

Lee Holmes

PowerShell Pocket Reference
Portable Help for

PowerShell Scripters

THIRD EDITION

978-1-098-10167-1

[LSI]

PowerShell Pocket Reference
by Lee Holmes

Copyright © 2021 Lee Holmes. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://oreilly.com).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Angela Rufino
Production Editor: Kate Galloway
Copyeditor: Stephanie English
Proofreader: Jasmine Kwityn
Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

May 2021: Third Edition

Revision History for the Third Edition
2021-04-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098101671 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. PowerShell
Pocket Reference, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent
the publisher’s views. While the publisher and the author have used good faith
efforts to ensure that the information and instructions contained in this work
are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages result‐
ing from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098101671

Table of Contents

A Guided Tour of PowerShell v

Chapter 1: PowerShell Language and Environment 1
Commands and Expressions 1
Comments 3
Help Comments 3
Variables 5
Booleans 8
Strings 8
Numbers 11
Arrays and Lists 14
Hashtables (Associative Arrays) 18
XML 18
Simple Operators 19
Comparison Operators 29
Conditional Statements 34
Looping Statements 39
Working with the .NET Framework 49
Writing Scripts, Reusing Functionality 58

iii

Managing Errors 73
Formatting Output 76
Capturing Output 78
Common Customization Points 80

Chapter 2: Regular Expression Reference 87

Chapter 3: XPath Quick Reference 99

Chapter 4: .NET String Formatting 103
String Formatting Syntax 103
Standard Numeric Format Strings 104
Custom Numeric Format Strings 105

Chapter 5: .NET DateTime Formatting 109
Custom DateTime Format Strings 111

Chapter 6: Selected .NET Classes and Their Uses 119

Chapter 7: WMI Reference 133

Chapter 8: Selected COM Objects and Their Uses 147

Chapter 9: Selected Events and Their Uses 153
Generic WMI Events 164

Chapter 10: Standard PowerShell Verbs 171

Index 181

iv | Table of Contents

A Guided Tour of PowerShell

Introduction
PowerShell has revolutionized the world of system manage‐
ment and command-line shells. From its object-based pipelines
to its administrator focus to its enormous reach into other
Microsoft management technologies, PowerShell drastically
improves the productivity of administrators and power users
alike.

When you’re learning a new technology, it’s natural to feel
bewildered at first by all the unfamiliar features and functional‐
ity. This perhaps rings especially true for users new to
PowerShell because it may be their first experience with a fully
featured command-line shell. Or worse, they’ve heard stories of
PowerShell’s fantastic integrated scripting capabilities and fear
being forced into a world of programming that they’ve actively
avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is a
shell that both grows with you and grows on you. Let’s take a
tour to see what it is capable of:

• PowerShell works with standard Windows commands and
applications. You don’t have to throw away what you
already know and use.

v

• PowerShell introduces a powerful new type of command.
PowerShell commands (called cmdlets) share a common
Verb-Noun syntax and offer many usability improvements
over standard commands.

• PowerShell understands objects. Working directly with
richly structured objects makes working with (and com‐
bining) PowerShell commands immensely easier than
working in the plain-text world of traditional shells.

• PowerShell caters to administrators. Even with all its
advances, PowerShell focuses strongly on its use as an
interactive shell: the experience of entering commands in
a running PowerShell application.

• PowerShell supports discovery. Using three simple com‐
mands, you can learn and discover almost anything
PowerShell has to offer.

• PowerShell enables ubiquitous scripting. With a fully
fledged scripting language that works directly from the
command line, PowerShell lets you automate tasks with
ease.

• PowerShell bridges many technologies. By letting you
work with .NET, COM, WMI, XML, and Active Directory,
PowerShell makes working with these previously isolated
technologies easier than ever before.

• PowerShell simplifies management of data stores.
Through its provider model, PowerShell lets you manage
data stores using the same techniques you already use to
manage files and folders.

We’ll explore each of these pillars in this introductory tour of
PowerShell. If you’re running any supported version of Win‐
dows (Windows 7 or later, or Windows 2012 R2 or later), Win‐
dows PowerShell is already installed. That said, a significant
step up from this default installation is the open source
PowerShell Core.

vi | A Guided Tour of PowerShell

An Interactive Shell
At its core, PowerShell is first and foremost an interactive shell.
While it supports scripting and other powerful features, its
focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching
PowerShell.exe rather than cmd.exe—the shells begin to diverge
as you explore the intermediate and advanced functionality, but
you can be productive in PowerShell immediately.

To launch PowerShell, click Start and then type PowerShell (or
pwsh if you’ve jumped ahead!).

A PowerShell prompt window opens that’s nearly identical to
the traditional command prompt of its ancestors. The PS C:
\Users\Lee> prompt indicates that PowerShell is ready for
input, as shown in Figure P-1.

Figure P-1. Windows PowerShell, ready for input

Once you’ve launched your PowerShell prompt, you can enter
DOS- and Unix-style commands to navigate around the filesys‐
tem just as you would with any Windows or Unix command
prompt—as in the interactive session shown in Example P-1. In
this example, we use the pushd, cd, dir, pwd, and popd com‐
mands to store the current location, navigate around the file‐
system, list items in the current directory, and then return to
the original location. Try it!

A Guided Tour of PowerShell | vii

Example P-1. Entering many standard DOS- and Unix-style
file manipulation commands produces the same results you get
when you use them with any other Windows shell

PS C:\Users\Lee> function prompt { "PS > " }
PS > pushd .
PS > cd \
PS > dir

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows

PS > popd
PS > pwd

Path

C:\Users\Lee

In this example, our first command customizes the prompt. In
cmd.exe, customizing the prompt looks like prompt PG. In
Bash, it looks like PS1="[\h] \w> ". In PowerShell, you define a
function that returns whatever you want displayed.

The pushd command is an alternative name (alias) to the
much more descriptively named PowerShell command
Push-Location. Likewise, the cd, dir, popd, and pwd commands
all have more memorable counterparts.

viii | A Guided Tour of PowerShell

Although navigating around the filesystem is helpful, so is run‐
ning the tools you know and love, such as ipconfig and
notepad. Type the command name and you’ll see results like
those shown in Example P-2.

Example P-2. Windows tools and applications such as ipconfig
run in PowerShell just as they do in cmd.exe

PS > ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.
 IP Address. : 192.168.1.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1
PS > notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current
network connections. Similarly, entering notepad runs—as
you’d expect—the Notepad editor that ships with Windows. Try
them both on your own machine.

Structured Commands (Cmdlets)
In addition to supporting traditional Windows executables,
PowerShell introduces a powerful new type of command called
a cmdlet (pronounced “command-let”). All cmdlets are named
in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process:
PS > Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName param‐
eter to get a specific process by name.

A Guided Tour of PowerShell | ix

NOTE

Once you know the handful of common verbs in Power‐
Shell, learning how to work with new nouns becomes
much easier. While you may never have worked with a cer‐
tain object before (such as a Service), the standard Get,
Set, Start, and Stop actions still apply. For a list of these
common verbs, see Table 10-1 in Chapter 10.

You don’t always have to type these full cmdlet names, however.
PowerShell lets you use the Tab key to autocomplete cmdlet
names and parameter names:
PS > Get-Pro<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To
help improve your efficiency, PowerShell defines aliases for all
common commands and lets you define your own. In addition
to alias names, PowerShell requires only that you type enough
of the parameter name to disambiguate it from the rest of the
parameters in that cmdlet. PowerShell is also case-insensitive.
Using the built-in gps alias (which represents the Get-Process
cmdlet) along with parameter shortening, you can instead type:
PS > gps -n lsass

Going even further, PowerShell supports positional parameters
on cmdlets. Positional parameters let you provide parameter
values in a certain position on the command line, rather than
having to specify them by name. The Get-Process cmdlet takes
a process name as its first positional parameter. This parameter
even supports wildcards:
PS > gps l*s

Deep Integration of Objects
PowerShell begins to flex more of its muscle as you explore the
way it handles structured data and richly functional objects.
For example, the following command generates a simple text

x | A Guided Tour of PowerShell

string. Since nothing captures that output, PowerShell displays
it to you:
PS > "Hello World"
Hello World

The string you just generated is, in fact, a fully functional object
from the .NET Framework. For example, you can access its
Length property, which tells you how many characters are in
the string. To access a property, you place a dot between the
object and its property name:
PS > "Hello World".Length
11

All PowerShell commands that produce output generate that
output as objects as well. For example, the Get-Process cmdlet
generates a System.Diagnostics.Process object, which you can
store in a variable. In PowerShell, variable names start with a $
character. If you have an instance of Notepad running, the fol‐
lowing command stores a reference to it:
$process = Get-Process notepad

Since this is a fully functional Process object from the .NET
Framework, you can call methods on that object to perform
actions on it. This command calls the Kill() method, which
stops a process. To access a method, you place a dot between
the object and its method name:
$process.Kill()

PowerShell supports this functionality more directly through
the Stop-Process cmdlet, but this example demonstrates an
important point about your ability to interact with these rich
objects.

Administrators as First-Class Users
While PowerShell’s support for objects from the .NET Frame‐
work quickens the pulse of most users, PowerShell continues
to focus strongly on administrative tasks. For example,
PowerShell supports MB (for megabyte) and GB (for gigabyte) as

A Guided Tour of PowerShell | xi

some of its standard administrative constants. How many GIF
memes will fit in a 800 GB hard drive?
PS > 800GB / 2.2MB
372363.636363636

Although the .NET Framework is traditionally a development
platform, it contains a wealth of functionality useful for admin‐
istrators too! In fact, it makes PowerShell a great calendar. For
example, is 2096 a leap year? PowerShell can tell you:
PS > [DateTime]::IsLeapYear(2096)
True

Going further, how might you determine how much time
remains until the Y2038 Epochalypse? The following command
converts "01/19/2038" (the date of the Year 2038 problem) to a
date, and then subtracts the current date from that. It stores the
result in the $result variable, and then accesses the TotalDays
property:
PS > $result = [DateTime] "01/19/2038" - [DateTime]::Now
PS > $result.TotalDays
6242.49822756465

Composable Commands
Whenever a command generates output, you can use a pipeline
character (|) to pass that output directly to another command
as input. If the second command understands the objects pro‐
duced by the first command, it can operate on the results. You
can chain together many commands this way, creating power‐
ful compositions out of a few simple operations. For example,
the following command gets all items in the Path1 directory
and moves them to the Path2 directory:
Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding addi‐
tional cmdlets to the pipeline. In Example P-3, the first com‐
mand gets all processes running on the system. It passes those
to the Where-Object cmdlet, which runs a comparison against
each incoming item. In this case, the comparison is

xii | A Guided Tour of PowerShell

$_.Handles -ge 500, which checks whether the Handles prop‐
erty of the current object (represented by the $_ variable) is
greater than or equal to 500. For each object in which this com‐
parison holds true, you pass the results to the Sort-Object
cmdlet, asking it to sort items by their Handles property.
Finally, you pass the objects to the Format-Table cmdlet to gen‐
erate a table that contains the Handles, Name, and Description
of the process.

Example P-3. You can build more complex PowerShell
commands by using pipelines to link cmdlets, as shown here
with Get-Process, Where-Object, Sort-Object, and Format-
Table

PS > Get-Process |
 Where-Object { $_.Handles -ge 500 } |
 Sort-Object Handles |
 Format-Table Handles,Name,Description -Auto

Handles Name Description
------- ---- -----------
 588 winlogon
 592 svchost
 667 lsass
 725 csrss
 742 System
 964 WINWORD Microsoft Office Word
 1112 OUTLOOK Microsoft Office Outlook
 2063 svchost

Techniques to Protect You from Yourself
While aliases, wildcards, and composable pipelines are power‐
ful, their use in commands that modify system information can
easily be nerve-racking. After all, what does this command do?
Think about it, but don’t try it just yet:
PS > gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b
through t and end with the letters c through r. How can you be
sure? Let PowerShell tell you. For commands that modify data,

A Guided Tour of PowerShell | xiii

PowerShell supports -WhatIf and -Confirm parameters that let
you see what a command would do:
PS > gps [b-t]*[c-r] | Stop-Process -whatif
What if: Performing operation "Stop-Process" on "ctfmon (812)".
What if: Performing operation "Stop-Process" on "Ditto (1916)".
What if: Performing operation "Stop-Process" on "dsamain (316)".
What if: Performing operation "Stop-Process" on "ehrecvr (1832)".
What if: Performing operation "Stop-Process" on "ehSched (1852)".
What if: Performing operation "Stop-Process" on "EXCEL (2092)".
What if: Performing operation "Stop-Process" on "explorer (1900)".
(...)

In this interaction, using the -WhatIf parameter with the Stop-
Process pipelined command lets you preview which processes
on your system will be stopped before you actually carry out
the operation.

Note that this example is not a dare! In the words of one
reviewer:

Not only did it stop everything, but on one of my old
machines, it forced a shutdown with only one minute
warning!
It was very funny though…At least I had enough time
to save everything first!

Common Discovery Commands
While reading through a guided tour is helpful, I find that most
learning happens in an ad hoc fashion. To find all commands
that match a given wildcard, use the Get-Command cmdlet. For
example, by entering the following, you can find out which
PowerShell commands (and Windows applications) contain the
word process:
PS > Get-Command *process*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <Str...
Application qprocess.exe c:\windows\system32\qproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

xiv | A Guided Tour of PowerShell

To see what a command such as Get-Process does, use the
Get-Help cmdlet, like this:
PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET
Framework, it provides the Get-Member cmdlet to retrieve
information about the properties and methods that an object,
such as a .NET System.String, supports. Piping a string to the
Get-Member command displays its type name and its members:
PS > "Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
(...)
PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Length Property System.Int32 Length {get;}

Ubiquitous Scripting
PowerShell makes no distinction between the commands typed
at the command line and the commands written in a script.
Your favorite cmdlets work in scripts and your favorite script‐
ing techniques (e.g., the foreach statement) work directly on
the command line. For example, to add up the handle count for
all running processes:

A Guided Tour of PowerShell | xv

PS > $handleCount = 0
PS > foreach($process in Get-Process) {
 $handleCount += $process.Handles }
PS > $handleCount
19403

While PowerShell provides a command (Measure-Object) to
measure statistics about collections, this short example shows
how PowerShell lets you apply techniques that normally
require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can
also create and work directly with objects from the .NET
Framework that you may be familiar with. PowerShell becomes
almost like the C# immediate mode in Visual Studio.
Example P-4 shows how PowerShell lets you easily interact
with the .NET Framework.

Example P-4. Using objects from the .NET Framework to
retrieve a web page and process its content

PS > $webClient = New-Object System.Net.WebClient
PS > $content = $webClient.DownloadString(
 "https://devblogs.microsoft.com/powershell/feed/")
PS > $content.Substring(0,1000)
<?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:wfw="http://wellformedweb.org/CommentAPI/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:slash="http://purl.org/rss/1.0/modules/slash/" >
<channel>
 <title>PowerShell</title>
 <atom:link href="https://devblogs.microsoft.com/powersh..."
 <link>https://devblogs.microsoft.com/powershell</link>
 <description>Automating the world one-liner at a time…
 </description>
(...)

Ad Hoc Development
By blurring the lines between interactive administration and
writing scripts, the history buffers of PowerShell sessions

xvi | A Guided Tour of PowerShell

quickly become the basis for ad hoc script development. In this
example, you call the Get-History cmdlet to retrieve the history
of your session. For each item, you get its CommandLine property
(the thing you typed) and send the output to a new script file.
PS > Get-History | ForEach-Object {
 $_.CommandLine } > c:\temp\script.ps1
PS > notepad c:\temp\script.ps1
(save the content you want to keep)
PS > c:\temp\script.ps1

NOTE

If this is the first time you’ve run a script in PowerShell,
you’ll need to configure your execution policy.

Bridging Technologies
We’ve seen how PowerShell lets you fully leverage the .NET
Framework in your tasks, but its support for common technol‐
ogies stretches even farther. As Example P-5 (continued from
Example P-4) shows, PowerShell supports XML.

Example P-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] $content
PS > $xmlContent

xml xml-stylesheet rss
--- -------------- ---
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0
content : http://purl.org/rss/1.0/modules/content/
wfw : http://wellformedweb.org/CommentAPI/
dc : http://purl.org/dc/elements/1.1/
atom : http://www.w3.org/2005/Atom
sy : http://purl.org/rss/1.0/modules/syndication/
slash : http://purl.org/rss/1.0/modules/slash/
channel : channel

A Guided Tour of PowerShell | xvii

PS > $xmlContent.rss.channel.item | select Title

title

PowerShell 7.2 Preview 2 release
Announcing PowerShell Crescendo Preview.1
You’ve got Help!
SecretManagement preview 6 and SecretStore preview 4
Announcing PowerShell 7.1
Announcing PSReadLine 2.1+ with Predictive IntelliSense
Updating help for the PSReadLine module
PowerShell Working Groups
(...)

PowerShell also lets you work with Windows Management
Instrumentation (WMI) and Common Information Model
(CIM):
PS > Get-CimInstance Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

Or, as Example P-6 shows, you can work with Active Directory
Service Interfaces (ADSI).

Example P-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}
MaxStorage : {-1}
PasswordAge : {19550795}
PasswordExpired : {0}
LoginHours : {255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255
 255 255 255}
FullName : {}
Description : {Built-in account for administering
 the computer/domain}
BadPasswordAttempts : {0}
LastLogin : {5/21/2007 3:00:00 AM}
HomeDirectory : {}

xviii | A Guided Tour of PowerShell

LoginScript : {}
Profile : {}
HomeDirDrive : {}
Parameters : {}
PrimaryGroupID : {513}
Name : {Administrator}
MinPasswordLength : {0}
MaxPasswordAge : {3710851}
MinPasswordAge : {0}
PasswordHistoryLength : {0}
AutoUnlockInterval : {1800}
LockoutObservationInterval : {1800}
MaxBadPasswordsAllowed : {0}
RasPermissions : {1}
objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227
 252 83 122 130 50 34 67 23 10 50
 244 1 0 0}

Or, as Example P-7 shows, you can even use PowerShell for
scripting traditional COM objects.

Example P-7. Working with COM objects in PowerShell

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile

Type : 1
FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False
UnicastResponsesToMulticastBroadcastDisabled : False
RemoteAdminSettings : System.__ComObject
IcmpSettings : System.__ComObject
GloballyOpenPorts : {Media Center
 Extender Service,
 Remote Media Center
 Experience, Adam
 Test Instance,
 QWAVE...}
Services : {File and Printer
 Sharing, UPnP
 Framework, Remote
 Desktop}
AuthorizedApplications : {Remote Assistance,
 Windows Messenger,
 Media Center,
 Trillian...}

A Guided Tour of PowerShell | xix

Namespace Navigation Through Providers
Another avenue PowerShell offers for working with the system
is providers. PowerShell providers let you navigate and manage
data stores using the same techniques you already use to work
with the filesystem, as illustrated in Example P-8.

Example P-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows

This also works on the registry, as shown in Example P-9.

Example P-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows\
PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

Name Property
---- --------
CurrentVersion
DWM Composition : 1
 ColorPrevalence : 0
 ColorizationColor : 3290322719
 EnableAeroPeek : 1

xx | A Guided Tour of PowerShell

 AccentColor : 4280243998
 EnableWindowColorization : 1
Shell
TabletPC
Windows Error Reporting

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)
OneDrive : "C:\Users\lee\AppData\Local\Microsoft\OneDriv..."
 /background
OpenDNS Updater : "C:\Program Files (x86)\OpenDNS Updater\OpenD..."
 /autostart
Ditto : C:\Program Files\Ditto\Ditto.exe
(...)

And it even works on the machine’s certificate store, as
Example P-10 illustrates.

Example P-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

 Directory: Microsoft.PowerShell.Security\
 Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148 CN=Microsoft Root Certificate...
BE36A4562FB2EE05DBB3D32323ADF4450 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE2 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFC9E48F1 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99F CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E0 OU=Copyright (c) 1997 Microso...
(...)

Much, Much More
As exciting as this guided tour was, it barely scratches the sur‐
face of how you can use PowerShell to improve your productiv‐
ity and systems management skills.

A Guided Tour of PowerShell | xxi

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is avail‐
able for download at https://github.com/LeeHolmes/PowerShell
Cookbook.

If you have a technical question or a problem using the code
examples, please send an email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this

xxii | A Guided Tour of PowerShell

https://github.com/LeeHolmes/PowerShellCookbook
https://github.com/LeeHolmes/PowerShellCookbook
mailto:bookquestions@oreilly.com

book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “PowerShell Pocket Reference by Lee
Holmes (O’Reilly), 3rd edition. Copyright 2021 Lee Holmes,
978-1-098-10167-1.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly
Media has provided technology and
business training, knowledge, and
insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast col‐
lection of text and video from O’Reilly and 200+ other publish‐
ers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

A Guided Tour of PowerShell | xxiii

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at https://oreil.ly/powershell-pocket-3rd.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

xxiv | A Guided Tour of PowerShell

https://oreil.ly/powershell-pocket-3rd
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1

PowerShell Language and
Environment

Commands and Expressions
PowerShell breaks any line that you enter into its individual
units (tokens), and then interprets each token in one of two
ways: as a command or as an expression. The difference is sub‐
tle: expressions support logic and flow control statements (such
as if, foreach, and throw), whereas commands do not.

You will often want to control the way that PowerShell inter‐
prets your statements, so Table 1-1 lists the available options.

Table 1-1. PowerShell evaluation controls

Statement Explanation

Precedence control: () Forces the evaluation of a command or
expression, similar to the way that parentheses
are used to force the order of evaluation in a
mathematical expression.
For example:
PS > 5 * (1 + 2)
15
PS > (dir).Count
227

1

Statement Explanation

Expression subparse: $() Forces the evaluation of a command or
expression, similar to the way that parentheses
are used to force the order of evaluation in a
mathematical expression.
However, a subparse is as powerful as a
subprogram and is required only when the
subprogram contains logic or flow control
statements.
This statement is also used to expand dynamic
information inside a string.
For example:
PS > "The answer is (2+2)"
The answer is (2+2)

PS > "The answer is $(2+2)"
The answer is 4

PS > $value = 10
PS > $result = $(
 if($value -gt 0) { $true }
 else { $false })
PS > $result
True

List evaluation: @() Forces an expression to be evaluated as a list. If it
is already a list, it will remain a list. If it is not,
PowerShell temporarily treats it as one.
For example:
PS > "Hello".Length
5
PS > @("Hello").Length
1
PS > ([PSCustomObject] @{
Property1 = "Hello"
Count = 100 }).Count
100
PS > @([PSCustomObject] @{
Property1 = "Hello"
Count = 100 }).Count
1

2 | Chapter 1: PowerShell Language and Environment

Statement Explanation

DATA evaluation: DATA { } Evaluates the given script block in the context of
the PowerShell data language. The data language
supports only data-centric features of the
PowerShell language.
For example:
PS > DATA { 1 + 1 }
2
PS > DATA { $myVariable = "Test" }
Assignment statements are not
allowed in restricted language
mode or a Data section.

Comments
To create single-line comments, begin a line with the # charac‐
ter. To create a block (or multiline) comment, surround the
region with the characters <# and #>:
This is a regular comment

<# This is a block comment

function MyTest
{
 "This should not be considered a function"
}

$myVariable = 10;

Block comment ends
#>

This is regular script again

Help Comments
PowerShell creates help for your script or function by looking
at its comments. If the comments include any supported help
tags, PowerShell adds those to the help for your command.

Comments | 3

Comment-based help supports the following tags, which are all
case-insensitive:

.SYNOPSIS

A short summary of the command, ideally a single
sentence.

.DESCRIPTION

A more detailed description of the command.

.PARAMETER name
A description of parameter name, with one for each param‐
eter you want to describe. While you can write
a .PARAMETER comment for each parameter, PowerShell
also supports comments written directly above the param‐
eter. Putting parameter help alongside the actual parame‐
ter makes it easier to read and maintain.

.EXAMPLE

An example of this command in use, with one for each
example you want to provide. PowerShell treats the line
immediately beneath the .EXAMPLE tag as the example
command. If this line doesn’t contain any text that looks
like a prompt, PowerShell adds a prompt before it. It treats
lines that follow the initial line as additional output and
example commentary.

.INPUTS

A short summary of pipeline input(s) supported by this
command. For each input type, PowerShell’s built-in help
follows this convention:
System.String
 You can pipe a string that contains a path to
 Get-ChildItem.

.OUTPUTS

A short summary of items generated by this command.
For each output type, PowerShell’s built-in help follows
this convention:

4 | Chapter 1: PowerShell Language and Environment

System.ServiceProcess.ServiceController
 This cmdlet returns objects that represent the
 services on the computer.

.NOTES

Any additional notes or remarks about this command.

.LINK

A link to a related help topic or command, with one .LINK
tag per link. If the related help topic is a URL, PowerShell
launches that URL when the user supplies the -Online
parameter to Get-Help for your command.

While these are all of the supported help tags you are likely to
use, comment-based help also supports tags for some of
Get-Help’s more obscure features:

• .COMPONENT

• .ROLE

• .FUNCTIONALITY

• .FORWARDHELPTARGETNAME

• .FORWARDHELPCATEGORY

• .REMOTEHELPRUNSPACE

• .EXTERNALHELP

For more information about these tags, type Get-Help

about_Comment_Based_Help.

Variables
PowerShell provides several ways to define and access variables,
as summarized in Table 1-2.

Variables | 5

Table 1-2. PowerShell variable syntaxes

Syntax Meaning

$simpleVariable =

"Value"

A simple variable name. The variable name
must consist of alphanumeric characters.
Variable names are not case-sensitive.

$variable1,

$variable2 =

"Value1", "Value2"

Multiple variable assignment. PowerShell
populates each variable from the value in the
corresponding position on the righthand side.
Extra values are assigned as a list to the last
variable listed.

${ arbitrary!@#@
\#{var}iable } =

"Value"

An arbitrary variable name. The variable
name must be surrounded by curly braces,
but it may contain any characters. Curly
braces in the variable name must be escaped
with a backtick (`).

${c:\filename.

extension}

Variable “Get and Set Content” syntax. This is
similar to the arbitrary variable name syntax.
If the name corresponds to a valid PowerShell
path, you can get and set the content of the
item at that location by reading and writing
to the variable.

[datatype] $variable

= "Value"

Strongly typed variable. Ensures that the
variable may contain only data of the type
you declare. PowerShell throws an error if it
cannot coerce the data to this type when you
assign it.

[constraint]

$variable = "Value"

Constrained variable. Ensures that the
variable may contain only data that passes
the supplied validation constraints:
[ValidateLength(4, 10)] $a = "Hello"

The supported validation constraints are the
same as those supported as parameter
validation attributes.

6 | Chapter 1: PowerShell Language and Environment

Syntax Meaning

$SCOPE:variable Gets or sets the variable at that specific scope.
Valid scope names are global (to make a
variable available to the entire shell),
script (to make a variable available only
to the current script or persistent during
module commands), local (to make a
variable available only to the current scope
and subscopes), and private (to make a
variable available only to the current scope).
The default scope is the current scope:
global when defined interactively in the
shell, script when defined outside any
functions or script blocks in a script, and
local elsewhere.

New-Item Variable:

\variable -Value value
Creates a new variable using the variable
provider.

Get-Item Variable:

\variable

Get-Variable variable

Gets the variable using the variable provider
or Get-Variable cmdlet. This lets you
access extra information about the variable,
such as its options and description.

New-Variable variable
-Option option -Value
value

Creates a variable using the
New-Variable cmdlet. This lets you
provide extra information about the variable,
such as its options and description.

NOTE

Unlike some languages, PowerShell rounds (rather than
truncates) numbers when it converts them to the [int]
data type:
PS > (3/2)
1.5
PS > [int] (3/2)
2

Variables | 7

Booleans
Boolean (true or false) variables are most commonly initialized
to their literal values of $true and $false. When PowerShell
evaluates variables as part of a Boolean expression (for exam‐
ple, an if statement), though, it maps them to a suitable
Boolean representation, as listed in Table 1-3.

Table 1-3. PowerShell Boolean interpretations

Result Boolean representation

$true True

$false False

$null False

Nonzero number True

Zero False

Nonempty string True

Empty string False

Empty array False

Single-element array The Boolean representation of its single
element

Multi-element array True

Hashtable (either empty or not) True

Strings
PowerShell offers several facilities for working with plain-text
data.

Literal and Expanding Strings
To define a literal string (one in which no variable or escape
expansion occurs), enclose it in single quotes:
$myString = 'hello `t $ENV:SystemRoot'

8 | Chapter 1: PowerShell Language and Environment

$myString gets the actual value of hello `t $ENV:SystemRoot.

To define an expanding string (one in which variable and
escape expansion occur), enclose it in double quotes:
$myString = "hello `t $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

To include a single quote in a single-quoted string or a double
quote in a double-quoted string, include two of the quote char‐
acters in a row:
PS > "Hello ""There""!"
Hello "There"!
PS > 'Hello ''There''!'
Hello 'There'!

NOTE

To include a complex expression inside an expanding
string, use a subexpression. For example:
$prompt = "$(Get-Location) >"

$prompt gets a value similar to c:\temp >.
Accessing the properties of an object requires a
subexpression:
$version = "Current PowerShell version is:"
 $PSVersionTable.PSVersion.Major

$version gets a value similar to:
Current PowerShell version is: 3

Here Strings
To define a here string (one that may span multiple lines), place
the two characters @" at the beginning and the two characters
"@ on their own line at the end.

Strings | 9

For example:
$myHereString = @"
This text may span multiple lines, and may
contain "quotes."
"@

Here strings may be of either the literal (single-quoted) or
expanding (double-quoted) variety.

Escape Sequences
PowerShell supports escape sequences inside strings, as listed
in Table 1-4.

Table 1-4. PowerShell escape sequences

Sequence Meaning

`0 The null character. Often used as a record
separator.

`a The alarm character. Generates a beep when
displayed on the console.

`b The backspace character. The previous character
remains in the string but is overwritten when
displayed on the console.

`e The escape character. Marks the beginning of an
ANSI escape sequence such as "`e[2J“.

`f A form feed. Creates a page break when printed
on most printers.

`n A newline.

`r A carriage return. Newlines in PowerShell are
indicated entirely by the `n character, so this is
rarely required.

`t A tab.

`u{hex-code} A unicode character literal. Creates a character
represented by the specified hexadecimal
Unicode code point, such as `u{2265} (≥).

10 | Chapter 1: PowerShell Language and Environment

Sequence Meaning

`v A vertical tab.

'' (two single quotes) A single quote, when in a literal string.

"" (two double quotes) A double quote, when in an expanding string.

`any other character That character, taken literally.

Numbers
PowerShell offers several options for interacting with numbers
and numeric data.

Simple Assignment
To define a variable that holds numeric data, simply assign it as
you would other variables. PowerShell automatically stores
your data in a format that is sufficient to accurately hold it:
$myInt = 10

$myUnsignedInt = 10u
$myUnsignedInt = [uint] 10

$myInt gets the value of 10, as a (32-bit) integer. $myUnsignedInt
gets the value of 10 as an unsigned integer.
$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of preci‐
sion) double.

To explicitly assign a number as a byte (8-bit) or short (16-bit)
number, use the y or s suffixes. Prefixing either with u creates
an unsigned version of that data type. You can also use the
[byte], [int16], and [short] casts:
$myByte = 127y
$myByte = [byte] 127
$myUnsignedByte = 127uy

$myShort = 32767s
$myShort = [int16] 32767
$myShort = [short] 32767

Numbers | 11

$myUnsignedShort = 32767us
$myUnsignedShort = [ushort] 32767

To explicitly assign a number as a long (64-bit) integer or deci‐
mal (96-bit, 96 bits of precision), use the long (l) and decimal
(d) suffixes. You can also use the [long] cast:
$myLong = 2147483648l
$myLong = [long] 2147483648

$myUnsignedLong = 2147483648ul
$myUnsignedLong = [ulong] 2147483648

$myDecimal = 0.999d

To explicitly assign a number as a BigInteger (an arbitrary large
integer with no upper or lower bounds), use the BigInteger (n)
suffix:
$myBigInt = 99999999999999999999999999999n

PowerShell also supports scientific notation, where e<number>
represents multiplying the original number by the <number>
power of 10:
$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and
decimal) are built on the .NET data types of the same names.

Administrative Numeric Constants
Since computer administrators rarely get the chance to work
with numbers in even powers of 10, PowerShell offers the
numeric constants of pb, tb, gb, mb, and kb to represent peta‐
bytes (1,125,899,906,842,624), terabytes (1,099,511,627,776),
gigabytes (1,073,741,824), megabytes (1,048,576), and kilobytes
(1,024), respectively:
PS > $downloadTime = (1gb + 250mb) / 120kb
PS > $downloadTime
10871.4666666667

12 | Chapter 1: PowerShell Language and Environment

You can combine these numeric multipliers with a data type as
long as the result fits in that data type, such as 250ngb.

Hexadecimal and Other Number Bases
To directly enter a hexadecimal number, use the hexadecimal
prefix 0x:
$myErrorCode = 0xFE4A

$myErrorCode gets the integer value 65098.

To directly enter a binary number, use the binary prefix 0b:
$myBinary = 0b101101010101

$myBinary gets the integer value of 2901.

If you don’t know the hex or binary value as a constant or need
to convert into Octal, use the [Convert] class from the .NET
Framework. The first parameter is the value to convert, and the
second parameter is the base (2, 8, 10, or 16):
$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.
$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.
$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

NOTE

See “Working with the .NET Framework” on page 49 to
learn more about using PowerShell to interact with
the .NET Framework.

Numbers | 13

Large Numbers
To work with extremely large numbers, use the BigInt class.
[BigInt]::Pow(12345, 123)

To do math with several large numbers, use the [BigInt] cast
(or the n BigInt data type) for all operands:
PS > 98123498123498123894n * 98123498123498123894n
9628220883992139841085109029337773723236

PS > $val = "98123498123498123894"
PS > ([BigInt] $val) * ([BigInt] $val)
9628220883992139841085109029337773723236

Imaginary and Complex Numbers
To work with imaginary and complex numbers, use the
System.Numerics.Complex class:
PS > [System.Numerics.Complex]::ImaginaryOne *
 [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : -1
Imaginary : 0
Magnitude : 1
Phase : 3.14159265358979

Arrays and Lists
Array Definitions
PowerShell arrays hold lists of data. The @() (array cast) syntax
tells PowerShell to treat the contents between the parentheses
as an array. To create an empty array, type:
$myArray = @()

To define a nonempty array, use a comma to separate its
elements:
$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:
$myList = ,"Hello"

14 | Chapter 1: PowerShell Language and Environment

Or, alternatively (using the array cast syntax):
$myList = @("Hello")

Elements of an array don’t need to be all of the same data type,
unless you declare it as a strongly typed array. In the following
example, the outer square brackets define a strongly typed vari‐
able (as mentioned in “Variables” on page 5), and int[] repre‐
sents an array of integers:
[int[]] $myArray = 1,2,3.14

In this mode, PowerShell generates an error if it cannot convert
any of the elements in your list to the required data type. In this
case, it rounds 3.14 to the integer value of 3:
PS > $myArray[2]
3

NOTE

To ensure that PowerShell treats collections of uncertain
length (such as history lists or directory listings) as a list,
use the list evaluation syntax @(…) described in “Com‐
mands and Expressions” on page 1.

Arrays can also be multidimensional jagged arrays (arrays
within arrays):
$multiDimensional = @(
 (1,2,3,4),
 (5,6,7,8)
)

$multiDimensional[0][1] returns 2, coming from row 0,
column 1.

$multiDimensional[1][3] returns 8, coming from row 1,
column 3.

Arrays and Lists | 15

To define a multidimensional array that is not jagged, create a
multidimensional instance of the .NET type. For integers, that
would be an array of System.Int32:
$multidimensional = New-Object "Int32[,]" 2,4
$multidimensional[0,1] = 2
$multidimensional[1,3] = 8

Array Access
To access a specific element in an array, use the [] operator.
PowerShell numbers your array elements starting at zero. Using
$myArray = 1,2,3,4,5,6 as an example:
$myArray[0]

returns 1, the first element in the array.
$myArray[2]

returns 3, the third element in the array.
$myArray[-1]

returns 6, the last element of the array.
$myArray[-2]

returns 5, the second-to-last element of the array.

You can also access ranges of elements in your array:
PS > $myArray[0..2]
1
2
3

returns elements 0 through 2, inclusive.
PS > $myArray[-1..2]
6
1
2
3

returns the final element, wraps around, and returns elements 0
through 2, inclusive. PowerShell wraps around because the first
number in the range is negative, and the second number in the
range is positive.

16 | Chapter 1: PowerShell Language and Environment

PS > $myArray[-1..-3]
6
5
4

returns the last element of the array through to the third-to-last
element in the array, in descending order. PowerShell does not
wrap around (and therefore scans backward in this case)
because both numbers in the range share the same sign.

If the array being accessed might be null, you can use the null
conditional array access operator (?[]). The result of the
expression will be null if the array being accessed did not exist.
It will be the element at the specified index otherwise:
(Get-Process -id 0).Modules?[0]

Array Slicing
You can combine several of the statements in the previous sec‐
tion at once to extract more complex ranges from an array. Use
the + sign to separate array ranges from explicit indexes:
$myArray[0,2,4]

returns the elements at indices 0, 2, and 4.
$myArray[0,2+4..5]

returns the elements at indices 0, 2, and 4 through 5, inclusive.
$myArray[,0+2..3+0,0]

returns the elements at indices 0, 2 through 3 inclusive, 0, and 0
again.

NOTE

You can use the array slicing syntax to create arrays as well:
$myArray = ,0+2..3+0,0

Arrays and Lists | 17

Hashtables (Associative Arrays)
Hashtable Definitions
PowerShell hashtables (also called associative arrays) let you
associate keys with values. To define a hashtable, use the syntax:
$myHashtable = @{}

You can initialize a hashtable with its key/value pairs when you
create it. PowerShell assumes that the keys are strings, but the
values may be any data type:
$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3; 3.14 = "Pi" }

To define a hashtable that retains its insertion order, use the
[ordered] cast:
$orderedHash = [ordered] @{}
$orderedHash["NewKey"] = "Value"

Hashtable Access
To access or modify a specific element in an associative array,
you can use either the array-access or property-access syntax:
$myHashtable["Key1"]

returns "Value1".
$myHashtable."Key 2"

returns the array 1,2,3.
$myHashtable["New Item"] = 5

adds "New Item" to the hashtable.
$myHashtable."New Item" = 5

also adds "New Item" to the hashtable.

XML
PowerShell supports XML as a native data type. To create an
XML variable, cast a string to the [xml] type:

18 | Chapter 1: PowerShell Language and Environment

$myXml = [xml] @"
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
"@

PowerShell exposes all child nodes and attributes as properties.
When it does this, PowerShell automatically groups children
that share the same node type:
$myXml.AddressBook

returns an object that contains a Person property.
$myXml.AddressBook.Person

returns a list of Person nodes. Each person node exposes con
tactType, Name, and Phone as properties.
$myXml.AddressBook.Person[0]

returns the first Person node.
$myXml.AddressBook.Person[0].ContactType

returns Personal as the contact type of the first Person node.

Simple Operators
Once you have defined your data, the next step is to work with
it.

Arithmetic Operators
The arithmetic operators let you perform mathematical opera‐
tions on your data, as shown in Table 1-5.

Simple Operators | 19

NOTE

The System.Math class in the .NET Framework offers
many powerful operations in addition to the native opera‐
tors supported by PowerShell:
PS > [Math]::Pow([Math]::E, [Math]::Pi)
23.1406926327793

See “Working with the .NET Framework” on page 49 to
learn more about using PowerShell to interact with
the .NET Framework.

Table 1-5. PowerShell arithmetic operators

Operator Meaning

+ The addition operator:
$leftValue + $rightValue

When used with numbers, returns their sum.
When used with strings, returns a new string created by appending the
second string to the first.
When used with arrays, returns a new array created by appending the
second array to the first.
When used with hashtables, returns a new hashtable created by
merging the two hashtables. Since hashtable keys must be unique,
PowerShell returns an error if the second hashtable includes any keys
already defined in the first hashtable.
When used with any other type, PowerShell uses that type’s addition
operator (op_Addition) if it implements one.

– The subtraction operator:
$leftValue - $rightValue

When used with numbers, returns their difference.
This operator does not apply to strings, arrays, or hashtables.
When used with any other type, PowerShell uses that type’s
subtraction operator (op_Subtraction) if it implements one.

20 | Chapter 1: PowerShell Language and Environment

Operator Meaning

* The multiplication operator:
$leftValue * $rightValue

When used with numbers, returns their product.
When used with strings ("=" * 80), returns a new string created by
appending the string to itself the number of times you specify.
When used with arrays (1..3 * 7), returns a new array created by
appending the array to itself the number of times you specify.
This operator does not apply to hashtables.
When used with any other type, PowerShell uses that type’s
multiplication operator (op_Multiply) if it implements one.

/ The division operator:
$leftValue / $rightValue

When used with numbers, returns their quotient.
This operator does not apply to strings, arrays, or hashtables.
When used with any other type, PowerShell uses that type’s division
operator (op_Division) if it implements one.

% The modulus operator:
$leftValue % $rightValue

When used with numbers, returns the remainder of their division.
This operator does not apply to strings, arrays, or hashtables.
When used with any other type, PowerShell uses that type’s modulus
operator (op_Modulus) if it implements one.

+=
-=
*=
/=
%=

Assignment operators:
$variable operator= value

These operators match the simple arithmetic operators (+, –, *, /, and
%) but store the result in the variable on the lefthand side of the
operator. It is a short form for
$variable = $variable operator value.

Simple Operators | 21

Logical Operators
The logical operators let you compare Boolean values, as
shown in Table 1-6.

Table 1-6. PowerShell logical operators

Operator Meaning

-and Logical AND:
$leftValue -and $rightValue

Returns $true if both lefthand and righthand arguments evaluate to
$true. Returns $false otherwise.
You can combine several -and operators in the same expression:
$value1 -and $value2 -and $value3 …

PowerShell implements the -and operator as a short-circuit operator
and evaluates arguments only if all arguments preceding it evaluate to
$true.

-or Logical OR:
$leftValue -or $rightValue

Returns $true if the lefthand or righthand arguments evaluate to
$true. Returns $false otherwise.
You can combine several -or operators in the same expression:
$value1 -or $value2 -or $value3 ...

PowerShell implements the -or operator as a short-circuit operator
and evaluates arguments only if all arguments preceding it evaluate to
$false.

-xor Logical exclusive OR:
$leftValue -xor $rightValue

Returns $true if either the lefthand or righthand argument evaluates
to $true, but not if both do.
Returns $false otherwise.

-not

!

Logical NOT:
-not $value

Returns $true if its righthand (and only) argument evaluates to
$false. Returns $false otherwise.

22 | Chapter 1: PowerShell Language and Environment

Binary Operators
The binary operators, listed in Table 1-7, let you apply the
Boolean logical operators bit by bit to the operator’s arguments.
When comparing bits, a 1 represents $true, whereas a 0 repre‐
sents $false.

Table 1-7. PowerShell binary operators

Operator Meaning

-band Binary AND:
$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the lefthand and
righthand arguments at that position are both 1. All other bits are set
to 0. For example:
PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -band $int2
PS > [Convert]::ToString($result, 2)
10010010

-bor Binary OR:
$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the
lefthand and righthand arguments at that position is 1. All other bits
are set to 0. For example:
PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
110110110

Simple Operators | 23

Operator Meaning

-bxor Binary exclusive OR:
$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the
lefthand and righthand arguments at that position is 1, but not if both
are. All other bits are set to 0. For example:
PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -bxor $int2
PS > [Convert]::ToString($result, 2)
100100100

-bnot Binary NOT:
-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand
(and only) argument at that position is set to 1. All other bits are set to
0. For example:
PS > $int1 = 0b110110110
PS > $result = -bnot $int1
PS > [Convert]::ToString($result, 2)
11111111111111111111111001001001

-shl Binary shift left:
$value -slh $count

Shifts the bits of a number to the left $count places. Bits on the
righthand side are set to 0. For example:
PS > $int1 = 438
PS > [Convert]::ToString($int1, 2)
110110110

PS > $result = $int1 -shl 5
PS > [Convert]::ToString($result, 2)
11011011000000

24 | Chapter 1: PowerShell Language and Environment

Operator Meaning

-shr Binary shift right:
$value -slr $count

Shifts the bits of a number to the right $count places. For signed
values, bits on the lefthand side have their sign preserved. For
example:
PS > $int1 = -2345
PS > [Convert]::ToString($int1, 2)
11111111111111111111011011010111

PS > $result = $int1 -shr 3
PS > [Convert]::ToString($result, 2)
11111111111111111111111011011010

Other Operators
PowerShell supports several other simple operators, as listed
here.

-replace (Replace operator)
The replace operator returns a new string, where the text in
"target" that matches the regular expression "pattern" has
been replaced with the replacement text "replacement":
"target" -replace "pattern","replacement"

The following returns a new string, where the text in "target"
that matches the regular expression "pattern" has been
replaced with the output value of the script block supplied. In
the script block, the $_ variable represents the current
System.Text.RegularExpressions.Match:
"target" -replace "pattern",{ scriptblock }

By default, PowerShell performs a case-insensitive comparison.
The -ireplace operator makes this case-insensitivity explicit,
whereas the -creplace operator performs a case-sensitive
comparison.

Simple Operators | 25

If the regular expression pattern contains named captures or
capture groups, the replacement string may reference those as
well. For example:
PS > "Hello World" -replace "(.*) (.*)",'$2 $1'
World Hello

If "target" represents an array, the -replace operator operates
on each element of that array.

For more information on the details of regular expressions, see
Chapter 2.

-f (Format operator)
The format operator returns a string where the format items in
the format string have been replaced with the text equivalent of
the values in the value array:
"Format String" -f values

For example:
PS > "{0:n0}" -f 1000000000
1,000,000,000

The format string for the format operator is exactly the format
string supported by the .NET String.Format method.

For more details about the syntax of the format string, see
Chapter 4.

-as (Type conversion operator)

The type conversion operator returns $value cast to the
given .NET type:
$value -as [Type]

If this conversion is not possible, PowerShell returns $null. For
example:
PS > 3/2 -as [int]
2
PS > $result = "Hello" -as [int]
PS > $result -eq $null
True

26 | Chapter 1: PowerShell Language and Environment

-split (Split operator)
The unary split operator breaks the given input string into an
array, using whitespace (\s+) to identify the boundary between
elements:
-split "Input String"

It also trims the results. For example:
PS > -split " Hello World "
Hello
World

The binary split operator breaks the given input string into an
array, using the given delimiter or script block to identify the
boundary between elements:
"Input String" -split "delimiter",maximum,options
"Input String" -split { Scriptblock },maximum

Delimiter is interpreted as a regular expression match. Script
block is called for each character in the input, and a split is
introduced when it returns $true.

Maximum defines the maximum number of elements to be
returned, leaving unsplit elements as the last item. This item is
optional. Use "0" for unlimited if you want to provide options
but not alter the maximum.

Options define special behavior to apply to the splitting behav‐
ior. The possible enumeration values are:

SimpleMatch

Split on literal strings, rather than regular expressions they
may represent.

RegexMatch

Split on regular expressions. This option is the default.

CultureInvariant

Does not use culture-specific capitalization rules when
doing a case-insensitive split.

Simple Operators | 27

IgnorePatternWhitespace

Ignores spaces and regular expression comments in the
split pattern.

Multiline

Allows the ^ and $ characters to match line boundaries,
not just the beginning and end of the content.

Singleline

Treats the ^ and $ characters as the beginning and end of
the content. This option is the default.

IgnoreCase

Ignores the capitalization of the content when searching
for matches.

ExplicitCapture

In a regular expression match, only captures named
groups. This option has no impact on the -split operator.

For example:
PS > "1a2B3" -split "[a-z]+",0,"IgnoreCase"
1
2
3

-join (Join operator)
The unary join operator combines the supplied items into a sin‐
gle string, using no separator:
-join ("item1","item2",...,"item_n")

For example:
PS > -join ("a","b")
ab

The binary join operator combines the supplied items into a
single string, using Delimiter as the separator:
("item1","item2",...,"item_n") -join Delimiter

28 | Chapter 1: PowerShell Language and Environment

For example:
PS > ("a","b") -join ", "
a, b

Comparison Operators
The PowerShell comparison operators, listed in Table 1-8, let
you compare expressions against each other. By default,
PowerShell’s comparison operators are case-insensitive. For all
operators where case sensitivity applies, the -i prefix makes
this case insensitivity explicit, whereas the -c prefix performs a
case-sensitive comparison.

Table 1-8. PowerShell comparison operators

Operator Meaning

-eq The equality operator:
$leftValue -eq $rightValue

For all primitive types, returns $true if $leftValue
and $rightValue are equal.
When used with arrays, returns all elements in
$leftValue that are equal to $rightValue.
When used with any other type, PowerShell uses that
type’s Equals() method if it implements one.

-ne The negated equality operator:
$leftValue -ne $rightValue

For all primitive types, returns $true if$leftValue
and $rightValue are not equal.
When used with arrays, returns all elements in
$leftValue that are not equal to$rightValue.
When used with any other type, PowerShell returns the
negation of that type’s Equals() method if it
implements one.

Comparison Operators | 29

Operator Meaning

-ge The greater-than-or-equal operator:
$leftValue -ge $rightValue

For all primitive types, returns $true if $leftValue is
greater than or equal to $rightValue.
When used with arrays, returns all elements in
$leftValue that are greater than or equal to
$rightValue.
When used with any other type, PowerShell returns the
result of that object’s Compare() method if it
implements one. If the method returns a number greater
than or equal to zero, the operator returns $true.

-gt The greater-than operator:
$leftValue -gt $rightValue

For all primitive types, returns $true if $leftValue is
greater than $rightValue.
When used with arrays, returns all elements in
$leftValue that are greater than $rightValue.
When used with any other type, PowerShell returns the
result of that object’s Compare() method if it
implements one. If the method returns a number greater
than zero, the operator returns $true.

-in The in operator:
$value -in $list

Returns $true if the value $value is contained in the list
$list. That is, if $item -eq $value returns $true
for at least one item in the list. This is equivalent to the
-contains operator with the operands reversed.

-notin The negated in operator:
Returns $true when the -in operator would return
$false.

30 | Chapter 1: PowerShell Language and Environment

Operator Meaning

-lt The less-than operator:
$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is
less than $rightValue.
When used with arrays, returns all elements in
$leftValue that are less than $rightValue.
When used with any other type, PowerShell returns the
result of that object’s Compare() method if it
implements one. If the method returns a number less than
zero, the operator returns $true.

-le The less-than-or-equal operator:
$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is
less than or equal to$rightValue.
When used with arrays, returns all elements in
$leftValue that are less than or equal to
$rightValue.
When used with any other type, PowerShell returns the
result of that object’s Compare() method if it
implements one. If the method returns a number less than
or equal to zero, the operator returns $true.

Comparison Operators | 31

Operator Meaning

-like The like operator:
$leftValue -like Pattern

Evaluates the pattern against the target, returning
$true if the simple match is successful.
When used with arrays, returns all elements in
$leftValue that match Pattern.
The -like operator supports the following simple
wildcard characters:

• ?: Any single unspecified character

• *: Zero or more unspecified characters

• [a-b]: Any character in the range of a–b

• [ab]: The specified characters a or b

For example:
PS > "Test" -like "[A-Z]e?[tr]"
True

-notlike The negated like operator:
Returns $true when the -like operator would return
$false.

32 | Chapter 1: PowerShell Language and Environment

Operator Meaning

-match The match operator:
"Target" -match Regular Expression

Evaluates the regular expression against the target,
returning $true if the match is successful. Once
complete, PowerShell places the successful matches in the
$matches variable.
When used with arrays, returns all elements in Target
that match Regular Expression.
The $matches variable is a hashtable that maps the
individual matches to the text they match. 0 is the entire
text of the match, 1 and on contain the text from any
unnamed captures in the regular expression, and string
values contain the text from any named captures in the
regular expression.
For example:
PS > "Hello World" -match "(.*) (.*)"
True
PS > $matches[1]
Hello

For more information on the details of regular
expressions, see Chapter 2.

-notmatch The negated match operator:
Returns $true when the -match operator would return
$false.
The -notmatch operator still populates the $matches
variable with the results of match.

-contains The contains operator:
$list -contains $value

Returns $true if the list specified by $list contains the
value $value—that is, if $item -eq $value
returns $true for at least one item in the list. This is
equivalent to the -in operator with the operands
reversed.

Comparison Operators | 33

Operator Meaning

-notcontains The negated contains operator:
Returns $true when the -contains operator would
return $false.

-is The type operator:
$leftValue -is [type]

Returns $true if $value is (or extends) the
specified .NET type.

-isnot The negated type operator:
Returns $true when the -is operator would return
$false.

Conditional Statements
Conditional statements in PowerShell let you change the flow
of execution in your script.

if, elseif, and else Statements
if(condition)
{
 statement block
}
elseif(condition)
{
 statement block
}
else
{
 statement block
}

If condition evaluates to $true, PowerShell executes the state‐
ment block you provide. Then, it resumes execution at the end
of the if/elseif/else statement list. PowerShell requires the
enclosing braces around the statement block, even if the state‐
ment block contains only one statement.

34 | Chapter 1: PowerShell Language and Environment

NOTE

See “Simple Operators” on page 19 and “Comparison
Operators” on page 29 for discussion on how PowerShell
evaluates expressions as conditions.

If condition evaluates to $false, PowerShell evaluates any fol‐
lowing (optional) elseif conditions until one matches. If one
matches, PowerShell executes the statement block associated
with that condition, and then resumes execution at the end of
the if/elseif/else statement list.

For example:
$textToMatch = Read-Host "Enter some text"
$matchType = Read-Host "Apply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"
if($matchType -eq "Simple")
{
 $textToMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
 $textToMatch -match $pattern
}
else
{
 Write-Host "Match type must be Simple or Regex"
}

If none of the conditions evaluate to $true, PowerShell exe‐
cutes the statement block associated with the (optional) else
clause, and then resumes execution at the end of the
if/elseif/else statement list.

To apply an if statement to each element of a list and filter it to
return only the results that match the supplied condition, use
the Where-Object cmdlet or .where() method:
Get-Process | Where-Object { $_.Handles -gt 500 }

(Get-Process).where({ $_.Handles -gt 500})

Conditional Statements | 35

Ternary Operators
$result = condition ? true value : false value

A short-form version of an if/else statement. If condition eval‐
uates to $true, the result of the expression is the value of the
true value clause. Otherwise, the result of the expression is the
value of the false value clause. For example:
(Get-Random) % 2 -eq 0 ? "Even number" : "Odd number"

Null Coalescing and Assignment Operators
$result = nullable value ?? default value

Assignment version:
$result = nullable value
$result ??= default value

A short-form version of a ternary operator that only checks if
the expression is null or not. If it is null, the result of the
expression is the value of the default value clause. For example:
Get-Process | ForEach-Object { $_.CPU ?? "<Unavailable>" }

or
$cpu = (Get-Process -id 0).CPU
$cpu ??= "Unavailable"

switch Statements
switch options expression
{
 comparison value { statement block }
 -or-
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

or:
switch options -file filename
{
 comparison value { statement block }
 -or
 { comparison expression } { statement block }

36 | Chapter 1: PowerShell Language and Environment

 (...)
 default { statement block }
}

When PowerShell evaluates a switch statement, it evaluates
expression against the statements in the switch body. If
expression is a list of values, PowerShell evaluates each item
against the statements in the switch body. If you specify the
-file option, PowerShell treats the lines in the file as though
they were a list of items in expression.

The comparison value statements let you match the current
input item against the pattern specified by comparison value.
By default, PowerShell treats this as a case-insensitive exact
match, but the options you provide to the switch statement can
change this, as shown in Table 1-9.

Table 1-9. Options supported by PowerShell switch statements

Option Meaning

-casesensitive

-c

Case-sensitive match.
With this option active, PowerShell executes the
associated statement block only if the current input
item exactly matches the value specified by
comparison value. If the current input object is
a string, the match is case-sensitive.

-exact

-e

Exact match
With this option active, PowerShell executes the
associated statement block only if the current input
item exactly matches the value specified by
comparison value. This match is case-
insensitive. This is the default mode of operation.

-regex

-r

Regular-expression match
With this option active, PowerShell executes the
associated statement block only if the current input
item matches the regular expression specified by
comparison value. This match is case-
insensitive.

Conditional Statements | 37

Option Meaning

-wildcard

-w

Wildcard match
With this option active, PowerShell executes the
associated statement block only if the current input
item matches the wildcard specified by
comparison value.
The wildcard match supports the following simple
wildcard characters:

• ?: Any single unspecified character

• *: Zero or more unspecified characters

• [a-b]: Any character in the range of a–b

• [ab]: The specified characters a or b

This match is case-insensitive.

The { comparison expression } statements let you process the
current input item, which is stored in the $_ (or $PSItem)
variable, in an arbitrary script block. When it processes a
{ comparison expression } statement, PowerShell executes the
associated statement block only if { comparison expression }
evaluates to $true.

PowerShell executes the statement block associated with the
(optional) default statement if no other statements in the
switch body match.

When processing a switch statement, PowerShell tries to match
the current input object against each statement in the switch
body, falling through to the next statement even after one or
more have already matched. To have PowerShell discontinue
the current comparison (but retry the switch statement with
the next input object), include a continue statement as the last
statement in the statement block. To have PowerShell exit a
switch statement completely after it processes a match, include
a break statement as the last statement in the statement block.

38 | Chapter 1: PowerShell Language and Environment

For example:
$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)
{
 { $_.Length -le 8 } { "Area code was not specified"; break }
 { $_.Length -gt 8 } { "Area code was specified" }
 "\((555)\).*" { "In the $($matches[1]) area code" }
}

produces the output:
Area code was specified
In the 555 area code
Area code was not specified

NOTE

See the next section on Looping Statements for more infor‐
mation about the break statement.

By default, PowerShell treats this as a case-insensitive exact
match, but the options you provide to the switch statement can
change this.

Looping Statements
Looping statements in PowerShell let you execute groups of
statements multiple times.

for Statement
:loop_label for (initialization; condition; increment)
{
 statement block
}

When PowerShell executes a for statement, it first executes the
expression given by initialization. It next evaluates
condition. If condition evaluates to $true, PowerShell executes
the given statement block. It then executes the expression given

Looping Statements | 39

by increment. PowerShell continues to execute the statement
block and increment statement as long as condition evaluates
to $true.

For example:
for($counter = 0; $counter -lt 10; $counter++)
{
 Write-Host "Processing item $counter"
}

The break and continue statements (discussed in “Flow Con‐
trol Statements” on page 42) can specify the loop_label of any
enclosing looping statement as their target.

foreach Statement
:loop_label foreach(variable in expression)
{
 statement block
}

When PowerShell executes a foreach statement, it executes the
pipeline given by expression—for example, Get-Process |

Where-Object {$_.Handles -gt 500} or 1..10. For each item
produced by the expression, it assigns that item to the variable
specified by variable and then executes the given statement
block. For example:
$handleSum = 0
foreach($process in Get-Process |
 Where-Object { $_.Handles -gt 500 })
{
 $handleSum += $process.Handles
}
$handleSum

In addition to the foreach statement, you can also use the
foreach method on collections directly:
$handleSum = 0
(Get-Process).foreach({ $handleSum += $_.Handles })

The break and continue statements (discussed in “Flow Con‐
trol Statements” on page 42) can specify the loop_label of any
enclosing looping statement as their target. In addition to the

40 | Chapter 1: PowerShell Language and Environment

foreach statement, PowerShell also offers the ForEach-Object
cmdlet with similar capabilities.

while Statement
:loop_label while(condition)
{
 statement block
}

When PowerShell executes a while statement, it first evaluates
the expression given by condition. If this expression evaluates
to $true, PowerShell executes the given statement block.
PowerShell continues to execute the statement block as long as
condition evaluates to $true. For example:
$command = "";
while($command -notmatch "quit")
{
 $command = Read-Host "Enter your command"
}

The break and continue statements (discussed in “Flow Con‐
trol Statements” on page 42) can specify the loop_label of any
enclosing looping statement as their target.

do … while Statement/do … until Statement
:loop_label do
{
 statement block
} while(condition)

or
:loop_label do
{
 statement block
} until(condition)

When PowerShell executes a do … while or do … until state‐
ment, it first executes the given statement block. In a do …
while statement, PowerShell continues to execute the statement
block as long as condition evaluates to $true. In a do … until

Looping Statements | 41

statement, PowerShell continues to execute the statement as
long as condition evaluates to $false. For example:
$validResponses = "Yes","No"
$response = ""
do
{
 $response = Read-Host "Yes or No?"
} while($validResponses -notcontains $response)
"Got $response"

$response = ""
do
{
 $response = Read-Host "Yes or No?"
} until($validResponses -contains $response)
"Got $response"

The break and continue statements (discussed in the next sec‐
tion) can specify the loop_label of any enclosing looping state‐
ment as their target.

Flow Control Statements
PowerShell supports two statements to help you control flow
within loops: break and continue.

break

The break statement halts execution of the current loop.
PowerShell then resumes execution at the end of the current
looping statement, as though the looping statement had com‐
pleted naturally. For example:
for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

42 | Chapter 1: PowerShell Language and Environment

produces the output (notice the second column never reaches
the value 2):
Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

If you specify a label with the break statement—for example,
break outer_loop—PowerShell halts the execution of that loop
instead. For example:
:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:
Processing item 0,0
Processing item 0,1

continue

The continue statement skips execution of the rest of the cur‐
rent statement block. PowerShell then continues with the next
iteration of the current looping statement, as though the state‐
ment block had completed naturally. For example:
for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)

Looping Statements | 43

 {
 continue
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:
Processing item 0,0
Processing item 0,1
Processing item 0,3
Processing item 0,4
Processing item 1,0
Processing item 1,1
Processing item 1,3
Processing item 1,4
Processing item 2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3,3
Processing item 3,4
Processing item 4,0
Processing item 4,1
Processing item 4,3
Processing item 4,4

If you specify a label with the continue statement—for exam‐
ple, continue outer_loop—PowerShell continues with the next
iteration of that loop instead.

For example:
:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

44 | Chapter 1: PowerShell Language and Environment

produces the output:
Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

Classes
A class called "Example" that inherits from "BaseClass"
and implements the "ImplementedInterface" interface
class Example : BaseClass, ImplementedInterface
{
 ## Default constructor, which also invokes the constructor
 ## from the base class.
 Example() : base()
 {
 [Example]::lastInstantiated = Get-Date
 }

 ## Constructor with parameters
 Example([string] $Name)
 {
 $this.Name = $Name
 [Example]::lastInstantiated = Get-Date
 }

 ## A publicly visible property with validation attributes
 [ValidateLength(2,20)]
 [string] $Name

 ## A property that is hidden from default views
 static hidden [DateTime] $lastInstantiated

 ## A publicly visible method that returns a value
 [string] ToString()
 {
 ## Return statement is required. Implicit / pipeline output
 ## is not treated as output like it is with functions.
 return $this.ToString([Int32]::MaxValue)
 }

 ## A publicly visible method that returns a value

Looping Statements | 45

 [string] ToString([int] $MaxLength)
 {
 $output = "Name = $($this.Name);"
 "LastInstantiated = $([Example]::lastInstantiated)"
 $outputLength = [Math]::Min($MaxLength, $output.Length)
 return $output.Substring(0, $outputLength)
 }

}

Base classes and interfaces
To define a class that inherits from a base class or implements
an interfaces, provide the base class and/or interface names
after the class name, separated by a colon (deriving from a base
class or implementing any interfaces is optional):
class Example [: BaseClass, ImplementedInterface]

Constructors
To define a class constructor, create a method with the same
name as the class. You can define several constructors, includ‐
ing those with parameters. To automatically call a constructor
from the base class, add : base() to the end of the method
name:
Example() [: base()]

Example([int] $Parameter1, [string] $Parameter2) [: base()]

Properties
To define a publicly visible property, define a PowerShell vari‐
able in your class. As with regular Powershell variables, you
may optionally add validation attributes or declare a type con‐
straint for the property:
[ValidateLength(2,20)]
[string] $Name

To hide the property from default views (similar to a member
variable in other languages), use the hidden keyword. Users are
still able to access hidden properties if desired: they are just
removed from default views. You can make a property static if

46 | Chapter 1: PowerShell Language and Environment

you want it to be shared with all instances of your class in the
current process:
static hidden [DateTime] $lastInstantiated

Methods
Define a method as though you would define a PowerShell
function, but without the function keyword and without the
param() statement. Methods support parameters, parameter
validation, and can also have the same name as long as their
parameters differ:
[string] ToString() { ... }

[string] ToString([int] $MaxLength) { ... }

Custom Enumerations
To define a custom enumeration, use the enum keyword:
enum MyColor {
 Red = 1
 Green = 2
 Blue = 3
}

If enumeration values are intended to be combined through
bitwise operators, use the [Flags()] attribute. If you require
that the enumerated values derive from a specific integral data
type (byte, sbyte, short, ushort, int, uint, long or ulong), pro‐
vide that data type after the colon character:
[Flags()] enum MyColor : uint {
 Red = 1
 Green = 2
 Blue = 4
}

Workflow-Specific Statements
Within a workflow, PowerShell supports three statements not
supported in traditional PowerShell scripts: InlineScript,
Parallel, and Sequence.

Looping Statements | 47

NOTE

Workflows are no longer supported in PowerShell. This
section exists to help you understand and interact with
workflows that have already been written.

InlineScript

The InlineScript keyword defines an island of PowerShell
script that will be invoked as a unit, and with traditional
PowerShell scripting semantics. For example:
workflow MyWorkflow
{
 ## Method invocation not supported in a workflow
 ## [Math]::Sqrt(100)

 InlineScript
 {
 ## Supported in an InlineScript
 [Math]::Sqrt(100)
 }
}

Parallel/Sequence

The Parallel keyword specifies that all statements within the
statement block should run in parallel. To group statements
that should be run as a unit, use the Sequence keyword:
workflow MyWorkflow
{
 Parallel
 {
 InlineScript { Start-Sleep -Seconds 2;
 "One thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 4;
 "Another thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 3;
 "A third thing run in parallel" }

 Sequence
 {
 Start-Sleep -Seconds 1
 "A fourth"

48 | Chapter 1: PowerShell Language and Environment

 "and fifth thing run as a unit, in parallel"
 }
 }
}

Note that you should not use PowerShell Workflows for the
parallel statement alone—the -Parallel parameter to the
ForEach-Object cmdlet is much more efficient.

Working with the .NET Framework
One feature that gives PowerShell its incredible reach into both
system administration and application development is its capa‐
bility to leverage Microsoft’s enormous and broad .NET
Framework.

Working with the .NET Framework in PowerShell comes
mainly by way of one of two tasks: calling methods or accessing
properties.

Static Methods
To call a static method on a class, type:
[ClassName]::MethodName(parameter list)

For example:
PS > [System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following
output:
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance Methods
To call a method on an instance of an object, type:
$objectReference.MethodName(parameter list)

For example:

Working with the .NET Framework | 49

PS > $process = [System.Diagnostics.Process]::GetProcessById(0)
PS > $process.Refresh()

This stores the process with ID of 0 into the $process variable.
It then calls the Refresh() instance method on that specific
process.

Explicitly Implemented Interface Methods
To call a method on an explictly implemented interface, type:
([Interface] $objectReference).MethodName(parameter list)

For example:
PS > ([IConvertible] 123).ToUint16($null)

Static Properties
To access a static property on a class, type:
[ClassName]::PropertyName

or:
[ClassName]::PropertyName = value

For example, the [System.DateTime] class provides a Now static
property that returns the current time:
PS > [System.DateTime]::Now
Sunday, July 16, 2006 2:07:20 PM

Although this is rare, some types let you set the value of some
static properties.

Instance Properties
To access an instance property on an object, type:
$objectReference.PropertyName

or:
$objectReference.PropertyName = value

For example:

50 | Chapter 1: PowerShell Language and Environment

PS > $today = [System.DateTime]::Now
PS > $today.DayOfWeek
Sunday

This stores the current date in the $today variable. It then calls
the DayOfWeek instance property on that specific date.

If the value of the property might be null, you can use the null
conditional property access operator (?.). The result of the
expression will be null if any property in the chain did not
exist. It will be the final property’s value otherwise:
(Get-Process -id 0)?.MainModule?.Filename

Learning About Types
The two primary avenues for learning about classes and types
are the Get-Member cmdlet and the documentation for the .NET
Framework.

The Get-Member cmdlet
To learn what methods and properties a given type supports,
pass it through the Get-Member cmdlet, as shown in Table 1-10.

Table 1-10. Working with the Get-Member cmdlet

Action Result

[typename] |
Get-Member-Static

All the static methods and properties of a given
type.

$objectReference |
Get-Member-Static

All the static methods and properties provided by
the type in $objectReference.

Working with the .NET Framework | 51

Action Result

$objectReference |
Get-Member

All the instance methods and properties provided
by the type in $objectReference. If
$objectReference represents a collection of
items, PowerShell returns the instances and
properties of the types contained by that
collection. To view the instances and properties of
a collection itself, use the -InputObject
parameter of Get-Member:
Get-Member -InputObject $objectReference

[typename] |
Get-Member

All the instance methods and properties of a
System.RuntimeType object that represents
this type.

.NET Framework documentation
Another source of information about the classes in the .NET
Framework is the documentation itself, available through the
search facilities at Microsoft’s developer documentation site.

Typical documentation for a class first starts with a general
overview, and then provides a hyperlink to the members of the
class—the list of methods and properties it supports.

NOTE

To get to the documentation for the members quickly,
search for them more explicitly by adding the term “mem‐
bers” to your search term:
classname members

The documentation for the members of a class lists their con‐
structors, methods, properties, and more. It uses an S icon to
represent the static methods and properties. Click the member
name for more information about that member, including the
type of object that the member produces.

52 | Chapter 1: PowerShell Language and Environment

https://docs.microsoft.com

Type Shortcuts
When you specify a type name, PowerShell lets you use a short
form for some of the most common types, as listed in
Table 1-11.

Table 1-11. PowerShell type shortcuts

Type shortcut Full classname

[Adsi] [System.DirectoryServices.

DirectoryEntry]

[AdsiSearcher] [System.DirectoryServices.

DirectorySearcher]

[Float] [System.Single]

[Hashtable] [System.Collections.Hashtable]

[Int] [System.Int32]

[IPAddress] [System.Net.IPAddress]

[Long] [System.Collections.Int64]

[PowerShell] [System.Management.Automation.

PowerShell]

[PSCustomObject] [System.Management.Automation.

PSObject]

[PSModuleInfo] [System.Management.Automation.

PSModuleInfo]

[PSObject] [System.Management.Automation.

PSObject]

[Ref] [System.Management.Automation.

PSReference]

[Regex] [System.Text.RegularExpressions.

Regex]

[Runspace] [System.Management.Automation.

Runspaces.Runspace]

Working with the .NET Framework | 53

Type shortcut Full classname

[RunspaceFactory] [System.Management.Automation.

Runspaces.RunspaceFactory]

[ScriptBlock] [System.Management.Automation.

ScriptBlock]

[Switch] [System.Management.Automation.

SwitchParameter]

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.

ManagementObjectSearcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

Creating Instances of Types
$objectReference = New-Object TypeName parameters
$objectReference = [TypeName]::new(parameters)

Although static methods and properties of a class generate
objects, you’ll often want to create them explicitly yourself.
PowerShell’s New-Object cmdlet lets you create an instance of
the type you specify. The parameter list must match the list of
parameters accepted by one of the type’s constructors, as
described in the SDK documentation.

For example:
$webClient = New-Object Net.WebClient
$webClient.DownloadString("http://search.msn.com")

If the type represents a generic type, enclose its type parameters
in square brackets:
PS > $hashtable =
 New-Object "System.Collections.Generic.Dictionary[String,Bool]"
PS > $hashtable["Test"] = $true

54 | Chapter 1: PowerShell Language and Environment

Most common types are available by default. However, many
types are available only after you load the library (called the
assembly) that defines them. The Microsoft documentation for
a class includes the assembly that defines it.

To load an assembly, use the -AssemblyName parameter of the
Add-Type cmdlet:
PS > Add-Type -AssemblyName System.Web
PS > [System.Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

To update the list of namespaces that PowerShell searches by
default, specify that namespace in a using statement:
PS > using namespace System.Web
PS > [HttpUtility]::UrlEncode("http://www.bing.com")

Interacting with COM Objects
PowerShell lets you access methods and properties on COM
objects the same way you would interact with objects from
the .NET Framework. To interact with a COM object, use its
ProgId with the -ComObject parameter (often shortened to
-Com) on New-Object:
PS > $shell = New-Object -Com Shell.Application
PS > $shell.Windows() | Select-Object LocationName,LocationUrl

For more information about the COM objects most useful to
system administrators, see Chapter 8.

Extending Types
PowerShell supports two ways to add your own methods and
properties to any type: the Add-Member cmdlet and a custom
types extension file.

The Add-Member cmdlet

The Add-Member cmdlet lets you dynamically add methods,
properties, and more to an object. It supports the extensions
shown in Table 1-12.

Working with the .NET Framework | 55

Table 1-12. Selected member types supported by the Add-Member
cmdlet

Member type Meaning

AliasProperty A property defined to alias another property:
PS > $testObject = [PsObject] "Test"
PS > $testObject |
 Add-Member "AliasProperty" Count Length
PS > $testObject.Count
4

CodeProperty A property defined by a System.Reflection.
MethodInfo.
This method must be public, static, return results
(nonvoid), and take one parameter of type PsObject.

NoteProperty A property defined by the initial value you provide:
PS > $testObject = [PsObject] "Test"
PS > $testObject |
 Add-Member NoteProperty Reversed tseT
PS > $testObject.Reversed
tseT

ScriptProperty A property defined by the script block you provide. In that
script block, $this refers to the current instance:
PS > $testObject = [PsObject] ("Hi" * 100)
PS > $testObject |
 Add-Member ScriptProperty IsLong {
 $this.Length -gt 100
 }
PS > $testObject.IsLong

True

56 | Chapter 1: PowerShell Language and Environment

Member type Meaning

PropertySet A property defined as a shortcut to a set of properties.
Used in cmdlets such as Select-Object:
PS > $testObject = [PsObject] [DateTime]::Now
PS > $collection = New-Object `
 Collections.ObjectModel.Collection[String]
$collection.Add("Month")
$collection.Add("Year")
$testObject |
 Add-Member PropertySet MonthYear $collection
$testObject | select MonthYear

Month Year
----- ----
 3 2010

CodeMethod A method defined by a System.Reflection.
MethodInfo.
This method must be public, static, and take one
parameter of type PsObject.

ScriptMethod A method defined by the script block you provide. In that
script block, $this refers to the current instance, and
$args refers to the input parameters:
PS > $testObject = [PsObject] "Hello"
PS > $testObject |
 Add-Member ScriptMethod IsLong {
 $this.Length -gt $args[0]
 }
PS > $testObject.IsLong(3)
True

PS > $testObject.IsLong(100)
False

Custom type extension files

While the Add-Member cmdlet lets you customize individual
objects, PowerShell also supports configuration files that let
you customize all objects of a given type. For example, you
might want to add a Reverse() method to all strings or a

Working with the .NET Framework | 57

HelpUrl property (based on the documentation URLs) to all
types.

PowerShell adds several type extensions to the file types.ps1xml,
in the PowerShell installation directory. This file is useful as a
source of examples, but you should not modify it directly.
Instead, create a new one and use the Update-TypeData cmdlet
to load your customizations. The following command loads
Types.custom.ps1xml from the same directory as your profile:
$typesFile = Join-Path (Split-Path $profile) "Types.Custom.Ps1Xml"
Update-TypeData -PrependPath $typesFile

Writing Scripts, Reusing Functionality
When you want to start packaging and reusing your com‐
mands, the best place to put them is in scripts, functions, and
script blocks. A script is a text file that contains a sequence of
PowerShell commands. A function is also a sequence of
PowerShell commands, but is usually placed within a script to
break it into smaller, more easily understood segments. A script
block is a function with no name. All three support the same
functionality, except for how you define them.

Writing Commands

Writing scripts
To write a script, write your PowerShell commands in a text
editor and save the file with a .ps1 extension.

Writing functions
Functions let you package blocks of closely related commands
into a single unit that you can access by name:
function SCOPE:name(parameters)
{
 statement block
}

or:

58 | Chapter 1: PowerShell Language and Environment

filter SCOPE:name(parameters)
{
 statement block
}

Valid scope names are global (to create a function available to
the entire shell), script (to create a function available only to
the current script), local (to create a function available only to
the current scope and subscopes), and private (to create a
function available only to the current scope). The default scope
is the local scope, which follows the same rules as those of
default variable scopes.

The content of a function’s statement block follows the same
rules as the content of a script. Functions support the $args
array, formal parameters, the $input enumerator, cmdlet key‐
words, pipeline output, and equivalent return semantics.

NOTE

A common mistake is to call a function as you would call a
method:
$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other
commands, so this should instead be:
$result = GetMyResults $item1 $item2

The first command passes an array that contains the items
$item1 and $item2 to the GetMyResults function.

A filter is simply a function where the statements are treated as
though they are contained within a process statement block.
For more information about process statement blocks, see
“Cmdlet keywords in commands” on page 71.

Writing Scripts, Reusing Functionality | 59

NOTE

Commands in your script can access only functions that
have already been defined. This can often make large
scripts difficult to understand when the beginning of the
script is composed entirely of helper functions. Structuring
a script in the following manner often makes it more clear:
function Main
{
 (...)
 HelperFunction
 (...)
}

function HelperFunction
{
 (...)
}

. Main

Writing script blocks
$objectReference =
{
 statement block
}

PowerShell supports script blocks, which act exactly like
unnamed functions and scripts. Like both scripts and func‐
tions, the content of a script block’s statement block follows the
same rules as the content of a function or script. Script blocks
support the $args array, formal parameters, the $input enu‐
merator, cmdlet keywords, pipeline output, and equivalent
return semantics.

As with both scripts and functions, you can either invoke or
dot-source a script block. Since a script block does not have a
name, you either invoke it directly (& { "Hello"}) or invoke the
variable (& $objectReference) that contains it.

60 | Chapter 1: PowerShell Language and Environment

Running Commands
There are two ways to execute a command (script, function, or
script block): by invoking it or by dot-sourcing it.

Invoking
Invoking a command runs the commands inside it. Unless
explicitly defined with the GLOBAL scope keyword, variables and
functions defined in the script do not persist once the script
exits.

NOTE

By default, a security feature in PowerShell called
the Execution Policy prevents scripts from running. When
you want to enable scripting in PowerShell, you must
change this setting. To understand the different execution
policies available to you, type Get-Help about_signing.
After selecting an execution policy, use the Set-Execution
Policy cmdlet to configure it:
Set-ExecutionPolicy RemoteSigned

If the command name has no spaces, simply type its name:
c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ...
Invoke-MyFunction parameter1 parameter2 ...

To run the command as a background job, use the background
operator (&):
c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ... &

You can use either a fully qualified path or a path relative to the
current location. If the script is in the current directory, you
must explicitly say so:
.\Invoke-Commands.ps1 parameter1 parameter2 ...

If the command’s name has a space (or the command has no
name, in the case of a script block), you invoke the command

Writing Scripts, Reusing Functionality | 61

by using the invoke/call operator (&) with the command name
as the parameter:
& "C:\My Scripts\Invoke-Commands.ps1" parameter1 parameter2 ...

Script blocks have no name, so you place the variable holding
them after the invocation operator:
$scriptBlock = { "Hello World" }
& $scriptBlock parameter1 parameter2 ...

If you want to invoke the command within the context of a
module, provide a reference to that module as part of the
invocation:
$module = Get-Module PowerShellCookbook
& $module Invoke-MyFunction parameter1 parameter2 ...
& $module $scriptBlock parameter1 parameter2 ...

Dot-sourcing
Dot-sourcing a command runs the commands inside it. Unlike
simply invoking a command, variables and functions defined
in the script do persist after the script exits.

You invoke a script by using the dot operator (.) and providing
the command name as the parameter:
. "C:\Script Directory\Invoke-Commands.ps1" Parameters
. Invoke-MyFunction parameters
. $scriptBlock parameters

When dot-sourcing a script, you can use either a fully qualified
path or a path relative to the current location. If the script is in
the current directory, you must explicitly say so:
. .\Invoke-Commands.ps1 Parameters

If you want to dot-source the command within the context of a
module, provide a reference to that module as part of the invo‐
cation:
$module = Get-Module PowerShellCookbook
. $module Invoke-MyFunction parameters
. $module $scriptBlock parameters

62 | Chapter 1: PowerShell Language and Environment

Parameters
Commands that require or support user input do so through
parameters. You can use the Get-Command cmdlet to see the
parameters supported by a command:
PS > Get-Command Stop-Process -Syntax

Stop-Process [-Id] <int[]> [-PassThru] [-Force] [-WhatIf] [...]
Stop-Process -Name <string[]> [-PassThru] [-Force] [-WhatIf] [...]
Stop-Process [-InputObject] <Process[]> [-PassThru] [-Force] [...]

In this case, the supported parameters of the Stop-Process
command are Id, Name, InputObject, PassThru, Force, WhatIf,
and Confirm.

To supply a value for a parameter, use a dash character, fol‐
lowed by the parameter name, followed by a space, and then
the parameter value:
Stop-Process -Id 1234

If the parameter value contains spaces, surround it with quotes:
Stop-Process -Name "Process With Spaces"

If a variable contains a value that you want to use for a parame‐
ter, supply that through PowerShell’s regular variable reference
syntax:
$name = "Process With Spaces"
Stop-Process -Name $name

If you want to use other PowerShell language elements as a
parameter value, surround the value with parentheses:
Get-Process -Name ("Power" + "Shell")

You only need to supply enough of the parameter name to dis‐
ambiguate it from the rest of the parameters:
Stop-Process -N "Process With Spaces"

If a command’s syntax shows the parameter name in square
brackets (such as [-Id]), then it is positional and you may omit
the parameter name and supply only the value. PowerShell

Writing Scripts, Reusing Functionality | 63

supplies these unnamed values to parameters in the order of
their position:
Stop-Process 1234

Rather than explicitly providing parameter names and values,
you can provide a hashtable that defines them and use the
splatting operator:
$parameters = @{
 Path = "c:\temp"
 Recurse = $true
}

Get-ChildItem @parameters

To define the default value to be used for the parameter of a
command (if the parameter value is not specified directly),
assign a value to the PSDefaultParameterValues hashtable. The
keys of this hashtable are command names and parameter
names, separated by a colon. Either (or both) may use wild‐
cards. The values of this hashtable are either simple parameter
values, or script blocks that will be evaluated dynamically:
PS > $PSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

PS > $PSDefaultParameterValues["Get-Service:Name"] = {
 Get-Service -Name * | ForEach-Object Name | Get-Random }
PS > Get-Service

Providing Input to Commands
PowerShell offers several options for processing input to a
command.

Argument array
To access the command-line arguments by position, use the
argument array that PowerShell places in the $args special
variable:
$firstArgument = $args[0]
$secondArgument = $args[1]
$argumentCount = $args.Count

64 | Chapter 1: PowerShell Language and Environment

Formal parameters
To define a command with simple parameter support:
param(
 [TypeName] $VariableName = Default,
 ...
)

To define one with support for advanced functionality:
[CmdletBinding(cmdlet behavior customizations)]
param(
 [Parameter(Mandatory = $true, Position = 1, ...)]
 [Alias("MyParameterAlias"]
 [...]
 [TypeName] $VariableName = Default,
 ...
)

Formal parameters let you benefit from some of the many ben‐
efits of PowerShell’s consistent command-line parsing engine.

PowerShell exposes your parameter names (for example,
$VariableName) the same way that it exposes parameters in
cmdlets. Users need to type only enough of your parameter
name to disambiguate it from the rest of the parameters.

If you define a command with simple parameter support,
PowerShell attempts to assign the input to your parameters by
their position if the user does not type parameter names.

When you add the [CmdletBinding()] attribute, [Parameter()]
attribute, or any of the validation attributes, PowerShell adds
support for advanced parameter validation.

Command behavior customizations

The elements of the [CmdletBinding()] attribute describe how
your script or function interacts with the system:

SupportsShouldProcess = $true

If $true, enables the -WhatIf and -Confirm parameters,
which tells the user that your command modifies the
system and can be run in one of these experimental
modes. When specified, you must also call the

Writing Scripts, Reusing Functionality | 65

$psCmdlet.ShouldProcess() method before modifying
system state. When not specified, the default is $false.

DefaultParameterSetName = name
Defines the default parameter set name of this command.
This is used to resolve ambiguities when parameters
declare multiple sets of parameters and the user input
doesn’t supply enough information to pick between avail‐
able parameter sets. When not specified, the command
has no default parameter set name.

ConfirmImpact = "High"
Defines this command as one that should have its confir‐
mation messages (generated by the $psCmdlet.

ShouldProcess() method) shown by default. More specifi‐
cally, PowerShell defines three confirmation impacts: Low,
Medium, and High. PowerShell generates the cmdlet’s con‐
firmation messages automatically whenever the cmdlet’s
impact level is greater than the preference variable. When
not specified, the command’s impact is Medium.

Parameter attribute customizations

The elements of the [Parameter()] attribute mainly define how
your parameter behaves in relation to other parameters (all ele‐
ments are optional):

Mandatory = $true

Defines the parameter as mandatory. If the user doesn’t
supply a value to this parameter, PowerShell automatically
prompts him for it. When not specified, the parameter is
optional.

Position = position
Defines the position of this parameter. This applies when
the user provides parameter values without specifying the
parameter they apply to (e.g., Argument2 in Invoke-

MyFunction -Param1 Argument1 Argument2). PowerShell
supplies these values to parameters that have defined a

66 | Chapter 1: PowerShell Language and Environment

Position, from lowest to highest. When not specified, the
name of this parameter must be supplied by the user.

ParameterSetName = name
Defines this parameter as a member of a set of other
related parameters. Parameter behavior for this parameter
is then specific to this related set of parameters, and the
parameter exists only in the parameter sets that it is
defined in. This feature is used, for example, when the
user may supply only a Name or ID. To include a parame‐
ter in two or more specific parameter sets, use two or
more [Parameter()] attributes. When not specified, this
parameter is a member of all parameter sets.

ValueFromPipeline = $true

Declares this parameter as one that directly accepts pipe‐
line input. If the user pipes data into your script or func‐
tion, PowerShell assigns this input to your parameter in
your command’s process {} block. When not specified,
this parameter does not accept pipeline input directly.

ValueFromPipelineByPropertyName = $true

Declares this parameter as one that accepts pipeline input
if a property of an incoming object matches its name. If
this is true, PowerShell assigns the value of that property
to your parameter in your command’s process {} block.
When not specified, this parameter does not accept pipe‐
line input by property name.

ValueFromRemainingArguments = $true

Declares this parameter as one that accepts all remaining
input that has not otherwise been assigned to positional or
named parameters. Only one parameter can have this
element. If no parameter declares support for this capabil‐
ity, PowerShell generates an error for arguments that can‐
not be assigned.

Writing Scripts, Reusing Functionality | 67

Parameter validation attributes

In addition to the [Parameter()] attribute, PowerShell lets you
apply other attributes that add behavior or validation con‐
straints to your parameters (all validation attributes are
optional):

[Alias("name")]

Defines an alternate name for this parameter. This is espe‐
cially helpful for long parameter names that are descrip‐
tive but have a more common colloquial term. When not
specified, the parameter can be referred to only by the
name you originally declared.

[AllowNull()]

Allows this parameter to receive $null as its value. This is
required only for mandatory parameters. When not speci‐
fied, mandatory parameters cannot receive $null as their
value, although optional parameters can.

[AllowEmptyString()]

Allows this string parameter to receive an empty string as
its value. This is required only for mandatory parameters.
When not specified, mandatory string parameters cannot
receive an empty string as their value, although optional
string parameters can. You can apply this to parameters
that are not strings, but it has no impact.

[AllowEmptyCollection()]

Allows this collection parameter to receive an empty col‐
lection as its value. This is required only for mandatory
parameters. When not specified, mandatory collection
parameters cannot receive an empty collection as their
value, although optional collection parameters can. You
can apply this to parameters that are not collections, but it
has no impact.

[ValidateCount(lower limit, upper limit)]
Restricts the number of elements that can be in a collec‐
tion supplied to this parameter. When not specified,
mandatory parameters have a lower limit of one element.

68 | Chapter 1: PowerShell Language and Environment

Optional parameters have no restrictions. You can apply
this to parameters that are not collections, but it has no
impact.

[ValidateLength(lower limit, upper limit)]
Restricts the length of strings that this parameter can
accept. When not specified, mandatory parameters have a
lower limit of one character. Optional parameters have no
restrictions. You can apply this to parameters that are not
strings, but it has no impact.

[ValidatePattern("regular expression")]

Enforces a pattern that input to this string parameter must
match. When not specified, string inputs have no pattern
requirements. You can apply this to parameters that are
not strings, but it has no impact.

[ValidateRange(lower limit, upper limit)]
Restricts the upper and lower limit of numerical argu‐
ments that this parameter can accept. When not specified,
parameters have no range limit. You can apply this to
parameters that are not numbers, but it has no impact.

[ValidateScript({ script block })]
Ensures that input supplied to this parameter satisfies the
condition that you supply in the script block. PowerShell
assigns the proposed input to the $_ (or $PSItem) variable,
and then invokes your script block. If the script block
returns $true (or anything that can be converted to $true,
such as nonempty strings), PowerShell considers the vali‐
dation to have been successful.

[ValidateSet("First Option", "Second Option", …, "Last

Option")]

Ensures that input supplied to this parameter is equal to
one of the options in the set. PowerShell uses its standard
meaning of equality during this comparison: the same
rules used by the -eq operator. If your validation requires
nonstandard rules (such as case-sensitive comparison of

Writing Scripts, Reusing Functionality | 69

strings), you can instead write the validation in the body
of the script or function.

[ValidateNotNull()]

Ensures that input supplied to this parameter is not null.
This is the default behavior of mandatory parameters, so
this is useful only for optional parameters. When applied
to string parameters, a $null parameter value gets instead
converted to an empty string.

[ValidateNotNullOrEmpty()]

Ensures that input supplied to this parameter is not null or
empty. This is the default behavior of mandatory parame‐
ters, so this is useful only for optional parameters. When
applied to string parameters, the input must be a string
with a length greater than one. When applied to collection
parameters, the collection must have at least one element.
When applied to other types of parameters, this attribute
is equivalent to the [ValidateNotNull()] attribute.

Pipeline input
To access the data being passed to your command via the pipe‐
line, use the input enumerator that PowerShell places in the
$input special variable:
foreach($element in $input)
{
 "Input was: $element"
}

The $input variable is a .NET enumerator over the pipeline
input. Enumerators support streaming scenarios very effi‐
ciently but do not let you access arbitrary elements as you
would with an array. If you want to process their elements
again, you must call the Reset() method on the $input enu‐
merator once you reach the end.

If you need to access the pipeline input in an unstructured way,
use the following command to convert the input enumerator to
an array:

70 | Chapter 1: PowerShell Language and Environment

$inputArray = @($input)

Cmdlet keywords in commands
When pipeline input is a core scenario of your command, you
can include statement blocks labeled begin, process, and end:
param(...)

begin
{
 ...
}
process
{
 ...
}
end
{
 ...
}

PowerShell executes the begin statement when it loads your
command, the process statement for each item passed down
the pipeline, and the end statement after all pipeline input has
been processed. In the process statement block, the $_ (or
$PSItem) variable represents the current pipeline object.

When you write a command that includes these keywords, all
the commands in your script must be contained within the
statement blocks.

$MyInvocation automatic variable

The $MyInvocation automatic variable contains information
about the context under which the script was run, including
detailed information about the command (MyCommand), the
script that defines it (ScriptName), and more.

Retrieving Output from Commands
PowerShell provides three primary ways to retrieve output
from a command.

Writing Scripts, Reusing Functionality | 71

Pipeline output
any command

The return value/output of a script is any data that it generates
but does not capture. If a command contains:
"Text Output"
5*5

then assigning the output of that command to a variable creates
an array with the two values Text Output and 25.

Return statement
return value

The statement:
return $false

is simply a short form for pipeline output:
$false
return

Exit statement
exit errorlevel

The exit statement returns an error code from the current
command or instance of PowerShell. If called anywhere in a
script (inline, in a function, or in a script block), it exits the
script. If called outside of a script (for example, a function), it
exits PowerShell. The exit statement sets the $LastExitCode
automatic variable to errorLevel. In turn, that sets the $? auto‐
matic variable to $false if errorLevel is not zero.

NOTE

Type Get-Help about_automatic_variables for more
information about automatic variables.

72 | Chapter 1: PowerShell Language and Environment

Managing Errors
PowerShell supports two classes of errors: nonterminating and
terminating. It collects both types of errors as a list in the
$error automatic variable.

Nonterminating Errors
Most errors are nonterminating errors, in that they do not halt
execution of the current cmdlet, script, function, or pipeline.
When a command outputs an error (via PowerShell’s error-
output facilities), PowerShell writes that error to a stream called
the error output stream.

You can output a nonterminating error using the Write-Error
cmdlet (or the WriteError() API when writing a cmdlet).

The $ErrorActionPreference automatic variable lets you con‐
trol how PowerShell handles nonterminating errors. It supports
the following values, shown in Table 1-13.

Table 1-13. ErrorActionPreference automatic variable values

Value Meaning

Ignore Do not display errors, and do not add them to
the $error collection. Only supported when
supplied to the ErrorAction parameter of
a command.

SilentlyContinue Do not display errors, but add them to the
$error collection.

Stop Treat nonterminating errors as terminating
errors.

Continue Display errors, but continue execution of the
current cmdlet, script, function, or pipeline.
This is the default.

Inquire Display a prompt that asks how PowerShell
should treat this error.

Managing Errors | 73

Most cmdlets let you configure this explicitly by passing one of
these values to the ErrorAction parameter.

Terminating Errors
A terminating error halts execution of the current cmdlet,
script, function, or pipeline. If a command (such as a cmdlet
or .NET method call) generates a structured exception (for
example, if you provide a method with parameters outside
their valid range), PowerShell exposes this as a terminating
error. PowerShell also generates a terminating error if it fails to
parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the
throw keyword:
throw message

NOTE

In your own scripts and cmdlets, generate terminating
errors only when the fundamental intent of the operation
is impossible to accomplish. For example, failing to execute
a command on a remote server should be considered a
nonterminating error, whereas failing to connect to the
remote server altogether should be considered a terminat‐
ing error.

You can intercept terminating errors through the try, catch,
and finally statements, as supported by many other program‐
ming languages:
try
{
 statement block
}
catch [exception type]
{
 error handling block
}
catch [alternate exception type]

74 | Chapter 1: PowerShell Language and Environment

{
 alternate error handling block
}
finally
{
 cleanup block
}

After a try statement, you must provide a catch statement, a
finally statement, or both. If you specify an exception type
(which is optional), you may specify more than one catch
statement to handle exceptions of different types. If you specify
an exception type, the catch block applies only to terminating
errors of that type.

PowerShell also lets you intercept terminating errors if you
define a trap statement before PowerShell encounters that
error:
trap [exception type]
{
 statement block
 [continue or break]
}

If you specify an exception type, the trap statement applies
only to terminating errors of that type.

Within a catch block or trap statement, the $_ (or $PSItem)
variable represents the current exception or error being
processed.

If specified, the continue keyword tells PowerShell to continue
processing your script, function, or pipeline after the point at
which it encountered the terminating error.

If specified, the break keyword tells PowerShell to halt process‐
ing the rest of your script, function, or pipeline after the point
at which it encountered the terminating error. The default
mode is break, and it applies if you specify neither break nor
continue.

Managing Errors | 75

Formatting Output
Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell
converts them to text to make them suitable for human con‐
sumption. PowerShell supports several options to help you
control this formatting process, as listed in Table 1-14.

Table 1-14. PowerShell formatting commands

Formatting
command

Result

Format-Table Formats the properties of the input objects as a table,
including only the object properties you specify. If you do
not specify a property list, PowerShell picks a default set.
In addition to supplying object properties, you may also
provide advanced formatting statements:
PS > Get-Process | `
 Format-Table -Auto Name,`
 @{Label="HexId";
 Expression={ "{0:x}" -f $_.Id}
 Width=4
 Align="Right"
 }

The advanced formatting statement is a hashtable with
the keys Label and Expression (or any short form of
them). The value of the expression key should be a script
block that returns a result for the current object
(represented by the $_ variable).
For more information about the Format-Table cmdlet,
type Get-Help Format-Table.

76 | Chapter 1: PowerShell Language and Environment

Formatting
command

Result

Format-List Formats the properties of the input objects as a list,
including only the object properties you specify. If you do
not specify a property list, PowerShell picks a default set.
The Format-List cmdlet supports advanced
formatting statements as used by the Format-Table
cmdlet.
The Format-List cmdlet is the one you will use most
often to get a detailed summary of an object’s properties.
The command Format-List * returns all properties,
but it does not include those that PowerShell hides by
default. The command Format-List * -Force
returns all properties.
For more information about the Format-List cmdlet,
type Get-Help Format-List.

Format-Wide Formats the properties of the input objects in an
extremely terse summary view. If you do not specify a
property, PowerShell picks a default.
In addition to supplying object properties, you can also
provide advanced formatting statements:
PS > Get-Process | `
 Format-Wide -Auto `
 @{ Expression={ "{0:x}" -f $_.Id} }

The advanced formatting statement is a hashtable with
the key Expression (or any short form of it). The value
of the expression key should be a script block that returns
a result for the current object (represented by the $_
variable).
For more information about the Format-Wide cmdlet,
type Get-Help Format-Wide.

Custom Formatting Files
All the formatting defaults in PowerShell (for example, when
you do not specify a formatting command, or when you do not

Formatting Output | 77

specify formatting properties) are driven by the
*.Format.Ps1Xml files in the installation directory.

To create your own formatting customizations, use these files
as a source of examples, but do not modify them directly.
Instead, create a new file and use the Update-FormatData cmdlet
to load your customizations. The Update-FormatData cmdlet
applies your changes to the current instance of PowerShell. If
you wish to load them every time you launch PowerShell, call
Update-FormatData in your profile script. The following com‐
mand loads Format.custom.ps1xml from the same directory as
your profile:
$formatFile = Join-Path (Split-Path $profile)
 "Format.Custom.Ps1Xml"
Update-FormatData -PrependPath $formatFile

Capturing Output
There are several ways to capture the output of commands in
PowerShell, as listed in Table 1-15.

Table 1-15. Capturing output in PowerShell

Command Result

$variable = Command Stores the objects produced by the
PowerShell command into $variable.

$variable = Command |

Out-String

Stores the visual representation of the
PowerShell command into $variable.
This is the PowerShell command after it’s
been converted to human-readable
output.

$variable =
NativeCommand

Stores the (string) output of the native
command into $variable. PowerShell
stores this as a list of strings—one for
each line of output from the native
command.

78 | Chapter 1: PowerShell Language and Environment

Command Result

Command -OutVariable
variable

For most commands, stores the objects
produced by the PowerShell command
into $variable. The parameter
-OutVariable can also be written
-Ov.

Command > File Redirects the visual representation of the
PowerShell (or standard output of a
native command) into File, overwriting
File if it exists. Errors are not captured
by this redirection.

Command >> File Redirects the visual representation of the
PowerShell (or standard output of a
native command) into File, appending
to File if it exists. Errors are not
captured by this redirection.

Command 2> File Redirects the errors from the PowerShell
or native command into File,
overwriting File if it exists.

Command n>File Redirects stream number n into File,
overwriting File if it exists. Supported
streams are 2 for error, 3 for warning, 4
for verbose, 5 for debug, 6 for the
structured information stream, and * for
all.

Command 2>> File Redirects the errors from the PowerShell
or native command into File,
appending to File if it exists.

Command n>> File Redirects stream number n into File,
appending to File if it exists. Supported
streams are 2 for error, 3 for warning, 4
for verbose, 5 for debug, 6 for the
structured information stream, and * for
all.

Capturing Output | 79

Command Result

Command > File 2>&1 Redirects both the error and standard
output streams of the PowerShell or
native command into File, overwriting
File if it exists.

Command >> File 2>&1 Redirects both the error and standard
output streams of the PowerShell or
native command into File, appending
to File if it exists.

While output from the Write-Host cmdlet normally goes
directly to the screen, you can use the structured information
stream to capture it into a variable:
PS > function HostWriter { Write-Host "Console Output" }
PS > $a = HostWriter
Console Output
PS > $a
PS > $a = HostWriter 6>&1
PS > $a
Console Output

Common Customization Points
As useful as it is out of the box, PowerShell offers several ave‐
nues for customization and personalization.

Console Settings
The Windows PowerShell user interface offers several features
to make your shell experience more efficient.

Adjust your font size
Both the Windows Terminal application and the default Win‐
dows Console let you adjust your font size.

To temporarily change your font size, hold down the Ctrl key
and use the mouse to scroll up or down. In the Windows Ter‐
minal application, you can also use the Ctrl+Plus or Ctrl

80 | Chapter 1: PowerShell Language and Environment

+Minus hotkeys. In the Windows Terminal application, Ctrl+0
resets the font size back to your default.

To change your font size default in the default Windows Con‐
sole, open the System menu (right-click the title bar at the top
left of the console window), select Properties→Font. If you
launch Windows PowerShell from the Start menu, it launches
with some default modifications to the font and window size.
To change your font size default in the Windows Terminal
application, add a fontSize setting to any of your terminal
profiles:
 {
 "guid": "...",
 "name": "PowerShell (Demos)",
 "fontSize": 18,
 "colorScheme": "Campbell Powershell",
 "source": "Windows.Terminal.PowershellCore"
 },

Adjust other Windows Terminal settings
The Windows Terminal application includes a wealth of config‐
uration settings. A sample of these include:

• Configuring the list of available shells and applications
(such as bash.exe)

• Color schemes and user interface themes
• Binding actions to hotkeys
• Text selection behavior
• Window transparency
• Background images

For a full list of these, see the documentation for global settings
and general profile settings in Windows Terminal.

Use hotkeys to operate the shell more efficiently
The PowerShell console supports many hotkeys that help make
operating the console more efficient, as shown in Table 1-16.

Common Customization Points | 81

https://aka.ms/terminal-global-settings
https://aka.ms/terminal-profile-settings

Table 1-16. PowerShell hotkeys

Hotkey Meaning

Press and release the
Windows key, and then
type pwsh or power
shell

Launch PowerShell or Windows PowerShell. The Win+X
hotkey also provides a quick way to launch Windows
PowerShell.

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Left arrow Move cursor one character to the left on your command
line.

Right arrow Move cursor one character to the right on your
command line. If at the end of the line, inserts a
character from the text of your last command at that
position.

Ctrl+Left arrow Move the cursor one word to the left on your command
line.

Ctrl+Right arrow Move the cursor one word to the right on your
command line.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Ctrl+Shift+PgUp,
Ctrl+Shift+PgDn

In the Windows Terminal application, scroll through the
screen buffer. In the Windows Console, you can use
PgUp and PgDn.

Ctrl+Shift+F In the Windows Terminal application, searches for text
in the screen buffer. In the Windows Console, you can
use Alt+Space E F.

Alt+Space E K In the Windows Console, selects text to be copied from
the screen buffer.

Ctrl+C Cancel the current operation. If any text is selected, Ctrl
+C copies this text into the clipboard.

Ctrl+V Paste clipboard contents.

82 | Chapter 1: PowerShell Language and Environment

Hotkey Meaning

Ctrl+Shift+T In the Windows Terminal application, opens a new tab.
You can also use Ctrl+Shift+1, Ctrl+Shift+2, and
similar to open a tab for that numbered profile (such as
bash.exe).

Ctrl+Shift+W, Alt+F4 In the Windows Terminal application, close the current
tab or entire application. In the Windows Console, you
can use Alt+Space C to close the entire application.

Ctrl+Break In the Windows Console, breaks the PowerShell
debugger into the currently running script.

Ctrl+Home Deletes characters from the beginning of the current
command line up to (but not including) the current
cursor position.

Ctrl+End Deletes characters from (and including) the current
cursor position to the end of the current command line.

Ctrl+Z, Ctrl+Y Undo and Redo.

F8 Scan backward through your command history, only
displaying matches for commands that match the text
you’ve typed so far on the command line.

Ctrl+R Begins an interactive search backward through your
command history based on text you type interactively.

NOTE

The command-line editing experience offered in
PowerShell through the PSReadLine module is
far richer than what this table lists. It includes Emacs and
Vi key bindings, as well as the ability to define your own—
you can see the full default list by typing
Get-PSReadLineKeyHandler.

Common Customization Points | 83

Profiles
PowerShell automatically runs the four scripts listed in
Table 1-17 during startup. Each, if present, lets you customize
your execution environment. PowerShell runs anything you
place in these files as though you had entered it manually at the
command line.

Table 1-17. PowerShell profiles

Profile purpose Profile location

Customization of all PowerShell
sessions, including PowerShell hosting
applications for all users on the system

InstallationDirectory\profile.ps1

Customization of pwsh.exe sessions for
all users on the system

InstallationDirectory
\Microsoft.PowerShell_profile.ps1

Customization of all PowerShell
sessions, including PowerShell hosting
applications

<My Documents>\PowerShell
\profile.ps1

Typical customization of pwsh.exe
sessions

<My Documents>\PowerShell
\Microsoft.PowerShell_profile.ps1

In Windows PowerShell, some of these locations will be
different.

PowerShell makes editing your profile script simple by defining
the automatic variable $profile. By itself, it points to the “cur‐
rent user, pwsh.exe” profile. In addition, the $profile variable
defines additional properties that point to the other profile
locations:
PS > $profile | Format-List -Force

AllUsersAllHosts : C:\...Microsoft.PowerShell..\profile.ps1
AllUsersCurrentHost : C:\...\Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts : D:\Lee\PowerShell\profile.ps1
CurrentUserCurrentHost : D:\...\Microsoft.PowerShell_profile.ps1

To create a new profile, type:
New-Item -Type file -Force $profile

84 | Chapter 1: PowerShell Language and Environment

To edit this profile, type:
notepad $profile

Prompts
To customize your prompt, add a prompt function to your pro‐
file. This function returns a string. For example:
function prompt
{
 "PS [$env:COMPUTERNAME] >"
}

Tab Completion
You can define a TabExpansion2 function to customize the way
that PowerShell completes properties, variables, parameters,
and files when you press the Tab key.

Your TabExpansion function overrides the one that PowerShell
defines by default, though, so you may want to use its defini‐
tion as a starting point:
Get-Content function:\TabExpansion2

User Input
You can define a PSConsoleHostReadLine function to customize
the way that the PowerShell console host (not the Integrated
Scripting Environment [ISE]) reads input from the user. This
function is responsible for handling all of the user’s keypresses,
and finally returning the command that PowerShell should
invoke.

Command Resolution
You can intercept PowerShell’s command resolution behavior
in three places by assigning a script block to one or all of the
PreCommandLookupAction, PostCommandLookupAction, or Command
NotFoundAction properties of $executionContext.Session

State.InvokeCommand.

Common Customization Points | 85

PowerShell invokes the PreCommandLookupAction after the user
types a command name, but before it has tried to resolve the
command. It invokes the PostCommandLookupAction once it has
resolved a command, but before it executes the command. It
invokes the CommandNotFoundAction when a command is not
found, but before it generates an error message. Each script
block receives two arguments—CommandName and Command

LookupEventArgs:
$executionContext.SessionState.
 InvokeCommand.CommandNotFoundAction = {
 param($CommandName,
 $CommandLookupEventArgs)
 (...)
}

If your script block assigns a script block to the CommandScript
Block property of the CommandLookupEventArgs or assigns a
CommandInfo to the Command property of the CommandLookup
EventArgs, PowerShell will use that script block or command,
respectively. If your script block sets the StopSearch property to
true, PowerShell will do no further command resolution.

86 | Chapter 1: PowerShell Language and Environment

CHAPTER 2

Regular Expression Reference

Regular expressions play an important role in most text parsing
and text matching tasks. They form an important underpin‐
ning of the -split and -match operators, the switch statement,
the Select-String cmdlet, and more. Tables 2-1 through 2-10
list commonly used regular expressions.

Table 2-1. Character classes: patterns that represent sets of characters

Character class Matches

. Any character except for a newline. If the
regular expression uses the SingleLine
option, it matches any character.
PS > "T" -match '.'
True

[characters] Any character in the brackets. For example:
[aeiou].
PS > "Test" -match '[Tes]'
True

[^characters] Any character not in the brackets. For
example: [^aeiou].
PS > "Test" -match '[^Tes]'
False

87

Character class Matches

[start-end] Any character between the characters start
and end, inclusive. You may include multiple
character ranges between the brackets. For
example, [a-eh-j].
PS > "Test" -match '[e-t]'
True

[^start-end] Any character not between any of the
character ranges start through end,
inclusive. You may include multiple character
ranges between the brackets. For example,
[^a-eh-j].
PS > "Test" -match '[^e-t]'
False

\p{character class} Any character in the Unicode group or block
range specified by {character class}.
PS > "+" -match '\p{Sm}'
True

\P{character class} Any character not in the Unicode group or
block range specified by {character
class}.
PS > "+" -match '\P{Sm}'
False

\w Any word character. Note that this is the
Unicode definition of a word character, which
includes digits, as well as many math
symbols and various other symbols.
PS > "a" -match '\w'
True

\W Any nonword character.
PS > "!" -match '\W'
True

88 | Chapter 2: Regular Expression Reference

Character class Matches

\s Any whitespace character.
PS > "`t" -match '\s'
True

\S Any nonwhitespace character.
PS > " `t" -match '\S'
False

\d Any decimal digit.
PS > "5" -match '\d'
True

\D Any character that isn’t a decimal digit.
PS > "!" -match '\D'
True

Table 2-2. Quantifiers: expressions that enforce quantity on the
preceding expression

Quantifier Meaning

<none> One match.
PS > "T" -match 'T'
True

* Zero or more matches, matching as much as possible.
PS > "A" -match 'T*'
True
PS > "TTTTT" -match '^T*$'
True

PS > 'ATTT' -match 'AT*'; $Matches[0]
True
ATTT

Regular Expression Reference | 89

Quantifier Meaning

+ One or more matches, matching as much as possible.
PS > "A" -match 'T+'
False
PS > "TTTTT" -match '^T+$'
True

PS > 'ATTT' -match 'AT+'; $Matches[0]
True
ATTT

? Zero or one matches, matching as much as possible.
PS > "TTTTT" -match '^T?$'
False

PS > 'ATTT' -match 'AT?'; $Matches[0]
True
AT

{n} Exactly n matches.
PS > "TTTTT" -match '^T{5}$'
True

{n,} n or more matches, matching as much as possible.
PS > "TTTTT" -match '^T{4,}$'
True

{n,m} Between n and m matches (inclusive), matching as much as
possible.
PS > "TTTTT" -match '^T{4,6}$'
True

*? Zero or more matches, matching as little as possible.
PS > "A" -match '^AT*?$'
True

PS > 'ATTT' -match 'AT*?'; $Matches[0]
True
A

90 | Chapter 2: Regular Expression Reference

Quantifier Meaning

+? One or more matches, matching as little as possible.
PS > "A" -match '^AT+?$'
False

PS > 'ATTT' -match 'AT+?'; $Matches[0]
True
AT

?? Zero or one matches, matching as little as possible.
PS > "A" -match '^AT??$'
True

PS > 'ATTT' -match 'AT??'; $Matches[0]
True
A

{n}? Exactly n matches.
PS > "TTTTT" -match '^T{5}?$'
True

{n,}? n or more matches, matching as little as possible.
PS > "TTTTT" -match '^T{4,}?$'
True

{n,m}? Between n and m matches (inclusive), matching as little as
possible.
PS > "TTTTT" -match '^T{4,6}?$'
True

Table 2-3. Grouping constructs: expressions that let you group
characters, patterns, and other expressions

Grouping construct Description

(text) Captures the text matched inside the parentheses.
These captures are named by number (starting at one)
based on the order of the opening parenthesis.
PS > "Hello" -match '^(.*)llo$';
 $matches[1]
True
He

Regular Expression Reference | 91

Grouping construct Description

(?<name>) Captures the text matched inside the parentheses.
These captures are named by the name given in
name.
PS > "Hello" -match '^(?<One>.*)llo$';
 $matches.One
True
He

(?<name1-name2>) A balancing group definition. This is an advanced
regular expression construct, but lets you match
evenly balanced pairs of terms.

(?:) Noncapturing group.
PS > "A1" -match '((A|B)\d)'; $matches
True

Name Value
---- -----
2 A
1 A1
0 A1

PS > "A1" -match '((?:A|B)\d)'; $matches
True

Name Value
---- -----
1 A1
0 A1

(?imnsx-imnsx:) Applies or disables the given option for this group.
Supported options are:
i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(T e.st)'
False
PS > "Te`nst" -match '(?sx:T e.st)'
True

92 | Chapter 2: Regular Expression Reference

Grouping construct Description

(?=) Zero-width positive lookahead assertion. Ensures that
the given pattern matches to the right, without
actually performing the match.
PS > "555-1212" -match '(?=...-)(.*)';
 $matches[1]
True
555-1212

(?!) Zero-width negative lookahead assertion. Ensures that
the given pattern does not match to the right, without
actually performing the match.
PS > "friendly" -match '(?!friendly)friend'
False

Table 2-4. More grouping constructs

Grouping
construct

Description

(?<=) Zero-width positive lookbehind assertion. Ensures that the given
pattern matches to the left, without actually performing the
match.
PS > "public int X" -match '^.*(?<=public)int .*$'
True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given
pattern does not match to the left, without actually performing the
match.
PS > "private int X" -match '^.*(?<!private)int .*$'
False

(?>) Nonbacktracking subexpression. Matches only if this subexpression
can be matched completely.
PS > "Hello World" -match '(Hello.*)orld'
True
PS > "Hello World" -match '(?>Hello.*)orld'
False

The nonbacktracking version of the subexpression fails to match, as
its complete match would be “Hello World”.

Regular Expression Reference | 93

Table 2-5. Atomic zero-width assertions: patterns that restrict where a
match may occur

Assertion Restriction

^ The match must occur at the beginning of the string (or line, if
the Multiline option is in effect).
PS > "Test" -match '^est'
False

$ The match must occur at the end of the string (or line, if the
Multiline option is in effect).
PS > "Test" -match 'Tes$'
False

\A The match must occur at the beginning of the string.
PS > "The`nTest" -match '(?m:^Test)'
True
PS > "The`nTest" -match '(?m:\ATest)'
False

\Z The match must occur at the end of the string, or before \n at
the end of the string.
PS > "The`nTest`n" -match '(?m:The$)'
True
PS > "The`nTest`n" -match '(?m:The\Z)'
False
PS > "The`nTest`n" -match 'Test\Z'
True

\z The match must occur at the end of the string.
PS > "The`nTest`n" -match 'Test\z'
False

\G The match must occur where the previous match ended. Used
with
System.Text.RegularExpressions.Match.NextMatch()

\b The match must occur on a word boundary: the first or last
characters in words separated by nonalphanumeric characters.
PS > "Testing" -match 'ing\b'
True

94 | Chapter 2: Regular Expression Reference

Assertion Restriction

\B The match must not occur on a word boundary.
PS > "Testing" -match 'ing\B'
False

Table 2-6. Substitution patterns: patterns used in a regular
expression replace operation

Pattern Substitution

$number The text matched by group number number.
PS > "Test" -replace "(.*)st",'$1ar'
Tear

${name} The text matched by group named name.
PS > "Test" -replace "(?<pre>.*)st",'${pre}ar'
Tear

$$ A literal $.
PS > "Test" -replace ".",'$$'
$$$$

$& A copy of the entire match.
PS > "Test" -replace "^.*$",'Found: $&'
Found: Test

$` The text of the input string that precedes the match.
PS > "Test" -replace "est$",'Te$`'
TTeT

$' The text of the input string that follows the match.
PS > "Test" -replace "^Tes",'Res$'''
Restt

$+ The last group captured.
PS > "Testing" -replace "(.*)ing",'$+ed'
Tested

$_ The entire input string.
PS > "Testing" -replace "(.*)ing",'String: $_'
String: Testing

Regular Expression Reference | 95

Table 2-7. Alternation constructs: expressions that let you perform
either/or logic

Alternation construct Description

| Matches any of the terms separated by the vertical bar
character.
PS > "Test" -match '(B|T)est'
True

(?(expression)

yes|no)

Matches the yes term if expression matches at this point.
Otherwise, matches the no term. The no term is optional.
PS > "3.14" -match '(?(\d)3.14|Pi)'
True
PS > "Pi" -match '(?(\d)3.14|Pi)'
True
PS > "2.71" -match '(?(\d)3.14|Pi)'
False

(?(name)yes|

no)

Matches the yes term if the capture group named name
has a capture at this point. Otherwise, matches the no
term. The no term is optional.
PS > "123" -match '(?<one>1)?(?(one)23|234)'
True
PS > "23" -match '(?<one>1)?(?(one)23|234)'
False
PS > "234" -match '(?<one>1)?(?(one)23|234)'
True

Table 2-8. Backreference constructs: expressions that refer to a capture
group within the expression

Backreference
construct

Refers to

\number Group number number in the expression.
PS > "|Text|" -match '(.)Text\1'
True
PS > "|Text+" -match '(.)Text\1'
False

96 | Chapter 2: Regular Expression Reference

Backreference
construct

Refers to

\k<name> The group named name in the expression.
PS > "|Text|" -match '(?<Symbol>.)Text\k<Symbol>'
True
PS > "|Text+" -match '(?<Symbol>.)Text\k<Symbol>'
False

Table 2-9. Other constructs: other expressions that modify a regular
expression

Construct Description

(?imnsx-imnsx) Applies or disables the given option for the rest of this
expression. Supported options are:
i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(?sx)T e.st'
True

(?#) Inline comment. This terminates at the first closing
parenthesis.
PS > "Test" -match '(?# Match "Test")Test'
True

[to end of line] Comment form allowed when the regular expression has
the IgnoreWhitespace option enabled.
PS > "Test" -match '(?x)Test # Matches Test'
True

Regular Expression Reference | 97

Table 2-10. Character escapes: character sequences that represent
another character

Escaped character Match

<ordinary

characters>

Characters other than . $ ^ { [(|) * + ? \
match themselves.

\a A bell (alarm) \u0007.

\b A backspace \u0008 if in a [] character class. In a regular
expression, \b denotes a word boundary (between \w and
\W characters) except within a [] character class, where \b
refers to the backspace character. In a replacement pattern,
\b always denotes a backspace.

\t A tab \u0009.

\r A carriage return \u000D.

\v A vertical tab \u000B.

\f A form feed \u000C.

\n A new line \u000A.

\e An escape \u001B.

\ddd An ASCII character as octal (up to three digits). Numbers
with no leading zero are treated as backreferences if they
have only one digit, or if they correspond to a capturing
group number.

\xdd An ASCII character using hexadecimal representation
(exactly two digits).

\cC An ASCII control character; for example, \cC is Control-C.

\udddd A Unicode character using hexadecimal representation
(exactly four digits).

\ When followed by a character that is not recognized as an
escaped character, matches that character. For example, *
is the literal character *.

98 | Chapter 2: Regular Expression Reference

CHAPTER 3

XPath Quick Reference

Just as regular expressions are the standard way to interact with
plain text, XPath is the standard way to interact with XML.
Because of that, XPath is something you’re likely to run across
in your travels. Several cmdlets support XPath queries:
Select-Xml, Get-WinEvent, and more. Tables 3-1 and 3-2 give a
quick overview of XPath concepts.

For these examples, consider this sample XML:
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

99

Table 3-1. Navigation and selection

Syntax Meaning

/ Represents the root of the XML tree.
For example:
PS > $xml | Select-Xml "/" |
 Select -Expand Node

AddressBook

AddressBook

/Node Navigates to the node named Node from the root of the
XML tree.
For example:
PS > $xml | Select-Xml "/AddressBook" |
 Select -Expand Node

Person

{Lee, Ariel}

/Node/*/Node2 Navigates to the node named Node2 via Node, allowing
any single node in between.
For example:
PS > $xml | Select-Xml "/AddressBook/*/Name" |
 Select -Expand Node

#text

Lee
Ariel

//Node Finds all nodes named Node, anywhere in the XML tree.
For example:
PS > $xml | Select-Xml "//Phone" |
 Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

100 | Chapter 3: XPath Quick Reference

Syntax Meaning

.. Retrieves the parent node of the given node.
For example:
PS > $xml | Select-Xml "//Phone" |
 Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

PS > $xml | Select-Xml "//Phone/.."|
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}
Business Ariel 555-1234

@ Attribute Accesses the value of the attribute named Attribute.
For example:
PS > $xml | Select-Xml "//Phone/@type" |
 Select -Expand Node

#text

home
work

XPath Quick Reference | 101

Table 3-2. Comparisons

Syntax Meaning

[] Filtering, similar to the Where-Object cmdlet.
For example:
PS > $xml |
 Select-Xml "//Person[@contactType = 'Personal']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

PS > $xml | Select-Xml "//Person[Name = 'Lee']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

and Logical and.

or Logical or.

not() Logical negation.

= Equality.

!= Inequality.

102 | Chapter 3: XPath Quick Reference

CHAPTER 4

.NET String Formatting

String Formatting Syntax
The format string supported by the format (-f) operator is a
string that contains format items. Each format item takes the
form of:
{index[,alignment][:formatString]}

index represents the zero-based index of the item in the object
array following the format operator.

alignment is optional and represents the alignment of the item.
A positive number aligns the item to the right of a field of the
specified width. A negative number aligns the item to the left of
a field of the specified width:
PS > ("{0,6}" -f 4.99), ("{0,6:##.00}" -f 15.9)
 4.99
 15.90

formatString is optional and formats the item using that type’s
specific format string syntax (as laid out in Tables 4-1 and 4-2).

103

Standard Numeric Format Strings
Table 4-1 lists the standard numeric format strings. All format
specifiers may be followed by a number between 0 and 99 to
control the precision of the formatting.

Table 4-1. Standard numeric format strings

Format
specifier

Name Description

C or c Currency A currency amount:
PS > "{0:C}" -f 1.23
$1.23

D or d Decimal A decimal amount (for integral types). The precision
specifier controls the minimum number of digits in the
result:
PS > "{0:D4}" -f 2
0002

E or e Scientific Scientific (exponential) notation. The precision specifier
controls the number of digits past the decimal point:
PS > "{0:E3}" -f [Math]::Pi
3.142E+000

F or f Fixed-point Fixed-point notation. The precision specifier controls
the number of digits past the decimal point:
PS > "{0:F3}" -f [Math]::Pi
3.142

G or g General The most compact representation (between fixed-point
and scientific) of the number. The precision specifier
controls the number of significant digits:
PS > "{0:G3}" -f [Math]::Pi
3.14
PS > "{0:G3}" -f 1mb
1.05E+06

104 | Chapter 4: .NET String Formatting

Format
specifier

Name Description

N or n Number The human-readable form of the number, which
includes separators between number groups. The
precision specifier controls the number of digits past
the decimal point:
PS > "{0:N4}" -f 1mb
1,048,576.0000

P or p Percent The number (generally between 0 and 1) represented
as a percentage. The precision specifier controls the
number of digits past the decimal point:
PS > "{0:P4}" -f 0.67
67.0000 %

R or r Roundtrip The Single or Double number formatted with a
precision that guarantees the string (when parsed) will
result in the original number again:
PS > "{0:R}" -f (1mb/2.0)
524288
PS > "{0:R}" -f (1mb/9.0)
116508.44444444444

X or x Hexadecimal The number converted to a string of hexadecimal
digits. The case of the specifier controls the case of the
resulting hexadecimal digits. The precision specifier
controls the minimum number of digits in the resulting
string:
PS > "{0:X4}" -f 1324
052C

Custom Numeric Format Strings
You can use custom numeric strings, listed in Table 4-2, to for‐
mat numbers in ways not supported by the standard format
strings.

Custom Numeric Format Strings | 105

Table 4-2. Custom numeric format strings

Format
specifier

Name Description

0 Zero
placeholder

Specifies the precision and width of a number
string. Zeros not matched by digits in the original
number are output as zeros:
PS > "{0:00.0}" -f 4.12341234
04.1

Digit
placeholder

Specifies the precision and width of a number
string. # symbols not matched by digits in the input
number are not output:
PS > "{0:##.#}" -f 4.12341234
4.1

. Decimal
point

Determines the location of the decimal:
PS > "{0:##.#}" -f 4.12341234
4.1

, Thousands
separator

When placed between a zero or digit placeholder
before the decimal point in a formatting string,
adds the separator character between number
groups:
PS > "{0:#,#.#}" -f 1234.121234
1,234.1

, Number
scaling

When placed before the literal (or implicit) decimal
point in a formatting string, divides the input by
1,000. You can apply this format specifier more
than once:
PS > "{0:##,,.000}" -f 1048576
1.049

% Percentage
placeholder

Multiplies the input by 100, and inserts the percent
sign where shown in the format specifier:
PS > "{0:%##.000}" -f .68
%68.000

106 | Chapter 4: .NET String Formatting

Format
specifier

Name Description

E0

E+0

E-0

e0

e+0

e-0

Scientific
notation

Displays the input in scientific notation. The
number of zeros that follow the E define the
minimum length of the exponent field:
PS > "{0:##.#E000}" -f 2.71828
27.2E-001

' text '
" text "

Literal
string

Inserts the provided text literally into the output
without affecting formatting:
PS > "{0:#.00'##'}" -f 2.71828
2.72##

; Section
separator

Allows for conditional formatting.
If your format specifier contains no section
separators, the formatting statement applies to all
input.
If your format specifier contains one separator
(creating two sections), the first section applies to
positive numbers and zero, and the second section
applies to negative numbers.
If your format specifier contains two separators
(creating three sections), the sections apply to
positive numbers, negative numbers, and zero:
PS > "{0:POS;NEG;ZERO}" -f -14
NEG

Other Other
character

Inserts the provided text literally into the output
without affecting formatting:
PS > "{0:$## Please}" -f 14
$14 Please

Custom Numeric Format Strings | 107

CHAPTER 5

.NET DateTime Formatting

DateTime format strings convert a DateTime object to one of
several standard formats, as listed in Table 5-1.

Table 5-1. Standard DateTime format strings

Format
specifier

Name Description

d Short date The culture’s short date format:
PS > "{0:d}" -f [DateTime] "01/23/4567"
1/23/4567

D Long date The culture’s long date format:
PS > "{0:D}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567

f Full date/
short time

Combines the long date and short time format patterns:
PS > "{0:f}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00 AM

F Full date/
long time

Combines the long date and long time format patterns:
PS > "{0:F}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00:00 AM

g General
date/
short time

Combines the short date and short time format patterns:
PS > "{0:g}" -f [DateTime] "01/23/4567"
1/23/4567 12:00 AM

109

Format
specifier

Name Description

G General
date/long
time

Combines the short date and long time format patterns:
PS > "{0:G}" -f [DateTime] "01/23/4567"
1/23/4567 12:00:00 AM

M or m Month day The culture’s MonthDay format:
PS > "{0:M}" -f [DateTime] "01/23/4567"
January 23

o Round-trip
date/time

The date formatted with a pattern that guarantees the
string (when parsed) will result in the original DateTime
again:
PS > "{0:o}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00.0000000

R or r RFC1123 The standard RFC1123 format pattern:
PS > "{0:R}" -f [DateTime] "01/23/4567"
Fri, 23 Jan 4567 00:00:00 GMT

s Sortable Sortable format pattern. Conforms to ISO 8601 and
provides output suitable for sorting:
PS > "{0:s}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00

t Short time The culture’s ShortTime format:
PS > "{0:t}" -f [DateTime] "01/23/4567"
12:00 AM

T Long time The culture’s LongTime format:
PS > "{0:T}" -f [DateTime] "01/23/4567"
12:00:00 AM

u Universal
sortable

The culture’s UniversalSortable DateTime
format applied to the UTC equivalent of the input:
PS > "{0:u}" -f [DateTime] "01/23/4567"
4567-01-23 00:00:00Z

110 | Chapter 5: .NET DateTime Formatting

Format
specifier

Name Description

U Universal The culture’s FullDateTime format applied to the UTC
equivalent of the input:
PS > "{0:U}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 8:00:00 AM

Y or y Year
month

The culture’s YearMonth format:
PS > "{0:Y}" -f [DateTime] "01/23/4567"
January, 4567

Custom DateTime Format Strings
You can use the custom DateTime format strings listed in
Table 5-2 to format dates in ways not supported by the stan‐
dard format strings.

NOTE

Single-character format specifiers are by default inter‐
preted as a standard DateTime formatting string unless
they are used with other formatting specifiers. Add the %
character before them to have them interpreted as a cus‐
tom format specifier.

Table 5-2. Custom DateTime format strings

Format specifier Description

d Day of the month as a number between 1 and 31. Represents
single-digit days without a leading zero:
PS > "{0:%d}" -f
 [DateTime] "01/02/4567"
2

Custom DateTime Format Strings | 111

Format specifier Description

dd Day of the month as a number between 1 and 31. Represents
single-digit days with a leading zero:
PS > "{0:dd}" -f
 [DateTime] "01/02/4567"
02

ddd Abbreviated name of the day of week:
PS > "{0:ddd}" -f
 [DateTime] "01/02/4567"
Fri

dddd Full name of the day of the week:
PS > "{0:dddd}" -f
 [DateTime] "01/02/4567"
Friday

f Most significant digit of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:%f}" -f $date
0

ff Two most significant digits of the seconds fraction
(milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ff}" -f $date
09

fff Three most significant digits of the seconds fraction
(milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fff}" -f $date
093

112 | Chapter 5: .NET DateTime Formatting

Format specifier Description

ffff Four most significant digits of the seconds fraction
(milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffff}" -f $date
0937

fffff Five most significant digits of the seconds fraction
(milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffff}" -f $date
09375

ffffff Six most significant digits of the seconds fraction
(milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffffff}" -f $date
093750

fffffff Seven most significant digits of the seconds fraction
(milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffffff}" -f $date
0937500

F

FF

FFF

(…)

FFFFFFF

Most significant digit of the seconds fraction (milliseconds).
When compared to the lowercase series of 'f' specifiers,
displays nothing if the number is zero:
PS > "{0:|F FF FFF FFFF|}" -f
 [DateTime] "01/02/4567"
| |----

Custom DateTime Format Strings | 113

Format specifier Description

%g or gg Era (e.g., A.D.):
PS > "{0:gg}" -f [DateTime]
 "01/02/4567"
A.D.

%h Hours, as a number between 1 and 12. Single digits do not
include a leading zero:
PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

hh Hours, as a number between 01 and 12. Single digits include a
leading zero. Note: this is interpreted as a standard DateTime
formatting string unless used with other formatting specifiers:
PS > "{0:hh}" -f
 [DateTime] "01/02/4567 4:00pm"
04

%H Hours, as a number between 0 and 23. Single digits do not
include a leading zero:
PS > "{0:%H}" -f
 [DateTime] "01/02/4567 4:00pm"
16

HH Hours, as a number between 00 and 23. Single digits include a
leading zero:
PS > "{0:HH}" -f
 [DateTime] "01/02/4567 4:00am"
04

K DateTime.Kind specifier that corresponds to the kind (i.e.,
local, UTC, or unspecified) of input date:
PS > "{0:%K}" -f
 [DateTime]::Now.ToUniversalTime()
Z

m Minute, as a number between 0 and 59. Single digits do not
include a leading zero:
PS > "{0:%m}" -f [DateTime]::Now
 7

114 | Chapter 5: .NET DateTime Formatting

Format specifier Description

mm Minute, as a number between 00 and 59. Single digits include
a leading zero:
PS > "{0:mm}" -f [DateTime]::Now
08

M Month, as a number between 1 and 12. Single digits do not
include a leading zero:
PS > "{0:%M}" -f
 [DateTime] "01/02/4567"
1

MM Month, as a number between 01 and 12. Single digits include
a leading zero:
PS > "{0:MM}" -f
 [DateTime] "01/02/4567"
01

MMM Abbreviated month name:
PS > "{0:MMM}" -f
 [DateTime] "01/02/4567"
Jan

MMMM Full month name:
PS > "{0:MMMM}" -f
 [DateTime] "01/02/4567"
January

s Seconds, as a number between 0 and 59. Single digits do not
include a leading zero:
PS > $date = Get-Date
PS > "{0:%s}" -f $date
7

ss Seconds, as a number between 00 and 59. Single digits include
a leading zero:
PS > $date = Get-Date
PS > "{0:ss}" -f $date
07

Custom DateTime Format Strings | 115

Format specifier Description

t First character of the a.m./p.m. designator:
PS > $date = Get-Date
PS > "{0:%t}" -f $date
P

tt a.m./p.m. designator:
PS > $date = Get-Date
PS > "{0:tt}" -f $date
PM

y Year, in (at most) two digits:
PS > "{0:%y}" -f
 [DateTime] "01/02/4567"
67

yy Year, in (at most) two digits:
PS > "{0:yy}" -f
 [DateTime] "01/02/4567"
67

yyy Year, in (at most) four digits:
PS > "{0:yyy}" -f
 [DateTime] "01/02/4567"
4567

yyyy Year, in (at most) four digits:
PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
4567

yyyyy Year, in (at most) five digits:
PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
04567

z Signed time zone offset from GMT. Does not include a leading
zero:
PS > "{0:%z}" -f [DateTime]::Now
-8

116 | Chapter 5: .NET DateTime Formatting

Format specifier Description

zz Signed time zone offset from GMT. Includes a leading zero:
PS > "{0:zz}" -f [DateTime]::Now
-08

zzz Signed time zone offset from GMT, measured in hours and
minutes:
PS > "{0:zzz}" -f [DateTime]::Now
-08:00

: Time separator:
PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

/ Date separator:
PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

" text "
' text '

Inserts the provided text literally into the output without
affecting formatting:
PS > "{0:'Day: 'dddd}" -f
 [DateTime]::Now
Day: Monday

%c Syntax allowing for single-character custom formatting
specifiers. The % sign is not added to the output:
PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

Other Inserts the provided text literally into the output without
affecting formatting:
PS > "{0:dddd!}" -f [DateTime]::Now
Monday!

Custom DateTime Format Strings | 117

CHAPTER 6

Selected .NET Classes and
Their Uses

Tables 6-1 through 6-16 provide pointers to types in the .NET
Framework that usefully complement the functionality that
PowerShell provides. For detailed descriptions and documenta‐
tion, refer to the official documentation.

Table 6-1. PowerShell

Class Description

System.Management.

Automation.PSObject

Represents a PowerShell object
to which you can add notes,
properties, and more.

Table 6-2. Utility

Class Description

System.DateTime Represents an instant in time,
typically expressed as a date and
time of day.

System.Guid Represents a globally unique
identifier (GUID).

119

https://docs.microsoft.com/en-us

Class Description

System.Math Provides constants and static
methods for trigonometric,
logarithmic, and other common
mathematical functions.

System.Random Represents a pseudorandom
number generator, a device that
produces a sequence of numbers
that meet certain statistical
requirements for randomness.

System.Convert Converts a base data type to
another base data type.

System.Environment Provides information about, and
means to manipulate, the current
environment and platform.

System.Console Represents the standard input,
output, and error streams for
console applications.

System.Text.Regular

Expressions.Regex

Represents an immutable regular
expression.

System.Diagnostics.Debug Provides a set of methods and
properties that help debug your
code.

System.Diagnostics.EventLog Provides interaction with
Windows event logs.

System.Diagnostics.Process Provides access to local and
remote processes and enables you
to start and stop local system
processes.

System.Diagnostics.Stopwatch Provides a set of methods and
properties that you can use to
accurately measure elapsed time.

120 | Chapter 6: Selected .NET Classes and Their Uses

Class Description

System.Media.SoundPlayer Controls playback of a sound from
a .wav file.

Table 6-3. Collections and object utilities

Class Description

System.Array Provides methods for creating,
manipulating, searching, and
sorting arrays, thereby serving as
the base class for all arrays in the
Common Language Runtime.

System.Enum Provides the base class for
enumerations.

System.String Represents text as a series of
Unicode characters.

System.Text.StringBuilder Represents a mutable string of
characters.

System.Collections.

Specialized.OrderedDictionary

Represents a collection of key/
value pairs that are accessible by
the key or index.

System.Collections.ArrayList Implements the IList interface
using an array whose size is
dynamically increased as
required.

Table 6-4. The .NET Framework

Class Description

System.AppDomain Represents an application domain,
which is an isolated environment
where applications execute.

Selected .NET Classes and Their Uses | 121

Class Description

System.Reflection.Assembly Defines an Assembly, which is a
reusable, versionable, and self-
describing building block of a
Common Language Runtime
application.

System.Type Represents type declarations: class
types, interface types, array types,
value types, enumeration types,
type parameters, generic type
definitions, and open or closed
constructed generic types.

System.Threading.Thread Creates and controls a thread, sets
its priority, and gets its status.

System.Runtime.Interop

Services.Marshal

Provides a collection of methods
for allocating unmanaged
memory, copying unmanaged
memory blocks, and converting
managed to unmanaged types, as
well as other miscellaneous
methods used when interacting
with unmanaged code.

Microsoft.CSharp.CSharpCode

Provider

Provides access to instances of the
C# code generator and code
compiler.

Table 6-5. Registry

Class Description

Microsoft.Win32.Registry Provides RegistryKey objects
that represent the root keys in the
local and remote Windows Registry
and static methods to access key/
value pairs.

Microsoft.Win32.RegistryKey Represents a key-level node in the
Windows Registry.

122 | Chapter 6: Selected .NET Classes and Their Uses

Table 6-6. Input and Output

Class Description

System.IO.Stream Provides a generic view of a
sequence of bytes.

System.IO.BinaryReader Reads primitive data types as
binary values.

System.IO.BinaryWriter Writes primitive types in binary to
a stream.

System.IO.BufferedStream Adds a buffering layer to read and
write operations on another
stream.

System.IO.Directory Exposes static methods for
creating, moving, and
enumerating through directories
and subdirectories.

System.IO.FileInfo Provides instance methods for
creating, copying, deleting,
moving, and opening files, and
aids in the creation of
FileStream objects.

System.IO.DirectoryInfo Exposes instance methods for
creating, moving, and
enumerating through directories
and subdirectories.

System.IO.File Provides static methods for
creating, copying, deleting,
moving, and opening files, and
aids in the creation of
FileStream objects.

System.IO.MemoryStream Creates a stream whose backing
store is memory.

Selected .NET Classes and Their Uses | 123

Class Description

System.IO.Path Performs operations on String
instances that contain file or
directory path information. These
operations are performed in a
cross-platform manner.

System.IO.TextReader Represents a reader that can read
a sequential series of characters.

System.IO.StreamReader Implements a TextReader that
reads characters from a byte
stream in a particular encoding.

System.IO.TextWriter Represents a writer that can write
a sequential series of characters.

System.IO.StreamWriter Implements a TextWriter for
writing characters to a stream in a
particular encoding.

System.IO.StringReader Implements a TextReader that
reads from a string.

System.IO.StringWriter Implements a TextWriter for
writing information to a string.

System.IO.Compression.Deflate

Stream

Provides methods and properties
used to compress and decompress
streams using the Deflate
algorithm.

System.IO.Compression.GZip

Stream

Provides methods and properties
used to compress and decompress
streams using the GZip algorithm.

System.IO.FileSystemWatcher Listens to the filesystem change
notifications and raises events
when a directory or file in a
directory changes.

124 | Chapter 6: Selected .NET Classes and Their Uses

Table 6-7. Security

Class Description

System.Security.Principal.

WindowsIdentity

Represents a Windows user.

System.Security.Principal.

WindowsPrincipal

Allows code to check the
Windows group membership of
a Windows user.

System.Security.Principal.

WellKnownSidType

Defines a set of commonly used
security identifiers (SIDs).

System.Security.Principal.

WindowsBuiltInRole

Specifies common roles to be
used with IsInRole.

System.Security.SecureString Represents text that should be
kept confidential. The text is
encrypted for privacy when
being used and deleted from
computer memory when no
longer needed.

System.Security.Cryptography.

TripleDESCryptoServiceProvider

Defines a wrapper object to
access the cryptographic service
provider (CSP) version of the
TripleDES algorithm.

System.Security.Cryptography.

PasswordDeriveBytes

Derives a key from a password
using an extension of the
PBKDF1 algorithm.

System.Security.Cryptography.

SHA1

Computes the SHA1 hash for
the input data.

System.Security.Access

Control.FileSystemSecurity

Represents the access control
and audit security for a file or
directory.

System.Security.Access

Control.RegistrySecurity

Represents the Windows access
control security for a registry
key.

Selected .NET Classes and Their Uses | 125

Table 6-8. User interface

Class Description

System.Windows.Forms.Form Represents a window or dialog
box that makes up an
application’s user interface.

System.Windows.Forms.Flow

LayoutPanel

Represents a panel that
dynamically lays out its contents.

Table 6-9. Image manipulation

Class Description

System.Drawing.Image A class that provides functionality for
the Bitmap and Metafile
classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which
consists of the pixel data for a
graphics image and its attributes. A
bitmap is an object used to work
with images defined by pixel data.

Table 6-10. Networking

Class Description

System.Uri Provides an object representation of
a uniform resource identifier (URI)
and easy access to the parts of the
URI.

System.Net.NetworkCredential Provides credentials for password-
based authentication schemes such
as basic, digest, Kerberos
authentication, and NTLM.

System.Net.Dns Provides simple domain name
resolution functionality.

System.Net.FtpWebRequest Implements a File Transfer Protocol
(FTP) client.

126 | Chapter 6: Selected .NET Classes and Their Uses

Class Description

System.Net.HttpWebRequest Provides an HTTP-specific
implementation of the WebRe
quest class.

System.Net.WebClient Provides common methods for
sending data to and receiving data
from a resource identified by a URI.

System.Net.Sockets.TcpClient Provides client connections for TCP
network services.

System.Net.Mail.MailAddress Represents the address of an
electronic mail sender or recipient.

System.Net.Mail.MailMessage Represents an email message that
can be sent using the SmtpClient
class.

System.Net.Mail.SmtpClient Allows applications to send email by
using the Simple Mail Transfer
Protocol (SMTP).

System.IO.Ports.SerialPort Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and
decoding URLs when processing web
requests.

Table 6-11. XML

Class Description

System.Xml.XmlTextWriter Represents a writer that provides a
fast, noncached, forward-only way
of generating streams or files
containing XML data that conforms
to the W3C Extensible Markup
Language (XML) 1.0 and the
namespaces in XML
recommendations.

System.Xml.XmlDocument Represents an XML document.

Selected .NET Classes and Their Uses | 127

Table 6-12. Windows Management Instrumentation (WMI)

Class Description

System.Management.Management

Object

Represents a WMI instance.

System.Management.Management

Class

Represents a management class. A
management class is a WMI class
such as Win32_LogicalDisk
(which can represent a disk drive) or
Win32_Process (which
represents a process such as an
instance of Notepad.exe). The
members of this class enable you to
access WMI data using a specific
WMI class path. For more
information, see “Win32 Classes” in
the official Windows Management
Instrumentation documentation.

128 | Chapter 6: Selected .NET Classes and Their Uses

https://aka.ms/wmi
https://aka.ms/wmi

Class Description

System.Management.Management

ObjectSearcher

Retrieves a collection of WMI
management objects based on a
specified query. This class is one of
the more commonly used entry
points to retrieving management
information. For example, it can be
used to enumerate all disk drives,
network adapters, processes, and
many more management objects on
a system or to query for all network
connections that are up, services
that are paused, and so on. When
instantiated, an instance of this
class takes as input a WMI query
represented in an ObjectQuery
or its derivatives, and optionally a
ManagementScope representing
the WMI namespace to execute the
query in. It can also take additional
advanced options in an
EnumerationOptions. When
the Get method on this object is
invoked, the Management
ObjectSearcher executes the
given query in the specified scope
and returns a collection of
management objects that match
the query in a Management
ObjectCollection.

System.Management.Management

DateTimeConverter

Provides methods to convert DMTF
datetime and time intervals to CLR-
compliant DateTime and
TimeSpan formats, and vice versa.

Selected .NET Classes and Their Uses | 129

Class Description

System.Management.Management

EventWatcher

Subscribes to temporary event
notifications based on a specified
event query.

Table 6-13. Active Directory

Class Description

System.DirectoryServices.

DirectorySearcher

Performs queries against
Active Directory.

System.DirectoryServices.

DirectoryEntry
The DirectoryEntry class
encapsulates a node or object
in the Active Directory
hierarchy.

Table 6-14. Database

Class Description

System.Data.DataSet Represents an in-memory cache
of data.

System.Data.DataTable Represents one table of in-
memory data.

System.Data.SqlClient.

SqlCommand

Represents a Transact-SQL
statement or stored procedure to
execute against a SQL Server
database.

System.Data.SqlClient.

SqlConnection

Represents an open connection to
a SQL Server database.

System.Data.SqlClient.

SqlDataAdapter

Represents a set of data
commands and a database
connection that are used to fill the
DataSet and update a SQL
Server database.

System.Data.Odbc.OdbcCommand Represents a SQL statement or
stored procedure to execute
against a data source.

130 | Chapter 6: Selected .NET Classes and Their Uses

Class Description

System.Data.Odbc.

OdbcConnection

Represents an open connection to
a data source.

System.Data.Odbc.OdbcData

Adapter

Represents a set of data
commands and a connection to a
data source that are used to fill
the DataSet and update the
data source.

Table 6-15. Message queuing

Class Description

System.Messaging.MessageQueue Provides access to a queue on a
Message Queuing server.

Table 6-16. Transactions

Class Description

System.Transactions.

Transaction

Represents a transaction.

Selected .NET Classes and Their Uses | 131

CHAPTER 7

WMI Reference

The Windows Management Instrumentation (WMI) facilities
in Windows offer thousands of classes that provide informa‐
tion of interest to administrators. Table 7-1 lists the categories
and subcategories covered by WMI and can be used to get a
general idea of the scope of WMI classes. Table 7-2 provides a
selected subset of the most useful WMI classes. For more infor‐
mation about a category, search the official WMI documenta‐
tion.

Table 7-1. WMI class categories and subcategories

Category Subcategory

Computer system hardware Cooling device, input device, mass storage,
motherboard, controller and port,
networking device, power, printing,
telephony, video, and monitor

Operating system COM, desktop, drivers, filesystem, job objects,
memory and page files, multimedia audio/
visual, networking, operating system events,
operating system settings, processes,
registry, scheduler jobs, security, services,
shares, Start menu, storage, users, Windows
NT event log, Windows product activation

133

https://aka.ms/wmi
https://aka.ms/wmi

Category Subcategory

WMI Service Management WMI configuration, WMI management

General Installed applications, performance counter,
security descriptor

Table 7-2. Selected WMI classes

Class Description

CIM_DataFile Represents a named collection of data or
executable code. Currently, the provider
returns files on fixed and mapped logical
disks. In the future, only instances of files on
local fixed disks will be returned.

Win32_BaseBoard Represents a baseboard, which is also
known as a motherboard or system board.

Win32_BIOS Represents the attributes of the computer
system’s basic input/output services (BIOS)
that are installed on a computer.

Win32_BootConfiguration Represents the boot configuration of a
Windows system.

Win32_CacheMemory Represents internal and external cache
memory on a computer system.

Win32_CDROMDrive Represents a CD-ROM drive on a Windows
computer system. Be aware that the name
of the drive does not correspond to the
logical drive letter assigned to the device.

Win32_ComputerSystem Represents a computer system in a
Windows environment.

Win32_ComputerSystem

Product

Represents a product. This includes software
and hardware used on this computer
system.

Win32_DCOMApplication Represents the properties of a DCOM
application.

134 | Chapter 7: WMI Reference

Class Description

Win32_Desktop Represents the common characteristics of a
user’s desktop. The properties of this class
can be modified by the user to customize
the desktop.

Win32_DesktopMonitor Represents the type of monitor or display
device attached to the computer system.

Win32_DeviceMemory

Address

Represents a device memory address on a
Windows system.

Win32_Directory Represents a directory entry on a Windows
computer system. A directory is a type of file
that logically groups data files and provides
path information for the grouped files.
Win32_Directory does not include
directories of network drives.

Win32_DiskDrive Represents a physical disk drive as seen by a
computer running the Windows operating
system. Any interface to a Windows physical
disk drive is a descendant (or member) of
this class. The features of the disk drive seen
through this object correspond to the logical
and management characteristics of the
drive. In some cases, this may not reflect the
actual physical characteristics of the device.
Any object based on another logical device
would not be a member of this class.

Win32_DiskPartition Represents the capabilities and
management capacity of a partitioned area
of a physical disk on a Windows system (for
example, Disk #0, Partition #1).

WMI Reference | 135

Class Description

Win32_DiskQuota Tracks disk space usage for NTFS filesystem
volumes. A system administrator can
configure Windows to prevent further disk
space use and log an event when a user
exceeds a specified disk space limit. An
administrator can also log an event when a
user exceeds a specified disk space warning
level. This class is new in Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA)
channel on a Windows computer system.
DMA is a method of moving data from a
device to memory (or vice versa) without
the help of the microprocessor. The system
board uses a DMA controller to handle a
fixed number of channels, each of which can
be used by one (and only one) device at a
time.

Win32_Environment Represents an environment or system
environment setting on a Windows
computer system. Querying this class
returns environment variables found in
HKLM\System\CurrentControlSet\Control
\Sessionmanager\Environment as well as
HKEY_USERS\<user sid>\Environment.

Win32_Group Represents data about a group account. A
group account allows access privileges to be
changed for a list of users (for example,
Administrators).

Win32_IDEController Manages the capabilities of an integrated
device electronics (IDE) controller device.

136 | Chapter 7: WMI Reference

Class Description

Win32_IRQResource Represents an interrupt request line (IRQ)
number on a Windows computer system. An
interrupt request is a signal sent to the CPU
by a device or program for time-critical
events. IRQ can be hardware- or software-
based.

Win32_LoadOrderGroup Represents a group of system services that
define execution dependencies. The services
must be initiated in the order specified by
the Load Order Group, as the services are
dependent on one another. These
dependent services require the presence of
the antecedent services to function
correctly. The data in this class is derived by
the provider from the registry key System
\CurrentControlSet\Control\GroupOrderList.

Win32_LogicalDisk Represents a data source that resolves to an
actual local storage device on a Windows
system.

Win32_LogonSession Describes the logon session or sessions
associated with a user logged on to
Windows NT or Windows 2000.

Win32_NetworkAdapter Represents a network adapter of a
computer running on a Windows operating
system.

Win32_NetworkAdapter

Configuration

Represents the attributes and behaviors of a
network adapter. This class includes extra
properties and methods that support the
management of the TCP/IP and
Internetworking Packet Exchange (IPX)
protocols that are independent from the
network adapter.

WMI Reference | 137

Class Description

WIN32_NetworkClient Represents a network client on a Windows
system. Any computer system on the
network with a client relationship to the
system is a descendant (or member) of this
class (for example, a computer running
Windows 2000 Workstation or Windows 98
that is part of a Windows 2000 domain).

Win32_NetworkConnection Represents an active network connection in
a Windows environment.

Win32_NetworkLogin

Profile

Represents the network login information
of a specific user on a Windows system. This
includes but is not limited to password
status, access privileges, disk quotas, and
login directory paths.

Win32_NetworkProtocol Represents a protocol and its network
characteristics on a Win32 computer
system.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTEventlogFile Represents a logical file or directory of
Windows NT events. The file is also known
as the event log.

Win32_NTLogEvent Used to translate instances from the
Windows NT event log. An application must
have SeSecurityPrivilege to receive
events from the security event log;
otherwise, “Access Denied” is returned to
the application.

Win32_OnBoardDevice Represents common adapter devices built
into the motherboard (system board).

138 | Chapter 7: WMI Reference

Class Description

Win32_OperatingSystem Represents an operating system installed on
a computer running on a Windows
operating system. Any operating system
that can be installed on a Windows system
is a descendant or member of this class.
Win32_OperatingSystem is a
singleton class. To get the single instance,
use @ for the key.
Windows Server 2003, Windows XP,
Windows 2000, and Windows NT 4.0: If a
computer has multiple operating systems
installed, this class returns only an instance
for the currently active operating system.

Win32_OSRecovery

Configuration

Represents the types of information that
will be gathered from memory when the
operating system fails. This includes boot
failures and system crashes.

Win32_PageFileSetting Represents the settings of a page file.
Information contained within objects
instantiated from this class specifies the
page file parameters used when the file is
created at system startup. The properties in
this class can be modified and deferred until
startup. These settings are different from
the runtime state of a page file expressed
through the associated class Win32_Page
FileUsage.

Win32_PageFileUsage Represents the file used for handling virtual
memory file swapping on a Win32 system.
Information contained within objects
instantiated from this class specifies the
runtime state of the page file.

Win32_PerfRawData_Perf

Net_Server

Provides raw data from performance
counters that monitor communications
using the WINS Server service.

WMI Reference | 139

Class Description

Win32_PhysicalMemory

Array

Represents details about the computer
system physical memory. This includes the
number of memory devices, memory
capacity available, and memory type (for
example, system or video memory).

Win32_PortConnector Represents physical connection ports, such
as DB-25 pin male, Centronics, or PS/2.

Win32_PortResource Represents an I/O port on a Windows
computer system.

Win32_Printer Represents a device connected to a
computer running on a Microsoft Windows
operating system that can produce a printed
image or text on paper or another medium.

Win32_Printer

Configuration

Represents the configuration for a printer
device. This includes capabilities such as
resolution, color, fonts, and orientation.

Win32_PrintJob Represents a print job generated by a
Windows application. Any unit of work
generated by the Print command of an
application that is running on a computer
running on a Windows operating system is a
descendant or member of this class.

Win32_Process Represents a process on an operating
system.

Win32_Processor Represents a device that can interpret a
sequence of instructions on a computer
running on a Windows operating system.
On a multiprocessor computer, one instance
of the Win32_Processor class exists for
each processor.

140 | Chapter 7: WMI Reference

Class Description

Win32_Product Represents products as they are installed by
Windows Installer. A product generally
correlates to one installation package. For
information about support or requirements
for installation of a specific operating
system, visit the Microsoft developer
documentation site and search for
“Operating System Availability of WMI
Components.”

Win32_QuickFix

Engineering

Represents system-wide Quick Fix
Engineering (QFE) or updates that have
been applied to the current operating
system.

Win32_QuotaSetting Contains setting information for disk quotas
on a volume.

Win32_Registry Represents the system registry on a
Windows computer system.

WMI Reference | 141

https://aka.ms/wmi
https://aka.ms/wmi

Class Description

Win32_ScheduledJob Represents a job created with the AT
command. The Win32_ScheduledJob
class does not represent a job created with
the Scheduled Task Wizard from the Control
Panel. You cannot change a task created by
WMI in the Scheduled Tasks UI.
Windows 2000 and Windows NT 4.0: You
can use the Scheduled Tasks UI to modify
the task you originally created with WMI.
However, although the task is successfully
modified, you can no longer access the task
using WMI.
Each job scheduled against the schedule
service is stored persistently (the scheduler
can start a job after a reboot) and is
executed at the specified time and day of
the week or month. If the computer is not
active or if the scheduled service is not
running at the specified job time, the
schedule service runs the specified job on
the next day at the specified time.
Jobs are scheduled according to Universal
Coordinated Time (UTC) with bias offset
from Greenwich Mean Time (GMT), which
means that a job can be specified using any
time zone. The Win32_ScheduledJob
class returns the local time with UTC offset
when enumerating an object, and converts
to local time when creating new jobs. For
example, a job specified to run on a
computer in Boston at 10:30 p.m. Monday
PST will be scheduled to run locally at 1:30
a.m. Tuesday EST. Note that a client must
take into account whether daylight saving
time is in operation on the local computer,
and if it is, then subtract a bias of 60
minutes from the UTC offset.

142 | Chapter 7: WMI Reference

Class Description

Win32_SCSIController Represents a SCSI controller on a Windows
system.

Win32_Service Represents a service on a computer running
on a Microsoft Windows operating system.
A service application conforms to the
interface rules of the Service Control
Manager (SCM), and can be started by a
user automatically at system start through
the Services Control Panel utility or by an
application that uses the service functions
included in the Windows API. Services can
start when there are no users logged on to
the computer.

Win32_Share Represents a shared resource on a Windows
system. This may be a disk drive, printer,
interprocess communication, or other
shareable device.

Win32_SoftwareElement Represents a software element, part of a
software feature (a distinct subset of a
product, which may contain one or more
elements). Each software element is defined
in a Win32_SoftwareElement
instance, and the association between a
feature and its Win32_Software
Feature instance is defined in the
Win32_SoftwareFeature

SoftwareElements association class.
For information about support or
requirements for installation on a specific
operating system, visit the Microsoft
developer documentation site and search
for “Operating System Availability of WMI
Components.”

WMI Reference | 143

https://aka.ms/wmi
https://aka.ms/wmi

Class Description

Win32_SoftwareFeature Represents a distinct subset of a product
that consists of one or more software
elements. Each software element is defined
in a Win32_SoftwareElement
instance, and the association between a
feature and its Win32_Software
Feature instance is defined in the
Win32_SoftwareFeatureSoftware

Elements association class. For
information about support or requirements
for installation on a specific operating
system, visit the Microsoft developer
documentation site and search for
“Operating System Availability of WMI
Components.”

Win32_SoundDevice Represents the properties of a sound device
on a Windows computer system.

Win32_StartupCommand Represents a command that runs
automatically when a user logs on to the
computer system.

Win32_SystemAccount Represents a system account. The system
account is used by the operating system and
services that run under Windows NT. There
are many services and processes within
Windows NT that need the capability to log
on internally—for example, during a
Windows NT installation. The system
account was designed for that purpose.

Win32_SystemDriver Represents the system driver for a base
service.

Win32_SystemEnclosure Represents the properties that are
associated with a physical system enclosure.

144 | Chapter 7: WMI Reference

https://aka.ms/wmi
https://aka.ms/wmi

Class Description

Win32_SystemSlot Represents physical connection points,
including ports, motherboard slots and
peripherals, and proprietary connection
points.

Win32_TapeDrive Represents a tape drive on a Windows
computer. Tape drives are primarily
distinguished by the fact that they can be
accessed only sequentially.

Win32_TemperatureProbe Represents the properties of a temperature
sensor (e.g., electronic thermometer).

Win32_TimeZone Represents the time zone information for a
Windows system, which includes changes
required for the daylight saving time
transition.

Win32_UserAccount Contains information about a user account
on a computer running on a Windows
operating system.
Because both the Name and Domain are
key properties, enumerating Win32_User
Account on a large network can affect
performance negatively. Calling
GetObject or querying for a specific
instance has less impact.

Win32_VoltageProbe Represents the properties of a voltage
sensor (electronic voltmeter).

Win32_VolumeQuota

Setting

Relates disk quota settings with a specific
disk volume. Windows 2000/NT: This class is
not available.

Win32_WMISetting Contains the operational parameters for the
WMI service. This class can have only one
instance, which always exists for each
Windows system and cannot be deleted.
Additional instances cannot be created.

WMI Reference | 145

CHAPTER 8

Selected COM Objects and
Their Uses

As an extensibility and administration interface, many applica‐
tions expose useful functionality through COM objects.
Although PowerShell handles many of these tasks directly,
many COM objects still provide significant value.

Table 8-1 lists a selection of the COM objects most useful to
system administrators.

Table 8-1. COM identifiers and descriptions

Identifier Description

Access.Application Allows for interaction and
automation of Microsoft Access.

Agent.Control Allows for the control of Microsoft
Agent 3D animated characters.

AutoItX3.Control (nondefault) Provides access to
Windows Automation via the
AutoIt administration tool.

CEnroll.CEnroll Provides access to certificate
enrollment services.

147

Identifier Description

Certificate Authority.Request Provides access to a request to a
certificate authority.

COMAdmin.COMAdminCatalog Provides access to and
management of the Windows
COM+ catalog.

Excel.Application Allows for interaction and
automation of Microsoft Excel.

Excel.Sheet Allows for interaction with
Microsoft Excel worksheets.

HNetCfg.FwMgr Provides access to the
management functionality of the
Windows Firewall.

HNetCfg.HNetShare Provides access to the
management functionality of
Windows Connection Sharing.

HTMLFile Allows for interaction and
authoring of a new Internet
Explorer document.

InfoPath.Application Allows for interaction and
automation of Microsoft InfoPath.

InternetExplorer. Application Allows for interaction and
automation of Internet Explorer.

IXSSO.Query Allows for interaction with
Microsoft Index Server.

IXSSO.Util Provides access to utilities used
along with the IXSSO.Query
object.

LegitCheckControl.LegitCheck Provide access to information
about Windows Genuine
Advantage status on the current
computer.

148 | Chapter 8: Selected COM Objects and Their Uses

Identifier Description

MakeCab.MakeCab Provides functionality to create and
manage cabinet (.cab) files.

MAPI.Session Provides access to a Messaging
Application Programming Interface
(MAPI) session, such as folders,
messages, and the address book.

Messenger.MessengerApp Allows for interaction and
automation of Messenger.

Microsoft.FeedsManager Allows for interaction with the
Microsoft RSS feed platform.

Microsoft.ISAdm Provides management of Microsoft
Index Server.

Microsoft.Update. AutoUpdate Provides management of the auto
update schedule for Microsoft
Update.

Microsoft.Update.Installer Allows for installation of updates
from Microsoft Update.

Microsoft.Update.Searcher Provides search functionality for
updates from Microsoft Update.

Microsoft.Update.Session Provides access to local information
about Microsoft Update history.

Microsoft.Update.SystemInfo Provides access to information
related to Microsoft Update for the
current system.

MMC20.Application Allows for interaction and
automation of Microsoft
Management Console (MMC).

MSScriptControl. ScriptControl Allows for the evaluation and
control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL
transforms.

Selected COM Objects and Their Uses | 149

Identifier Description

Outlook.Application Allows for interaction and
automation of your email,
calendar, contacts, tasks, and more
through Microsoft Outlook.

OutlookExpress.MessageList Allows for interaction and
automation of your email through
Microsoft Outlook Express.

PowerPoint.Application Allows for interaction and
automation of Microsoft
PowerPoint.

Publisher.Application Allows for interaction and
automation of Microsoft Publisher.

RDS.DataSpace Provides access to proxies of
Remote DataSpace business
objects.

SAPI.SpVoice Provides access to the Microsoft
Speech API.

Scripting.FileSystemObject Provides access to the computer’s
filesystem. Most functionality is
available more directly through
PowerShell or through
PowerShell’s support for the .NET
Framework.

Scripting.Signer Provides management of digital
signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of
scripting type library (.tlb) files.

ScriptPW.Password Allows for the masked input of
plain-text passwords. When
possible, you should avoid this,
preferring the Read-Host cmdlet
with the -AsSecureString
parameter.

150 | Chapter 8: Selected COM Objects and Their Uses

Identifier Description

SharePoint.OpenDocuments Allows for interaction with
Microsoft SharePoint Services.

Shell.Application Provides access to aspects of the
Windows Explorer Shell
application, such as managing
windows, files and folders, and the
current session.

Shell.LocalMachine Provides access to information
about the current machine related
to the Windows shell.

Shell.User Provides access to aspects of the
current user’s Windows session and
profile.

SQLDMO.SQLServer Provides access to the
management functionality of
Microsoft SQL Server.

Vim.Application (nondefault) Allows for interaction
and automation of the VIM editor.

WIA.CommonDialog Provides access to image capture
through the Windows Image
Acquisition facilities.

WMPlayer.OCX Allows for interaction and
automation of Windows Media
Player.

Word.Application Allows for interaction and
automation of Microsoft Word.

Word.Document Allows for interaction with
Microsoft Word documents.

Selected COM Objects and Their Uses | 151

Identifier Description

WScript.Network Provides access to aspects of a
networked Windows environment,
such as printers and network
drives, as well as computer and
domain information.

WScript.Shell Provides access to aspects of the
Windows Shell, such as
applications, shortcuts,
environment variables, the
registry, and the operating
environment.

WSHController Allows the execution of WSH
scripts on remote computers.

152 | Chapter 8: Selected COM Objects and Their Uses

CHAPTER 9

Selected Events and Their Uses

PowerShell’s eventing commands give you access to events
from the .NET Framework, as well as events surfaced by Win‐
dows Management Instrumentation (WMI). Table 9-1 lists a
selection of .NET events. Table 9-2 lists a selection of WMI
events.

Table 9-1. Selected .NET events

Type Event Description

System.AppDomain AssemblyLoad Occurs when an
assembly is
loaded.

System.AppDomain TypeResolve Occurs when the
resolution of a
type fails.

153

Type Event Description

System.AppDomain ResourceResolve Occurs when the
resolution of a
resource fails
because the
resource is not a
valid linked or
embedded
resource in the
assembly.

System.AppDomain AssemblyResolve Occurs when the
resolution of an
assembly fails.

System.AppDomain ReflectionOnly

AssemblyResolve

Occurs when the
resolution of an
assembly fails in
the reflection-
only context.

System.AppDomain UnhandledException Occurs when an
exception is not
caught.

System.Console CancelKeyPress Occurs when the
Control modifier
key (Ctrl) and C
console key (C)
are pressed
simultaneously
(Ctrl+C).

Microsoft.Win32.

SystemEvents

DisplaySettings

Changing

Occurs when the
display settings
are changing.

Microsoft.Win32.

SystemEvents

DisplaySettingsChanged Occurs when the
user changes the
display settings.

154 | Chapter 9: Selected Events and Their Uses

Type Event Description

Microsoft.Win32.

SystemEvents

InstalledFontsChanged Occurs when the
user adds fonts to
or removes fonts
from the system.

Microsoft.Win32.

SystemEvents

LowMemory Occurs when the
system is running
out of available
RAM.

Microsoft.Win32.

SystemEvents

PaletteChanged Occurs when the
user switches to
an application
that uses a
different palette.

Microsoft.Win32.

SystemEvents

PowerModeChanged Occurs when the
user suspends or
resumes the
system.

Microsoft.Win32.

SystemEvents

SessionEnded Occurs when the
user is logging off
or shutting down
the system.

Microsoft.Win32.

SystemEvents

SessionEnding Occurs when the
user is trying to
log off or shut
down the system.

Microsoft.Win32.

SystemEvents

SessionSwitch Occurs when the
currently logged-
in user has
changed.

Microsoft.Win32.

SystemEvents

TimeChanged Occurs when the
user changes the
time on the
system clock.

Selected Events and Their Uses | 155

Type Event Description

Microsoft.Win32.

SystemEvents

UserPreferenceChanged Occurs when a
user preference
has changed.

Microsoft.Win32.

SystemEvents

UserPreferenceChanging Occurs when a
user preference is
changing.

System.Net.

WebClient

OpenReadCompleted Occurs when an
asynchronous
operation to open
a stream
containing a
resource
completes.

System.Net.

WebClient

OpenWriteCompleted Occurs when an
asynchronous
operation to open
a stream to write
data to a resource
completes.

System.Net.

WebClient

DownloadString

Completed

Occurs when an
asynchronous
resource-
download
operation
completes.

System.Net.

WebClient

DownloadDataCompleted Occurs when an
asynchronous
data download
operation
completes.

156 | Chapter 9: Selected Events and Their Uses

Type Event Description

System.Net.

WebClient

DownloadFileCompleted Occurs when an
asynchronous file
download
operation
completes.

System.Net.

WebClient

UploadStringCompleted Occurs when an
asynchronous
string-upload
operation
completes.

System.Net.

WebClient

UploadDataCompleted Occurs when an
asynchronous
data-upload
operation
completes.

System.Net.

WebClient

UploadFileCompleted Occurs when an
asynchronous
file-upload
operation
completes.

System.Net.

WebClient

UploadValuesCompleted Occurs when an
asynchronous
upload of a
name/value
collection
completes.

System.Net.

WebClient

DownloadProgress

Changed

Occurs when an
asynchronous
download
operation
successfully
transfers some or
all of the data.

Selected Events and Their Uses | 157

Type Event Description

System.Net.

WebClient

UploadProgressChanged Occurs when an
asynchronous
upload operation
successfully
transfers some or
all of the data.

System.Net.

Sockets.Socket

AsyncEventArgs

Completed The event used to
complete an
asynchronous
operation.

System.Net.

Network

Information.

NetworkChange

NetworkAvailability

Changed

Occurs when the
availability of the
network changes.

System.Net.

Network

Information.

NetworkChange

NetworkAddressChanged Occurs when the
IP address of a
network interface
changes.

System.IO.

FileSystemWatcher

Changed Occurs when a
file or directory in
the specified path
is changed.

System.IO.

FileSystemWatcher

Created Occurs when a
file or directory in
the specified path
is created.

System.IO.

FileSystemWatcher

Deleted Occurs when a
file or directory in
the specified path
is deleted.

158 | Chapter 9: Selected Events and Their Uses

Type Event Description

System.IO.

FileSystemWatcher

Renamed Occurs when a
file or directory in
the specified path
is renamed.

System.

Timers.Timer

Elapsed Occurs when the
interval elapses.

System.

Diagnostics.

EventLog

EntryWritten Occurs when an
entry is written to
an event log on
the local
computer.

System.

Diagnostics.

Process

OutputDataReceived Occurs when an
application writes
to its redirected
StandardOutput
stream.

System.

Diagnostics.

Process

ErrorDataReceived Occurs when an
application writes
to its redirected
StandardError
stream.

System.

Diagnostics.

Process

Exited Occurs when a
process exits.

System.IO.Ports.

SerialPort

ErrorReceived Represents the
method that
handles the error
event of a
SerialPort

object.

Selected Events and Their Uses | 159

Type Event Description

System.IO.Ports.

SerialPort

PinChanged Represents the
method that will
handle the serial
pin changed
event of a
SerialPort

object.

System.IO.Ports.

SerialPort

DataReceived Represents the
method that will
handle the data
received event of
a SerialPort
object.

System.

Management.

Automation.Job

StateChanged Event fired when
the status of the
job changes, such
as when the job
has completed in
all runspaces or
failed in any one
runspace.

System.

Management.

Automation.

Debugger

DebuggerStop Event raised
when PowerShell
stops execution
of the script and
enters the
debugger as the
result of
encountering a
breakpoint or
executing a step
command.

160 | Chapter 9: Selected Events and Their Uses

Type Event Description

System.

Management.

Automation.

Debugger

BreakpointUpdated Event raised
when the
breakpoint is
updated, such as
when it is
enabled or
disabled.

System.

Management.

Automation.

Runspaces.

Runspace

StateChanged Event that is
raised when the
state of the
runspace
changes.

System.

Management.

Automation.

Runspaces.

Runspace

AvailabilityChanged Event that is
raised when the
availability of the
runspace
changes, such as
when the
runspace
becomes
available and
when it is busy.

System.

Management.

Automation.

Runspaces.

Pipeline

StateChanged Event raised
when the state of
the pipeline
changes.

System.

Management.

Automation.

PowerShell

InvocationStateChanged Event raised
when the state of
the pipeline of
the PowerShell
object changes.

Selected Events and Their Uses | 161

Type Event Description

System.

Management.

Automation.PSData

Collection[T]

DataAdded Event that is fired
after data is
added to the
collection.

System.

Management.

Automation.PSData

Collection[T]

Completed Event that is fired
when the
Complete

method is called
to indicate that
no more data is
to be added to
the collection.

System.

Management.

Automation.

Runspaces.

RunspacePool

StateChanged Event raised
when the state of
the runspace pool
changes.

System.

Management.

Automation.

Runspaces.

PipelineReader[T]

DataReady Event fired when
data is added to
the buffer.

System.

Diagnostics.

Eventing.Reader.

EventLogWatcher

EventRecordWritten Allows setting a
delegate (event
handler method)
that gets called
every time an
event is
published that
matches the
criteria specified
in the event
query for this
object.

162 | Chapter 9: Selected Events and Their Uses

Type Event Description

System.Data.

Common.

DbConnection

StateChange Occurs when the
state of the event
changes.

System.Data.

SqlClient.

SqlBulkCopy

SqlRowsCopied Occurs every time
that the number
of rows specified
by the Notify
After property
have been
processed.

System.Data.

SqlClient.

SqlCommand

StatementCompleted Occurs when the
execution of a
Transact-SQL
statement
completes.

System.Data.

SqlClient.

SqlConnection

InfoMessage Occurs when SQL
Server returns a
warning or
informational
message.

System.Data.

SqlClient.

SqlConnection

StateChange Occurs when the
state of the event
changes.

System.Data.

SqlClient.

SqlDataAdapter

RowUpdated Occurs during
Update after a
command is
executed against
the data source.
The attempt to
update is made,
so the event fires.

Selected Events and Their Uses | 163

Type Event Description

System.Data.

SqlClient.

SqlDataAdapter

RowUpdating Occurs during
Update before a
command is
executed against
the data source.
The attempt to
update is made,
so the event fires.

System.Data.

SqlClient.

SqlDataAdapter

FillError Returned when
an error occurs
during a fill
operation.

System.Data.

SqlClient.

SqlDependency

OnChange Occurs when a
notification is
received for any
of the commands
associated with
this Sql
Dependency

object.

Generic WMI Events
Some generic WMI events include the following:

__InstanceCreationEvent

This event class generically represents the creation of
instances in WMI providers, such as Processes, Services,
Files, and more.

A registration for this generic event looks like:
$query = "SELECT * FROM __InstanceCreationEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

164 | Chapter 9: Selected Events and Their Uses

__InstanceDeletionEvent

This event class generically represents the removal of
instances in WMI providers, such as Processes, Services,
Files, and more.

A registration for this generic event looks like:
$query = "SELECT * FROM __InstanceDeletionEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

__InstanceModificationEvent

This event class generically represents the modification of
instances in WMI providers, such as Processes, Services,
Files, and more.

A registration for this generic event looks like:
$query = "SELECT * FROM __InstanceModificationEvent "
 + "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

Generic WMI Events | 165

Table 9-2. Selected WMI Events

Event Description

Msft_WmiProvider_

OperationEvent

The Msft_WmiProvider_
OperationEvent event class is the
root definition of all WMI provider
events. A provider operation is defined as
some execution on behalf of a client via
WMI that results in one or more calls to a
provider executable. The properties of
this class define the identity of the
provider associated with the operation
being executed and is uniquely
associated with instances of the class
Msft_Providers. Internally, WMI
can contain any number of objects that
refer to a particular instance of
__Win32Provider since it
differentiates each object based on
whether the provider supports per-user
or per-locale instantiation and also
depending on where the provider is
being hosted. Currently
TransactionIdentifier is always
an empty string.

Win32_ComputerSystemEvent This event class represents events related
to a computer system.

Win32_ComputerShutdown

Event

This event class represents events when
a computer has begun the process of
shutting down.

Win32_IP4RouteTableEvent The Win32_IP4RouteTableEvent
class represents IP route change events
resulting from the addition, removal, or
modification of IP routes on the
computer system.

166 | Chapter 9: Selected Events and Their Uses

Event Description

RegistryEvent The registry event classes allow you to
subscribe to events that involve changes
in hive subtrees, keys, and specific
values.

RegistryKeyChangeEvent The RegistryKeyChangeEvent
class represents changes to a specific key.
The changes apply only to the key, not its
subkeys.

RegistryTreeChangeEvent The RegistryTreeChangeEvent
class represents changes to a key and its
subkeys.

RegistryValueChangeEvent The RegistryValueChangeEvent
class represents changes to a single value
of a specific key.

Win32_SystemTrace The SystemTrace class is the base
class for all system trace events. System
trace events are fired by the kernel
logger via the event tracing API.

Win32_ProcessTrace This event is the base event for process
events.

Win32_ProcessStartTrace The ProcessStartTrace event class
indicates a new process has started.

Win32_ProcessStopTrace The ProcessStopTrace event class
indicates a process has terminated.

Win32_ModuleTrace The ModuleTrace event class is the
base event for module events.

Win32_ModuleLoadTrace The ModuleLoadTrace event class
indicates a process has loaded a new
module.

Win32_ThreadTrace The ThreadTrace event class is the
base event for thread events.

Generic WMI Events | 167

Event Description

Win32_ThreadStartTrace The ThreadStartTrace event class
indicates a new thread has started.

Win32_ThreadStopTrace The ThreadStopTrace event class
indicates a thread has terminated.

Win32_PowerManagement

Event

The Win32_PowerManagement
Event class represents power
management events resulting from
power state changes. These state
changes are associated with either the
Advanced Power Management (APM) or
the Advanced Configuration and Power
Interface (ACPI) system management
protocols.

Win32_DeviceChangeEvent The Win32_DeviceChangeEvent
class represents device change events
resulting from the addition, removal, or
modification of devices on the computer
system. This includes changes in the
hardware configuration (docking and
undocking), the hardware state, or newly
mapped devices (mapping of a network
drive). For example, a device has
changed when a WM_DEVICECHANGE
message is sent.

168 | Chapter 9: Selected Events and Their Uses

Event Description

Win32_SystemConfiguration

ChangeEvent
The Win32_System
ConfigurationChangeEvent is an
event class that indicates the device list
on the system has been refreshed,
meaning a device has been added or
removed or the configuration changed.
This event is fired when the Windows
message
“DevMgrRefreshOn<ComputerName>”
is sent. The exact change to the device
list is not contained in the message, and
therefore a device refresh is required in
order to obtain the current system
settings. Examples of configuration
changes affected are IRQ settings, COM
ports, and BIOS version, to name a few.

Win32_VolumeChangeEvent The Win32_VolumeChangeEvent
class represents a local drive event
resulting from the addition of a drive
letter or mounted drive on the computer
system (e.g., CD-ROM). Network drives
are not currently supported.

Generic WMI Events | 169

CHAPTER 10

Standard PowerShell Verbs

Cmdlets and scripts should be named using a Verb-Noun syntax
(e.g., Get-ChildItem). The official guidance is that, with rare
exception, cmdlets should use the standard PowerShell verbs.
They should avoid any synonyms or concepts that can be map‐
ped to the standard. This allows administrators to quickly
understand a set of cmdlets that use a new noun.

NOTE

To quickly access this list (without the definitions), type
Get-Verb.

Verbs should be phrased in the present tense, and nouns
should be singular. Tables 10-1 through 10-6 list the different
categories of standard PowerShell verbs.

171

Table 10-1. Standard PowerShell common verbs

Verb Meaning Synonyms

Add Adds a resource to a container or
attaches an element to another
element

Append, Attach,
Concatenate, Insert

Clear Removes all elements from a
container

Flush, Erase, Release,
Unmark, Unset,
Nullify

Close Removes access to a resource Shut, Seal

Copy Copies a resource to another
name or container

Duplicate, Clone,
Replicate

Enter Sets a resource as a context Push, Telnet, Open

Exit Returns to the context that was
present before a new context was
entered

Pop, Disconnect

Find Searches within an unknown
context for a desired item

Dig, Discover

Format Converts an item to a specified
structure or layout

Layout, Arrange

Get Retrieves data Read, Open, Cat,
Type, Dir, Obtain,
Dump, Acquire,
Examine, Find, Search

Hide Makes a display not visible Suppress

Join Joins a resource Combine, Unite,
Connect, Associate

Lock Locks a resource Restrict, Bar

Move Moves a resource Transfer, Name,
Migrate

172 | Chapter 10: Standard PowerShell Verbs

Verb Meaning Synonyms

New Creates a new resource Create, Generate,
Build, Make, Allocate

Open Enables access to a resource Release, Unseal

Optimize Increases the effectiveness of a
resource

Improve, Fix

Pop Removes an item from the top of
a stack

Remove, Paste

Push Puts an item onto the top of a
stack

Put, Add, Copy

Redo Repeats an action or reverts the
action of an Undo

Repeat, Retry, Revert

Resize Changes the size of a resource Change, Grow, Shrink

Remove Removes a resource from a
container

Delete, Kill

Rename Gives a resource a new name Ren, Swap

Reset Restores a resource to a
predefined or original state

Restore, Revert

Select Creates a subset of data from a
larger data set

Pick, Grep, Filter

Search Finds a resource (or summary
information about that resource)
in a collection (does not actually
retrieve the resource but provides
information to be used when
retrieving it)

Find, Get, Grep, Select

Set Places data Write, Assign,
Configure

Show Retrieves, formats, and displays
information

Display, Report

Standard PowerShell Verbs | 173

Verb Meaning Synonyms

Skip Bypasses an element in a seek or
navigation

Bypass, Jump

Split Separates data into smaller
elements

Divide, Chop, Parse

Step Moves a process or navigation
forward by one unit

Next, Iterate

Switch Alternates the state of a resource
between different alternatives or
options

Toggle, Alter, Flip

Undo Sets a resource to its previous
state

Revert, Abandon

Unlock Unlocks a resource Free, Unrestrict

Use Applies or associates a resource
with a context

With, Having

Watch Continually monitors an item Monitor, Poll

Table 10-2. Standard PowerShell communication verbs

Verb Meaning Synonyms

Connect Connects a source to a destination Join, Telnet

Disconnect Disconnects a source from a
destination

Break, Logoff

Read Acquires information from a
nonconnected source

Prompt, Get

Receive Acquires information from a
connected source

Read, Accept, Peek

Send Writes information to a connected
destination

Put, Broadcast,
Mail

Write Writes information to a
nonconnected destination

Puts, Print

174 | Chapter 10: Standard PowerShell Verbs

Table 10-3. Standard PowerShell data verbs

Verb Meaning Synonyms

Backup Backs up data Save, Burn

Checkpoint Creates a snapshot of the current
state of data or its configuration

Diff, StartTransaction

Compare Compares a resource with
another resource

Diff, Bc

Compress Reduces the size or resource
usage of an item

Zip, Squeeze, Archive

Convert Changes from one representation
to another when the cmdlet
supports bidirectional conversion
or conversion of many data types

Change, Resize,
Resample

ConvertFrom Converts from one primary input
to several supported outputs

Export, Output, Out

ConvertTo Converts from several supported
inputs to one primary output

Import, Input, In

Dismount Detaches a name entity from a
location in a namespace

Dismount, Unlink

Edit Modifies an item in place Change, Modify, Alter

Expand Increases the size or resource
usage of an item

Extract, Unzip

Export Stores the primary input resource
into a backing store or
interchange format

Extract, Backup

Group Combines an item with other
related items

Merge, Combine, Map

Import Creates a primary output
resource from a backing store or
interchange format

Load, Read

Standard PowerShell Verbs | 175

Verb Meaning Synonyms

Initialize Prepares a resource for use and
initializes it to a default state

Setup, Renew,
Rebuild

Limit Applies constraints to a resource Quota, Enforce

Merge Creates a single data instance
from multiple data sets

Combine, Join

Mount Attaches a named entity to a
location in a namespace

Attach, Link

Out Sends data to a terminal location Print, Format, Send

Publish Make a resource known or visible
to others

Deploy, Release,
Install

Restore Restores a resource to a set of
conditions that have been
predefined or set by a checkpoint

Repair, Return, Fix

Save Stores pending changes to a
recoverable store

Write, Retain, Submit

Sync Synchronizes two resources with
each other

Push, Update

Unpublish Removes a resource from public
visibility

Uninstall, Revert

Update Updates or refreshes a resource Refresh, Renew,
Index

Table 10-4. Standard PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses
operational problems

Attach, Diagnose

Measure Identifies resources consumed by an
operation or retrieves statistics about
a resource

Calculate,
Determine,
Analyze

176 | Chapter 10: Standard PowerShell Verbs

Verb Meaning Synonyms

Ping Determines whether a resource is
active and responsive (in most
instances, this should be replaced by
the verb Test)

Connect, Debug

Repair Recovers an item from a damaged or
broken state

Fix, Recover,
Rebuild

Resolve Maps a shorthand representation to a
more complete one

Expand,
Determine

Test Verify the validity or consistency of a
resource

Diagnose, Verify,
Analyze

Trace Follow the activities of the resource Inspect, Dig

Table 10-5. Standard PowerShell lifecycle verbs

Verb Meaning Synonyms

Approve Gives approval or permission for an
item or resource

Allow, Let

Assert Declares the state of an item or fact Verify, Check

Build Creates an artifact (usually a binary
or document) out of some set of
input files (usually source code or
declarative documents)

Compile, Generate

Complete Finalizes a pending operation Finalize, End

Confirm Approves or acknowledges a
resource or process

Check, Validate

Deny Disapproves or disallows a resource
or process

Fail, Halt

Deploy Sends an application, website, or
solution to a remote target[s] in
such a way that a consumer of that
solution can access it after
deployment is complete

Ship, Release

Standard PowerShell Verbs | 177

Verb Meaning Synonyms

Disable Configures an item to be
unavailable

Halt, Hide

Enable Configures an item to be available Allow, Permit

Install Places a resource in the specified
location and optionally initializes it

Setup, Configure

Invoke Calls or launches an activity that
cannot be stopped

Run, Call, Perform

Register Adds an item to a monitored or
publishing resource

Record, Submit,
Journal, Subscribe

Request Submits for consideration or
approval

Ask, Query

Restart Stops an operation and starts it
again

Recycle, Hup

Resume Begins an operation after it has
been suspended

Continue

Start Begins an activity Launch, Initiate

Stop Discontinues an activity Halt, End,
Discontinue

Submit Adds to a list of pending actions or
sends for approval

Send, Post

Suspend Pauses an operation, but does not
discontinue it

Pause, Sleep,
Break

Uninstall Removes a resource from the
specified location

Remove, Clear,
Clean

Unregister Removes an item from a monitored
or publishing resource

Unsubscribe,
Erase, Remove

Wait Pauses until an expected event
occurs

Sleep, Pause, Join

178 | Chapter 10: Standard PowerShell Verbs

Table 10-6. Standard PowerShell security verbs

Verb Meaning Synonyms

Block Restricts access to a resource Prevent, Limit, Deny

Grant Grants access to a resource Allow, Enable

Protect Limits access to a resource Encrypt, Seal

Revoke Removes access to a resource Remove, Disable

Unblock Removes a restriction of access to a
resource

Clear, Allow

Unprotect Removes restrictions from a
protected resource

Decrypt, Decode

Standard PowerShell Verbs | 179

Index

Symbols
!= (inequality) comparisons in

XPath, 102
" " (quotation marks, double)

custom DateTime format
specifier, 117

in format strings, 107
in strings, 9

(hash symbol)
beginning single-line com‐

ments, 3
digit placeholder in format

strings, 106
to-end-of-line construct, 97

$ (dollar sign)
$ args special variable, 64
$() expression subparse, 2
$ErrorActionPreference auto‐

matic variable, 73
$executionContext.Session‐

State.InvokeCommand,
85

$input special variable, 70
$LastExitCode automatic

variable, 72
$MyInvocation automatic

variable, 71

$profile automatic variable,
84

$_ (or $PSItem) variable, 71,
75

$_ current object variable, xiii
in atomic zero-width asser‐

tions, 94
Get-Process cmdlet, xi
in substitution patterns, 95
in variable names, xi, 6

% (percent sign)
%= modulus and assignment,

21
%c format specifier, 117
%g or %gg format specifier,

114
%H or %h format specifier,

114
in format strings, 106
modulus operator, 21

& (ampersand)
background operator, 61
invoke/call operator, 61

' ' (quotation marks, single)
custom DateTime format

specifier, 117
in format strings, 107

181

in strings, 8
() (parentheses)

precedence control, 1
in regular expressions, 91, 93

* (asterisk)
*= multiplication and assign‐

ment, 21
*? quantifier, 90
in regular expressions, 89
multiplication operator, 20
wildcard in cmdlet parame‐

ters, x
+ (plus sign)

+= addition and assignment,
21

+? quantifier, 91
addition operator, 20
in regular expressions, 90
separating array ranges from

explicit indexes, 17
, (comma)

number scaling format speci‐
fier, 106

thousands separator in format
strings, 106

- (minus sign)
–= subtraction and assign‐

ment, 21
. (dot)

.. XML node retrieval, 101
decimal point format speci‐

fier, 106
dot notation, xi
dot-sourcing, 62
matching any character

except newline, 87
/ (slash)

/= division and assignment,
21

date separator, 117
division operator, 21
XML root, 100

0 (zero) format specifier, 106

: (colon), time separator, 117
; (semicolon), section separator in

format strings, 107
<## >, enclosing multiline com‐

ments, 3
<none> quantifier, 89
= equality comparison in XPath,

102
? (question mark)

(?.) null conditional operator,
51

(?[]) null conditional array, 17
alternation constructs, 96
grouping constructs, 92
other constructs, 97
in regular expressions, 90

@ (at sign)
@" and "@ enclosing here

strings, 9
@() array cast syntax, 14
@() list evaluation, 2, 15
@{} hashtable access, 18
attribute selector in XPath,

101
{} splatting operator, 64

[] (square brackets)
in arrays, 15, 16
character classes, 87
command parameter names,

63
filtering in XPath, 102

\ (backslash)
backreference construct, 96
escaped character, 98

^ (caret)
in atomic zero-width asser‐

tions, 94
negating character classes, 87

{} (braces) quantifier, 90-91
| (pipeline character)

alternation constructs, 96
composable commands, xii

– (minus sign)

182 | Index

subtraction operator, 20

A
\a escaped character, 98
\A in atomic zero-width asser‐

tions, 94
a.m./p.m. (t and tt) custom for‐

mat specifiers, 116
Access.Application object, 147
AccessControl classes, 125
Active Directory, xviii, 130
Active Directory Services Inter‐

faces (see ADSI)
Add verb, 172
Add-Member cmdlet, 55-57
Add-Type cmdlet, 55
addition (+) operator, 20
administrators, xi
ADSI (Active Directory Service

Interface), xviii
Agent.Control object, 147
aliases for cmdlets, x
AliasProperty, Add-Member, 56
alternation constructs, 96
AND operator

binary (-band), 23
logical (-and), 22

and, XPath logical, 102
AppDomain class, 121
AppDomain event type, 153
Approve verb, 177
arbitrary variable syntax, 6
argument ($args) array, 64
arithmetic operators, 19
array cast syntax @(), 14
Array class, 121
ArrayList class, 121
arrays, 14-19

access to array elements,
16-17

definitions of arrays, 14-16
hashtables, 18
slicing of arrays, 17

-as (type conversion) operator, 26
assemblies (libraries), loading, 55
Assembly class, 121
AssemblyLoad event, 153
-AssemblyName parameter, 55
AssemblyResolve event, 154
Assert verb, 177
assignment operators, 21, 36
assignment, variable, 11-12
associative arrays, 18
atomic zero-width assertions, 94
AutoItX3.Control object, 147
Automation.Job event type, 160
AvailabilityChanged event, 161

B
\B in atomic zero-width asser‐

tions, 95
\b

in atomic zero-width asser‐
tions, 94

escaped character, 98
background (&) operator, 61
backreference constructs, 96
Backup verb, 175
base classes and interfaces, 46
begin statement, 71
BigInt class, 14
binary numbers, 13
binary operators, 23-25, 27, 28
BinaryReader class, 123
BinaryWriter class, 123
Bitmap class, 126
block comments, 3
Block verb, 179
Booleans, 8
break keyword, 75
break statement, 42
BreakpointUpdated event, 160
BufferedStream class, 123
Build verb, 177

Index | 183

C
C or c (currency) format specifier,

104
C#, xvi
call/invoke (&) operator, 61
CancelKeyPress event, 154
capturing output of commands,

78-80
-casesensitive or -c match, 37
catch statement, 74
\cC escaped character, 98
CEnroll.CEnroll object, 147
certificate store, navigating, xxi
CertificateAuthority.Request

object, 147
Changed event, 158
character classes, in regular

expressions, 87-89
character escapes, 98
Checkpoint verb, 175
CIM (Common Information

Model), xviii
CIM_DataFile, 134
classes, 119-131

Active Directory, 130
characters, in regular expres‐

sions, 87-89
collections and object, 121
database, 130
image manipulation, 126
input and output, 123-124
learning about, 46
.NET Framework, 121
networking, 126
for number bases, 13
Powershell object, 119
registry, 122, 141, 166
security, 125
user interface, 126
utility, 119-121
WMI, 128, 133-145, 164-169
XML, 127

Clear verb, 172

Close verb, 172
cmdlet keywords in commands,

71
CmdletBinding attribute, 65
cmdlets, ix-x, 171

(see also specific cmdlets by
name)

aliases for, x
autocompletion for, x
checking possible results of,

xiii
linking with pipelines, xiii
and parameters, x
positional parameters for, x
in scripts, xv-xvi
standard PowerShell verbs,

172-179
syntax, ix, 171

CodeMethod, Add-Member, 57
CodeProperty, Add-Member, 56
collections and object utilities,

121
COM objects, xix, 55, 147-152
COMAdmin.COMAdminCatalog

object, 148
command resolution, 85
CommandLookupEventArgs, 86
CommandNotFoundAction, 85
commands, v

(see also cmdlets)
$MyInvocation automatic

variable, 71
argument array, 64
behavior customizations, 65
capturing output from, 78-80
composable, xii
discovery, xiv
DOS, in interactive shell, vii
dot-sourcing, 62
evaluation controls, 1-3
exit statement, 72
formatting output, 76-78
invoking, 61-62, 86

184 | Index

parameter attributes, 66-67
parameter validation

attributes, 68-70
parameters, 63-64
pipeline input, 70
pipeline output, 72
PowerShell, vii-ix, 1-3
providing input to, 64-71
retrieving output from, 71-72
return statement, 72
running, 61-64
Unix, in interactive shell, vii
writing, 58-60

comments, 3-5, 97
Common Information Model (see

CIM)
communication, verbs for, 174
Compare verb, 175
comparison operators, 29-34

-contains, 33
equality (-eq), 29
greater than (-gt), 30
greater than or equal (-ge), 29
in operator (-in), 30
less than (-lt), 30
less than or equal (-le), 31
-like, 31
-match, 32
negated contains (-

notcontains), 33
negated equality (-ne), 29
negated in (-notin), 30
negated like (-notlike), 32
negated match (-notmatch),

33
negated type (-isnot), 34
type operator (-is), 34

comparison value statements, 37
comparisons in XPath, 102
Complete verb, 177
Completed event, 162
complex numbers, 14

Component Object Model (see
COM objects)

Compress verb, 175
computer system hardware, WMI

class category, 133
conditional statements

if, elseif, and else, 34-39
null coalescing and assign‐

ment operators, 36
switch statements, 37-39
ternary operators, 36

-Confirm parameter, xiii
Confirm verb, 177
Connect verb, 174
Console class, 120
Console event type, 154
console settings, customizing,

80-83
constants, administrative

numeric, 12
constrained variables, 6
constructors, 46
-contains operator, 33
continue keyword, 75
continue statement, 43-45
Convert class, 13, 120
Convert verb, 175
ConvertFrom verb, 175
ConvertTo verb, 175
Copy verb, 172
Created event, 158
Cryptography classes, 125
CSharpCodeProvider class, 122
currency (C or c) format specifier,

104
custom enumeration, 47
custom type extension files, 57
customization points, 80-86

command resolution, 85
console settings, 80-83
profiles, 84
prompts, 85
tab completion, 85

Index | 185

user input, 85

D
D or d (decimal) format specifier,

104
D or d format specifier (Date‐

Time), 109
\D or \d character class, 89
d to dddd custom format specifi‐

ers (DateTime), 111
Data classes, 130
DATA evaluation (DATA {}), 3
data types

array elements, 15
int, 7
.NET Framework, 51-58
System.Type class, 122
XML, xvii-xxi, 18

data verbs, 175-176
DataAdded event, 161
database classes, 130
DataReady event, 162
DataReceived event, 160
DataSet class, 130
DataTable class, 130
DateTime class, 119
DateTime format strings, 109-117

custom strings, 111-117
standard strings, 109-111

day of month (d and dd) custom
format specifiers, 111

day of week (ddd and dddd) cus‐
tom format specifiers, 112

\ddd escaped character, 98
Debug class, 120
Debug verb, 176
DebuggerStop event, 160
decimal (D or d) format specifier,

104
decimal numbers, 12
decimal point (.) format specifier,

106

default statement in switch state‐
ments, 38

DeflateStream class, 124
Deleted event, 158
Deny verb, 177
Deploy verb, 177
diagnostics

classes, 120
event type, 162
.NET events, 159
verbs, 176

digit placeholder (#) format speci‐
fier, 106

Directory class, 123
DirectoryEntry class, 130
DirectoryInfo class, 123
DirectorySearcher class, 130
DirectoryServices classes, 130
Disable verb, 177
Disconnect verb, 174
discovery commands, xiv
Dismount verb, 175
DisplaySettingsChanged event,

154
DisplaySettingsChanging event,

154
division operator (/), 21
Dns class, 126
do … while or do … until state‐

ment, 41
documentation

.NET Framework, 52
WMI, 133

DOS commands in interactive
shell, vii

dot notation (.), xi
dot-sourcing, 60
DownloadDataCompleted event,

156
DownloadFileCompleted event,

156
DownloadProgressChanged

event, 157

186 | Index

DownloadStringCompleted event,
156

Drawing classes, 126

E
\e escaped character, 98
E or e (exponential) format speci‐

fier, 104
E0, E+0, E-0 (scientific notation)

format specifiers, 106
Edit verb, 175
Elapsed event, 159
else statement, 34-35
elseif statement, 34-35
Enable verb, 178
end statement, 71
Enter verb, 172
EntryWritten event, 159
Enum class, 121
enumerations, custom, 47
Environment class, 120
equality operator (-eq), 29
error output stream, 73
$ErrorActionPreference auto‐

matic variable, 73
ErrorDataReceived event, 159
ErrorReceived event, 159
errors, managing, 73-75
escape sequences, 10
escaped characters, 98
evaluation controls, 1-3
EventLog class, 120
EventLog event type, 159
EventRecordWritten event, 162
events

.NET Framework, 153-164
WMI, 164-169

-exact or -e match, 37
Excel.Application object, 148
Excel.Sheet object, 148
exclusive OR operator

binary (-bxor), 24
logical (xor), 22

executing commands, 61-64
Execution Policy, xvii, 61
$executionContext.Session‐

State.InvokeCommand, 85
exit statement, 72
Exit verb, 172
Exited event, 159
Expand verb, 175
expanding strings, 9
explicitly implemented interface

methods, 50
exponential (E or e) format speci‐

fier, 104
Export verb, 175
expression subparse $(), 2
extending types, 55-58

F
\f escaped character, 98
F or f (fixed-point) format speci‐

fier, 104
F or f format specifier (Date‐

Time), 109
f to fffffff custom format specifi‐

ers (DateTime), 112
F to FFFFFFF custom format

specifiers (DateTime), 113
File class, 123
-file option in switch statements,

37
FileInfo class, 123
filesystem, navigating, xx
FileSystemSecurity class, 125
FileSystemWatcher class, 124
FileSystemWatcher event type,

158
FillError event, 164
finally statement, 74
Find verb, 172
fixed-point (F or f) format speci‐

fier, 104
flow control statements, 42-45
FlowLayoutPanel class, 126

Index | 187

font size, Console setting, 80
for looping statement, 39
foreach looping statement, 40
Foreach-Object cmdlet, 40
Form class, 126
format operator (-f), 26, 103
Format verb, 172
Format-List Properties command,

76
Format-Table cmdlet, xiii
Format-Table Properties com‐

mand, 76
Format-Wide Property com‐

mand, 77
*.Format.Ps1Xml file, 77
formatting

DateTime strings, 109-117
.NET strings, 103-107
output, 76-78

FtpWebRequest class, 126
functions, writing, 58

G
\G in atomic zero-width asser‐

tions, 94
G or g format specifier, 104
G or g format specifier (Date‐

Time), 110
gb (gigabyte), 12
GB constant, xi
-ge (greater than or equal opera‐

tor), 29
general (G or g) format specifier,

104
general date/long time (g) format

specifier, 109
general date/short time (G) for‐

mat specifier, 110
Get and Set Content variable syn‐

tax, 6
Get verb, 172
Get-Command cmdlet, xiv, 63
Get-Help cmdlet, xv

Get-History cmdlet, xvii
Get-Item variable syntax, 7
Get-Member cmdlet, xv, 51
Get-Process cmdlet, xv
Get-Variable cmdlet, 7
Get-Verb cmdlet, 171
Get-WinEvent cmdlet, 99
%gg or %g custom format speci‐

fier (DateTime), 114
Grant verb, 179
greater than operator (-gt), 30
Group verb, 175
grouping constructs, 91-93
-gt (greater than operator), 30
Guid (globally unique identifier)

class, 119
GZipStream class, 124

H
%H or %h custom format speci‐

fier (DateTime), 114
hashtables, 18
help, comment-based, 3-5
here strings, 9
hexadecimal (X or x) format

specifier, 105
hexadecimal numbers, 13
HH or hh custom format specifier

(DateTime), 114
Hide verb, 172
HNetCfg.FwMgr object, 148
HNetCfg.HNetShare object, 148
hot keys, 81-83
hours-related format specifiers,

114
HTMLFile object, 148
HttpUtility class, 127
HttpWebRequest class, 126

I
if, elseif, and else statements,

34-35

188 | Index

Image class, 126
imaginary numbers, 14
Import verb, 175
-in operator, 30
InfoMessage event, 163
InfoPath.Application object, 148
Initialize verb, 175
inline comments, # in, 97
InlineScript keyword, 48
input

classes, 123-124, 127
customizing user input, 85
.NET events, 158, 159
providing to commands,

64-71
$input special variable, 70
Install verb, 178
InstalledFontsChanged event, 154
instance methods, calling, 49
instance properties, accessing, 50
InstanceCreationEvent class, 164
InstanceDeletionEvent class, 165
InstanceModificationEvent class,

165
instances of types, creating, 54
int data type, 7
Integrated Scripting Environment

(see ISE)
interactive shell, PowerShell as,

vii-ix
interfaces

defining classes that imple‐
ment, 46

methods for explicitly imple‐
mented, 50

InternetExplorer.Application
object, 148

InvocationStateChanged event,
161

invoke (&) operator, 61
Invoke verb, 178
invoking commands, 61-62, 86
IO (input-output)

classes, 123-124, 127
.NET events, 158-159

ipconfig tool, ix
-is (type) operator, 34
ISE (Integrated Scripting Envi‐

ronment), 85
IsLeapYear() method, xii
-isnot (negated type) operator, 34
IXSSO.Query object, 148
IXSSO.Util object, 148

J
jagged array, 15
-join operator, 28
Join verb, 172

K
\k backreference construct, 97
K custom format specifier (Date‐

Time), 114
kb (kilobyte), 12
keyboard shortcuts for Power‐

Shell, 53
Kill() method, Process object, xi

L
large numbers, 14
$LastExitCode automatic vari‐

able, 72
LegitCheckControl.LegitCheck

object, 148
Length property, xi
less than operator (-lt), 30
less than or equal operator (-le),

31
lifecycle verbs, 177
-like operator, 31
Limit verb, 176
list evaluation @(), 2, 15
lists (see arrays)
literal strings, 8, 107
Lock verb, 172

Index | 189

logical operators, 22, 102
long date (D) format specifier,

109
long date/long time (f) format

specifier, 109
long date/short time (f) format

specifier, 109
long time (T) format specifier,

110
lookahead assertions, 93
lookbehind assertions, 93
looping statements, 39-49

classes, 46
custom enumerations, 47
do … while/do … until, 41
flow control, 42-45
for, 39
foreach, 40
while, 41
workflow-specific statements,

47-49
loop_label, 40
LowMemory event, 155
-lt (less than) operator, 30

M
M or m format specifier (Date‐

Time), 110
m or mm custom format specifier

(DateTime), 114
M to MMMM custom format

specifiers (DateTime), 115
MailAddress class, 127
MailMessage class, 127
MakeCab.MakeCab object, 148
ManagementClass class, 128
ManagementDateTimeConverter

class, 129
ManagementEventWatcher class,

129
ManagementObject class, 128
ManagementObjectSearcher

class, 129

MAPI.Session object, 149
Marshal class, 122
-match operator, 32
Math class, 20, 119
mb (megabyte), 12
MB constant, xi
Measure verb, 176
Measure-Object command, xvi
MemoryStream class, 123
Merge verb, 176
message queuing, 131
MessageQueue class, 131
Messenger.MessengerApp object,

149
methods

versus functions, 47, 59
IsLeapYear(), xii
Kill(), xi

Microsoft .NET classes, 122
Microsoft.FeedsManager object,

149
Microsoft.ISAdm object, 149
Microsoft.Update.AutoUpdate

object, 149
Microsoft.Update.Installer object,

149
Microsoft.Update.Searcher object,

149
Microsoft.Update.Session object,

149
Microsoft.Update.SystemInfo

object, 149
Microsoft.Win32.SystemEvents

type, 154
minute (m or mm) custom for‐

mat specifiers, 114
MMC20.Application object, 149
modulus operator (%), 21
month-related (M to MMMM)

custom format specifiers, 115
month/day format specifier, 110
Mount verb, 176
Move verb, 172

190 | Index

Msft_WmiProvider_OperationE‐
vent class, 166

MSScriptControl.ScriptControl
object, 149

Msxml2.XSLTemplate object, 149
multidimensional arrays, 15
multiline comments, 3
multiple variable assignment syn‐

tax, 6
multiplication (*) operator, 20
$MyInvocation automatic vari‐

able, 71

N
\n escaped character, 98
N or n (number) format specifier,

105
namespaces, navigating, xx
naming conventions, cmdlets and

scripts, ix, 171
navigation

namespace, through provid‐
ers, xx

in XPath, 100
negated contains (-notcontains)

operator, 33
negated equality operator (-ne),

29
negated in operator (-notin), 30
negated like operator (-notlike),

32
negated match (-notmatch) oper‐

ator, 33
negated type operator (-isnot), 34
Net classes, 126
.NET Framework, 49-58

administrator support from,
xi

classes, 119-131
DateTime formatting,

109-117
documentation, 52
events, 153-164

explicitly implemented inter‐
face methods, 50

instance methods, 49
instance properties, 50
interacting with COM objects,

55
static methods, 49
static properties, 50
string formatting, 103-107
support for, xv
types, 51-58

NetworkAddressChanged event,
158

NetworkAvailabilityChanged
event, 158

NetworkChange event type, 158
NetworkCredential class, 126
New verb, 172
New-Item variable syntax, 7
New-Object cmdlet, 54
New-Variable syntax, 7
Node, XPath and XML, 100
nonbacktracking subexpressions,

93
nonterminating errors, 73
not jagged multidimensional

array, 16
NOT operator

binary (-bnot), 24
logical (-not), 22

not(), XPath logical, 102
-notcontains operator, 33
notepad tool, ix
NoteProperty, Add-Member, 56
-notin operator, 30
-notlike operator, 32
-notmatch operator, 33
null coalescing operator, 36
null conditional (?.) operator, 51
null conditional (?[]) operator, 17
number (N or n) format specifier,

105

Index | 191

number scaling (,) format speci‐
fier, 106

numbers, 11-14
assigning to variables, 11-12
hexadecimal and other bases,

13
imaginary and complex, 14
large numbers, 14
numeric constants, 12
rounding versus truncating, 7

numeric format strings in .NET,
104-107

O
o format specifier (DateTime),

110
objects

COM, xix, 55, 147-152
deep integration of, x
instance properties, 50
in interactive shell, xvi
referencing current, xi
in scripts, xvi
types, 51-58
utilities classes, 121

Octal numbers, 13
OdbcCommand class, 130
OdbcConnection class, 130
OdbcDataAdapter class, 131
OnChange event, 164
Open verb, 173
OpenReadCompleted event, 156
OpenWriteCompleted event, 156
operating system, WMI class cat‐

egory, 133
operators, 19-34

arithmetic, 19
assignment, 36
background (&), 61
binary, 23-25, 27, 28
comparison, 29-34
format (-f), 26, 103
invoke/call (&), 61

-join, 28
logical, 22, 102
null coalescing, 36
null conditional (?.), 51
null conditional (?[]), 17
-replace, 25
splatting (@{}), 64
-split, 27
square brackets ([]), 16
ternary, 36
type conversion (-as), 26

Optimize verb, 173
OR operator

binary (-bor), 23
logical (-or), 22

or, XPath logical, 102
OrderedDictionary class, 121
Other format specifier (Date‐

Time), 117
Other in format strings, 107
Out verb, 176
Outlook.Application object, 149
OutlookExpress.MessageList

object, 150
output

capturing, 78-80
classes, 123-124, 127
formatting, 76-78
.NET events, 158, 159
retrieving from commands,

71-72
OutputDataReceived event, 159

P
P or p (percent) format specifier,

105
\P or \p character class, 88
PaletteChanged event, 155
Parallel keyword, 48
Parameter attribute, 66-67
parameter validation attributes,

68-70
parameters

192 | Index

and cmdlets, x
commands supported by,

63-64
PasswordDeriveBytes class, 125
Path class, 123
pb (petabyte), 12
percent (P or p) format specifier,

105
percentage placeholder (%) for‐

mat specifier, 106
PinChanged event, 159
Ping verb, 176
pipeline character (|), xii, 96
Pipeline event type, 161
pipeline input, 70
pipeline output, 72
Pop verb, 173
positional parameters, x, 63
PostCommandLookupAction, 85
PowerModeChanged event, 155
PowerPoint.Application object,

150
PowerShell, v-xxi, 18

(see also commands; scripts)
administrator functionality, xi
arrays, 14-19
bridging technologies, xvii-

xxi
comments, 3-5, 97
conditional statements, 34-39
customization points, 80-86
error management, 73-75
interactive shell example, vii-

ix
looping statements, 39-49
object integration, x
parameters to check impacts,

xiii
providers, namespace naviga‐

tion through, xx
strings, 8-11
variables, xi, 5-8, 11-14
XML support, xvii-xxi, 18

precedence control (), 1
PreCommandLookupAction, 85
Principal classes, 125
Process class, 120
Process object, xi
process statement, 71
$profile automatic variable, 84
profiles, 84
prompt, customizing, 85
properties, 46
PropertySet, Add-Member, 57
Protect verb, 179
providers, namespace navigation,

xx-xxi
PSConsoleHostReadLine func‐

tion, 85
PSDataCollection[T] event type,

161
PSDefaultParameterValues hasht‐

able, 64
$PSItem variable, 71, 75
PSObject class, 119
PSReadLine module, 83
Publish verb, 176
Publisher.Application object, 150
Push verb, 173
Push-Location command, viii
pushd command, viii

Q
quantifiers in regular expressions,

89-91

R
\r escaped character, 98
R or r format specifier, 105
R or r format specifier (Date‐

Time), 110
Random class, 120
ranges of array elements, 16-17
RDS.DataSpace object, 150
Read verb, 174

Index | 193

Receive verb, 174
Redo verb, 173
ReflectionOnlyAssemblyResolve

event, 154
Regex class, 120
Register verb, 178
registry, xx

.NET classes, 122
WMI classes, 141, 166

RegistryEvent class, 166
RegistryKey class, 122
RegistryKeyChangeEvent class,

167
RegistrySecurity class, 125
RegistryTreeChangeEvent class,

167
RegistryValueChangeEvent class,

167
regular expressions, 87-98

alternation constructs, 96
atomic zero-width assertions,

94
backreference constructs, 96
character classes, 87-89
character escapes, 98
grouping constructs, 91-93
quantifiers, 89-91
substitution patterns, 95
Text.RegularExpres‐

sions.Regex class, 120
regular-expression (-regex or -r)

match, 37
Remove verb, 173
Renamed event, 158
Repair verb, 177
-replace operator, 25
Request verb, 178
Reset verb, 173
Resize verb, 173
Resolve verb, 177
ResourceResolve event, 153
Restart verb, 178
Restore verb, 176

Resume verb, 178
return statement, 72
Revoke verb, 179
RFC1123 (R or r) format specifier

(DateTime), 110
rounding versus truncating num‐

bers, 7
roundtrip (o) format specifier

(DateTime), 110
roundtrip (R or r) format speci‐

fier, 105
RowUpdated event, 163
RowUpdating event, 163
running commands, 61-64
Runspace event type, 161

S
s format specifier (DateTime),

110
s or ss custom format specifier

(DateTime), 115
\S or \s character class, 89
SAPI.SpVoice object, 150
Save verb, 176
scientific notation, 12, 104, 106
scope names for functions, 59
scope variable syntax, 6
script blocks, writing, 60
Scripting.FileSystemObject

object, 150
Scripting.Signer object, 150
Scriptlet.TypeLib object, 150
ScriptMethod, Add-Member, 57
ScriptProperty, Add-Member, 56
ScriptPW.Password object, 150
scripts

ad hoc development of, xvi
cmdlets in, xv-xvi
defining script, 58
Verb-Noun syntax, ix, 171
writing commands, 58-60

Searches verb, 173

194 | Index

seconds (s and ss) custom format
specifiers, 115

section separator (;), format
strings, 107

SecureString class, 125
Security classes, 125
security verbs, 179
Select verb, 173
Select-Xml cmdlet, 99
Send verb, 174
Sequence keyword, 48
SerialPort class, 127
SerialPort event type, 159
SessionEnded event, 155
SessionEnding event, 155
SessionSwitch event, 155
Set verb, 173
SHA1 class, 125
SharePoint.OpenDocument

object, 150
Shell.Application object, 151
Shell.LocalMachine object, 151
Shell.User object, 151
shift left (-shl) operator, 24
shift right (-shr) operator, 25
short date (d) format specifier,

109
short time (t) format specifier,

110
shortcuts for object types, 53
Show verb, 173
simple variable syntax, 6
single-line comments, 3
Skip verb, 173
slicing arrays, 17
SmtpClient class, 127
SocketAsyncEvenArgsCompleted

event, 158
Sort-Object cmdlet, xiii
sortable (s) format specifier

(DateTime), 110
SoundPlayer class, 120
splatting (@{}) operator, 64

-split operator, 27
Split verb, 174
SqlClient classes, 130
SqlClient event type, 163
SqlCommand class, 130
SqlConnection class, 130
SqlDataAdapter class, 130
SQLDMO.SQLServer object, 151
SqlRowsCopied event, 163
Start verb, 178
start-end character classes, 88
StateChange event, 162, 163
StateChanged event, 160, 162
StatementCompleted event, 163
static methods, calling, 49
static properties, accessing, 50
Step verb, 174
Stop verb, 178
Stop-Process cmdlet, xi, xiv
Stopwatch class, 120
Stream class, 123
StreamReader class, 124
StreamWriter class, 124
String class, 121
string formatting, 103-107

custom numeric strings,
105-107, 111-117

standard numeric strings,
104-105, 109

syntax, 103
StringBuilder class, 121
StringReader class, 124
strings, 8-11

escape sequences, 10
expanding, 9
here, 9
literal, 8, 107
parameter validation

attributes, 68
WebClient event types, 156

StringWriter class, 124
strongly typed variable syntax, 6

Index | 195

structured commands (see
cmdlets)

subexpression, expanding string,
9

Submit verb, 178
substitution patterns, in regular

expressions, 95
subtraction (–) operator, 20
Suspend verb, 178
switch statement, 37-39
Switch verb, 174
Sync verb, 176
System classes, 119
System.Math class, 20, 119
System.Numerics.Complex class,

14

T
t (a.m.) custom format character

(DateTime), 116
\t escaped character, 98
T or t format specifier (Date‐

Time), 110
tab completion, customizing, 85
TabExpansion function, 85
tb (terabyte), 12
TcpClient class, 127
terminating errors, 74-75
ternary operators, 36
Test verb, 177
text selection, making easier, 81
TextReader class, 124
TextWriter class, 124
thousands separator (,) format

specifier, 106
Thread class, 122
threading, WMI events, 167
throw keyword, 74
time (see DateTime format

strings)
time zone offset (z to zzz) custom

format specifiers, 116
TimeChanged event, 155

Timer event type, 159
tokens, 1
Trace verb, 177
Transaction class, 131
transactions, 131
trap statement, 75
TripleDESCryptoServiceProvider

class, 125
try, catch, and finally statements,

74
tt (p.m.) custom format specifier

(DateTime), 116
Type class, 122
type conversion operator (-as), 26
type operator (-is), 34
TypeResolve event, 153
types, object

COM object interaction, 55
creating instances of, 54
extending, 55-58
learning about, 51-52
shortcuts for, 53

types.custom.ps1xml file, 58

U
U or u format specifier (Date‐

Time), 111
\udddd escaped character, 98
unary join operator, 28
unary split operator, 27
Unblock verb, 179
Undo verb, 174
UnhandledException event, 154
Uninstall verb, 178
Universal sortable (u) format

specifier, 110
Universal time (U) format speci‐

fier, 111
Unix commands, running in

interactive shell, vii
Unlock verb, 174
Unprotect verb, 179
Unpublish verb, 176

196 | Index

Unregister verb, 178
Update verb, 176
Update-FormatData cmdlet, 78
Update-TypeData cmdlet, 58
UploadDataCompleted event, 157
UploadFileCompleted event, 157
UploadProgressChanged event,

157
UploadStringCompleted event,

157
UploadValues Completed event,

157
Uri class, 126
Use verb, 174
user input

commands supporting, 63-64
customizing, 85

user interface classes, 126
UserPreferenceChanged event,

155
UserPreferenceChanging event,

156
using statement, 55
utility classes, 119-121

V
\v escaped character, 98
variables

$ args special variable, 64
$ErrorActionPreference auto‐

matic variable, 73
$input special variable, 70
$LastExitCode automatic

variable, 72
$MyInvocation automatic

variable, 71
$profile automatic variable,

84
$_ (or $PSItem) variable, 71,

75
$_ current object variable, xiii
numbers, 11-14
PowerShell, 5-8

Process object, xi
Verb-Noun syntax, ix, 171
verbs, 171-179

common, 172-174
communication, 174
data, 175-176
diagnostic, 176
lifecycle, 177
security, 179

Vim.Application class, 151
Visual Studio, xvi

W
\W or \w character class, 88
Wait verb, 178
Watch verb, 174
WebClient class, 127
WebClient event type, 156
WellKnownSidType class, 125
-WhatIf parameter, xiv
.where() method, 35
Where-Object cmdlet, xii, 35, 102
while looping statement, 41
WIA.CommonDialog class, 151
-wildcard or -w match, 37
wildcards in cmdlet parameters, x
Win32_BaseBoard class, 134
Win32_BIOS class, 134
Win32_BootConfiguration class,

134
Win32_CacheMemory class, 134
Win32_CDROMDrive class, 134
Win32_ComputerShutdownE‐

vent class, 166
Win32_ComputerSystem class,

134
Win32_ComputerSystemEvent

class, 166
Win32_ComputerSystemProduct

class, 134
Win32_DCOMApplication class,

134
Win32_Desktop class, 134

Index | 197

Win32_DesktopMonitor class,
135

Win32_DeviceChangeEvent class,
168

Win32_DeviceMemoryAddress
class, 135

Win32_Directory class, 135
Win32_DiskDrive class, 135
Win32_DiskPartition class, 135
Win32_DiskQuota class, 135
Win32_DMAChannel class, 136
Win32_Environment class, 136
Win32_Group class, 136
Win32_IDEController class, 136
Win32_IP4RouteTableEvent

class, 166
Win32_IRQResource class, 136
Win32_LoadOrderGroup class,

137
Win32_LogicalDisk class, 137
Win32_LogonSession class, 137
Win32_ModuleLoadTrace event

class, 167
Win32_ModuleTrace event class,

167
Win32_NetworkAdapter class,

137
Win32_NetworkAdapterConfigu‐

ration class, 137
Win32_NetworkClient class, 137
Win32_NetworkConnection

class, 138
Win32_NetworkLoginProfile

class, 138
Win32_NetworkProtocol class,

138
Win32_NTDomain class, 138
Win32_NTEventLogFile class,

138
Win32_NTLogEvent class, 138
Win32_OnBoardDevice class, 138
Win32_OperatingSystem class,

138

Win32_OSRecoveryConfigura‐
tion class, 139

Win32_PageFileSetting class, 139
Win32_PageFileUsage class, 139
Win32_PerfRawData_Perf‐

Net_Server class, 139
Win32_PhysicalMemoryArray

class, 139
Win32_PortConnector class, 140
Win32_PortResource class, 140
Win32_PowerManagementEvent

class, 168
Win32_Printer class, 140
Win32_PrinterConfiguration

class, 140
Win32_PrintJob class, 140
Win32_Process class, 140
Win32_Processor class, 140
Win32_ProcessStartTrace event

class, 167
Win32_ProcessStopTrace event

class, 167
Win32_ProcessTrace event class,

167
Win32_Product class, 140
Win32_QuickFixEngineering

class, 141
Win32_QuotaSetting class, 141
Win32_Registry class, 141
Win32_ScheduledJob class, 141,

142
Win32_Service class, 143
Win32_Share class, 143
Win32_SoftwareElement class,

143
Win32_SoftwareFeature class, 143
Win32_SoundDevice class, 144
Win32_StartupCommand class,

144
Win32_SystemAccount class, 144
Win32_SystemConfiguration‐

ChangeEvent class, 169
Win32_SystemDriver class, 144

198 | Index

Win32_SystemEnclosure class,
144

Win32_SystemSlot class, 144
Win32_SystemTrace event class,

167
Win32_TapeDrive class, 145
Win32_TemperatureProbe class,

145
Win32_ThreadStartTrace event

class, 167
Win32_ThreadStopTrace event

class, 168
Win32_ThreadTrace event class,

167
Win32_TimeZone class, 145
Win32_UserAccount class, 145
Win32_VoltageProbe class, 145
Win32_VolumeChangeEvent

class, 169
Win32_VolumeQuotaSetting

class, 145
Win32_WMISetting class, 145
Windows Console, 80
Windows Management Instru‐

mentation (see WMI)
Windows registry (see registry)
Windows shell, viii
Windows Terminal, settings,

80-83
WindowsBuiltInRole class, 125
WindowsIdentity class, 125
WindowsPrincipal class, 125
WMI (Windows Management

Instrumentation)
classes, 128, 133-145, 164-169
events, 164-169
PowerShell support for, xviii

WMI Service Management, class
category, 133

WMPlayer.OCX object, 151
Word.Application object, 151
Word.Document object, 151

workflow-specific statements,
47-49

Write verb, 174
Write-Error cmdlet, 73
Write-Host cmdlet, 80
writing scripts, reusing function‐

ality, 58-60
WScript.Network object, 151
WScript.Shell object, 152
WSHController object, 152

X
X or x format specifier, 105
\xdd escaped character, 98
XML

support for, xvii-xxi, 18
XmlDocument class, 127
XmlTextWriter class, 127
XPath quick reference, 99

xor (exclusive OR) operator
binary (-bxor), 24
logical (-xor), 22

XPath quick reference, 99-102

Y
Y or y format specifier (Date‐

Time), 111
y to yyyyy custom format specifi‐

ers (DateTime), 116
year-related (y to yyyyy) custom

format specifiers, 116
year/month (Y or y) format speci‐

fier, 111

Z
\Z or \z in atomic zero-width

assertions, 94
z to zzz custom format specifiers

(DateTime), 116
zero placeholder (0) format speci‐

fier, 106

Index | 199

About the Author
Lee Holmes is a security architect in Azure Security, an origi‐
nal developer on the PowerShell team, and has been an author‐
itative source of information about PowerShell since its earliest
betas. His vast experience with both world-scale security and
operational management—and PowerShell itself—give him the
background to integrate both the “how” and the “why” into
discussions.

You can find him on Twitter (@Lee_Holmes), as well as his per‐
sonal site.

Colophon
The animal on the cover of PowerShell Pocket Reference is an
eastern box turtle (Terrapene carolina carolina). This box turtle
is native to North America, specifically northern parts of the
United States and Mexico. The male turtle averages about six
inches long and has red eyes; the female is a bit smaller and has
yellow eyes.

This turtle is omnivorous as a youth but largely herbivorous as
an adult. Its domed shell is hinged on the bottom and snaps
tightly shut if the turtle is in danger. Box turtles usually stay
within the area in which they are born, rarely leaving a 750-
foot radius. When mating, male turtles sometimes shove and
push one another to win a female’s attention. During copula‐
tion, it is possible for the male turtle to fall backward, be unable
to right himself, and starve to death.

Although box turtles can live for more than 100 years, their
habitats are seriously threatened by land development and
roads. Turtles need loose, moist soil in which to lay eggs and
burrow during their long hibernation season. Experts strongly
discourage taking turtles from their native habitats—not only
will it disrupt the community’s breeding opportunities, but

http://twitter.com/Lee_Holmes
https://www.leeholmes.com
https://www.leeholmes.com

turtles become extremely stressed outside of their known habi‐
tats and may perish quickly.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

Color illustration by Karen Montgomery, based on a black and
white engraving from Dover’s Animals. The cover fonts are Gil‐
roy Semibold and Guardian Sans. The text font is Adobe Min‐
ion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	A Guided Tour of PowerShell
	Introduction
	An Interactive Shell
	Structured Commands (Cmdlets)
	Deep Integration of Objects
	Administrators as First-Class Users
	Composable Commands
	Techniques to Protect You from Yourself
	Common Discovery Commands
	Ubiquitous Scripting
	Ad Hoc Development
	Bridging Technologies
	Namespace Navigation Through Providers
	Much, Much More
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Chapter 1. PowerShell Language and Environment
	Commands and Expressions
	Comments
	Help Comments
	Variables
	Booleans
	Strings
	Literal and Expanding Strings
	Here Strings
	Escape Sequences

	Numbers
	Simple Assignment
	Administrative Numeric Constants
	Hexadecimal and Other Number Bases
	Large Numbers
	Imaginary and Complex Numbers

	Arrays and Lists
	Array Definitions
	Array Access
	Array Slicing

	Hashtables (Associative Arrays)
	Hashtable Definitions
	Hashtable Access

	XML
	Simple Operators
	Arithmetic Operators
	Logical Operators
	Binary Operators
	Other Operators

	Comparison Operators
	Conditional Statements
	if, elseif, and else Statements
	Ternary Operators
	Null Coalescing and Assignment Operators
	switch Statements

	Looping Statements
	for Statement
	foreach Statement
	while Statement
	do … while Statement/do … until Statement
	Flow Control Statements
	Classes
	Custom Enumerations
	Workflow-Specific Statements

	Working with the .NET Framework
	Static Methods
	Instance Methods
	Explicitly Implemented Interface Methods
	Static Properties
	Instance Properties
	Learning About Types
	Type Shortcuts
	Creating Instances of Types
	Interacting with COM Objects
	Extending Types

	Writing Scripts, Reusing Functionality
	Writing Commands
	Running Commands
	Providing Input to Commands
	Retrieving Output from Commands

	Managing Errors
	Nonterminating Errors
	Terminating Errors

	Formatting Output
	Custom Formatting Files

	Capturing Output
	Common Customization Points
	Console Settings
	Profiles
	Prompts
	Tab Completion
	User Input
	Command Resolution

	Chapter 2. Regular Expression Reference
	Chapter 3. XPath Quick Reference
	Chapter 4. .NET String Formatting
	String Formatting Syntax
	Standard Numeric Format Strings
	Custom Numeric Format Strings

	Chapter 5. .NET DateTime Formatting
	Custom DateTime Format Strings

	Chapter 6. Selected .NET Classes and
Their Uses
	Chapter 7. WMI Reference
	Chapter 8. Selected COM Objects and
Their Uses
	Chapter 9. Selected Events and Their Uses
	Generic WMI Events

	Chapter 10. Standard PowerShell Verbs
	Index
	About the Author

