many of them comprehensively.

12.1.1 -match Operator with Strings

This is arguably the most-used operator when working with regexes in PowerShell. It has two
behavior modes—one for strings, and one for arrays. With strings, it returns $true or $false,
depending on whether the pattern matches the input string. If the engine finds a match, it sets
the $Matches automatic variable, a hashtable. The first entry, $Matches[0], contains a captured
match of the whole regex pattern. If it makes any captures during the match, it assigns a numeric
entry for each, starting from 1. The engine assigns string entries for named captures. If you pass
an empty string as the pattern, -match always returns $true and sets $Matches[0] to an empty
string.

Example 1: Use of the -match operator with strings
1 $MyString = 'This is the input string'
2 $MyPattern = '(.*is).*?(?<NamedCapture>\w+ring)'
3
4 $Result = $MyString -match $MyPattern
5
6 if ($Result -eq $true) {
7 $Matches[0]
8 $Matches[1]
9 $Matches['NamedCapture']

10 }

This is the input string
This is
string

12.1.2 -match Operator with String Arrays

The versatile -match operator has a trick up its sleeve. What would you expect if you were to use
it on a string array? In this instance, the operator becomes more of an is-match filter, returning
an array. Only elements that match the pattern exist in this new array. The $Matches automatic
variable isn’t set at all.

308

Accessing Regexes 309

Example 2: Use of the -match operator with arrays

1 $MyArray = @('red', 'yellow', 'green', 'blue', 'purple')
2 $MyPattern = '(\w)\1'
3
4 $MyArray -match $MyPattern

yellow
green

Example 2 includes a backreference \1 to the first capture. Backreferences match a
capture elsewhere in a pattern.

In Example 2, only colors that have two repeated letters match, so the output array contains only
‘yellow’ and ‘green’.

12.1.3 -cmatch and -imatch Operators and Inverses

By default, the -match operator matches in a case-insensitivemanner. Case-sensitive matching
is possible using -cmatch instead. You can use the inline options to force case-insensitive
matching, even with -cmatch. You can learn more about inline options in the Regex Deep Dive
chapter. -imatch is simply an alias of -match.¹ ² You can use this to explicitly declare that
case-insensitive matching is intentional.

Each matching operator also has an inverse. -notmatch, -cnotmatch, and -inotmatch behave
identically to their conventional counterparts, but produce negated boolean outputs.

12.1.4 -replace Operator with Strings

The regex part of this book has only discussed matching so far, but replacement is another
important aspect of text manipulation. The -replace operator has three operands, instead of
two. The third is a replacement pattern, also called a substitution string. The onlymetacharacter
in replacement patterns is the dollar $. To replace with a literal dollar, use two dollar symbols
$$. If you pass an empty string—or nothing—as the replacement, matches get removed.

¹Microsoft. (2017, Jan. 16). System.Management.Automation - tokenizer.cs. L657-L692. PowerShell/PowerShell on GitHub. [Online].
Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/tokenizer.cs. [Ac-
cessed: Jul. 10, 2021].

²Microsoft. (2016, Mar. 31). System.Management.Automation - InternalCommands.cs. L1699. PowerShell/PowerShell on GitHub.
[Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/Internal-
Commands.cs. [Accessed: Jul. 04, 2021].

https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/tokenizer.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/InternalCommands.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/InternalCommands.cs

Accessing Regexes 310

Example 3: Replacing strings with the -replace operator
1 $MyString = 'May: The sunshine is mellow.'
2
3 $MyString -replace '\bm(\w+)\b', 'y$1'
4 $MyString -replace '([aeiou])'

yay: The sunshine is yellow.
My: Th snshn s mllw.

12.1.4.1 Using a Script Block

The -replace operator also accepts a script block instead of a replacement pattern. This provides
for more advanced string manipulation.

Example 4: Replacing infixed capital letters with -replace and a script block
1 $MyString = 'This sentEnce has infixed cApital leTTErs.'
2
3 # Any matches are converted to lowercase
4 $Evaluator = {
5 Write-Host "Run on '$_'"
6 ([string]$_.Value).ToLower()
7 }
8
9 $MyString -creplace '(?!\A)\b[a-z]*[A-Z][A-Za-z]*\b', $Evaluator

Run on 'sentEnce'
Run on 'cApital'
Run on 'leTTErs'
This sentence has infixed capital letters.

• (?!\A): Must not be at the start of the string
• \b[a-z]*: A word boundary followed by zero or more lowercase letters
• [A-Z]: An uppercase letter
• [A-Za-z]*\b: Zero or more uppercase or lowercase letters followed by a word boundary

Note that the engine populates the $_ automatic variable with the [Match] object for the whole
match, regardless of any capturing groups. You can learn more about [Match] objects in the
Using the .NET Methods section, later in this chapter.

The subexpression (?!\A) is a negative lookahead, a kind of lookaround. You can find out more
about lookarounds in the Regex Deep Dive chapter.

12.1.5 -replace Operator with String Arrays

Much like with the -match operator, the -replace operator is also usable on string arrays. As
you might expect, the regex engine applies the pattern to each string in the array individually.
This returns a new array with the replaced strings from the old one. Unlike with the -match
operator, all elements are present in the new array, even if the engine made no replacements to
some of them.

Accessing Regexes 311

Example 5: Replacing an array of strings with the -replace operator

1 $MyArray = @(
2 'Monday'
3 'Tuesday'
4 'Wednesday'
5 'yesterday'
6)
7
8 $MyArray -creplace '[A-Z]\w+(day)', 'to$1'

today
today
today
yesterday

12.1.6 -creplace and -ireplace Operators

A case-sensitive operator also exists, -creplace. Once again, this works identically to -replace
with case-sensitive matching. -ireplace is also an alias for -replace, provided to explicitly
declare case-insensitivity.

Comparison Operators Reference
You can view a complete reference for regex-related comparison operators atMicrosoft
Docs³. The relevant headings are Matching Operators and Replacement Operator.

12.1.7 -split Operator with Strings

Joining and splitting are important tools in string manipulation. The -split operator in
PowerShell is powerful, supporting regex patterns and substring count limits. In its default mode,
the operator splits the input string at all white space characters. To use the default mode, place
the operator before the string.

Example 6: Splitting a string at all white space

1 -split 'Red Green Blue'

Red
Green
Blue

To split using a regex pattern for the delimiter, place the operator after the string and follow it
with the pattern. The engine removes all parts of the string that match the delimiter pattern and
returns the intervening chunks as an array of strings. Use quantifiers if the delimiter may appear
more than once, as the zero-width gaps between them result in empty strings in the output array.

³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators

Accessing Regexes 312

Example 7: Splitting strings with repeated delimiters

1 'Red, Green,, Blue' -split '[,]+'
2 # ^- ^--
3 # 2 delimiter matches producing 3 chunks.
4 # Note the '+' quantifier
5
6 'Cyan, Magenta,, Yellow' -split '[,]'
7 # ^^ ^^^
8 # 5 delimiter matches producing 6 chunks,
9 # 3 of which are empty strings

Red
Green
Blue
Cyan

Magenta

Yellow

12.1.7.1 Capturing the Delimiter with -split

Another interesting feature of using regexes with -split is the ability to capture all or part of
the delimiter, and include it in the substring output. Use capturing groups as you would in any
other regex pattern. The engine returns any captures as substrings, and there is no limit to the
number of captures. -split supports numbered and named captures, too.

Example 8: Splitting strings with captured delimiters

1 'Red,Green:Blue.Cyan' -split '([.,])|\p{P}'

Red
,
Green
Blue
.
Cyan

Example 8 uses alternation to capture the delimiter only if it’s a period ‘.’ or comma ‘,’. The
character class \p{P} matches all punctuation characters and is a Unicode category. You can
find out more about Unicode categories in the Regex Deep Dive chapter.

The example also reveals a little about how the regex engine processes matches. The \p{P}
category also includes periods and commas, but the first alternative [.,] matches first. The
engine, therefore, doesn’t need to try these delimiters against the second alternative and, since
the first alternative includes a capture, the engine returns them. With this in mind, it’s now clear
why the engine doesn’t return the colon ‘:’ between ‘Green’ and ‘Blue’. It doesn’t make a match,
so must try the second alternative. This does match but doesn’t include a capture.

Accessing Regexes 313

12.1.7.2 Substring Count Limits with -split Using Max-Substrings

You can also limit the number of substrings returned by the -split operator. To achieve this,
follow the delimiter pattern with a comma and an integer. This isn’t an absolute limit on the
substrings returned, however. If passing an array of strings, the limit applies to each string
individually. If capturing all or part of the delimiter, these captures don’t count towards the
limit.

Example 9: Splitting strings with substring limits and captures

1 # Without capture
2 'Red,Green.Blue/Cyan:Magenta' -split '\p{P}', 3
3
4 # With capture
5 'Red,Green.Blue/Cyan:Magenta' -split '(\p{P})', 3
6
7 # Array
8 @('Red,Green.Blue', 'Cyan:Magenta') -split '\p{P}', 3

Red
Green
Blue/Cyan:Magenta

Red
,
Green
.
Blue/Cyan:Magenta

Red
Green
Blue
Cyan
Magenta

Example 9 demonstrates how passing an array of strings or capturing the delimiter affects the
substring limit. The max-substrings parameter only guarantees the number of substrings per
string that aren’t delimiters.

A new feature, available in PowerShell 7 and later, means -split accepts a negative integer for
the max-substrings parameter. Negative values invert the substring limit, and the engine applies
it in a last-to-first order.

Example 10: PowerShell 7 inverse max-substrings

1 'Red,Green,Blue,Cyan' -split ',', -3

Accessing Regexes 314

Red,Green
Blue
Cyan

12.1.7.3 Regex Options with -split

Besides supporting inline regex options (?msnix), the -split operator is special because it
supports some regex options. You must pass these flags by their names as a comma-separated
list within a string.

Example 11: Using regex options with -split
1 # Unnamed capture ignored
2 'Red,Green,Blue' -split '(,)', 100, 'ExplicitCapture'
3
4 # Capture with name 'name' captures the delimiter
5 'Red,Green,Blue' -split '(?<name>,)', 100,
6 'ExplicitCapture'

Red
Green
Blue

Red
,
Green
,
Blue

In Example 11, the engine ignores the unnamed capturing group because the ‘ExplicitCapture’
regex option causes only named groups to capture their contents. The first -split command,
therefore, returns no commas between substrings. An important point to note is that -split
is case-insensitive, and therefore the ‘IgnoreCase’ makes no difference. If using the -csplit
operator, however, ‘IgnoreCase’ or indeed the inline option (?i), would change the output. To
view the options by their names, use the [Enum]::GetNames() method:

[Enum]::GetNames([System.Management.Automation.SplitOptions])

12.1.7.4 Simple Matching with -split

The -split operator supports plain text matching, too, using the ‘SimpleMatch’ parameter.
This goes in the same place as the regex options would. The only other option available with
‘SimpleMatch’ mode is ‘IgnoreCase’, which enables case-insensitive matching with -csplit,
and is inconsequential with -split.

12.1.8 -split Operator with String Arrays

As mentioned earlier, -split accepts one or more strings. When passed an array, the -split
operator treats each string individually. You can use the operator in both unary and binarymodes
with arrays, just like with strings.

Accessing Regexes 315

Example 12: Splitting string arrays by white space and by punctuation

1 $MyArray = @('Red Green', 'Blue/Cyan')
2
3 # Unary mode, splitting by white space
4 -split $MyArray
5
6 # Binary mode, splitting by white space or slashes '/'
7 $MyArray -split '[\s/]'

Red
Green
Blue/Cyan

Red
Green
Blue
Cyan

12.1.9 Splitting Strings with -split and a Script Block

In place of a regex pattern, you can pass -split a script block. Within this block, the $PSItem
or $_ automatic variable becomes each character in each of the input strings. Returning $true
inside this block declares the current character to be a delimiter.

It’s important to note that this form of the -split operator doesn’t use the regex engine and
can’t capture delimiters. It also passes the string to the evaluator one character at a time, so
doesn’t support splitting on multicharacter delimiters.

12.1.10 -csplit and -isplit Operators

As with most regex-enabled operators, a case-sensitive analog exists as -csplit. This works
identically to -split with case-insensitive matching turned off. -isplit is also an alias for
-split, provided to explicitly declare case-insensitivity.

Split Reference
You can view a complete reference for the -split operator atMicrosoft Docs⁴.

12.1.11 Select-String Cmdlet

Another great feature in PowerShell is the Select-String cmdlet. Unlike with the -match and
-replace operators, you can use this as part of a pipeline. You may liken it to grep in Unix-like

⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_split

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_split
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_split

Accessing Regexes 316

environments.⁵ ⁶ In its default mode, the cmdlet accepts regex patterns and returns [MatchInfo]
objects. Since it accepts pipeline input, you can use Select-String to filter large data, such as
logs. It also accepts one or more file paths as input, searching each file individually. In this mode,
the cmdlet prepends the name of the file where it found each match.

Example 13: Displaying only error and warning lines in a log file

1 $SampleLog = 'Sample.log'
2
3 @'
4 [2020-07-16T19:35:46] [DEBUG] Connections waiting on [1508]:443
5 [2020-07-16T19:42:24] [ERROR] Disk space critical on /dev/sdb2
6 [2020-07-16T20:20:52] [WARN] Service [2412] stopped <1min post-run
7 [2020-07-16T20:21:09] [INFO] Service [2896] stopped
8 [2020-07-16T20:25:26] [DEBUG] Service [2896] ready
9 [2021-03-22T21:20:06] [ERROR] Service [2952] stopped unexpectedly

10 [2021-03-22T21:20:23] [INFO] Closed [1663]:443
11 '@ | Out-File $SampleLog
12
13 Get-Content $SampleLog | Select-String '\[(?:ERROR|WARN)\]'

Example 13 Output

12.1.11.1 Changing Matching Behavior

Several features that change the matching mode for Select-String exist. Use the -NotMatch
parameter to invert pattern matches, as with the -notmatch operator. Use the -CaseSensitive
parameter to enable case-sensitive matching. It’s also possible to use any of the inline options
discussed in the Regex Deep Dive chapter.

When working with files via the -Path or -LiteralPath parameters, use the -List parameter
to show only the first match in each file. This is an efficient way to retrieve a list of files matching
your pattern at least once.⁷ By default, Select-String onlymatches the first occurrence on each
line. You can change this behavior with the -AllMatches parameter, and this works both with
files and pipeline input.

12.1.11.2 Changing the Output Behavior

The -Raw and -NoEmphasis parameters of Select-String are available in PowerShell
7.0 and later.

⁵Adam Listek. (2020, Aug. 13). How to Use PowerShell’s Grep (Select-String). Adam The Automator. [Online]. Available: https://
adamtheautomator.com/powershell-grep/. [Accessed: Jul. 11, 2021].

⁶PowerShell Team. (2008, Mar. 23). Select-String and Grep. Microsoft DevBlogs. [Online]. Available: https://devblogs.microsoft
.com/powershell/select-string-and-grep/. [Accessed: Jul. 11, 2021].

⁷Microsoft. (2020, Nov. 17). Select-String (Microsoft.PowerShell.Utility). Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/powershell/module/microsoft.powershell.utility/select-string. [Accessed: Jul. 11, 2021].

https://adamtheautomator.com/powershell-grep/
https://adamtheautomator.com/powershell-grep/
https://devblogs.microsoft.com/powershell/select-string-and-grep/
https://devblogs.microsoft.com/powershell/select-string-and-grep/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string

Accessing Regexes 317

The -Raw parameter used in the following example causes plain string output of the matches,
instead of [MatchInfo] objects. To disable emphasis on thematches, but keep rich [MatchInfo]
output, use the -NoEmphasis parameter.

Example 14: Extracting errors from log files with a specific range of dates

1 $FilteredLog = 'SampleLog-Errors-2021-Q1.log'
2 $Pattern = '^\[2021-0[1-3].+? \[ERROR\]'
3 Select-String $Pattern -Path $SampleLog -Raw | Set-Content $FilteredLog
4
5 Get-Content $FilteredLog

[2021-03-22T21:20:06] [ERROR] Service [2952] stopped unexpectedly

Another useful feature is the -Context parameter. This displays the lines immediately before
and after the matching line.

Example 15: Displaying the context of matches with Select-String

1 $Pattern = 'Service \[\d+\] ready'
2 Select-String $Pattern -Path $SampleLog -Context 1

Example 15 Output

In Example 15, the -Context parameter shows the log entries immediately before and after the
matched line.

As with many cmdlets that accept file input in PowerShell, Select-String also has -Include,
-Exclude, and -Encoding parameters. These let you filter the files searched and declare the
encoding used to read them. Select-String supports plain text matching, too, using the -
SimpleMatch parameter.

12.1.11.3 MatchInfo Object and the Matches Property

The Select-String cmdlet returns one [MatchInfo] object for each line in the input where it
made a match. The properties of this object contain lots of information. The Line property is a
plain string version of the matching line, while LineNumber, Path, and Context tell you about
the location of the matches. The Context property contains a [MatchInfoContext] structure
with information about the adjacent lines, but only if you used the -Context parameter.

Finally, the Matches property contains an array of all the underlying regex [Match] objects that
the [MatchInfo] used for the line. You can learn more about [Match] objects in the second half
of this chapter, Using the .NET Methods.

Accessing Regexes 318

Example 16: Properties of the [MatchInfo] object

1 $MatchInfos = Get-Content $SampleLog -First 2 |
2 Select-String -Pattern '\[.+?\]' -AllMatches
3
4 $MatchInfos.ForEach{
5 '{0}, Line {1}: {2}' -f $_.Path, $_.LineNumber, $_.Line
6 $_.Matches.ForEach{ " Match: $($_.Value)" } # Match objects
7 }

InputStream, Line 1: [2020-07-16T19:35:46] [DEBUG] Connections waiting
on [1508]:443

Match: [2020-07-16T19:35:46]
Match: [DEBUG]
Match: [1508]

InputStream, Line 2: [2020-07-16T19:42:24] [ERROR] Disk space critical
on /dev/sdb2

Match: [2020-07-16T19:42:24]
Match: [ERROR]

Select-String Reference
You can view a complete reference for Select-String atMicrosoft Docs⁸.

12.1.12 Where-Object Cmdlet with the -Match Parameter

You can also use regex with the Where-Object cmdlet to filter collections based on a pattern.
This is equivalent to using the -match operator within a script block.

Example 17: Matching regex with Where-Object

1 Get-Alias | Where-Object { $_.Name -match '^s.{4}$' }
2
3 Get-Alias | Where-Object Name -Match '^s.{4}$'

CommandType Name Version Source
----------- ---- ------- ------
Alias sleep -> Start-Sleep
Alias start -> Start-Process

CommandType Name Version Source
----------- ---- ------- ------
Alias sleep -> Start-Sleep
Alias start -> Start-Process

⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string

Accessing Regexes 319

Like with regex operators, there are case-sensitive and inverse parameters, too. These are -
IMatch, -CMatch, -NotMatch, -INotMatch, and -CNotMatch.

Where-Object Reference
You can view a complete reference for Where-Object atMicrosoft Docs⁹.

12.1.13 switch -Regex Statement

The switch statement can use regex—just pass the -Regex parameter before the value clause.
In this mode, PowerShell processes each string match clause as a regex pattern. It processes non-
string match clauses normally.

Example 18: switch statement with regex

1 $RandomNumber = Get-Random -Minimum 0 -Maximum 500
2
3 switch -Regex ($RandomNumber) {
4 '\d{3}' { "3-digit number: $_"; break }
5 '\d\d' { "2-digit number: $_"; break }
6 default { "Single-digit number: $_" }
7 }

3-digit number: 438

Like with the operators and Select-String, the matches are case-insensitive by default. To use
case-sensitive matching, pass the -CaseSensitive switch along with -Regex.

Switch Reference
You can view a complete reference for the switch statement atMicrosoft Docs¹⁰.

12.1.14 ValidatePattern() Parameter Attribute

When constructing advanced functions, you’ll likely want to use regex to validate string
parameters at some point. You could use one of the aforementioned operators, methods, or
cmdlets inside a [ValidateScript({...})] attribute, but PowerShell has a solution already!
The ValidatePattern() parameter attribute accepts a string pattern. When you pass a value
via this parameter, the function accepts it only if the value matches the pattern.

⁹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object
¹⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch

Accessing Regexes 320

Example 19: ValidatePattern() attribute for function parameters

1 function MyFunction {
2 [CmdletBinding()]
3 param (
4 [Parameter(Mandatory = $true)]
5 [ValidatePattern('^\w+\b\s*\b\w+$')]
6 [string]
7 $Words
8)
9 Write-Host "The function ran with string = '$Words'"

10 }
11
12 MyFunction -Words 'hello world'
13 MyFunction -Words 'hello'

The function ran with string = 'hello world'

MyFunction: Cannot validate argument on parameter 'Words'.
The argument "hello" does not match the "^\w+\b\s*\b\w+$"
pattern. Supply an argument that matches "^\w+\b\s*\b\w+$"
and try the command again.

You can specify regex options and a custom error message, too.

1 [ValidatePattern(
2 '^\w+\b\s*\b\w+$',
3 Options = [System.Text.RegularExpressions.RegexOptions]::IgnoreCase -bor
4 [System.Text.RegularExpressions.RegexOptions]::Multiline,
5 ErrorMessage = 'The text "{0}" failed to match pattern "{1}"'
6)]

You can learn more about Regex Options later in the chapter.

ValidatePattern Reference
You can view a complete reference for the ValidatePattern() attribute at Microsoft
Docs¹¹.

12.1.15 Pester Should -Match and -MatchExactly Assertions

The Pester testing suite supports regex matches as part of its Should assertions. You can learn
more about testing in PowerShell in Part II of this book, beginning with The AAA Approach.

There are two Should operators in Pester for regex matching. These are -Match and
-MatchExactly. The first of these uses the -match operator for case-insensitive matching.¹²
The second uses the -cmatch operator for case-sensitive matching.¹³

¹¹https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/validatepattern-attribute-declaration
¹²Pester Team. (2021, Jun. 14). Match.ps1. L26. Pester/Pester on GitHub. [Online]. Available: https://github.com/pester/Pester/blob/

main/src/functions/assertions/Match.ps1. [Accessed: Feb. 27, 2022].
¹³Pester Team. (2021, Jun. 14). MatchExactly.ps1. L19. Pester/Pester on GitHub. [Online]. Available: https://github.com/pester/

Pester/blob/main/src/functions/assertions/MatchExactly.ps1. [Accessed: Feb. 27, 2022].

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/validatepattern-attribute-declaration
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/validatepattern-attribute-declaration
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/validatepattern-attribute-declaration
https://github.com/pester/Pester/blob/main/src/functions/assertions/Match.ps1
https://github.com/pester/Pester/blob/main/src/functions/assertions/Match.ps1
https://github.com/pester/Pester/blob/main/src/functions/assertions/MatchExactly.ps1
https://github.com/pester/Pester/blob/main/src/functions/assertions/MatchExactly.ps1

Accessing Regexes 321

Example 20: Using regexes in Pester assertions

1 $PesterSample = 'PesterExample.ps1'
2 @'
3 Describe "Regex in Pester" {
4 It "Matches the pattern" {
5 'The sky is Blue.' | Should -Match 'sky\b.+\bblue'
6 }
7 It "Won't match due to capitals" {
8 'The sky is Blue.' | Should -MatchExactly 'sky\b.+\bblue'
9 }

10 }
11 '@ | Out-File $PesterSample
12
13 Invoke-Pester $PesterSample -Output Detailed

...

Describing Regex in Pester
[+] Matches the pattern 2ms (1ms|1ms)
[-] Won't match due to capitals 6ms (5ms|0ms)

...

Tests completed in 168ms
Tests Passed: 1, Failed: 1, Skipped: 0 NotRun: 0

These assertions work with the -Not parameter, too. Should -Not -Match -and Should -Not
-MatchExactly produce inverse test results.

Pester Assertions Reference
You can view a complete reference for Pester assertions on the Pester website¹⁴.

12.2 Using the .NET Methods

One benefit of PowerShell is the access it provides to .NET classes and
methods, and this doesn’t stop at regexes. The [regex] class, shorthand for
[System.Text.RegularExpressions.Regex], provides two major approaches:

1. Static methods for single use of patterns.
2. Class instances, initialized with a pattern, and instance methods to perform matching,

replacing, or splitting operations as needed.

A few important points to consider when using the .NET methods are:

• Each method has several overloads. This chapter doesn’t cover them all, but links to the
comprehensive Microsoft documentation are available at the end of the section.

¹⁴https://pester.dev/docs/assertions/assertions

https://pester.dev/docs/assertions/assertions
https://pester.dev/docs/assertions/assertions

Accessing Regexes 322

• None of the methods accept string arrays, so you must handle them programmatically.
• All the methods that this section describes accept [RegexOptions]¹⁵ bitwise flags and, for
recent .NET distributions,¹⁶ a match time-out as a [TimeSpan]¹⁷. The Microsoft documen-
tation describes which overloads support these.

• The methods are case-sensitive by default, unlike the native PowerShell operators.
To use case-insensitive matching, you must use the (?i) inline option or
[RegexOptions]::IgnoreCase.

12.2.1 Constructors

You can initialize regex class instances with New-Object or the ::new() constructor.

Example 21: Initializing regex class instances

1 $MyRegex = New-Object Regex -ArgumentList '\[(?:ERROR|WARN *)\]'
2
3 # OR
4
5 $MyRegex = [regex]::new('\[(?:ERROR|WARN *)\]')

When creating regex class instances, you must pass a string pattern. You can optionally pass
[RegexOptions] flags and a time-out.

Example 22: Initializing regex class instances with options and time-out

1 # Options equivalent to (?mi)
2 # Note the bitwise or operator used to combine options
3 $MyRegexOpts =
4 [System.Text.RegularExpressions.RegexOptions]::Multiline -bor
5 [System.Text.RegularExpressions.RegexOptions]::IgnoreCase
6
7 # 500 ms match time-out
8 $MyRegexTimeout = [timespan]::FromMilliseconds(500)
9

10 $MyRegex = [regex]::new(
11 '\[(?:error|warn *)\]', $MyRegexOpts, $MyRegexTimeout
12)
13
14 $MyRegex

Options RightToLeft MatchTimeout
------- ----------- ------------

IgnoreCase, Multiline False 00:00:00.5000000

12.2.2 IsMatch()

This method, similar to -match, returns a boolean value that indicates whether the pattern
matched the input. Unlike -match, however, it doesn’t capture any of the input if successful.

¹⁵https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions
¹⁶All .NET Core versions, all .NET versions (5.0+), and .NET Framework versions 4.5+.
¹⁷https://learn.microsoft.com/en-us/dotnet/api/system.timespan

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions
https://learn.microsoft.com/en-us/dotnet/api/system.timespan
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions
https://learn.microsoft.com/en-us/dotnet/api/system.timespan

Accessing Regexes 323

Example 23: Using the IsMatch() method

1 $MyString = '[ERROR] /dev/sdc1 is full'
2 $MyPattern = '(?mi)\[(?:error|warn *)\]'
3
4 # Note the two colons (::) used below
5 # Use these to access a STATIC method
6 [regex]::IsMatch($MyString, $MyPattern)
7
8 $MyRegex = [regex]::new($MyPattern)
9 # Note the period (.) used below

10 # Use these to access an INSTANCE method
11 $MyRegex.IsMatch($MyString)

True
True

12.2.3 Match()

Unlike IsMatch(), this method collects match data if successful. This completes the missing
functionality found in the -match operator and provides a more comprehensive data structure.
Match() searches for the first pattern match in the text and returns a [Match]¹⁸ object. To
determine if the match was successful, use the Success boolean property.

Match Class in .NET
The Match class in .NET derives from the Group class, which itself derives from the
Capture class. A Match instance populates itself with, and is functionally equiva-
lent to, the first group, Match.Groups[0]. This represents the entire match, and its
Match.Value property is equivalent to Matches[0] with the -match operator.

A Group instance populates itself with, and is functionally equivalent to, the last
Capture of that group in the string: Group.Captures[Group.Captures.Count - 1].
This becomes relevant when there are many capturing groups in your pattern.

Perhaps the most important property provided by the [Match] object is Groups. This is a
collection of all groups matched by the regex.

¹⁸https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.match

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.match
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.match

Accessing Regexes 324

Example 24: Using the Match() method with captures

1 $MyString = '[ERROR] /dev/sdc1 is full'
2 $MyPattern = '(?mi)^\[(?<type>error|warn *)\] *(?<msg>.+$)'
3
4 $MyMatch = [regex]::Match($MyString, $MyPattern)
5
6 $MyMatch.Success
7
8 $MyMatch.Groups | Select-Object -ExcludeProperty Groups, ValueSpan |
9 Format-Table

10
11 'Message kind: {0}. Message: {1}' -f
12 $MyMatch.Groups['type'].Value,
13 $MyMatch.Groups['msg'].Value

True

Success Name Captures Index Length Value
------- ---- -------- ----- ------ -----

True 0 {0} 0 25 [ERROR] /dev/sdc1 is full
True type {type} 1 5 ERROR
True msg {msg} 8 17 /dev/sdc1 is full

Message kind: ERROR. Message: /dev/sdc1 is full

12.2.4 Match.NextMatch() Instance Method

There are two ways to look for and retrieve subsequent matches. One approach is to call the
NextMatch() method on the latest [Match] object.

Example 25: Using the NextMatch() method to match all repeated letters

1 $MyMatch = [regex]::Match('aabccdde', '(?i)(\w)\1')
2
3 while ($MyMatch.Success) {
4 'Found repeat: {0}' -f $MyMatch.Value
5 $MyMatch = $MyMatch.NextMatch()
6 }

Found repeat: aa
Found repeat: cc
Found repeat: dd

12.2.5 Matches()

You can also look for all matches at once using the Matches() method and iterate over the
resulting [MatchCollection]¹⁹. Each item in the collection is a [Match] object.

¹⁹https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection

Accessing Regexes 325

Example 26: Using the Matches() method to match all repeated letters

1 $MyMatches = [regex]::Matches('aabccdde', '(?i)(\w)\1')
2
3 foreach ($match in $MyMatches) {
4 'Found repeat: {0}' -f $match.Value
5 }

Found repeat: aa
Found repeat: cc
Found repeat: dd

Matches() uses lazy evaluation to populate the [MatchCollection] by default. This avoids
expensive operations for complex patterns or many matches. However, if you attempt to
access properties of the collection, such as Count, the engine populates all possible matches
immediately.²⁰ You should therefore aim to use iterative statements such as foreach to process
the result from a Matches() call.

12.2.6 Replace()

The Replace() method is similar in behavior to the -replace operator. It accepts several extra
parameters, however, and these make it powerful for text processing.

Example 27: Using the Replace() method to replace lowercase ‘m’ words.

1 $MyString = 'May: The sunshine is mellow.'
2
3 [regex]::Replace($MyString, '\bm(\w+)\b', 'y$1')

May: The sunshine is yellow.

Once again observe that the .NET methods are case-sensitive by default—the word ‘May’ isn’t
replaced, unlike with -replace in Example 3.

12.2.6.1 Maximum Replacements and Offset

One advantage with Replace() is the ability to limit the number of replacements, and set a start
point for them. You can achieve this with two more integer parameters, count and startAt, and
they only work when Replace() is an instance method.

²⁰Microsoft. (2021, Apr. 06). MatchCollection Class (System.Text.RegularExpressions). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection#remarks. [Accessed: Nov. 15, 2021].

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection#remarks

Accessing Regexes 326

Example 28: Using Replace() with a max count and offset to change a log format

1 $MyString = '[21:20:06] [ERROR] Service [2952] stopped unexpectedly'
2
3 $MyRegex = [regex]::new('\[(\w+)\]')
4
5 # Max 1 replacement, starting at position 1 (2nd character)
6 # Skips first square brackets as this begins at position 0
7 $MyRegex.Replace($MyString, '$1:', 1, 1)

[21:20:06] ERROR: Service [2952] stopped unexpectedly

These parameters are also available, to varying degrees, in other .NET regex methods.

• Match() supports beginning (equivalent to startAt) and length (searches a specific
number of characters)

• Matches() supports startAt
• Split() supports both startAt and count

12.2.6.2 Match Evaluators

Much like you can pass a script block to the -replace operator, the Matches() method accepts
a delegate method to evaluate matches. In C#, this comes as a MatchEvaluator class instance,
but you can cast a PowerShell script block to this type, and can therefore treat it similarly to
-replace. The major difference is the lack of the automatic variable $_ for the match, so you
must define your script block with a parameter to receive the match. This example uses the same
pattern as Example 4 to remove infixed capital letters for a limited number of words.

Example 29: Using Replace() with a script block evaluator

1 $MyString = 'This sentEnce has infixed cApital leTTErs.'
2
3 $MyRegex = [regex]::new('(?<!\A)\b[a-z]*[A-Z][A-Za-z]*\b')
4
5 $Evaluator = {
6 param ($MyMatch)
7 Write-Host "Run on '$MyMatch'"
8
9 # Any matches are converted to lowercase

10 ([string]$MyMatch.Value).ToLower()
11 }
12
13 # Max 2 replacements, starting at position 0 (1st character)
14 $MyRegex.Replace($MyString, $Evaluator, 2, 0)

Accessing Regexes 327

Run on 'sentEnce'
Run on 'cApital'
This sentence has infixed capital leTTErs.

Replace() ignores the final word with infixed capitals (‘leTTErs’) as the call specifies a
maximum of two replacements from position zero.

12.2.7 Split()

You can use the Split() method similarly to the -split operator, too. The advantage of the
.NET method, however, is access to the same count and startAt parameters as Match(). This
lets you decide the maximum number of splits and where in the input string to start the search.

Example 30: Using Split() to parse string data
1 $Headers = 'UUID', 'LastName', 'FirstName', 'TaxCode'
2 $MyRegex = [regex]::new('/')
3
4 $Data = @'
5 d8eb7ea9/9f83/4070/b989/a82025a575bd/Smith/John/1250/L
6 2ec4e828/449f/4f98/a182/b2980480a9eb/Doe/Jane/1250/L
7 785d343d/7fe0/4c29/837a/5e990826ca4b/Bloggs/Joe/290/LX
8 '@
9

10 # Separate data into lines with static Split()
11 $Lines = [regex]::Split($Data, '\r?\n')
12
13 $Lines.ForEach{
14 # Create hashtable for employee data
15 $entry = @{}
16
17 # Separate into 4 columns max, starting at end of UUID
18 $columns = $MyRegex.Split($_, 4, 36)
19
20 # Iterate through columns and add to $entry in format:
21 # ColumnName = Data
22 for ($col = 0; $col -lt $columns.Count; $col++) {
23 $entry[$Headers[$col]] = $columns[$col] -replace '/'
24 }
25
26 # Output employee data
27 [PSCustomObject]$entry
28 }

LastName FirstName TaxCode UUID
-------- --------- ------- ----
Smith John 1250L d8eb7ea99f834070b989a82025a575bd
Doe Jane 1250L 2ec4e828449f4f98a182b2980480a9eb
Bloggs Joe 290LX 785d343d7fe04c29837a5e990826ca4b

Unlike with -split, you can’t pass a script block evaluator to Split().

12.2.8 Escape() and Unescape()

It’s inevitable that you’ll have to generate regex patterns dynamically at some point. This opens
up a lot of possibilities for invalid patterns and a wall of exceptions in your output. In these cases,
Escape() becomes an important safeguard.

Accessing Regexes 328

Example 31: Handling unknown delimiters in a regex pattern with Escape()

1 $MyData = @'
2 UID\Badge\Surname\Forename
3 f6b1b4b2-aeb9-45d7-b201-07b89065d448\15053636\Bloggs\Joe
4 bfb59409-5551-4863-8510-1d5cb5249294\94848749\Doe\Jane
5 4862a021-686e-4c40-b0b3-9c03a9c9687e\63847412\Smith\John
6 '@ -split '\r?\n'
7
8 if ($MyData[1] -imatch '^[\da-f\-]+(.+?)\d+\1\w+\1\w+$') {
9 $Delimiter = $Matches[1]

10 } else {
11 Write-Error -Message 'Couldn''t find delimiter'
12 }
13
14 Write-Host 'Will fail below here because of a bad regex pattern'
15 $Headers = $MyData[0] -split $Delimiter
16 Write-Host 'Will fail above here'
17
18 # Escape() corrects this
19 $Delimiter = [regex]::Escape($Delimiter)
20
21 $Headers = $MyData[0] -split $Delimiter
22
23 $MyData | Select-Object -Skip 1 | ForEach-Object {
24
25 $entry = @{}
26 $columns = [regex]::Split($_, $Delimiter)
27
28 for ($col = 0; $col -lt $columns.Count; $col++) {
29
30 $entry[$Headers[$col]] = $columns[$col]
31
32 }
33
34 [PSCustomObject]$entry
35
36 }

Will fail below here because of a bad regex pattern
OperationStopped:
Line |

17 | $Headers = $MyData[0] -split $Delimiter
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| Invalid pattern '\' at offset 1. Illegal \\ at end of pattern.

Will fail above here

UID Badge Forename Surname
--- ----- -------- -------
f6b1b4b2-aeb9-45d7-b201-07b89065d448 15053636 Joe Bloggs
bfb59409-5551-4863-8510-1d5cb5249294 94848749 Jane Doe
4862a021-686e-4c40-b0b3-9c03a9c9687e 63847412 John Smith

The Unescape() method isn’t as useful for dynamic regex patterns. However, it’s a useful tool
for restoring escaped patterns and converting regex Unicode sequences into printable text.

Accessing Regexes 329

Example 32: Printing regex escape sequences with Unescape()
1 [regex]::Unescape('\[a\-b\]')
2 [regex]::Unescape('Hello\nworld')
3 [regex]::Unescape('\u00A9')

[a-b]
Hello
world
©

12.2.9 GetGroupNumbers() and GetGroupNames()

When you’re working with more advanced patterns, it’s sometimes necessary to enumerate the
indices or names of capturing groups. This is also useful when debugging your expressions, as it
provides clues on how the engine has interpreted the pattern.

Example 33: Matching an IPv4 address and displaying groups
1 $MyPattern =
2 '^(?:(?<Octets>25[0-5]|2[0-4][0-9]|[01]?[0-9]{1,2})\.){3}' +
3 '(?<Octets>25[0-5]|2[0-4][0-9]|[01]?[0-9]{1,2})$'
4
5 $MyRegex = [regex]::new($MyPattern)
6
7 $MyMatch = $MyRegex.Match('198.51.100.193')
8
9 $Counter = 1

10
11 $MyRegex.GetGroupNames()
12
13 $MyRegex.GetGroupNumbers()
14
15 $MyMatch.Groups['Octets'].Captures | ForEach-Object {
16 "Octet $Counter = $_"
17 $Counter++
18 }

0
Octets

0
1

Octet 1 = 198
Octet 2 = 51
Octet 3 = 100
Octet 4 = 193

In Example 33, the pattern uses the group name ‘Octets’ twice. Many regex implementations
disallow this, but .NET and PowerShell permit it. The advantage here is that you can append
captures from another group to those of an existing one. The example shows this, permitting a
single iterative statement to retrieve all four decimal octets of the IPv4 address. Reusing a group
name removes access to the original group, therefore backreferences to and replacements with
the original definition aren’t possible.

Accessing Regexes 330

12.2.10 GroupNameFromNumber() and
GroupNumberFromName()

It’s also possible to retrieve the corresponding name or index from one another. Taking the
$MyRegex pattern from the last example, the ‘Octets’ group corresponds to a group index of
1.

Example 34: Retrieving group names and indices from the other

1 $MyRegex.GroupNumberFromName('Octets')
2
3 $MyRegex.GroupNameFromNumber(1)

1

Octets

Group names are strings and group indices are 32-bit integers.

.NET Regex Reference
You can view a complete reference for .NET’s regex implementation²¹ and the regex
class²² at Microsoft Docs.

12.3 Regex Options

PowerShell and .NET offer a variety of mode-modifying options for regexes. This gives you extra
control of how the engine interprets your patterns. You can view the available regex options by
inspecting the RegexOptions enumeration:

[Enum]::GetNames([System.Text.RegularExpressions.RegexOptions])

Each heading below includes the enumeration for the regex option in parentheses.

12.3.1 RegexOptions.None (0)

None is the default regex options mode, and its enumeration is equivalent to zero.

12.3.2 RegexOptions.IgnoreCase (1)

The IgnoreCase option enables case-insensitive matching. This isn’t the default mode within
the .NET environment, but is with PowerShell’s native operators, such as -match.

²¹https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
²²https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex

Accessing Regexes 331

Example 35: Case-insensitive matching option

1 $MyString = 'Antonia is awesome!'
2 $MyPattern = 'an\w+'
3
4 [regex]::IsMatch($MyString, $MyPattern,
5 [System.Text.RegularExpressions.RegexOptions]::None)
6
7 [regex]::IsMatch($MyString, $MyPattern,
8 [System.Text.RegularExpressions.RegexOptions]::IgnoreCase)

False

True

12.3.3 RegexOptions.Multiline (2)

This option changes the interpretation of the caret ^ and dollar $ anchors. By default, ^matches
the beginning of the string, and $ matches the end, or before the final newline, of the string. In
Multilinemode, however, these anchors match the beginning and end of the line. This enables
matching within a multiline string, without first splitting the lines.

Example 36: Multiline matching option

1 $MyString = @'
2 52.44043425089714, -2.1832003074046074
3 35.838058817549914, 14.544060183946005
4 50.61179108261999, -3.4566678290794117
5 28.99748439438466, -13.489740628401105
6 '@
7 $MyPattern = '^35\.\d+, *14\.\d+$'
8
9 [regex]::IsMatch($MyString, $MyPattern, 'None')

10
11 [regex]::IsMatch($MyString, $MyPattern, 'Multiline')

False

True

You can use the string name of the RegexOptions enumeration for simpler, cleaner code.

12.3.4 RegexOptions.ExplicitCapture (4)

For longer and more complex patterns, it can be less confusing to use capturing groups (...)
instead of non-capturing groups (?:...). This is computationally expensive, however. The
ExplicitCapture mode causes the engine to only capture named groups.

Accessing Regexes 332

Example 37: Capturing only named groups with ExplicitCapture

1 function MatchWithOpts {
2 param ($String, $Opts)
3
4 Write-Output (
5 [Environment]::Newline +
6 $Opts + ':' + [Environment]::Newline +
7 'Name Offset Value' + [Environment]::Newline +
8 '---- ------ -----'
9)

10
11 $MyMatch = [regex]::Match($String,
12 '([A-Za-z]:)?(\\+(?<dir>[^\\/:*?"<>|]*))+', $Opts)
13
14 $MyMatch.Groups.ForEach{
15 $Group = $_.Name
16 $_.Captures.ForEach{
17 Write-Output (
18 '{0,-5}{1,-7}{2}' -f $Group, $_.Index, $_.Value
19)
20 }
21 }
22 }
23
24 $MyString = 'C:\Program Files\PowerShell\7\Modules'
25
26 MatchWithOpts $MyString 'None'
27
28 MatchWithOpts $MyString 'ExplicitCapture'

None:
Name Offset Value
---- ------ -----
0 0 C:\Program Files\PowerShell\7\Modules
1 0 C:
2 2 \Program Files
2 16 \PowerShell
2 27 \7
2 29 \Modules
dir 3 Program Files
dir 17 PowerShell
dir 28 7
dir 30 Modules

ExplicitCapture:
Name Offset Value
---- ------ -----
0 0 C:\Program Files\PowerShell\7\Modules
dir 3 Program Files
dir 17 PowerShell
dir 28 7
dir 30 Modules

12.3.5 RegexOptions.Compiled (8)

When you initialize a regex, the engine parses the pattern and generates a sequence of operations.
It then stores the sequence and later interprets it to perform matching operations. The Compiled

Accessing Regexes 333

option can improve performance by compiling the sequence into Common Intermediate Lan-
guage (CIL) bytecode.²³ The runtime can then directly execute the instructions.²⁴

The caveat to this approach is that compilation is expensive. Compiled regexes improve runtime
performance at the cost of initialization. If you intend to use a regex lots of times, you may find
performance improvements with the Compiled option.

12.3.5.1 Static Regex Methods

It’s also possible to use the Compiled option with static regex methods. The regex engine caches
the patterns you use in static method calls. This means that the Compiled option can offer a
performance improvement for static method calls, too. This option causes the engine to cache
the compiled CIL bytecode instead of the interpreted opcodes.

You can get or set the static cache size for the engine with [regex]::CacheSize.

12.3.6 RegexOptions.Singleline (16)

The Singleline option changes the interpretation of the period . character class. Normally, this
class matches any character except the newline \n. With this mode enabled, the engine treats
the input string as a single line, so . also matches a newline. This mode is useful when matching
patterns across many lines.

Example 38: Capturing accross lines with Singleline

1 $MyString = @'
2 This string has a "quoted section
3 across two lines."
4 '@
5 $MyPattern = '".+?"'
6
7 [regex]::IsMatch($MyString, $MyPattern)
8
9 [regex]::IsMatch($MyString, $MyPattern, 'singleLINE')

False

True

Not passing any value to the regex options parameter is equivalent to passing
None. This parameter is also case-insensitive when passing a string instead of
[System.Text.RegularExpressions.RegexOptions].

²³Common Intermediate Language (CIL) was originally called Microsoft Intermediate Language (MSIL) before the Common Language
Infrastructure (CLI) was standardized.

²⁴Microsoft. (2021, Sep. 15). Regular expression options - Compiled regular expressions. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#compiled-regular-expressions. [Accessed: Jan.
10, 2022].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#compiled-regular-expressions

Accessing Regexes 334

12.3.7 RegexOptions.IgnorePatternWhitespace (32)

This option is useful for debugging or annotating your patterns, and for long patterns that would
otherwise be hard to read. It causes the engine to ignore any white space in your patterns. You
can still match white space or the space character within character classes, such as \s, []. You
can also match space characters using a backslash escape.

You can rewrite the pattern from Example 37 in a more human-readable format. The IgnorePat-
ternWhitespace option also supports comments with a hash # symbol. The engine ignores
all text after a # until the end of the line. You can learn more about regex comments and
deconstructing your patterns for readability in the Regex Deep Dive chapter.

Example 39: IgnorePatternWhitespace option

1 $NoWhiteSpace = [regex]::new('([A-Za-z]:)?(\\+(?<dir>[^\\/:*?"<>|]*))+')
2 $WithWhiteSpace = [regex]::new(@'
3 (# Unnamed capturing group
4 [A-Za-z] # Match uppercase/lowercase letter a-z
5 : # Match colon
6)? # Match this group 0/1 times (optional)
7 (# Unnamed capturing group
8 \\+ # Match one or more backslashes
9 (?<dir> # Named capturing group 'dir'

10 [^ # Match anything but these characters
11 \\/:*?"<>| # NTFS disallowed chars
12]* # Match this class zero or more times
13) # Match group 'dir' exactly once
14)+ # Match this group 1 or more times
15 '@, 'IgnorePatternWhitespace')
16
17 $MyString = 'C:\Program Files\PowerShell\7\Modules'
18
19 $NoWhiteSpace.IsMatch($MyString)
20
21 $WithWhiteSpace.IsMatch($MyString)

True

True

There are some limitations to this mode. You can’t put white space between characters that make
up language elements, including:

• Quantifiers {min,max}
• Group initializers (?<name>, (?:, (?<!, (?# etc.
• Unicode classes \p{name}
• Backslash escapes \...

Accessing Regexes 335

12.3.8 RegexOptions.RightToLeft (64)

In RightToLeft mode, the engine searches the input string backwards, from the last character
to the first. It’s important to note that the engine still builds pattern matches the same way. The
forwards direction has just changed from the perspective of the engine. Therefore, last-to-first
mode is a more appropriate description.

You should construct your patterns for this mode in the same way as you would for the standard
mode. The two most significant differences you’ll observe are:

• The order in which the engine finds matches
• The behavior in response to greedy and lazy quantifiers

Example 40: Matching from the end of the string wth RightToLeft

1 $Text = 'a1b1c1a2b2c2'
2 $TwoChars = '.{2}'
3 $Greedy = '(?<L>.+)(?<R>.+)'
4
5 Write-Host (
6 'First pair, no options: ' +
7 [regex]::Match($Text, $TwoChars, 'None').Value
8)
9

10 Write-Host (
11 'First pair, right-to-left: ' +
12 [regex]::Match($Text, $TwoChars, 'RightToLeft').Value
13)
14
15 $GreedyLtr = [regex]::Match($Text, $Greedy, 'None')
16 Write-Host (
17 'Greedy sharing, no options:' + [Environment]::NewLine +
18 ' $1 = ' + $GreedyLtr.Groups[1].Value + [Environment]::NewLine +
19 ' L = ' + $GreedyLtr.Groups['L'].Value + [Environment]::NewLine +
20 ' $2 = ' + $GreedyLtr.Groups[2].Value + [Environment]::NewLine +
21 ' R = ' + $GreedyLtr.Groups['R'].Value
22)
23
24 $GreedyRtl = [regex]::Match($Text, $Greedy, 'RightToLeft')
25 Write-Host (
26 'Greedy sharing, right-to-left:' + [Environment]::NewLine +
27 ' $1 = ' + $GreedyRtl.Groups[1].Value + [Environment]::NewLine +
28 ' L = ' + $GreedyRtl.Groups['L'].Value + [Environment]::NewLine +
29 ' $2 = ' + $GreedyRtl.Groups[2].Value + [Environment]::NewLine +
30 ' R = ' + $GreedyRtl.Groups['R'].Value
31)

Accessing Regexes 336

First pair, no options: a1
First pair, right-to-left: c2
Greedy sharing, no options:

$1 = a1b1c1a2b2c
L = a1b1c1a2b2c
$2 = 2
R = 2

Greedy sharing, right-to-left:
$1 = a
L = a
$2 = 1b1c1a2b2c2
R = 1b1c1a2b2c2

The engine processes both the tokens and the string in last-to-first order. Since both are reversed,
matches are still coherent. For instance, in Example 40, the RightToLeft match is ‘c2’ as found
in the string, not ‘2c’.

Because the engine is searching from the end of the string to the beginning, a greedy token
later in your pattern matches first. Therefore, two greedy tokens capable of matching the same
characters will share these differently in RightToLeft mode.

The index assignment for captures is still left-to-right, however. The left L group receives a
group number of 1, and the R group, 2, in both modes. Lookarounds don’t change their direction,
either. A lookahead will always match characters after it, and a lookbehind will always match
characters before it. The final important point is that the start index, available in some .NET
methods, is still an offset from the start of the string. The difference is that the engine searches
backwards from this index in RightToLeft mode, so it produces different behavior.

12.3.9 RegexOptions.ECMAScript (256)

The .NET and PowerShell regex engine supports an alternate operating mode designed to imitate
ECMAScript, the standardized language underpinning JavaScript. In this mode, the engine
behaves differently in three major ways.²⁵

12.3.9.1 No Unicode Support

In contrast with many regex implementations, .NET regex supports Unicode matching in its
default state. This isn’t the case in ECMAScript mode, and several character classes differ in
what they match:

• \w matches only [A-Za-z0-9_]
• \s matches only [\f\n\r\t\v]
• \d matches only [0-9]
• \p{...} isn’t a valid language element
²⁵Microsoft. (2021, Sep. 15). Regular expression options - ECMAScript matching behavior. Microsoft Docs. [Online]. Available:

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#ecmascript-matching-behavior. [Accessed:
Nov. 20, 2021].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#ecmascript-matching-behavior

Accessing Regexes 337

12.3.9.2 Interpretation of Numeric Backslash Escapes

Usually, when a single decimal digit follows a backslash, it’s always interpreted as a backref-
erence. If a capture with the numeric name doesn’t exist, the engine throws an exception. In
ECMAScript mode, a nonexistent capture results in the interpretation of a literal digit, instead.
For more than one digit following a backslash, the engine interprets a decimal backreference. If a
capture with that index doesn’t exist, it assumes an octal character code up to \377, with trailing
digits interpreted literally. In ECMAScriptmode, the engine attempts to find a backreferencewith
as many octal digits as possible and convert them to decimal. If this doesn’t exist, it assumes an
octal character code up to \377, with trailing digits interpreted literally.

12.3.9.3 Self-Referencing Capturing Groups

In ECMAScriptmode, the engine updates any captures that include backreferences to themselves
on each iteration. This enables a self-backreference to match part of a capture in the first iteration
of the capture.

The following example shows the difference in behavior between ECMAScript mode and the
canonical regex mode.

Example 41: Matching self-backreferencing captures in ECMAScript mode

1 $MyPattern = '(\d\1)+'
2
3 'NORM, 1: ' + [regex]::Match('1', $MyPattern).Value
4 'ECMA, 1: ' + [regex]::Match('1', $MyPattern, 'ECMAScript').Value
5
6 'NORM, 11: ' + [regex]::Match('11', $MyPattern).Value
7 'ECMA, 11: ' + [regex]::Match('11', $MyPattern, 'ECMAScript').Value
8
9 'NORM, 111: ' + [regex]::Match('111', $MyPattern).Value

10 'ECMA, 111: ' + [regex]::Match('111', $MyPattern, 'ECMAScript').Value

NORM, 1:
ECMA, 1: 1

NORM, 11:
ECMA, 11: 1

NORM, 111:
ECMA, 111: 111

12.3.10 RegexOptions.CultureInvariant (512)

This option changes the behavior of the IgnoreCase option. Under normal circumstances, the
engine uses the current culture to determine which uppercase and lowercase characters are
equivalent.²⁶ For some comparisons, such as file paths or URIs, differences between culturemodes

²⁶Microsoft. (2021, Sep. 15). Regular expression options - Comparison using the invariant culture. Microsoft Docs. [On-
line]. Available: https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#compare-using-the-invariant-
culture. [Accessed: Nov. 19, 2021].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#compare-using-the-invariant-culture
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#compare-using-the-invariant-culture

Accessing Regexes 338

can be problematic. The invariant culture circumvents this, using a predetermined character set
indifferent to the current culture.

To retrieve the current culture in a PowerShell session, use $Host.CurrentCulture.

12.3.11 Combining Regex Options

You can combine regex options in several ways. Some options are only effective in combination
with others, and some are invalid when others are present. The Microsoft documentation
describes these comprehensively, but a couple of major points are:

• Only IgnoreCase and Multiline are valid with ECMAScript
• CultureInvariant only applies when IgnoreCase is present

To combine bitwise [System.Text.RegularExpressions.RegexOptions] flags, use the -bor
operator. Applying bitwise logic, you can also remove an option by creating a filter mask with
-bnot. You may also use the numeric result, and cast this to the RegexOptions type. Finally, you
can cast a string with comma-separated names (case-insensitive) to the [RegexOptions] type.

Example 42: Combining bitwise regex options

1 [System.Text.RegularExpressions.RegexOptions]::Multiline -bor
2 [System.Text.RegularExpressions.RegexOptions]::IgnoreCase
3
4 # Regex options use 10 bits, with bit 3 (128) unused
5 # IgnoreCase = 0000000001 = 1
6 # Multiline = 0000000010 = 2
7 # Both = 0000000011 = 3
8 [System.Text.RegularExpressions.RegexOptions]3
9

10 [System.Text.RegularExpressions.RegexOptions]3 -band -bnot
11 [System.Text.RegularExpressions.RegexOptions]::IgnoreCase
12
13 [System.Text.RegularExpressions.RegexOptions]'multiline, IGNORECASE'

IgnoreCase, Multiline

IgnoreCase, Multiline

Multiline

IgnoreCase, Multiline

Accessing Regexes 339

12.3.12 Inline Options

You can turn five of the options discussed in this chapter on or off from within a regex pattern,
using inline options. The Regex Deep Dive chapter covers inline options.

Regex Options Reference
You can view a complete reference for Regex Options²⁷ at Microsoft Docs.

²⁷https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options

13. Regex Deep Dive
After reading Accessing Regexes, you should have a general understanding of how to use regexes
in PowerShell. This chapter takes you deeper into the topic, with advanced syntax, replacement
patterns, and debugging.

13.1 Debugging Your Regex Patterns

So you’ve designed a regex pattern. Great! But does it actually do what you want it to?

This section covers the regex-related errors you can expect from PowerShell and provides some
tips on deconstructing your patterns from the perspective of the regex engine.

Example 1: A common regex error shown in PowerShell

1 '$12.00 ($12.99 inc. tax)' -match '(\$(\d+\.\d{2}) inc. tax'
2 # ^
3 # Mistake: Literal bracket should be escaped: \(

OperationStopped: Invalid pattern '(\$(\d+\.\d{2}) inc. tax'
at offset 23. Not enough)'s.

OperationStopped: Invalid pattern

When you see the Invalid pattern error, it means there’s something wrong with your regex.
Common causes of invalid patterns include:

• Not escaping metacharacters such as brackets ()[], anchors ^$, quantifiers ?*+, or the
backslash \.

• Not closing a group with) or character class with].
• Referencing a nonexistent capturing group name or index (a).+\2.
• Reversing a range reference in a character class [z-a].
• Using an escape where you don’t need one he\x digits.
• Not escaping special PowerShell characters in expandable strings "\$(\d)".

However, not all mistakes cause invalid patterns. Many erroneous patterns are valid regexes but
don’t behave as intended.

340

Regex Deep Dive 341

Example 2: Regex mistakes don’t always generate errors
1 '$12.00 ($12.99 inc. tax)' -match '\($(\d+\.\d{2}) inc. tax'
2 # ^
3 # Mistake: Literal dollar sign should be escaped: \$
4
5 '$12.00 ($12.99 inc. tax)' -match '\(\$(\d+\.\d{2}) inc. tax'
6 $Matches[1]

False

True
12.99

In Example 2, an intended literal dollar sign $ isn’t escaped, and the engine interprets this as an
end of string anchor. This is still a valid pattern, but it’ll never succeed because the tokens after
the $ are unable to match the pattern. Therefore, it’s important to think from the perspective of
the regex engine to construct effective patterns.

Other than those previously mentioned, causes of valid but erroneous patterns include:

• Not escaping tokens with special meanings in regex, for example $3.50 (anchor)
• Not escaping special PowerShell characters in expandable strings, for example "\$3.50"
($3 PowerShell variable)

• Trying to escape special PowerShell characters in literal strings, for example '\`$(\d)'
(literal backtick in regex pattern)

• Inserting commas between ranges in a character class, for example [a-z,0-9]
• Not using the correct capitalization when case-sensitivity is on
• Unintentionally inserting white space into a pattern
• Not considering line breaks and their interactions with multiline mode
• Zero-length matches (zero-or-more quantifier within alternation)
• Confusing the numerical order of capturing groups

13.1.1 Regex Through the Eyes of an NFA Engine

The regex engine in PowerShell and .NET is of the nondeterministic finite automaton (NFA)
type.¹ In practical terms, this means that the operations of the engine are driven by the regex
pattern, not the text itself. This is in contrast to deterministic regex engines (DFA), which are
text-controlled. The mathematical and computational theory behind these differences is beyond
the scope of this book, but a practical understanding of the implications suffices to help you
navigate .NET regex.

Watch a regex engine step through the pattern and string in Example 2 from the
Regex 101 chapter at the Regex 101 Website². This uses a different regex engine but
is sufficiently similar for this example. At each step, the debugger highlights the current
token in the regex pattern, along with the current match.

¹Microsoft. (2021, Sep. 15).Details of regular expression behavior. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/standard/base-types/details-of-regular-expression-behavior. [Accessed: Jan. 10, 2022].

²https://regex101.com/debugger?flags=i&flavor=pcre2®ex=Monday%7CTuesday%7CWednesday%7CThursday%7CFriday%
7CSaturday%7CSunday&testString=It%20rained%20on%20Friday,%20but%20Monday%20will%20be%20clear.

https://regex101.com/debugger?flags=i&flavor=pcre2®ex=Monday%7CTuesday%7CWednesday%7CThursday%7CFriday%7CSaturday%7CSunday&testString=It%20rained%20on%20Friday,%20but%20Monday%20will%20be%20clear.
https://learn.microsoft.com/en-us/dotnet/standard/base-types/details-of-regular-expression-behavior
https://learn.microsoft.com/en-us/dotnet/standard/base-types/details-of-regular-expression-behavior
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=Monday%7CTuesday%7CWednesday%7CThursday%7CFriday%7CSaturday%7CSunday&testString=It%20rained%20on%20Friday,%20but%20Monday%20will%20be%20clear.
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=Monday%7CTuesday%7CWednesday%7CThursday%7CFriday%7CSaturday%7CSunday&testString=It%20rained%20on%20Friday,%20but%20Monday%20will%20be%20clear.

Regex Deep Dive 342

13.1.2 Backtracking and Branching

So, what’s backtracking? Consider the pattern in Example 2 from the Regex 101 chapter. The
pattern contains alternation for each day of the week, and the engine can decide which alternate
to use for the match attempt.

Regex 101, Example 2
1 $MyString = 'It rained on Friday, but Monday will be clear.'
2 $MyPattern = 'Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday'
3
4 $MyString -match $MyPattern

The regex engine steps through $MyPattern one token at a time, attempting to match each to
the current target in the input text.

1. The engine finds no matches for any alternatives on the first character ‘I’, so it backtracks
to the beginning of the pattern and moves on.

2. When the engine reaches the second character ‘t’, it matches T in the Tuesday alternative,
as the -match operator is case-insensitive.

3. The next (third) character, a space (0x20), doesn’t match u in Tuesday, however, so the
engine continues to the other alternatives.

4. The same happens when the engine tries the Thursday alternative.
5. The engine finds no matches for any alternatives on the following characters (3 to 13) ‘

rained on ‘ so backtracks to the beginning of the pattern for each.
6. When the engine reaches the ‘F’ in ‘Friday’, it matches the F in the Friday alternative, and

so it tries the next element r against the next character ‘r’.
7. This matches too, and the engine continues matching elements to characters until Friday

in the pattern matches ‘Friday’ in $MyString.
8. The -match operator stops at the first match, so the engine stops and returns $true.

Backtracking occurs in this scenario because the pattern contains an alternation construct (which
is a fancy way to say “either/or patterns”). These decisions are the basis of backtracking in NFA
engines. Unlike a DFA engine, which tracks all matches as it moves along the text, an NFA engine
processes each token sequentially and remembers these decision points (backtracking positions).
If the pattern can’t match at a later point, the engine will backtrack to this point and try the next
decision.³

This effectively creates a new branch of possibilities, and the engine follows this branch until
either it makes a match or reaches the end of the pattern. The engine only gives up when it has
exhausted these avenues by trying each decision in turn. This way, it tries every permutation at
least once. You may think that this has the potential to take a lot of time. You’d be right.

13.1.3 Catastrophic Backtracking

While this exhaustive approach to matching ensures that the engine finds any viable matches,
many backtracking points can create an exponentially large number of permutations.

³Microsoft. (2021, Sep. 15). Backtracking in Regular Expressions. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/standard/base-types/backtracking-in-regular-expressions. [Accessed: Jan. 10, 2022].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions

Regex Deep Dive 343

Example 3: Catastrophic backtracking with crude GUID matching

1 $Opts = [System.Text.RegularExpressions.RegexOptions]::None
2 $Time = [timespan]::FromSeconds(5)
3
4 $Guid = '87db9d39-ddc8-413c-84ac-0be925a8230a'
5 $Pattern = '([0-9a-f]+-?)+\Z'
6
7 Write-Host "'$Guid'"
8 Write-Host (
9 [regex]::IsMatch($Guid, $Pattern, $Opts, $Time)

10)
11
12 $GuidSpace = $Guid + ' '
13
14 Write-Host "'$GuidSpace'"
15 Write-Host (
16 [regex]::IsMatch($GuidSpace, $Pattern, $Opts, $Time)
17)

'87db9d39-ddc8-413c-84ac-0be925a8230a'
True

'87db9d39-ddc8-413c-84ac-0be925a8230a '
MethodInvocationException: Exception calling "IsMatch" with "4" argument(s):
"The RegEx engine has timed out while trying to match a pattern to an input
string. This can occur for many reasons, including very large inputs or
excessive backtracking caused by nested quantifiers, back-references and
other factors."

The RegEx engine has timed out while trying to match a pattern to an input string.

When the input string is a valid GUID, the engine finds a complete match in less than a
millisecond. However, an errant space changes things, and the 5-second time-out has to save
the day.

The issue here is that the match fails. When this happens, the nested one-or-more + quantifiers
cause catastrophic backtracking. Consider what happens when the engine has matched all but
the space. In the examples below, the caret ^ symbol represents the current match target of the
engine, and parentheses () represent match components of the outer group with its + quantifier.

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a8230a) '
1 2 3 4 5 ^

The next token in the pattern is the end-of-string \Z anchor. Instead, the next character of the
input string is a space. The match has failed, so the engine backtracks. The inner + quantifier,
which was greedy and initially matched the entire hexadecimal block, gives up one character
from its fifth match component (the last ‘a’).

Regex Deep Dive 344

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a8230)a '
1 2 3 4 5 ^

However, the entire group can match one or more hexadecimal digits, so it does.

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a8230)(a) '
1 2 3 4 5 6 ^

Can you see where this is going? The engine is now effectively back where it was before, but with
another permutation of match components. The fifth match component of the inner + quantifier
gives up another character. These two unmatched characters now match as a repeat of the outer
+ quantifier.

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a823)(0a) '
1 2 3 4 5 6 ^

Yet again, the match fails at the space character. This time, however, the last match component
can also give up part of its match. The outer + quantifier can then match the final two characters
in a separate component. Therefore, two new permutations have emerged.

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a823)(0)(a) '
1 2 3 4 5 6 7 ^

When the fifth match component gives up another character, there are now four new permuta-
tions.

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a82)(30a) '
1 2 3 4 5 6 ^

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a82)(30)(a) '
1 2 3 4 5 6 7 ^

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a82)(3)(0a) '
1 2 3 4 5 6 7 ^

'(87db9d39-)(ddc8-)(413c-)(84ac-)(0be925a82)(3)(0)(a) '
1 2 3 4 5 6 7 8 ^

When the fifth match component gives up another character (‘2’), it creates another eight
permutations. Each character given up doubles the number of new permutations for match
components in 2n fashion. Apply this logic to the whole input string, and it’s easy to see why
the engine ran out of time.

Watch a regex engine step through this pattern without the space⁴ and with the space⁵
at the Regex 101 website.

Catastrophic backtracking is often the result of nested quantifiers. By thinking about what
happens when a match fails, you can spot these scenarios and correct for them. So, what’s the
fix in this case?

⁴https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-%3F)%2B%5CZ&testString=87db9d39-ddc8-413c-
84ac-0be925a8230a

⁵https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-%3F)%2B%5CZ&testString=87db9d39-ddc8-413c-
84ac-0be925a8230a%20

https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a%20
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a%20
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a%20

Regex Deep Dive 345

13.1.4 Atomic Groups

Assuming you want the same behavior, which is matching an unlimited number of hexadecimal
blocks, the fix is to use atomic groups (?>...). You may also see these referred to as nonback-
tracking groups. When the engine matches one of these groups to some input text, it doesn’t give
up any part of its match.

Example 4: Avoiding catastrophic backtracking with atomic groups

1 $Opts = [System.Text.RegularExpressions.RegexOptions]::None
2 $Time = [timespan]::FromSeconds(5)
3
4 $Guid = '87db9d39-ddc8-413c-84ac-0be925a8230a'
5 $Pattern = '(?>[0-9a-f]+-?)+\Z'
6
7 Write-Host "'$Guid'"
8 Write-Host (
9 [regex]::IsMatch($Guid, $Pattern, $Opts, $Time)

10)
11
12 $GuidSpace = $Guid + ' '
13
14 Write-Host "'$GuidSpace'"
15 Write-Host (
16 [regex]::IsMatch($GuidSpace, $Pattern, $Opts, $Time)
17)

'87db9d39-ddc8-413c-84ac-0be925a8230a'
True

'87db9d39-ddc8-413c-84ac-0be925a8230a '
False

This time, when the engine can’t match the space in the second string, none of the match
components of the outer + quantifier give up characters. This only leaves stepping through the
input string and attempting to start the match at later positions. The engine soon runs out of
permutations to try, and processing stops.

Watch a regex engine step through this pattern with the trailing space at Regex 101⁶.

13.2 Functionality to Consider

13.2.1 No Subroutines

A subroutine in regex is the ability to reuse a subexpression at a different point in the input string.
This differs from backreferencing, which only reuses the capture from a capturing subexpression.

⁶https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(%3F%3E%5B0-9a-f%5D%2B-%3F)%2B%5CZ&testString=87db9d39-
ddc8-413c-84ac-0be925a8230a%20

https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(?%3E%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a%20
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(?%3E%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a%20
https://regex101.com/debugger?flags=i&flavor=pcre2®ex=(?%3E%5B0-9a-f%5D%2B-?)%2B%5CZ&testString=87db9d39-ddc8-413c-84ac-0be925a8230a%20

Regex Deep Dive 346

Subroutines can significantly shorten patterns by reusing repetitive elements. .NET regex doesn’t
have this capability, as is clear with the repetition in Example 33 from the Accessing Regexes
chapter.

13.2.2 No Recursion

Recursive matching, available in some regex implementations, makes it possible to “step into” a
new recursion level. Here, the engine reapplies either the entire pattern or a captured group at the
current point in the input string. If this level reaches the recursive token again, the engine steps
into a deeper recursion level. This functionality adds a lot of possibilities for regex matching,
at the cost of simplicity and efficiency. .NET regex doesn’t support recursion but offers an
alternative solution with balancing groups. You can learn more about balancing groups in the
Advanced Subexpressions and Backreferences section of this chapter.

13.2.3 Possessive Quantifiers vs. Atomic Groups

In many regex implementations, you can prevent backtracking with possessive greedy quanti-
fiers. Usually, you would specify this with an extra plus + sign after the quantifier. .NET doesn’t
support them, but since they’re functionally equivalent to wrapping the token in an atomic
group, there is no real disadvantage to this. Wherever you might use a possessive quantifier with
another regex engine \w++, simply replace it with an atomic group, keeping the quantifier inside
(?>\w+). Atomic groups also have the advantage of working with lazy quantifiers (?>\w+?).

13.2.4 Variable-Length Lookbehinds

One uncommon feature in .NET regex is the support for full regex syntax in all lookarounds.
Lookbehind size variability is often limited to alternation, finite quantifiers, or both. While this
is useful for improving the specificity of your patterns, it can also be inefficient. If the lookbehind
can extend backwards indefinitely, the engine will have to check back to the beginning of the
input string, and this can add a lot of processing time. You can learn more about lookarounds in
the Advanced Subexpressions and Backreferences section of this chapter.

13.3 Deconstructing a Pattern

At some point, you’ll need to use a regex pattern you didn’t create or can’t remember creating.
To understand how it works and troubleshoot matching problems, it’s useful to know how to
break up a pattern and interpret it.

The first step is to make your pattern a bit more human-readable.

• Split subexpression/group definitions and custom classes into blocks

– Indent the contents of blocks

• Put alternatives and pipes on individual lines

Regex Deep Dive 347

– Indent the alternatives but not the pipes
– Keep the pipes at the same indentation as the group opening/closing brackets, or the
margin if outside any group

• Keep quantifiers together with their associated tokens where possible
• You can place each token-quantifier pair either on an individual line or group them together
with related tokens

– Break long sequences of tokens into individual lines with the same indentation

Example 5 shows the pattern from Example 33 of the Accessing Regexes chapter,
rewritten in extended form. You could use this string as a regex pattern, so long as
you pass the extended/ignore pattern white space flag, either inline as (?x) or with
[RegexOptions]::IgnorePatternWhitespace. Example 39 from Accessing Regexes used
this feature.

Example 5: Extended regex form for easier interpretation

^ # Beginning of string
(?: # Noncapturing group

(?<Octets> # Capturing group named "Octets"
First alternative, matches 250-255

25[0-5] # Match "25" then 0-5
| #

Second alternative, matches 200-249
2[0-4][0-9] # Match "2" then 0-4 then 0-9

| #
Third alternative, matches 0-199

[01]? # Match "1" or "0" optionally
[0-9]{1,2} # Match 0-9, 1 or 2 times

) #
\. # Match period/full-stop

){3} # Match this group 3 times
#

(?<Octets> # Exactly the same "Octets" group for 4th octet,
25[0-5] # since .NET regex doesn't support

| # subroutines/recursion
2[0-4][0-9] #

| #
[01]?[0-9]{1,2} #

) #
$ # End of string

Once you’ve deconstructed your pattern, you can interpret it. As in Example 5, it’s helpful to
annotate each token or group of tokens. This gives you a set of human-readable instructions to
step through. Think about how the engine is going to interpret each token from start to finish,
and how different inputs could change this.

The engine tries alternatives in the order they appear in a pattern. The third alternative in the
“Octets” group, which matches an optional 1/0 and two digits from zero through nine, can match
the first two digits of blocks starting with 2xx, with the [0-9]{1,2} token. If this alternative
appeared first, it could match 2xx numbers incompletely, leaving the last digit unmatched. For
the first three blocks, a mandatory period character must follow. This would cause the match to

Regex Deep Dive 348

fail and the engine would backtrack, trying the other alternatives and leading to the expected
behavior. For the fourth block, however, the match of only two characters could stand, but only
if no anchors or lookaheads were checking for further digits. In Example 5, the end of string
anchor $ prevents this unexpected behavior. If the pattern needed to extract IP addresses from
the middle of a string, however, a different approach is necessary.

When using alternatives, consider how you order them. You can also use lookarounds or anchors
to ensure an alternative is specific to the target match. Adding a negative lookahead for an extra
digit (?![0-9]) or a word boundary \b prevents the last block matching when extracting an IP
address from a sentence.

Example 6: Avoiding phantom matches with alternatives

1 # The alternatives are reversed in this example,
2 # so the tokens matching 0-199 come first
3 $Template = '(?:(?<Octets>[01]?[0-9]{{1,2}}|2[0-4][0-9]|25[0-5])\.){{3}}' +
4 '(?<Octets>[01]?[0-9]{{1,2}}{0}|2[0-4][0-9]|25[0-5])'
5
6 # Create 3 patterns using a format string,
7 # with "{" and "}" doubled up to escape them
8 $Nothing = $Template -f ''
9 $Lookahead = $Template -f '(?![0-9])'

10 $WordBoundary = $Template -f '\b'
11
12 $IpsToMatch = @(
13 'Address: 198.51.100.42'
14 'Address: 198.51.100.193'
15 'Address: 198.51.100.254'
16)
17
18 foreach ($IpAddress in $IpsToMatch) {
19 [pscustomobject]@{
20 Input = $IpAddress
21 Nothing = [regex]::Match($IpAddress, $Nothing).Value
22 Lookahead = [regex]::Match($IpAddress, $Lookahead).Value
23 WordBoundary = [regex]::Match($IpAddress, $WordBoundary).Value
24 }
25 }

Input Nothing Lookahead WordBoundary
----- ------- --------- ------------
Address: 198.51.100.42 198.51.100.42 198.51.100.42 198.51.100.42
Address: 198.51.100.193 198.51.100.193 198.51.100.193 198.51.100.193
Address: 198.51.100.254 198.51.100.25 198.51.100.254 198.51.100.254

Notice that for the final IP address, no anchor results from the last octet being ‘25’. Both a word
boundary and a negative lookahead prevent this.

13.4 Advanced Syntax

13.4.1 Unicode Categories and Blocks

As discussed in the Accessing Regexes chapter, .NET regex supports Unicode out of the box.
Many of the shorthand classes already match Unicode equivalents, including other writing and

Regex Deep Dive 349

numeric systems. Matching Unicode characters directly is also possible with the \uHHHH escape,
where HHHH is the hexadecimal UTF-16 code point (big-endian). For example, \u00A9matches
the copyright © symbol (U+00A9) and \u2021 matches the double dagger ‡ symbol (U+2021).
You can match any character encoded by UTF-16 in the Basic Multilingual Plane (BMP,U+0000–
U+FFFF).

You can also match Unicode blocks and categories with the \p{...} escape. To match a block,
use \p{Is...}where… is a block name. For example, \p{IsLatin-1Supplement}matches all
characters in the Latin-1 Supplement block (U+0080–U+00FF), including the copyright symbol.

To match a category, use \p{X} or \p{Xy} where X and Xy are category and subcategory
shorthands. For example, \p{Po} matches characters from the Other Punctuation subcategory,
including the double dagger symbol. By extension, \p{P}, which matches characters from the
Punctuation category, also matches the double dagger.

Example 7: Matching Unicode characters, blocks, and categories

1 $BEUnicode = [System.Text.Encoding]::BigEndianUnicode
2 $CopyrightSymbol = $BEUnicode.GetString(@(0x00, 0xA9))
3 $DDaggerSymbol = $BEUnicode.GetString(@(0x20, 0x21))
4
5 $CopyrightSymbol -match '\u00A9'
6 $CopyrightSymbol -match '\p{IsLatin-1Supplement}'
7
8 $DDaggerSymbol -match '\u2021'
9 $DDaggerSymbol -match '\p{Po}'

10 $DDaggerSymbol -match '\p{P}'

True
True

True
True
True

As with the word \w, decimal \d, and white space \s class shorthands, the Unicode class
shorthand has an inverse \P{...}, which matches all but that category or block.

13.4.1.1 UTF-16

One important consideration when you are working with Unicode characters is that PowerShell
and .NET operate with UTF-16 encoding. This applies to the regex engine and matching, too.
The engine stores characters beyond the Basic Multilingual Plane (BMP, U+0000–U+FFFF) as
UTF-16 surrogate pairs. These are special Unicode code points enabling two 16-bit code points
to represent one beyond U+FFFF. Any Unicode code point that isn’t a surrogate is known as a
scalar. Each surrogate pair consists of:

• A high surrogate U+D800–U+DBFF (high 10 bits, 1024 characters)
• A low surrogate U+DC00–U+DFFF (low 10 bits, 1024 characters)

Regex Deep Dive 350

To determine the code point from a surrogate pair, the encoding system gets the high index
from the high surrogate character by subtracting 0xD800, multiplying by 1024 (0x400), and
adding 0x100000. This represents the code point range U+100000–U+10FC00 in steps of 1024.
The encoding system then gets the low index from the low surrogate by subtracting 0xDC00.
This represents the additional range 0x0–0x3FF (0–1023). By adding these two values together,
any code points in the range U+100000–U+10FFFF are possible.

When attempting to make a match, the regex engine will not examine the Unicode code point,
instead it will examine the two UTF-16 surrogates. This means you can’t use regex patterns for
surrogate pairs in the way you would for BMP characters.

1 $HedgehogBytes = @(0xF0, 0x9F, 0xA6, 0x94)
2 $HedgehogEmoji = [System.Text.Encoding]::UTF8.GetString($HedgehogBytes)
3
4 # Show emoji
5 $HedgehogEmoji
6
7 # U+1F994 is in category Other Symbols (So), but match fails
8 $HedgehogEmoji -match '\p{So}'
9

10 # Matching high surrogate followed by low surrogate succeeds
11 $HedgehogEmoji -match '\p{IsHighSurrogates}\p{IsLowSurrogates}'
12
13 # Show surrogate codepoints
14 $HedgehogEmoji.ToCharArray().ForEach{
15 '0x' + [convert]::ToString([int]$_, 16).ToUpper()
16 } -join ', '
17
18 # Interpret actual text elements from UTF-16 string
19 [System.Globalization.StringInfo]::new($HedgehogEmoji) | Format-Table
20
21 # Get Unicode scalar (non-surrogate code point)
22 $HedgehogEmoji.EnumerateRunes() | Format-Table

Output from Example 8

The [System.Text.Rune] class and String.EnumerateRunes() method is only present in
PowerShell 6.0 (.NET 3.0) and later. You can use the [System.Globalization.StringInfo]
class in Windows PowerShell to process individual graphemes.

Regex Deep Dive 351

Unicode Categories and Blocks Reference
You can view a complete reference for supported Unicode blocks⁷ and categories⁸ at
Microsoft Docs.

.NET Character Encoding Reference
You can view a complete reference for Character Encoding in .NET⁹ at Microsoft Docs.

13.4.2 Character Class Subtraction

Character class subtraction is a feature available in only a handful of regex implementations.
With it, you can filter your custom character classes to restrict what they match.

Example 8: Character class subtraction

1 $Array = 'a' .. 'p'
2 -join $Array # Input string
3 -join ($Array -match '[a-k]') # Match a-k
4 -join ($Array -match '[a-k-[d]]') # Match a-k except d

abcdefghijklmnop
abcdefghijk
abcefghijk

The range operator, .., only works with characters beginning in PowerShell 6.0. In prior
versions, the range operator only works with integers.

When subtracting character classes:

• Positive subtractions -[...] remove characters or ranges from the initial class.
• Inverse subtractions -[^...] remove all characters or ranges from the initial class except
those in the subtraction class.

• You can subtract within a subtraction (nested subtractions work).
• You can’t add characters that aren’t in the initial class by including them in the subtraction
(double-negatives don’t work).

• The engine ignores characters or ranges not in the initial class (no errors for out-of-range
subtractions).

⁷https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedNamedBlocks
⁸https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#

SupportedUnicodeGeneralCategories
⁹https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-encoding-introduction

https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedNamedBlocks
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedUnicodeGeneralCategories
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-encoding-introduction
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedNamedBlocks
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedUnicodeGeneralCategories
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedUnicodeGeneralCategories
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-encoding-introduction

Regex Deep Dive 352

Example 9: Limitations of character class subtraction

1 $Array = 'a' .. 'p'
2 -join ($Array -match '[a-k-[h-z]]') # Matches a-k except h-k, l-z ignored
3 -join ($Array -match '[a-k-[^j-z]]') # Matches nothing but j-k, l-z ignored
4 -join ($Array -match '[a-k-[b-g-[cd]]]') # Matches a-k, except b and e-g

abcdefg
jk
acdhijk

Character Class Subtraction Reference
You can view a complete reference for Character Class Subtraction¹⁰ at Microsoft Docs.

13.4.3 Using Inline Options

.NET provides a range of regex option modifiers, and the Accessing Regexes chapter discusses
them under the Regex Options heading. You can alter five of themwithin your patterns to change
the behavior from that point forward, or only for a span. A helpful mnemonic for these ismsnix
(“MS-nix”).

Table 1: Regex inline option modifiers

[RegexOptions] flag Modifier Name

Multiline m Multiline mode

Singleline s Singleline mode

ExplicitCapture n Explicit captures only

IgnoreCase i Case-insensitive mode

IgnorePatternWhitespace x Ignore pattern whitespace

There are two ways to apply these options to your patterns. The first applies them to the rest of
the pattern after an option modifier. Turn an option on with a letter from Table 1, and off with
a hyphen (minus sign) before that letter. The general form for this is (?msnix-msnix).

¹⁰https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#character-class-
subtraction-base_group---excluded_group

https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#character-class-subtraction-base_group---excluded_group
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#character-class-subtraction-base_group---excluded_group
https://learn.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#character-class-subtraction-base_group---excluded_group

Regex Deep Dive 353

Example 10: Inline option modifiers

1 $MyRegex = [regex]::new(@'
2 (?xm-i) # Ignore white space and multiline ON, case insensitivity OFF
3 ^ # Start of line because multiline is on
4 [a-z]{2} # 2 lowercase letters
5 (?i) # Turn on case insensitivity
6 -[a-z]{2} # Hyphen followed by 2 letters of any case
7 '@, 'IgnoreCase')
8
9 $MyRegex.Matches(@'

10 en-US
11 en-us
12 EN-us
13 en-GB
14 '@).ForEach{ $_.Value }

en-US
en-us
en-GB

In Example 10, the regex option flags turn on IgnoreCase, as it would be with the -match
operator. However, the -i modifier overrides this and disables case insensitivity within the
pattern. The m modifier turns on multiline mode, allowing the pattern to match a culture code
from each line, not just the one immediately following the beginning of the string.

The modifier takes effect at its current position in the pattern, so the modifier doesn’t alter the
behavior of any tokens that come before it.

Example 11: Specificity of inline option modifiers

1 $MyRegex = [regex]::new('(\w)(?n)(\w)(?-n)(\w)')
2
3 $MyRegex.Match('abc').Groups.ForEach{
4 Write-Host $_.Name $_.Value
5 }

0 abc
1 a
2 c

In Example 11, the engine doesn’t capture the second group but captures the first and third.
Explicit capture is only on between (?n) and (?-n), meaning the engine can capture the other
unnamed groups.

13.4.4 Using Option Spans

You can also apply option modifiers within a confined span using subexpression syntax with
modifiers and a colon. The general syntax for this is (?msnix-msnix:...). Using this approach,
the changed options only apply to the subexpression.

Regex Deep Dive 354

Example 12: Option spans (subexpressions)

1 $MyRegex = [regex]::new('(\w)(?-n:(\w))(\w+)', 'ExplicitCapture')
2
3 $MyRegex.Match('abc').Groups.ForEach{
4 Write-Host $_.Name $_.Value
5 }

0 abc
1 b

In Example 12, ExplicitCapture is present, but the engine captures the second unnamed group.
This is because the group is inside a subexpression with ExplicitCapture turned off.

Inline Options Reference
You can view a complete reference for Inline Options¹¹ at Microsoft Docs.

13.4.5 Comments in Regex

Like any programming language, many regex implementations support comments, also called
remarks. .NET regex is no exception, and there are two forms of comments supported.

The first kind, the comment span (?#...), is available regardless of which regex options are
present. The second, the end of line comment #... applies only when IgnorePatternWhites-
pace is present.

Example 13: Comments in .NET regex

1 if ('abcdefg hijklmn' -match '(?:(\w)(?# Matches letter pairs)(\w))+') {
2 $Matches
3 }

Name Value
---- -----
2 f
1 e
0 abcdef

Remember that with -match, you only get the first match. You only have access to the last
capture for each group, too. In Example 13, the captures for ab and cd aren’t accessible. The
second match for hijklmn and its captures isn’t, either.

When the IgnorePatternWhitespace flag is present, you can use end of line comments. The
engine ignores all text after a hash symbol # until the end of the line.

¹¹https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#specifying-the-options

https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#specifying-the-options
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options#specifying-the-options

Regex Deep Dive 355

Example 14: End of line comments in .NET regex

1 $MyString = 'SWdlbCBzaW5kIHRvbGwh'
2
3 # Matches valid base-64 strings
4 $MyPattern = @'
5 (?nx) # Ignore pattern white space, explicit captures
6 (# Unnamed group
7 [A-Za-z0-9+/]{4} # Match 4 B64 chars (A-Z, a-z, 0-9, +, and /)
8)+ # Match one or more instances of group
9 (# Unnamed group

10 # 1st alternative
11 [A-Za-z0-9+/]{3}= # Match 3 B64 chars and "="
12 | #
13 # 2nd alternative
14 [A-Za-z0-9+/]{2}== # Match 2 B64 chars and "=="
15)? # Match group optionally
16 '@
17
18 if ($MyString -match $MyPattern) {
19 Write-Host ('Match: {0}' -f
20 -join ([System.Convert]::FromBase64String($Matches[0]) -as [char[]]))
21 }

Match: Igel sind toll!

In Example 14, the (?x) inline option turns on IgnorePatternWhitespace.

13.5 Advanced Replacement Patterns

The previous chapters haven’t discussed replacement patterns in depth. This is because the engine
treats them differently and they use different language elements.

Replacement patterns are instructions for how the regex engine should substitute text in
replacement operations. You may find them referred to as substitution patterns for this reason.
The only metacharacter in replacement patterns is the dollar sign $. The engine interprets all
other text literally. The character following the dollar sign changes the nature of the substitution.

13.5.1 Named and Numeric Captures

Any group in the regex pattern that led to a capture from the input string can be substituted
in replacement operations. The syntax for substituting a capture by its numeric index is $NNN,
where NNN is the ordered index of the capturing group in the pattern from left-to-right.

The syntax for named captures is a little different from backreferences. Use ${name}where name
is the group name of the named capture <name>.

Regex Deep Dive 356

Example 15: Reformatting log data using substitution in replacement patterns

1 $MyString = @'
2 [2020-07-16T19:50:31] [PATCH] Service "xrdp" installed by "apt"
3 [2020-07-16T20:25:23] [INFO] Service [2896] started
4 [2020-07-16T20:25:26] [DEBUG] Service [2896] ready
5 '@
6
7 $Patterns = @(
8 '(?m)^\[([^\]T]+)T([^\]]+)\] ' +
9 '\[(INFO|PATCH|DEBUG|WARN|ERROR|FATAL) ?\] (?<msg>.+)$'

10 '(?m)^(WARN|PATCH)(?=)'
11 '(?m)^INFO(?=)'
12 '(?m)^DEBUG(?=)'
13)
14
15 $Replacements = @(
16 '$3 message at $2 on $1{0} ${{msg}}{0}' -f [Environment]::NewLine
17 '$1ING'
18 'INFORMATIONAL'
19 'DEBUGGING'
20)
21
22 for ($i = 0; $i -lt $Patterns.Count; $i++) {
23 $MyString = $MyString -replace $Patterns[$i], $Replacements[$i]
24 }
25
26 $MyString

PATCHING message at 19:50:31 on 2020-07-16
Service "xrdp" installed by "apt"

INFORMATIONAL message at 20:25:23 on 2020-07-16
Service [2896] started

DEBUGGING message at 20:25:26 on 2020-07-16
Service [2896] ready

Unlike backreferences in regex patterns, a nonexistent capture doesn’t result in interpretation as
an octal character code. Instead, the engine substitutes the literal text of the token. This is also
the case with nonexistent named captures.

Example 16: Nonexistent captures in replacement patterns

1 $MyString = '$5.23 (March)'
2
3 $NoCaptures = '\$\d+\.\d{2} \(\w+\)'
4 $Captures = '\$(\d+)\.(?<discount>\d{2}) \((\w+)\)'
5
6 $Replacement = '$$$1.00 ($$0.${discount} off until ${2})'
7
8 $MyString -replace $NoCaptures, $Replacement
9

10 $MyString -replace $Captures, $Replacement

Regex Deep Dive 357

 $$1.00 ($0.${discount} off until ${2})

$5.00 ($0.23 off until March)

Note that in the pattern, the until month group is the third capturing group from left-
to-right, but is actually $2 in the replacement pattern. This is because the regex engine
only assigns numeric indexes to named captures after all unnamed ones.

In Example 16, the $$ token inserts a literal dollar sign. The protected numeric capture reference
${NNN} prevents the engine from interpreting any following digits as part of the group index.
For instance, the replacement pattern $10 represents the tenth capture, but ${1}0 represents the
first capture, followed by a literal zero.

13.5.2 Entire Match

You can insert the value of the pattern’s entire match, equivalent to capture 0, using a dollar sign
followed by an ampersand $&.

Example 17: Substituting the entire match

1 'Nice!' -replace 'ice', 'oice $&'

Noice ice!

13.5.3 Match Span Prefixes and Postfixes

What about the text before and after that matched by the pattern? The engine stores that, too.
To insert all the text before the first character of the match (prefix), use a dollar sign followed
by a backtick $` . For all the text after the last character of the match (postfix), use a dollar sign
followed by a single quotation mark $'.

Example 18: Substituting before and after the match

1 'Nice!' -replace 'ice', '$`$`$`oice $&$''$''$''' # Literal
2
3 'Nice!' -replace 'ice', "$``$``$``oice $&$'$'$'" # Expandable

NNNNoice ice!!!!

NNNNoice ice!!!!

You must escape the backtick in expandable strings, and the single quotation mark in literal
strings. You can achieve both escapes by doubling the relevant character.

Regex Deep Dive 358

13.5.4 Entire Input

You can substitute a copy of the entire input string before any replacement operations using $_.
This isn’t the same as the $_ PowerShell automatic variable. You must pass a dollar sign followed
by an underscore. Either use a literal string, '$_', or escape the dollar sign in an expandable
string, "`$_".

This is effectively equivalent to the prefix, match, and postfix tokens combined $`$&$'.

13.5.5 Last Capture

The last token available for replacement patterns substitutes the last capture. This is the highest-
numbered capture in the match.

Example 19: Substituting the last capture

1 $MyPattern = '(?m)^(?<First>[\w-[\d]]+)((?: [\w.-[\d]]+)+)? ([\w--[\d]]+)$'
2 $MyReplacement = '"$2, $+$1"'
3
4 $Names = @'
5 John Smith
6 Jane Luisa Doe
7 Joe D. Bloggs
8 Joe Smith-Bloggs
9 '@

10
11 $Names -replace $MyPattern, $MyReplacement

"Smith, John"
"Doe, Jane Luisa"
"Bloggs, Joe D."
"Smith-Bloggs, Joe"

In Example 19, note how the last name is capture 2, and the first name is capture 3. This is for the
same reason as in Example 16. The .NET regex engine indexes named captures after all unnamed
ones. The first name group is therefore the last capture, and accessed with ${First}, $3 or $+.

13.6 Advanced Subexpressions and Backreferences

13.6.1 Backreferences in Depth

The previous regex sections have mentioned backreferences already, but there’s a little more
to them with .NET regex. You can match captures from earlier in your regex patterns using
backreferences, both by number and name. These aren’t the same as subroutines, where the
pattern gets reapplied, instead of the capture. Subroutines don’t exist in .NET regex.

For numeric backreferences, use \NNN where NNN is an integer starting at 1, representing the
ordered index of the capture from the pattern from left-to-right. For the pattern (\d+)(%) and

Regex Deep Dive 359

input string ‘15%’, \1 would match ‘15’ and \2 would match ‘%’. For named backreferences, use
\k<name> or \k'name' where name is the group name (?<name>...).

The engine gives all captures a numeric index regardless of whether the group is named, and
you can access these with \NNN or \k<...>. When accessing a nonexistent backreference using a
numeric index, the engine will treat it as an octal character code instead. The Accessing Regexes
section discusses backreference interpretation under the ECMAScript Mode heading.

Example 20: Named and numeric backreferences

1 $Numbers = '12230'
2
3 # Matches repeating digits
4 $Numbers -match '(\d)\1'
5
6 # Tries to match capture 130, which doesn't exist,
7 # so matches octal 130 (capital "X")
8 $Numbers -match '(\d)\130'
9

10 # Use an index enclosed with triangular bracket or
11 # single quotation mark to prevent the above issue
12 $Numbers -match '(\d)\<1>30'
13 $Numbers -match "(\d)\'1'30"
14
15 # Passing numeric indexes to \k results in the indexed capture,
16 # unless a capturing group was explicitly named with that number
17 $Numbers -match '(\d)\k<1>30'
18 $Numbers -match "(\d)\k'1'30"
19
20 # You can use either enclosed form for both
21 # the capturing group and the backreference
22 $Numbers -match "(?'repeat'\d)\k<repeat>"
23 $Numbers -match "(?<repeat>\d)\k'repeat'"

True

False

True
True

True
True

True
True

If you use a numeric name (?<NNN>) for your capturing group, it overrides the internally
assigned index. Doing this means the capture names will no longer reflect the order of capturing
groups in the pattern. You probably shouldn’t do this.

Regex Deep Dive 360

Example 21: Named numeric captures and their consequences
1 '5:5:' -match "(?'2'\d)\1" # Capture 1 doesn't exist, throws error
2
3 '5:5:' -match "(?'2'\d)(:)\1\2" # Expected order of captures
4 '5:5:' -match "(?'2'\d)(:)\2\1" # Actual order of captures

OperationStopped: Invalid pattern '(?'2'\d)\1' at offset 10.
Reference to undefined group number 1.

False
True

Capturing group names are always case-sensitive. This applies whether the IgnoreCase flag is
present (such as with -match) or not.

Backreference Constructs Reference
You can view a complete reference for Backreference Constructs¹² at Microsoft Docs.

13.6.2 Lookarounds in Depth

As described earlier, lookarounds can determine the success or failure of a match without
becoming a part of it. In other words, they’re zero-width assertions. Lookarounds are also atomic,
and the engine can’t backtrack into them once processing moves on.

Example 22: Using a negative lookaround to isolate line comments
1 $MyPattern = '(?nm)^(?!\s*#).+(\r?\n)*'
2 $MyString = @'
3 # Create the RNG
4 $CryptoRandGen = [System.Security.Cryptography.RNGCryptoServiceProvider]::new()
5
6 # Buffer to store random bytes
7 [byte[]]$bufferByte = [byte[]]::new(1)
8 '@
9

10 $MyString -replace $MyPattern

Create the RNG
Buffer to store random bytes

The function of the negative lookahead here is to exclude all lines beginning with zero or more
space characters followed by a hash symbol #. All other lines match the .+ token, as do any
following newlines. The -replace operator replaces these matches, leaving only the comment
lines and adjacent newlines.

You can also use anchors in lookarounds, as they’re already zero-width. You can negate a start-
of-line anchor (?!^) in multiline mode, for example.

¹²https://learn.microsoft.com/en-us/dotnet/standard/base-types/backreference-constructs-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/backreference-constructs-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/backreference-constructs-in-regular-expressions

Regex Deep Dive 361

Example 23: Finding nouns and articles with lookarounds

1 $MyPattern = '(?im)(?<=(?<article>a|the))(?>(?<noun>\w+))(?<!ing)(?!$)'
2 $MyString = @'
3 The cat sat on the mat eating a hat
4 The knitting needles fell on the floor again
5 '@
6
7 $MyMatches = [regex]::Matches($MyString, $MyPattern)
8
9 $MyMatches.ForEach{

10 'Match "{0}"' -f $_.Value
11 $_.Groups.Where{
12 $_.Name -ne '0' # Exclude the $0 'whole match' group
13 }.ForEach{
14 ' ', $_.Name, '=', $_.Value -join ' '
15 }
16 }

Match "cat"
article = The
noun = cat

Match "mat"
article = the
noun = mat

Match "floor"
article = the
noun = floor

Don’t get spooked! This pattern is a lot simpler than it looks. Breaking it down:

• (?im): Option modifiers; IgnoreCase and Multiline
• (?<=(?<article>a|the)): Positive lookbehind containing named capturing group ‘arti-
cle’. Matches ‘a’ or ‘the’ and a space. This means ‘a ‘ or ‘the ‘ must precede the following
noun (note the space that follows both).

• (?>(?<noun>\w+)): Atomic group containing named capturing group ‘noun’. Matches one
or more word characters.

• (?<!ing): Negative lookbehind. Causes match failure if it matches ‘ing’ before the current
point.

• (?!$): Negative lookahead. Causes match failure if it matches the end of a line (since
multiline mode is on).

Of the five article-noun pairs in the string, two don’t match:

• ‘a hat’ doesn’t match because the ‘t’ in ‘hat’ is the end of the line. The negative lookahead
(?!$) matches this and causes failure.

• ‘The knitting’ doesn’t match because ‘knitting’ ends with ‘ing’. The negative lookbehind
(?<!ing) matches this and causes failure.

Regex Deep Dive 362

Notice that the overall match values (‘cat’, ‘mat’, ‘floor’) don’t include the articles. This is because
the tokens that match the article are inside a lookbehind, which is zero-width. However, the
capturing group ‘noun’ could still capture these as the engine processed the lookbehind. The
ability to capture text without consuming it, coupled with lookaround size variability, provides
a lot of room for creative regexes.

Example 23: Thoughts
The (?!$) lookahead contains only zero-width tokens, so (?<!$)would be functionally
equivalent. What would happen if you changed the other lookarounds to their direc-
tional opposites? What about if you removed the atomic group?

Try these changes in PowerShell. It reveals a lot about how the regex engine is processing
the lookarounds.

Lookarounds Reference
You can view a complete reference for lookarounds on the Grouping Constructs¹³ page
at Microsoft Docs.

13.6.3 Conditional Logic

This feature is something that the regex parts of this book haven’t covered at all so far. That isn’t
to say it’s not useful. Conditional matching constructs introduce if-then-else logic into regexes.
The if part can be a subexpression, and the engine treats this as a zero-width assertion, much like
a lookaround. It can also be a numeric index or group name and, in this case, the engine checks
if the group has any captures. You can then tailor your pattern’s response by using different
subexpressions for the then and else parts. The standard syntax for expression-based conditional
matching is (?(subexpression)yes|no).

Example 24: Conditional logic with subexpressions

1 $WithId = '<div id="some-id" class="styleA styleB">'
2 $WithoutId = '<div class="styleA styleB">'
3
4 $MyRegex = [regex]::new('(?mi)^<div(?([^>]+id="[^"]+")(?:\s*(?<name>[^"]+)=' +
5 '"(?<value>[^"]+)")*\s*|(?<attribs>[^>]+))>$')
6
7 $ProccessMatches = {
8 param($Match)
9 Write-Host ' Attributes:'

10 $Names = $Match.Groups['name'].Captures
11 $Values = $Match.Groups['value'].Captures
12 for ($i = 0; $i -lt $Names.Count; $i++) {
13 Write-Host (
14 ' {0} = {1}' -f $Names[$i].Value,
15 ($Values[$i].Value -split ' ' -join ', ')
16)

¹³https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#zero-width-positive-
lookahead-assertions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#zero-width-positive-lookahead-assertions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#zero-width-positive-lookahead-assertions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#zero-width-positive-lookahead-assertions

Regex Deep Dive 363

17 }
18 Write-Host (
19 ' Raw attributes: [' + $Match.Groups['attribs'].Value + ']'
20)
21 }
22
23 Write-Host 'With Id:'
24 & $ProccessMatches -Match $MyRegex.Match($WithId)
25
26 Write-Host 'Without Id:'
27 & $ProccessMatches -Match $MyRegex.Match($WithoutId)

With Id:
Attributes:
id = some-id
class = styleA, styleB

Raw attributes: []

Without Id:
Attributes:
Raw attributes: [class="styleA styleB"]

Try deconstructing the pattern from Example 24 yourself. See if you can interpret what
it’s doing before reading the explanation ahead.

The pattern in Example 24 captures text from HTML tags differently, depending on whether an
id attribute is present. If so, the pattern extracts each attribute’s name and value. Otherwise, it
collects the attribute span in one lump.

Deconstructing the pattern reveals the distinct if, then, and else parts of the conditional.

(?mix)
^<div # Literal "<div" after start of line
(?(# Conditional statement (if)

[^>]+ # One or more characters that aren't ">"
id=" # Literal 'id="'
[^"]+ # One or more characters that aren't '"'
" # Literal '"'

) # Subexpression if condition matches (then)
(?: # Noncapturing group

\s* # Zero or more space characters
(?<name> # Capturing group "name"

[^"]+ # One or more characters that aren't '"'
) # Match group once
=" # Literal '="'
(?<value> # Capturing group "value"

[^"]+ # One or more characters that aren't '"'
) # Match group once
" # Literal '"'

)* # Match group zero or more times
\s* # Zero or more space characters

| # Subexpression if condition fails (else)
(?<attribs> # Capturing group "attribs"

[^>]+ # One or more characters that aren't ">"
) # Match group once

) # End of conditional construct
>$ # Literal ">" before end of line

Regex Deep Dive 364

The engine treats the if part of the conditional as zero-width. The yes (then) part
therefore needs to be capable of matching the same text, just as with a positive lookahead
(?=...).

As mentioned at the beginning of this section, you can also use the same conditional construct
to evaluate the success of an earlier named or unnamed capturing group. The standard syntax
for capture-based conditional matching is (?(NNN)yes|no) where NNN is a group index, or
(?(name)yes|no) where name is a group name.

Example 25: Matching GUIDs with capture-based conditional logic

1 $MyPattern = '^(\{)?[a-f0-9]{8}-[a-f0-9]{4}-[0-4][a-f0-9]{3}-' +
2 '[ab89][a-f0-9]{3}-[a-f0-9]{12}(?(1)\})$'
3
4 '96d30676-14d2-411c-b3f7-78f1708221e2' -imatch $MyPattern
5 '{96d30676-14d2-411c-b3f7-78f1708221e2' -imatch $MyPattern
6 '96d30676-14d2-411c-b3f7-78f1708221e2}' -imatch $MyPattern
7 '{96d30676-14d2-411c-b3f7-78f1708221e2}' -imatch $MyPattern

True
False
False
True

The pattern in Example 25 matches a GUID (UUID) with or without curly braces {}. If it finds
an opening brace, a closing one must be present or the match fails. The example also shows that
the no (else) group is optional. You can omit the pipe | and only include a yes (then) group. It’s
possible to leave the yes group blank, too. This is true for both expression and capture-based
conditional constructs.

Example 25: Thoughts
What would happen if the ? quantifier was inside the first capturing group? Try it out
in PowerShell.

The capturing group matches, but with an empty capture. The conditional still treats
this as true, so is always expecting a closing brace ‘}’, regardless of whether an opening
brace ‘{‘ is present.

Conditionals Reference
You can view a complete reference for conditionals on the Alternation Constructs¹⁴ page
at Microsoft Docs.

¹⁴https://learn.microsoft.com/en-us/dotnet/standard/base-types/alternation-constructs-in-regular-expressions#conditional-
matching-with-an-expression

https://learn.microsoft.com/en-us/dotnet/standard/base-types/alternation-constructs-in-regular-expressions#conditional-matching-with-an-expression
https://learn.microsoft.com/en-us/dotnet/standard/base-types/alternation-constructs-in-regular-expressions#conditional-matching-with-an-expression
https://learn.microsoft.com/en-us/dotnet/standard/base-types/alternation-constructs-in-regular-expressions#conditional-matching-with-an-expression

Regex Deep Dive 365

13.6.4 Balancing Groups

The chapter has already mentioned the absence of recursive matching in .NET regex. So how
do you match nested constructs? The answer is a feature found only in a handful of regex
implementations: balancing groups. Instead of building a recursion stack, this construct pops
captures from the capture stack of an existing capturing group. If the input string contains
balanced nested constructs, there should be no remaining captures for the existing group, and
you can test for this with conditionals.

The standard syntax for a balancing group is (?<Closing-Opening>...), where an existing
capturing group (?<Opening>...) is present. If the contents of the balancing group Closing-
Opening match, the engine pops (removes) the last capture of the group Opening. It then stores
all the text between that capture and the balancing group in a new capture of the Closing group.

Example 26: Capturing intermediate text with balancing groups

1 $MyPattern = '(?<Open>\()[^\(\)]+(?<Close-Open>\))'
2 $MyString = 'Some of this sentence is (enclosed in parentheses).'
3
4 $Result = [regex]::Match($MyString, $MyPattern)
5
6 if ($Result.Success) {
7 $Result.Groups.ForEach{
8 Write-Host ('Group {0}:' -f $_.Name)
9 $_.Captures.ForEach{

10 Write-Host (' Capture: "{0}"' -f $_.Value)
11 }
12 }
13 }

Group 0:
Capture: "(enclosed in parentheses)"

Group Open:
Group Close:

Capture: "enclosed in parentheses"

Notice that the opening parenthesis, ‘(‘, is absent for the Open group capture. The engine pushed
this capture to the stack when the Open group matched, but popped it when the Close-Open
balancing groupmatched. You can see that the engine captured the text between the Open capture
and Close-Open construct, and placed this in a capture of the Close group. Notice that the
closing parenthesis, ‘)’, is absent from any captures, too. The engine doesn’t capture the contents
of a balancing group construct, but does consume them.

You can omit the closing group name (?<-Opening>...) to prevent the capture of the inter-
mediate text. You can also use an empty balancing group construct (?<Closing-Opening>) to
guarantee the removal of the latest Opening capture.

Regex Deep Dive 366

Example 27: Nested balanced constructs with balancing groups

1 $MyPattern = '^[^"]*(?:(?:(?<StartQuote>(?=[\p{P}]|^)")[^"]*)+' +
2 '(?:(?<Quotes-StartQuote>"(?=[\p{P}]|$))[^"]*)+)*(?(StartQuote)(?!))$'
3
4 $BalancedQuotes = '"Hello?", I queried. The stranger replied, ' +
5 '"Why is "Hello" a question?".'
6
7 $UnbalancedQuotes = 'Hello?", I queried. The stranger replied, ' +
8 '"Why is "Hello" a question?".'
9

10 $ResultBalanced = [regex]::Match($BalancedQuotes, $MyPattern)
11 $ResultUnbalanced = [regex]::Match($UnbalancedQuotes, $MyPattern)
12
13 Write-Host 'Balanced match:' $ResultBalanced.Success
14 Write-Host 'Unbalanced match:' $ResultUnbalanced.Success
15
16 Write-Host (
17 'Balanced StartQuote capture count: ' +
18 $ResultBalanced.Groups['StartQuote'].Captures.Count
19)
20
21 Write-Host 'Quoted phrases from balanced string:'
22 $ResultBalanced.Groups['Quotes'].Captures | Format-Table

Balanced match: True
Unbalanced match: False

Balanced StartQuote capture count: 0

Quoted phrases from balanced string:

Index Length Value ValueSpan
----- ------ ----- ---------

1 6 Hello?
52 5 Hello
44 26 Why is "Hello" a question?

The balancing group Quotes captures nested quoted phrases from the balanced string. The empty
StartQuote group is the indicator; the pattern uses a conditional (?(StartQuote)(?!)) to
assert this. The (?!) part is simply an empty negative lookahead, which always fails, and this
acts as a breakpoint if StartQuote still has captures. Therefore, when an uneven number of
quotes breaks the balance, StartQuote has leftover captures and the conditional causes match
failure.

To understand what’s happening in Example 27, the next example displays what each group
matches.

Regex Deep Dive 367

Example 28: Breaking down a pattern with a balancing group

1 $MyPattern = @'
2 (?x)^ # Ignore white space. Match start of string
3 [^"]* # Text before first quotation mark (none)
4 (?<QuoteSpans> # Rest of string
5 (?<StartQuotePlusContents> # '"' and level contents BEFORE deeper level
6 (?<StartQuote> # Group stack used to count levels
7 (?=[\p{P}]|^)" # '"' preceded by punctuation/space
8) #
9 [^"]* # Level contents BEFORE deeper level

10)+ # One or more, to ENTER multiple levels
11 (?<EndQuoteAndPostfix> # '"' and level contents AFTER deeper level
12 (?<Quotes-StartQuote> # Captures deeper level contents
13 "(?=[\p{P}]|$) # '"' followed by punctuation/space/end
14) #
15 [^"]* # Level contents AFTER deeper level
16)+ # One or more, to EXIT multiple levels
17)* # Zero or more, for multi-instances of same level
18 (?(StartQuote)(?!)) # If "StartQuote" has leftover captures, fail match
19 $ # Match end of string
20 '@

1 $BalancedQuotes = '"Hello?", I queried. The stranger replied, ' +
2 '"Why is "Hello" a question?".'
3
4 $Result = [regex]::Match($BalancedQuotes, $MyPattern)
5
6 if ($Result.Success) {
7 $Result.Groups.ForEach{
8 Write-Host ('Group "{0}":' -f $_.Name)
9 $captureCount = -1

10 $_.Captures.ForEach{
11 Write-Host (
12 ' Capture {0} (pos {1}) = {2}' -f
13 ++$captureCount, $_.Index, $_.Value
14)
15 }
16 }
17 } else { Write-Host 'Match failed' }

Group "0":
Capture 0 (pos 0) = "Hello?", I queried. The stranger replied, "Why is
"Hello" a question?".

Group "QuoteSpans":
Capture 0 (pos 0) = "Hello?", I queried. The stranger replied,
Capture 1 (pos 43) = "Why is "Hello" a question?".

Group "StartQuotePlusContents":
Capture 0 (pos 0) = "Hello?
Capture 1 (pos 43) = "Why is
Capture 2 (pos 51) = "Hello

Group "StartQuote":
Group "EndQuoteAndPostfix":

Capture 0 (pos 7) = ", I queried. The stranger replied,
Capture 1 (pos 57) = " a question?
Capture 2 (pos 70) = ".

Group "Quotes":
Capture 0 (pos 1) = Hello?
Capture 1 (pos 52) = Hello
Capture 2 (pos 44) = Why is "Hello" a question?

Regex Deep Dive 368

Navigating through the input string, the quotation level changes:

"Hello?", I queried. The stranger replied, "Why is "Hello" a question?".
^ ^ ^ ^ ^ ^
1 2 3 4 5 6

1. Open level 1 quote
2. Close level 1 quote
3. Open level 1 quote
4. Open level 2 quote (quote within a quote)
5. Close level 2 quote
6. Close level 1 quote

This means that the pattern has to enter and exit several deeper levels recursively, before exiting
the current level. In the list, this occurs when “Open” or “Close” happen consecutively (3 → 4
and 5 → 6). The one-or-more + quantifier on the two quote groups (StartQuotePlusContents
and EndQuoteAndPostfix) supports this, as many opening captures can occur successively
before the balancing groups. The balancing groups can pop these captures to close those quotes
successively, too.

The pattern also has to handle entering and exiting many instances of the same quote level.
In the list, this occurs when “Open” follows a “Close” of the same level (2 → 3). The zero-or-
more * quantifier on the QuoteSpans group supports this, as many capture push-pop cycles can
occur for the inner groups. There are two instances of the first quotation level, which is why the
QuoteSpans group has two captures. Each quote span contains quotation marks, quote contents,
and the text that follows until the next quote.

The StartQuotePlusContents group reveals the text that StartQuote captures before Quotes-
StartQuote removes it. Captures 0 and 1 are the level 1 quotes, while Capture 2 is the level 2
quote, both with starting quotation marks. The EndQuoteAndPostfix group shows what the
Quotes-StartQuote group would have captured if it wasn’t a balancing group, along with the
text following the quotes.

The pattern in Example 27 behaves exactly the same as Example 28, but uses noncapturing groups
in place of StartQuotePlusContents, EndQuoteAndPostfix, QuoteSpans.

Balancing Groups Reference
You can view a complete reference for balancing groups on the Grouping Constructs¹⁵
page at Microsoft Docs.

¹⁵https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#balancing-group-
definitions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#balancing-group-definitions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#balancing-group-definitions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/grouping-constructs-in-regular-expressions#balancing-group-definitions

14. Regex Best Practices
That’s it! You’ve now covered all the major topics on regexes in PowerShell and .NET. This
chapter rounds off the regex part of the book with some important concepts that’ll aid you in
crafting effective regexes.

14.1 Constrained and Unconstrained Input

A topic that’s never far from the spotlight in the realm of security is user input. This risk also
applies to regexes. When tackling a pattern-matching problem, always ask yourself where the
input is coming from. If you’re generating your pattern dynamically, also consider the source of
the information that plugs into your generator.

Constrained input is data from a reliable source that follows an expected format. This could be
output from a known application or data from a database where you’ve already checked the
contents for validity. Unconstrained input, on the other hand, is data that may differ from what
you expect. This includes user input, but also data where a user could affect its format, such as
log files that directly record user input.

If you can’t be reasonably sure that the input text is constrained, construct your pattern as if
it isn’t. This is an aspect of defensive coding and you should always apply it to your regexes,
too. It’s much easier to craft your regex patterns defensively from the start rather than adapt an
existing pattern to handle unexpected input.

14.2 Backtracking and Exponential Operations

The earlier regex chapters cover backtracking and its consequences extensively, but it’s worth
repeating a couple of points. Each time you use a quantifier that permits an indefinite number
of matches (such as +, ?, and * and their lazy counterparts), you create branching opportunities
for the regex engine. The engine must save every starting point where branching can occur as
these quantifiers consume input text, so that it can backtrack to one of these states if it needs to.

There are many situations where backtracking isn’t beneficial or could degrade performance for
nonmatching input. One example is catastrophic backtracking, a phenomenon the Regex Deep
Dive chapter covers. However, saving each of these branching states has a performance penalty,
and this becomes more obvious with large inputs. Therefore, wherever preventing backtracking
won’t affect your pattern’s ability to match input text, you should prevent it. You can achieve
this with atomic groups or lookarounds.

14.3 Preventing ReDoS with Regex Time-Outs

Following on from the discussion about unconstrained input and backtracking, it’s possible to
imagine an intentional input that could exploit theseweaknesses. The .NET regex constructor and

369

Regex Best Practices 370

static methods support a matchTimeout parameter, which aborts the match process and throws
an exception if the operation takes longer than the time-out period. This becomes important
in production environments where unconstrained input coupled with vulnerable patterns could
become a regex denial-of-service (ReDoS).

All .NET and .NET Framework versions since 4.5 support regex time-outs.

You can see a regex time-out in action in Example 3 from the Regex Deep Dive chapter. Here,
it prevents catastrophic backtracking from continuing unchecked. The native PowerShell regex
operators don’t support a match time-out, so use this feature of the .NET methods in scenarios
with unsupervised commands or in production environments.

14.4 Capturing Just Enough

Returning to the topic of regex performance, captures are another useful but costly feature to
consider. Since each capturing group requires the engine to build a stack of captures, this can
become both computationally expensive and memory-intensive for large inputs. Remember, a
regex match always creates at least one capture—the entire match. Only use capturing groups if
you need additional substrings from the match span.

Example 1: The performance penalty of excessive captures

1 $LongString = ('This is a single sentence. ' * 1e5).Trim()
2
3 Write-Host ('String length: {0:n0} chars' -f $LongString.Length)
4
5 # Matches multiple sentences
6 # WARNING: This pattern backtracks catastrophically with invalid input
7 $OneCapture = [regex]::Matches($LongString,
8 '(?m)\b(?:([\w"''\(\)/-]+)[;,]?\s*)+[.?!]+')
9 $TwoCaptures = [regex]::Matches($LongString,

10 '(?m)\b(([\w"''\(\)/-]+)[;,]?\s*)+[.?!]+')
11
12 Write-Host (
13 'One capture: {0} ms' -f
14 (Measure-Command { $OneCapture.Count }).TotalMilliseconds
15)
16
17 Write-Host (
18 'Two captures: {0} ms' -f
19 (Measure-Command { $TwoCaptures.Count }).TotalMilliseconds
20)

String length: 2,699,999 chars
One capture: 120.4441 ms
Two captures: 244.4458 ms

Regex Best Practices 371

Both patterns in the example capture one sentence in each match and each word of the sentence
as extra captures of that match. The second pattern generates excessive captures, however. It
captures both the individual words and those words followed by any spaces. This means that
each match contains two copies of almost identical text.

It’s therefore important to use non-capturing (?:...) groups wherever you don’t need to extract
text, such as grouping constructs for repetition. You can also use the ExplicitCaptures regex
option or inline option (?n) to disable capturing for all unnamed groups.

14.5 Static vs. Instance Methods and Caching

The Accessing Regexes chapter covered both the static and instance methods of the .NET Regex
class. Caching has received only a brief mention and only in the context of interpreted versus
compiled patterns.

By default, the regex engine caches the last fifteen patterns you use with the static methods.¹ If
you use the Compiled option with a static call, the compiled CIL bytecode gets cached instead.
You can set or retrieve howmany patterns the engine storeswith the [Regex]::CacheSize static
property. This improves the efficiency of looping statements that contain static regex method
calls. When you instantiate a Regex object, the engine bypasses this cache and creates a newly
interpreted or compiled regex pattern.

Consider where this occurs in the execution of your code to avoid degraded performance. You
can use static methods anywhere, with or without the Compiled flag. This takes advantage of
static caching and removes the need to consider the cost of instantiation. However, it could be
less efficient if you use lots of unique patterns in one session.

With class instances, there is never a need for the engine to reinterpret or recompile the processed
pattern. It will be available for as long as it remains in scope. Aim for a single instantiation at
the outermost scope that’s appropriate. Some scenarios and ideal locations are:

• PowerShell modules: In the module scope, outside of any functions
• PowerShell classes: As a static property
• Script functions: In the begin {} block

Of course, if your pattern is going to change, you might need to create a new object in each
method or function call. In these circumstances, apply the same rule and minimize the number
of instances of the same pattern.

14.6 No More CompileToAssembly()

In older Windows-only editions of PowerShell and .NET, the Regex class provided a static
method for compiling several regular expressions and exporting them to an assembly. This
method now throws an exception, and you should instead use the Compiled regex option.

¹Microsoft. (2021, Sep. 15). Compilation and Reuse in Regular Expressions - The Regular Expressions Cache. Microsoft Docs. [On-
line]. Available: https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions#the-regu-
lar-expressions-cache. [Accessed: Mar. 01, 2022].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions#the-regular-expressions-cache
https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions#the-regular-expressions-cache

Regex Best Practices 372

14.7 Getting the Scope Right

Regexes are powerful—but so is PowerShell! It can be too easy to get tunnel vision when tackling
a problem and to try to solve it using regex alone. Always assess the different approaches you
could take. Ask yourself questions such as:

• Should you process the text line-by-line, or as a whole? Either can be more or less efficient
than the other in different contexts. Looping statements with a pattern for single lines are
often simpler but don’t work for target matches that span many lines.

• Could you achieve the same result with several simpler patterns and PowerShell statements?
Simpler patterns are much easier to debug. Complex patterns can be more efficient than
switching between programmatic and regex logic several times.

• Should there be some preprocessing? Filtering and formatting the input text (with more
regexes or otherwise) before passing it on to the extraction pattern can simplify the problem.
This is especially important with unconstrained input.

• What’s faster to create?What’s faster to run? Some solutions might be quick to put together,
but at the cost of performance. Consider how efficient your pattern-matching needs to be,
and balance it against how much time you have to deliver a solution.

Before you craft a regex pattern to solve a problem, prepare a strategy. This could involve testing
pattern fragments with various inputs, or looking at the consistency of sample data. It may
involve evaluating the performance of one approach versus another, such as line-by-line and
whole-text matching. An idea for the solution will often emerge during this planning step, and
it’s simply a matter of putting all the parts together and refining them.

14.8 Iterative Development

Seldom is a first-attempt regex pattern ready for deployment, even with a prior strategy. There’s
often a handful of overlooked cases that’ll cause unwanted behavior. This means you’ll likely
need to improve and retest your pattern several times before it’s fit for purpose. How far you go
to refine your pattern depends on the requirements for the solution and how quickly you must
deliver it. Iterative development is an effective approach for creating your patterns and the tools
you build around them.

Regex Best Practices 373

Iterative development applied to regex patterns and pattern-matching tools

This section considers the pattern from Example 1 and discusses potential refinements. The
requirement is that the pattern captures individual sentences and isolates each word within a
sentence, without accompanying punctuation. After overcoming the catastrophic backtracking
with an atomic group, the pattern looks like this:

(?m)\b(?>([\w"'\(\)/-]+)[;,]?\s*)+[.?!]+

It’s now more well-behaved, but there’s still needless computation when at least one sentence
doesn’t end with a valid terminator (.?!:). This is because the engine backtracks and tries to find
a match starting at each subsequent word boundary. For the string ‘This has no end’, it would
try the following.

(This) (has) (no) (end)
(has) (no) (end)
(no) (end)
(end)

In each instance, the match fails because of the lack of sentence termination, but the engine keeps
trying shorter matches until it runs out of whole words. This isn’t catastrophic backtracking, but
affects the pattern’s efficiency.

There are a variety of approaches that could improve the efficiency of this pattern. You can
remove the need for a word boundary altogether by using a more advanced beginning-of-
sentence assertion. The positive lookbehind (?<=^\s*|[.?!]\s+) asserts that before the current
position, there must be either:

Regex Best Practices 374

• A sentence terminator and at least one space
• The start of the string/line and zero or more spaces

This change improves performance by excluding some match candidates before the engine
processes the rest of the pattern, effectively providing a short-circuit. Since .NET supports
variable-length lookbehinds, you can evenmatch a variable number of spaces before the sentence.
Integrating this into the pattern gives:

(?m)(?<=^\s*|[.?!]\s+)(?>([\w"'\(\)/-]+)[;,]?\s*)+[.?!]+

Example 2: Improving efficiency with a short-circuit assertion

1 $BadSentence = 'lots of words ' * 100
2 $OldPattern = '(?m)\b(?>([\w"''\(\)/-]+)[;,]?\s*)+[.?!]+'
3 $NewPattern = '(?m)(?<=^\s*|[.?!]\s+)(?>([\w"''\(\)/-]+)[;,]?\s*)+[.?!]+'
4
5 Write-Host (
6 'Old pattern: {0} ms' -f (
7 Measure-Command { [regex]::Matches($BadSentence, $OldPattern) }
8).TotalMilliseconds
9)

10
11 Write-Host (
12 'New pattern: {0} ms' -f (
13 Measure-Command { [regex]::Matches($BadSentence, $NewPattern) }
14).TotalMilliseconds
15)

Old pattern: 5.7201 ms
New pattern: 0.4184 ms

The pattern still matches no sentences that contain unexpected characters. Using a negative
custom character class solves this problem. The class [^.?!;,\s] matches anything except
spaces (\s), sentence terminators (.?!), and sentence dividers (:,). Assuming this is the desired
behavior, the pattern now looks like this:

(?m)(?<=^\s*|[.?!]\s+)(?>([^.?!;,\s]+)[;,]?\s*)+[.?!]+

Excluding only a few characters instead of an inclusive (allowlist) approach introduces an
additional problem. The word group now captures word-adjacent characters, such as quotation
marks and brackets. The pattern would capture ‘(Hello world)’ as ‘(Hello’ and ‘world)’. This
doesn’t fulfill the requirements, which specify no punctuation with the captured words. You
could extend the pattern further to account for characters that may appear before or after words
and exclude them from captures.

Regex Best Practices 375

Since the pattern is now quite long, the following snippets use the IgnorePatternWhitespace
option, with patterns spread over several lines.

(?mx)
(?<=^\s*|[.?!]\s+) # 1. Beginning-of-sentence assertion
(?> # Word matching group, no backtracking

[\('"/:.]* # 2. Any characters before a word
([^.?!;,\s\(\)"'/]+) # 3. Word characters (capture)
[;,\)'"/]* # 3. Any characters after a word
\s* # 4. Zero or more spaces

)+ # Match one or more words
[.?!]+ # 5. One or more sentence terminators

The pattern now handles characters that appear before words (part 2), and after words (part 4).
Part 3 in the pattern is the capture, which now excludes these extra characters. This is necessary
to prevent greedy matching from consuming characters that part 4would capture, or part 2 from
giving up characters to part 3 in any backtracking scenarios. Another benefit is that the pattern
now matches decimal points within numbers (such as 6.47 and .39).

Is the pattern fit for purpose now? The only way to discover this is to run tests.

Example 3: Testing a more advanced pattern for words in sentences

1 $MyString = "The customer's name is Jane E. Doe."
2 $MyPattern = '(?mx)(?<=^\s*|[.?!]\s+)(?>[\(''"/:.]*([^.?!;,\s\(\)"''/]+)' +
3 '[;,\)''"/]*\s*)+[.?!]+'
4
5 [regex]::Matches($MyString, $MyPattern).ForEach{
6 Write-Host ('Sentence: "{0}"' -f $_.Value)
7 $_.Groups[1].Captures.ForEach{
8 Write-Host (' Word: "{0}"' -f $_.Value)
9 }

10 }

Sentence: "The customer's name is Jane E."
Word: "The"
Word: "customer"
Word: "s"
Word: "name"
Word: "is"
Word: "Jane"
Word: "E"

Sentence: "Doe."
Word: "Doe"

Immediately, two further problems are apparent: The pattern interprets the apostrophe ' in
“customer’s” as a boundary between two words. It also interprets the period . in ‘Jane E. Doe’ as
a sentence terminator.

Regex Best Practices 376

Tackling the apostrophe issue first, one solution is to remove the exclusion from the main word
group and use a negative lookbehind to ensure an apostrophe doesn’t appear at the end of a word.
While it would be possible to use conditional logic and balancing groups to differentiate single
quotation marks from apostrophes, it’s important to weigh pattern complexity and efficiency
against covering every edge case. The pattern now looks like this:

(?mx)
(?<=^\s*|[.?!]\s+) # 1. Beginning-of-sentence assertion
(?> # Word matching group, no backtracking

[\('"/:.]* # 2. Any characters before a word
([^.?!;,\s\(\)"/]+) # 3. Word characters (capture)
(?<!') # 6. Must not end with apostrophe
[;,\)'"/]* # 3. Any characters after a word
\s* # 4. Zero or more spaces

)+ # Match one or more words
[.?!]+ # 5. One or more sentence terminators

Part 6 in the snippet is the new negative lookbehind, and part 3 no longer excludes apostrophes.

The second issue is more complex than it may seem. Accounting for a period as part of name
initials is relatively easy. You could add an earlier alternative inside the word group [A-Z]\.|...
to cover those scenarios.

(?mx)
(?<=^\s*|[.?!]\s+) # 1. Beginning-of-sentence assertion
(?> # Word matching group, no backtracking

[\('"/:.]* # 2. Any characters before a word
([A-Z]\.|[^.?!;,\s\(\)"/]+) # 3. Word characters (capture)
(?<!') # 6. Must not end with apostrophe
[;,\)'"/]* # 3. Any characters after a word
\s* # 4. Zero or more spaces

)+ # Match one or more words
[.?!]+ # 5. One or more sentence terminators

Part 3 now accounts for single-letter name initials. However, this introduces a new edge case. If
a sentence ends with a single uppercase letter and a period, the pattern will continue to match
the next sentence.

Consider the sentences “Smith takes Vitamin D. Jones doesn’t take anything.”. How would you
tell between two sentences and one sentence containing the name ‘Vitamin D. Jones’? To a
human, it’s obvious that Vitamin is unlikely to be a name, but without a contextual dictionary
of names and nouns, or the ability to parse sentence structure, it isn’t possible for a computer to
differentiate between them.

This is an edge case, but nameswith initials aremore common than sentences that endwith single
uppercase letters. Therefore, the modification is justifiable in this instance. These decisions and
considerations appear often when developing regexes. Deciding what to account for and what’s
beyond the scope of a reasonable solution is an important aspect of regex iterative development.

There are several further considerations that could drive pattern evolution. Should the pattern:

• Capture hyphenated compoundwords (such as cross-platform) independently? The existing
pattern treats them as single words.

Regex Best Practices 377

• Handle clause separators, such as em dashes (—), as word separators? The existing pattern
treats these as one hyphenated word if there aren’t spaces around the dash.

• Exclude more opening/closing punctuation around words? The existing pattern includes
punctuation, such as curly braces {}, with word captures. Unicode categories such as
opening punctuation \p{Ps} and closing punctuation \p{Pe} exist for this.

• Treat numbers with decimal points as single words? The existing pattern treats them as
two.

• Handle abbreviations such as ‘Mrs.’ and ‘Prof.’? The existing pattern breaks a sentence here.
• Account for a colon followed by a newline? The existing pattern treats the text following
as a continuing sentence.

• Handle punctuation from other languages with Unicode categories? The existing pattern
aims to match English sentences only.

These are just a handful of modifications that could be necessary depending on the scenario.
The refinements made in this section aren’t the only possible ones either. The examples have
demonstrated a single development pathway. How you tackle a pattern-matching problem will
be unique to each scenario.

Example 4: A pattern that meets the requirements but doesn’t cover all edge cases

1 $Sentences = @'
2 This sentence contains "quotes", (brackets), and the number 42.01.
3 Mr. E. Smith's [first] name is John—E is for example.
4 PowerShell is cross-platform.
5 This sentence isn''t valid
6 '@
7
8 $MyPattern = '(?m)(?<=^\s*|[.?!]\s+)(?>[\(''"/:.]*([A-Z]\.|' +
9 '[^.?!;,\s\(\)"/]+)(?<!'')[;,\)''"/]*\s*)+[.?!]+'

10
11 [regex]::Matches($Sentences, $MyPattern).ForEach{
12 Write-Host ('Sentence: "{0}"' -f $_.Value)
13 Write-Host (
14 ' Words: {0}{1}' -f ($_.Groups[1].Captures.Value -join '/'),
15 [Environment]::NewLine
16)
17 }

Sentence: "This sentence contains "quotes", (brackets), and the number 42.01."
Words: This/sentence/contains/quotes/brackets/and/the/number/42/01

Sentence: "Mr."
Words: Mr

Sentence: "E. Smith's [first] name is John—E is for example."
Words: E./Smith's/[first]/name/is/John—E/is/for/example

Sentence: "PowerShell is cross-platform."
Words: PowerShell/is/cross-platform

The take-away is that it’s important to test your patterns in a variety of contexts. You may
find that one development path isn’t working, and you may have to return to the analysis and
planning stage. That’s OK—humans can backtrack too, just like regex engines!

Regex Best Practices 378

14.9 Edge Cases and Near Matches

Adversarial testing is an often-overlooked idea with regexes.When you’re developing and testing
a pattern, you’re primarily thinking about what it should match. It’s equally important to
consider what it could match, though. There are three kinds of input that your pattern will need
to handle:

• Input that matches your pattern
• Input that almost matches your pattern
• Input that doesn’t match your pattern

It’s the second case that often causes headaches. As well as testing valid and invalid inputs to
your pattern-matching solution, test for near-matches. There are two kinds of near-matches that
cause unexpected and unwanted behavior:

• Input that should match your pattern, but doesn’t. This is a false negative.
• Input that shouldn’t match your pattern, but does. This is a false positive.

Consider the pattern for matching IP addresses in Example 33 from Accessing Regexes. If the
zero from [01]? was missing, most valid IP addresses would still match. Likewise, if no anchors
or lookarounds were present, most invalid IPs would still not match. However, false positives
and negatives arise without them.

Example 5: Near matches to a regex pattern

1 $MyPattern =
2 '(?:(?<Octets>25[0-5]|2[0-4][0-9]|1?[0-9]{1,2})\.){3}' +
3 '(?<Octets>25[0-5]|2[0-4][0-9]|1?[0-9]{1,2})'
4
5 $Tests = [ordered]@{
6 'Valid 1' = '198.51.100.255' # Valid
7 'Valid 2' = '198.051.100.255' # Valid
8 'Invalid 1' = '198.51.256.255' # Block 3 invalid >255
9 'Invalid 2' = '198.51.100.256' # Block 4 invalid >255

10 }
11
12 $Tests.Keys.ForEach{
13 $Result = [regex]::Match($Tests[$_], $MyPattern)
14 $Match = $Result.Success ? $Result.Value : '-'
15 [pscustomobject]@{
16 Test = $_
17 Input = $Tests[$_]
18 Match = $Match
19 }
20 }

Regex Best Practices 379

Valid 1 Input: 198.51.100.255 Match: 198.51.100.255
Valid 2 Input: 198.051.100.255 Match: -
Invalid 1 Input: 198.51.256.255 Match: -
Invalid 2 Input: 198.51.100.256 Match: 198.51.100.25

Line 14 in Example 5 uses a ternary operator instead of an if-then-else statement. This
feature is available starting with PowerShell 7. See the Advanced Conditions chapter for
more on this.

Valid 2 is a false negative because the patternwasn’t equipped to handle the zero in ‘051’. Invalid
2 is a false positive because the pattern can still match without consuming the final ‘6’. Anchors
such as ^ and $ overcome the false positive, while using [01]? instead of 1? overcomes the false
negative.

Example 5 demonstrates the importance of testing your regex patterns and pattern-matching
solutions. Throw as many inputs at them as you can. Ask yourself, “How can I break this?.” Your
pattern should be able to handle any input you could reasonably expect.

Best Practices Reference
You can view some regex Best Practices² at Microsoft Docs.

14.10 Thread Safety

This section focuses only on thread safety in the context of regex objects. In general, you won’t
need to worry about this aspect of regex objects, but scenarios such as accessing regex results
across PowerShell runspaces will make this necessary.

A [Regex] class instance is both immutable and thread-safe. This means you’re able to create
and use regex objects across many threads. Single result objects such as [Match], [Group], and
[Capture] aren’t automatically thread-safe, however. Neither are their associated collections,
[MatchCollection], [GroupCollection], and [CaptureCollection]. This is because some
of these classes use lazy evaluation to improve performance.

Where possible, aim to access regex result objects within a single thread.

If you must share singular result objects across threads, use the static Synchronized() method
to retrieve a thread-safe instance of the object. This method causes the engine to compute each
capture of every group, resulting in an immutable object that you can use between threads.³

²https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices
³Microsoft. (2020, Jul. 08). System.Text.RegularExpressions - Group.cs. L42-L57. dotnet/runtime onGitHub. [Online]. Available: https://

github.com/dotnet/runtime/blob/main/src/libraries/System.Text.RegularExpressions/src/System/Text/RegularExpressions/Group.cs. [Ac-
cessed: Jan. 30, 2022].

https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices
https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Text.RegularExpressions/src/System/Text/RegularExpressions/Group.cs
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Text.RegularExpressions/src/System/Text/RegularExpressions/Group.cs

Regex Best Practices 380

Example 6: Using synchronized regex results

1 $MyString = 'F09FA694'
2 $HexValues = [regex]::Match($MyString, '(?i)([a-f0-9]{2})+')
3 $SyncMatch = [System.Text.RegularExpressions.Match]::Synchronized($HexValues)
4
5 $ApiUrl = 'https://ucdapi.org/unicode/latest/codepoint/hex/{0}'
6 [ref]$Counter = 0
7
8 $SyncMatch.Groups[1].Captures | ForEach-Object -Parallel {
9 $Index = [System.Threading.Interlocked]::Increment($using:Counter)

10
11 Write-Verbose "[Thread $Index]: Processing match '$_'" -Verbose
12
13 $Data = Invoke-Restmethod -Uri ($using:ApiUrl -f $_.Value)
14
15 '[Thread {0} Result] 0x{1} ({2}) = {3}' -f
16 $Index, $_.Value.ToUpper(), [Convert]::ToInt32($_.Value, 16),
17 ($Data.name ? $Data.name : $Data.name1)
18 } -ThrottleLimit 3 -Verbose

VERBOSE: [Thread 2]: Processing match '9F'
VERBOSE: [Thread 1]: Processing match 'F0'
VERBOSE: [Thread 3]: Processing match 'A6'
VERBOSE: [Thread 4]: Processing match '94'
[Thread 1 Result] 0xF0 (240) = LATIN SMALL LETTER ETH
[Thread 3 Result] 0xA6 (166) = BROKEN BAR
[Thread 2 Result] 0x9F (159) = APPLICATION PROGRAM COMMAND
[Thread 4 Result] 0x94 (148) = CANCEL CHARACTER

Note how the order of execution doesn’t match the order of the captures. ForEach-Object -
Parallel uses PowerShell runspaces in parallel and the order in which PowerShell processes
the input collection isn’t guaranteed. A thread-safe increment of the counter shows the order in
which processing starts for each capture. Because of the variability in web API response times,
the order in which processing completes varies from both the input and the starting order. The
order of the results differs from the order of the processed matches.

If you must enumerate result collections across threads, such as [MatchCollection], [Group-
Collection], and [CaptureCollection], use the SyncRoot property of the instance to
synchronize access by locking the object during access. Since PowerShell doesn’t have a lock
statement, use [System.Threading.Monitor] to ensure synchronized access to the collection.

Example 7: Synchronizing access to regex result collections

1 $MyString = '0xF0 0x9F 0x8C 0x8A 0xF0 0x9F 0xA6 0x94 0xF0 0x9F 0x8F 0xA1'
2 $MyPattern = '(?i)(0xF[0-4])(?: (0x[89a-f][0-9a-f])){3}'
3 $Utf8FourByte = [regex]::Matches($MyString, $MyPattern)
4 $ApiUrl = 'https://ucdapi.org/unicode/latest/chars/{0}'
5
6 $Utf8FourByte | ForEach-Object -Parallel {
7 $LockTaken = $false
8 try {
9 [System.Threading.Monitor]::Enter($_.Groups.SyncRoot, [ref]$LockTaken)

10 $LeadingByte = $_.Groups[1].Captures[0].Value
11 $ContinuationBytes = $_.Groups[2].Captures.ForEach{ $_.Value }
12 $UTF8 = $_.Groups[0].Value -ireplace '0x([0-9a-f]{2})', '$1'
13 }

Regex Best Practices 381

14 catch { Write-Error -ErrorRecord $_; return }
15 finally {
16 if ($LockTaken) {
17 [System.Threading.Monitor]::Exit($_.Groups.SyncRoot)
18 }
19 }
20
21 $Bytes = [byte[]]::new(4)
22 $Bytes[0] = $LeadingByte -as [byte]
23 for ($i = 0; $i -lt $ContinuationBytes.Count; $i++) {
24 $Bytes[$i + 1] = $ContinuationBytes[$i] -as [byte]
25 }
26
27 $Char = [System.Text.Encoding]::UTF8.GetString($Bytes)
28 $Data = Invoke-Restmethod -Uri ($using:ApiUrl -f $Char)
29
30 [pscustomobject]@{
31 UTF8 = $UTF8
32 CodePoint = 'U+' +
33 [System.Convert]::ToString($Data.codePoint, 16).ToUpper()
34 Char = $Char
35 Name = $Data.name ? $Data.name : $Data.name1
36 }
37 }

Output from Example 7

Once again, the order in which processing takes place isn’t guaranteed.

[System.Threading.Monitor]::Enter(...) attempts to get an exclusive lock of an object. If
another thread has already locked the object, Enter() waits until it’s released. Exit() releases
a locked object locked with Enter().

Regex Thread Safety Reference
You can view a complete reference for regex Thread Safety⁴ at Microsoft Docs.

14.11 Next Steps

You’ve now reached the end of the regex part of this book! All that’s left is to suggest some
helpful resources for continued learning.

⁴https://learn.microsoft.com/en-us/dotnet/standard/base-types/thread-safety-in-regular-expressions

https://learn.microsoft.com/en-us/dotnet/standard/base-types/thread-safety-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/thread-safety-in-regular-expressions

Regex Best Practices 382

First, take a look at the Modern IT Automation with PowerShell Extras⁵ repository on GitHub.
There are some more complex regex patterns there with real-world applications, complete with
breakdowns and explanations. You’ll find these in the Edition-01/Regex⁶ folder.

If you’d like a more in-depth journey into the world of regexes, look no further than Mastering
Regular Expressions⁷ by Jeffrey Friedl. While the latest edition of this book is from 2006, it’s a
truly comprehensive course. It also contains language-specific chapters, including for .NET. Since
.NET’s regex implementation hasn’t changed in recent years, the content still applies to current
versions of .NET and PowerShell at the time of writing.

On the other hand, if you’re looking for a more direct guide on creating regexes to solve specific
problems, Regular Expressions Cookbook⁸ by Jan Goyvaerts and Steven Levithan is a good
place to start. This book takes you through common pattern-matching problems and introduces
solutions in the context of popular programming environments. .NET is amongst these, so the
presented solutions need no modifications to work in PowerShell.

Another great resource with plug-and-play solutions for .NET is Regular Expression Pocket
Reference⁹ by Tony Stubblebine. This handbook contains both at-a-glance syntax reference and
regex solutions.

For a more academic take on regexes and regular expression theory, try Rex¹⁰. Rex is a tool
written by Microsoft Research’s RiSE Group¹¹ that efficiently generates matching inputs for one
or more .NET regex patterns using symbolic finite automata (SFA). It has resulted in several
publications¹², but is also useful for evaluating your own patterns. It provides valuable insight
into how the engine is interpreting your pattern. The original online version is no longer available,
but you can still download the original Rex binary¹³ from the Microsoft website.

Formore recent developments, Rex is a part of theAutomata .NET Library¹⁴ onGitHub, alongside
lots of other tools related to finite state automata (FSA) and transducers (FST). While there,
take a look at the Symbolic Regex Matcher¹⁵ library. This is an efficient alternative approach to
interpreting regular expressions using SFA.

Don’t forget to check out the further reading section below, which includes many of the resources
discussed in the regex part of this book, plus more.

14.12 Further Reading

14.12.1 Official Reference Materials

• Microsoft .NET Regex Reference¹⁶

⁵https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
⁶https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Regex
⁷https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
⁸https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
⁹https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
¹⁰https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/
¹¹https://www.microsoft.com/en-us/research/group/research-software-engineering-rise/
¹²https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/publications/
¹³https://www.microsoft.com/en-us/download/details.aspx?id=52296
¹⁴https://github.com/AutomataDotNet/Automata
¹⁵https://github.com/AutomataDotNet/srm
¹⁶https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions

https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Regex
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/
https://www.microsoft.com/en-us/research/group/research-software-engineering-rise/
https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/publications/
https://www.microsoft.com/en-us/download/details.aspx?id=52296
https://github.com/AutomataDotNet/Automata
https://github.com/AutomataDotNet/srm
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras
https://github.com/devops-collective-inc/Modern-IT-Automation-with-PowerShellExtras/tree/main/Edition-01/Regex
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/
https://www.microsoft.com/en-us/research/group/research-software-engineering-rise/
https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/publications/
https://www.microsoft.com/en-us/download/details.aspx?id=52296
https://github.com/AutomataDotNet/Automata
https://github.com/AutomataDotNet/srm
https://learn.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions

Regex Best Practices 383

• Microsoft PowerShell Regex Reference¹⁷
• Microsoft PowerShell Comparison Operators¹⁸
• Microsoft PowerShell -split Operator¹⁹
• Microsoft PowerShell switch Statement²⁰
• Microsoft PowerShell Select-String Cmdlet²¹
• Microsoft .NET Regex Behavior²²
• Microsoft .NET Regex Backtracking²³
• Microsoft .NET Regex Object Model²⁴
• Microsoft .NET Regex Compilation and Reuse²⁵
• Microsoft .NET Regex Thread Safety²⁶
• Microsoft .NET Regex Best Practices²⁷

14.12.2 Other Materials

• Mastering Regular Expressions—The comprehensive regex book²⁸
• Regular Expressions Cookbook—Comprehensive regex solutions for common pattern-
matching problems²⁹

• Regular Expression Pocket Reference—A regex handbook with syntax and solutions for
quick reference³⁰

• regular-expressions.info—General regex reference³¹
• Regex101—General regex tester and debugger (no .NET support)³²
• RegExr—Open source general regex tester (no .NET support)³³
• rextester.com/Tester—.NET regex tester³⁴

– You can also visit the rextester Homepage³⁵ to test-compile C#

• RegexPlanet—Regex tester including .NET³⁶

– Use (?'...') instead of (?<...>) for named captures

• regexstorm.NET—.NET regex tester³⁷

¹⁷https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions
¹⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#-match-

and--notmatch
¹⁹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_split
²⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
²¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string
²²https://learn.microsoft.com/en-us/dotnet/standard/base-types/details-of-regular-expression-behavior
²³https://learn.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions
²⁴https://learn.microsoft.com/en-us/dotnet/standard/base-types/the-regular-expression-object-model
²⁵https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions
²⁶https://learn.microsoft.com/en-us/dotnet/standard/base-types/thread-safety-in-regular-expressions
²⁷https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices
²⁸https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
²⁹https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
³⁰https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
³¹https://www.regular-expressions.info/dotnet.html
³²https://regex101.com
³³https://regexr.com/
³⁴https://rextester.com/Tester
³⁵https://rextester.com/
³⁶https://www.regexplanet.com/advanced/dotnet/index.html
³⁷http://regexstorm.net/tester

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#-match-and--notmatch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_split
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string
https://learn.microsoft.com/en-us/dotnet/standard/base-types/details-of-regular-expression-behavior
https://learn.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/the-regular-expression-object-model
https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/thread-safety-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
https://www.regular-expressions.info/dotnet.html
https://regex101.com/
https://regexr.com/
https://rextester.com/Tester
https://rextester.com/
https://www.regexplanet.com/advanced/dotnet/index.html
http://regexstorm.net/tester
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#-match-and--notmatch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#-match-and--notmatch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_split
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string
https://learn.microsoft.com/en-us/dotnet/standard/base-types/details-of-regular-expression-behavior
https://learn.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/the-regular-expression-object-model
https://learn.microsoft.com/en-us/dotnet/standard/base-types/compilation-and-reuse-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/thread-safety-in-regular-expressions
https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/regular-expressions-cookbook/9781449327453/
https://www.oreilly.com/library/view/regular-expression-pocket/9780596514273/
https://www.regular-expressions.info/dotnet.html
https://regex101.com/
https://regexr.com/
https://rextester.com/Tester
https://rextester.com/
https://www.regexplanet.com/advanced/dotnet/index.html
http://regexstorm.net/tester

Regex Best Practices 384

– HTTP-only website

• Optimizing Regex Performance I—2010 blog entry from the Microsoft Base Class Library
team³⁸

• Optimizing Regex Performance II—2010 blog entry from the Microsoft Base Class Library
team³⁹

• Rex Project—RiSE Group Rex landing page⁴⁰
• Rex Introduction Video—Margus Veanus from RiSE explains SFA and Rex (archive)⁴¹

³⁸https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-i-working-with-the-
regex-class-and-regex-objects-ron-petrusha

³⁹https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-ii-taking-charge-of-
backtracking-ron-petrusha

⁴⁰https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/
⁴¹https://web.archive.org/web/20210411024653/https://channel9.msdn.com/Blogs/Peli/Margus-Veanes-Rex-Symbolic-Regular-

Expression-Exploration/

https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-i-working-with-the-regex-class-and-regex-objects-ron-petrusha
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-i-working-with-the-regex-class-and-regex-objects-ron-petrusha
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-ii-taking-charge-of-backtracking-ron-petrusha
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-ii-taking-charge-of-backtracking-ron-petrusha
https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/
https://web.archive.org/web/20210411024653/https://channel9.msdn.com/Blogs/Peli/Margus-Veanes-Rex-Symbolic-Regular-Expression-Exploration/
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-i-working-with-the-regex-class-and-regex-objects-ron-petrusha
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-i-working-with-the-regex-class-and-regex-objects-ron-petrusha
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-ii-taking-charge-of-backtracking-ron-petrusha
https://learn.microsoft.com/en-us/archive/blogs/bclteam/optimizing-regular-expression-performance-part-ii-taking-charge-of-backtracking-ron-petrusha
https://www.microsoft.com/en-us/research/project/rex-regular-expression-exploration/
https://web.archive.org/web/20210411024653/https://channel9.msdn.com/Blogs/Peli/Margus-Veanes-Rex-Symbolic-Regular-Expression-Exploration/
https://web.archive.org/web/20210411024653/https://channel9.msdn.com/Blogs/Peli/Margus-Veanes-Rex-Symbolic-Regular-Expression-Exploration/

V PowerShell Security

“Sticking your head in the sand might make you feel safer, but it’s not going to protect you from
the coming storm.” — Barack Obama

PowerShell security has always been an afterthought in organizations, putting users and admin-
istrators at risk. Because of the scope of its complexity, malware often uses PowerShell in its
payload or as a launchpad. PowerShell has four security pillars comprising different aspects of
itself. They are:

1. Script Development: Educating the development of scripts using best security practices.
2. Script Execution: To reduce unauthorized script execution, enforce policies on Script

Execution.
3. Console Execution: To reduce single-liner attacks, implement policies on Console Execu-

tion.
4. PowerShell Remoting: To reduce lateral attacks, implement policies on PowerShell remot-

ing sessions.

All tiers must be understood, implemented, and configured correctly to minimize the risk. The
topics in this section target these tiers with:

• Script Signing.
• Script Execution Policies.
• PowerShell Constrained Language Mode.
• PowerShell Just Enough Administration (JEA).

15. Script Signing
PowerShell allows you to protect your scripts from tampering by signing them with a digital
signature.¹ Signing a script with a digital signature requires that you have a code signing
certificate. This chapter discusses why you should sign your scripts and what options are
available to you. You’ll learn about working with digital signatures and code signing certificates,
as well as how to implement a script signing solution in your organization using a Public Key
Infrastructure (PKI).

15.1 What Is Script Signing and How It Protects You

Digital signatures, like signatures on paper, are a way to ensure authenticity. Digital signing uses
a cryptographic process to ensure, with high probability, that signed data:

1. Hasn’t been modified after being signed
2. Originates from an identified source

This doesn’t necessarily mean the source is trustworthy or that the signed data is of high quality!
It gives you some confidence that the data hasn’t changed since it was signed, and that the creator
and signer are the same entity.

Almost all the code you run on a Windows machine is signed. Running signed code significantly
reduces the probability of executing malicious code. Most Windows software vendors sign their
compiled binaries before passing it on to you, the user. Microsoft signs all of the compiled binaries
which are a part of Windows. Doing this establishes trust that the underlying binaries have not
changed between publication and installation. The digital signature also allows administrators
to configure security software such that users can only run approved software releases.

Script signing allows you to add these protections to any script from any source. It also allows
you to have a higher degree of trust in scripts provided to you.

However, code signing doesn’t guarantee complete protection against malware. Here are two
examples:

• Microsoft signed a malicious driver² in June 2021.
• Attackers sometimes sign malware³ with stolen certificates.

You should include a code signing policy as part of your organization’s security strategy, but you
can’t rely on it alone.

¹Microsoft. (2022, Mar. 18), about Signing. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/mod-
ule/microsoft.powershell.core/about/about_signing. [Accessed: Sep. 15, 2022].

²https://www.gdatasoftware.com/blog/microsoft-signed-a-malicious-netfilter-rootkit
³https://www.welivesecurity.com/2018/07/09/certificates-stolen-taiwanese-tech-companies-plead-malware-campaign/

386

https://www.gdatasoftware.com/blog/microsoft-signed-a-malicious-netfilter-rootkit
https://www.welivesecurity.com/2018/07/09/certificates-stolen-taiwanese-tech-companies-plead-malware-campaign/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://www.gdatasoftware.com/blog/microsoft-signed-a-malicious-netfilter-rootkit
https://www.welivesecurity.com/2018/07/09/certificates-stolen-taiwanese-tech-companies-plead-malware-campaign/

Script Signing 387

15.1.1 How Digital Signing Works

To sign a file, you need data you want to sign and a cryptographic key pair (in common words:
a certificate). A cryptographic key pair is a pair of large numbers which were calculated in such
a way that:

1. You can encrypt data with one of them and then use the other to decrypt this data. This is
asymmetric or public-key cryptography.⁴

2. It isn’t possible to calculate the value of one from the other, even with access to encrypted
data.

Store one of these numbers in a safe place, like a password—this is your private key. The other—
distribute freely to those who must be able to decrypt data encrypted with the first one—this
is your public key. You can use a private key to encrypt data and your recipients can use the
corresponding public key to decrypt it. Usually, this key pair comes in the form of a digital
certificate, which allows you to add more information, such as who issued it, what it’s for, and
the intended user.

However, the signed data isn’t encrypted because any recipient can read it clearly. What is
encrypted is the hash sum of that data. “What’s a hash sum?” you might ask.

A hash sum is a cryptographically calculated string, fixed in length and alphanumeric, which is
supposed to be unique for any unique piece of data. An important property of any hash sum is
that you can’t derive the original data from it; having only a hash sum, you can’t reconstruct
the original data.

PowerShell uses the SHA-256 algorithm to calculate hash sums for script signing, but
there are other algorithms available⁵.⁶

When you send a digitally signed message to someone, you calculate a hash sum for the content,
encrypt the hash sum with your private key and send both the message and the encrypted hash
sum. The recipient calculates a hash sum for the message again, decrypts the received hash sum
using your public key, and compares them. If both hash sums are the same, it means the message
remained unchanged during transmission. It also means that it’s youwho sent it, because no one
else has access to your private key (or at least no one should have access to it).

15.1.2 How Code Signing Works in Modern Windows Systems

In Windows, all digital signature trusts are based on certificates.⁷ A digital certificate is a public
key + some additional information, like:

⁴Wikipedia. (2022, Sep. 10). Public-key cryptography. Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Public-key_cryp-
tography. [Accessed: Sep. 15, 2022].

⁵https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.hashalgorithmname#properties
⁶Microsoft. (2022, Aug. 23) Get-FileHash. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/mod-

ule/microsoft.powershell.utility/get-filehash. [Accessed: Sep. 15, 2022].
⁷Microsoft. (2022, Jun. 02) Cryptography and Certificate Management. Microsoft Docs. [Online]. Available: https://learn.microsoft

.com/en-us/windows/security/cryptography-certificate-mgmt. [Accessed: Sep. 17, 2022].

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.hashalgorithmname#properties
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.hashalgorithmname#properties
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash
https://learn.microsoft.com/en-us/windows/security/cryptography-certificate-mgmt
https://learn.microsoft.com/en-us/windows/security/cryptography-certificate-mgmt

Script Signing 388

• Who created (issued) this certificate (Issuer);
• Dates of validity (Valid from, Valid to);
• Purposes for which this certificate is valid (Key Usage, Enhanced Key Usage);
• Who the intended user is (Subject).

A digital certificate can be self-signed or signed by another certificate (usually the certificate’s
parent, in the case of a certificate authority hierarchy). In case of a self-signed certificate, the
person (or a machine) which created it, certifies by itself that it’s the signer that made this
certificate. In self-signed certificates, Issuer and Subject fields are the same.

When a certificate is signed by another entity, we say that the other entity issued the certificate.
In that case, you’ll see who issued the certificate in the Issuer field of the certificate.

Usually, certificates are issued by Certification Authorities, which are special services trusted by
people and organizations worldwide. We trust their policies and processes to issue certificates
only for legitimate purposes and only to subjects whose identity is established.

To trust a Certification Authority (CA) in Windows, you take its root certificate and place it into
a designated certificate store—Trusted Root Certification Authorities. A CA’s root certificate is
a certificate self-signed by that root CA. A CA uses this certificate to sign all other certificates
issued by it.

In the case of a single-tier CA in Windows, all certificates issued by the root CA will be valid.
However, a best-practice implementation requires that there be at least two tiers of CAs in a
Windows environment. In that case, the root CA will issue one certificate to a subordinate CA.
The subordinate CA will issue all other certificates.

Windows has many root certificates already installed in the Trusted Root Certification Authori-
ties store, out of the box. However, you’re free to remove CAs you don’t trust from that store or
add other CAs (or self-signed certificates) there.

Microsoft supports a list of all Certification Authorities⁸ which are trusted by Windows
by default.

As soon as the Windows OS trusts a CA’s root certificate, all other certificates issued by this and
subordinate CAs will be trusted automatically. However, there are conditions. Today’s date must
be within the certificate’s validity period (between “Valid from” and “Valid to” dates), and the
certificate itself must not be revoked.

A revoked certificate is a certificate whose serial number (a unique identifier) was added into a
Certificate Revocation List (CRL). A CRL is just a list of certificates’ serial numbers along with
the date/time when each was added to the list. This list is periodically published by a CA. The
CA adds a link to that list to every certificate it issues (CRL Distribution Point). When a client
checks a certificate’s validity, it uses the CRL Distribution Points attribute of the certificate
to download the CRL and then searches for the certificate’s serial number on that list. If nothing
is found, you’re ready!

⁸https://learn.microsoft.com/en-us/security/trusted-root/participants-list

https://learn.microsoft.com/en-us/security/trusted-root/participants-list
https://learn.microsoft.com/en-us/security/trusted-root/participants-list

Script Signing 389

Windows performs these checks every time it sees a certificate. That’s not all that’s checked for
signed code, however. Code signing certificates must also have a “Code Signing” purpose in their
Enhanced Key Usage attribute.

15.2 The Anatomy of a Signed Script

Here’s an example of a signed PowerShell script:

Example 1: A signed script contains a signature block

1 Write-Host "Signed Script"
2 # SIG # Begin signature block
3 # MIIIPwYJKoZIhvcNAQcCoIIIMDCCCC0CAQEfCzAJBgUrDgMCGgUAMGkGCisGAQQB
4 # gjcCAQSgWzBZMDQGCisGAQQBgjcCAO,wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
5 # AgEAAgEAAgEAAgEAAgEAMCEwCQYFKD1DAhoFAAQUHVVG73a+TMJVHFMfMllHWt0T
6 # o+igggZTMIIC4TCCAkOgAwIBAgITae1AAAKkII0Kbir2EQAAAAAAAjAKBggqhkjO
7 # PQQDBDAVMRMwEQYDVQQDEwpNeSBSbS50IENBMB4fDTIfMDgyOTIfMTE0OVofDTI2
8 # MDgyOTIfMjE0OVowWjETMBEGCgmSJo,T8ifkARkWA25ldDEfMBUGCgmSJomT8ifk
9 # ARkWB2V4YW1wbGUfEjAQBgoJkiaJkL0sZAEZFgJhZDEWMBQGA1UEAfMNTfkgSfNz

10 # dWluZyBDQTB2MBAGByqGSM49AgEGBV,BBAAiA2IABIK0kBR1YTFZUoaDW9i9IMIG
11 # o3G2g14oqK9nGZ6ZW9uRW83HFMos8E,liB6eaA+kgbi4VEYgG0E9A2zYe7fzSlBN
12 # ViFFPLBPlhMiYLn9YNZknraKkGmkpI2pz12cswvOCKOCAQ4wggEKMBAGCSsGAQQB
13 # gjcVAQQDAgEAMB0GA1UdDgQWBBQQBLnf9jwBGLe8KrJnheSaLJKhVDAZBgkrBgEE
14 # AYI3FAIEDB4KAFMAdQBiAEMAQTALBUNVHQ8EBAMCAYYwDwYDVR0TAQH/BAUwAwEB
15 # /zAfBgNVHSMEGDAWgBRf9WiwId5L3Vdd2EHIFUw1gm53PDA4BgNVHR8EMTAvMC2g
16 # K6AphidodHRwOi8vcGtpLmV4YW1wbPUuY29tL0NEUC9NeVJvb3RDQS5jcmwwQwYI
17 # KwYBBQUHAQEENzA1MDMGCCsGAQUFBWAChidodHRwOi8vcGtpLmV4YW1wbGUuY29t
18 # L0FJQS9NeVJvb3RDQS5jcnQwCgYIKHZIzj0EAwQDgYsAMIGHAkIBgHL2AfA9vAFu
19 # 8/cUZ/s4JbP8SvIm3GzotkiMYb68G49sCJWo+ZRfcQjRyGrOlAP5gFu7BbjoAtTy
20 # OgzbnFwfOAwCQSfIDPWwi8n93qBLXE4/+WjEEbBFNY4OBnskcEF7DMKJPr3HnaKU
21 # /8Bp1lnfchc2/ccHRBHNff/lDGeyMVLvHjr5MIIDajCCAvCgAwIBAgITOgAAAAUl
22 # cN1zaYSZ9wAAAAAABTAKBggqhkjOaAQDAzBaMRMwEQYKCZImiZPyLGQBGRYDbmV0
23 # MRcwFQYKCZImiZPyLGQBGRYHZfhhR,BsZTESMBAGCgmSJomT8ifkARkWAmFkMRYw
24 # FAYDVQQDEw1NeSBJc3N1aW5nIENBk44fDTIfMDkyNzE5MzUyMVofDTIyMDkyNzE5
25 # MzUyMVowajETMBEGCgmSJomT8ifkS,kWA25ldDEfMBUGCgmSJomT8ifkARkWB2V4
26 # YW1wbGUfEjAQBgoJkiaJk/IsZAEZT1JhZDEOMAwGA1UEAfMFVfNlcnMfFjAUBgNV
27 # BAMTDUFkbWluafN0cmF0b3IwWTATh3cqhkjOPQIBBggqhkjOPQMBBwNCAAQzTyMe
28 # AKfiFVSY0ynrrEFQQY4M+EzSTDhTE,dDT+SWqNa2iS/QouR7Yw4H0I9b/uKFodbh
29 # 8Jo9Jv1MbgSga9Y5o4IBgzCCAf8wS2YJKwYBBAGCNfUHBDAwLgYmKwYBBAGCNfUI
30 # g5SvIoTbuBCElY04h63cIoOYmE5aP,iLEpr8vfkCAWQCAQIwEwYDVR0lBAwwCgYI
31 # KwYBBQUHAwMwDgYDVR0PAQH/BAQD06eAMBsGCSsGAQQBgjcVCgQOMAwwCgYIKwYB
32 # BQUHAwMwHQYDVR0OBBYEFJHSpOs/t,3v4SmW/Tj5Ugcnhjj+MB8GA1UdIwQYMBaA
33 # FBAHefH2PAEYt7wqsmeF5JoskqFUF7sGA1UdHwQ0MDIwMKAuoCyGKmh0dHA6Ly9w
34 # a2kuZfhhbfBsZS5jb20vQ0RQL015r,NzdWluZ0NBLmNybDBGBggrBgEFBQcBAQQ6
35 # MDgwNgYIKwYBBQUHMAKGKmh0dHA6e49wa2kuZfhhbfBsZS5jb20vQUlBL015SfNz
36 # dWluZ0NBLmNydDA3BgNVHREEMDAue,wGCisGAQQBgjcUAgOgHgwcQWRtaW5pc3Ry
37 # YfRvckBhZC5leGFtcGflLm5ldDAKP0gqhkjOPQQDAwNoADBlAjB83uKYtBkduS94
38 # I9Ihv9Lwtkff3T27q7f5SJThW7blS,vwmFfbgEfHg8sjTsKWRpsCMQDrTW/EqyJb
39 # af4KMIzN3e31f86Bqp9T+WN9BWjTC64m8CA6KFTefNbTVEQFAfgIg6AfggFWMIIB
40 # UgIBATBfMFofEzARBgoJkiaJk/Iso,EZFgNuZfQfFzAVBgoJkiaJk/IsZAEZFgdl
41 # eGFtcGflMRIwEAYKCZImiZPyLGQBN1YCYWQfFjAUBgNVBAMTDU15IElzc3Vpbmcg
42 # Q0ECEzoAAAAFJfDdc2mEmfcAAAAAf1UwCQYFKw4DAhoFAKB4MBgGCisGAQQBgjcC
43 # AQwfCjAIoAKAAKECgAAwGQYJKoZIB7cNAQkDMQwGCisGAQQBgjcCAQQwHAYKKwYB
44 # BAGCNwIBCzEOMAwGCisGAQQBgjcCO,UwIwYJKoZIhvcNAQkEMRYEFGYfKlHDtCoj
45 # fISNIf3qAON9ff1TMAsGByqGSM49O1EFAARIMEYCIQC8Q9FdL/GyWCTyabocOrmr
46 # Y1BzEny+K7az9TL2WzaKJgIhAI3/K0KWepFOWrYKDsWNsfDJedlA3SbwSczCLLNN
47 # koIi
48 # SIG # End signature block

Script Signing 390

In a signed PowerShell script, you have your code first and after it, at the end of the file, a
signature block.

The signature block consists of:⁹

1. A beginning line: # SIG # Begin signature block.
2. The signature itself: multi-line, base64 encoded.
3. An ending line: # SIG # End signature block
4. A newline MUST occur after the ending line.

A script is considered to have been signed only when it has a full, unmodified signature
block. Therefore, if you either remove the signature block completely or just tamper with
it a bit, by removing or adding a symbol to any line, PowerShell will treat this file as an
ordinary unsigned script.

No code is allowed after the signature block. If you put anything but comments at the end of a
signed .ps1 file, you’ll get this error:

Executable script code found in signature block.
+ CategoryInfo : ParserError: (:) [], ParseException
+ FullyQualifiedErrorId : TokenAfterEndOfValidScriptText

This is actually a security feature: it prevents you from unknowingly running potentially
malicious code. A malicious actor might insert a block that looks just like a signature, but isn’t
one. For example, they might remove the last letter “k” from the first line and it will look like
this # SIG # Begin signature bloc. As mentioned already, because the signature is now
malformed, PowerShell won’t treat it as one and will consider the file unsigned. After that
fake signature, the attacker may then insert more code and sign the resulting script with a real
signature block at the actual end of the file. Since signature blocks are really long and it’s the
last element of a file, a person reviewing the script might not notice that there is more code after
the fake signature.

Thankfully, PowerShell’s got your back here. It searches for comments which look similar to
the signature block start line and then, if it finds any code after them, raises that error. What’s
important is that the check for code after the signature block executes before the check that
decides if the script is signed or not.

You can see the actual implementation of it in the PowerShell code¹⁰. If it wasn’t for this check,
the first signature, which is fake, would be ignored. The result would be that all code in the file
would be executed as a signed script, including the malicious addition.

15.3 How to Sign a Script

In order to sign your scripts, you need a certificate with the “Code Signing” Enhanced Key Usage
(OID 1.3.6.1.5.5.7.3.3). Then, with the power of Set-AuthenticodeSignature¹¹, you apply a

⁹Microsoft. (2021, Jul. 29) Lexical Structure (PowerShell Language Specification 3.0). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-02. [Accessed: Sep. 17, 2022].

¹⁰https://github.com/PowerShell/PowerShell/blob/8d017d8a752cf960996c8c23c0f323a9cbe0f905/src/System.Management.
Automation/engine/parser/tokenizer.cs#L1696

¹¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature

https://github.com/PowerShell/PowerShell/blob/8d017d8a752cf960996c8c23c0f323a9cbe0f905/src/System.Management.Automation/engine/parser/tokenizer.cs#L1696
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature
https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-02
https://github.com/PowerShell/PowerShell/blob/8d017d8a752cf960996c8c23c0f323a9cbe0f905/src/System.Management.Automation/engine/parser/tokenizer.cs#L1696
https://github.com/PowerShell/PowerShell/blob/8d017d8a752cf960996c8c23c0f323a9cbe0f905/src/System.Management.Automation/engine/parser/tokenizer.cs#L1696
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-authenticodesignature

Script Signing 391

digital signature to your script and et voilà! It’s really that easy. The hardest part is to make sure
your clients trust the certificate which you used to sign the scripts (this chapter covers this detail
a little later).

15.3.1 Acquiring a Code Signing Certificate

You have several ways to get your own certificate for signing code. You can either generate it
by yourself (self-signed), buy one from a publicly trusted provider, or issue one from your own
internal Public Key Infrastructure (PKI).

15.3.1.1 Self-Signed

Generating a new self-signed certificate is actually pretty easy:

Example 2: Creating a new self-signed certificate

1 New-SelfSignedCertificate -Type CodeSigningCert -Subject MySelfCodeSigningCert

This will give you a new code signing certificate in the local computer Personal store. Note that
your Thumbprint (and other attributes of the certificate) will be different than the value shown
here.

Example 3: Displaying the new certificate

1 Get-ChildItem -Path 'Cert:\LocalMachine\My' |
2 Where-Object -FilterScript {$_.Subject -eq 'CN=MySelfCodeSigningCert'}

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\My

Thumbprint Subject
---------- -------
F45E5297DA01A97E527F5AF262F29B4A8CCF2083 CN=MySelfCodeSigningCert

You can specify another store with the -CertStoreLocation parameter. For example,
you can use “Cert:\CurrentUser\My” for your user’s Personal store.

If you look at the certificate closely, you’ll see that its EnhancedKeyUsageList property contains
Code Signing as its value:

Script Signing 392

Example 4: The EnhancedKeyUsageList property shows that this is a code signing certificate

1 Get-Item -Path Cert:\LocalMachine\My\F45E5297DA01A97E527F5AF262F29B4A8CCF2083 |
2 Select-Object -Property 'EnhancedKeyUsageList'

EnhancedKeyUsageList

{Code Signing (1.3.6.1.5.5.7.3.3)}

To check if you can use the certificate for code signing, use Get-ChildItem with the -
CodeSigningCert parameter:

Example 5: The -CodeSigningCert parameter is a useful feature of the Certificate provider

1 Get-ChildItem -Path 'Cert:\LocalMachine\My' -CodeSigningCert

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\My

Thumbprint Subject
---------- -------
F45E5297DA01A97E527F5AF262F29B4A8CCF2083 CN=MySelfCodeSigningCert

All returned certificates could be used to sign your scripts.

15.3.1.2 Self-Hosted PKI

Self-signed certificates are fine for testing, but have a major downside: no one trusts the
certificates. You must install the certificates on every computer where they might be needed.
Doing so is time-consuming and difficult to manage. The preferred method to issue certificates
in an organization is to use a Public Key Infrastructure (PKI). A Public Key Infrastructure is a
hierarchy of Certification Authorities, where you have usually one top-level CA (root CA) and
several subordinates.

By trusting the root CA, you effectively trust every certificate issued by it. You’ll deploy the
certificate of that root CA to your machines (and the certificates of any intermediate CAs) and
the computers in the organization will trust your code signing certificates (and other certificates
issued by these CAs) automatically.

The Use Your Own PKI section below talks about how you can set up a PKI.

15.3.1.3 Third Party PKI

An alternative to hosting a PKI by yourself is to hire somebody to do that for you. You have two
options here:

Script Signing 393

1. Order code signing certificates one by one from a commercial certificate provider, like
Digicert, GlobalSign, Sectigo, etc. This is a relatively cheap, quick, and easy option, but
you’ll pay for every certificate you issue—this might not be the most cost-effective choice
if you plan to issue a lot of certificates.

2. Sign-up for a managed PKI service. This type of service is a full-scale PKI, where you have
all the flexibility, but don’t have to worry about the management of this infrastructure.
Many security companies offer PKI-as-a-Service: SecureW2, HydrantID, Entrust, just to
name a few.

15.3.2 How to Install Code Signing Certificates Properly

For the whole signature process to work, a code signing certificate and its certificate chain must
be properly installed in the system:

• On the signer’s computer:

1. The certificate itself must be in two certificate stores:

1. Personal (either user or computer)—it’s for you (the signer) to sign code using the
certificate.

2. Trusted Publishers—without having the certificate in this location, you won’t be
able to validate your signatures.

2. The root certificate of the certificate chain must be in the Trusted Root Certification
Authorities store. That’s usually the topmost certificate you see in the “Certification
Path” tab of a certificate.

• On the user’s computer:

1. The code signing certificate must be in Trusted Publishers.
2. The root certificate must be in the Trusted Root Certification Authorities.
3. Any intermediate certificates must be in the Intermediate Certification Authorities.

The PowerShell Certificate provider¹² has slightly different names for these stores:

GUI Name Certificate Provider Name

Personal My

Trusted Publishers TrustedPublisher

Trusted Root Certification Authorities Root

For the sake of demonstration, the following examples use a self-signed certificate, which means
both $RootCert and $SigningCert are the same. In a real environment, you’ll most likely have
a certificate from a proper chain with a separate root certificate. Ensure that you put the correct
objects in $RootCert and $SigningCert variables.

¹²https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/about/about_certificate_provider

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/about/about_certificate_provider
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/about/about_certificate_provider

Script Signing 394

A self-signed certificate generated with the New-SelfSignedCertificate cmdlet will
most likely already be installed in your Personal store, so it won’t be covered in the
following example.

First, you need to save your code signing certificate in a variable for easy access:

$Cert = Get-ChildItem -Path 'Cert:\LocalMachine\My' -CodeSigningCert

The above (and the examples below) assumes that there is only one code signing
certificate in the Personal store. If there are more, then the $Cert object needs to be
indexed in the examples below.

Next, install it as a Trusted Publisher certificate:

Example 6: Adding a certificate to the machine’s trusted publisher store

1 $SigningCert = $Cert
2 $TrustPubStor = [System.Security.Cryptography.X509Certificates.X509Store]::new(
3 [System.Security.Cryptography.X509Certificates.StoreName]::TrustedPublisher,
4 [System.Security.Cryptography.X509Certificates.StoreLocation]::LocalMachine
5)
6 $TrustPubStor.Open(
7 [System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite
8)
9 $TrustPubStor.Add($SigningCert)

10 $TrustPubStor.Close()

Since it’s a self-signed certificate, you must install it as a root certificate too:

Example 7: Adding a certificate to the machine’s root certificate store

1 $RootCert = $Cert
2 $RootStore = [System.Security.Cryptography.X509Certificates.X509Store]::new(
3 [System.Security.Cryptography.X509Certificates.StoreName]::Root,
4 [System.Security.Cryptography.X509Certificates.StoreLocation]::LocalMachine
5)
6 $RootStore.Open(
7 [System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite
8)
9 $RootStore.Add($RootCert)

10 $RootStore.Close()

The above example doesn’t use Import-Certificate because that cmdlet requires
a certificate to be in a file. Using the .NET class instead allows skipping the step of
exporting the certificate to a file on disk.

That’s it! You’re ready to begin signing your scripts.

Script Signing 395

15.3.3 Signing Process

Regardless of how you acquired a code signing certificate, the signing process is the
same. Start by retrieving your code signing certificate from the store. Next, use the Set-
AuthenticodeSignature cmdlet, passing the certificate and the path to the script that you
want to sign:

Example 8: Signing a script with a code signing certificate from the user’s personal store

1 $ScriptPath = Join-Path -Path $env:Temp -ChildPath 'test1.ps1'
2 Set-Content -Path $ScriptPath -Value 'Write-Host "Signed Script"'
3 $Cert = Get-ChildItem -Path 'Cert:\CurrentUser\My' -CodeSigningCert
4 Set-AuthenticodeSignature -Certificate $Cert -FilePath $ScriptPath

Set-AuthenticodeSignature supports files no smaller than 4 bytes. Thankfully,
spaces and line breaks do the trick for ultra-small scripts.

Reminder: The above example assumes that only one code signing certificate is in the
personal store.

15.3.4 How to Prevent Your Signatures from Expiring

When you have a code signing certificate, it has a finite period of validity. What will happen
after that certificate expires? The code you signed with it effectively becomes unsigned again!
How can you solve this problem you might ask? You could issue a new certificate and sign the
code again, but that’s time consuming. You would also need to deliver the new signed release to
your users somehow.

Thankfully, there’s an easier solution—a time stamp server. The purpose of time stamping is to
certify that you signed some code while the code signing certificate was still valid. This will
allow your code to continue to be signed even after the certificate’s expiration date.

There are several publicly available time stamp servers:

• http://timestamp.digicert.com
• http://timestamp.sectigo.com
• http://timestamp.verisign.com/scripts/timstamp.dll
• https://www.freetsa.org/

Others exist—check out this gist¹³ by @Manouchehri¹⁴!

If you want to run your own time stamp server, there are several commercial solutions available
along with these open-source implementations:

¹³https://gist.github.com/Manouchehri/fd754e402d98430243455713efada710
¹⁴https://github.com/Manouchehri

http://timestamp.digicert.com
http://timestamp.sectigo.com
http://timestamp.verisign.com/scripts/timstamp.dll
https://www.freetsa.org/
https://gist.github.com/Manouchehri/fd754e402d98430243455713efada710
https://github.com/Manouchehri
https://gist.github.com/Manouchehri/fd754e402d98430243455713efada710
https://github.com/Manouchehri

Script Signing 396

• SignServer¹⁵
• uts-server¹⁶

Just choose one of the time stamp servers and use it in the -TimestampServer parameter:

Example 9: Including a time stamp when signing a script

1 $Params = @{
2 Certificate = $Cert
3 FilePath = $ScriptPath
4 TimestampServer = 'http://timestamp.digicert.com'
5 }
6 Set-AuthenticodeSignature @Params

15.3.5 What Else Can You Sign

15.3.5.1 Functions

In PowerShell, you can’t sign a function itself, because PowerShell only supports signing files.
What you can do is to have one function per .ps1 file and therefore, when you sign that file, you
effectively sign the function.

The content of your .ps1 files will look like this:

1 function Do-Stuff {
2 'stuff done'
3 }
4 # SIG # Begin signature block
5 # ...
6 # SIG # End signature block

When dot-sourcing a file to import the function from it into your current session, you’re still
executing that script. When you execute a script, the system checks its signature and, if the
signature check doesn’t pass, the function won’t import.

15.3.5.2 Modules

Signing a module is very easy: just sign every .ps1, .psm1, .psd1, and .ps1xml file using the Set-
AuthenticodeSignature cmdlet.

Now, why sign all these files, when you could just sign the main .psm1? It’s because you sign
individual files to prevent tampering.

Suppose your module consists of several .ps1 files plus a .psd1, and a .psm1, which loads all the
.ps1 files. In that case, a malicious actor could change those .ps1 files and the module would still
load, so you need to sign everything.

¹⁵https://www.signserver.org/
¹⁶https://github.com/kakwa/uts-server

https://www.signserver.org/
https://github.com/kakwa/uts-server
https://www.signserver.org/
https://github.com/kakwa/uts-server

Script Signing 397

15.4 How to Verify a Signature

To make sure a PowerShell file is correctly signed, you can use several tools:

1. PowerShell (Get-AuthenticodeSignature)¹⁷
2. Sysinternals sigcheck¹⁸
3. signtool.exe¹⁹
4. And of course you can open file properties in Explorer and look at the Digital Signatures

tab.

15.4.1 Get-AuthenticodeSignature

This is what a proper output from Get-AuthenticodeSignature looks like for a trusted
certificate:

Example 10: Displaying a signature with Get-AuthenticodeSignature

1 Get-AuthenticodeSignature -FilePath 'C:\test1' | Select-Object -Property *

SignerCertificate : [Subject]
CN=MySelfCodeSigningCert

[Issuer]
CN=MySelfCodeSigningCert

[Serial Number]
1B599557458628A54D3D9EA33D15C160

[Not Before]
13/06/2021 23:38:18

[Not After]
13/06/2022 23:58:18

[Thumbprint]
F45E5297DA01A97E527F5AF262F29B4A8CCF2083

TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified.
Path : C:\test.ps1
SignatureType : Authenticode
IsOSBinary : False

And this is what you get when the root certificate of the certificate chain is missing from the
Trusted Root Certification Authorities store:

¹⁷https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature?view=powershell-
7.1

¹⁸https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
¹⁹https://learn.microsoft.com/en-us/dotnet/framework/tools/signtool-exe

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature?view=powershell-7.1
https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://learn.microsoft.com/en-us/dotnet/framework/tools/signtool-exe
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature?view=powershell-7.1
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-authenticodesignature?view=powershell-7.1
https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck
https://learn.microsoft.com/en-us/dotnet/framework/tools/signtool-exe

Script Signing 398

SignerCertificate : [Subject]
CN=MySelfCodeSigningCert

[Issuer]
CN=MySelfCodeSigningCert

[Serial Number]
1B599557458628A54D3D9EA33D15C160

[Not Before]
13/06/2021 23:38:18

[Not After]
13/06/2022 23:58:18

[Thumbprint]
F45E5297DA01A97E527F5AF262F29B4A8CCF2083

TimeStamperCertificate :
Status : UnknownError
StatusMessage : A certificate chain processed, but terminated in

a root certificate which is not trusted by the trust provider.
Path : C:\test.ps1
SignatureType : Authenticode
IsOSBinary : False

15.4.2 Sigcheck

This is what a proper output from sigcheck looks like for a trusted certificate:

Example 11: Displaying a signature with sigcheck

1 sigcheck64.exe C:\test.ps1

Sigcheck v2.82 - File version and signature viewer
Copyright (C) 2004-2021 Mark Russinovich
Sysinternals - www.sysinternals.com

c:\test.ps1:
Verified: Signed
Signing date: 00:03 14/06/2021
Publisher: MySelfCodeSigningCert
Company: n/a
Description: n/a
Product: n/a
Prod version: n/a
File version: n/a
MachineType: n/a

And this is what you get when the root certificate of the certificate chain is missing from the
Trusted Root Certification Authorities store:

Script Signing 399

Sigcheck v2.82 - File version and signature viewer
Copyright (C) 2004-2021 Mark Russinovich
Sysinternals - www.sysinternals.com

c:\test.ps1:
Verified: A certificate chain processed, but terminated in a root

certificate which is not trusted by the trust provider.
File date: 00:03 14/06/2021
Publisher: MySelfCodeSigningCert
Company: n/a
Description: n/a
Product: n/a
Prod version: n/a
File version: n/a
MachineType: n/a

15.4.3 Signtool

This is what a proper output from signtool looks like for a trusted certificate:

Example 12: Displaying a signature with signtool

1 $Params = @{
2 Path = ${Env:ProgramFiles(x86)}
3 ChildPath = 'Windows Kits\10\bin\10.0.22000.0\x64\signtool.exe'
4 }
5 $SignToolPath = Join-Path @Params
6 & $SignToolPath verify /pa C:\test.ps1

File: C:\test.ps1
Index Algorithm Timestamp
==
0 sha1 None

Successfully verified: C:\test.ps1

Below is what you’ll see when the root certificate of the certificate chain is missing from the
Trusted Root Certification Authorities store:

File: C:\test.ps1
Index Algorithm Timestamp
==
SignTool Error: A certificate chain processed, but terminated in a root

certificate which is not trusted by the trust provider.

Number of errors: 1

15.4.4 Execution Errors

All these tools will be silent if you do have the certificate that you used to sign the code in the
Trusted Publishers store on the machine. They will only ask questions if the certificate is not
present. You’ll see a prompt when you try to run that script:

Script Signing 400

Example 13: Attempting to run a script signed with an untrusted certificate

1 C:\test.ps1

Do you want to run software from this untrusted publisher?
File C:\test.ps1 is published by CN=MySelfCodeSigningCert and is not trusted on

your system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help (default

is "D"):

And of course, if your system doesn’t have the proper root certificate installed, you’ll receive an
error about that too:

Example 14: Attempting to run a signed script where the root of the certificate chain is untrusted

1 C:\test.ps1

.\test.ps1 : File C:\test.ps1 cannot be loaded. A certificate chain processed,
but terminated in a root certificate which is not trusted by the trust provider
At line:1 char:1
+ .\test.ps1
+ ~~~~~~~~~~~~~~

+ CategoryInfo : SecurityError: (:) [], PSSecurityException
+ FullyQualifiedErrorId : UnauthorizedAccess

15.5 Scaling Out

In this section, you’ll learn what to do when you need to run signed scripts on more than one
machine. If you want to issue signing certificates by yourself, first read Use Your Own PKI,
which explains how to build your own Public Key Infrastructure. Otherwise, you can skip right
to Deploy Code Signing Certificates in a Corporate Environment.

15.5.1 Use Your Own PKI

15.5.1.1 Why Would You Want Your Own PKI?

You might have different reasons to want your own Public Key Infrastructure. Also, your
company may already have its own PKI. You should ask the proper parties about this. Here
are some examples as to why you may desire your own PKI:

• Compliance. Some regulations might require you to have all sensitive/security information
on your premises.

• Security. Youmight not trust how a service provider will manage your PKI. Then, of course,
you must do it by yourself.

Script Signing 401

• Availability. With your own servers, you can achieve any availability level, which isn’t
always an option with managed services.

• Flexibility. Only you define which certificates, how, and to whom you’ll issue them. SaaS
(Software as a Service) isn’t always that flexible.

• Cost. In general, doing things by yourself is cheaper. However, note that this is not a
universal rule. Sometimes the opposite is true, because supporting your own infrastructure
requires good engineers and hardware—these cost money.

15.5.1.2 How to Build a PKI with Just PowerShell

In this example, you’ll build a two-tiered Public Key Infrastructure:

• Public doesn’t mean it will be available to anybody—it just means that this system uses
public-key cryptography.

• Two-tiered means that the PKI hierarchy will have two tiers: a root certification authority
and an issuing certification authority—this is sufficient for most organizations.

You’ll need at least two servers withWindows Server 2019 or later, which have no other software
installed on the server. One of them must be a member of an AD DS (Active Directory Domain
Services) domain (the issuing CA), the other should be just a workgroup machine (the root CA).
You will also need a web server: you’ll put CA certificates and CRLs there (this can even be
a non-Windows machine). This is often the issuing CA. Using the issuing CA as a web server
is simpler than using a separate server as a PKI web server. Also, you must be an Enterprise
Administrator in this AD DS forest to install the proper Windows roles and serveices.

It often makes sense for the same group of people to manage both AD DS and ADCS
(Active Directory Certificate Services—the PKI) infrastructures: both of them are usually
company-wide and both issue cryptographic assertions about identities. Basically, you
want to protect your PKI servers as carefully as you protect domain controllers. All this
also applies to AD FS (Active Directory Federation Services) as well.

15.5.1.2.1 Root CA

The first step in building your own PKI is to configure a root certification authority. For best
practices, thismust be a VM which can be normally offline (powered off) or a physical machine
that can be turned off.²⁰ Even though the VM or physical hardware is normally powered-off,
this does NOT reduce the need that the instance (physical or virtual) must be properly backed
up. This VM or physical hardware must not be a member of the domain/forest.

²⁰TechNet wiki contributors. (2016, Aug. 12).Active Directory Certificate Services (AD CS) Public Key Infrastructure (PKI) Design Guide.
Microsoft TechNet Wiki. [Online]. Available: https://social.technet.microsoft.com/wiki/contents/articles/7421.active-directory-certificate-
services-ad-cs-public-key-infrastructure-pki-design-guide.aspx#Use_Offline_CAs. [Accessed: Sep. 16, 2022].

https://social.technet.microsoft.com/wiki/contents/articles/7421.active-directory-certificate-services-ad-cs-public-key-infrastructure-pki-design-guide.aspx#Use_Offline_CAs
https://social.technet.microsoft.com/wiki/contents/articles/7421.active-directory-certificate-services-ad-cs-public-key-infrastructure-pki-design-guide.aspx#Use_Offline_CAs

Script Signing 402

For the best protection of the root CA’s private key, the industry standard is to store the
private key on a smart card or a USB HSM (Hardware Security Module); but of course,
that also has its own downsides. If that smart card stops working, or if you lose the
PIN code for it, you’ll have to reinstall your PKI from scratch (not immediately, but
eventually, because you won’t be able to renew subordinate CAs certificates anymore
or issue new CRLs ([Certificate Revocation Lists]). The benefit of having a private key
on a smart card is that it’s very difficult to extract the key from there. But for the next
base case, you can store the backup of the root CA’s private key on another medium,
with proper security.

The first step in ADCS CA installation is to install the Windows feature containing all of the
required bits:

Example 15: Installing the Active Directory Certificate Services CA feature on the root CA

1 Install-WindowsFeature -Name ADCS-Cert-Authority -IncludeManagementTools

Success Restart Needed Exit Code Feature Result
------- -------------- --------- --------------
True No Success {Active Directory Certificate Services...

Then you need to perform an initial configuration of the certificate authority:

Example 16: Configuring the root Certificate Authority

1 $Params = @{
2 CACommonName = 'My Root CA'
3 ValidityPeriod = 'Years'
4 ValidityPeriodUnits = 10
5 CryptoProviderName = 'ECDSA_P521#Microsoft Software Key Storage Provider'
6 KeyLength = 521
7 HashAlgorithmName = 'SHA512'
8 CAType = 'StandaloneRootCA'
9 Force = $true

10 }
11 Install-AdcsCertificationAuthority @Params

This example specifies that the root CA’s name will be “My Root CA” (the -CACommonName
parameter), and the validity period of its certificate will be 10 years (-ValidityPeriod and -
ValidityPeriodUnits parameters). The certificate will use elliptic curves cryptography instead
of classic RSA and its key length will be 521 bits (-CryptoProviderName and -KeyLength
parameters). For the hash algorithm, the example uses SHA-2 with a length of 512 bits (-
HashAlgorithmName). Also, note that for a root CA, which is not to be a member of a
domain/forest, you must pass “StandaloneRootCA” to the -CAType parameter. Therefore, the
VM or the standalone server must not be a member of the domain/forest!

How were these cryptographic parameters chosen? The example uses the highest available for
the chosen Key Storage Provider²¹ because this is a root CA: it will rarely issue certificates, so

²¹https://learn.microsoft.com/en-us/windows/win32/seccertenroll/cng-key-storage-providers

https://learn.microsoft.com/en-us/windows/win32/seccertenroll/cng-key-storage-providers
https://learn.microsoft.com/en-us/windows/win32/seccertenroll/cng-key-storage-providers

Script Signing 403

there are no performance concerns, and the key must be as secure as possible. As for the hash
length, it’s usually recommended to have the hashlength to be of the same size (or close to it) as
your elliptic curve. Note also, that while for demonstration purposes the example uses “Microsoft
Software Key Storage Provider,” this isn’t a best practice for production environments—if one is
available, you should really use a smart card or an HSM. Consult the documentation for your
key storage provider to choose the most secure set of parameters. Also note, most companies do
not have a HSM, so they use the available Microsoft Key Storage Providers.

Also check out Cryptographic Key Length Recommendations²² by BlueCrypt—they
allow you to conveniently compare recommendations from different organizations.

There are two more important concepts when you deal with certificate authorities: CDP and
AIA.

CDP (CRL Distribution Point) is a location where the certificate authority will store a Certificate
Revocation List (CRL). Your clients periodically download this list and use it to check to see
whether a certificate presented to them is revoked. When a certificate is revoked, that means
that the certificate should no longer be trusted. The main part of the revocation process is to put
the serial number (a unique identifier) of a certificate into a CRL. If a certificate’s serial number
is in a CRL, it means the certificate is revoked.

To get a list of CDPs on a CA, use Get-CACrlDistributionPoint:

Example 17: Retrieving a list of CDPs for the root CA

1 Get-CACrlDistributionPoint

PublishToServer : True
PublishDeltaToServer : True
AddToCertificateCdp : False
AddToFreshestCrl : False
AddToCrlCdp : False
AddToCrlIdp : False
Uri : C:\Windows\system32\CertSrv\CertEnroll\

<CAName><CRLNameSuffix><DeltaCRLAllowed>.crl

PublishToServer : False
PublishDeltaToServer : False
AddToCertificateCdp : False
AddToFreshestCrl : False
AddToCrlCdp : True
AddToCrlIdp : False
Uri : ldap:///CN=<CATruncatedName><CRLNameSuffix>,

CN=<ServerShortName>,CN=CDP,CN=Public Key Services,
CN=Services,<ConfigurationContainer><CDPObjectClass>

PublishToServer : False
PublishDeltaToServer : False
AddToCertificateCdp : False
AddToFreshestCrl : False
AddToCrlCdp : False

²²https://www.keylength.com/en/

https://www.keylength.com/en/
https://www.keylength.com/en/

Script Signing 404

AddToCrlIdp : False
Uri : http://<ServerDNSName>/CertEnroll/

<CAName><CRLNameSuffix><DeltaCRLAllowed>.crl

PublishToServer : False
PublishDeltaToServer : False
AddToCertificateCdp : True
AddToFreshestCrl : True
AddToCrlCdp : False
AddToCrlIdp : False
Uri : file://<ServerDNSName>/CertEnroll/

<CAName><CRLNameSuffix><DeltaCRLAllowed>.crl

If the root CA is not a member of the domain, then the LDAP CDP does nothing and can
be deleted. If the root CA is offline, then the HTTP CDP does nothing and can be deleted.
Therefore, in general, for an offline CA, the CDP should be copied to an intermediate or
terminal (issuing) CA, so that certificates can access those CRLs.

Authority Information Access (AIA) is a place from which clients can download the certificate
of a Certification Authority. When a client doesn’t have a certificate’s parent certificate, they’ll
use the AIA defined in a certificate to download the certificate’s parent.

This isn’t that important for a root CA: clients must have the root certificate installed locally
to trust the PKI that uses that root CA. But AIA is tremendously important for issuing and
intermediate CAs, because clients rarely have those certificates installed. This is especially
important for internal CAs. Intermediate and issuing CAs should have their certificates published
to endpoint devices via GPO or via an endpoint management system.

To get a list of AIA locations on a CA, use Get-CAAuthorityInformationAccess:

Example 18: Retrieving a list of AIA locations for the root CA

1 Get-CAAuthorityInformationAccess

AddToCertificateAia AddToCertificateOcsp Uri
------------------- -------------------- ---

False False C:\Windows\system32\CertSrv\CertEnroll\
<ServerDNSName>_<CAName><CertificateName>.crt

False False ldap:///CN=<CATruncatedName>,CN=AIA,
CN=Public Key Services,CN=Services,<ConfigurationContainer><CAObjectClass>

False False http://<ServerDNSName>/CertEnroll/
<ServerDNSName>_<CAName><CertificateName>.crt

True False file://<ServerDNSName>/CertEnroll/
<ServerDNSName>_<CAName><CertificateName>.crt

If the root CA is not a member of the domain, then the LDAP AIA does nothing and can
be deleted. If the root CA is offline, then the HTTP AIA does nothing and can be deleted.
Therefore, in general, for an offline CA, the AIA should be copied to an intermediate or
terminal (issuing) CA, so that certificates can access the necessary files.

Script Signing 405

You can see that, by default, a Windows CA has a fair number of CDP and AIA locations
configured. Often, you may not need all of them. Usually, a single location for all CAs in an
organization is enough. This is dependent upon the access which specific endpoints may have to
various resources within the organization.

Both CDP and AIA support several protocols which can be used to access these files. For maxi-
mum interoperability, however, you should just use HTTP. This also decreases the administrative
load of updating multiple endpoints and monitoring them. However, in an Active Directory
environment, publishing the certificate via LDAP makes the certificate easily available to all AD
endpoints.

You might also note that the Uri properties of all these objects contain strings in angle brackets
<>. These are variables specific to the Windows CA service. You can read about their meaning
in the documentation²³, but in this section you won’t use them.

Your clients learn which URIs to use as CDP or AIA locations by looking into a certificate’s prop-
erties: as you can see in the output above, CDPs and AIAs have several AddToCertificate...
properties—these define which of them will be included in a certificate issued by this CA.

You don’t need any of the CDPs already defined on this Root CA: since this is an offline server,
all those paths will be unavailable, anyway. You’ll use a separate HTTP server for that.

This chapter doesn’t discuss the installation of a web server to store CRLs and CA
certificates—you must set it up by yourself.

Example 19: Removing the default CDPs from the root CA

1 Get-CACrlDistributionPoint | Remove-CACrlDistributionPoint -Force

RestartCA

True
True
True
True

This section assumes that your Windows VM or server is named ROOTCA01. This
section also assumes that you named your root CA “My Root CA.”

If you take a look in a folder where a Windows CA publishes its CRL and CRT files by default,
you’ll see that the file name for the certificate is “ROOTCA01_My Root CA.crt” and the CRL is
called “My Root CA.crl”:

²³https://learn.microsoft.com/en-us/powershell/module/adcsadministration/add-cacrldistributionpoint?view=windowsserver2019-ps

https://learn.microsoft.com/en-us/powershell/module/adcsadministration/add-cacrldistributionpoint?view=windowsserver2019-ps
https://learn.microsoft.com/en-us/powershell/module/adcsadministration/add-cacrldistributionpoint?view=windowsserver2019-ps

Script Signing 406

Example 20: Inspecting the default root certificate and CRL location

1 $Path = Join-Path -Path $env:SystemRoot -ChildPath 'system32\CertSrv\CertEnroll'
2 Get-ChildItem -Path $Path

Directory: C:\Windows\system32\CertSrv\CertEnroll

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/11/2021 11:11 PM 534 My Root CA.crl
-a---- 7/11/2021 11:11 PM 517 ROOTCA01_My Root CA.crt

For AIA, remove every entry except for the one pointing to the local file system, because it’s
not possible to add it back using the standard cmdlet Add-CAAuthorityInformationAccess.
Therefore, the name of the certificate file will remain “ROOTCA01_My Root CA.crt.”

Example 21: Removing all AIA locations from the root CA except the one for the local file system

1 Get-CAAuthorityInformationAccess |
2 Where-Object -FilterScript {$_.Uri -notlike ('{0}*' -f $env:SystemRoot)} |
3 Remove-CAAuthorityInformationAccess -Force

RestartCA

True
True
True

Next, you need to create new AIA and CDP locations. You can define several CDP locations, of
different types. For CDP, it will be an HTTP URI and a local file system location. For AIA, you
already have a file system location, so only an HTTP URI is left. You must have at least one local
file system location, so you can grab the files from there and distribute to other locations.

To add a CDP location, use Add-CACrlDistributionPoint. Note that not all of the cmdlet
parameters are compatible with each other and there are no parameter sets defined, because
the compatibility of the parameters depends on the type of URI you use. If you try to use an
incompatible combination, you’ll get an error like this one:

Script Signing 407

Example 22: Attempting to add a new CDP with conflicting switches

1 $Params = @{
2 Uri = 'http://pki.example.com/CDP/MyRootCA.crl'
3 AddToCertificateCdp = $true
4 AddToFreshestCrl = $true
5 AddToCrlCdp = $true
6 AddToCrlIdp = $true
7 PublishToServer = $true
8 Force = $true
9 }

10 Add-CACrlDistributionPoint @Params

Add-CACrlDistributionPoint : When an HTTP location is specified, the certificate
revocation list distribution point extension supports only the
AddToCertificateCdp, AddToFreshestCrl, and AddToCrlIdp options. At least one of
these options must be specified.
At line:1 char:1
+ Add-CACrlDistributionPoint -Uri 'http://pki.example.com/CDP/MyRootCA. ...
+ ~~~

+ CategoryInfo : InvalidOperation: (http://pki.example.com/CDP/
MyRootCA.crl:String) [Add-CACrlDistributionPoint], InvalidOptionException

+ FullyQualifiedErrorId :InvalidOption,Microsoft.CertificateServices.Adm...

There are three switches compatible with HTTP URLs: AddToCertificateCdp, -AddToCrlIdp,
and -AddToFreshestCrl.

-AddToFreshestCrl specifies Delta CRL location. You won’t use Delta CRLs in this chapter.
Usually, you need Delta CRLs only when you revoke certificates often and your Base CRL
becomes too large for clients to download in a reasonable time. This is an ultra-rare case for
most folks.

-AddToCrlIdp is an Issuing Distribution Points (IDP) extension (OID 2.5.29.28) which is used
for partitioned CRLs. Partitioned CRLs aren’t supported by Windows PKI clients, therefore you
won’t use them in this chapter either.

However, the last one, -AddToCertificateCdp, is crucial: it specifies that all certificates issued
by this CA will have a pointer to this CRL. Without it, your clients won’t know where to look
for a CRL and you effectively won’t be able to revoke your certificates. All certificates you issue
must have at least one CDP URI defined. That CDP URI must be available to all the clients.

Assume you have a web server available via the domain name “pki.example.com” and that you
have created two folders in the root web directory: one for CDP files and one for AIA files. Let’s
define this web server as a CRL distribution point. Use the -AddToCertificateCdp parameter
to add this location into all certificates issued by the root CA—the clients will use this URL to
check if a certificate is revoked.

Script Signing 408

Example 23: Adding a new custom CDP for the root CA

1 $Params = @{
2 Uri = 'http://pki.example.com/CDP/MyRootCA.crl'
3 AddToCertificateCdp = $true
4 Force = $true
5 }
6 Add-CACrlDistributionPoint @Params

RestartCA

True

The second CDP location is the local file system. You need this because you must be able to
retrieve a CRL from the CA in order to put it on the HTTP server. Publication to the local file
system generates a CRL file, ready for copying to any destination.

As you might notice, for simplification, these examples use filenames without spaces in both
commands. This isn’t a requirement—you can use different filenames, just don’t forget to rename
the file when you copy it to another location.

Example 24: Adding the file system CDP for the root CA

1 $Params = @{
2 Path = $env:SystemRoot
3 ChildPath = 'system32\CertSrv\CertEnroll\MyRootCA.crl'
4 }
5 $LocalCRLPath = Join-Path @Params
6 Add-CACrlDistributionPoint -Uri $LocalCRLPath -PublishToServer -Force

RestartCA

True

Next, add an Authority Information Access (AIA) extension. This will insert a location of the root
certificate file into all certificates issued by your Root CA, thanks to the -AddToCertificateAia
parameter. Again, the filename is without spaces but, as you might remember, you didn’t touch
the existing AIA definition pointing to the local filesystem. You’ll need to rename the file
manually when copying it over to the web server, or just use the filename with spaces in the
-AddToCertificateAia parameter—the choice is yours.

Script Signing 409

Example 25: Adding a custom AIA location for the root CA certificate

1 $Params = @{
2 Uri = 'http://pki.example.com/AIA/MyRootCA.crt'
3 AddToCertificateAia = $true
4 Force = $true
5 }
6 Add-CAAuthorityInformationAccess @Params

RestartCA

True

Now, take a look at the current CRL you have already issued at this CA. The most convenient
and easy way to do that in PowerShell is to install PSPKI²⁴, a module by Vadims Podāns. Since
this is an offline machine, download the module manually from the PowerShell Gallery²⁵ and
install it on the computer, then import it: Import-Module -Name 'PSPKI'.

To get information about a CRL use the Get-CertificateRevocationList cmdlet:

Example 26: Retrieving information about a CRL

1 $Params = @{
2 Path = $env:SystemRoot
3 ChildPath = 'system32\CertSrv\CertEnroll\My Root CA.crl'
4 }
5 $LocalCRLPath = Join-Path @Params
6 Get-CertificateRevocationList -Path $LocalCRLPath

Version : 2
Type : BaseCrl
IssuerName :

System.Security.Cryptography.X509Certificates.X500DistinguishedName
Issuer : CN=My Root CA
ThisUpdate : 7/11/2021 11:01:52 PM
NextUpdate : 7/19/2021 11:21:52 AM
SignatureAlgorithm : sha512ECDSA (1.2.840.10045.4.3.4)
CRLNumber : 1
Extensions : {Authority Key Identifier (2.5.29.35),

CA Version (1.3.6.1.4.1.311.21.1),
CRL Number (2.5.29.20),
Next CRL Publish (1.3.6.1.4.1.311.21.4)...}

RevokedCertificates : {}
RawData : {48, 130, 2, 18...}
Handle :

System.Security.Cryptography.X509Certificates.SafeCRLHandleContext
Thumbprint :

075BD031E4331D21D5C4B6E841B36D2565DA035CF08785C4135789023D9E1D5D

²⁴https://www.pkisolutions.com/tools/pspki/
²⁵https://www.powershellgallery.com/packages/PSPKI/

https://www.pkisolutions.com/tools/pspki/
https://www.powershellgallery.com/packages/PSPKI/
https://www.pkisolutions.com/tools/pspki/
https://www.powershellgallery.com/packages/PSPKI/

Script Signing 410

You can see that the NextUpdate property in this CRL is set to about 7 days ahead, so you
must update the CRL by that date and make it available to your clients. Then repeat in a week.
And again and again. Given that this node requires manual intervention to bring it online and
issue commands on it, this process seems terribly annoying and unproductive (because you most
probably won’t issue and revoke certificates on the root CA that often).

A solution is to increase the CRL refresh interval to a more reasonable six months:

Example 27: Adjusting the CRL update period from days to months

1 certutil -setreg CA\CRLPeriod Months

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\
My Root CA\CRLPeriod:

Old Value:
CRLPeriod REG_SZ = Weeks

New Value:
CRLPeriod REG_SZ = Months

CertUtil: -setreg command completed successfully.
The CertSvc service may need to be restarted for changes to take effect.

Example 28: Setting the CRL update interval to 6 months

1 certutil -setreg CA\CRLPeriodUnits 6

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\
My Root CA\CRLPeriodUnits:

Old Value:
CRLPeriodUnits REG_DWORD = 1

New Value:
CRLPeriodUnits REG_DWORD = 6

CertUtil: -setreg command completed successfully.
The CertSvc service may need to be restarted for changes to take effect.

Best practices say that the root CA is offline, except when it must be online. The most
common reason is to renew the certificate for a subordinate CA (or a chaining CA).
Practically, the root CAmust have OS updates on some regular schedule (not necessarily
monthly, but regularly). Also the CRL for the root CA must be updated and copied to
CDPs on a regular basis (dependent on the CRL update period as discussed in Example
27 and Example 28). If you do not assign a NIC to the root CA, these procedures can be
quite difficult. These choices are dependent on your company’s overall security posture.

As another practical matter, if there is no NIC on the root CA, installation of PowerShell
modules can be challenging. Without a local NIC, modules must be downloaded
remotely (including dependencies), copied to the target, and then installed. This is in
comparison to a simple Install-Module cmdlet execution.

Script Signing 411

By default, this CA will issue certificates with a validity period of one year maximum. Usually,
you’d prefer something longer for CA certificates—let’s increase it up to five years. For this, use
the ValidityPeriodUnits property:

Example 29: Setting the CA certificate validity interval to 5 years

1 certutil -setreg CA\ValidityPeriodUnits 5

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\
My Root CA\ValidityPeriodUnits:

Old Value:
ValidityPeriodUnits REG_DWORD = 1

New Value:
ValidityPeriodUnits REG_DWORD = 5

CertUtil: -setreg command completed successfully.
The CertSvc service may need to be restarted for changes to take effect.

By default, the validity period is measured in years. You can check if this is true:

Example 30: Confirming that the CA certificate validity period is in years

1 certutil -getreg CA\ValidityPeriod

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\
My Root CA\ValidityPeriod:

ValidityPeriod REG_SZ = Years
CertUtil: -getreg command completed successfully

If in your installation it returns something other than Years, use the following command
to correct the period:

1 certutil -setreg CA\ValidityPeriod Years

To apply all these changes, you must restart the CA service. No need to restart the whole server,
just the service is enough (but if you prefer, you can reboot the machine, of course):

Example 31: Restarting the certificate service after making changes to the root CA

1 Restart-Service -Name CertSvc

Now, you can issue an updated CRL on this CA (it will be empty and that’s OK):

Script Signing 412

Example 32: Inspecting the root CA’s default certificate and CRL location before issuing a new CRL

1 $Pth = Join-Path -Path $env:SystemRoot -ChildPath 'system32\CertSrv\CertEnroll'
2 Get-ChildItem -Path $Pth

Directory: C:\Windows\system32\CertSrv\CertEnroll

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/11/2021 11:11 PM 534 My Root CA.crl
-a---- 7/11/2021 11:11 PM 517 ROOTCA01_My Root CA.crt

Example 33: Issuing a new CRL with the updated configuration

1 certutil -CRL

CertUtil: -CRL command completed successfully.

Note that the new CRL file has the name we specified in the CDP configuration earlier:

Example 34: Inspecting the new CRL, which has a new file name defined in the CA configuration

1 $Pth = Join-Path -Path $env:SystemRoot -ChildPath 'system32\CertSrv\CertEnroll'
2 Get-ChildItem -Path $Pth

Directory: C:\Windows\system32\CertSrv\CertEnroll

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/11/2021 11:11 PM 534 My Root CA.crl
-a---- 7/11/2021 11:22 PM 327 MyRootCA.crl
-a---- 7/11/2021 11:11 PM 517 ROOTCA01_My Root CA.crt

Example 35: Retrieving information about the new CRL

1 $Params = @{
2 Path = $env:SystemRoot
3 ChildPath = 'system32\CertSrv\CertEnroll\MyRootCA.crl'
4 }
5 $RootCRLPath = Join-Path @Params
6 Get-CertificateRevocationList -Path $RootCRLPath

Script Signing 413

Version : 2
Type : BaseCrl
IssuerName :
System.Security.Cryptography.X509Certificates.X500DistinguishedName

Issuer : CN=My Root CA
ThisUpdate : 7/11/2021 11:12:45 PM
NextUpdate : 1/12/2022 10:32:45 AM
SignatureAlgorithm : sha512ECDSA (1.2.840.10045.4.3.4)
CRLNumber : 2
Extensions : {Authority Key Identifier (2.5.29.35),

CA Version (1.3.6.1.4.1.311.21.1),
CRL Number (2.5.29.20),
Next CRL Publish (1.3.6.1.4.1.311.21.4)}

RevokedCertificates : {}
RawData : {48, 130, 1, 67...}
Handle :
System.Security.Cryptography.X509Certificates.SafeCRLHandleContext

Thumbprint :
A6E99F8127704FAFB5D21EBCD54B01C19A106EA8D54935C73C05702CEDF9C07D

Great, the next update date is now six months in the future!

15.5.1.2.2 Issuing CA

The Issuing CA is a server where you issue certificates to endpoints (computers and users),
including code signing certificates. Go to the computer that will be an issuing CA in your
infrastructure (this chapter assumes it has Windows Server installed on it already and is a
member of your AD domain).

You may have several issuing and root CAs in your environment, including several
issuing CAs under a single root CA. If you have a large environment, you may have
a third tier of CAs, with the intermediate (middle) tier known as “policy CAs.” Similar
to delegation of OUs in large environments, policy CAs allow you to delegate CA control
to administrative tiers.

First, we need to deliver the root CA’s certificate to the issuing CA (copy it manually or via RDP
copy-and-paste).

The location of the root CA’s certificate was discussed in Example 20.

This example places the file in the root of the system volume (the C: drive), but you can change it
to meet your needs. Import this certificate into the local “Trusted Root Certification Authorities”
computer store:

Script Signing 414

Example 36: Importing the root CA’s certificate on an issuing CA

1 $JPParams = @{
2 Path = $env:SystemDrive
3 ChildPath = 'ROOTCA01_My Root CA.crt'
4 }
5 $RootCRTPath = Join-Path @JPParams
6 $ICParams = @{
7 FilePath = $RootCRTPath
8 CertStoreLocation = 'Cert:\LocalMachine\Root\'
9 }

10 Import-Certificate @ICParams

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\Root

Thumbprint Subject
---------- -------
EABE909367E3D4F80B399AB8CC2677A5C9686C1F CN=My Root CA

Next, install the AD CS role:

Example 37: Installing the Active Directory Certificate Services CA feature on the issuing CA

1 Install-WindowsFeature -Name ADCS-Cert-Authority -IncludeManagementTools

Success Restart Needed Exit Code Feature Result
------- -------------- --------- --------------
True No Success {Active Directory Certificate Services...

Then install the CA itself. In this case, the CA’s name is “My Issuing CA,” the length of the
elliptic curve and hash function are both 256 bits, and the CA type is of course “EnterpriseSub-
ordinateCA.”

Example 38: Configuring the issuing Certificate Authority

1 $Params = @{
2 CACommonName = 'My Issuing CA'
3 CryptoProviderName = 'ECDSA_P256#Microsoft Software Key Storage Provider'
4 KeyLength = 256
5 HashAlgorithmName = SHA256
6 CAType = 'EnterpriseSubordinateCA'
7 Force = $true
8 }
9 Install-AdcsCertificationAuthority @Params

Script Signing 415

WARNING: The Active Directory Certificate Services installation is incomplete.
To complete the installation, use the request file "C:\CA02.ad.example.net_My
Issuing CA.req" to obtain a certificate from the parent CA. Then, use the
Certification Authority snap-in to install the certificate. To complete this
procedure, right-click the node with the name of the CA, and then click Install
CA Certificate. The operation completed successfully. 0x0 (WIN32: 0)

ErrorId ErrorString
------- -----------

398 The Active Directory Certificate Services installation is incomplete. To
complete the installation, use the request file "C:\CA02.ad.example.net_
My Issuing CA.req" to obtain a certificate ...

The installation is incomplete, because we need to obtain the certificate of this CA from our
root CA, and, since the root CA is offline, we must do this manually. That message tells us that
at “C:\CA02.ad.example.net_My Issuing CA.req” a generated certificate request is waiting. Let’s
look at it with the help of Get-CertificateRequest from the PSPKI module:

Example 39: Inspecting the certificate request file for signing the issuing CA’s certificate

1 Get-CertificateRequest -Path 'C:\CA02.ad.example.net_My Issuing CA.req'

RequestType : PKCS10
SubjectDn :

System.Security.Cryptography.X509Certificates.X500DistinguishedName
ExternalData :
Version : 1
SubjectName :

System.Security.Cryptography.X509Certificates.X500DistinguishedName
Subject : CN=My Issuing CA, DC=ad, DC=example, DC=net
PublicKey : System.Security.Cryptography.X509Certificates.PublicKey
Extensions : {CA Version (1.3.6.1.4.1.311.21.1),

Subject Key Identifier (2.5.29.14),
Certificate Template Name (1.3.6.1.4.1.311.20.2),
Key Usage (2.5.29.15)...}

Attributes : {0}
SignatureAlgorithm : sha256ECDSA (1.2.840.10045.4.3.2)
SignatureIsValid : True
RawData : {48, 130, 1, 242...}

Using this method you can validate whether all request parameters are correct. To proceed, copy
the request file to the root CA computer. The following commands are to be executed on the root
CA, not on the issuing CA.

To send the request to the certification authority, use Submit-CertificateRequest. Note that
we save the CA object in a variable—that’s because we’ll need it later.

Script Signing 416

Example 40: Submitting the issuing CA’s certificate request on the root CA

1 $CA = Connect-CertificationAuthority
2 $Params = @{
3 Path = $env:SystemDrive
4 ChildPath = 'CA02.ad.example.net_My Issuing CA.req'
5 }
6 $Path = Join-Path @Params
7 Submit-CertificateRequest -Path $Path -CertificationAuthority $CA

CertificationAuthority : PKI.CertificateServices.CertificateAuthority
RequestID : 2
Status : UnderSubmission
Certificate :
ErrorInformation : Taken Under Submission

If you check on the request, you’ll see that the certificate will be issued using the “SubCA”
template—this is a special template, which Windows PKI uses for subordinate (child) CA
certificates.

Example 41: Checking the status of the submitted request on the root CA

1 Get-PendingRequest -CertificationAuthority $CA

RequestID : 2
Request.RequesterName : ROOTCA01\Administrator
Request.SubmittedWhen : 8/29/2021 9:20:59 PM
Request.CommonName : My Issuing CA
CertificateTemplate : SubCA
CertificateTemplateOid : SubCA
RowId : 2
ConfigString : ROOTCA01\My Root CA
Table : Request
Properties : {[RequestID, 2],

[Request.RequesterName, ROOTCA01\Administrator],
[Request.SubmittedWhen, 8/29/2021 9:20:59 PM],
[Request.CommonName, My Issuing CA]...}

Now, you must approve the pending certificate request:

Example 42: Approving the issuing CA’s certificate request on the root CA

1 $Request = Get-PendingRequest -CertificationAuthority $CA
2 Approve-CertificateRequest -Request $Request

Script Signing 417

HResult StatusMessage
------- -------------
0 The certificate '2' was issued.

Example 43: Displaying the approved certificate request on the root CA

1 $IssuedRequest = Get-IssuedRequest -CertificationAuthority $CA -RequestID 2
2 $IssuedRequest

RequestID : 2
Request.RequesterName : ROOTCA01\Administrator
CommonName : My Issuing CA
NotBefore : 8/29/2021 9:11:49 PM
NotAfter : 8/29/2026 9:21:49 PM
SerialNumber : 6b00000002a4208d0a6e2af611000000000002
CertificateTemplate : SubCA
CertificateTemplateOid : SubCA
RowId : 2
ConfigString : ROOTCA01\My Root CA
Table : Request
Properties : {[RequestID, 2],

[Request.RequesterName, ROOTCA01\Administrator],
[CommonName, My Issuing CA],
[NotBefore, 8/29/2021 9:11:49 PM]...}

The last step on the root CA is to export the approved request into a file. Note the “RequestID_-
2.cer” file in the listing below: copy this file to the issuing CA. Note also that the example below
writes to the root of the system drive: this will not be allowed for non-administrative users.

Example 44: Exporting the issued certificate so that it can be copied to the issuing CA

1 $Item = Get-Item -Path $Env:SystemDrive
2 Receive-Certificate -RequestRow $IssuedRequest -Path $Item | Format-List

Thumbprint: E1BF218D5C4B58B16BABC003558222975B717E3A
Subject: CN=My Issuing CA, DC=ad, DC=example, DC=net

Example 45: Inspecting the system drive (C:) to show the newly issued certificate file

1 Get-ChildItem -Path $Env:SystemDrive

Script Signing 418

Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/11/2021 11:11 PM CAConfig
d----- 4/19/2021 3:11 PM PerfLogs
d-r--- 4/18/2021 12:42 PM Program Files
d----- 4/18/2021 12:42 PM Program Files (x86)
d-r--- 4/18/2021 12:41 PM Users
d----- 8/29/2021 6:44 PM Windows
-a---- 8/29/2021 9:59 PM 774 CA02.ad.example.net_My Issuing CA.req
-a---- 8/29/2021 11:24 PM 1078 RequestID_2.cer

We’ve finished with the root CA—execute the subsequent commands on the issuing CA. Copy
the new certificate (RequestID_2.cer in this example) to the issuing CA computer. Using RDP
copy-and-paste is often the simplest way to accomplish this. If this is not available to you, using
a file share is often the next way to attempt it. In the worst case, using a mounted drive that you
transfer between VMs, is a way that always works, albeit with the most administrative overhead.

The last step in starting up a subordinate CA is to install the signed certificate to it. Unfortunately,
there is no native PowerShell cmdlet for this. Even PSPKI doesn’t have a function for that yet²⁶.
But the “legacy” command-line tools are here to help:

Example 46: Importing the certificate, signed by the root CA, on the issuing CA

1 certutil -installcert "$Env:SystemDrive\RequestID_2.cer"

CertUtil: -installCert command completed successfully.
The CertSvc service may need to be restarted for changes to take effect.

At this stage, you may receive the following error:

CertUtil: -installCert command FAILED: 0x80092013
(-2146885613 CRYPT_E_REVOCATION_OFFLINE)

CertUtil: The revocation function was unable to check
revocation because the revocation server was offline.

This means that the issuing CA machine can’t reach the CDP that you defined in the
Root CA configuration step. The potential reasons are countless—maybe it’s a firewall
issue, or you didn’t add the DNS record, or perhaps you didn’t configure that web server
at all. To fix this, make the CDP available to the issuing CA and all your clients now—
never ignore certificate revocation problems!

Now you can start the “CertSvc” service and it will work.

²⁶https://github.com/PKISolutions/PSPKI/issues/151

https://github.com/PKISolutions/PSPKI/issues/151
https://github.com/PKISolutions/PSPKI/issues/151

Script Signing 419

Example 47: Starting the certificate service on the issuing CA

1 Start-Service -Name 'CertSvc'

However, you aren’t finished. Recall how we configured AIA and CDP locations for the root
CA? A subordinate CA is no different, because its default configuration is the same. Once again,
you need to:

1. Remove all CDP/AIA locations which won’t be used in your infrastructure.
2. Make sure the correct locations will be baked into certificates issued by this server.

Check what locations are currently configured:

Example 48: Displaying the default CDPs for the issuing CA

1 Get-CACrlDistributionPoint | Format-List

PublishToServer : True
PublishDeltaToServer : True
AddToCertificateCdp : False
AddToFreshestCrl : False
AddToCrlCdp : False
AddToCrlIdp : False
Uri : C:\Windows\system32\CertSrv\CertEnroll\

<CAName><CRLNameSuffix><DeltaCRLAllowed>.crl

PublishToServer : True
PublishDeltaToServer : True
AddToCertificateCdp : True
AddToFreshestCrl : True
AddToCrlCdp : True
AddToCrlIdp : False
Uri : ldap:///CN=<CATruncatedName><CRLNameSuffix>,

CN=<ServerShortName>,CN=CDP,CN=Public Key Services,
CN=Services,<ConfigurationContainer><CDPObjectClass>

PublishToServer : False
PublishDeltaToServer : False
AddToCertificateCdp : False
AddToFreshestCrl : False
AddToCrlCdp : False
AddToCrlIdp : False
Uri : http://<ServerDNSName>/CertEnroll/

<CAName><CRLNameSuffix><DeltaCRLAllowed>.crl

PublishToServer : False
PublishDeltaToServer : False
AddToCertificateCdp : False
AddToFreshestCrl : False
AddToCrlCdp : False
AddToCrlIdp : False
Uri : file://<ServerDNSName>/CertEnroll/

<CAName><CRLNameSuffix><DeltaCRLAllowed>.crl

Script Signing 420

Example 49: Displaying the default AIA locations for the issuing CA

1 Get-CAAuthorityInformationAccess | Format-List

AddToCertificateAia : False
AddToCertificateOcsp: False
Uri : C:\Windows\system32\CertSrv\CertEnroll\

<ServerDNSName>_<CAName><CertificateName>.crt

AddToCertificateAia : True
AddToCertificateOcsp: False
Uri : ldap:///CN=<CATruncatedName>,CN=AIA,

CN=Public Key Services,CN=Services,
<ConfigurationContainer><CAObjectClass>

AddToCertificateAia : False
AddToCertificateOcsp: False
Uri : http://<ServerDNSName>/CertEnroll/

<ServerDNSName>_<CAName><CertificateName>.crt

AddToCertificateAia : False
AddToCertificateOcsp: False:
Uri : file://<ServerDNSName>/CertEnroll/

<ServerDNSName>_<CAName><CertificateName>.crt

Look at the folder content where the files are put by default:

Example 50: Inspecting the default certificate and CRL location on the issuing CA

1 Get-ChildItem -Path 'C:\Windows\System32\CertSrv\CertEnroll'

Directory: C:\Windows\System32\CertSrv\CertEnroll

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/4/2021 10:27 PM 741 CA02.ad.example.net_My Issuing CA.crt
-a---- 9/4/2021 10:36 PM 592 My Issuing CA+.crl
-a---- 9/4/2021 10:36 PM 791 My Issuing CA.crl

Remove unneeded locations and add the ones which you’ll use, using the same principles as with
the root CA (in this case, meaning to keep only file and HTTP entries):

Example 51: Removing the default CDPs from the issuing CA

1 Get-CACrlDistributionPoint | Remove-CACrlDistributionPoint -Force

Script Signing 421

RestartCA

True
True
True
True

By executing Example 51, you remove all of the CDPs (CRL Distribution Points) shown by
Example 48. This may, or may not, be appropriate for your production environment. Example
48 shows CDPs hosted: on the local file system, on a remote file system, on a web server, and in
Active Directory. In Example 53 below, the web server CDP is added back (with a generic URL).
In Example 54 below, the local file system CDP is added back. For your environment, you may
want to retain or add values back for some of the other options (especially Active Directory).

Example 52: Removing all AIA locations from the issuing CA except the one for the local file system

1 Get-CAAuthorityInformationAccess |
2 Where-Object -FilterScript {$_.Uri -notlike ('{0}*' -f $env:SystemRoot)} |
3 Remove-CAAuthorityInformationAccess -Force

RestartCA

True
True
True

By executing Example 52, you remove all of the AIAs (Authority Information Access locations)
shown by Example 49, except for the AIA hosted on the local file system. This may, or may not,
be appropriate for your production environment. Example 49 shows AIAs hosted: on the local
file system, on a remote file system, on a web server, and in Active Directory. In Example 55
below, the web server CDP is added back (with a generic URL). For your environment, you may
want to retain or add values back for some of the other options (especially Active Directory).

Example 53: Adding the custom CDP for the issuing CA

1 $Params = @{
2 Uri = 'http://pki.example.com/CDP/MyIssuingCA.crl'
3 AddToCertificateCdp = $true
4 Force = $true
5 }
6 Add-CACrlDistributionPoint @Params

RestartCA

True

Script Signing 422

Example 54: Adding back the file system CDP for the issuing CA

1 $Params = @{
2 Path = $env:SystemRoot
3 ChildPath = 'system32\CertSrv\CertEnroll\MyIssuingCA.crl'
4 }
5 $Path = Join-Path @Params
6 Add-CACrlDistributionPoint -Uri $Path -PublishToServer -Force

RestartCA

True

Example 55: Adding the custom AIA location for the issuing CA

1 $Params = @{
2 Uri = 'http://pki.example.com/AIA/MyIssuingCA.crt'
3 AddToCertificateAia = $true
4 Force = $true
5 }
6 Add-CAAuthorityInformationAccess @Params

RestartCA

True

As you might remember, on the root CA we changed the CRL validity period, because that’s
an offline server and having a CRL valid only for a week is really inconvenient. For online
certification authorities, like “My Issuing CA,” this isn’t a problem, because you can easily
automate CRL release cycles with online servers. Therefore, you won’t change this setting here.
Let’s check that it’s set to one week:

Example 56: Confirming that the issuing CA’s CRL update period is in weeks

1 certutil -getreg CA\CRLPeriod

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\
My Issuing CA\CRLPeriod:

ValidityPeriod REG_SZ = Weeks
CertUtil: -getreg command completed successfully.

Script Signing 423

Example 57: Confirming that the issuing CA’s CRL update interval is 1 week

1 certutil -getreg CA\CRLPeriodUnits

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\
My Issuing CA\CRLPeriodUnits:

ValidityPeriodUnits REG_DWORD = 1
CertUtil: -getreg command completed successfully.

All seems good! Now you can restart the CA service and reissue the CRL to the newly defined
location:

Example 58: Restarting the certificate service on the issuing CA after making changes

1 Restart-Service -Name CertSvc
2 certutil -CRL

Example 59: Inspecting the default certificate and CRL location on the issuing CA after the changes have been
applied

1 Get-ChildItem -Path 'C:\Windows\System32\CertSrv\CertEnroll'

Directory: C:\Windows\System32\CertSrv\CertEnroll

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/4/2021 10:27 PM 741 CA02.ad.example.net_My Issuing CA.crt
-a---- 9/4/2021 10:36 PM 592 My Issuing CA+.crl
-a---- 9/4/2021 10:36 PM 791 My Issuing CA.crl
-a---- 9/4/2021 10:57 PM 358 MyIssuingCA.crl

Grab this new “MyIssuingCA.crl” file and the CRT file and place them onto the web server for
your clients to download when they’ll check for revocation.

We have not covered creating a web-based AIA or CDP in this chapter or configuring
those as defaults in the Certificate Authority. These are often hosted on an issuing CA
using IIS, but in larger environments may be hosted on a separate web server. When
hosted on a single issuing CA, the local file location can be used as the source of an
IIS virtual directory (this is C:\Windows\System32\CertSrv\CertEnroll by default).
But, as you see in Example 53 and Example 55, creating web-based AIAs and CDPs is
something which is usually done. If you host a web-based AIA or CDP on a separate
web server (or even if you have multiple issuing CAs), then you will need to script and
schedule the copying of CRLs and CA certificates to the target location. This is also true
for the root certificate and CRL.

Script Signing 424

15.5.1.2.3 Create a Signing Template

You might think that’s it; you’re ready to issue certificates. Not quite, unfortunately. In Windows
PKI, there’s a concept called certificate templates. A certificate template is a set of properties
which define how a certificate can be issued, for which purposes, who can issue it, to whom, and
where that certificate can be stored.

For standalone certificate authorities, templates are stored in the registry. However, we are pri-
marily concerned with enterprise certificate authorities in this chapter. For enterprise certificate
authorities, certificate templates are AD DS objects which are located under the Configuration
Partition:

CN=Certificate Templates,CN=Public Key Services,CN=Services,CN=Configuration,
DC=<your AD forest's distinguished name>

You can get a list of them with the Get-CertificateTemplate command (part of the PSPKI
module):

Example 60: Retrieving a list of certificate templates

1 Get-CertificateTemplate

DisplayName SupportedCA AutoenrollmentAllowed
----------- ----------- ---------------------
Administrator Windows 2000 Server False
Root Certification Authority Windows 2000 Server False
CA Exchange Windows Server 2003 Enterprise Ed... False
CEP Encryption Windows 2000 Server False
Authenticated Session Windows 2000 Server False
Code Signing Windows 2000 Server False
Cross Certification Authority Windows Server 2003 Enterprise Ed... False
Trust List Signing Windows 2000 Server False
Directory Email Replication Windows Server 2003 Enterprise Ed... True
Domain Controller Windows 2000 Server False
Domain Controller Authentication Windows Server 2003 Enterprise Ed... True
Basic EFS Windows 2000 Server False
EFS Recovery Agent Windows 2000 Server False
Enrollment Agent Windows 2000 Server False
Exchange Enrollment Agent (Offli... Windows 2000 Server False
Exchange User Windows 2000 Server False
Exchange Signature Only Windows 2000 Server False
IPSec (Offline request) Windows 2000 Server False
IPSec Windows 2000 Server False
Kerberos Authentication Windows Server 2003 Enterprise Ed... True
Key Recovery Agent Windows Server 2003 Enterprise Ed... True
Computer Windows 2000 Server False
Enrollment Agent (Computer) Windows 2000 Server False
OCSP Response Signing Windows Server 2008 Enterprise Ed... False
Router (Offline request) Windows 2000 Server False
RAS and IAS Server Windows Server 2003 Enterprise Ed... True
Smartcard Logon Windows 2000 Server False
Smartcard User Windows 2000 Server False
Subordinate Certification Authority Windows 2000 Server False
User Windows 2000 Server False
User Signature Only Windows 2000 Server False
Web Server Windows 2000 Server False
Workstation Authentication Windows Server 2003 Enterprise Ed... True

Script Signing 425

Most Certificate Authority functions can be executed/controlled using the
certutil.exe native binary. However, certutil.exe is not particularly user
friendly. For example, certutil.exe has several command options to deal with listing
certificate templates (as well as creating and deleting them). But those options do
not have the filtering or data presentation capabilities in PowerShell, which makes
using the built-in cmdlets and various third-party modules much easier than using
certutil.exe.

You should never use the built-in certificate templates and instead create your own. There are
several reasons:

1. The built-in templates don’t have all features available on the modern OSes. See that
SupportedCA property? While not going deep into the details, the more recent the OS,
the more features are available in the template.

2. It’s good to always have a default configuration set, so you could roll back to it and try
again if you mess settings of your certificate template.

So treat these just as you do default group policies: use them for reference. Don’t modify them;
instead, if you need to make changes to the templates, then make copies and work with those
template copies.

Usually, you create a copy of a template via the GUI, but this book isn’t about GUIs. ;)
Unfortunately, Microsoft doesn’t provide a built-in way to duplicate certificate templates in
PowerShell. An external module ADCSTemplate²⁷ exists, but using it is tricky. To create a new
Certificate Template, this module needs a description of that template in JSON form. Usually,
you get this JSON using the Export-ADCSTemplate cmdlet, but for this you need a template
with all the required properties to be in your AD DS already. To spare you from dealing with the
GUI, this chapter includes a JSON object for a code signing template:

Example 61: A certificate template for code signing as a JSON object

1 $JSONRaw = @'
2 {
3 "name": "MyCodeSigning",
4 "displayName": "My Code Signing",
5 "objectClass": "pKICertificateTemplate",
6 "flags": 131616,
7 "revision": 100,
8 "msPKI-Cert-Template-OID": "1.3.6.1.4.1.311.21.8.6625186.9886736.8734392.
9 15429154.6687822.90.4158550.10744840",

10 "msPKI-Certificate-Application-Policy": ["1.3.6.1.5.5.7.3.3"],
11 "msPKI-Certificate-Name-Flag": -2113929216,
12 "msPKI-Enrollment-Flag": 32,
13 "msPKI-Minimal-Key-Size": 256,
14 "msPKI-Private-Key-Flag": 101056512,
15 "msPKI-RA-Application-Policies": [
16 "msPKI-Asymmetric-Algorithm`PZPWSTR`ECDSA_P256`msPKI-Hash-Algorithm`
17 PZPWSTR`SHA256`msPKI-Key-Usage`DWORD`2`msPKI-Symmetric-Algorithm`
18 PZPWSTR`3DES`msPKI-Symmetric-Key-Length`DWORD`168`"
19],
20 "msPKI-RA-Signature": 0,
21 "msPKI-Template-Minor-Revision": 2,

²⁷https://www.powershellgallery.com/packages/ADCSTemplate

https://www.powershellgallery.com/packages/ADCSTemplate
https://www.powershellgallery.com/packages/ADCSTemplate

Script Signing 426

22 "msPKI-Template-Schema-Version": 4,
23 "pKICriticalExtensions": ["2.5.29.15"],
24 "pKIDefaultKeySpec": 2,
25 "pKIExpirationPeriod": [0, 64, 57, 135, 46, 225, 254, 255],
26 "pKIExtendedKeyUsage": ["1.3.6.1.5.5.7.3.3"],
27 "pKIKeyUsage": [128, 0],
28 "pKIMaxIssuingDepth": 0,
29 "pKIOverlapPeriod": [0, 128, 166, 10, 255, 222, 255, 255]
30 }
31 '@

Note that the JSON has external line breaks due to book formatting limitations. To correct this
limitation, run the following command:

$JSONRaw = $JSONRaw -replace '\r?\n'

To create the JSON output, the example duplicates the built-in Code Signing template, upgrades
its SupportedCA property to Windows Server 2019, and declares that this template is for issuing
ECDSA certificates. Feel free to tweak it, according to your needs!

To import this template in your environment, run the following:

Example 62: Importing a certificate template from a JSON string

1 New-ADCSTemplate -DisplayName 'My Code Signing' -JSON $JSONRaw

Unfortunately, this cmdlet doesn’t import the msPKI-RA-Application-Policies property at
the time of writing, which describes what crypto algorithms will be used for certificates issued
by this template. You’ll have to fix it manually:

Example 63: Manually adding the missing property to the imported AD template using the same JSON string

1 $JSON = ConvertFrom-Json -InputObject $JSONRaw
2 $DN = (Get-ADCSTemplate -DisplayName 'My Code Signing').DistinguishedName
3 Set-ADObject -Identity $DN -Add @{
4 'msPKI-RA-Application-Policies' = $JSON.'msPKI-RA-Application-Policies'
5 }

The Set-ADObject cmdlet is part of the RSAT-ADDS Windows Feature and is not
installed by default on Certificate Authority servers. It also requires elevated permissions
(write-all-properties on the particular policy involved, typically assigned only to Domain
Admins and the object’s Creator/Owner). To install the feature on the CA server, you use
the Install-WindowsFeature -Name RSAT-ADDS -IncludeAllSubFeature cmdlet
from an elevated PowerShell session. Alternatively, after retrieving the distinguished
name on the CA server, you can run the cmdlet in an elevated PowerShell session on a
domain controller (where RSAT-ADDS is already installed by default).

The last step for the template is to publish the template on your issuing CA, therefore allowing
it to issue certificates using this template:

Script Signing 427

Example 64: Publishing the AD CS certificate template to the issuing CA

1 Get-CertificationAuthority | Get-CATemplate |
2 Add-CATemplate -DisplayName 'My Code Signing' | Set-CATemplate

DisplayName Templates
----------- ---------
My Issuing CA {MyCodeSigning}

15.5.1.2.4 Root Certificate Deployment

Before you use a certificate from your PKI, you need to make sure that the certificate of its
root certification authority is distributed among all potential users of the certificate in your
organization and all consumers of your signed scripts. You have several options here:

15.5.1.2.5 Manual Import

You can always import a certificate on any machine by manually executing commands. You
would certainly need this for non-domain clients, for example.

Example 65: Manually importing a root CA certificate from file on a client

1 $Path = Join-Path $env:SystemDrive -ChildPath 'ROOTCA01_My Root CA.crt'
2 $Params = @{
3 FilePath = $Path
4 CertStoreLocation = 'Cert:\LocalMachine\Root\'
5 }
6 Import-Certificate @Params

15.5.1.2.6 AD DS Certificate Containers

A preferred way to deploy root CA certificates to domain-joined machines is to use the built-in
functionality of Active Directory Domain Services: certificate containers. Those are containers
located under:

CN=Public Key Services, CN=Services, CN=Configuration,
DC=<your AD forest's distinguished name>

There are several of them, but we’re interested in the one storing root CA certificates:
CN=Certification Authorities.

The beauty of certificate containers is that by using them, you’re making certificates accessible
to ALL your domain clients at once. Our trusty PSPKI module has several functions to help with
certificate containers. Here’s how to use them:

Script Signing 428

Example 66: Adding a root CA certificate to an AD DS certificate container

1 $Path = Join-Path -Path $env:SystemDrive -ChildPath 'ROOTCA01_My Root CA.crt'
2 $Cert = [Security.Cryptography.X509Certificates.X509Certificate2]::new($Path)
3 $RCAADContainer = Get-AdPkiContainer -ContainerType RootCA
4 $AAParams = @{
5 AdContainer = $RCAADContainer
6 Certificate = $Cert
7 Dispose = $true
8 }
9 Add-AdCertificate @AAParams | Format-List

Certificates : {My Root CA}
DsPath : CN=Certification Authorities,CN=Public Key Services,

CN=Services,CN=Configuration,DC=ad,DC=example,DC=net
ContainerType: RootCA
IsModified : False

To learn more about certificate containers, please see this very well-written article²⁸ by
Vadims Podāns.

15.5.1.2.7 DSC

Desired State Configuration is a perfect method to manage system configuration on non-domain
computers. It also complements GPO-style management well for domain-joined machines! With
DSC, you can control almost any parameter of your environment because deep inside it are
regular PowerShell cmdlets and functions. It means that, of course, you can install certificates
with DSC. A “CertificateDsc” module²⁹ from the DCS Community³⁰ has a CertificateImport
resource and ensures the presence (or absence) of a certificate in a store.

If you haven’t worked with Desired State Configuration before, we have just the chapter
for you! Please refer to Infrastructure as Code and come back to this once you’re done.

Preparing a configuration for certificate importing is very easy:

1. Place the certificate file on an SMB share available to all computers to which you want to
deploy that certificate.

2. Configure a CertificateImport resource, as described in the example below.
3. Deploy the configuration to your nodes!

²⁸https://www.pkisolutions.com/understanding-active-directory-certificate-services-containers-in-active-directory/
²⁹https://github.com/dsccommunity/CertificateDsc/
³⁰https://dsccommunity.org/

https://www.pkisolutions.com/understanding-active-directory-certificate-services-containers-in-active-directory/
https://github.com/dsccommunity/CertificateDsc/
https://dsccommunity.org/
https://www.pkisolutions.com/understanding-active-directory-certificate-services-containers-in-active-directory/
https://github.com/dsccommunity/CertificateDsc/
https://dsccommunity.org/

Script Signing 429

Example 67: A DSC resource for importing a root CA certificate from an SMB share

1 Configuration DeployMyRootCertificate
2 {
3 Import-DscResource -ModuleName CertificateDsc
4
5 Node localhost
6 {
7 CertificateImport MyRootCertificate
8 {
9 Thumbprint = '00'

10 Location = 'LocalMachine'
11 Store = 'Root'
12 Path = '\\ad.example.net\NETLOGON\ROOTCA01_My Root CA.crt'
13 }
14 }
15 }

Now, there are several considerations to be taken into account:

1. The Thumbprint parameter of the configuration isn’t used when importing a new
certificate—you need it only when you want to remove a certificate from the machine.
However, the parameter is marked as mandatory, which means you must fill it with a
string that looks like a certificate thumbprint (there’s a check for that).

2. The Path parameter in this example points to a standard NETLOGON share. This is just
an example and might not be the best method for your infrastructure. You might use DSC
to manage non-domain machines which don’t have access to the NETLOGON folder. You
should also never distribute large files this way!

15.5.1.2.8 Intune

For workstations connected to Intune, you can use trusted certificate profiles³¹ to import root
certificates.

15.5.1.2.9 Issue a Signing Certificate

As the result of all this private PKI adventure, you can now issue yourself a new certificate:

Example 68: Inspecting a code signing certificate from the current user’s personal store

1 $Params = @{
2 Template = 'MyCodeSigning'
3 CertStoreLocation = 'Cert:\CurrentUser\My'
4 }
5 Get-Certificate @Params

³¹https://learn.microsoft.com/en-us/mem/intune/protect/certificates-trusted-root

https://learn.microsoft.com/en-us/mem/intune/protect/certificates-trusted-root
https://learn.microsoft.com/en-us/mem/intune/protect/certificates-trusted-root

Script Signing 430

Status Certificate
------ -----------
Issued [Subject]...

Hmm… Not much info in the output, so let’s take a closer look at it:

Example 69: Retrieving a list of certificates in the current user’s personal store
1 $Cert = Get-ChildItem -Path 'Cert:\CurrentUser\My'
2 $Cert | Format-List

Thumbprint: BC85FF727E7DA52FC34AD92B75B7FE031EF908DA
Subject : CN=Administrator, CN=Users, DC=ad, DC=example, DC=net

Example 70: Inspecting the code signing certificate in more detail
1 $Path = Join-Path -Path 'Cert:\CurrentUser\My' -ChildPath $Cert.Thumbprint
2 Get-Item -Path $Path | Select-Object -Property *

PSPath : Microsoft.PowerShell.Security\Certificate::CurrentUs
er\My\BC85FF727E7DA52FC34AD92B75B7FE031EF908DA

PSParentPath : Microsoft.PowerShell.Security\Certificate::CurrentUs
er\My

PSChildName : BC85FF727E7DA52FC34AD92B75B7FE031EF908DA
PSDrive : Cert
PSProvider : Microsoft.PowerShell.Security\Certificate
PSIsContainer : False
EnhancedKeyUsageList : {Code Signing (1.3.6.1.5.5.7.3.3)}
DnsNameList : {Administrator}
SendAsTrustedIssuer : False
EnrollmentPolicyEndPoint : Microsoft.CertificateServices.Commands.EnrollmentEnd

PointProperty
EnrollmentServerEndPoint : Microsoft.CertificateServices.Commands.EnrollmentEnd

PointProperty
PolicyId : {360BD38F-E9BE-4724-86F3-65CD14FF86C9}
Archived : False
Extensions : {System.Security.Cryptography.Oid...}
FriendlyName :
IssuerName : System.Security.Cryptography.X509Certificates.X500Di

stinguishedName
NotAfter : 9/27/2022 9:35:21 PM
NotBefore : 9/27/2021 9:35:21 PM
HasPrivateKey : True
PrivateKey :
PublicKey : System.Security.Cryptography.X509Certificates.Public

Key
RawData : {48, 130, 3, 106...}
SerialNumber : 3A000000052570DD73698499F7000000000005
SubjectName : System.Security.Cryptography.X509Certificates.X500Di

stinguishedName
SignatureAlgorithm : System.Security.Cryptography.Oid
Thumbprint : BC85FF727E7DA52FC34AD92B75B7FE031EF908DA
Version : 3
Handle : 2611199710288
Issuer : CN=My Issuing CA, DC=ad, DC=example, DC=net
Subject : CN=Administrator, CN=Users, DC=ad, DC=example, DC=net

Yep—that seems about right! Now you can use it to sign code as described in the Signing Process
paragraph above.

Script Signing 431

15.5.2 Deploy Code Signing Certificates in a Corporate
Environment

After you’ve gotten a code signing certificate and used it to sign some scripts, you might want to
distribute these scripts across your organization. However, your peers won’t be able to trust your
signature without having your code signing certificate correctly installed on their machines.

We already know how to install it manually. Let’s look at how to distribute code signing
certificates at a scale.

15.5.2.1 GPO

Unfortunately, there are no AD DS containers to hold Code Signing certificates. One of the
possible alternatives for this task is Group Policies. In GPOs, certificates are stored as registry
keys. And that’s how they get onto target computers too—as registry keys. Therefore, in order
to import a certificate into a group policy object, import it as a registry key, with the help of
Set-GPRegistryValue. The registry keys that store certificate objects are binary, which means:

1. They aren’t human-readable.
2. They aren’t easy to operate.

A nice touch is that the structure of these binary keys isn’t documented.

Before you proceed any further, understand that this is an unofficial way to import
certificates into a GPO—it might stop working at any moment. Unfortunately, in 2021
there is still no official command-line method to do this—Microsoft wants you to import
certificates into group policies through the MMC console³². If you’re fine with that, by
all means, go ahead and use the GUI instead of this unsupported command-line method.

Note that various third parties do have software that provides this support. This includes
SDM Software³³ and their Group Policy Automation Engine. Also please note that
pushing Certificates via Group Policy using Microsoft’s Group Policy Management
Console is not difficult and should be considered if you only have a few certificates
that need to be distributed.

Working with undocumented binary structures is always a challenge, but observe that a
certificate imported manually into the local machine store and the same certificate imported
through Group Policies yield identical registry values. That means that we can just get the value
from the local registry and set that value into a group policy object!

In the code below, $GPOName is the name of a Group Policy Object you want to use to
deploy the certificate and this object is already linked to a desired OU.

First, you need to get the thumbprint of your certificate for later use:

³²https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-
using-group-policy

³³https://www.sdmsoftware.com

https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://www.sdmsoftware.com/
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://learn.microsoft.com/en-us/windows-server/identity/ad-fs/deployment/distribute-certificates-to-client-computers-by-using-group-policy
https://www.sdmsoftware.com/

Script Signing 432

Example 71: Retrieving the thumbprint for a code signing certificate

1 $Certificate = Get-ChildItem -Path 'Cert:\CurrentUser\My' -CodeSigningCert
2 $Thumbprint = $Certificate.Thumbprint

Note that the above only works properly if you have a single code signing certificate
stored for your user Otherwise you may need to view the Subject, NotBefore, and
NotAfter fields to identify the proper certificate.

Next, temporarily export the certificate into a file (only the public part) and import it back, but
into the local machine store this time. You must do this because personal user certificates reside
on the file system rather than in the registry. You can’t access them through HKEY_CURRENT_USER
or any other registry hive.

You can find files for your personal certificates in %APPDATA%\Microsoft\
SystemCertificates\My\Certificates.

Example 72: Exporting the code signing certificate and reimporting it into the machine store

1 $ExportPath = Join-Path -Path $env:TEMP -ChildPath ([guid]::NewGuid().Guid)
2 Export-Certificate -Cert $Certificate -FilePath $ExportPath
3 $Params = @{
4 FilePath = $ExportPath
5 CertStoreLocation = 'Cert:\LocalMachine\Root\'
6 }
7 Import-Certificate @Params
8 Remove-Item -Path $ExportPath

Importing certificates into the machine store requires local administrator permission on
a computer.

The example doesn’t use the X509Store .NET class here to copy certificates be-
tween the stores because it encodes certificate objects differently than the GUI. It
still works, but just to be safe, you’ll want to mimic the GUI as closely as possible.
Import-Certificate helps with that, producing results identical to the GUI.

You can now get the certificate object from the local registry and add it into the GPO registry:

Script Signing 433

Example 73: Extracting the registry data for the certificate and creating a GPO registry value from it

1 $JPParams = @{
2 Path = 'HKLM:\SOFTWARE\Microsoft\SystemCertificates\ROOT\Certificates'
3 ChildPath = $Thumbprint
4 }
5 $Path = Join-Path @JPParams
6 $CertBlob = Get-ItemPropertyValue -Path $Path -Name 'Blob'
7 $GPOCertContainerPath = 'HKLM\SOFTWARE\Policies\Microsoft\SystemCertificates'
8 $Key = "$GPOCertContainerPath\TrustedPublisher\Certificates\$Thumbprint"
9 $SGParams = @{

10 Name = $GPOName
11 Key = $Key
12 ValueName = 'Blob'
13 Value = $CertBlob
14 Type = 'Binary'
15 }
16 Set-GPRegistryValue @SGParams

And a quick clean-up:

Example 74: Removing the certificate that was temporarily added to the machine store

1 Remove-Item -Path "Cert:\LocalMachine\Root\$Thumbprint"

The certificate has been added to the GPO and will be delivered to your computers soon.

15.5.2.2 DSC (Signing Certificate)

The CertificateImport resource from the CertificateDsc module allows you to import certificates
not only into the Root store but into virtually any of them!³⁴ Here’s an example of a configuration
for code-signing certificates:

Example 75: A DSC resource for importing a code signing certificate from an SMB share

1 Configuration DeployMySigningCertificate
2 {
3 Import-DscResource -ModuleName CertificateDsc
4
5 Node localhost
6 {
7 CertificateImport MySigningCertificate
8 {
9 Thumbprint = '00'

10 Location = 'LocalMachine'
11 Store = 'TrustedPublisher'
12 Path = '\\ad.example.net\NETLOGON\Administrator.crt'
13 }
14 }
15 }

This is much easier than with Group Policies and has no issues with support!

³⁴DSC Community. (2021, Feb. 26).Welcome to the CertificateDsc wiki. dsccommunity/CertificateDsc on GitHub. [Online]. Available:
https://github.com/dsccommunity/CertificateDsc/wiki. [Accessed: Sep. 15, 2022].

https://github.com/dsccommunity/CertificateDsc/wiki

Script Signing 434

15.5.2.3 Intune (Signing Certificate)

Intune doesn’t have native functionality to deploy certificates to the Trusted Publishers store.
However, the Intune Support team described how you can utilize custom configuration profiles³⁵
for this.

15.6 Summary

In this chapter, you have learned why you need to sign your code, how to do it, and how to
implement your own Public Key Infrastructure to sign an unlimited number of scripts for free.
In the next chapter, Script Execution Policies, you’ll see how you can use this knowledge to
protect your infrastructure even further, by utilizing PowerShell Execution Policies.

15.7 Further Reading

• Official Microsoft script signing docs³⁶
• Vadims Podāns’s blog on PKI³⁷
• More PKI-related goodies by Vadims Podāns³⁸
• Wikipedia: Public-key cryptography³⁹
• Wikipedia: Code signing⁴⁰

³⁵https://techcommunity.microsoft.com/t5/intune-customer-success/adding-a-certificate-to-trusted-publishers-using-intune/ba-
p/1974488

³⁶https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
³⁷https://www.sysadmins.lv/blog-en/categoryview/securitypki.aspx
³⁸https://www.pkisolutions.com/author/crypt32/
³⁹https://en.wikipedia.org/wiki/Public-key_cryptography
⁴⁰https://en.wikipedia.org/wiki/Code_signing

https://techcommunity.microsoft.com/t5/intune-customer-success/adding-a-certificate-to-trusted-publishers-using-intune/ba-p/1974488
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://www.sysadmins.lv/blog-en/categoryview/securitypki.aspx
https://www.pkisolutions.com/author/crypt32/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Code_signing
https://techcommunity.microsoft.com/t5/intune-customer-success/adding-a-certificate-to-trusted-publishers-using-intune/ba-p/1974488
https://techcommunity.microsoft.com/t5/intune-customer-success/adding-a-certificate-to-trusted-publishers-using-intune/ba-p/1974488
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://www.sysadmins.lv/blog-en/categoryview/securitypki.aspx
https://www.pkisolutions.com/author/crypt32/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Code_signing

16. Script Execution Policies
Script execution policies dictate the conditions under which PowerShell runs scripts and loads
configuration files and PowerShell modules. This chapter discusses in-depth how script execution
policies can be used and implemented. It will also give some use cases for each policy.

16.1 Types of Execution Policies

You can view the current active execution policy with the cmdlet Get-ExecutionPolicy.

There are seven types of execution policies:¹

• AllSigned
• RemoteSigned
• Restricted
• Unrestricted
• Bypass
• Default
• Undefined

Each policy is covered in detail in this section.

16.1.1 AllSigned

The AllSigned execution policy allows scripts to run, but requires all scripts and configuration
files to be signed by a trusted publisher, even those scripts, which you wrote yourself.

Signing a script involves using cryptographic signatures to provide information about the
integrity and authenticity of the file. The signature is checked at the time the script is run to
ensure that the contents of the script haven’t changed since signing and that the certificate used
to sign the script originates from a trusted source.

The intricacies of script signing are covered in the previous chapter, Script Signing.

The AllSigned policy also causes the shell to prompt you before running scripts from publishers
that you haven’t yet classified as trusted or untrusted. To designate a publisher as trusted, the
certificate that was used to sign the script must be in the Trusted Publishers certificate store, and
its root certificate must be in the Trusted Root Certification Authorities store. Documentation
on how to import a certificate is available on Microsoft Docs².

¹Microsoft. (2022, Apr. 20). System.Management.Automation - SecuritySupport.cs. L32-66. PowerShell/PowerShell on GitHub.
[Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/Security-
Support.cs. [Accessed: Aug. 03, 2022].

²https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store

435

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/SecuritySupport.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/SecuritySupport.cs
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store

Script Execution Policies 436

It’s important to note that this policy isn’t a failsafe against malicious scripts, as the system still
permits a signed script to run, regardless of content. It’s not unheard of for disgruntled employees
to write innocuous-looking scripts designed to cause catastrophic damage to the environment.
These malicious scripts are called “logic bombs” and are a challenging security threat. Since
they rarely match any known malware signatures, they can avoid detection by antivirus and
antimalware software.

16.1.2 RemoteSigned

RemoteSigned is the default execution policy for Windows Server operating systems.³

It allows PowerShell scripts to run, but requires that PowerShell scripts and files downloaded
from the internet be signed by a trusted publisher. This includes scripts attached to emails or
downloaded from instant messaging apps.

RemoteSigned differs significantly from AllSigned in that it allows unsigned scripts on the
local computer to be run, and will permit running scripts downloaded from the internet provided
they’re not blocked. Files are blocked by Windows when the OS detects that they originate from
the internet zone (zone 3). PowerShell’s RemoteSigned policy blocks scripts and modules from
running if they aren’t signed by a trusted publisher. The behavior differs from AllSigned when
an unsigned file becomes unblocked. A file can be unblocked by anyone with write access to the
file.

Blocked files are files that originate from outside of the local intranet zone, files downloaded
from the internet will be blocked by default. There are two ways to unblock a file:

The first is to use the Windows Graphical User Interface (GUI) by right-clicking the file and
selecting ‘Properties’. In the ‘General’ tab, there’s a checkbox labeled ‘Unblock’.

³Microsoft. (2022, Mar. 18). About Execution Policies (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://
learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies. [Accessed: Aug. 03, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies

Script Execution Policies 437

Unblock File option in Windows Explorer

The second method is to use the Unblock-File cmdlet, as shown here:

Example 1: Unblocking a file from outside of the intranet zone

Unblock-File -Path <Path to file>

RemoteSigned is useful in cases where a user is an administrator or power user whose job
involves creating PowerShell scripts, as it allows running local scripts but still has somemeasures
in place to prevent running potentially harmful scripts downloaded from the internet.

16.1.3 Restricted

The Restricted execution policy is the default execution policy for Windows client
computers.⁴

⁴Microsoft. (2022, Mar. 18). About Execution Policies (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://
learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies. [Accessed: Aug. 03, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies

Script Execution Policies 438

It permits running individual commands but doesn’t allow any scripts, configuration files,
module files, or PowerShell profiles to run, even when they’re signed. Restricted is, as its
name indicates, the most restrictive execution policy, and is most often used in high-security
environments, or on machines where PowerShell isn’t used for any processes.

16.1.4 Unrestricted

Unrestricted is the default policy for non-Windows systems, and can’t be changed.⁵

This policy allows unsigned scripts to run, but still warns the user before running scripts or
configuration files that don’t originate from the Local intranet zone.

Unrestricted execution policies should be avoided wherever possible. If a script file is known
to be safe or is part of a known process, confirm that the script isn’t being blocked, and that the
system it runs on has an execution policy of RemoteSigned or higher.

16.1.5 Bypass

Despite its name, the Bypass mode is even more permissive than the Unrestricted mode.
In Bypass mode, all scripts can run and there are no warnings nor prompts. This execution
policy isn’t one you are likely to encounter in most well-managed environments. It’s designed
for scenarios in which a PowerShell script is part of a larger application, or where PowerShell
itself is the foundation for an application that has its own security model and controls. Bypass
is the least restrictive execution policy.

16.1.6 Default

The Default execution policy is a bit different from the others. Default can be used as an input
for the Set-ExecutionPolicy cmdlet, but it’s not a valid output from Get-ExecutionPolicy.
The use case for Default lies in the Set-ExecutionPolicy cmdlet:

Example 2: Setting the execution policy to its default for that platform
Set-ExecutionPolicy -ExecutionPolicy Default

This command sets the execution policy based on the type of operating system you are working
with. For Windows client computers, the default policy is Restricted. For Windows servers,
the default policy is RemoteSigned.

16.1.7 Undefined

The Undefined policy means that there is no execution policy set within the current scope.
Without an execution policy set, the effective execution policy is the default for its respective
operating system, as outlined in the Default execution policy.

⁵Microsoft. (2022, Mar. 18). About Execution Policies (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available: https://
learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies. [Accessed: Aug. 03, 2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies

Script Execution Policies 439

Example 3: Unsetting the execution policy by setting it Undefined

Set-ExecutionPolicy -ExecutionPolicy Undefined

Running this command causes any existing execution policy to be unassigned, unless it’s
determined by Group Policy. If the execution policy in all scopes is Undefined, the effective
execution policy is Restricted.⁶

16.2 Execution Policy Scope

The scope of an execution policy indicates the broadness of its impact. There are five different
scopes listed here in order of their precedence.⁷ A scope higher on the list takes precedence over a
scope lower on the list. The execution policy on the scope with the highest precedence is known
as the effective execution policy.⁸

1. MachinePolicy
2. UserPolicy
3. Process
4. CurrentUser
5. LocalMachine

16.2.1 Scope Precedence

Unlike NTFS (NT File System) permissions, with which you may be familiar, the effective
execution policy is dictated solely by the order of precedence, with no regard to the restrictiveness
of the policy. For example, if the execution policy in MachinePolicy is Unrestricted, but
the policy in CurrentUser is Restricted, the effective execution policy for the user is Unre-
stricted. Alternatively, if the execution policy in LocalMachine is RemoteSigned, and the
execution policy in CurrentUser is Restricted, the effective execution policy is Restricted.

16.2.1.1 MachinePolicy

The MachinePolicy scope applies to all users on a machine. Users aren’t able to apply execution
policies to this scope; it can only be set using Group Policy. Setting execution policies using Group
Policy is covered in the AppLocker section of this chapter.

The machine policy for Windows PowerShell is stored in the registry at the following location:

⁶Microsoft. (2022, Mar. 08). Set-ExecutionPolicy (Microsoft.PowerShell.Security). Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy. [Accessed: Aug. 03, 2022].

⁷Microsoft. (2022, Mar. 18). About Execution Policies (Microsoft.PowerShell.Core) - Execution policy scope. Microsoft
Docs. [Online]. Available: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_poli-
cies#execution-policy-scope. [Accessed: Aug. 03, 2022].

⁸Microsoft. (2022, Mar. 08). Set-ExecutionPolicy (Microsoft.PowerShell.Security) - Parameters. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy#parameters. [Accessed: Aug. 03,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies#execution-policy-scope
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies#execution-policy-scope
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy#parameters

Script Execution Policies 440

HKLM\Software\Policies\Microsoft\Windows\PowerShell

The machine polcy for PowerShell 7.0 and later is in the following location:

HKLM\SOFTWARE\Policies\Microsoft\PowerShellCore

For both locations, HKLM is the HKEY_LOCAL_MACHINE hive.

16.2.1.2 UserPolicy

UserPolicy applies to the current user of the computer. Like MachinePolicy, the execution
policy for this scope is defined by Group Policy.

The user policy for Windows PowerShell is stored in the registry at the following location:

HKCU\Software\Policies\Microsoft\Windows\PowerShell

The user policy for PowerShell 7.0 and later is in the following location:

HKCU\SOFTWARE\Policies\Microsoft\PowerShellCore

For both locations, HKCU is the HKEY_CURRENT_USER hive.

16.2.1.3 Process

Execution policies with the Process scope apply to the current PowerShell process. The policy
is stored in the following PowerShell session environmental variable until the session is closed,
at which point it’s deleted:

$ENV:PSExecutionPolicyPreference

16.2.1.4 CurrentUser

Policies with the CurrentUser scope apply to the current user of a machine, similar to
UserPolicy. The key difference is that permitted users can set the execution policy in the
CurrentUser scope using the Set-ExecutionPolicy cmdlet. When an execution policy has
this scope in Windows PowerShell, it’s stored in the registry in the HKEY_CURRENT_USER hive at
the following location:

HKCU\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell

In PowerShell 7.0 and later, it’s stored in the powershell.config.json configuration file in
the user’s Documents directory.⁹

⁹Microsoft. (2020, Nov. 27). System.Management.Automation - PSConfiguration.cs. L33-L66. PowerShell/PowerShell on GitHub.
[Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConf-
iguration.cs. [Accessed: Aug. 03, 2022].

https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConfiguration.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConfiguration.cs

Script Execution Policies 441

16.2.1.5 LocalMachine

An execution policy in the LocalMachine scope applies to all users of the machine, just like
MachinePolicy. Once again, users are able to change the execution policy of the scope using
Set-ExecutionPolicy, provided they have the permissions to do so. When an execution policy
has this scope in Windows PowerShell, it’s stored in the registry in the HKEY_LOCAL_MACHINE
hive at the following location:

HKLM\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell

In PowerShell 7.0 and later, it’s stored in the powershell.config.json configuration file in
the PowerShell installation directory.¹⁰

16.3 Security Considerations

It’s worth noting that an execution policy on its own isn’t a complete defense against threats. It
may help to prevent users from inadvertently running untrusted scripts, but determined attackers
can bypass the defined execution policy, even if it’s set restrictively.

For further information, you can read this blog post¹¹ by Scott Sutherland on ways to bypass an
execution policy.

16.4 Setting the Execution Policy

Governing the execution policy can be handled in several ways, or even a combination thereof:

• Set-ExecutionPolicy cmdlet¹²
• Group Policy¹³
• Registry¹⁴ ¹⁵
• AppLocker¹⁶
• Windows Defender Application Control¹⁷
¹⁰Microsoft. (2020, Nov. 27). System.Management.Automation - PSConfiguration.cs. L33-L66. PowerShell/PowerShell on GitHub.

[Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConf-
iguration.cs. [Accessed: Aug. 03, 2022].

¹¹https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/
¹²Microsoft. (2022, Mar. 08). Set-ExecutionPolicy (Microsoft.PowerShell.Security). Microsoft Docs. [Online]. Available: https://learn

.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy. [Accessed: Aug. 03, 2022].
¹³Microsoft. (2022, Mar. 18). About Group Policy Settings (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings. [Accessed: Aug. 03,
2022].

¹⁴Microsoft. (2022, Mar. 08). Set-ExecutionPolicy (Microsoft.PowerShell.Security). Microsoft Docs. [Online]. Available: https://learn
.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy. [Accessed: Aug. 03, 2022].

¹⁵Microsoft. (2020, Nov. 27). System.Management.Automation - PSConfiguration.cs. L33-L66. PowerShell/PowerShell on GitHub.
[Online]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConf-
iguration.cs. [Accessed: Aug. 03, 2022].

¹⁶Microsoft. (2017, Sep. 21). Script rules in AppLocker. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-
dows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker. [Accessed: Oct. 12, 2021].

¹⁷Microsoft. (2022, Apr. 25). Understand Windows Defender Application Control (WDAC) policy rules and file rules. Mi-
crosoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/select-types-of-rules-to-create. [Accessed: Aug. 03, 2022].

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConfiguration.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConfiguration.cs
https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConfiguration.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/PSConfiguration.cs
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create

Script Execution Policies 442

16.4.1 Set-ExecutionPolicy

To change the execution policy for a scope, use the Set-ExecutionPolicy cmdlet:

Example 4: Setting the execution policy for a scope

Set-ExecutionPolicy -ExecutionPolicy <ExecutionPolicy> -Scope <Scope>

This cmdlet only adjusts the execution policy in the process, current user, or local machine
scope. You must use Group Policy to set the MachinePolicy or UserPolicy. As explained in
the Scope Precedence section, execution policies defined by Group Policy Objects override the
configuration changes made using the Set-ExecutionPolicy cmdlet.

16.4.2 Group Policy

Using Group Policy, you can set the execution policy on machines in your environment en masse.
You can add the required registry value to a Group Policy Object (GPO) using PowerShell:

The following example shows the registry key for Windows PowerShell’s execution
policy. For PowerShell 7.0 and later, read ahead.

Example 5: Adding PowerShell execution policies to Group Policy Objects

1 $GPOName = '<Name of your Group Policy Object>'
2 $RegKey = 'HKLM\Software\Policies\Microsoft\Windows\PowerShell'
3
4 $SetGPOParams = @{
5 Name = $GPOName
6 Key = $RegKey
7 ValueName = 'EnableScripts'
8 Value = 1
9 Type = 'DWORD'

10 }
11 Set-GPRegistryValue @SetGPOParams
12
13 $SetGPOParams.ValueName = 'ExecutionPolicy'
14 $SetGPOParams.Value = 'AllSigned'
15 $SetGPOParams.Type = 'String'
16 Set-GPRegistryValue @SetGPOParams

The registry value in the example correlates with the settings from the Windows PowerShell
Group Policy template:¹⁸

¹⁸Microsoft. (2022, Mar. 18). About Group Policy Settings (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings. [Accessed: Aug. 03,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings

Script Execution Policies 443

Computer Configuration\
Administrative Templates\
Windows Components\

Windows PowerShell

The same registry path and Group Policy configuration path can be used under HKEY_CURRENT_-
USER and User Configuration, respectively.

It’s also possible to manage the execution policy on machines using only registry changes,
however this isn’t advisable. Settings defined in Group Policy override registry keys if they
conflict. The registry keys themselves, on the other hand, can be changed by anyone with write
access to the registry. If the registry keys are changed, the changes persist until the next Group
Policy refresh. By default, Group Policy is refreshed on a computer every 90 minutes, with a
random offset of 30 minutes. This method can be useful if an administrator needs to make the
execution policy more lax temporarily, but it lacks utility outside of ad hoc cases.

PowerShell 7.0 and later uses different Group Policy settings and registry keys.¹⁹ It comes with
additional Group Policy templates that you can install by running the following script from the
PowerShell installation directory:

Example 6: Adding PowerShell Group Policy definitions

1 InstallPSCorePolicyDefinitions.ps1

This provides new configuration paths in the Group Policy editor:

Computer Configuration\
Administrative Templates\
PowerShell Core

User Configuration\
Administrative Templates\
PowerShell Core

These contain the same configuration options as with Windows PowerShell, and set values in
the following registry keys:

HKLM\SOFTWARE\Policies\Microsoft\PowerShellCore

HKCU\SOFTWARE\Policies\Microsoft\PowerShellCore

In the above locations, HKLM is the HKEY_LOCAL_MACHINE hive and HKCU is the HKEY_CURRENT_-
USER hive.

¹⁹Microsoft. (2022, Mar. 18). About Group Policy Settings (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings. [Accessed: Aug. 03,
2022].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings

Script Execution Policies 444

16.4.3 AppLocker

For a more robust defense against threat actors, you can use AppLocker to restrict a user’s ability
to execute scripts. Using AppLocker, you can prevent scripts from running based on a wide array
of criteria, including (but not limited to):²⁰

• The identity of the user attempting to run a script
• The directory the script exists in
• Whether the script is signed by a trusted authority

It’s a good idea to leave the default rules in place, as not all .ps1 files shipped with Windows
are signed. The AppLocker service, AppIDSvc, doesn’t run by default. You have to start it on
each computer you want to protect, and sometimes you need to sign out and back in before
AppLocker rules will apply to a session. You can use Group Policy Preferences or Group Policy
Policies inside of a GPO to set “Automatic” as the service start type.

A basic use case for AppLocker and Execution policies can be illustrated using the following
example: you want to prevent all users from running scripts that aren’t signed by Microsoft.

Note: to specify a trusted or untrusted publisher, you must have a .ps1 file signed by the publisher
to use as a reference file.

To do this, you would create a GPO with the following settings:

• Computer Policies\Windows Settings\Security Settings\
Application Control Policies\AppLocker\Script Rules

– Permissions: Deny: Everyone
– Conditions: File Path: *
– Exceptions: Publisher: Microsoft

• Computer Policies\Administrative Templates\Windows Components\
Windows PowerShell

– Turn on Script Execution: Enabled: Allow only signed scripts
• Computer Policies\Windows Settings\System Services

– Application Identity: Define this policy setting: Automatic

This configuration would set the MachinePolicy on computers affected by the GPO to All-
Signed, which would prevent running any scripts unless they’re signed by a trusted publisher.

You can read more about AppLocker in the Constrained Language Mode chapter.

16.4.4 Windows Defender Application Control

IntroducedwithWindows 10,WindowsDefender Application Control (WDAC) offers evenmore
control over machine-level applications.²¹

²⁰Microsoft. (2022, Jul. 25).AppLocker (Windows). Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/windows/se-
curity/threat-protection/windows-defender-application-control/applocker/applocker-overview. [Accessed: Aug. 04, 2022].

²¹Microsoft. (2022, Jul. 25). Windows Defender Application Control and AppLocker Overview. Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-
overview. [Accessed: Aug. 04, 2022].

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview

Script Execution Policies 445

WDAC policies apply to the computer as a whole, and unlike AppLocker, there’s no option
to apply a policy only to certain users. WDAC is also currently being actively developed by
Microsoft, while AppLocker only receives security fixes. Microsoft recommends using WDAC
policies rather than AppLocker if possible, but this decision depends highly on your environment.

It’s possible to deploy both, and use AppLocker as a complement to WDAC. For instance, using
WDAC for machine baselines while deploying AppLocker policies for more granular control on
a user level.

You can enable code integrity rule options using the Set-RuleOption cmdlet. For example,
to restrict both kernel-mode and user-mode binaries, you can use -Option 0, also known as
Enabled:UMCI.²²

Example 7: Restricting user-mode binaries in addition to kernel-mode ones with WDAC

Set-RuleOption -FilePath '<Path to policy XML>' -Option 0

To enable PowerShell script enforcement, use -Option 11 with the -Delete parameter, also
known as Disabled: Script Enforcement.

Example 8: Enabling PowerShell script enforcement with WDAC

Set-RuleOption -FilePath '<Path to policy XML>' -Option 11 -Delete

A full list ofWDAC policy rule options is available onMicrosoft Docs²³. You can read more about
WDAC in the Constrained Language Mode chapter.

16.5 Further Reading

• About Execution Policies—Microsoft Docs²⁴
• Get-ExecutionPolicy cmdlet—Microsoft Docs²⁵
• Set-ExecutionPolicy cmdlet—Microsoft Docs²⁶
• About Group Policy Settings—Microsoft Docs²⁷
• Trusted Publishers Certificate Store—Microsoft Docs²⁸
• Learn more about PowerShell script security—Microsoft Docs²⁹
• Script rules in AppLocker—Microsoft Docs³⁰

²²Microsoft. (2022, Apr. 25). Understand Windows Defender Application Control (WDAC) policy rules and file rules. Mi-
crosoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/select-types-of-rules-to-create. [Accessed: Aug. 03, 2022].

²³https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-
rules-to-create#windows-defender-application-control-policy-rules

²⁴https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
²⁵https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-executionpolicy
²⁶https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
²⁷https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings
²⁸https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store
²⁹https://learn.microsoft.com/en-us/mem/configmgr/apps/deploy-use/learn-script-security
³⁰https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-

rules-in-applocker

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create#windows-defender-application-control-policy-rules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store
https://learn.microsoft.com/en-us/mem/configmgr/apps/deploy-use/learn-script-security
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create#windows-defender-application-control-policy-rules
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/select-types-of-rules-to-create#windows-defender-application-control-policy-rules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store
https://learn.microsoft.com/en-us/mem/configmgr/apps/deploy-use/learn-script-security
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker

Script Execution Policies 446

• AppLocker Overview—Microsoft Docs³¹
• WDAC Overview—Microsoft Docs³²
• 15 Ways to Bypass the PowerShell Execution Policy—NetSPI Blogs³³

³¹https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/
applocker-overview

³²https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-
applocker-overview

³³https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/

17. Constrained Language Mode
Constrained Language Mode (CLM) is a PowerShell Language Mode used by the PowerShell
Remoting Session Configuration and the PowerShell Default (console) Runspace. Constrained
Mode provides an out-of-the-box solution to console-based security by restricting the scope of
non-approved scripts, reducing the risk of malicious code execution within a console session.
This chapter explores several topics:

• What Constrained Language Mode is
• How it works
• Its limitations
• How it fits within Microsoft’s Secure Boot platform

Finally, the chapter describes how to implement CLM with AppLocker and Windows Defender
Application Control (WDAC).

17.1 In Depth

What is Constrained Language Mode?

First introduced in PowerShell 3.0, Constrained Language Mode was initially a mechanism for
Windows Defender Application Control (WDAC), formerly User-mode Code Integrity (UMCI),
to manage PowerShell’s default Runspace (console) on Windows 8.1 RT. Following Windows 8.1,
subsequent PowerShell versions included CLM as a means to provide console-based security.

WDAC/AppLocker is a top-level security model in theWindows Shell withinMicrosoft’s Trusted
Boot Process,¹ in which Windows uses these to secure the top-level ‘Shell’ of Windows. Once a
system enforces anyWDAC/AppLocker script rules, the PowerShell (including PowerShell Core)
console session will start in Constrained Language Mode.

17.1.1 Language Modes

PowerShell has four language modes that define the security state on the PowerShell session.
These are:

• FullLanguage: The default mode. This mode permits all language elements.
• ConstrainedLanguage: Allows all language elements but limits permitted types.
• RestrictiveLanguage: Restricted use of language elements, limited variable usage.
• NoLanguage: No language elements are available.

To view the language mode of the current session, use: ‘$ExecutionCon-
text.SessionState.LanguageMode’.

¹Microsoft. (2021, Jan. 29). Windows 10 Device Guard and Credential Guard Demystified. Microsoft TechCommunity.
[Online]. Available: https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demysti-
fied/ba-p/376419. [Accessed: Oct. 12, 2021].

447

https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-p/376419
https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-p/376419

Constrained Language Mode 448

Example 1: Displaying the current language mode

1 $ExecutionContext.SessionState.LanguageMode

FullLanguage

The LanguageMode property is settable only in the FullLanguage Language Mode. You can use
this to test scripts for potential issues that may arise. The example below demonstrates changing
the LanguageMode from FullLanguage to ConstrainedLanguage, and back again. Note that
the console throws an error when attempting to reset the property.

Example 2: Changing the language mode in a session isn’t reversible

1 $ExecutionContext.SessionState.LanguageMode
2
3 $ExecutionContext.SessionState.LanguageMode = "ConstrainedLanguage"
4 $ExecutionContext.SessionState.LanguageMode
5
6 $ExecutionContext.SessionState.LanguageMode = "FullLanguage"

FullLanguage

ConstrainedLanguage

InvalidOperation: Cannot set property. Property setting is supported only on
core types in this language mode.

You should only use the Session State for debugging or testing since it’s not enforceable.

17.1.2 Constrained Language Mode Features

CLM has several security features that limit the scope and impact of the PowerShell console
session. These features are:

17.1.2.1 Allowed Types

Constrained Language Mode limits the use of types within the session. It permits the following
types:

Constrained Language Mode 449

Types A-N Types O-Z

• AliasAttribute • OutputTypeAttribute

• AllowEmptyCollectionAttribute • ParameterAttribute

• AllowEmptyStringAttribute • PSCredential

• AllowNullAttribute • PSDefaultValueAttribute

• Array • PSListModifier

• Bool • PSObject

• byte • PSPrimitiveDictionary

• char • PSReference

• CmdletBindingAttribute • PSTypeNameAttribute

• DateTime • Regex

• decimal • SByte

• DirectoryEntry • string

• DirectorySearcher • SupportsWildcardsAttribute

• double • SwitchParameter

• float •
System.Globalization.CultureInfo

• Guid • System.Net.IPAddress

• Hashtable • System.Net.Mail.MailAddress

• int • System.Numerics.BigInteger

• Int16 • System.Security.SecureString

• long • TimeSpan

• ManagementClass • UInt16

• ManagementObject • UInt32

• ManagementObjectSearcher • UInt64

• NullString

Users can get or set allowed properties, invoke methods, and convert objects to the type.

Constrained Language Mode permits the following Component Object Model (COM) objects:

• Scripting.Dictionary
• Scripting.FileSystemObject
• VBScript.RegExp

As with types, users can get properties but can only set properties on core types.

It’s also important to remember that the class statement isn’t available in Constrained Language
Mode.

Native Win32 executables (such as ping.exe, net.exe, gpupdate.exe) will continue to function as
expected. However, they’re subject to AppLocker/WDAC Application Policies (if implemented).

Allowed types are accessible in a static class named CoreTypes in the

Constrained Language Mode 450

System.Management.Automation namespace.² However, this class has an internal
access modifier, preventing modification.³

[PSCustomObject] isn’t an approved type in Constrained Language Mode.

Example 3: PSCustomObject isn’t allowed in CLM

1 $ExecutionContext.SessionState.LanguageMode
2
3 $psobject = [PSCustomObject]@{ key = 'item' }

ConstrainedLanguage

InvalidArgument: Cannot convert value to type "System.Management.Automation.
LanguagePrimitives+InternalPSCustomObject". Only core types are supported
in this language mode.

17.1.2.2 Modules

When importing PowerShell scripts or modules, cmdlets will inherit the parent Language Mode.
For example:

Example 4: CLM restrictions apply to module cmdlets, too

1 # Module.psm1 saved in C:\Windows\System32\WindowsPowerShell\v1.0\Modules
2 function Do-Something {
3 # Perform a Restricted Action
4 [System.Net.WebClient]::new().DownloadFile(
5 'https://google.com/favicon.ico', 'D:\TEMP\SomeFile.html'
6)
7 }

Load the Module and Invoke the PowerShell Function:

1 # Import the Module from C:\Windows\System32\WindowsPowerShell\v1.0\Modules
2 Import-Module Module
3
4 Do-Something

²Microsoft. (2021, Jan. 08). System.Management.Automation - TypeResolver.cs. L706. [Online]. Available: https://github.com/
PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/TypeResolver.cs. [Accessed: Oct. 12, 2021].

³Microsoft. (2015, Jul. 20). internal - C# Reference. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/
csharp/language-reference/keywords/internal. [Accessed: Oct. 12, 2021].

https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/TypeResolver.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/TypeResolver.cs
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal

Constrained Language Mode 451

InvalidOperation: C:\Windows\System32\WindowsPowerShell\v1.0\Modules\
Test.psm1:4
Line |

4 | [System.Net.WebClient]::new().DownloadFile(
| ~~~
| Cannot create type. Only core types are supported in this language mode.

CLM permits compiled modules provided they use approved types:

Example 5: A compiled module using approved types works in CLM
1 // Compiled Cmdlet Code
2 using System.Management.Automation;
3
4 namespace SamplePowerShellModule
5 {
6 [Cmdlet(VerbsCommon.Get, "Something")]
7 public class GetSomething : Cmdlet
8 {
9 // Declare the parameters for the cmdlet.

10 [Parameter(Mandatory = true)]
11 public string Name
12 {
13 get { return name; }
14 set { name = value; }
15 }
16 private string name;
17
18 protected override void ProcessRecord()
19 {
20 // We will create a PSObject which is an approved object
21 PSObject pSObject = new PSObject();
22 pSObject.Members.Add(new PSNoteProperty("Test Object", name));
23 WriteObject(pSObject);
24 }
25 }
26 }

1 # Execution
2 Import-Module "SamplePowerShellModule.psd1"
3
4 Get-Something -Name 'Test'

Test Object

Test

17.1.2.3 Windows PowerShell Workflow

PowerShell 7 doesn’t support PowerShell Workflows.

Constrained Language Mode permits Windows PowerShell Script Workflows, but XAML work-
flows aren’t allowed (using Invoke-Expression -Language XAML). It permits nested work-
flows but not calling other workflows. It’s considered bad practice to implement due to its
language limitations.

Constrained Language Mode 452

17.1.2.4 Scripts

Constrained Language Mode permits script execution (using dot-sourcing or Invoke-Command).
It blocks scripts excluded from WDAC or App Locker policies.⁴

17.1.2.5 New-Object

Constrained Language Mode permits object instantiation but limits it to allowed types.

You can find Language Mode functionality embedded directly into the source code for New-
Object.⁵

Example 6: Source code for the New-Object cmdlet showing Language Mode recognition

1 //protected override void BeginProcessing()
2
3 if (Context.LanguageMode == PSLanguageMode.ConstrainedLanguage)
4 {
5 if (!CoreTypes.Contains(type))
6 {
7 ThrowTerminatingError(...
8 }
9 }

// If we're in ConstrainedLanguage, do additional restrictions
if (Context.LanguageMode == PSLanguageMode.ConstrainedLanguage)
{

bool isAllowed = false;

// If it's a system-wide lockdown, we may allow additional COM types
if (SystemPolicy.GetSystemLockdownPolicy() ==

SystemEnforcementMode.Enforce)
{

if ((result >= 0) &&
SystemPolicy.IsClassInApprovedList(_comObjectClsId))

{
isAllowed = true;

}
}

if (!isAllowed)
{

ThrowTerminatingError(...
return;

}
}

The example below demonstrates the attempted creation of a non-approved type, resulting in an
exception:

⁴Microsoft. (2017, Sep. 21). Script rules in AppLocker. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-
dows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker. [Accessed: Oct. 12, 2021].

⁵Microsoft. (2021, Jan. 08). Microsoft.PowerShell.Commands.Utility - New-Object.cs. PowerShell/PowerShell on GitHub. [On-
line]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/Microsoft.PowerShell.Commands.Utility/commands/utility/
New-Object.cs. [Accessed: Oct. 12, 2021].

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://github.com/PowerShell/PowerShell/blob/master/src/Microsoft.PowerShell.Commands.Utility/commands/utility/New-Object.cs
https://github.com/PowerShell/PowerShell/blob/master/src/Microsoft.PowerShell.Commands.Utility/commands/utility/New-Object.cs

Constrained Language Mode 453

Example 7: You can’t create non-approved types in CLM

1 class Fake {}
2
3 $ExecutionContext.SessionState.LanguageMode = 'ConstrainedLanguage'
4
5 New-Object -TypeName Fake
6
7 [Fake]::new()

New-Object: Cannot create type. Only core types are supported
in this language mode.

InvalidOperation: Cannot create type. Only core types are supported
in this language mode.

The [Object]::New() method is also allowed for approved type names only.

17.1.2.6 Add-Type

Add-Type can load signed C# assemblies in Constrained Language Mode. It doesn’t permit
unsigned assemblies or Win32 APIs, however.

Example 8: Attempted to load an unsigned assembly in CLM

1 $ExecutionContext.SessionState.LanguageMode = 'ConstrainedLanguage'
2
3 $PSDir = 'C:\Windows\System32\WindowsPowerShell\v1.0'
4 Add-Type -LiteralPath "$PSDir\en\powershell_ise.resources.dll"

Add-Type: Cannot add type. Definition of new types is not supported
in this language mode.

It’s important to remember that type limitations still exist, and CLM will prevent the loading of
signed DLLs if they define new types.

Example 9: Attempting to load a signed assembly that defines new types

1 Add-Type -LiteralPath "C:\Program Files\PowerShell\7\pwsh.dll"

Constrained Language Mode 454

Add-Type: Cannot add type.
Definition of new types is not supported in this language mode.

With CLM, Add-Type can’t load native C# code.

Example 10: Attempting to parse C# code with Add-Type

1 # Set Constrained Language Mode
2 $ExecutionContext.SessionState.LanguageMode = 'ConstrainedLanguage'
3
4 # Define C# Class
5 $Source = @"
6 public class Demo
7 {
8 public static int Add(int a, int b)
9 {

10 return (a + b);
11 }
12 }
13 "@
14
15 # Load the Class
16 Add-Type -TypeDefinition $Source

Add-Type: Cannot add type. Definition of new types is not supported
in this language mode.

17.1.2.7 Type Conversion

Constrained LanguageMode permits type and string conversion only when the converted type is
an Allowed Type. In the example below, you can see type conversion from a string to DateTime
working in Constrained Language Mode:

Example 11: Type conversion between allowed types in CLM

1 "01/01/2021" -is 'String'
2
3 "01/01/2021" -is 'DateTime'
4
5 [DateTime]"01/01/2021" -is 'String'
6
7 [DateTime]"01/01/2021" -is 'DateTime'
8
9 # Wanting to take your PowerShell Further?

10 # USE CODE PWSH4THEWIN for 50% off the PowerShell Conference Books on Leanpub!
11 # https://leanpub.com/powershell-conference-book/c/PWSH4THEWIN
12 # https://leanpub.com/psconfbook2/c/PWSH4THEWIN
13 # https://leanpub.com/psconfbook3/c/PWSH4THEWIN

Constrained Language Mode 455

True
False
False
True

In the following example, you can see an instance of a type conversion from string to fake,
resulting in an error.

Example 12: Attempting a conversion to a non-approved type
1 [Fake]"String"

InvalidArgument: Cannot convert value to type "Fake". Only core types
are supported in this language mode.

17.1.2.8 PowerShell Methods()

Constrained Language Mode allows calling any methods of Approved Types.

Calling GetType() with the [String] type:

Example 13: Calling a method of an approved type
1 ([string]'Test String').GetType().Name

String

Calling GetType()with the [Microsoft.PowerShell.Commands.WebResponseObject] type:

Example 14: Attempting to call a method of a non-approved type
1 (Invoke-WebRequest 'https://google.com/favicon.ico').GetType().Name

InvalidOperation: Cannot invoke method.
Method invocation is supported only on core types in this language mode.

17.2 Limitations of Constrained Language Mode

PowerShell Constrained Language Mode is a powerful addition to PowerShell, yet there are
limitations:

• Malware can exist within the constraints of Constrained Language Mode by limiting its
usage to cmdlets. In this instance, it’s possible to use Invoke-WebRequest to download
malware over HTTP and use New-ScheduledTask and Register-ScheduledTask to
initialize the code. Therefore, it’s vital that you also deploy Application Control.

• Constrained Language Mode is only active in the PowerShell Process. Added PowerShell
Assemblies won’t load in Constrained Language Mode.

• You can hypothetically bypass Constrained Language Mode on Administrative accounts.
Restrict non-essential administrative access to only privileged accounts.

Constrained Language Mode 456

17.2.1 PowerShell Protect

You can implement the PowerShell Protect module side-by-side with CLM to add additional
security. The module features two parts:

1. PowerShell cmdlets that help you to create and deploy policies.
2. An AMSI (Antimalware Scan Interface) interface that inspects pre-parsed PowerShell for

malicious code execution.⁶

For more information, please refer to https://ironmansoftware.com/powershell-protect⁷.

17.3 Deep Diving into Windows Lockdown Policy

PowerShell relies on the Windows Lockdown Policy (WLDP) to enforce Windows Lockdown
Policies, Device Guard, and Constrained Language Mode, using the SystemPolicy class.⁸

While WLDP provides several methods, there are three key ones. These are:

• GetSystemLockdownPolicy(): This is a top-level method that PowerShell uses to check
the lockdown state of the system. This method calls GetLockdownPolicy() and GetDebu-
gLockdownPolicy(). New-Object uses this method to validate approved object types.⁹

• GetLockdownPolicy(string path, SafeHandle handle): Retrieves the lockdown pol-
icy that applies to a file. The GetSystemLockdownPolicy() and ReadScriptContents()
method use this.¹⁰

• GetDebugLockdownPolicy(string path): Retrieves any enabled debugging overrides
in the __PSLockdownPolicy environment variable (described below). If you enable a
debugging override and a WLDP policy is already in force, the system ignores the override.

17.3.1 GetLockdownPolicy()

GetLockDownPolicy() makes up the primary segment of the code, testing the WLDP and
AppLocker policies. It tests them in the following order:

1. WLDP File Policy
2. AppLocker File Policy
3. System WLDP Policy
4. Debug Override Policy
⁶Microsoft. (2019, Apr. 19). Antimalware Scan Interface (AMSI). Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-

us/windows/win32/amsi/antimalware-scan-interface-portal. [Accessed: Oct. 12, 2021].
⁷https://ironmansoftware.com/powershell-protect
⁸Microsoft. (2021, Jan. 10). System.Management.Automation - wldpNativeMethods.cs. PowerShell/PowerShell on GitHub. [Online].

Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs.
[Accessed: Oct. 12, 2021].

⁹Microsoft. (2021, Jan. 08). Microsoft.PowerShell.Commands.Utility - New-Object.cs. PowerShell/PowerShell on GitHub. [On-
line]. Available: https://github.com/PowerShell/PowerShell/blob/master/src/Microsoft.PowerShell.Commands.Utility/commands/utility/
New-Object.cs. [Accessed: Oct. 12, 2021].

¹⁰Microsoft. (2021, Apr. 19). System.Management.Automation - ExternalScriptInfo.cs. PowerShell/PowerShell on GitHub. [Online].
Available: https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/ExternalScriptInfo.cs.
[Accessed: Oct. 12, 2021].

https://ironmansoftware.com/powershell-protect
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://ironmansoftware.com/powershell-protect
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
https://github.com/PowerShell/PowerShell/blob/master/src/Microsoft.PowerShell.Commands.Utility/commands/utility/New-Object.cs
https://github.com/PowerShell/PowerShell/blob/master/src/Microsoft.PowerShell.Commands.Utility/commands/utility/New-Object.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/ExternalScriptInfo.cs

Constrained Language Mode 457

17.3.2 GetWldpPolicy()

This method calls and caches the result from the WldpGetLockdownPolicy() function (used by
wldp.dll).¹¹ WDAC uses WLDP to define the configuration state.

17.3.3 GetAppLockerPolicy()

GetAppLockerPolicy() evaluates the currently implemented system and user AppLocker
Policies. It achieves this by:

1. Creating an AppLocker test file name (.psd1 & .psm1) inside the user’s %Temp% directory.
If the %Temp% directory isn’t accessible, it will try \AppData\LocalLow\Temp.

2. Returning an enforcement policy to the caller.

17.3.4 GetDebugLockdownPolicy()

GetDebugLockdownPolicy() is an override setting for debugging purposes.

It consists of:

• Loose file matching. The system trusts all scripts that reside inside of a directory named
‘System32’.

• The __PSLockdownPolicy environment variable. The value of this variable affects the
Language Mode.

This applies to all scripts that reside in any directory named ‘System32’. The Contains()
method allows for matching in any parent or subdirectory.

17.3.4.1 __PSLockdownPolicy Environment Variable

GetDebugLockdownPolicy(string path) uses this variable for debugging, and you shouldn’t
use it in production. Setting _PSLockdownPolicy to 0 won’t override existing enforced WDAC
or App Locker policies.

The policy settings are:¹² ¹³

• 0: Undefined—No changes are applied.
• 4: UMCI Enforced—Enforce the UMCI policy, enabling Constrained Language Mode.
• 8: UMCI Audit—Set the UMCI policy to ‘audit’. PowerShell won’t enable Constrained
Language Mode.

¹¹Microsoft. (2018, May. 31). WldpGetLockdownPolicy function. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows/win32/devnotes/wlpdgetlockdownpolicy. [Accessed: Oct. 12, 2021].

¹²Microsoft. (2021, Jan. 10). System.Management.Automation - wldpNativeMethods.cs. L494-504. [Online]. Available: https://
github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs. [Accessed: Oct.
12, 2021].

¹³Microsoft. (2021, Jan. 10). System.Management.Automation - wldpNativeMethods.cs. L438-454. [Online]. Available: https://
github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs. [Accessed: Oct.
12, 2021].

https://learn.microsoft.com/en-us/windows/win32/devnotes/wlpdgetlockdownpolicy
https://learn.microsoft.com/en-us/windows/win32/devnotes/wlpdgetlockdownpolicy
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs

Constrained Language Mode 458

Example 15: Source code for WLDP’s __PSLockdownPolicy implementation

1 internal static class WldpNativeConstants
2 {
3 internal const uint WLDP_HOST_INFORMATION_REVISION = 0x00000001;
4
5 internal const uint WLDP_LOCKDOWN_UNDEFINED = 0;
6 internal const uint WLDP_LOCKDOWN_DEFINED_FLAG = 0x80000000;
7 internal const uint WLDP_LOCKDOWN_SECUREBOOT_FLAG = 1;
8 internal const uint WLDP_LOCKDOWN_DEBUGPOLICY_FLAG = 2;
9 internal const uint WLDP_LOCKDOWN_UMCIENFORCE_FLAG = 4;

10 internal const uint WLDP_LOCKDOWN_UMCIAUDIT_FLAG = 8;
11 }

private static SystemEnforcementMode GetLockdownPolicyForResult(
uint pdwLockdownState)

{
if ((pdwLockdownState & WldpNativeConstants.WLDP_LOCKDOWN_UMCIAUDIT_FLAG)

== SystemPolicy.WldpNativeConstants.WLDP_LOCKDOWN_UMCIAUDIT_FLAG)
{

return SystemEnforcementMode.Audit;
}
else if ((pdwLockdownState &

WldpNativeConstants.WLDP_LOCKDOWN_UMCIENFORCE_FLAG) ==
WldpNativeConstants.WLDP_LOCKDOWN_UMCIENFORCE_FLAG)

{
return SystemEnforcementMode.Enforce;

}
else
{

return SystemEnforcementMode.None;
}

}

17.4 Implementing Policies Using AppLocker Script
Rules

17.4.1 Introduction

You can manage AppLocker with Group Policy at the following path:

Computer Configuration\Windows Settings\Security Settings\
Application Control Policies\App Locker

There are five rules definition types:

1. Executable rules: These control which executables (*.exe, *.com) can and can’t run.¹⁴

¹⁴Microsoft. (2017, Sep. 21). Executable rules in AppLocker. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows/security/threat-protection/windows-defender-application-control/applocker/executable-rules-in-applocker. [Accessed: Oct.
12, 2021].

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/executable-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/executable-rules-in-applocker

Constrained Language Mode 459

2. Windows Installer rules: These control permitted installation packages (*.msi, *.msp,
*.mst).¹⁵

3. Script rules: These define permitted script formats (*.ps1, *.bat, *.cmd, *.vbs,
.js) and files. PowerShell Module files (.psm1) and PowerShell Module Manifest files
(*.psd1) remain unaffected.¹⁶

4. DLL rules: These control locations from which modules and libraries (*.dll, *.ocx) can
run and by which users. These rules may affect system stability and performance.¹⁷

5. Packaged app rules: These control which Universal Windows Platform (UWP) apps and
installers can run.¹⁸

You must also configure and enforce the rules by enabling each definition type within the
AppLocker Properties. You can find the DLL rules under the Advanced tab. AppLocker uses an
allowlist approach, enforcing all definition types. AppLocker supports policy ‘Auditing’ to test
policy definitions before enforcement, reducing the impact on users.

If you are considering implementing AppLocker within your organization, please review
the AppLocker Design Guide.¹⁹

AppLocker rules have three primary conditions used for evaluation. These rules are in order of
best approach:

1. (Recommended) Publisher: Code-signed scripts are the recommended option, as this ap-
proach offers the most flexibility and security.

2. File hash: File hashes prevent modification to code but require changes to the policy as the
file changes.

3. (Not-Recommended) File path: Rule application depending on the file or directory path or
name. This approach doesn’t ensure the integrity of the file since there are no mechanisms
to test the identity of files.

After making any changes to AppLocker, you should refresh Group Policy by running
gpupdate /force.

¹⁵Microsoft. (2017, Sep. 21).Windows Installer rules in AppLocker. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows/security/threat-protection/windows-defender-application-control/applocker/windows-installer-rules-in-applocker.
[Accessed: Oct. 12, 2021].

¹⁶Microsoft. (2017, Sep. 21). Script rules in AppLocker. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-
dows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker. [Accessed: Oct. 12, 2021].

¹⁷Microsoft. (2017, Sep. 21). DLL rules in AppLocker. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-
dows/security/threat-protection/windows-defender-application-control/applocker/dll-rules-in-applocker. [Accessed: Oct. 12, 2021].

¹⁸Microsoft. (2017, Oct. 10). Packaged apps and packaged app installer rules in AppLocker. Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/packaged-
apps-and-packaged-app-installer-rules-in-applocker. [Accessed: Oct. 12, 2021].

¹⁹Microsoft. (2017, Sep. 21). AppLocker design guide. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-
dows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-design-guide. [Accessed: Oct. 12,
2021].

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/windows-installer-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/windows-installer-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/dll-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/dll-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/packaged-apps-and-packaged-app-installer-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/packaged-apps-and-packaged-app-installer-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-design-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-design-guide

Constrained Language Mode 460

17.4.2 Getting Started

17.4.2.1 Enable the AppLocker Service

Before creating and configuring rules, you must enable the ‘Application Identity’ Windows
Service through Group Policy, under the following path:

Computer Configuration\Windows Settings\Security Settings\
System Services\Application Identity

You can also manually enable the Application Identity service.

To enable the service with PowerShell, start a session as an Administrator and enter
Start-Service -Name 'Application Identity'.

17.4.2.2 Creating Default Rules

AppLocker provides several tools to aid in usability. When enabling AppLocker for the first time,
allow it to create the default rules.

• Right-click Script Rules and select Create Default Rules.

Group Policy AppLocker Menu

On the right-hand side of the window, you can see that AppLocker has created and enabled the
default script rules. The default rules are:

1. Allow All Users to run Scripts in the “Program Files” directory, defined by the %PROGRAM-
FILES%* PATH variable.

2. Allow All Users to run Scripts in the “Windows” directory, defined by the %WINDIR%*
PATH variable.

Constrained Language Mode 461

3. Allow Local Administrators to run All Scripts, enabling Administrators to continue to
maintain/manage the environment.

You should remove these rules once you have your custom rules defined to prevent them
from becoming a “catch-all”.

17.4.2.3 Automatically Generating Rules

Another alternative is to generate the rules automatically. This process scans directories and
creates rules from the analyzed files within them. The wizard preferentially applies the rules in
order: Publisher rules, File Hash rules, followed by File Path rules.

1. Right-click Script Rules and select Automatically Generate Rules….

AppLocker Script Rules: Autogeneration Option

2. Select the Security Group to target the users to which this will apply.
3. Enter the scan Directory Path.
4. Enter a name to identify the ruleset.

Constrained Language Mode 462

AppLocker Script Rules Autogeneration Wizard: Group and Target

5. Select Next >.
6. Ensure the following settings are selected:

• Create publisher rules for files that are digitally signed.
• File Hash: Rules are created using a file’s hash.
• Reduce the number of rules created by grouping similar files.

Constrained Language Mode 463

AppLocker Script Rules Autogeneration Wizard: Primary Condition Options

7. Select Next >.
8. Select Create.

17.4.2.4 Creating Custom Rules

Creating custom rules is the preferred option providing granular scope over the target environ-
ment.

1. Right-click Script Rules and select Create New Rule.

Constrained Language Mode 464

AppLocker Script Rules: New Rule Option

2. Select Next >.
3. Under the Action, select Allow.
4. Select the Security Group to target the users to which this will apply.

AppLocker Script Rules New Rule Wizard: Group and Action

5. Select Next >
6. Select the primary condition (Publisher, Path, File Hash).

Constrained Language Mode 465

AppLocker Script Rules New Rule Wizard: Primary Condition Options

7. Select Next >

17.4.2.4.1 Publisher Condition

1. Under Reference file, Select Browse… and locate the *.ps1 file.
2. You can assign different security levels, ranging from least restrictive (top) to most restric-

tive (bottom). Each level includes the requirements from the previous one. These are:

• (Lowest) Publisher: Requires the issuer of the file’s certificate to adhere to the current
value.

• Product name: Requires the signed file’s product name to adhere to the current value.
• File name: Requires the signed file’s file description to adhere to the current value.
• (Highest) File version: Requires the signed file’s version to adhere to the current value,
and optionally higher or lower.

You can customize the fields further by selecting Use custom values.

AppLocker Script Rules New Rule Wizard: Publisher Condition Options

Drag the slider to the desired level. It’s recommended to use the Product Name for an
internal self-signed certificate.

Constrained Language Mode 466

3. Select Next >
4. Add any exceptions to the rule Exceptions follow the AppLocker conditions (File, Publisher,

Hash).
5. Select Next >
6. Enter a Name: and (optionally) Description and Select Create.

For PowerShell scripts, AppLocker populates only the Publisher field from the reference
file.

17.4.2.4.2 Path Condition

1. Select Browse Files… or Browse Folders… and select the file/directory you wish to add.
2. Select Next >.
3. Add any exceptions to the rule. Exceptions follow the AppLocker conditions (File, Publisher,

Hash).
4. Enter a Name: and (optionally) Description and Select Create.

17.4.2.4.3 File Hash Condition

1. Select Browse Files… or Browse Folders… and file/directory you wish to add. By selecting
a directory, the wizard will enumerate all *.ps1 files in the directory. Note: This isn’t a
recursive search.

2. Enter a Name: and (optionally) Description and Select Create.

17.4.2.5 Enabling Auditing

Before policy enforcement, you can test changes within your organization without affecting
end-users.²⁰ AppLocker raises events in the Event Log under Application and Services
Logs\Microsoft\Windows\AppLocker. For more information on Event IDs, please refer to
Using Event Viewer with AppLocker²¹.

To enable policy Auditing:

1. Right-click on AppLocker and Select Properties.

²⁰Microsoft. (2018, Jun. 08). Configure an AppLocker policy for audit only. Microsoft Docs. [Online]. Available: https://learn.microsoft
.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-
audit-only. [Accessed: Oct. 12, 2021].

²¹https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-
event-viewer-with-applocker

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-audit-only
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-audit-only
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-audit-only
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-event-viewer-with-applocker

Constrained Language Mode 467

AppLocker Properties Option

2. Enable Script rules and Select Audit only.

AppLocker Properties: Script Rules Enforcement

3. Select Apply and OK.

17.4.2.6 Enabling Policy Enforcement

Once ready, you can enforce AppLocker policies:

1. Right-click on AppLocker and Select Properties.

Constrained Language Mode 468

AppLocker Properties Option

2. Enable Script rules and Select Enforce rules.

AppLocker Properties: Script Rules Enforcement

3. Select Apply and OK.

17.5 Implementing Policies Using WDAC

17.5.1 What Is WDAC?

WDAC or Windows Defender Application Control Policy is a policy framework implemented
alongside Windows Defender on Windows 10 desktop (1903) and Server 2016 operating systems.
WDACwas formally known asConfigurable Code Integrity (CGI) andDevice Guard (DG).When
WDAC policies are in force, PowerShell runs Constrained Language Mode.

WDAC is supported on Windows 10 1903 and Windows Server 2016 or higher.

Constrained Language Mode 469

WDAC under the hood functions the same as AppLocker, yet policy enforcement isn’t editable
using AppLocker Group Policy and uses WLDP to query the state. AppLocker is limited to on-
premise endpoints on the local domain using Group Policy, whereas WDAC is deployable to
cloud and on-premise endpoints. WDAC supports the following endpoints:

• Mobile DeviceManagement (MDM) Solutions (such asMicrosoft Intune). This solution only
supports Windows 10 Devices.

• Microsoft Endpoint Configuration Manager (MECM)
• Scripting Solution
• Group Policy

WDAC is the recommended deployment for cloud devices.

Similar to AppLocker, it’s mandatory to enable Policy Auditing before enforcement. Otherwise,
end-users may not be able to use apps/programs.

The following section focuses on deployingWDACusingMicrosoft Intune. For more deployment
methodologies, please see the WDAC Deployment Guide²².

17.6 Deploying WDAC Using Microsoft Intune

These settings will change over time as Microsoft adds or changes features.

17.6.1 Prerequisites

17.6.1.1 Intune Setup Requirements

The setup requirements for Intune are as follows:²³

• Enterprise Mobility + Security (EMS)/Intune subscription
• Office 365 subscription (for Office apps and app-protection-policy managed apps)
• Apple APNs Certificate (to enable iOS/iPadOS device platform management)
• Azure AD Connect (for directory synchronization)
• Intune On-Premises Connector for Exchange (for Conditional Access for Exchange On-
Premises, if needed)

• Intune Certificate Connector (for SCEP certificate deployment, if needed)
²²https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-

application-control-deployment-guide
²³Microsoft. (2020, Feb. 19). Implement your Microsoft Intune plan. MicrosoftDocs/IntuneDocs on GitHub. [Online]. Avail-

able: https://github.com/MicrosoftDocs/IntuneDocs/blob/master/intune/fundamentals/planning-guide-onboarding.md. [Accessed: Oct.
12, 2021].

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide
https://github.com/MicrosoftDocs/IntuneDocs/blob/master/intune/fundamentals/planning-guide-onboarding.md

Constrained Language Mode 470

17.6.1.2 Intune Device Requirements

• Windows 10 Desktop (1903 or Higher).

17.6.2 Creating a Device Policy

1. Open the URL: https://endpoint.microsoft.com/.
2. On the left-hand pane, select Devices.

Microsoft Endpoint Manager Admin Center (MEMAC) Devices Option

3. Under Policy, Select Configuration profiles.

MEMAC Device Configuration Profiles

4. Select Create profile.
5. Under Platform, Select Windows 10 and Later.
6. Under Profile type, Select Templates.
7. Select Endpoint protection.

Constrained Language Mode 471

8. Select Create

MEMAC Device Profile Templates

9. Enter a Name and Description and press Next.
10. Select Microsoft Defender Application Control.
11. Select Application control code integrity policies
12. Depending on the type, select Audit Only to audit the policy or Enforce to enforce the

policy.
13. Select Next

MEMAC Application Control Enforcement

14. Assign the targeted users that will apply to this policy. The policy uses Azure Active
Directory (AAD) Groups as a filter mechanism.

15. Select Next

Constrained Language Mode 472

16. Intune offers additional attribute-based filtering, which you can apply. Add any additional
rules as required.

17. Select Next
18. Select Create

If the policy type is set to enforce, the onboarded machine will apply the WDAC policy, and
PowerShell will start in Constrained Language Mode.

PowerShell with WDAC-Enforced Constrained Language Mode

17.7 Best Practices

1. Remove PowerShell 2.0 from all machines. See Windows PowerShell 2.0 Deprecation²⁴.
2. Implement Script Signing (refer to the Script Signing chapter) for production environments.
3. Implement WDAC (for Desktops) and AppLocker (for Server)
4. Enforce Script Signing Policies based on script signing certificates.

17.8 Further Reading

• About Languages Modes—Microsoft Docs²⁵
• Windows Lockdown Policy—Microsoft Docs²⁶
• WLDP Native Methods Source—PowerShell on GitHub²⁷
• WDAC and AppLocker Overview—Microsoft Docs²⁸
• Constrained Language Mode—Microsoft DevBlogs²⁹
• TypeResolver Source—PowerShell on GitHub³⁰

²⁴https://devblogs.microsoft.com/powershell/windows-powershell-2-0-deprecation/
²⁵https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes?view=powershell-

7.1#constrained-language-constrained-language
²⁶https://learn.microsoft.com/en-us/windows/win32/devnotes/windows-lockdown-policy
²⁷https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
²⁸https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-

applocker-overview
²⁹https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/
³⁰https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/TypeResolver.cs

https://devblogs.microsoft.com/powershell/windows-powershell-2-0-deprecation/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes?view=powershell-7.1#constrained-language-constrained-language
https://learn.microsoft.com/en-us/windows/win32/devnotes/windows-lockdown-policy
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/TypeResolver.cs
https://devblogs.microsoft.com/powershell/windows-powershell-2-0-deprecation/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes?view=powershell-7.1#constrained-language-constrained-language
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes?view=powershell-7.1#constrained-language-constrained-language
https://learn.microsoft.com/en-us/windows/win32/devnotes/windows-lockdown-policy
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/security/wldpNativeMethods.cs
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/wdac-and-applocker-overview
https://devblogs.microsoft.com/powershell/powershell-constrained-language-mode/
https://github.com/PowerShell/PowerShell/blob/master/src/System.Management.Automation/engine/parser/TypeResolver.cs

Constrained Language Mode 473

• Script Rules in AppLocker—Microsoft Docs³¹
• Windows PowerShell 2.0 Deprecation—Microsoft DevBlogs³²
• Windows 10 Device Guard and Credential Guard Demystified—Microsoft TechCommunity
Blogs³³

• Introduction To Device Guard VBS and WDAC—Microsoft Docs³⁴
• AppLocker Policies Deployment Guide³⁵
• Configure an AppLocker Policy for Audit Only—Microsoft Docs³⁶
• Using Event Viewer with AppLocker—Microsoft Docs³⁷
• WDAC Deployment Guide—Microsoft Docs³⁸

³¹https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-
rules-in-applocker

³²https://devblogs.microsoft.com/powershell/windows-powershell-2-0-deprecation/
³³https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-

p/376419
³⁴https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-

based-security-and-windows-defender-application-control
³⁵https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/

applocker-policies-deployment-guide
³⁶https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/

configure-an-applocker-policy-for-audit-only
³⁷https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-

event-viewer-with-applocker
³⁸https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-

application-control-deployment-guide

https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://devblogs.microsoft.com/powershell/windows-powershell-2-0-deprecation/
https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-p/376419
https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-p/376419
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-based-security-and-windows-defender-application-control
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-audit-only
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/script-rules-in-applocker
https://devblogs.microsoft.com/powershell/windows-powershell-2-0-deprecation/
https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-p/376419
https://techcommunity.microsoft.com/t5/iis-support-blog/windows-10-device-guard-and-credential-guard-demystified/ba-p/376419
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-based-security-and-windows-defender-application-control
https://learn.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-based-security-and-windows-defender-application-control
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-policies-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-audit-only
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/configure-an-applocker-policy-for-audit-only
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/using-event-viewer-with-applocker
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control-deployment-guide

18. Just Enough Administration
18.1 Introduction

Just Enough Administration (JEA) is the last security pillar of the PowerShell security ecosystem.
JEA is a configuration framework that enables IT to deploy and use PowerShell remoting
in secure environments. JEA utilizes PowerShell session configuration to define PowerShell
remoting runspaces. This chapter will explore the use of JEA to secure a PowerShell remoting
endpoint.

18.1.1 Requirements

This chapter assumes that you have a rudimentary understanding of Desired State Configuration
(DSC). Please refer to the Infrastructure as Code chapter, which describes DSC.

Both Windows PowerShell and PowerShell (Core) running on Windows support JEA.

This chapter refers to Windows PowerShell versions through 5.1 as Windows PowerShell
and versions of the cross-platform edition (formerly PowerShell Core) beginning with 6.0 as
PowerShell (Core).

18.2 Background of JEA

Just Enough Administration is based on the ‘Just-in-Time’ security model, which provides time-
sensitive and granular access to privileged tasks. This model enables you to use the principle of
least privilege (PoLP) to reduce the scope and nature of lateral attacks by limiting permissions.
PowerShell provides granular control over its features by registration of a PowerShell remoting
session configuration. This configuration includes control over:

• Language Mode.
• Execution Policy.
• Preloaded or defined aliases, assemblies, functions, or modules.
• Cmdlet allowlisting.
• Cmdlet denylisting.
• Runtime accounts.
• Logging.
• User drives.
• Versioning.
• Granular Control over Parameter and values.

474

Just Enough Administration 475

18.2.1 PowerShell Remoting 101

PowerShell remoting is a mechanism which allows remote execution of PowerShell over a
network. That is, you can execute PowerShell commands on one or more remote computers.
PowerShell remoting uses the WinRM (Windows Remote Management) or SSH protocol as a
transport layer, encapsulating the session state within the body/payload.WinRM is theMicrosoft
implementation of the WS-Management (Web Services-Management) SOAP protocol, which
uses HTTP(S) for transport on ports 5985 (HTTP) and 5986 (HTTPS).¹ Windows PowerShell
versions 2.0 through 5.1 use WinRM, while PowerShell (Core) versions beginning with 6.0 can
use either WinRM or SSH. The PowerShell remoting session uses the CLIXML data type to
serialize/deserialize object data between the endpoints. CLIXML is an XML-based representation
of .NET object structures.²

JEA is only available with WinRM/WSMan and not SSH.

PowerShell Remoting Block Diagram

18.2.2 An Overview of PowerShell Session Configuration

When PowerShell connects to a remote session, the remote PowerShell instance preloads a
configuration stored by the Web Services-Management (WS-Management or WSMan) service.
This configuration describes which JEA features the session supports.

PowerShell registers its remoting WSMan plugin configuration using PowerShell session con-
figuration files. Each of these stores configuration data as a [Hashtable] and has a .pssc file
extension.

¹Microsoft. (2020, Aug. 19).AboutWindows RemoteManagement. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows/win32/winrm/about-windows-remote-management. [Accessed: Oct. 14, 2021].

²ECMA. (2012, Jun.). ECMA-335: Common Language Infrastructure (CLI). Ecma International. [Online]. Available: https://www.ecma-
international.org/publications-and-standards/standards/ecma-335/. [Accessed: Oct. 14, 2021].

https://learn.microsoft.com/en-us/windows/win32/winrm/about-windows-remote-management
https://learn.microsoft.com/en-us/windows/win32/winrm/about-windows-remote-management
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/

Just Enough Administration 476

You can find the PowerShell session configuration cmdlets in the Microsoft.PowerShell.Core
module.³ They include:

1. New-PSSessionConfigurationFile: Creates a PowerShell session configuration.
2. Register-PSSessionConfiguration: Registers a PowerShell session configuration file.
3. Get-PSSessionConfiguration: Returns registered PowerShell session configurations.
4. Unregister-PSSessionConfiguration: Unregisters a previously registered PowerShell

session configuration.
5. Get-PSSessionCapability: Audits a user’s JEA capabilities within a PowerShell remot-

ing session configuration.
6. Test-PSSessionConfigurationFile: Tests a PowerShell session configuration file for

errors.
7. Set-PSSessionConfiguration: Updates or changes a registered PowerShell session con-

figuration.
8. Enable-PSSessionConfiguration: Enables a registered session configuration.
9. Disable-PSSessionConfiguration: Disables a registered session configuration.

PowerShell JEA Block Diagram

This chapter explores creating, registering, updating, and auditing WSMan plugins.
³Microsoft. (2020, Nov. 17). Microsoft.PowerShell.Core. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/pow-

ershell/module/microsoft.powershell.core/. [Accessed: Oct. 14, 2021].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/

Just Enough Administration 477

18.2.3 PowerShell Remoting Authentication and Transport
Encryption

PowerShell Remoting can use any of several authentication methodologies. These are:

• Default: Default authentication uses the Negotiate authentication type.
• Kerberos: Kerberos Authentication is a ticket-based mutual-authentication protocol requir-
ing devices to prove their identity.⁴ Mutual Authentication is a feature where both the client
and service must prove their identity. The Kerberos Key Distribution Center (KDC) runs
on the Domain Controller role. The KDC is responsible for issuing tickets. The KDC uses
Active Directory as its account database and the Global Catalog for directing referrals to
other domains.

• Basic (RFC7235): Basic Authentication uses the ‘basic’ authentication typewithin theHTTP
Authorization Header for each WinRM SOAP request as the authentication mechanism.
Basic Authentication doesn’t provide any mutual encryption and relies on WinRM’s
transport encryption for secure transmission (HTTPS). ⁵

The Authorization header encapsulates the Username and Password as basic <user-
name>:<password> in Base64.

For Example:

UserName: Michael.Zanatta
Password: 123Password
#
Header
Authorization = Basic TWljaGFlbC5aYW5hdHRhOjEyM1Bhc3N3b3Jk

• Negotiate (Windows Integrated Authentication): Windows Integrated Authentication
(IWA) or Windows Authentication uses two authentication protocols (Kerberos or NTLM).
Both authentication mechanisms function as a Single-Sign-On mechanism within the local
Active Directory Domain.

– (NTLM) NT LAN Manager is a challenge-response authentication protocol used to
authenticate clients within an Active Directory domain. The services will send a
challenge to the client, requiring the client to respond with its authentication token.
Services that can’t validate the authentication token will forward the request to a
Domain Controller. NTLM doesn’t provide mutual authentication, so the client can’t
verify the server’s identity.

– (Kerberos) is a ticket-based mutual-authentication protocol requiring devices to prove
their identity. The Kerberos Key Distribution Center (KDC) runs on the Domain
Controller role. The KDC is responsible for issuing tickets. The KDC uses Active
Directory as its account database and the Global Catalog for directing referrals to other
domains.

⁴Microsoft. (2021, Jul. 07). Kerberos Authentication Overview. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows-server/security/kerberos/kerberos-authentication-overview. [Accessed: Oct. 28, 2021].

⁵Internet Engineering Task Force. (2014, Jun.). RFC7235: Hypertext Transfer Protocol (HTTP/1.1): Authentication. RFC Editor. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7235. [Accessed: Oct. 27, 2021].

https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/kerberos-authentication-overview
https://www.rfc-editor.org/rfc/rfc7235

Just Enough Administration 478

During authentication, IWA primarily uses Kerberos, with NTLM serving as a backup. The
means of selecting which authentication type is:

– Kerberos: Used if the client is in a Windows Domain and the service isn’t:

* An IPv4 or IPv6 Address (192.168.1.1 or [2001:0db8:0000:0000:0000:ff00:0042:8329]).
* A Loopback Address (127.0.0.1 or [::1])
* Using localhost as the endpoint.

– NTLM: Authenticates within a Windows Domain with IP Addresses/Loopback and
serves as a backup.⁶

• CredSSP (Credential Security Support Provider): Credential Security Support Provider
is a Security Support Provider (SSP)⁷, used to extend the Windows authentication mech-
anism outside the required scope of the authentication type. The provider encrypts User
Credentials (using TLS) and transmits them to the SSP, where the SSP uses SPNEGO ⁸ ⁹
to negotiate which authentication mechanism to use (Kerberos/NTLM).¹⁰ Once negotiated,
the server will validate the credentials on behalf of the user.

User credentials can be retrieved if a server is compromised.

• Cert Authentication (Certificate-Based Authentication): Certificate-Based Authentica-
tion uses X.509 certificates as a means of authentication. The TLS process is as follows:

1. Client connects to the server.
2. The Server presents its TLS Public Certificate to the client. The Client validates that

the Certificate Authority is trusted, based on the Certificate Chain contained within the
certificate.

3. The Client presents its TLS Public Certificate to the server. The Certificate Thumbprint,
defined by the PowerShell Remoting Client, will locate the certificate from the Local
Machine or Local User Certificate store (Certificate::localmachine\my or Certifi-
cate::currentuser\my). When running PowerShell under a non-elevated prompt, only
the local user certificate store is accessible.¹¹

4. The Server verifies the Client Certificate by:

1. Validating whether the Certificate Authority is trusted, based on the Certificate Chain
contained within the certificate.

⁶Microsoft. (2021, Aug. 07). Security Considerations for PowerShell Remoting using WinRM. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity. [Accessed: Oct. 28, 2021].

⁷Microsoft. (2020, Aug. 20). Security Support Providers (SSPs). Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows/win32/rpc/security-support-providers-ssps-. [Accessed: Oct. 29, 2021].

⁸Microsoft. (2021, Aug. 01). Microsoft Negotiate. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-
dows/win32/secauthn/microsoft-negotiate. [Accessed: Oct. 29, 2021].

⁹Network Working Group. (2006, Jun.). RFC4559: SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows.
RFC Editor. [Online]. Available: https://www.rfc-editor.org/rfc/rfc4559. [Accessed: Oct. 27, 2021].

¹⁰Microsoft. (2021, Aug. 01). Credential Security Support Provider. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/windows/win32/secauthn/credential-security-support-provider. [Accessed: Oct. 29, 2021].

¹¹Jordan Borean. (2018, Jan. 24). Demystifying WinRM. Blogging for Logging. [Online]. Available: https://www.bloggingforlogging
.com/2018/01/24/demystifying-winrm/. [Accessed: Oct. 28, 2021].

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://learn.microsoft.com/en-us/windows/win32/rpc/security-support-providers-ssps-
https://learn.microsoft.com/en-us/windows/win32/rpc/security-support-providers-ssps-
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-negotiate
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-negotiate
https://www.rfc-editor.org/rfc/rfc4559
https://learn.microsoft.com/en-us/windows/win32/secauthn/credential-security-support-provider
https://learn.microsoft.com/en-us/windows/win32/secauthn/credential-security-support-provider
https://www.bloggingforlogging.com/2018/01/24/demystifying-winrm/
https://www.bloggingforlogging.com/2018/01/24/demystifying-winrm/

Just Enough Administration 479

2. Checking that the certificate is in the TrustedPeople Store.

5. The session is established (the server grants access).¹²

Once the PowerShell Session is established, either PowerShell Session State encryption or
WinRM encryption is applied depending on whether the WinRM protocol is HTTP or HTTPS.
If the protocol is HTTP, message-level encryption based on the authentication protocol is
applied. For HTTPS, it uses TLS within the HTTP transport. The following table describes the
Authentication Type with the type of encryption using WinRM HTTP:

Authentication Type WinRM HTTP Message-Level Encryption Type

Default (using Kerberos) AES-256

Default (using NTLM) RC4

Kerberos AES-256

Basic None

Negotiate - NTLM RC4

Negotiate - Kerberos AES-256

CredSSP TLS

18.3 PowerShell Role Capabilities

PowerShell role capability (PSRC) files are configuration files that define the module capabilities
exposed through the PowerShell session configuration. PowerShell session capability files contain
configuration data stored as a PowerShell [Hashtable]. During the initialization of the session,
role capabilities permissions combine into a single role capability, similar in functionality to
Access Control Entries (ACE) and Access Control Lists (ACL).

Windows PowerShell preloads *.psrc files from the RoleCapabilities subdirectory within a
module directory. In PowerShell (Core), you can define PSRC files directly within the PowerShell
session configuration file using the RoleDefinitions property.

An example of the directory structure for a Windows PowerShell module is below:

Example 1: PowerShell Module directory structure

1 ModuleName
2 │ Module.psm1 # Module File
3 │ Module.psd1 # Module Manifest File
4 │
5 ├───Public
6 ├───Private
7 ├───Help
8 └───RoleCapabilities
9 ServiceMaintenance.psrc

10 ProcessMaintenance.psrc

¹²Microsoft. (2020, Aug. 20). What is mutual TLS (mTLS)?. CloudFlare. [Online]. Available: https://www.cloudflare.com/en-us/learn-
ing/access-management/what-is-mutual-tls/. [Accessed: Nov. 01, 2021].

https://www.cloudflare.com/en-us/learning/access-management/what-is-mutual-tls/
https://www.cloudflare.com/en-us/learning/access-management/what-is-mutual-tls/

Just Enough Administration 480

Within the example, role capability files exist in the RoleCapabilities subdirectory of the
PowerShell module ModuleName.

18.3.1 Implementing Windows PowerShell Role Capabilities in
the Console

The following example describes the process of implementation using Windows PowerShell:

1. Create the PSRC file using New-PSRoleCapabilityFile¹³.

Example 2: Creating two role capability files
1 $roleParameters = @{
2 Path = ".\ServiceMaintenance.psrc"
3 Author = "User01"
4 CompanyName = "Fabrikam Corporation"
5 Description = "This role enables users to get/restart any service"
6 VisibleCmdlets = "Restart-Service", "Get-Service"
7 }
8 New-PSRoleCapabilityFile @roleParameters
9

10 $roleParameters = @{
11 Path = ".\ProcessMaintenance.psrc"
12 Author = "User01"
13 CompanyName = "Fabrikam Corporation"
14 Description = "This role enables users to stop/start processes"
15 VisibleCmdlets = "Get-Process", "Stop-Process"
16 }
17 New-PSRoleCapabilityFile @roleParameters

2. (Windows PowerShell) Copy the file into a PowerShell module.

Example 3: Creating a blank PowerShell module
1 # Create the PowerShell Module
2
3 # Create a folder for the module
4
5 $joinPathParams = @{
6 Path = $env:ProgramFiles
7 ChildPath = "WindowsPowerShell\Modules\TestJEAModule"
8 }
9

10 $modulePath = Join-Path @joinPathParams
11 New-Item -ItemType Directory -Path $modulePath
12 # Create an empty script module
13 New-Item -ItemType File -Path (Join-Path $modulePath "TestJEAModule.psm1")
14
15 # Create a PowerShell Module Manifest File
16
17 $moduleManifestParams = @{
18 Path = Join-Path $modulePath "TestJEAModule.psd1"
19 RootModule = "TestJEAModule.psm1"
20 }
21
22 New-ModuleManifest @moduleManifestParams

¹³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile

Just Enough Administration 481

Directory: C:\Program Files\WindowsPowerShell\Modules

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 14/07/1993 00:00 AM TestJEAModule

Directory: C:\Program Files\WindowsPowerShell\Modules\TestJEAModule

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 14/07/1993 00:00 AM 0 TestJEAModule.psm1

18.3.2 Implementing PowerShell (Core) Role Capabilities in the
Console

The following steps describe the process of implementation using PowerShell (Core):

1. Create the PSRC file using New-PSRoleCapabilityFile. Please refer to Example 2.
2. Define the PSRC file within the PowerShell session configuration using the

RoleDefinitions parameter. The RoleDefinitions parameter is a [Dictionary] or
[Hashtable] that uses the DOMAIN/(User/Group): @{Configuration Type} syntax.
PowerShell (Core) defines three types of configuration. These are:

• RoleCapabilities: These are the enumerated PSRC file names from preloaded PowerShell
modules.

• RoleCapabilityFiles: Any other PSRC files. PowerShell (Core) doesn’t require you to couple
PSRC files to a module, making it applicable to configuration outside of a module.

• Custom: You can define custom PSRC configurations associated with a group using
parameters instead of a PSRC file or loaded path. Using the cmdlet parameters reduces
management complexity at the cost of scalability. Values can be:¹⁴

1 [-ModulesToImport <Object[]>]
2 [-VisibleAliases <String[]>]
3 [-VisibleCmdlets <Object[]>]
4 [-VisibleFunctions <Object[]>]
5 [-VisibleExternalCommands <String[]>]
6 [-VisibleProviders <String[]>]
7 [-ScriptsToProcess <String[]>]
8 [-AliasDefinitions <IDictionary[]>]
9 [-FunctionDefinitions <IDictionary[]>]

10 [-VariableDefinitions <Object>]
11 [-EnvironmentVariables <IDictionary>]
12 [-TypesToProcess <String[]>]
13 [-FormatsToProcess <String[]>]
14 [-AssembliesToLoad <String[]>]

In the following example, the configuration references two PSRC files using the RoleCapabil-
ityFiles key:

¹⁴Microsoft. (2021, Sep. 27). New-PSSessionConfigurationFile (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile. [Accessed: Oct. 14,
2021].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile

Just Enough Administration 482

Example 4: Creating a PowerShell session configuration with two role capabilities

1 $configSettings = @{
2
3 # Sample Properties. These are incomplete.
4 Path = '.\SampleFile.pssc'
5 SchemaVersion = '1.0.0.0'
6 Author = 'User01'
7 Copyright = '(c) Fabrikam Corporation. All rights reserved.'
8 CompanyName = 'Fabrikam Corporation'
9

10 # This is the role definitions.
11 RoleDefinitions = @{
12 # Define the group and then role capability files.
13 # *Note that this is an array, so multiple files can be parsed.*
14 'CONTOSO\PSSC_HELPDESK_RAS01' = @{
15 RoleCapabilityFiles = '.\ServiceMaintenance.psrc',
16 '.\ProcessMaintenance.psrc'
17 }
18 }
19 }
20
21 New-PSSessionConfigurationFile @configSettings

18.3.3 Implementing PowerShell Role Capabilities Within DSC

The JeaDsc module¹⁵ uses the JeaRoleCapabilities resource for PSRC definitions and sup-
ports the same formatting as New-PSRoleCapabilityFile. The duplicate files will be rewritten
in DSC and referenced within the JeaSessionConfiguration resource:

Example 5: A JeaRoleCapabilities DSC resource defining two role capabilities

1 [DscLocalConfigurationManager()]
2 Configuration JeaRoleCapabilities
3 {
4 # This is a partial DSC resource that is used
5 # to store the JeaRoleCapabilities.
6
7 Import-DscResource -ModuleName JeaDSC
8
9 Node localhost {

10
11 # Define the first resource
12 JeaRoleCapabilities ServiceMaintenanceCapability {
13
14 Path = "C:\Temp\ServiceMaintenance.psrc"
15 VisibleCmdlets = "Restart-Service", "Get-Service"
16 Description = "This role enables users to get/restart any service."
17 # Author/ComanyName/GUID/Copyright are not supported.
18
19 }
20
21 # Define the second resource
22 JeaRoleCapabilities ProcessMaintenanceCapability {
23
24 Path = "C:\Temp\ProcessMaintenance.psrc"
25 VisibleCmdlets = "Get-Process", "Stop-Process"

¹⁵https://www.powershellgallery.com/packages/JeaDsc

https://www.powershellgallery.com/packages/JeaDsc
https://www.powershellgallery.com/packages/JeaDsc

Just Enough Administration 483

26 Description = "This role enables users to stop/start processes."
27 # Author/ComanyName/GUID/Copyright are not supported.
28
29 }
30
31 <#
32 # This is an incomplete resource.
33 JeaSessionConfiguration AppServerMaintanceEndpoint
34 {
35 # Before executing this resource, the DSC Resources:
36 # ServiceMaintenanceCapability & ProcessMaintenanceCapability need
37 # to execute before the creation of the session configuration.
38 DependsOn =
39 '[JeaRoleCapabilities]ServiceMaintenanceCapability',
40 '[JeaRoleCapabilities]ProcessMaintenanceCapability'
41 }
42 #>
43
44 }
45 }

It’s important to remember that the JeaRoleCapabilities must execute before the cre-
ation/registration of the session configuration. Otherwise, the DSC configuration will fail.

Please read the JEA Role Capabilities documentation¹⁶. This covers in-depth architec-
ture/design and implementation.

You can also use Find-RoleCapability to search registered repositories for PowerShell
role capabilities.

18.4 Getting Started With PowerShell Session
Configuration

Creating a PowerShell session configuration involves:

1. Enabling PowerShell remoting.
2. Creating one or more PowerShell role capability files.
3. Registering the PowerShell session configuration.

Please see Enable Azure Automation State Configuration¹⁷ for more details on DSC onboarding
for Azure Automation.

¹⁶https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
¹⁷https://learn.microsoft.com/en-us/azure/automation/automation-dsc-onboarding

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://learn.microsoft.com/en-us/azure/automation/automation-dsc-onboarding
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://learn.microsoft.com/en-us/azure/automation/automation-dsc-onboarding

Just Enough Administration 484

Example 6: The DSC server configuration used for the examples in this chapter

1 # ServerConfigurationData.psd1
2 @{
3
4 AllNodes = @(
5 @{
6 NodeName = "DC01"
7 Role = "DomainController"
8 PSRemotingEnabled = $true
9 PSRemotingConfigurationType = @(

10 "HelpdeskResetPassword",
11 "DNSManagement"
12)
13 },
14 @{
15 NodeName = "FS01"
16 Role = "FileSrver"
17 PSRemotingEnabled = $false
18 },
19 @{
20 NodeName = "HRBW"
21 Role = "HybridRunbookWorker"
22 PSRemotingEnabled = $true
23 PSRemotingConfigurationType = "NoRestrictions"
24 }
25)
26 }

18.4.1 Step 1: Enabling PowerShell Remoting

PowerShell remoting is best deployed and managed using a management framework, as opposed
to using ad hoc tools.

1. Ansible/Chef/Desired State Configuration (DSC): This chapter uses DSC for examples.
2. Group Policy: You can use Group Policy to enable or disable PowerShell remoting.
3. SCCM/Intune: This is another good option for deploying PowerShell remoting tomachines;

incorporated into the machine deployment script.
4. Azure Arm/Terraform/Cloud Formation/Puppet: Many tools allow the deployment of

PowerShell using Infrastructure as Code (IaC).

You can use Enable-PSRemoting -Force to enable PowerShell via the console. How-
ever, these examples use DSC.

Use the following DSC configuration to enable PowerShell remoting:

Just Enough Administration 485

Example 7: A DSC configuration to enable PSRemoting

1 # Installing the Module
2
3 Find-Module -Name WSManDsc -Repository PSGallery | Install-Module
4
5 # WSManConfig.ps1
6 #Requires -module WSManDsc
7
8 <#
9 .DESCRIPTION

10 Enable compatibility HTTP and HTTPS listeners, set
11 maximum connections to 100.
12 #>
13
14 Configuration PowerShellRemoting
15 {
16
17 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'
18 Import-DscResource -ModuleName 'WSManDsc'
19
20 Node $AllNodes.Where{$_.PSRemotingEnabled}.NodeName {
21
22
23 WSManServiceConfig ServiceConfig {
24
25 IsSingleInstance = 'Yes'
26 MaxConnections = 100
27 AllowUnencrypted = $false
28 AuthCredSSP = $false
29
30 }
31
32 Service EnableWinRM {
33 Name = 'WinRM'
34 StartupType = 'Automatic'
35 State = 'Running'
36 }
37
38 Script EnablePowerShellRemoting {
39 DependsOn = '[Service]EnableWinRM'
40
41 SetScript = {
42 Enable-PSRemoting
43 }
44 GetScript = {
45 @{
46 Result = (
47 [Bool](New-PSSession . -ErrorAction SilentlyContinue)
48 -and [Bool](Test-WSMan -ComputerName .))
49 }
50 }
51 TestScript = {
52 $state = [scriptblock]::Create($GetScript).Invoke()
53 $state.Result
54 }
55 }
56
57 }
58 }

Just Enough Administration 486

18.4.2 Step 2: Creating/Registering the PowerShell Session
Configuration

Traditionally, you would have to create PowerShell session configuration files using New-
PSSessionConfigurationFile and Register-PSSessionConfiguration in the PowerShell
console. The process is:

1. Create the PowerShell session configuration file using New-PSSessionConfigurationFile.
2. Test the file using Test-PSSessionConfigurationFile.
3. Register the configuration using Register-PSSessionConfiguration.

As an alternative, this chapter demonstrates the JeaDSC resource, which only requires JeaSes-
sionConfiguration to create and register PowerShell session configurations.

18.4.2.1 What is JeaDsc?

JeaDsc is a Microsoft DSC resource that allows you to deploy session configurations on multiple
machines. The following are prerequisites for JeaDsc.

1. PowerShell 5.1: PowerShell 5.1 or later is required.
2. PowerShell role capabilities: One or more PowerShell role capability (PSRC) files as part

of a PowerShell module.
3. JeaDsc: Installation of the JEA DSC module from the PowerShell Gallery.
4. Access to a DSC Pull Server such as Azure Automation¹⁸.

Once the JeaDsc configuration is ready, you can apply it to endpoints using the JeaRoleCapabil-
ities and JeaSessionConfiguration resources. For more information on JeaRoleCapabilities,
please review the Implementing Windows PowerShell Role Capabilities in the Console section.
The JeaSessionConfiguration resource is similar to New-PSSessionConfigurationFile.
However, some properties (for example, RoleDefinitions) require a [Hashtable]wrapped as
a [String].

That is:

RoleDefinitions = "@{RoleDefinitions}"

In the following scenario, management has decided that all helpdesk staff must be able to restart
services and stop processes. Below is an example of the JeaDsc PowerShell session configuration
for this:

¹⁸https://learn.microsoft.com/en-us/azure/automation/tutorial-configure-servers-desired-state

https://learn.microsoft.com/en-us/azure/automation/tutorial-configure-servers-desired-state
https://learn.microsoft.com/en-us/azure/automation/tutorial-configure-servers-desired-state

Just Enough Administration 487

Example 8: DSC session configuration enabling two capabilities for helpdesk staff

1 Configuration JEAMaintenance
2 {
3 Import-DscResource -Module JeaDsc
4
5 # Apply the session configuration to only the machines
6 # that have PSRemoting Enabled
7 Node $AllNodes.Where{$_.PSRemotingEnabled}.NodeName {
8
9 # Define the first resource

10 JeaRoleCapabilities ServiceMaintenanceCapability {
11
12 Path = "C:\Program Files\WindowsPowerShell\Modules\" +
13 "Demo\RoleCapabilities\ServiceMaintenance.psrc"
14 VisibleCmdlets = "Restart-Service", "Get-Service"
15 Description = "This role enables users to get/restart any service"
16 # Author/ComanyName/GUID/Copyright are not supported.
17
18 }
19
20 # Define the second resource
21 JeaRoleCapabilities ProcessMaintenanceCapability {
22
23 Path = "C:\Program Files\WindowsPowerShell\Modules\" +
24 "Demo\RoleCapabilities\ProcessMaintenance.psrc"
25 VisibleCmdlets = "Get-Process", "Stop-Process"
26 Description = "This role enables users to stop/start processes"
27 # Author/ComanyName/GUID/Copyright are not supported.
28
29 }
30
31 JeaSessionConfiguration HelpDeskManagmenetEndpoint
32 {
33 Name = 'JEAMaintenance'
34 RunAsVirtualAccount = $true
35 Ensure = 'Present'
36 DependsOn =
37 '[JeaRoleCapabilities]ServiceMaintenanceCapability',
38 '[JeaRoleCapabilities]ProcessMaintenanceCapability'
39 RoleDefinitions = "@{
40 'Contoso\ServiceMaintenanceCapability' = @{ RoleCapabilities =
41 'ServiceMaintenanceCapability'}
42 'Contoso\ProcessMaintenanceCapability' = @{ RoleCapabilities =
43 'ProcessMaintenanceCapability'}
44 }
45 "
46 TranscriptDirectory = 'C:\Temp\Transcripts'
47 }
48
49 }
50
51 }

Changes to the PowerShell session configuration will cause theWinRM service to restart,
disconnecting any open PowerShell sessions.

The DSC module functions as a wrapper for the PowerShell session configuration, so most
parameters within the cmdlet apply to the resource. JeaDsc has the following properties:

Just Enough Administration 488

• [String] RoleDefinitions: Defines the role definition map for the endpoint. Requires a
[Hashtable] wrapped as a [String]
Syntax:

1 RoleDefinitions = @'
2 @{
3 DOMAIN\User|Group =
4 @{ RoleCapabilities = "Setting" }
5 }
6 '@

• [Bool] RunAsVirtualAccount: Runs the session configuration as the machine’s (virtual)
administrator account.

Syntax:

1 RunAsVirtualAccount = $true

• [String[]] RunAsVirtualAccountGroups: Optional groups associated with the virtual
administrator account.

Syntax:

1 RunAsVirtualAccountGroups = 'Group1', 'Group2'

• [String] GroupManagedServiceAccount: Configures the session to run within a Group
Managed Service Account¹⁹.

Syntax:

1 GroupManagedServiceAccount = 'DOMAIN\gMSAGroup1'

• [String] TranscriptDirectory: A directory where JeaDsc should save transcripts.

Syntax:

1 TranscriptDirectory = 'C:\FolderPath\'

• [String[]] ScriptsToProcess: Scripts to run on startup.
Syntax:

1 TranscriptDirectory = 'C:\FolderPath\Script1.ps1',
2 'C:\FolderPath\Script2.ps1'

• [String] SessionType: Specifies the type of session that PowerShell should create.
Values can be:

– Empty: No modules added to the session. Use for creating custom sessions.
– Default: Adds Microsoft.PowerShell.Core. Includes Import-Module.
– RestrictedRemoteServer: Includes Exit-PSSession, Get-Command, Get-
FormatData, Get-Help, Measure-Object, Out-Default, and Select-Object.

Syntax:

¹⁹https://learn.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/getting-started-with-group-
managed-service-accounts

https://learn.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/getting-started-with-group-managed-service-accounts
https://learn.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/getting-started-with-group-managed-service-accounts
https://learn.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/getting-started-with-group-managed-service-accounts
https://learn.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/getting-started-with-group-managed-service-accounts

Just Enough Administration 489

1 SessionType = 'RestrictedRemoteServer'

• [Bool] MountUserDrive: Configures sessions that use this configuration to expose the
User: PSDrive.

Syntax:

1 MountUserDrive = $true

• [Long] UserDriveMaximumSize: Optional maximum size of user drive in bytes. The
default is 50MB. The example below sets the maximum size to 500MB.

Syntax:

1 UserDriveMaximumSize = 524288000

• [String[]] RequiredGroups: Conditional Access rules. Requires a [Hashtable]
wrapped as a [String]

Syntax:

1 '
2 @{
3 And = "RequiredGroup1",
4 @{ Or = "OptionalGroup1", "OptionalGroup2" }
5 }
6 '

• [Object[]]ModulesToImport: List of modules to import. Requires an array of [String]
and [Hashtable] objects.

Syntax:

1 "
2 'CustomModule',
3 @{
4 ModuleName = 'CustomModuleName';
5 ModuleVersion = '1.0.0.0';
6 GUID = 'GUID'
7 }
8 "

• [String[]] VisibleAliases: Command aliases to expose in the PowerShell session.
Syntax:

1 VisibleAliases = 'gci', 'gm'

• [String[]] VisibleCmdlets: Cmdlets to expose in the PowerShell session.
Syntax:

1 VisibleCmdlets = 'Get-ChildItem', 'Get-Member'

• [String[]] VisibleFunctions: Functions to expose in the PowerShell session.
Syntax:

Just Enough Administration 490

1 VisibleFunctions = 'Do-Something', 'Do-SomethingElse'

• [String[]] VisibleExternalCommands: Limits the session’s external binaries, scripts,
and commands. By default, no commands are visible.

Syntax:

1 VisibleExternalCommands = 'C:\dosomething.ps1', 'C:\thirdparty.dll'

• [String[]] VisibleProviders: Limits which PowerShell providers are available in the
session.

Syntax:

1 VisibleProviders = 'FileSystem', 'Function', 'Variable'

• [String[]] AliasDefinitions: Command aliases to add to the session. Requires a
[Hashtable] wrapped as a [String]

Syntax:

1 "@{ AliasName = 'Cmdlet'; AnotherAlias = 'Cmdlet'}"

• [String[]] FunctionDefinitions: Custom functions to define in the session. These run
in the default Language Mode and therefore have access to the filesystem, registry, and
commands not available in the session. You must also add the names of these to Visi-
bleFunctions to make them visible to JEA users. Requires a [Hashtable] wrapped as a
[String]

Syntax:

1 FunctionDefinitions = "@{
2 Name = 'Do-Something';
3 ScriptBlock = {
4 param($MyInput)
5 $MyInput
6 }
7 }"

• [String] VariableDefinitions: Variables to declare in the session. Requires a
[Hashtable] wrapped as a [String]

Syntax:

Just Enough Administration 491

1 VariableDefinitions = "@{
2 Name = 'Variable1';
3 Value = { # Dynamic Value }
4 },
5 @{
6 Name = 'Variable1';
7 Value = 'Static'
8 }"

• [String] EnvironmentVariables: Environmental variables to declare in the session. Re-
quires a [Hashtable] wrapped as a [String]
Syntax:

1 EnvironmentVariables = "@{
2 Variable1 = 'Variable Value';
3 Variable2 = 'Variable Value2';
4 Variable3 = 'Variable Value3';
5 },

• [String[]] TypesToProcess: Type files (.ps1xml) to load into session.
Syntax:

1 TypesToProcess = 'Types1.ps1xml', 'Types2.ps1xml'

• [String[]] FormatsToProcess: Format files (.ps1xml) to load into session.
Syntax:

1 FormatsToProcess = 'Types1.ps1xml', 'Types2.ps1xml'

• [String[]] AssembliesToLoad: Assemblies to load into the session.
Syntax:

1 AssembliesToLoad = 'Newtonsoft.Json', 'System.IO.File'

• [int] HungRegistrationTimeout: Timeout period to wait for the PowerShell session
configuration registration in seconds. The default timeout threshold is 10. Setting a value
of 0 disables the timeout.

Syntax:

1 HungRegistrationTimeout = 50

For more information on the JeaDsc Module, refer to the JeaDsc documentation²⁰.

18.4.3 Connecting to a PowerShell Session Configuration

Traditionally, when connecting to a PowerShell remoting session, administrators and service ac-
counts use Invoke-Command, Import-PSSession, or New-PSSession; Enter-PSSession to
connect to a remote machine. These connections default to the Microsoft.PowerShell session
configuration, which is Windows PowerShell. However, the use of the -ConfigurationName
parameter allows you to specify a different session configuration:

²⁰https://github.com/dsccommunity/JeaDsc/blob/master/source/Classes/JeaSessionConfiguration.ps1

https://github.com/dsccommunity/JeaDsc/blob/master/source/Classes/JeaSessionConfiguration.ps1
https://github.com/dsccommunity/JeaDsc/blob/master/source/Classes/JeaSessionConfiguration.ps1

Just Enough Administration 492

Example 9: Sending a PSRemoting command with a custom session configuration

1 $params = @{
2 ComputerName = 'DC1'
3 ConfigurationName = 'JEAMaintenance'
4 ScriptBlock = { Get-Service }
5 }
6
7 Invoke-Command @params

18.4.4 Role Definition Design Considerations

When deploying PowerShell session configuration files, it’s essential to consider Active Directory
and its place in PowerShell remoting governance.

• Use Active Directory groups to define Administrator permission scopes. Direct user assign-
ment to configuration adds complexity to the solution.

• When using Active Directory groups, describe the RoleDefinition, capability, and machine.
For instance, PSHRemoting-<ComputerName>-<Capability> becomes: PSHRemoting-
DC1-ServiceMaintenance. There are also limitations within the RoleDefinitions
parameter/property in that you can’t assign duplicate Active Directory groups to separate
capabilities. Always ensure that the capability name matches the Active Directory group.

• Implement Role-Based Access Control (RBAC) to prevent direct assignment to Active
Directory groups. Leveraging RBAC roles and groups ensures that user roles themselves
receive PowerShell remoting session configuration. The result is that the role governs user
access instead of a group. Owners can assign/remove access according to approvals.

• Simplify each role capability. Rather than having a single role capability for a specific
function, it’s better to practice simplifying each role capability down to a single instance. For
example, a helpdesk might require the ability to query/stop processes and query/stop/start
services on an application server. Breaking this down reveals two role capabilities:

1. Query/stop processes
2. Query/stop/start services

You can add these role capabilities to the PowerShell session configuration file:

Example 10: Two role capabilities defined as part of a session configuration
1 JeaSessionConfiguration HelpDeskManagmenetEndpoint
2 {
3 Name = 'JEAMaintenance'
4 RunAsVirtualAccount = $true
5 Ensure = 'Present'
6 DependsOn =
7 '[JeaRoleCapabilities]ServiceMaintenance',
8 '[JeaRoleCapabilities]ProcessMaintenance'
9 # We define the role capabilities by specifying the

10 # role capability Active Directory group:
11 RoleDefinitions = "
12 @{
13 'Contoso\PSHRemoting-APP1-ServiceMaintenance' = @{
14 RoleCapabilities = 'ServiceMaintenance'}

Just Enough Administration 493

15 'Contoso\PSHRemoting-APP1-ProcessMaintenance' = @{
16 RoleCapabilities = 'ProcessMaintenance'}
17 }
18 "
19 }

• Use a DSC Compiler to interpolate the configuration for each server. Interpolating DSC
configuration into each node reduces node management complexity and enables different
session configurations and role capabilities to be modular and reusable within different
configurations. Datum²¹ is a DSC Compiler that uses YAML configuration to link DSC
configurations.

• When defining the WSMan configuration, Kerberos is considered the best authentication
mechanism, providing mutual end-to-end authentication, as well as encryption. NTLM
is considered the second-best authentication method. However, it doesn’t support mutual
authentication.

• When defining a PowerShell session configuration, consider the security use cases for that
configuration and simplify against each use case.

• Enforce the use of the PowerShell Language Mode. Always select the most restrictive
language mode possible without compromising on usability. The language modes are (from
most to least restrictive):

1. No Language: PowerShell permits no script text of any form.
2. Restricted Language: Users can run commands but can’t use script blocks.
3. Constrained Language: See the Constrained Language Mode chapter.
4. Full Language: The default language mode. All features are available.

18.4.5 Managing PowerShell Session Configurations

When DSC manages the PowerShell session configuration, ongoing changes to the PowerShell
session configuration aren’t required. You can nevertheless query the session configuration using
Get-PSSessionConfiguration and configure it using Set-PSSessionConfiguration.

You can use Get-PSSessionConfiguration to retrieve information about session configura-
tions:

Example 11: Retrieving a list of registered session configurations

1 Get-PSSessionConfiguration

²¹https://github.com/gaelcolas/datum

https://github.com/gaelcolas/datum
https://github.com/gaelcolas/datum

Just Enough Administration 494

Name : microsoft.powershell
PSVersion : 5.1
StartupScript :
RunAsUser :
Permission : NT AUTHORITY\NETWORK AccessDenied,

NT AUTHORITY\INTERACTIVE AccessAllowed, BUILTIN\Administrators
AccessAllowed, BUILTIN\Remote Management Users AccessAllowed

Name : microsoft.powershell.workflow
PSVersion : 5.1
StartupScript :
RunAsUser :
Permission : NT AUTHORITY\NETWORK AccessDenied,

BUILTIN\Administrators AccessAllowed, BUILTIN\Remote Management
Users AccessAllowed

Name : microsoft.powershell32
PSVersion : 5.1
StartupScript :
RunAsUser :
Permission : NT AUTHORITY\NETWORK AccessDenied,

NT AUTHORITY\INTERACTIVE AccessAllowed, BUILTIN\Administrators
AccessAllowed, BUILTIN\Remote Management Users AccessAllowed

You can view the entire object structure by piping the results into Format-List. The example
below shows the first registered session configuration and its properties.

For the sake of readability, this example excludes some object properties.

Example 12: Displaying all properties of a single session configuration

1 Get-PSSessionConfiguration | Select-Object -First 1 | Format-List *

RunAsPassword :
Capability : {Shell}
PSVersion : 5.1
AutoRestart : false
ExactMatch : False
RunAsVirtualAccount : false
...
MaxShells : 2147483647
SupportsOptions : true
lang : en-US
MaxIdleTimeoutms : 2147483647
Enabled : true
...
Name : microsoft.powershell
XmlRenderingType : text
...

You can change PowerShell session configuration properties using Set-
PSSessionConfiguration with the -Name parameter.

Just Enough Administration 495

Example 13: Adding a startup script to the microsoft.powershell session configuration
1 # Startup script
2 Set-Content -Value 'Write-Host "Startup!"' -Path 'C:\Temp\Startup.ps1'
3
4 # Implementing the change with PowerShell console
5 Get-PSSessionConfiguration -Name microsoft.powershell |
6 Set-PSSessionConfiguration -StartupScript C:\TEMP\Startup.ps1

WARNING: Set-PSSessionConfiguration may need to restart the WinRM service if
a configuration using this name has recently been unregistered, certain system
data structures may still be cached. In that case, a restart of WinRM may be
required. All WinRM sessions connected to Windows PowerShell session
configurations, such as Microsoft.PowerShell and session configurations that
are created with the Register-PSSessionConfiguration cmdlet, are disconnected.

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin\
microsoft.powershell\InitializationParameters

ParamName ParamValue
--------- ----------
startupscript C:\TEMP\Startup.ps1

Example 14: Entering a PSRemoting session with the updated configuration
1 Enter-PSSession -ComputerName . -ConfigurationName 'microsoft.powershell'

Startup!
[localhost]: PS C:\>

There are limitations to updating the existing session configurations, as some parameters aren’t
present within the cmdlet. See the parameter listing below:²²

1 Set-PSSessionConfiguration
2 [-Name] <String>
3 [-RunAsCredential <PSCredential>]
4 [-ThreadOptions <PSThreadOptions>]
5 [-AccessMode <PSSessionConfigurationAccessMode>]
6 [-UseSharedProcess]
7 [-StartupScript <String>]
8 [-MaximumReceivedDataSizePerCommandMB <Double>]
9 [-MaximumReceivedObjectSizeMB <Double>]

10 [-SecurityDescriptorSddl <String>]
11 [-ShowSecurityDescriptorUI]
12 [-Force]
13 [-NoServiceRestart]
14 [-TransportOption <PSTransportOption>]
15 -Path <String>
16 [-WhatIf]
17 [-Confirm]
18 [<CommonParameters>]

To change other properties, you should update the .pssc file generated by
New-PSSessionConfiguration and then use the -Path parameter with Set-
PSSessionConfiguration.

²²Microsoft. (2021, Sep. 27). Set-PSSessionConfiguration (Microsoft.PowerShell.Core). Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/set-pssessionconfiguration. [Accessed: Oct. 14, 2021].

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/set-pssessionconfiguration

Just Enough Administration 496

1 # File path: C:\Temp\TempPowerShellSession.pssc
2 @{
3 # Version number of the schema used for this document
4 SchemaVersion = '2.0.0.0'
5
6 # ID used to uniquely identify this document
7 GUID = '109fee56-540e-4688-801f-a390842355b4'
8
9 # Author of this document

10 # Updated the Author
11 Author = 'Michael Zanatta'
12 }

Update the PowerShell session configuration:

Example 15: Updating a session configuration from file

1 Set-PSSessionConfiguration -Path 'C:\Temp\TempPowerShellSession.pssc'

When you change the PowerShell session configuration, you’ll see a warning that the
WinRM service will restart. This will disconnect any existing PowerShell remoting
sessions. To prevent the service restart, use the -NoServiceRestart parameter. To
suppress any confirmation of the service restart, use the -Force parameter.

At the time of writing, the -NoServiceRestart parameter doesn’t guarantee that the
WinRM service won’t restart. As a rule of thumb, implicitly assume that the service will
restart.

18.5 An Overview of the Security Descriptor
Definition Language (SDDL)

18.5.1 Terms

• Security Descriptor Definition Language (SDDL): A string representation of a Security
Descriptor.

• Security Descriptor: A data structure of security information about a securable object,
including its owner, group, DACL, and SACL.

• Securable Object: Any object or resource, such as a file, process, or event, that can have a
Security Descriptor.

• Discretionary Access Control List (DACL): Identifies a list of trustees (access control
entries) that will be allowed or denied access to a securable object.

• System Access Control List (SACL): Identifies a list of trustees (access control entries) that
the system audits during a successful or failed access to a securable object.

• Trustee: A user account, group, or logon session to which an ACE applies.

Just Enough Administration 497

• Access Control List (ACL): A list of ACEs that together define the access rights of a
securable object in a DACL or SACL.

• Access Control Entry (ACE): A single entry that represents specific access rights of a
securable object for a trustee.

• Security Identifier (SID): An immutable identifier that represents a trustee.

18.5.2 SDDL Overview

The Security Descriptor Definition Language (SDDL) is a format that defines security descriptors
as Strings. SDDLs within a PowerShell session configuration are used to define which users can
connect to the PowerShell remoting session using the AccessAllowed and AccessDenied ACE
Flags. When you add role capabilities within a PowerShell session configuration, the system adds
the associated AD groups to the AccessAllowed DACL within the SDDL string.

When viewing registered session configurations, PowerShell automatically formats the permis-
sions into readable text.

Example 16: Displaying formatted permissions for the JeaEndpoint session configuration

1 Get-PSSessionConfiguration

Name : JeaEndpoint
PSVersion : 5.1
StartupScript :
RunAsUser :
Permission : CONTOSO\ServiceMaintenanceCapability AccessAllowed

However, reviewing the permission configuration in the WSMan PSDrive reveals the SDDL
format:

Example 17: Equivalent raw SDDL permissions for the JeaEndpoint session configuration

1 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\
2 Plugin\JEAMaintenance\Resources\Resource_417209259\
3 Security\Security_5898658
4
5 Key: Uri
6 Value: http://schemas.microsoft.com/powershell/JEAMaintenance
7
8 Key: Sddl
9 Value: O:NSG:BAD:P(D;;GA;;;NU)

10 (A;;GA;;;S-1-5-21-1769934282-1541694284-2448955753-1106)
11 (A;;GA;;S-1-5-21-1769934282-1541694284-2448955753-1107)S:P(AU;FA;GA;;;WD)
12 (AU;SA;GXGW;;;WD)
13
14 Key: ExactMatch
15 Value: False
16
17 Key: xmlns
18 Value: http://schemas.microsoft.com/wbem/wsman/1/config/PluginConfiguration
19
20 Key: ParentResourceUri
21 Value: http://schemas.microsoft.com/powershell/JEAMaintenance

Just Enough Administration 498

18.5.3 SDDL Syntax

SDDLs follow a specific syntax: O:<Owner>G:<Primary Group>D:<DACL>:S<SACL> for each
entry. A colon (:) separates each part of the security descriptor.

Raw SDDL:

O:NSG:BAD:P(D;;GA;;;NU)(A;;GA;;;S-1-5-21-1769934282-1541694284-2448955753-1106)
(A;;GA;;S-1-5-21-1769934282-1541694284-2448955753-1107)S:P(AU;FA;GA;;;WD)
(AU;SA;GXGW;;;WD)

Constituent parts of the SDDL:

Owner (O:owner_sid)
O:NS

Primary group (G:group_sid)
G:BA

DACL (D:dacl_flags(string_ace1)(string_ace2)...)
D:P(D;;GA;;;NU)(A;;GA;;;S-1-5-21-1769934282-1541694284-2448955753-1106)
(A;;GA;;S-1-5-21-1769934282-1541694284-2448955753-1107)

SACL (S:sacl_flags(string_ace1)(string_ace2)...)
S:P(AU;FA;GA;;;WD)(AU;SA;GXGW;;;WD)

The four parts of the SDDL syntax are:

1. O: The object’s owner: The owner of the securable object, as a trustee SID or well-known
SID string constant. SID string constants include:

• “NS” : Network Service.
• “BA” : Built-in Administrators.
• “BG” : Built-in Guests.
• “WD” : Everyone.
• “SY” : Local System.
• “AU” : Authenticated Users.

2. G: The object’s primary group. Primary groups are a legacy property retained for
backward compatibility, and PowerShell session configuration doesn’t use them.

3. D: The DACL. Defined permissions that determine the access to the resource, with the
following syntax: dacl_flag(string_ace1)(string_ace2)....

• dacl_flag: Inheritance Control Flags that apply to the DACL. Flags can be:

– “P” : Block inheritance from containers that are higher in the hierarchy.
– “AR” : Allow inheritance.
– “AI” : Child objects inherit permissions.

Just Enough Administration 499

• (string_ace1)(string_ace2)...: ACEs. Each ACE wrapped in parentheses
‘(string_ace1)’.

4. S: The SACL. Audit permissions that determine auditing on the resource, using the
following syntax: sacl_flag(string_ace1)(string_ace2).... SACLs have the same
syntax and control flags as the dacl_flags.

For a complete list of trustee SID strings, see SID Strings²³. For a complete list of ACE
strings/flags, see ACE Strings²⁴.

ACE strings contain several components:

• ACE Type: A value that defines the ACE type. Possible values are:

– “A” : Access Allowed.
– “D” : Access Denied.
– “AU” : Audit.

• ACE Flags: Controls the inheritance and auditing behavior.²⁵ Possible values are:

– “CI” : Container Inherit.
– “OI” : Object Inherit.
– “SA” : Audit Success.
– “FA” : Audit Failure.

• Rights: Controls the standard, specific, and generic rights.²⁶ Possible values are:

– “GA” : All Generic Access.
– “GR” : Read Access.
– “RC” : Read/Control Standard Access.
– “SD” : Delete.

You can combine multiple flags by appending them. For example, combining all the flags
from this table would produce GAGRRCSD.

• Account SID: The target SID.
• Object GUID: Not used within PowerShell session configuration.
• Inherit Object GUID: Not used within PowerShell session configuration.
• Resource Attribute: Not used within PowerShell session configuration.
²³https://learn.microsoft.com/en-us/windows/win32/secauthz/sid-strings
²⁴https://learn.microsoft.com/en-us/windows/win32/secauthz/ace-strings
²⁵Microsoft. (2021, Sep. 24). AceFlags Enum (System.Security.AccessControl). Microsoft Docs. [Online]. Available: https://learn

.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.aceflags. [Accessed: Oct. 14, 2021].
²⁶Microsoft. (2021, Sep. 01). ACCESS_MASK (Winnt.h). Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-us/win-

dows/win32/secauthz/access-mask. [Accessed: Oct. 14, 2021].

https://learn.microsoft.com/en-us/windows/win32/secauthz/sid-strings
https://learn.microsoft.com/en-us/windows/win32/secauthz/ace-strings
https://learn.microsoft.com/en-us/windows/win32/secauthz/sid-strings
https://learn.microsoft.com/en-us/windows/win32/secauthz/ace-strings
https://learn.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.aceflags
https://learn.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.aceflags
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-mask
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-mask

Just Enough Administration 500

18.5.4 Reading SDDLs

You can test and review the SDDLs parsed into PowerShell session configuration files by using
ConvertFrom-SddlString in PowerShell to convert it into a readable [PSObject]:

ConvertFrom-SddlString is only available on Windows.

Example 18: Converting a raw SDDL string to formatted permissions

1 # Show the SDDL Value
2 $SDDL.Value
3
4 # Converting it to a PowerShell Object
5 $SDDL.Value | ConvertFrom-SddlString

O:NSG:BAD:P(D;;GA;;;NU)(A;;GA;;;S-1-5-21-1769934282-1541694284-2448955753-1106)
(A;;GA;;;S-1-5-21-1769934282-1541694284-2448955753-1107)S:P(AU;FA;GA;;;WD)
(AU;SA;GXGW;;;WD)

Owner : NT AUTHORITY\NETWORK SERVICE
Group : BUILTIN\Administrators
DiscretionaryAcl : {

NT AUTHORITY\NETWORK: AccessDenied (GenericAll),
CONTOSO\ServiceMaintenanceCapability: AccessAllowed

(GenericAll),
CONTOSO\ProcessMaintenanceCapability: AccessAllowed

(GenericAll)
}

SystemAcl : {
Everyone: SystemAudit FailedAccess (GenericAll),
Everyone: SystemAudit SuccessfulAccess (GenericExecute,

GenericWrite)
}

RawDescriptor : System.Security.AccessControl.CommonSecurityDescriptor

To make adjustments to existing SDDLs, parse the SDDL string into [RawSecurityDescrip-
tor]:

Example 19: Modifying an SDDL string by conversion to a [RawSecurityDescriptor]

1 $SecurityDescriptor =
2 [System.Security.AccessControl.RawSecurityDescriptor]::new(
3 'SDDL STRING'
4)
5 # Make adjustments
6
7 # Export back into SDDL string format
8 $SecurityDescriptor.GetSddlForm(
9 [System.Security.AccessControl.AccessControlSections]::All

10)

Just Enough Administration 501

18.5.5 Creating SDDLs from a Security Descriptor

Creating SDDLs from a security descriptor is possible by using the [RawSecurityDescriptor]
class. The process of creating a security descriptor is as follows:

1. Define the owner : Instantiate the [SecurityIdentifier] class with a Predefined Trustee
or a SID:

1 $Owner = [System.Security.Principal.SecurityIdentifier]::new("NS")

2. Define the primary group: Using the same class in the last step, create an object with the
predefined trustee or SID:

1 $PrimaryGroup = [System.Security.Principal.SecurityIdentifier]::new("BA")

3. Create the Discretionary ACL: Create an empty Discretionary ACL object (using
[RawAcl]):

1 $DiscretionaryACL = [System.Security.AccessControl.RawAcl]::new(0,0)

4. Create the ACEs for the DACL: Create an empty [ObjectAce] ACE object, with:

1. A qualifier: [AceQualifier]
2. A security identifier (a trustee): [SecurityIdentifier]

For example:

1 $EveroneAllowedACE = [System.Security.AccessControl.ObjectAce]::new(
2 [System.Security.AccessControl.AceFlags]::None,
3 # Define a Qualifier. In this case, we will allow Access
4 [System.Security.AccessControl.AceQualifier]::AccessAllowed,
5 1,
6 # Define a SecurityIdentifier:
7 # 'WD' is the shorthand version of Everyone
8 [System.Security.Principal.SecurityIdentifier]::new('WD'),
9 [System.Security.AccessControl.ObjectAceFlags]::None,

10 [System.Guid]::NewGuid(),
11 [System.Guid]::NewGuid(),
12 $false,
13 $null
14)

5. Add the ACE to the Discretionary ACL:

1 $index = 0
2 # Add to the ACL
3 $DiscretionaryACL.InsertAce($index, $EveroneAllowedACE)

To add more ACEs, increment the $index variable.
6. Create the System ACL: Create an empty System ACL object (using [RawAcl]):

Just Enough Administration 502

1 $SystemACL = [System.Security.AccessControl.RawAcl]::new(0,0)

7. Create the ACEs for the SACL: Create an empty [ObjectAce] ACE object, with:

1. A flag (AceFlags) defining the audit type.
2. A qualifier: [AceQualifier]. The example will use the SystemAudit enum.
3. A security identifier (a trustee): [SecurityIdentifier].

For example:

1 # Insert ACE into SystemACL
2 $EveroneAuditACE = [System.Security.AccessControl.ObjectAce]::new(
3 # Define a Flag
4 [System.Security.AccessControl.AceFlags]::SuccessfulAccess,
5 # Define a Qualifier
6 [System.Security.AccessControl.AceQualifier]::SystemAudit,
7 1,
8 # Define a Security Identifier
9 # 'WD' is the shorthand version of Everyone

10 [System.Security.Principal.SecurityIdentifier]::new('WD'),
11 [System.Security.AccessControl.ObjectAceFlags]::None,
12 [System.Guid]::NewGuid(),
13 [System.Guid]::NewGuid(),
14 $false,
15 $null
16)

8. Add the ACE to System ACL:

1 $index = 0
2 # Add to the ACL
3 $SystemACL.InsertAce($index, $EveroneAuditACE)

To add more ACEs, increment the $index variable.
9. Define control flags for the security descriptor to determine the descriptor behavior. A

PowerShell session configuration security descriptor contains:

1 $ControlFlags = [System.Security.AccessControl.ControlFlags]
2
3 $Flags = @(
4 # Specifies that the DACL is not null.
5 # Set by resource managers or users.
6 $ControlFlags::DiscretionaryAclPresent
7
8 # Specifies that the SACL is not null.
9 # Set by resource managers or users.

10 $ControlFlags::SystemAclPresent
11
12 # Specifies that the resource manager prevents auto-inheritance.
13 # Set by resource managers or users.
14 $ControlFlags::DiscretionaryAclProtected
15
16 #Specifies that the resource manager prevents auto-inheritance.
17 #Set by resource managers or users.
18 $ControlFlags::SystemAclProtected
19
20 # Specifies that the security descriptor binary representation
21 # is in the self-relative format. This flag is always set.
22 $ControlFlags::SelfRelative
23
24)

Just Enough Administration 503

For a complete list of control flags, refer to the ControlFlags²⁷ .NET class documenta-
tion.

10. Create the security descriptor and export using the GetSddlForm() method.

1 # Create the Secruity Descriptor, parsing in all the previous variables.
2 $SecurityDescriptor =
3 [System.Security.AccessControl.RawSecurityDescriptor]::new(
4 $Flags, $Owner, $PrimaryGroup, $SystemACL, $DiscretionaryACL
5)
6 # Now that the security descriptor exists,
7 # convert it to SDDL by calling GetSddlForm()
8 $SecurityDescriptor.GetSddlForm(
9 [System.Security.AccessControl.AccessControlSections]::All)

Full example:

Example 20: Building an SDDL string from scratch

1 # Step 1: Create the owner
2
3 # Alternatively use an SID
4 # $Owner = [System.Security.Principal.SecurityIdentifier]::new
5 # ('S-1-5-21-2274662803-2033504868-1650952085-500')
6
7 # In this case we will use a prefedined trustee
8 # NS being the SID string constant for 'Network Security'
9 $Owner = [System.Security.Principal.SecurityIdentifier]::new("NS")

10
11 # Step 2: Primary group
12 # BA being the SID string constant for 'Built-in Administrators'
13 $PrimaryGroup = [System.Security.Principal.SecurityIdentifier]::new("BA")
14
15 # Step 3: Create the Discretionary ACL
16 $DiscretionaryACL = [System.Security.AccessControl.RawAcl]::new(0,0)
17
18 # Step 4: Create ACE
19 $EveroneAllowedACE = [System.Security.AccessControl.ObjectAce]::new(
20 [System.Security.AccessControl.AceFlags]::None,
21 [System.Security.AccessControl.AceQualifier]::AccessAllowed,
22 1,
23 # 'WD' is an SID string constant for 'Everyone'
24 [System.Security.Principal.SecurityIdentifier]::new('WD'),
25 [System.Security.AccessControl.ObjectAceFlags]::None,
26 [System.Guid]::NewGuid(),
27 [System.Guid]::NewGuid(),
28 $false,
29 $null
30)
31
32 # Step 5: Add the ACE into the ACL
33 $index = 0
34
35 # Add to the ACL
36 $DiscretionaryACL.InsertAce($index, $EveroneAllowedACE)
37
38 # Step 6: Create the System ACL
39 $SystemACL = [System.Security.AccessControl.RawAcl]::new(0,0)

²⁷https://learn.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.controlflags

https://learn.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.controlflags
https://learn.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.controlflags

Just Enough Administration 504

40
41 # Step 7: Create an ACE for SystemACL
42 $EveroneAuditACE = [System.Security.AccessControl.ObjectAce]::new(
43 [System.Security.AccessControl.AceFlags]::SuccessfulAccess,
44 [System.Security.AccessControl.AceQualifier]::SystemAudit,
45 1,
46 # 'WD' is an SID string constant for 'Everyone'
47 [System.Security.Principal.SecurityIdentifier]::new('WD'),
48 [System.Security.AccessControl.ObjectAceFlags]::None,
49 [System.Guid]::NewGuid(),
50 [System.Guid]::NewGuid(),
51 $false,
52 $null
53)
54
55 # Step 8: Add ACE into SystemACL
56 $index = 0
57
58 # Add to the ACL
59 $SystemACL.InsertAce($index, $EveroneAuditACE)
60
61 # Step 9: Define the control flags for the security descriptor
62
63 # Within PowerShell remoting we will set the Protected flag ('P') for
64 # the SystemACL and DiscretionaryACL
65 $ControlFlags = [System.Security.AccessControl.ControlFlags]
66
67 $Flags = @(
68 $ControlFlags::DiscretionaryAclPresent
69 $ControlFlags::SystemAclPresent
70 $ControlFlags::DiscretionaryAclProtected
71 $ControlFlags::SystemAclProtected
72 $ControlFlags::SelfRelative
73)
74
75 # Step 10: Create the security descriptor and
76 # convert the object to the SDDL format.
77 $SecurityDescriptor =
78 [System.Security.AccessControl.RawSecurityDescriptor]::new(
79 $Flags, $Owner, $PrimaryGroup, $SystemACL,$DiscretionaryACL
80)
81 $SecurityDescriptor.GetSddlForm(
82 [System.Security.AccessControl.AccessControlSections]::All
83)

O:NSG:BAD:P(OA;;CC;;;WD)S:P(OU;SA;CC;;;WD)

18.6 Auditing PowerShell Remoting Sessions

While JEA session configuration is a capable security solution for PowerShell remoting, JEA also
has several monitoring features which allow you to manage ongoing connections within those
environments. They are:

1. Reviewing effective rights
2. PowerShell Event Logs
3. Session transcription logs

Just Enough Administration 505

18.6.1 Review Effective Rights

Troubleshooting user access can be cumbersome, especially with the complexities of reviewing
PowerShell session configurations. The Get-PSSessionCapability cmdlet enumerates all the
commands available from the PowerShell remoting endpoint for a specific user.

Example 21: Retrieving all available commands in the current PSRemoting session

1 $PSSessionCapabilityParams = @{
2 ConfigurationName = 'JEAMaintenance'
3 Username = 'CONTOSO\HelpdeskUser01'
4 }
5
6 Get-PSSessionCapability @PSSessionCapabilityParams

CommandType Name Version Source
----------- ---- ------- ------
Alias clear -> Clear-Host
Alias cls -> Clear-Host
Alias exsn -> Exit-PSSession
Alias gcm -> Get-Command
Alias measure -> Measure-Object
Alias select -> Select-Object
Function Clear-Host
Function Exit-PSSession
Function Get-Command
Function Get-FormatData
Function Get-Help
Function Measure-Object
Function Out-Default
Function Select-Object
Cmdlet Get-Process 3.0.0.0 ...
Cmdlet Get-Service 3.0.0.0 ...
Cmdlet Restart-Service 3.0.0.0 ...
Cmdlet Stop-Process 3.0.0.0 ...

Active Directory user direct-assigned permissions may not reflect the capabilities available via
Get-PSSessionCapability. Always use Active Directory group permissions (preferably using
the RBAC Active Directory group model, using Active Directory role groups) when delegating
access in the PowerShell session or the role capability.

This solution assists helpdesks and system administrators in troubleshooting issues with user
access. Another use case is to provide reporting and ongoing security testing. In the example
below, a Pester test validates the effective access of several users:

This example requires Pester 5.0 or higher.

Just Enough Administration 506

Example 22: Validating effective access for a session configuration with Pester

1 $Params = @(
2 @{
3 # User1 should have no access to the server
4 ADUserName = 'CONTOSO\User1'
5 ExpectedCmdlets = @()
6 }
7 @{
8 # User2 should only have Get-ChildItem
9 ADUserName = 'CONTOSO\User2'

10 ExpectedCmdlets = @('Get-ChildItem')
11 }
12 @{
13 # User3 should only have Get-Service and Stop-Service
14 ADUserName = 'CONTOSO\User3'
15 ExpectedCmdlets = @('Get-Service', 'Stop-Service')
16 }
17)
18
19 Describe "Test PowerShell remoting effective access on $ENV:Computer" {
20
21 It "Returns <ExpectedCmdlets> (<ADUserName> on <Computer>)"
22 -ForEach $Params -Test {
23
24 $params = @{
25 ConfigurationName = 'JEAMaintenance'
26 UserName = $ADUserName
27 }
28
29 $session = Get-PSSessionCapability @params |
30 Where-Object CommandType -eq 'Cmdlet'
31
32 # Test that the commands returns remain correct.
33 # No more, no less.
34
35 ($session | Sort-Object -Property Name).Name |
36 Should -Be ($ExpectedCmdlets | Sort-Object)
37
38 }
39
40 }

18.6.2 PowerShell Event Logs

PowerShell Script Block and module logging can also log each command executed within a
PowerShell JEA session.

Using Group Policy to enable script execution logging:

1. Open Group Policy Editor.
2. Browse to: Computer Configuration \ Administrative Templates \ Windows Compo-

nents \ Windows PowerShell
3. Select Turn on PowerShell Script Block Logging
4. Select Enabled
5. Select OK
6. Restart the computer to apply the Group Policy configuration

Just Enough Administration 507

Enabling the ‘Log script block invocation start/stop events’ will generate a large number
of events.

Use Computer Configuration to enable logging on all machines within the domain.

You can consolidate PowerShell event logs and transcription logs by ingesting the contents into
Azure Sentinel. Azure Sentinel uses the Azure Log Analytics (OMS Agent). You can configure
event log and custom log ingestion.²⁸ ²⁹

Be aware that Azure Sentinel logging isn’t free. A large number of events can lead to a
large charge for storage space.

18.6.3 Session Transcription Logs

PowerShell session configuration provides transcription logging of PowerShell sessions, enabling
you to analyze ongoing PowerShell remoting session configuration. When implementing tran-
scription, always consolidate all transcription locations into a single restricted staging directory,
pending upload to Azure Log Analytics/Sentinel.

18.6.4 Removing Existing PowerShell Sessions

While JEA is a valuable tool that enables you to restrict users/applications to predefined role
capabilities, PowerShell leaves the default session configurations enabled by default. If there is
no requirement for the default session configurations to be available, use DSC to disable them.

The script resource shown below uses Get-PSSessionConfiguration -Name microsoft.*
to enumerate the default Microsoft configurations and pipes the result into Disable-
PSSessionConfiguration.

²⁸Microsoft. (2021, Jun. 09). Collect Windows event log data sources with Log Analytics agent. Microsoft Docs. [Online]. Available:
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-windows-events. [Accessed: Oct. 14, 2021].

²⁹Microsoft. (2021, Aug. 10). Overview of Azure Monitor agents. Microsoft Docs. [Online]. Available: https://learn.microsoft.com/en-
us/azure/azure-monitor/agents/agents-overview. [Accessed: Oct. 14, 2021].

https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-windows-events
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview

Just Enough Administration 508

Example 23: DSC configuration removing the default session configurations

1 Configuration DisableDefaultPowerShellRemoting
2 {
3 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'
4 Import-DscResource -ModuleName 'WSManDsc'
5
6 Node $AllNodes.Where{$_.PSRemotingEnabled}.NodeName {
7 Script EnablePowerShellRemoting {
8 SetScript = {
9 Get-PSSessionConfiguration -Name microsoft.* |

10 Disable-PSSessionConfiguration
11 }
12 GetScript = {
13 # Fetch all OOBE default PS sessions.
14 @{
15 Result = Get-PSSessionConfiguration -Name microsoft.*
16 }
17 }
18 TestScript = {
19 $state = [scriptblock]::Create($GetScript).Invoke() |
20 Where-Object Enabled -eq $true
21 $state.Result -contains $true
22 }
23 }
24 }
25 }

18.7 Further Reading

• About Session Configuration Files—Microsoft Docs³⁰
• About Session Configurations—Microsoft Docs³¹
• New-PSSessionConfigurationFile—Microsoft Docs³²
• New-PSRoleCapabilityFile—Microsoft Docs³³
• JEA Role Capabilities—Microsoft Docs³⁴
• Introducing the Updated JEA Helper Tool—Microsoft Docs³⁵
• Find-RoleCapability—Microsoft Docs³⁶
• Invoke-Command—Microsoft Docs³⁷
• About Language Modes—Microsoft Docs³⁸
• Security Descriptor String Format—Microsoft Docs³⁹
• ACE Trustees—Microsoft Docs⁴⁰
• ACE Strings—Microsoft Docs⁴¹

³⁰https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_session_configuration_files
³¹https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_session_configurations
³²https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile
³³https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile
³⁴https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
³⁵https://learn.microsoft.com/en-us/archive/blogs/privatecloud/introducing-the-updated-jea-helper-tool
³⁶https://learn.microsoft.com/en-us/powershell/module/powershellget/find-rolecapability
³⁷https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command
³⁸https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
³⁹https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format
⁴⁰https://learn.microsoft.com/en-us/windows/win32/secauthz/trustees
⁴¹https://learn.microsoft.com/en-us/windows/win32/secauthz/ace-strings

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_session_configuration_files
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_session_configurations
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://learn.microsoft.com/en-us/archive/blogs/privatecloud/introducing-the-updated-jea-helper-tool
https://learn.microsoft.com/en-us/powershell/module/powershellget/find-rolecapability
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format
https://learn.microsoft.com/en-us/windows/win32/secauthz/trustees
https://learn.microsoft.com/en-us/windows/win32/secauthz/ace-strings
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_session_configuration_files
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_session_configurations
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/role-capabilities
https://learn.microsoft.com/en-us/archive/blogs/privatecloud/introducing-the-updated-jea-helper-tool
https://learn.microsoft.com/en-us/powershell/module/powershellget/find-rolecapability
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://learn.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format
https://learn.microsoft.com/en-us/windows/win32/secauthz/trustees
https://learn.microsoft.com/en-us/windows/win32/secauthz/ace-strings

Just Enough Administration 509

• SECURITY_DESCRIPTOR_CONTROL—Microsoft Docs⁴²
• Authentication for Remote Connections—Microsoft Docs⁴³
• WinRM Security—Microsoft Docs⁴⁴
• Kerberos Key Distribution Center—Microsoft Docs⁴⁵
• Credential Security Support Provider—Microsoft Docs⁴⁶

⁴²https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/security-descriptor-control
⁴³https://learn.microsoft.com/en-us/windows/win32/winrm/authentication-for-remote-connections
⁴⁴https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
⁴⁵https://learn.microsoft.com/en-us/windows/win32/secauthn/key-distribution-center
⁴⁶https://learn.microsoft.com/en-us/windows/win32/secauthn/credential-security-support-provider

https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/security-descriptor-control
https://learn.microsoft.com/en-us/windows/win32/winrm/authentication-for-remote-connections
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://learn.microsoft.com/en-us/windows/win32/secauthn/key-distribution-center
https://learn.microsoft.com/en-us/windows/win32/secauthn/credential-security-support-provider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/security-descriptor-control
https://learn.microsoft.com/en-us/windows/win32/winrm/authentication-for-remote-connections
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://learn.microsoft.com/en-us/windows/win32/secauthn/key-distribution-center
https://learn.microsoft.com/en-us/windows/win32/secauthn/credential-security-support-provider

Afterword
By Bill Kindle

This book was written during rather interesting times in the world, and with that came unique
challenges.

But here we are.

Through all the difficulties and roadblocks, a new PowerShell automation book was born.

Thank you for your support on behalf of the editorial and author teams.

You have just read through a collective work of contributors from the greater PowerShell
community. Unlike The PowerShell Conference Book vol. 1-3, we aimed to build something
different. Many months were poured into these pages to bring you, the reader, a PowerShell book
worthy of use in an academic setting.

You may wonder, “What was the reason for the cover art?”

Amy Zanatta designed the cover art and had this to say:

“Initially, I was approached by the Senior Editors to design a cover art image. I used
the PowerShell hero image for my color selection, with textures, font, and photography
added to provide a technical and professional look and feel.”

And she did a bang-up job at that!

So what challenges did the team face?

We had several authors drop from the project, with pressure on the senior editorial staff to fill in
the gaps. Michael Zanatta, Matt Corr, and Nicholas Bissell stepped up to write multiple chapters.
Thank you! However, considering the timeframe and lifespan of the project, we decided to drop
unfinished chapters to focus on releasing the book.

LeanPub continues to present challenges in howmarkdown is rendered. Asmany on the team can
attest, life sometimes gets in the way. Illness, family obligations, and job changes from authors
and editors created delays. However, the resiliency of the editorial and author teams shined.

What’s next? A well-earned break! A second edition will be considered later, adding/updating
content.

On a personal note, PowerShell was a game changer for my career. It helped me become a better
sysadmin and was a gateway for beginning to write. It has been amazing to see so many people
come together worldwide to work on a project and see that project become a reality. I liked the
first PowerShell Conference Book Volume 1 so much that I decided to help write a chapter for
Volume 2. I was then invited to become one of the editors for Volume 3. Michael Zanatta invited
me to join this project in the spirit of the first three volumes.

And here I am, standing on the shoulders of giants as an editor. I would have never thought back
in 2011, when I first started using PowerShell in my job, that I would be writing the afterword
for Modern IT Automation with PowerShell.

510

Afterword 511

Thank you. Until next time…

Index
A, SYMBOLS

                                                             

SYMBOLS A (cont’d)

$_. See $PSItem Add-CATemplate 427

Add-Content 14, 22, 33, 162–163, 266–267

A Add-Type 216–217, 453–454

AAA approach 56–70 agile 38

  Act 56, 63–64, 66–69 Amazon Web Services (AWS) 260, 276, 500–501,
503–504

  Arrange 56, 63, 65–69   CloudFormation 276, 484

  Assert 56, 63, 66–69 Ansible 193, 484

Access Control Entry (ACE) 479, 496–504, 508 AppendLine 122–123

Access Control List (ACL) 479, 496–499, 501–504 Approve-CertificateRequest 416

Active Directory Certificate Services (AD CS)
401–402, 414–415

approved verbs 161, 173

Active Directory Domain Services (AD DS)
426–427

  design considerations 173

Active Directory Federation Services (AD FS) 401 $args

Add-AdCertificate 428 Assert-MockCalled 79

Add-AzVMNetworkInterface 284 Assert-VerifiableMock 79

Add-CAAuthorityInformationAccess 406, 409,
422

attributes

Add-CACrlDistributionPoint 405–408, 421–422   [CmdletBinding()] 71, 73, 165–166, 320

512

Index 513

B, C

                                                             

A (cont’d) A (cont’d)

attributes (cont’d) Azure DevOps (cont’d)

  [ValidateCount()] 108, 167, 171   failTaskOnFailedTests 115–116

  [ValidateLength()] 167, 170–172   mergeTestResults 115

  [ValidateNotNull()] 167–168   RunPesterTests 112, 115

  [ValidateNotNullOrEmpty()] 168   testResultsFiles 115

  [ValidatePattern()] 319–320   testResultsFormat 115

  [ValidateScript({})] 97, 135, 138, 168–169, 172,
319
  [ValidateSet()] 58, 167, 169–170, 271 B
Authority Information Access (AIA) 403–409,
419–423

base type 199, 236–237

  AddToCertificateAia 408 big-endian 349

Azure 125, 275, 292–293 black box testing 125, 188

  Azure Active Directory 428, 471 blueprint 277, 279, 291–292

  Azure AD Connect 469 branch policy 40, 116

  Azure Automation State Configuration
483–484

  build validation 116

  Azure Bicep 276

  Azure Cloud Shell 271–272, 278, 293 C
  Azure DevOps 46, 54, 114–118, 124–125 case-sensitive operators 202–257

  Azure Load Balancer 279, 281 Certificate Authority (CA) 388, 392, 401–430, 478

  Azure Resource Manager (ARM) 275–276, 484 certificate containers 427–428

  Azure SQL 278–279, 289 Certificate Revocation List (CRL) 388, 401–413,
419–423

  Azure Storage Account 281, 289 certificate template 415, 424–427

  Azure Subscription 278 CertificateDsc 428–429, 433

  Azure VM 279 CertificateImport 428–429, 433

  free trial 293 certificates

  Resource Group 272, 280–281, 283   CACommonName 402, 414

Azure DevOps 46, 54, 114–118, 124–125   CAType 402, 414

  failOnStderr 115   CryptoProviderName 402, 414

Index 514

                                                             

C (cont’d) C (cont’d)

certificates (cont’d) collections

  HashAlgorithmName 387, 402, 414   left-hand 156–157, 180, 234, 470

  KeyLength 402–403, 414   many-to-one 235

  private key 262, 387, 402   one-to-many 234

  public key 386–387, 391–392, 400–402, 434   right-hand 156–157, 180, 235, 460

  ValidityPeriod 402, 411, 422 Comma-Separated Values (CSV) 140, 181, 183–189,
197, 201, 266

  ValidityPeriodUnits 402, 411, 423 comment-based help 42, 46, 48, 186

CertStoreLocation 391 commenting 183

certutil 410–412, 418, 422–423, 425 Common Language Infrastructure XML (CLIXML) 73,
95–96, 148, 188, 197–201, 475

change reviews 41 Compare-Object 162–163, 181

checksum. See hash sum Component Object Model (COM) 380, 449, 452

Clear-Host 505 concatenation 152

cloud computing 275 Configuration as Code (CaC) 275, 285–287, 289,
291–292

code regions 186 configuration drift 275, 285, 292

code reviews 38–54, 114, 186 configuration file 191, 263, 275–277, 438, 440–441, 476,
479, 486, 492, 500, 508

  automated checks 41, 47 Connect-AzureAD 272

  automated tests 114 Connect-CertificationAuthority 416

  Communication 46–47 console-based security 447

  face-to-face 47 Constrained Language Mode (CLM) 447–473

  feedback 38–39, 43–44, 46–47 Continuous Integration/Continuous Delivery (CI/CD)
8, 47, 115, 118, 276–277

  open-ended 43, 46 ConvertFrom-Csv 197–198

  opinion 43–44 ConvertFrom-Json 191–192, 426

  review comments 43–44 ConvertFrom-SddlString 500

  reviewer 41–42, 45–47 ConvertFrom-Yaml 194

  reviews 38–54 ConvertTo-Csv 197–198

code signing 386, 391–395, 400, 413, 424–434 ConvertTo-Json 191–192

CodeSigningCert 392, 394–395, 432 ConvertTo-SecureString 199, 280, 284

Index 515

D, E

                                                             

C (cont’d) D (cont’d)

ConvertTo-Yaml 194 Desired State Configuration (DSC) (cont’d)

Copy-Item 181, 183–185, 187   Configuration Scripts (cont’d)

cost 56, 276, 333, 346, 370–372, 393, 401, 481     JEAMaintenance 487

credentials 260, 280, 284, 478     JeaRoleCapabilities 482

CRL Distribution Point (CDP) 388, 403–412,
418–423

    PowerShellRemoting 485

  AddToCertificateCdp 407   Datum Module 193, 493

  AddToCrlIdp 407   DSC Resource 429, 433, 482

  AddToFreshestCrl 407   keywords

cryptographic 386–387, 401–403, 435     Configuration 286, 288

cryptography 360, 387, 394, 401–402, 409, 413, 415,
428, 430, 434

  Managed Object Format (MOF) 191, 287–288

culture 101–102, 158–159, 337–338, 353, 449   Pull Server 486

  The DSC Book 289, 293

D digital certificate 387–388

data digital signature 386–387, 391, 397

  deserialization 191–195, 197, 199–201, 475 Disable-PSSessionConfiguration 476, 508

  serialization 103, 115, 191–195, 197–201, 475 disposability 277

delimiter 154, 183, 197–198, 311–315, 328 documented 184, 278, 431

Delimiter-Separated Values (DSV) 197

Desired State Configuration (DSC) 48–49, 52, 145,
275–293, 428–429, 433, 474, 482–487, 493, 507–508

E

  Configuration Scripts Enable-PSRemoting 484–485

    Configure-IISServer 286–288, 290 Enable-PSSessionConfiguration 476

    DisableDefaultPowerShellRemoting 508 Enter-PSSession 491, 495

Index 516

F, G

                                                             

E (cont’d) F (cont’d)
Enums 216–218 Format-List 62, 417, 419–420, 428, 430, 494

  bit flag 216–218 Format-Table 215, 324, 350, 366

environment variables 122, 456–457

errors G
  non-terminating error 215, 265 Garbage In, Garbage Out (GIGO) 294, 296

  terminating error 215, 265 GDPR (General Data Protection Regulation) 260

execution policy 263, 435–443, 445–446, 474 Get-ADComputer 178–179

Exit-PSSession 488, 505 Get-ADCSTemplate 426

Expand-Archive 162–165 Get-AdPkiContainer 428

ExplicitCapture 314, 331–332, 352, 354, 371 Get-ADPrincipalGroupMembership 179

Export-ADCSTemplate 425 Get-ADUser 179

Export-Certificate 432 Get-Alias 318

Export-Clixml 85, 93–95, 134–136, 147–148,
199–201

Get-AuthenticodeSignature 397

Export-Csv 140, 197, 266–267, 269 Get-AzLoadBalancerBackendAddressPool 283

Export-Excel 141–142 Get-AzResourceGroup 272, 280–281, 283

Export-ModuleMember 84 Get-AzureADUser 272

eXtensible Markup Language (XML) 137, 174,
194–196, 198, 201

Get-AzVirtualNetwork 283

Get-AzVirtualNetworkSubnetConfig 283

F Get-CAAuthorityInformationAccess 404, 406,
420–421

filtering left 147–148 Get-CACrlDistributionPoint 403, 405, 419–420

Find-Module 485 Get-Certificate 429

Find-RoleCapability 508 Get-CertificateRequest 415

Index 517

                                                             

G (cont’d) G (cont’d)

Get-CertificateRevocationList 409, 412 Get-Random 88–89, 93, 95, 181, 183–187, 319

Get-CertificateTemplate 424 Get-Service 140, 266–268, 480, 482, 487, 492,
505–506

Get-CertificationAuthority 427 Git 2–37, 105, 107, 114, 116–119, 277

Get-ChildItem 4–19, 29, 138, 291, 391–395, 417,
430–432

  asterisk 13, 18

Get-CimInstance 147–148   branch 2, 4, 6–28, 31–35

Get-Command 57, 95, 126, 488, 505     develop 13, 15–16, 18, 20, 23, 32–33

Get-Content 15–19, 22–23, 29, 95, 134–135,
141–142, 173–174, 191–192, 199, 267, 272, 286,
316–318

    feature 7–8, 21

Get-Culture 101     HEAD 11–12, 14, 17, 20–23, 26, 28–29, 35

Get-Date 74, 93, 95, 158–161, 266–268, 273     hotfix 7–8

Get-DscConfiguration 289     main 2, 4, 6–14, 16–26, 28–29, 31–32, 34–35

Get-DscConfigurationStatus 288     release 7–8

Get-ExecutionPolicy 445   chain diagram 11, 16

Get-FileHash 162–163, 387   Cloning a remote repo 5

Get-FormatData 505   commit 2, 9–12, 15–28, 32–36

Get-Help 488, 505   commit hash 11–12, 28, 35

Get-History 268–269   commit message 24, 26, 28

Get-InstalledModule 107   default branch 2, 4

Get-IssuedRequest 417   display all branches 12

Get-Item 85–86, 95, 162–165, 191, 195, 392, 417,
430

  Fast-forward 18–19, 21, 32

Get-ItemPropertyValue 433   fork 2, 18

Get-Member 212, 489   .git 2, 4–6, 11, 24–25, 30–34, 37

Get-Module 83, 107   git add 9–10, 15, 20, 22–27, 36

Get-PendingRequest 416   git branch 6, 12, 17, 31, 114, 116–117, 119

Get-Process 147–148, 192, 197, 200, 238, 242, 255,
480, 482, 487, 505

  git checkout 12–13, 16, 18, 23, 32–34

Get-PSReadlineOption 269–270   git clean 27

Get-PSSessionCapability 476, 505–506   git clone 5–6, 29, 36

Get-PSSessionConfiguration 476, 493–495, 497,
507–508

  git commit 10–11, 15–16, 20, 22–24, 26, 33–34,
36

Index 518

                                                             

G (cont’d) G (cont’d)

Git (cont’d) Git (cont’d)

  git config 3–4, 10, 34   newassets.lib 14–19, 21, 23–24, 32, 34

  Git global username 3–4   origin 2, 13, 18, 31–35

  git init 4   orphaned 21, 26

  git log 11, 21, 28   ours and theirs 24

  git merge 18, 20, 22–23, 32   parent commit 21

  git pull 32, 35   Pull Request 7, 12, 18, 32, 35

  git push 31–33, 36   Pull Request Template 46, 54

  git remote 31   pushing 31–33

  Git repository 2, 4–6, 8, 10–11, 13, 29   README 30

  git reset 20, 22, 25–27, 29, 34–35   remote repository 2, 13, 29, 31–32, 34, 36

  git rm 10   repository (repo) 2–6, 8–14, 16–22, 24–25,
28–32, 34–37

  git stash 25   root-commit 10

  git status 8–13, 15–16, 23–24, 26–27, 34–35   soft reset 26, 34

  Gitflow 7   source control 36

  .gitignore 30   staged 10, 15, 25–26

  hard reset 27–29, 35   starting from scratch 36

  Head 25   trunk 8

  Index 25   trunk-based 8

  init.defaultbranch 4   upstream 31

  Initialize 4   version control 2

  latest commit 11, 17, 25   working branch 6

  local branch 31, 33, 35   working directory 4–5, 15, 27

  main branch 2, 7–8, 12, 16, 18–20, 22, 31–32,
34–35

  working tree 11–17, 19, 25–27, 29, 35

  master branch 2, 4 GitHub 2–37, 118–125

  merge commit 19–21, 24   all branches 12

  merge conflict 22–23, 25   GitHub Actions 118–120, 122, 125

Index 519

H, I

                                                             

G (cont’d) I (cont’d)
GitHub (cont’d) Import-DscResource 429, 433, 482, 485, 487, 508

  GITHUB_STEP_SUMMARY 122–123 Import-Module 57, 84, 107, 126–127, 291, 409,
450–451

  pulled 2, 32 Import-PSSession 491

  pushed 30, 32, 40–41 Information Technology Infrastructure Library
(ITIL) 38, 40, 54

  setting private repository 30 Infrastructure as Code (IaC) 275–293

Group Policy   configuration scripts

  Logging 261     Azure-Load-Balancer.psm1 279, 281

Group-Object 146–147     Azure-SQL-Server.psm1 279

Grouping, Sorting, and Filtering (GSF) 146–148,
273, 305, 389

    Azure-Storage-Account.psm1 279, 281

  example 147     Azure-Virtual-Machine.psm1 279, 283,
290–291
    Deploy-WebServer.ps1 279

H     Two-Tier-App-Blueprint.ps1 279, 291

hash sum 387   declarative IaC 276

HKEY_CURRENT_USER (HKCU) 432, 440, 443   imperative IaC 275–276, 278

HKEY_LOCAL_MACHINE (HKLM) 410–411,
422–423, 433, 440–443

InModuleScope 83, 85–86, 103

Install-AdcsCertificationAuthority 402, 414

I Install-Module 57, 107, 126, 193, 485

idempotency 276–277   -Force 107, 126

immutability 276–277, 379, 497   -SkipPublisherCheck 107, 126

Import-Certificate 394, 414, 427, 432 Install-WindowsFeature 402, 414, 426

Import-Clixml 73, 135, 138, 188–189, 199–201 integers

Import-Csv 181, 183–189, 197   signed 226–228

Index 520

J, K, L, M

                                                             

I (cont’d) I (cont’d)
integers (cont’d) Invoke-ScriptAnalyzer 48–49

  unsigned 226–227 Invoke-WebRequest 192, 241, 455

interpolation 145–146, 152–154, 161

  composite formatting (-f) 153, 157, 159, 201 J
    composite dates 159 JavaScript 191, 263, 336

    formatting types (table) 157 JavaScript Object Notation (JSON) 191–194, 201,
263, 425–426

    index order 155 Join-Path 83, 93, 95, 99–100, 162–163, 195, 395,
399, 406–409, 412, 416, 422, 427–432, 480

    literal formatting 160 Just Enough Administration (JEA) 474–509

    placeholder 154–155, 157

    syntax 154 K
  variable substitution 152–153 key storage provider 402–403, 414

Invoke-Command 178–179, 491–492, 508

Invoke-Expression 47, 451 L
Invoke-Pester 58–61, 64–67, 71–98, 100, 112–115,
119–120, 126, 128–129, 131–132, 135–140, 142, 321

language modes 474, 490, 508

  -Configuration 113–115, 119, 122, 137–138   Allowed Types 449

  -ExcludeTagFilter 112   Constrained Language Mode (CLM) 385,
444–445, 447–473, 493

  -Output 67, 75, 78, 82, 87, 92, 94, 96, 98, 100,
129, 131–132, 136–137, 142, 321

  ConstrainedLanguage 385, 444–445, 447–473,
493

  -Output Detailed 64, 112–113   FullLanguage 447–448, 493

  -Output Diagnostic 111   NoLanguage 447, 493

  -OutputFile 115, 139   RestrictiveLanguage 447

  -PassThru 142 logging 258–274

  -Path 67, 112–113, 128–129, 131 logging configuration (non-Windows) 263

  -Script 139 logging options 261–263, 265–266

  -Tag Unit 63, 66, 68–69, 110, 114–115, 119, 122

  -TagFilter M
    Unit 113 malicious code 386, 390, 447, 456

Invoke-RestMethod 58, 71–72, 88–92, 192,
380–381

math

Index 521

N

                                                             

M (cont’d) M (cont’d)

math (cont’d) methods (cont’d)

  base 10 219, 226–228   NextMatch() 324

  base 2 219, 224–228   ReadScriptContents() 456

  binary 111, 216, 219, 224–230, 251, 315, 382,
425, 431, 433, 502

  Replace() 134, 238, 325–327

    LSB 219, 228   Split() 326–327

    MSB 219   Synchronized() 379–380

  decimal 158, 219, 223–226, 299, 329, 337, 349,
375, 377, 449

  ToString() 123, 135, 138, 160–161, 212

Measure-Command 370, 374     Composite Formatting 160

Measure-Object 488, 505   Unescape() 327–329

methods   Where() 147

  Escape() 239, 327–329 MITA Extras 5–6, 36–37, 59, 63, 65, 68, 70, 72, 75,
79, 82, 87, 92, 94, 96, 98, 100, 103, 279, 291, 382

  ForEach() 249 multiline string. See strings - here-string
  GetAppLockerPolicy() 457

  GetDebugLockdownPolicy() 457 N
  GetGroupNames() 329 nested conditions 175–176

  GetGroupNumbers() 329 nested statement 175, 178–180, 189, 253

  GetLockdownPolicy() 456–457 network

  GetSystemLockdownPolicy() 452, 456   IP address 291, 329–330, 347–348, 378, 478

  GetType() 192, 194, 199–200, 213–214, 233, 455 New Technology File System (NTFS) 334, 439

  GetWldpPolicy() 457 New-ADCSTemplate 426

  GroupNameFromNumber() 330 New-AzAvailabilitySet 284

  GroupNumberFromName() 330 New-AzLoadBalancer 282

  IndexOf() 234 New-
AzLoadBalancerBackendAddressPoolConfig
282

  IsMatch() 322–323 New-AzLoadBalancerFrontendIpConfig 282

  Match() 323 New-AzLoadBalancerProbeConfig 282

  Matches() 296, 324–326 New-AzLoadBalancerRuleConfig 282

  .NET Methods 306, 310, 317, 321, 325, 370 New-AzNetworkInterface 284

Index 522

O

                                                             

N (cont’d) O
New-AzPublicIpAddress 282 objects

New-AzResourceGroup 280–281, 283   constructor 103, 322, 369

New-AzSqlDatabase 280 Office 365

New-AzSqlServer 280   EMS 469

New-AzSqlServerFirewallRule 280   Enterprise Mobility + Security 469

New-AzStorageAccount 281   Intune 261, 429, 434, 469–470, 472, 484

New-AzVM 285     Device Policy 470

New-AzVMConfig 284     Microsoft Endpoint Manager Admin Center
(MEMAC) 470–471

New-ConditionalText 141–142     Policy Auditing 466, 469

New-EventLog 271   Mobile Device Management 469

New-Item 4, 14, 127, 136, 181, 183–185, 187, 480 operator precedence 202, 250, 252–257

New-MockObject 101–103   hashtable literal syntax 253

New-Module 83   higher precedence 252, 256

New-ModuleManifest 480   lower precedence 252, 256

New-Object 280, 284, 322, 452–453, 456   operator

New-PesterConfiguration 114–115, 119, 122, 138     assignment 202, 242–243, 250–251, 253,
255–257

New-PesterContainer 136–137, 142     negation 250, 253

New-PSRoleCapabilityFile 480, 508   precedence 80–82, 145, 202, 250–257, 439, 442

New-PSSession 485, 491   precedence group 251

New-PSSessionConfigurationFile 476, 481–482,
486, 508

operators

New-ScheduledTask 455   -as 215–257

New-SelfSignedCertificate 391   bitwise operators 216–230

Index 523

                                                             

O (cont’d) O (cont’d)

operators (cont’d) operators (cont’d)

  bitwise operators (cont’d)   -notcontains 238

    -band 216, 223, 229–230   -notin 234, 238, 251

    -bnot 216, 226   -notlike 230, 233, 251

    -bor 216, 224, 229   null-coalescing 240–243, 252

    -bxor 216, 225   null-coalescing assignment 242–243, 252

    -shl 216, 228   null-conditional 243–246, 251

    -shr 216, 228   null-conditional operator 244–245

  case-insensitive operator 202–207, 230–232, 309, 314,
319, 333, 338, 342, 352

  operator precedence 250–257

  case-sensitive operator 202–203, 206, 311, 315, 319,
322, 325, 360

  powershell operators 202, 308, 322

  -contains 234–238, 251   regex

  -creplace 310–311     -cmatch 203, 309, 319–320

  -csplit 203, 314–315     -cnotmatch 203, 309, 319

  -in 235, 237, 251     -imatch 309, 328, 364

  -ireplace 311, 380     -inotmatch 309, 319

  -is 213–214     -notmatch 234, 251

  -isnot 213–214   -replace 238–239, 251

  -isplit 315   -split 251

  -join 251, 255–256   string

  -like 230–234, 251     -f 153–154, 161

    wildcards 230   subexpression 242–244, 251, 253

  looping   ternary operator 239–240, 252

    break 247–249   typecasting 215–216

    continue 248     -as 213, 215–216, 251, 255

    labels 247–249     -is 213–214, 250–251

    :looplabel 247–249     -isnot 213–214, 250–251

  -match 230, 234, 251 Out-Default 488, 505

Index 524

P

                                                             

O (cont’d) P (cont’d)

Out-File 123, 266, 272, 316, 321 Pester (cont’d)

  Mock 78, 97

P   New-MockObject 101–103

parameters   New-PesterConfiguration 114–115, 119, 122,
138

  param() 58–61, 71, 73–74, 102, 108, 135, 138,
141–142, 150, 162–174, 191, 271, 279, 281, 283, 286,
291, 320, 326, 332, 362, 490

  New-PesterContainer 136–137, 142

Pester 45–47, 54–144, 278, 320–321, 505–506   ParameterFilter 65–66, 87–88, 91, 93, 99

  AfterAll 107, 134   Pester Container 135–137, 142

  AfterEach 134–135   $PesterBoundParameters 83, 89

  Assert-MockCalled 79   run tests 7, 65, 111–112, 375

  Assert-VerifiableMock 79   Should 63–64, 66–69, 74–76, 80–81, 84–86, 90,
95–96, 100, 109–110, 128–135, 137–138, 141, 143,
320–321

  BeforeAll 63, 65, 68, 74–75, 79–82, 84–85,
88–89, 93–95, 97, 99, 109, 128–130, 132–135, 137,
140

    -Exactly 76–78, 85–86, 91–94, 100, 439, 442

  BeforeDiscovery 79, 83, 133, 140–143     -ExclusiveFilter 93–94, 100

  BeforeEach 74, 79–82, 90, 134–135     -Invoke 75–79, 86, 91–94, 100

  Configuration object 113–114     -InvokeVerifiable 78–79, 86, 91

  Context 76–78, 81, 85, 91–92, 94–95, 111, 131,
143

    -Match 135, 137, 140–141, 143, 321

  Debug Tests 111     -MatchExactly 321

  Describe 63, 66, 68–69, 74, 76–81, 84–86, 88,
90–91, 93, 95, 97–100, 109–110, 112, 128–135, 138,
140–141, 143, 321, 506

    -Not 69, 76, 80–81, 95, 110, 131–132, 134–135,
321

    -Tag 63, 66, 68–69, 110, 112     -Times 76, 93, 396

  Invoke Tests 76, 78     -Verifiable 65–66, 78–79, 86, 88–89, 91

  Invoke-Pester 64, 67, 75, 78, 82, 87, 92, 94, 96,
98, 100, 112–115, 119–120, 122, 126, 128–129,
131–132, 135–140, 142, 321

  Tag 63, 66–69, 110, 112–115, 119, 122

  It 74, 77–81, 90, 94, 110–111, 128–130, 452   Tags 67, 109, 363

    -TestCases 68–69, 74, 81, 109–110, 129   test drive (TestDrive:) 84–86, 93, 95, 99–100

Index 525

                                                             

P (cont’d) P (cont’d)

Pester (cont’d) PowerShell Core 127, 130–131, 133, 263, 443, 474

  Verifiable 65–66, 78–79, 86, 88–89, 91 PowerShell Gallery 48, 54, 57, 70, 107, 126, 193,
260, 274, 409, 425, 482, 485–486

  version PowerShell Remoting 198, 474–475, 477–478,
483–484, 491–492, 496–497, 504–507

    3.0 94, 126, 144   auditing 504

    4.0 74, 126, 138–139, 144     effective rights 505

    5.0 74, 79, 82, 96, 113, 505     Event Log 172, 261, 263, 326, 506

    5.3 74     transcription logs 504, 507

pipelines 36, 47, 50, 52, 114–116, 125, 128,
146–148, 167, 176, 182, 252, 265–266, 276, 315–316

  Authentication

plain text 260, 265, 295, 314, 317     Basic 477

PowerShell     Cert Authentication 478

  best practices 38, 54, 79, 191, 201, 258, 294–295,
370–384, 388, 403, 410

    Credential Security Support Provider
(CredSSP) 478–479, 485

  conventions 38–39, 42     Default 477

  dot source (.) 128, 251, 287, 396, 452     Kerberos 424, 477

  module     Negotiate (Windows Integrated
Authentication - IWA) 477

    PowerShell Protect 456   Just Enough Administration DSC (JeaDSC)
Module 482, 491

    PSPKI 409, 415, 418, 424, 427   Just Enough Administration DSC (JeaDSC)
Module Properties

    PSScriptAnalyzer 46–50, 54     AliasDefinitions 481, 490

    PSScriptAnalyzer Rule Sets 48     AssembliesToLoad 481, 491

  noun-verb 39     EnvironmentVariables 481, 491

  .psd1 48–51, 396, 451, 457, 459, 479–480, 484     FormatsToProcess 481, 491

  .psm1 50, 279, 281, 283, 290–291, 396, 450–451,
457, 459, 479–481

    FunctionDefinitions 481, 490

  .pssc 475, 482, 495–496     GroupManagedServiceAccount 488

  version     HungRegistrationTimeout 491

    PowerShell 2 127–131, 133, 200–201, 472–473     ModulesToImport 481, 489

    PowerShell 3 127, 129–131, 133, 447     MountUserDrive 489

    PowerShell 5.1 126–127, 130–131, 133,
136–137, 245, 258, 486

    RequiredGroups 489

    PowerShell 7 136–137, 190, 239–240,
242–243, 258, 313, 440–443, 451

    RoleDefinitions 479, 481–482, 486–488, 492

Index 526

R

                                                             

P (cont’d) P (cont’d)

PowerShell Remoting (cont’d) Principle of Least Privilege (PoLP) 474

  Just Enough Administration DSC (JeaDSC)
Module Properties (cont’d)

$PSBoundParameters 83, 150

    RunAsVirtualAccount 487–488, 492, 494 [PSCustomObject] 95–96, 193, 200, 256, 266,
327–328

    RunAsVirtualAccountGroups 488   from hash table 61, 65–66, 73–74, 85, 89,
152–153, 174, 180, 192, 194, 197–199, 212, 244–245,
255, 267, 348, 378, 381, 450

    ScriptsToProcess 481, 488 $PSItem 131–132, 141–143, 207, 315

    SessionType 488–489   as $_ 59–61, 72, 108, 131, 140–142, 147–148,
168–169, 172–173, 179, 181, 183–185, 187, 207, 212,
270, 306, 315, 318, 326, 332, 353–354, 361, 365, 367,
375, 377, 380

    TranscriptDirectory 487–488 [PSObject] 72, 74, 192, 199–200, 449–451, 500

    TypesToProcess 481, 491 PSScriptAnalyzer 45–51, 54, 114

    UserDriveMaximumSize 489 $PSVersionTable 134–138

    VariableDefinitions 481, 490–491 Public Key Infrastructure (PKI) 386, 391–393,
400–402, 404, 407, 416, 424, 427, 429, 434

    VisibleAliases 481, 489 Publish-AzVMDscConfiguration 290

    VisibleCmdlets 480–482, 487, 489 Puppet 484

    VisibleExternalCommands 481, 490

    VisibleFunctions 481, 489–490 R
    VisibleProviders 481, 490 Receive-Certificate 417

  PowerShell Role Capabilities 481, 483, 486, 488,
492–493, 497

refactoring 146–201

  Role Capabilities Configuration (Core)   advanced function parameters

    custom 481     execution order 169

    RoleCapabilities 481     parameter sets 166

    RoleCapabilityFiles 479–483     parameter sets attributes 167

  Role Definition design considerations 492   hash tables

  Session Configuration 447, 474, 476, 479,
481–483, 486–488, 491–500, 502, 505–508

    modification 148

    Policies 474   logic flow 188–189, 191

PowerShell security 385     techniques 189

PowerShell Workflow 451     waterfall design 189–190

  XAML 451   nested loops 177–178, 180

Predictive IntelliSense 270     using cmdlet parameters 178

Index 527

                                                             

R (cont’d) R (cont’d)

refactoring (cont’d) regex (cont’d)

  nested loops (cont’d)   capturing group (cont’d)

    using Compare-Object 181     captures 295–296, 305–306, 308, 312–314,
323–324, 329, 332, 336–337, 352–360, 362–363,
365–368, 370–371, 373–375, 377, 380, 383

    using Where-Object 179   character class 296, 298–300, 304, 312, 334, 336,
340–341, 351–352, 374

  output type 161, 173   character classes 298–300

  parameter typecasting   deterministic finite automaton (DFA) 341–342

    example 164   differences between flavors 296

  singular task 162   escape sequence 329

    example 161–162   escape sequences 303–304

  splatting   greedy 302–303, 335–336, 343, 346, 375

    complex example 151   group initializers 334

    example 150   inline options 297, 309, 316, 339, 354

regex 295–384   invalid pattern 328, 340, 360

  alternation 298, 312, 341–342, 346, 364   limitations 295–296

  anchors 299, 304–305, 331, 340–341, 343, 348,
360, 378–379

  lookahead 297, 310, 336, 348, 360–362, 364, 366

    beginning of string 310, 331, 336, 347, 353,
367, 374

  lookaround 297, 305, 310, 336, 346, 348,
360–362, 369, 378

    end of string 157, 335–336, 341, 347–348, 367   lookbehind 297, 336, 346, 361–362, 373–374, 376

    word boundary 172–173, 304–305, 310,
320–321, 325–326, 328, 348, 370, 373–374, 399, 430

  MatchTimeout 322, 370

    zero-width assertion 304–305   Max-Substrings 313

  atomic group 296–297, 345–346, 362, 369, 373   metacharacter 299, 309, 340, 355

  backreferences 296–297, 309, 329, 337, 346,
355–356, 358–360

  negative lookahead 297, 310, 348, 360–361, 366

  backtracking 296, 303–304, 342–346, 369–370,
373, 375–376, 383–384

  .NET Regex class 322, 371

    catastrophic backtracking 343–345, 369–370,
373

    CacheSize 333

  balancing groups 296–297, 346, 365–366, 368,
376

    constructor 322–323, 326–327, 329, 334,
353–354, 362

  captures 305–307     Escape() 328

    captures visualized 306–307     IsMatch() 323, 331, 333, 343, 345

  capturing group 305, 310, 312, 314, 323, 329,
331, 334, 340–341, 347, 355, 357, 359–365, 370

    Match() 324, 332, 335, 337, 348, 365–367, 378,
380

Index 528

S

                                                             

R (cont’d) R (cont’d)

regex (cont’d) regex (cont’d)

  .NET Regex class (cont’d)   [RegexOptions] (cont’d)

    Matches() 296, 306, 325, 361, 370, 374–375,
377, 380

    None 330

    [regex] type accelerator 321, 379     RightToLeft 335

    Replace() 325     Singleline 333, 352

    Split() 327–328   replacement patterns 309, 355–356, 358

    Unescape() 329   sentence terminator 374–376

  .NET regex vs. others 296–297, 336–338, 341,
344–345, 359

  sequential 302

  non-capturing groups 306, 331, 347, 363, 368,
371

  substring 295, 305, 311–314, 370

  nondeterministic finite automaton (NFA)
341–342

  wildcard patterns 296

  option modifier 352–353, 361   word boundary 304–305, 310, 348, 373

  option span 297, 354 Register-PSSessionConfiguration 476, 486, 495

  positive lookahead 297 Register-ScheduledTask 455

  quantifiers 296, 300–303, 311–312, 334–335,
340–341, 343–347, 364, 368–369

Remove-CAAuthorityInformationAccess 406,
421

    shorthand quantifiers 301 Remove-Item 134–135, 432–433

  recursion 296, 346–347, 365, 368 repeatability 68, 277

  Regex Denial of Service (ReDoS) 369–370 Requires 58, 147, 194, 485

  regex engine 295–296, 298, 302, 310, 312, 315,
333, 340–345, 349–350, 355, 357, 369, 371, 377

Restart-Service 411, 423, 480, 482, 487, 505

  [RegexOptions] 314, 320, 322, 330–339, 343,
345, 347, 352

Role-Based Access Control (RBAC) 492, 505

    combining 338 root certificate (RootCert) 393–394, 427, 429

    Compiled 332–333, 371 runspaces 379–380, 447, 474

    CultureInvariant 337

    ECMAScript 336 S
    ExplicitCapture 314, 331–332, 352, 354, 371 scalability 275–276, 481

    IgnoreCase 320, 322, 330–331, 338 scalar 132, 191, 193, 233, 349–350

    IgnorePatternWhitespace 334, 347, 352,
354–355, 375

script block 78, 83, 88, 101, 126, 137, 148, 168–169,
172, 178–180, 207, 247, 261–263, 310, 315, 318,
326–327, 485, 490, 492–493, 506–508

    Multiline 320, 322, 331, 338 script execution policies

Index 529

                                                             

S (cont’d) S (cont’d)
script execution policies (cont’d) Security Descriptor Definition Language (SDDL)

(cont’d)
  AllSigned 435–436, 442   definition (cont’d)

  Bypass 435, 438, 441, 446     Securable Object 496

  Default 435, 443     Security Descriptor 496

  RemoteSigned 435–439     Security Identifier (SID) 497

  Restricted 435, 437–439     System Access Control List (SACL) 496

  Scope     Trustee 496

    CurrentUser 439–440   read SDDL 500

    LocalMachine 439, 441   Security Identifier (SID) 497–499, 501, 503–504

    MachinePolicy 439–442, 444   syntax 498

    Process 438–440, 442   update SDDL 500

    UserPolicy 439–440, 442 Select-Object 59–61, 108, 140–142, 146–148, 192,
194, 197, 200, 270, 272, 289, 324, 328, 392, 397, 430,
488, 494, 505

  Undefined 435, 438–439 Select-String 316–318, 383

  Unrestricted 435, 438–439 Select-Xml 195–196

script execution policy 435–446 self-signed 388, 391–394, 465

script signing 386–434 Send-MailMessage 162, 164, 182–185, 187

scrum 38 sensitive data 260

Secure Shell (SSH) 26, 77, 92, 285, 404, 447, 475 session state 479

Security Descriptor Definition Language (SDDL)
495–498, 500–501, 503–504

Set-ADObject 426

  Access Flags Set-AuthenticodeSignature 390, 395–396

    AccessAllowed 494, 497, 500–501, 503 Set-AzVMDscExtension 290–291

    AccessDenied 494, 500 Set-AzVMOperatingSystem 284

  create SDDL 501 Set-AzVMSourceImage 284

  definition Set-Content 9, 20, 99, 191–192, 266–267, 286, 317,
395, 495

    Access Control Entry (ACE) 497 Set-ExecutionPolicy 438–442, 445

    Access Control List (ACL) 497 Set-GPRegistryValue 431, 433, 442

    Discretionary Access Control List (DACL)
496–498, 501–502

Set-ItemProperty 93–95

Index 530

T

                                                             

S (cont’d) S (cont’d)
Set-Location 4–5, 9, 127 strings

Set-PSRepository 57   here-string 303–304, 331

Set-PSSessionConfiguration 476, 495–496     expandable 216–217, 303, 454, 486–487,
490–491

Set-RuleOption 445     literal 194–195, 197–198, 304, 316, 321,
327–328, 331, 333–334, 353, 355–356, 358, 360–361,
367, 377, 425–426, 488

Set-StrictMode 245–246   string array 142–143, 171, 174, 213–214, 286,
308, 310, 315, 322, 488–491

Should Submit-CertificateRequest 416

  -Be 63, 66–69, 74, 80–81, 85–86, 90, 95–96, 100,
109–110, 128–135, 141, 143

subordinate Certificate Authority 388, 402, 410,
419

  -BeLike 63, 66, 68 substitution patterns 355

  -BeNullOrEmpty 69, 74, 85–86, 110, 131–132,
134–135

subtraction 108, 350–352

  -HaveCount 63, 67, 69 surrogate 349–350

  -Not 69, 80–81, 95, 110, 131–135, 321 switch statement 204–212

sigcheck 397–399   -CaseSenitive 206

signed DLLs 453   control statements 210–211

signtool 397, 399   default 208, 210

smoke testing 278   default statement 208

Software Development Lifecycle (SDLC) 38   -Exact 206

Sort-Object 146–147, 506   expression matching 207

splatting 113, 139, 146, 148–151, 189   lists and arrays 209–210

Split-Path 83, 95, 142, 263   object types 212

Start-DscConfiguration 288   parameters 204

Start-Process 292, 318   -Regex 205

Start-Service 419, 460   -Wildcard 205–207

Start-Sleep 318 system-level 258, 260–261, 265

Start-Transcript 265, 268–269, 273 System.Management.Automation 95, 200, 314,
450–451

Stop-Process 252, 480, 482, 487, 505

Stop-Transcript 265 T
strict mode 245–246 Tee-Object 267–268

Index 531

                                                             

T (cont’d) T (cont’d)

Terraform 276, 484 testing (cont’d)

Test-Path 135, 138–139, 168–169, 172–173,
188–189

  mocking (cont’d)

Test-PSSessionConfigurationFile 476     Mock Assertion Tests 78

Test-WSMan 485     Mock Scoping 75, 80, 82

testing 56–143     Mocking Invoke-RestMethod 88

  AAA approach 56–70, 106, 109, 111     native application 99–100

  assertions     .NET objects 101

    exclusive filter 93     overriding a mock 81

    filtered mock assertions 90–92     ParameterFilter Filter Script 87–89, 91

  child scope 80–82     real dependencies 71–72, 88–89, 94–95, 97,
100

  current scope 76, 81, 93     removing typecasting and validation 97

  debugging     Restricting Mock Calls 91, 93, 100

    diagnostic output 111     Use Cases 71

  discovery and run 79, 82, 133   module scope 85–87

  execution order 81–82   parameterized

  fakes 72–75, 88–90     It descriptor templates 131

    definition 72     It descriptor templates, dot-navigation 132

  inner context 77, 80, 82     Pester Configuration 137

  integration testing 278     using -ForEach 130

  mock 73     using a param block 135

    creating stub 74     using BeforeDiscovery 79, 83, 133, 140–143

    definition 73     using Pester Containers 136

    syntax 73   parameterized testing 126–143

  mock testing 71, 75, 86   seam 73

    differences from mocking 71–72     definition 73

  mocking 65, 67, 71–105, 109, 111   smoke testing 278

    Dynamic Mock Behavior 87   store object 73–75, 89

Index 532

U, V, W

                                                             

T (cont’d) U (cont’d)

testing (cont’d) Unicode (cont’d)

  stub 72–74   Latin-1 Supplement 349

    definition 72 Unregister-PSSessionConfiguration 476

  unit testing 67, 71–72, 88–92, 95–96, 105–125 $using: 286–287, 380–381

testing and monitoring 278 UTF-16 349–350

testing frameworks UTF-8 195

  MSTest 106

  nUnit 106, 115–116, 137, 139 V
  NUnitXml 137, 139 VBScript 152, 449

  Specflow 106 Virtual Machine (VM) 278, 284–285, 289–290,
292, 401, 405

  Xunit 106 Visual Studio Code 45, 51–54, 64, 111, 125, 270

text   PowerShell Extension 45, 51–54

  left-to-right 250, 252–256, 336, 355, 358   settings.json 51–53

  right-to-left 251, 254, 335–336   .vscode 51

time stamp server 395–396   workspace settings 51

trusted publisher 393–394, 399–400, 434–436,
444–445

  workspace-level 51

type conversion 215, 454–455

W
U Wait-Job 179

Unblock-File 437 web application 277

Unicode 124, 296–298, 312, 328, 334, 336, 348–351,
377, 380

Where-Object 59–61, 147–148, 172, 179–181,
183–185, 187, 207, 266–270, 318–319, 391, 406, 421,
506, 508

  Basic Multilingual Plane (BMP) 349 white box testing 106, 125

Index 533

Y

                                                             

W (cont’d) W (cont’d)

Win32 executables 449 Windows Remote Management (WinRM) 475,
477–479, 485, 487, 495–496, 509

Windows   Network Ports 475

  __PSLockdownPolicy 456–458   Simple Object Access Protocol

  Antimalware Scan Interface (AMSI) 456     (SOAP) 79, 475, 477

  Configurable Code Integrity (CGI) 468   Web Services-Management

  Device Guard (DG) 447, 456, 468, 473     (WS-Management or WSMan) 475–476, 485,
493, 495, 497, 508

  Event Log 260–263, 270–271, 274, 466, 504, 507 Windows Server

  Trusted Boot 447   Active Directory 179, 260, 401–402, 405,
414–415, 421, 427, 477, 492, 505

  User-mode Code Integrity   Group Policy 261–262, 431, 439–445, 458–460,
469, 484, 506

    (UMCI) 445, 447, 457   Internet Information Services (IIS) 285–286,
289, 292

Windows AppLocker 441, 444–447, 449, 452,
456–469, 472–473

  Microsoft Endpoint Configuration Manager
(MECM) 469

  Auditing 259, 459, 466, 469, 476, 499, 504   System Center Configuration Manager
(SCCM) 484

  definition type 458–459 Write-Debug 265

  DLL rules 459 Write-Error 265, 328, 381

  Executable rules 458 Write-EventLog 271

  Packaged app rules 459 Write-Host 43–44, 48, 252, 264–265

  Policy Enforcement 466, 469 Write-Information 265

  Script rules 441, 444–445, 452, 459–465,
467–468, 473

Write-Output 58–61, 65–66, 147, 188, 264, 332

  Windows Installer rules 459 Write-Progress 265

Windows Defender 441, 444–445, 447, 468 Write-Verbose 264, 271, 380

Windows Defender Application Control Write-Warning 265

  (WDAC) 441, 444–447, 449, 452, 457, 468–469,
472–473
Windows Desktop Y
  Windows 10 468 Yet Another Markup Language (YAML) 115–116,

118–119, 125, 193–194, 201, 493
  Windows 10 1903 100, 126, 262, 447, 468–470

Windows Lockdown Policy (WLDP) 456–458,
469, 472
Windows Management Instrumentation (WMI)
288

	Table of Contents
	Foreword
	Contributors
	Alain Tanguy
	Allen Chin
	Amy Zanatta
	Bill Kindle
	C.J. Zuk
	Chad Miars
	Christian Coventry
	Felipe Binotto
	Greg Onstot
	James Petty
	Joe Houghes
	John Hermes
	Jordan Borean
	Kevin Laux
	Kieran Jacobsen
	Kirill Nikolaev
	Martha Clancy
	Matt Corr
	Michael B. Smith
	Michael Lotter
	Michael Zanatta
	Nicholas Bissell
	Rob Derickson
	Steven Judd
	Wes Stahler

	Acknowledgements
	Disclaimer
	Introduction
	About OnRamp
	Prerequisites
	A Note on Code Listings
	Feedback

	I Collaboration
	Introduction to Git
	Understanding Terminology
	Creating a Local Repository
	Cloning an Existing Repository
	Understanding the Flow of Working in Git
	Your First Commit
	Creating a Branch
	Merging Branches
	Merge Commits
	Merge Conflicts

	Stashing Changes
	Rolling Back When Things Go Wrong
	Hard Reset in Action

	Connecting to a Remote Repository
	Starting Over When Things Really Go Wrong
	Starting From Scratch

	Conclusion
	Modern IT Automation With PowerShell Extras
	Further Reading

	Code Reviews
	Purpose of Code Reviews
	How to Start with Code Reviews
	Define Code Conventions for Your Team or Project
	Define the Code Review Process for Your Team or Project

	Things to Consider When Performing a Code Review
	Code Review Best Practices
	Keep Your Changes Small
	Provide Constructive Feedback
	Balance Nit-Picks with Major Comments
	Create Pull Request Templates
	When to Approve
	Talk to Each Other
	Use Automation

	Tools to Help with Code Reviews
	PSScriptAnalyzer
	PowerShell Extension for Visual Studio Code

	Further Reading

	II PowerShell Testing
	The AAA Approach
	Arrange, Act, and Assert
	Arrange
	Act
	Assert
	Benefits of the AAA Approach

	Pester 5.0
	Pester Installation

	The Star Wars API Example
	So How Does It Work?
	Example Code
	Example Code Output

	Pester Tests
	Simple Tests
	Pester Verbosity
	Simple Test Output
	Mocked Tests
	Mocked Test Output
	Complex Tests
	Complex Test Output

	Conclusion
	Further Reading

	Mocking
	Mocking and Mock Testing
	Stubs, Fakes, and Mocks

	Mocking in Pester with Mock
	Mock Testing and Verifiable Mocks
	Should -Invoke
	Should -InvokeVerifiable
	Running the Mock Assertion Tests

	Mock Scoping
	Mocking in the Module Scope with -ModuleName
	Mock Testing in the Module Scope
	Running the Module Scope Tests

	Dynamic Mock Behavior with -ParameterFilter
	Filtered Mock Assertions
	Running the Filtered Mock Tests
	Restricting Mock Calls Further with -ExclusiveFilter

	Calling Real Dependencies While They're Mocked
	Removing Parameter Typecasting and Validation
	Mocking Native Applications
	Mocking .NET Objects with New-MockObject
	Next Steps
	Further Reading

	Unit Testing
	Why Unit Testing?
	What Is Unit Testing?
	Testing Frameworks
	Black Box vs. White Box Testing
	The AAA Approach

	Pester
	Getting Started
	Defining Pester Test Files
	Pester Demo Code
	Pester Test Structure
	Mocking
	Running Pester Tests
	Pester Configuration
	Pester Automation

	Conclusion
	Further Reading

	Parameterized Testing
	Pester Versions and Parameterized Tests
	Your First Test
	-ForEach
	Templates `<>'
	BeforeDiscovery
	Param
	Pester Container
	PesterConfiguration

	Pester v4
	Outputs
	One Last Example
	Conclusions
	Further Reading

	III PowerShell in Depth
	Refactoring PowerShell
	Expanding on the Pipeline
	Expanded Splatting
	Interpolation
	Variable Substitution
	Using the Format (-f) Operator

	Refactoring Functions
	Simplify Functions to Perform a Singular Task
	Use Typecasting on Parameters
	Use Advanced Function Parameters
	Use Approved Verbs
	Use a Singular Output Object Type

	Writing Better Code
	Simplify Nested Statements
	Grouping Similar Code
	Refactoring Comments and Documentation
	Using Code Regions
	Refactoring Logic Flow to be Implicitly $True or $False

	Data Management
	JSON
	YAML
	XML
	CSV
	CLIXML
	Best Practices for Data Management

	Further Reading

	Advanced Conditions
	Case Sensitive Operators
	Using the Switch Statement
	Using -Regex
	Using -Wildcard
	Using -Exact
	Using -CaseSensitive
	Using PowerShell Expressions for Matching
	Default
	Parsing Lists and Arrays

	Type Comparison and Conversion Operators: -is, -isnot and -as
	Using -is and -isnot

	Using -as to Typecast Safely
	Bitwise Operators (-band, -bor, -bxor, -bnot, -shl and -shr)
	What is an Enum?
	Base-2 vs. Base-10 (Binary vs. Decimal)
	The AND Logic Gate
	The OR Logic Gate
	The NOT Logic Gate
	The XOR Logic Gate
	-band Bitwise AND
	-bor Bitwise OR
	-bxor Bitwise XOR
	-bnot Bitwise NOT
	-shl Shift Bits Left
	-shr Shift Bits Right
	Practical Applications

	-like and -notlike
	-match and -notmatch
	-in, -contains, -notin and -notcontains
	-replace
	Ternary Operator (condition) ? <true> : <false>
	Null-Coalescing Operator ??
	Null-Coalescing Assignment Operator ??=
	Null-Conditional Operator ?. and ?[]
	Examples of ?.
	Examples of ?[]

	:parent Loop Labels
	PowerShell Operator Precedence
	Example - Operator Precedence (,, [])
	Example - Parentheses ()
	Example - Negation Operator -not
	Example - Equal Precedence
	Example - A Complex Expression

	Further Reading

	Logging
	Why Log?
	What Makes for Good Logging
	What Should Never Be Logged
	Logging Basics
	Enable System-Level Logging
	Windows
	Event Log Locations

	Linux, macOS, WSL
	Logging for Troubleshooting
	Writing Console Output

	Persistent Logging Options
	PowerShell Transcription
	Logging to Files
	Using Tee-Object

	History
	Built-in History
	PSReadline History
	Writing to Windows Event Logs
	Cloud Shell
	Using Third Party modules for logging

	Summary
	Further Reading

	Infrastructure as Code (IaC)
	Overview
	IaC Key Concepts
	IaC Benefits
	IaC Principles
	Source Control as the Single Source of Truth
	Modular
	Versioning
	Repeatable
	Disposable
	Self-Documented
	Testing and Monitoring

	IaC in Action
	Azure-SQL-Server.psm1
	Azure-Storage-Account.psm1
	Azure-Load-Balancer.psm1
	Azure-Virtual-Machine.psm1

	Configuration as Code (CaC)
	PowerShell Desired State Configuration (DSC)
	CaC in Action

	IaC and CaC: Better Together
	Conclusion
	Further Reading

	IV Using Regexes
	Regex 101
	First Principles and Limitations
	Wildcard Patterns vs. Regexes
	Differences Between PowerShell Regexes and Others

	Getting Started
	Character Classes
	Custom Character Classes
	Quantifiers
	Character Escape Sequences
	Anchors (Zero-Width Assertions)
	Captures
	Visualizing Captures

	Accessing Regexes
	Using PowerShell Syntax
	-match Operator with Strings
	-match Operator with String Arrays
	-cmatch and -imatch Operators and Inverses
	-replace Operator with Strings
	-replace Operator with String Arrays
	-creplace and -ireplace Operators
	-split Operator with Strings
	-split Operator with String Arrays
	Splitting Strings with -split and a Script Block
	-csplit and -isplit Operators
	Select-String Cmdlet
	Where-Object Cmdlet with the -Match Parameter
	switch -Regex Statement
	ValidatePattern() Parameter Attribute
	Pester Should -Match and -MatchExactly Assertions

	Using the .NET Methods
	Constructors
	IsMatch()
	Match()
	Match.NextMatch() Instance Method
	Matches()
	Replace()
	Split()
	Escape() and Unescape()
	GetGroupNumbers() and GetGroupNames()
	GroupNameFromNumber() and GroupNumberFromName()

	Regex Options
	RegexOptions.None (0)
	RegexOptions.IgnoreCase (1)
	RegexOptions.Multiline (2)
	RegexOptions.ExplicitCapture (4)
	RegexOptions.Compiled (8)
	RegexOptions.Singleline (16)
	RegexOptions.IgnorePatternWhitespace (32)
	RegexOptions.RightToLeft (64)
	RegexOptions.ECMAScript (256)
	RegexOptions.CultureInvariant (512)
	Combining Regex Options
	Inline Options

	Regex Deep Dive
	Debugging Your Regex Patterns
	Regex Through the Eyes of an NFA Engine
	Backtracking and Branching
	Catastrophic Backtracking
	Atomic Groups

	Functionality to Consider
	No Subroutines
	No Recursion
	Possessive Quantifiers vs. Atomic Groups
	Variable-Length Lookbehinds

	Deconstructing a Pattern
	Advanced Syntax
	Unicode Categories and Blocks
	Character Class Subtraction
	Using Inline Options
	Using Option Spans
	Comments in Regex

	Advanced Replacement Patterns
	Named and Numeric Captures
	Entire Match
	Match Span Prefixes and Postfixes
	Entire Input
	Last Capture

	Advanced Subexpressions and Backreferences
	Backreferences in Depth
	Lookarounds in Depth
	Conditional Logic
	Balancing Groups

	Regex Best Practices
	Constrained and Unconstrained Input
	Backtracking and Exponential Operations
	Preventing ReDoS with Regex Time-Outs
	Capturing Just Enough
	Static vs. Instance Methods and Caching
	No More CompileToAssembly()
	Getting the Scope Right
	Iterative Development
	Edge Cases and Near Matches
	Thread Safety
	Next Steps
	Further Reading
	Official Reference Materials
	Other Materials

	V PowerShell Security
	Script Signing
	What Is Script Signing and How It Protects You
	How Digital Signing Works
	How Code Signing Works in Modern Windows Systems

	The Anatomy of a Signed Script
	How to Sign a Script
	Acquiring a Code Signing Certificate
	How to Install Code Signing Certificates Properly
	Signing Process
	How to Prevent Your Signatures from Expiring
	What Else Can You Sign

	How to Verify a Signature
	Get-AuthenticodeSignature
	Sigcheck
	Signtool
	Execution Errors

	Scaling Out
	Use Your Own PKI
	Deploy Code Signing Certificates in a Corporate Environment

	Summary
	Further Reading

	Script Execution Policies
	Types of Execution Policies
	AllSigned
	RemoteSigned
	Restricted
	Unrestricted
	Bypass
	Default
	Undefined

	Execution Policy Scope
	Scope Precedence

	Security Considerations
	Setting the Execution Policy
	Set-ExecutionPolicy
	Group Policy
	AppLocker
	Windows Defender Application Control

	Further Reading

	Constrained Language Mode
	In Depth
	Language Modes
	Constrained Language Mode Features

	Limitations of Constrained Language Mode
	PowerShell Protect

	Deep Diving into Windows Lockdown Policy
	GetLockdownPolicy()
	GetWldpPolicy()
	GetAppLockerPolicy()
	GetDebugLockdownPolicy()

	Implementing Policies Using AppLocker Script Rules
	Introduction
	Getting Started

	Implementing Policies Using WDAC
	What Is WDAC?

	Deploying WDAC Using Microsoft Intune
	Prerequisites
	Creating a Device Policy

	Best Practices
	Further Reading

	Just Enough Administration
	Introduction
	Requirements

	Background of JEA
	PowerShell Remoting 101
	An Overview of PowerShell Session Configuration
	PowerShell Remoting Authentication and Transport Encryption

	PowerShell Role Capabilities
	Implementing Windows PowerShell Role Capabilities in the Console
	Implementing PowerShell (Core) Role Capabilities in the Console
	Implementing PowerShell Role Capabilities Within DSC

	Getting Started With PowerShell Session Configuration
	Step 1: Enabling PowerShell Remoting
	Step 2: Creating/Registering the PowerShell Session Configuration
	Connecting to a PowerShell Session Configuration
	Role Definition Design Considerations
	Managing PowerShell Session Configurations

	An Overview of the Security Descriptor Definition Language (SDDL)
	Terms
	SDDL Overview
	SDDL Syntax
	Reading SDDLs
	Creating SDDLs from a Security Descriptor

	Auditing PowerShell Remoting Sessions
	Review Effective Rights
	PowerShell Event Logs
	Session Transcription Logs
	Removing Existing PowerShell Sessions

	Further Reading

	Afterword
	Index
	A, SYMBOLS
	B, C
	D, E
	F, G
	H, I
	J, K, L, M
	N
	O
	P
	R
	S
	T
	U, V, W
	Y

